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One sentence summary: Structure of erythrocyte Band 3 reveals mutation locations leading to 

red cell diseases.  
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Abstract  

Anion Exchanger 1 (AE1, SLC4A1), also known as Band 3 plays a key role in the 

removal of carbon dioxide from tissues by facilitating the exchange of chloride and 

bicarbonate across the plasma membrane of erythrocytes.  An isoform of AE1 is also 

present in the kidney. Specific mutations in human AE1 cause several types of 

hereditary hemolytic anemias and/or distal renal tubular acidosis. Here, we report the 

crystal structure of the Band 3 anion exchanger domain (AE1CTD) at 3.5 A . The structure 

is locked in an outward-facing open conformation by an inhibitor, H2DIDS. Comparing 

this structure to a substrate bound structure of the UraA uracil transporter in an 

inward-facing conformation allowed us to identify the anion-binding position in the 

AE1CTD and to propose a possible transport mechanism revealing why selected 

mutations lead to disease.  
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Efficient delivery of oxygen to tissues and removal of carbon dioxide in blood is 

fundamental for respiration. The red blood cells or erythrocytes provide the principal 

route to achieve this. Anion exchanger 1 (AE1), also known as Band 3 or SLC4A1 

predominates in the erythrocyte ghost membrane and constitutes 30% of its protein (1). 

It plays a major role in gas transport by converting the CO2 generated to the more 

soluble bicarbonate form (HCO3-), increasing the CO2 bearing capacity of the blood.  

Carbon dioxide rising from metabolic processes in the tissues diffuses into the red blood 

cells. Here it reacts with water in a reversible process catalysed by carbonic anhydrase II 

to form HCO3- and protons (2). As the bicarbonate concentration in the erythrocyte 

increases, the anions are transported by AE1 out into the blood plasma in an 

electroneutral exchange for chloride ions. With approximately 106 AE1 molecules per 

cell (1) and each single protein transporting 4-5 x 104 ions per second (3,4), transport is 

extremely fast and approximately 90% of CO2 is taken from the tissues to the lungs as 

bicarbonate. Within the erythrocyte the net result is the accumulation of protons from 

the hydration of CO2. Due to the Bohr effect, the low pH causes hemoglobin to release 

oxygen, which can then diffuse into the tissues. When the blood reaches the lungs, the 

process is reversed and CO2 is exhaled.  

 Erythrocyte AE1 is the most abundant and widely studied anion exchanger but 

AE1 and its close homologues AE2 and AE3 are found in diverse tissues (5,6), playing 

important roles in the regulation of intracellular pH, cell volume and membrane 

potential through HCO3-/Cl- exchange. AE1 is highly expressed as an N-terminally 

truncated form in kidney, where it is instrumental in the reabsorption of bicarbonate 

(7).  Many morphological and anemic disorders to the erythrocytes and distal renal 

tubular acidosis in kidney are caused by inherited mutations in AE1 (8). 
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Human erythrocyte AE1 is a 110kDa glycoprotein. It is built from two domains 

(9), a cytosolic N-terminal domain (residues 1-360) and an integral membrane domain 

(residues 361-911). Anion exchange is catalyzed by the C-terminal domain (10-12).  

However, only the crystal structure of the cytosolic N-terminal domain (13), important 

as an anchoring point for other proteins including the scaffolding protein ankyrin (14, 

15) and deoxy-hemoglobin, has been determined (16,17). A wealth of biochemical 

experiments, including cysteine scanning mutagenesis (18-23) and N-glycan insertion 

mutagenesis (24,25), have been used to derive topology models of AE1. The only 3-

dimensional structural information available to date for the transmembrane domain is 

from electron microscopy (26,27) with the best maps at a resolution of 7.5A  calculated 

from 2-dimensional crystals (28). As such, the membrane topology, substrate 

recognition and the anion-transport mechanism of this fundamental protein remain 

unclear and diverse models have been proposed (28-31). Here we report the crystal 

structure at 3.5A  resolution of the membrane domain of human AE1 locked in an 

outward-facing open conformation by a covalently bound H2DIDS-inhibitor, in complex 

with a Fab fragment from a monoclonal antibody.  

The C-terminal, anion exchanger domain of AE1 (AE1CTD), with the N-terminus 

cleaved by trypsin, was purified directly from white ghost membranes of human 

erythrocytes and was treated with H2DIDS (4,4-diisothiocyanatodihydro-stilbene-2,2-

disulfonic acid), a disulfonic stilbene derivative that irreversibly inhibits anion 

exchangers by covalently binding to the protein and blocking the transport cycle (32,33). 

Two steps were required to obtain well diffracting crystals.  Firstly the transporter was 

deglycosylated with N-glycosidase F. Secondly, the protein was cocrystallised with a 

monoclonal antibody that binds tightly to a conformational epitope of AE1CTD.  This was 

selected from a panel of antibodies raised by the inoculation of mice with budded 
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baculovirus displaying AE1CTD (34). The structure was solved using MIRAS in 

combination with non-crystallographic symmetry averaging and refined at a resolution 

of 3.5A  to an R-factor of 27.4% and R-free of 29.0%  (Tables S1 and S2) (32). The final 

model contains all residues from 381 to 887 apart from three loop regions (553-567, 

640-649, 742-753). The asymmetric unit of the crystal contains two dimers of AE1CTD 

with one Fab fragment bound on the outer side of each protomer (Figs. S1 and S2). 

Each protomer comprises 14 transmembrane (TM) segments (Fig. 1) and has 

dimensions of approximately 60 x 60 x 50 A . The lengths of the individual TMs vary 

from 18 to 42 A . Like many other secondary transporters, the structure is built from two 

repeats inverted in the plane of the membrane (Fig. S3).  In AE1CTD, the repeat is made of 

7 TMs with the third TM of each repeat only partially spanning the membrane before 

the helical structure unravels. Though it is difficult to superimpose all TMs from the 

inverted repeat as a unit, treating it as a two-component module TM1-4 can be 

superimposed on TM 8-11 (root-mean-square deviation (r.m.s.d.) of 2.1A  for 62 out of 

103 Cα atoms; see methods) and TM 5-7 onto TM 12-14 (r.m.s.d. of 2.1A  for 53 out of 

100 Cα atoms) (Fig. S3B).   

The inverted repeat units intertwine to form two structural domains separated 

by a cleft on the extracellular side of the protein (Fig. 1A). We define these structural 

domains as the Core (TMs1-4 and 8-11) and the Gate (TMs 5-7 and 12-14), domains 

following the convention of UraA (35,36).  Within the core domain, the N-termini of the 

two half-helices (TMs 3 and 10) face one another at a distance of ~10 A  giving the 

appearance of a continuous helix (Figs. 2A, B and S2B).   

The overall fold of AE1 is very similar to the structure of the uracil transporter 

UraA (35) although they have only 12% sequence identity as aligned using the 

structures (Fig. S4).  Structural similarity was previously suggested based on threading 
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combined with mutagenesis experiments (29). UraA is also made of two 7 TM repeat 

units forming two domains. As shown in Figure 2, the Core domains of AE1CTD and UraA 

are similar and can be superposed with an r.m.s.d. of 1.8 A  for 145 of 268 C atoms (1.9 

A  for 131 out of 190 C atoms if only the TM segments are considered; Fig. S5).  The 

Gate domains of the two proteins also have the same topology but it is more difficult to 

superpose these domains (r.m.s.d. of 2.0 A  for only 55 out of 166 C atoms) (Fig. 2, C 

and D and Fig. S5).  This is, in part, because the relative positions of the three pairs of 

helices (TMs 5 and 12, TMs 6 and 7 and TMs 13 and 14) are different between AE1 and 

UraA.  As the gate domains are directly involved in substrate binding, as discussed 

below, the structural variation could reflect the different substrates of the two proteins.  

AE1CTD is a physiological dimer (37) but dimerization is not necessary for 

transport (38,39). The dimer in the crystal consists of two AE1CTD monomers with 1092 

A 2 of surface area buried at the interface (32). Monomers are related by a 2-fold axis 

parallel to the membrane normal, consistent with dimer formation in the erythrocyte 

membrane (Fig. 1B). There is no obvious difference between the two dimers seen in the 

crystal at the current resolution. The interaction between subunits is formed exclusively 

through residues on the Gate domains including TMs 5, 6 and 7 (Fig. 1B).  

The Fab fragments bind solely to the Core domain of each AE1CTD (Figs. S1 and 

S2).  The interactions between AE1CTD and the Fab are identical for the four molecules of 

the asymmetric unit.  The predominant interactions are between the heavy chain of the 

Fab and the C-terminal end of TM 3, the following loop and the loop before TM 8 (Fig. 

S1). The light chain of the Fab interacts with the end of TM 1 and the following loop. 

H2DIDS covalently crosslinks Lys539 and Lys851 (40) and, in the electron density 

maps, there is non-protein density between them consistent with the inhibitor (Fig. S6). 

However, part of the H2DIDS density is ill-defined and it is possible that either the link 



 8 

may have been damaged by radiation or the cross-linking may not have been carried out 

to completion (Fig. S6A,B).  The H2DIDS molecule spans TMs 5 and 13 of the Gate 

domain (Fig. 2A) at the entrance of a large cavity 15 A  wide, 7 A  long and 11 A  deep on 

the extracellular side of the protein between the Core and Gate domains (Figs. 3A, S6, S7 

and S8). The cavity is formed by TMs 1, 3, 5, 13 and 14 and has predominantly 

hydrophobic walls with polar residues near the entrance and at the bottom. 

Mutagenesis studies of mouse AE1 demonstrate that the protein is still capable of 

Cl- self-exchange when the lysine residues interacting with H2DIDS are mutated  (41) 

suggesting that the inhibitor does not bind in the same place as the substrate.  Under the 

H2DIDS molecule the cavity opens out slightly (18 A ) where the N-termini of TMs 3 and 

10 meet (Fig. 3).  This region has been suggested as a cation selectivity filter (23).  In 

UraA, uracil binds in the space between the positive dipoles TMs 3 and 10. The uracil 

interacts with two glutamate residues, one on TM8 (Glu241) and the other on TM 10 

(Glu290) (Fig. 3B) (35). In AE1CTD, Glu681 and the positively charged Arg730 take the 

positions of these two glutamates on TMs 8 and 10, respectively (Fig. 3B).  Both of these 

residues are conserved in AE1, and anion exchange is lost if either is mutated (19, 42-

44). Though there is no apparent density for a substrate and substrate binding could be 

blocked by bound H2DIDS, a bicarbonate ion can be placed between the positive dipoles 

of TMs 3 and 10.  The negatively charged bicarbonate could interact with the positively 

charged Arg730, and could hydrogen bond to Glu681.  The anions may also interact 

directly with the amide protons at the N-termini of TMs 3 and 10 (Fig. 3B). Consistent 

with anion binding in this space, mutagenesis studies indicate that only a conservative 

mutation to a threonine (30) or cysteine (29) is tolerated at Ser465 at the N-terminus of 

TM3. Mutation to the larger isoleucine (29), asparagine or aspartic acid (30) abolishes 

transport. The arrangement of an anion between the positively charged dipoles of half-
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helices (TMs 3 and 10 in AE1) with a negatively charged residue nearby (Glu681 in AE1) 

is similar to the selectivity filter of the CLC chloride transporter although the topology of 

the two proteins is completely different (Fig. S9) (45).   

AE1 exhibits modes of transport other than the physiological 1:1 exchange of 

bicarbonate and chloride ions. It can also conduct anions (46) or cotransport protons to 

drive the uptake of divalent sulfate (47) or chloride ions (48). These ions can easily be 

accommodated in the basic cavity (Figs. S7 and S8). Glu681 on the translocation 

pathway is a potential proton acceptor during H+/SO42- cotransport as modification to 

an alcohol (Glu681OH) or mutation to a glutamine leads to a highly proton independent 

SO42-/Cl- exchange, and electroneutral SO42-/ SO42- exchange (42, 49-50). 

Specific mutations in the AE1CTD domain (Fig. S10), are related to red cell 

diseases such as spherocytosis (51), stomatocytosis (52) and southeast asian 

ovalocytosis (SAO)(53). Some of these mutations, particularly those leading to 

spherocytosis, cause misfolding of the protein whereas others exhibit abnormal 

transport kinetics. Some of the mutations in the transport domain are listed in Table S3 

and shown in Figs. 4 and S11, S12.  An increase in membrane permeability to 

monovalent cations caused by mutations in AE1 has been seen in a number of human 

pedigrees with dominantly inherited hemolytic anemia (22, 44, 52). These mutations 

mostly occur on the cytoplasmic half of the Core domain (Fig. 4).   They include 

mutation of Arg730, the putative bicarbonate-binding residue, to Cys as well as two 

other mutations on the half-helix TM10 (Ser731 to Pro, His734 to Arg). The deletion of 

residues 400 to 408 leading to SAO also causes a cation leak in intact red cells  (54).  

These residues reside at the N-terminus of TM 1 where it interacts with TM 7 of the Gate 

domain (Figs. 4 and S12) and would presumably alter the structure of the Core domain 

as well as the interaction between AE1CTD and the N-terminal cytoplasmic domain. It is 
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interesting that this deletion may confer protection against cerebral malaria (54). Fewer 

mutations have been reported in the Gate domain.  

The structure of AE1CTD reported here is in an outward-facing conformation (Fig. 

1 and 3). AE1CTD is reported to undergo large conformational changes during transport 

in line with the alternating access mechanism (55, 56). By comparing the structures of 

outward-facing AE1CTD and inward-facing UraA with a bound substrate (35), we can gain 

some insight into the mechanism (Figs. 3A and S13).   

The Core domain of these two proteins, including the uracil binding site in UraA, 

is very similar (Figs. 3B and S5).  The major difference between the two structures is 

seen in the relative positions of the Gate and Core domains (Fig. 2, C and D and Fig. S5).  

The rotation of one domain against another as the transporter moves from outward to 

inward facing, as seen in Fig. S5, is very similar to the predominant movements seen for 

other families of transporters including the LeuT family transporters to which there is 

some structural similarity (Fig. S14) (36, 57-61). Fig. S13 shows a possible transport 

mechanism of AE1.  Starting from an outward-facing open conformation of the protein, 

chloride at a high concentration in plasma, binds to the anion-binding site. This causes 

some local conformational changes of the Core domain enabling this domain to rotate 

against the Gate domain to form the inward-facing structure. At this point chloride 

diffuses out and is replaced by bicarbonate to reverse the process. This is consistent 

with various results in kinetic studies indicating that chloride and bicarbonate ions 

share the same binding site (4).  The structure of the human AE1CTD and the proposed 

transport mechanism provides a scaffold through which to understand the many 

mutations in the protein that lead to diseases.    
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Fig. 1. Structure of AE1CTD in an outward-facing conformation. (A) View of the 

structure in the plane of the membrane (left) and from the extracellular side of the 

membrane (right). The cartoon representation of the structure has been colored from 

blue at the N-terminus to red at the C-terminus. The H2DIDS is depicted by spheres (C: 

yellow, S: dark yellow, O: red and N: blue).  Six short helices on the membrane surface 

are shown as H1 – H6.  (B) Structure of the dimer viewed from the extracellular side. 

The color coding of the left monomer is the same as in (A). The right monomer is shown 

in grey.   
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Fig. 2. Structural framework of AE1CTD and comparison with UraA. (A) Topology and 

(B) overall structure of AE1CTD viewed in the plane of the membrane. TM3 is colored in 

cyan and TM10 in orange. The other transmembrane helices of the Core domain are 

colored yellow and those of the Gate domain blue. (C) The Core and Gate domains of 

AE1. Left: the Core domain viewed from the Gate domain. Right: the Gate domain viewed 

from the Core domain. Coloring as in (A). (D) As (C) but for UraA, (PDB accession code 

3QE7). The two proteins were aligned on their respective Core domains.  
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Fig. 3. 

Outward- and inward-facing cavities and substrate binding sites in AE1 and UraA. 

(A) Surface representations of the outward-facing structures of the substrate-free 

AE1CTD complex with H2DIDS (left) and the inward-facing structure of UraA (PDB 

accession code 3QE7) with uracil (right). These are the views in the plane of the 

membrane. The surfaces are semi-transparent and slabbed to show the positions of the 

transmembrane helices, which are colored as in Fig. 2. The H2DIDS and uracil are shown 

in magenta on the left and right panels, respectively. (B) Comparison of the putative 

anion binding site in AE1 (left) with the Uracil binding site in UraA (right). The coloring 

is as in (A). Glu241 and Glu290 of Uracil correspond to Glu681 and Arg730 of AE1 

respectively. The dark blue spheres represent the amide nitrogens of the depicted 

residues and the light blue sphere the Catom of Gly463.  
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Fig. 4. Some mutations reported to cause diseases, plotted on the structure of 

AE1CTD. The Core domain is colored coral and the Gate domain light blue. The view is 

from the cytoplasmic side of the membrane. The deletion mutation of residues 400-408, 

which causes SAO is shown in yellow. Point mutations are shown by spheres with 

coloring according to conservation among the 10 human SLC4 family transporters. This 

was generated with the ConSurf  server (http://consurf.tau.ac.il/)  (62) using AE1-4, 

NBCe1-2, NBCn1, NDCBE, NCBE and BTR1 and colored according to the colours of the 

rainbow with blue, highly conserved and red, poorly conserved.  R730 is only conserved 

amongst the electrogenic family members. The details of mutations are described in 

Table S3 and Figs. S11 and S12. The position of uracil in the UraA structure, 

corresponding to the possible anion binding site in AE1, is shown with magenta spheres.  
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