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ABSTRACT 
 

Frequent product model changes have become a characteristic feature in 

new product development and modern manufacturing. This has triggered a number of 

requirements such as shortening new product development time and production ramp-

up time with simultaneous reduction of avoidable engineering changes and overall 

vehicle development cost. 

One of the most significant challenges when reducing new model 

development lead time is the large number of engineering changes, that are triggered 

by failures during production ramp-up stage but are unseen during design. In order to 

reduce engineering changes during ramp-up stage and also increase Right-First-Time 

development rate, there is a critical demand for improving quality of integrated 

product and production system design solutions.  Currently, this is obtained by 

carrying out design synthesis which focuses on design optimization driven by 

computer simulation and/or physical experimentation. 

The design synthesis depends on the quality of the used surrogate models, 

which integrate critical product variables, (also known as Key Product Characteristics 

(KPCs)), with key process variables (Key Control Characteristics (KCCs)). However, 

a major limitation of currently existing surrogate models, used in design synthesis, is 

that these simply approximate underlying KPC-KCC relations with any deviation 

between the actual and predicted KPC assumed to be a simple random error with 

constant variance. Such an assumption raises major challenges in obtaining accurate 

design solutions for a number of manufacturing processes when: (1) KPCs are 

deterministic and non-linearity is due to interactions between process variables 

(KCCs) as is frequently the case in fixture design for assembly processes with 

compliant parts; (2) KPC stochasticity is either independent of (homo-skedastic) or 

dependent on (hetero-skedastic) on process variables (KCCs) and there is lack of 

physics-based models to confirm these behaviour; as can be commonly observed in 

case of  laser joining processes used for automotive sheet metal parts; and, (3) there 

are large number of KCCs potentially affecting a KPC and dimensionality reduction 

is required to identify few critical KCCs as commonly required for diagnosis and 

design adjustment for unwanted dimensional variations of the KPC. 

This thesis proposes a generic Scalable Design Synthesis framework 

which involves the development of novel surrogate models which can address a 

varying scale of the KPC-KCC interrelations as indicated in the aforementioned three 

challenges. The proposed Scalable Design Synthesis framework is developed through 

three interlinked approaches addressing each aforementioned challenge, respectively: 

i. Scalable surrogate model development for deterministic non-linearity of KPCs 

characterized by varying number of local maximas and minimas. Application: 

Fixture layout optimization for assembly processes with compliant parts.  This is 

accomplished in this thesis via (1) Greedy Polynomial Kriging (GPK),  a novel 

approach for developing Kriging-based surrogate models for deterministic KPCs 

focusing on maximization of predictive accuracy on unseen test samples; and,     

(2) Optimal Multi Response Adaptive Sampling (OMRAS) a novel method of 
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accelerating the convergence of multiple surrogate models to desired accuracy 

levels using the same training sample of KCCs. GPK surrogate models are then 

used for fixture layout optimization for assembly with multiple sheet metal parts. 

ii. Scalable surrogate model development for stochasticity characterized by unknown 

homo-skedastic or hetero-skedastic behaviour of KPCs. Application: In-process 

laser joining processes monitoring and in-process joint quality evaluation. 

Scalable surrogate model-driven joining process parameters selection, addressing 

stochasticity in KPC-KCC relations, is developed. A generic surrogate modelling 

methodology is proposed to identify and characterize underlying homo- and 

hetero-skedastic behaviour in KPCs from experimental data. This is achieved by 

(1) identifying a Polynomial Feature Selection (PFS) driven best-fitting linear 

model of the KPC; (2) detection of hetero-skedasticity in the linear model; and,          

(3) enhancement of the linear model upon identification of hetero-skedasticity.   

The proposed surrogate models estimate the joining KPCs such as weld 

penetration, weld seam width etc. in Remote Laser Welding (RLW) and their 

variance as a function of KCCs such as gap between welded parts, welding speed 

etc. in RLW. This information is then used to identify process window in KCC 

design space and compute joining process acceptance rate.  

iii. Scalable surrogate model development for high dimensionality of KCCs. 

Application: Corrective action of product failures triggered by dimensional 

variations in KPCs. Scalable surrogate model-driven corrective action is proposed 

to address efficient diagnosis and design adjustment of unwanted dimensional 

variations in KPCs. This is realized via (1) PFS to address high dimensionality of 

KCCs and identify a few critical ones closely related to the KPC of interest; and 

(2) surrogate modelling of the KPC in terms of the few critical KCCs identified by 

PFS; and, (3) two-step design adjustment of KCCs which applies the surrogate 

models to determine optimal nominal adjustment and tolerance reallocation of the 

critical KCCs to minimize production of faulty dimensions. 

 All the aforementioned methodologies are demonstrated through the use 

of industrial case studies. Comparison of the proposed methods with design synthesis 

existing for the applications discussed in this thesis, indicate that scalable surrogate 

models can be utilized as key enablers to conduct accurate design optimization with 

minimal understanding of the underlying complex KPC-KCC relations by the user. 

The proposed surrogate model-based Scalable Design Synthesis framework is 

expected to leverage and complement existing computer simulation/physical 

experimentation methods to develop fast and accurate solutions for integrated product 

and production system design.    
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CHAPTER 1                                                                                     

INTRODUCTION                                                                              

 

 

1.1 Motivation 

In recent years frequent model changes triggered due to rapidly changing 

customer preferences have become a prevailing trend in the automotive industry. To 

remain competitive, automobile manufacturers must accommodate frequent changes 

not only in an automotive body design but also as a consequence in an automotive 

body assembly system. Under these requirements, manufacturers strive to maximize 

their return on investment from every assembly production system by shortening new 

product development time and production ramp-up time with simultaneous reduction 

of avoidable engineering changes and overall vehicle development cost.  

One of the most significant challenges when reducing new model 

development lead time is the large number of engineering changes, that are triggered 

by failures during production ramp-up stage but are unseen during design.  This is 

important as product development time and production ramp-up time strongly depends 

on the ratio of ‘Right-First-Time’ strategy, which tries to eliminate additional changes 

after the design phase. For example, according to a 1999 survey conducted by the 

University of Michigan, it is estimated that top automotive manufacturers reach up to 

80% ‘Right-First-Time’ during design stage, with many manufacturers in the range of 

50%-80% (Ceglarek, et al., 2004).  Also, it was reported that in aerospace and 

automotive industries 67-70% of all design changes are related to product dimensional 

variation (Shalon, et al., 1992; Ceglarek & Shi, 1995). 

In order to reduce engineering changes during ramp-up stage and also 

increase ‘Right-First-Time’ development rate, there is a critical demand for improving 
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quality of integrated product and production system design solutions. Currently, this is 

obtained by carrying out design synthesis which focuses on design optimization 

driven by computer simulation and/or physical experimentation.   

Frequently, the design synthesis approaches uses a functional mapping, 

which integrate critical product variables (also known as Key Product Characteristics 

(KPCs)), with key process variables (Key Control Characteristics (KCCs)).  The 

functional mapping from KCCs to KPCs provides a mathematical representation of 

the physical process through which KPCs are to be achieved by KCCs during 

production.  The main objective of the design synthesis is to optimize selected 

cost/quality based Key Performance Indicators (KPIs) using the KPC-KCC functional 

mappings. Additionally, the optimization is constrained by KPC design tolerances 

which define the range for acceptable product quality and KCC design constraints 

which define operating limits of process variables in the specific assembly system. 

Few notations are introduced as follows before describing an example of 

an individual design synthesis task for assembly system optimization. 

Notations 

d  Number of Key Control Characteristics (KCCs) 

r  Number of Key Product Characteristics (KPCs) 

x  ‘d’ KCCs related to a given design synthesis task 1 2
{ , ,..., }

d
x x xx  

y ‘r’ KPCs related to a design synthesis task 1 2
{ , ,..., }

r
y y yy  

y  Any individual KPC related to a design synthesis task such that yy  

Φ  Key Performance Indicators (KPIs) related to a given design synthesis 

task and expressed as functions of KCCs and KPCs 

A  Assembly response function (ARF) which is a r d matrix integrating ‘d’ 

KCCs with ‘r’ KPCs 

ij
c  Coefficient in ARF integrating 

th
i KPC with 

th
j  KCC 

KCC
ψ  Operating limits of KCCs 
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KPC
ψ  Design tolerances of KPCs 

*
x  Optimal KCCs obtained after running design synthesis 

*
y  Optimal KPCs obtained after running design synthesis 

n  Number of computer simulations/physical experimentations performed 

T
S  Training dataset generated by computer simulations/physical 

experimentations and having ‘n’ samples of KCCs ‘x’ and a KPC ‘y’ 

i
x  th

i sample of KCCs ‘x’ obtained from computer simulation/physical 

experimentation where {1,2,..., }i n  

i
y  th

i sample of KPC ‘y’ obtained from computer simulation/physical 

experimentation where {1,2,..., }i n  

ˆ
i

y  th
i  value of KPC ‘y’ predicted by its surrogate model where {1,2,..., }i n  

y  
Average value of KPC ‘y’ obtained from ‘n’ samples i.e. 

1

1 n

i

i

y y
n 

   

i
  Deviance between actual ‘ i

y ’ and predicted ‘ ˆ
i

y ’ KPC i.e.  ˆ
i i i

y y    

where {1,2,..., }i n  

P Probability distribution followed by i
  where {1,2,..., }i n  

θ  Parameters of the probability distribution P such that ~ P( )
i

 θ  

R2 Degree of determination 

 

An individual design synthesis task for assembly system optimization 

consists of three components which are: 

i. Assembly response function (ARF) model which integrates KPCs with KCCs. 

Eq. (1.1) shows a linear ARF mapping from ‘d’ KCCs to ‘r’ KPCs. 

                    

,

,

, , ,

11 12 1 d 11

21 22 2 d 22

r 1 r 2 r d dr r 1 d 1r d

c c c KCCKPC

c c c KCCKPC

c c c KCCKPC
 

    
    
     
    
    

    

or y Ax              (1.1)  

where 
jic ,
 is a constant value derived from analysis of the physical process 
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through which KPCs are achieved by KCCs. For example Ceglarek and Shi 

(1996) suggested to link assembly product variables (KPCs) with assembly 

process variables (KCCs) such as position of fixture locators. This approach was 

then generalized to Stream-of-Variation Analysis (SOVA) for multi-station 

assembly processes with rigid parts by Hu (1997), Jin and Shi (1999), Huang, et 

al. (2007a; 2007b), Phoomboplab and Ceglarek (2008) and by Camelio, et al. 

(2003), Wang and Ceglarek (2005) to multi-station assembly processes with 

compliant parts. In their case, 
jic ,
are the coefficients of linear KPC-KCC 

models obtained from state-space modelling and analysis of assembly processes 

with compliant parts. 

ii. KPI model is selected as a  specific objective function of an individual design 

task and expressed in terms of KPCs ( x ) and KCCs ( y ) as shown in Eq. (1.2) 

                                               KPI ( , )Φ x y                                                     (1.2) 

iii. Optimization algorithms to minimize/maximize the selected KPI model to 

determine optimal KCCs (
*

x ) and KPCs (
*

y ). Eq. (1.3) gives a generic 

representation of the optimization problem. 

                                         
*

x ,
*

y =
KCC KPC,

arg min
 x ψ y ψ

( , )Φ x y                                      (1.3) 

where KCC
ψ  represent design constraints of KCCs and KPC

ψ  indicate design 

tolerances of KPCs. 

Table 1.1 provides a few examples of design synthesis tasks related to a 

typical automotive body (Body-in-white (BIW)) assembly system and their 

corresponding KCCs, KPCs and KPIs.  

 



5 
 

Table 1.1: Examples of design synthesis and related KCCs, KPCs and KPIs 

Design synthesis 

tasks 
Related KCCs Related KPCs Related ARF Related KPIs Related articles 

Product-oriented 

tolerance synthesis of 

part fabrication by 

machining 

Component dimensions Assembly dimensions 
Assembly function based 

on kinematic analysis                      

- Quality loss due KPC deviance 

from nominal 

- Cost of manufacturing required 

tolerance of KCCs 

Chase (1999) 

Process-oriented 

tolerance synthesis of 

multi-station assembly 

process 

- Part locating layout 

(position of locators) 

- Locating layout 

changes between 

stations 

- Design dimensions of 

finished assembly 

- Working dimensions 

of intermediate 

workpieces 

SOVA state-space model 

for multi-station assembly 

process 

 

Cost of tolerance allocation to 

KCCs 

- 2D rigid bodies: 

Ding, et al. 

(2005) 

- 3D rigid bodies: 

Huang, et al. 

(2007a; 2007b)  

Fixture layout 

optimization in multi-

station assembly 

- Part locating layout 

(position of fixture 

locators) 

- Variation in locator 

positions  

Gaps, inclinations 

between mating parts 

SOVA design matrix 

(Ding, et al., 2005; Huang, 

et al., 2007 a, b)  

Process yield computed as 

probability of all KPCs within 

design tolerances  

Phoomboplab and 

Ceglarek (2008) 

    Abbreviations: KCCs – Key Control Characteristics; KPCs – Key Product Characteristics; KPIs – Key Performance Indicators
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As evident from the aforementioned discussion, a key requirement for 

conducting design synthesis is the development of the ARF which provides the 

functional mapping between KCCs and KPCs as shown in Eq. (1.1). However, for 

complex sheet metal assemblies such as those used for automotive BIW, a 

comprehensive and practically useful ARF for design synthesis is seldom available. 

Instead, either computer simulation of complex multi-physics based Variation 

Simulation Analysis (VSA) or physical experimentation is used to study the 

relationship between KCCs and KPCs as design analysis rather than as design 

synthesis.  

In general, VSA and/or experimentation are generally not sufficient for 

extensive design synthesis for at least two reasons.  First, efficient global optimization 

and hence, quality of final solution is limited by computationally expensive VSA or 

resource intensive physical experimentation. Next, fault diagnosis and process 

adjustment are challenging due to numerical intractability of VSA and/or physical 

experimentation.  

Few studies have been done to address the aforementioned limitations of 

VSA and physical experimentation that affect design synthesis. These works develop 

statistical predictive models of KPCs in terms of KCCs. The statistical predictive 

models, also known as surrogate models of KPCs, are then used in design synthesis as 

computationally cheap and numerically tractable surrogates for VSA and physical 

experimentation (Huang, et al., 2009). Typically, surrogate model of a KPC ‘y’ is 

developed by analyzing a training dataset T
S ={ ,

i
x =1

...

...
}

...

11 12 1r 1

21 22 2r 2n

i i

n1 n1 nr n

x x x y

x x x y
y

x x x y

 
 
 
 
 
 

  

which is generated by running computer simulation or physical experimentation, 
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where ‘n’ is the number of simulations or experiments, i
x are KCCs and i

y  is KPC of 

the ith simulation or experiment.  

In design synthesis, currently existing surrogate models, which are 

developed through data analysis, give an approximation of the underlying interrelation 

between KPCs and KCCs. Any deviance i
  between actual ( i

y ) and predicted ( ˆ
i

y ) 

KPC is assumed to originate from random numerical error of simulation or 

measurement error of experimentation. Mathematically, the aforementioned 

assumption is formulated as a probability distribution, ~ P( )
i

 θ  whose parameters θ  

are considered to be constant and independent of the KCCs. This approach is 

illustrated by Figure 1.1 in which a black dot represents an actual sample obtained 

from simulation or experimentation and the blue dotted line is the approximation 

provided by the surrogate model of KPC ‘y’. 

 

 

Figure 1.1: Approximation by surrogate model of homogenous deviance 

 

The assumption made by the aforementioned approach raises major 

challenges in obtaining quality solutions for design synthesis when: 

i. KPCs exhibit varying deterministic non-linearity characterized by varying 

number of local maximas and minimas 

For computer simulations which have negligible or no numerical error, KPCs 
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are deterministic and the assumption that the deviance i
  has a probability 

distribution with constant parameters θ  has the following issues: 

- The assumption is inadequate for developing surrogate models of deterministic 

KPC-KCC interrelations. In case of deterministic KPC-KCC interrelations, i
  

is not the numerical error of VSA but it is the prediction error of the surrogate 

model for the ith sample. 

- A surrogate model developed with this assumption merely approximates the 

global trend in the KPC and gives higher prediction error near local 

maximas/minimas thereby undermining the overall accuracy of the surrogate 

model. 

- Surrogate models developed with this assumption might have acceptable 

accuracy when there are few maximas and minimas in the KPC-KCC 

interrelations. However, because these surrogate models approximate only the 

global trend in the KPC, their accuracy suffers when a large number of local 

maximas and minimas are present. 

Due to the aforementioned issues, current surrogate models for design 

synthesis cannot cope with varying deterministic non-linearity which is 

characterized by varying number of local maximas and minimas present in the 

KPC-KCC interrelations. Current surrogate models’ lack of scalability for 

varying deterministic non-linearity is critical particularly when the design 

synthesis task requires acceptably accurate surrogate models but the number of 

local maximas and minimas in the KPC-KCC interrelations, depending on the 

underlying physical process, varies from case to case and therefore is 

unforeseen. As an example consider, VSA which models the effect of fixture 

KCCs such as clamp locations on assembly KPCs such as gap between mating 
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parts. The interaction between KCCs and KPCs in this case is sensitive to 

dimensional and geometrical variations of the mating parts, also known as part 

variations and can vary from rigid to compliant. As a result of varying scale of 

part compliancy, the underlying KPC-KCC interrelations might have an 

unforeseen number of local maximas and minimas as illustrated by Figure 1.2. 

 

Figure 1.2: Varying non-linearity in KPC-KCC interrelations based on part error type 

 

 

 

ii. KPCs exhibit varying stochasticity characterized by unknown homo- and hetero-

skedastic behaviour 

In design synthesis tasks based on physical experimentation, the KPC (y) has 

stochastic variations which might be homo-skedastic (random noise due to 

measurement errors and independent of KCCs) or hetero-skedastic (systematic 

variance and dependent on KCCs). Therefore, current surrogate model based on 

the assumption of constant θ has the following challenges: 

-  It ignores underlying hetero-skedastic behaviour associated with a KPC 

whereby the i
  is not a random noise but a systematic variance which is 

dependent on KCCs 

-  It overlooks mixed behavior where some KPCs are homo-skedastic whereas 

others are hetero-skedastic. 

- Constant θ is a strong assumption, especially if: (1) surrogate modelling is 
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done using experimental data where KPCs are subjected to errors; and,         

(2) there is lack of comprehensive and useful first-principle models, based on 

physical laws, to confirm the actual KPC behaviour. As an example, there is 

lack of first-principle models for all the industry recommended KPCs related 

to properties of lap joints produced by Remote Laser Welding (RLW) 

(Michalos, et al., 2010).   

Due to the aforementioned limitations, current surrogate models for design 

synthesis are not able to address the varying KPC stochasticity, which can be 

either homo-skedasticity or hetero-skedasticity. This limitation significantly 

affects the quality of solution for certain design synthesis tasks. For example, for 

joining process parameter selection, lack of understanding about homo- and 

hetero-skedasticity of joint KPCs such as weld penetration, weld bead width 

etc., in case of RLW, would lead to incorrect characterization of control limits of 

the KPCs and inaccurate computation of joining process acceptance rate (or 

fallout rate). Figure 1.3 illustrates homo- and hetero-skedasticity in KPCs and 

their consequence on estimation of KPC control limits. 

 

 

Figure 1.3: Homo- and hetero-skedastic behaviour of KPCs 

 

 

iii. KPC-KCC interrelations exhibit high dimensionality of KCCs and there is 
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requirement to identify few critical KCCs from a larger set of all given KCCs 

In a complex production system involving a large number of KCCs, a KPC 

might be affected by all the KCCs or by a few critical ones.   However, with 

lack of information about the physical process governing the behaviour of each 

KPC, the actual number of KCCs closely related to a KPC is unknown. Hence, 

KPC-KCC interrelations apparently exhibit higher than needed dimensionality 

of KCCs. 

Current surrogate models for design synthesis do not consider 

dimensionality reduction of KCCs making them unsuitable for design synthesis 

tasks such as cost-effective corrective action to reduce unwanted variations of 

KPCs which require identification and adjustment of few critical KCCs related 

to a particular KPC. Finding critical KCCs can be a challenging task especially 

with lack of a closed-form analytical assembly transfer function (ARF) linking 

KPCs and KCCs in complex assemblies where KPCs are estimated from KCCs 

based on first-principle analyses done using VSA software. 

Therefore, as evident from the discussion presented in this section, 

surrogate models are critical for facilitating design synthesis when design optimization 

has to rely on computer simulation and/or physical experimentation. However, current 

surrogate models for design synthesis have three major limitations: 

- They do not address the capability to cope with varying deterministic non-linearity 

in KPC-KCC interrelations characterized by varying number of local maximas and 

minimas 

- They lack the capability to identify and characterize varying stochasticity of KPC-

KCC interrelations which can be either homo- or hetero-skedastic  

- In case of high dimensionality, they do not have capability to identify few critical 
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KCCs closely related to a particular KPC. 

 This thesis develops three inter-linked approaches each addressing an 

aforementioned limitation in the context of a design synthesis task. 

 

1.2 Current Requirements and the Proposed Research Framework for 

Scalable Design Synthesis 

The key issue with the state-of-the-art surrogate models for design 

synthesis is that they do not address varying scales of the following three 

characteristics of KPC-KCC interrelations: (1) deterministic non-linearity; (2) 

stochasticity and; (3) high dimensionality of KCCs. Hence for design synthesis, there 

is need for surrogate modelling, which can identify and model varying scales of the 

specific characteristic which is most critical to achieving quality solution in a given 

design synthesis task. To this end, two concepts are proposed in this thesis. Firstly, it 

introduces the concept of ‘scalable surrogate modelling’. Secondly, Scalable Design 

Synthesis is proposed which is based on integration of resulting scalable surrogate 

models with optimization routines to realize a specific design synthesis task. 

Section 1.2.1 elaborates on the need and objectives of ‘scalable surrogate 

modelling’. Next, Section 1.2.2 describes the framework for Scalable Design 

Synthesis. 

1.2.1 Scalable surrogate modelling 

In the context of design synthesis, this thesis defines ‘scalable surrogate 

modelling’ as the method of developing surrogate models with capabilities to cope 

with varying scale of the aforementioned three characteristics that might be present in 

the KPC-KCC interrelations through data analysis and minimal understanding of the 

underlying physical process.. The key aspect of ‘scalable surrogate modelling’ is 
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‘scalability’.  

In general terms ‘scalability’ can be defined as the capability of a system 

or entity to respond to changes in input in order to generate output while meeting 

required performance measures or maintaining a low variation in the performance 

measures.  For example, ‘scalable’ manufacturing systems produce required number 

of units for varying demand volumes by suitably adjusting manufacturing resources 

and maintaining a constant or minimal variance lead time (ElMaraghy, 2005; Koren & 

Shpitalni, 2010). The key aspect of ‘scalable’ manufacturing systems is the capability 

to accommodate lesser or greater demand volumes by adjusting production capacity to 

produce lesser or greater number of units in order to maintain the same lead time of 

production or incur minimal variance of it. Lead time of production is the performance 

measure and maintaining it to a constant or minimising its variation between instances 

of changing demand volumes is the objective of ‘scalable’ manufacturing systems. 

Here scalability is achieved by removing or adding manufacturing resources such as 

machines, operators etc.  

Let us now describe ‘scalability’ as proposed in the scope of this thesis. In 

this thesis, ‘scalability’ is defined as the algorithmic capability of surrogate modelling 

methods to generate surrogate models of acceptable accuracy of prediction for 

varying degrees of the following three characteristics: 

- deterministic non-linearity which is can vary from single maxima/minima to 

multiple maximas/minimas  

- stochasticity which can vary from homo- to hetero-skedasticity 

- dimensionality of KCCs which can vary from few critical KCCs to a large 

number of KCCs closely related to a KPC of interest 

The key expectation of scalable surrogate models is to meet acceptable 
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accuracy of prediction under varying conditions of the aforementioned three 

characteristics. Here accuracy of prediction is the performance measure. To quantify 

accuracy of prediction, the degree of determination or R2 is used in this thesis as a 

metric of ‘goodness’ of the surrogate model. For a dataset 
1

={ ,y }
n

i i i
S x on ‘n’ 

observations of KCCs (x) and a KPC (y), R2 is defined as follows 

                                              

2

2 1

2

1

ˆ( )

R 1

( )

n

i i

i

n

i

i

y y

y y







 






                                                 (1.4) 

where y is the average of the KPC ‘y’ obtained from the ‘n’ test samples as  

1

1 n

i

i

y y
n 

  . 2
R  varies from 0 to 1 where a higher value indicates better model 

accuracy. 

The desired or acceptable accuracy of prediction as measured by R2 is 

defined by the user and depends on the design synthesis task. For example, surrogate 

models of computer simulations such as VSA are expected to have high accuracy as 

the surrogate models will be used as replacement of actual VSA in design synthesis 

tasks such as fixture layout optimization which requires maintaining part-to-part gaps 

within tight design tolerances. Deviances between actual and predicted KPCs might 

introduce costly errors in fixture layout design. Hence R2 in this case can be set to be 

greater than 0.90. 

In summary, a ‘scalable’ surrogate model is expected to achieve desired 

accuracy as measured by 2
R for KPC-KCC interrelations for which the 

aforementioned three characteristics is unforeseen and changes from case to case. 

Figure 4 shows a schematic representation of the concept of scalable surrogate 

modelling. 
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Figure 1.4: Conceptual overview of scalable surrogate modelling 

 

Based on the aforementioned definition, this thesis develops 

methodologies of ‘scalable surrogate modelling’ to provide the following algorithmic 

capabilities: 

i. Scalability for deterministic non-linearity of KPCs characterized by varying 

number of local maximas and minimas – For computer-based VSAs, the scale of 

the deterministic non-linearity of KPCs can vary from having single 

maxima/minima to multiple maximas/minimas. Therefore, design synthesis 

tasks, which require accurate surrogate models of KPCs, would benefit from a 

surrogate modelling method which, irrespective of the actual number of local 

maximas and minimas present within the KPC-KCC interrelations, can develop 

surrogate models with acceptable accuracy on unseen test samples. 
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Additionally, scalability for deterministic non-linearity emphasizes that 

overfitting a limited sample of points available in the training data, such as 

through fitting high order polynomial regression, should be avoided to ensure 

that the surrogate models have acceptable accuracy on unseen test samples. 

Scalability for deterministic non-linearity is addressed in the development of 

scalable surrogate model for fixture layout optimization presented in Chapter 3. 

ii. Scalability for stochasticity characterized by unknown homo-skedastic or 

hetero-skedastic behaviour of KPCs  – There is lack of comprehensive and 

useful first-principle based methods to model the relationship between KCCs 

and KPCs in some joining processes such as resistance spot welding of TRIP 

steels (Kim, et al., 2005) or CO2 laser welding process of austenitic stainless 

steel (Benyounis, et al., 2005) etc. In such cases, selection of optimal joining 

process parameters is done by developing surrogate models of joint KPCs from 

experimental data which is subjected to noise. The noise associated with 

experimental data might be random KCC independent measurement error or 

systematic KCC dependent variation.  

 

In this thesis, scalability for deterministic non-linearity of KPCs is defined 

as the algorithmic capability to develop surrogate models with acceptable 

accuracy on unseen samples for systems with varying non-linearity of KPC-

KCC interrelations. The varying non-linearity of KPC-KCC interrelations is 

measured by the varying number of local maximas/minimas present in the 

data. 
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Chapter 4 develops scalable surrogate models for joining process 

parameters selection taking into account different types of stochasticity present 

in joint KPCs. 

iii. Scalability for high dimensionality of KCCs – High dimensionality is a common 

issue in complex assembly systems whereby large number of KCCs can 

potentially affect variations in a KPC (Shi & Zhou, 2009). Identifying few 

critical KCCs is required for many of the design synthesis tasks such as root 

cause diagnosis of unwanted variations of a KPC and subsequent KCC 

adjustment for example through tolerance reallocation of assembly process. 

 

 

 

 

 

Chapter 5 presents methodology for surrogate model driven diagnosis and 

design adjustment of KCCs to reduce unwanted dimensional variations of KPCs. 

The developed methodology presents a surrogate model with the capability for 

handling problems of varying KCC dimensionality (scalability for KCC 

dimensionality)   

This thesis defines scalability for stochasticity as the algorithmic capability 

to identify and characterize varying types of stochasticity in the KPCs by 

analysing the training data.   

In this thesis, scalability for KCC dimensionality is defined as the 

algorithmic capability to identify a few critical KCCs related to a KPC and 

develop a surrogate model of acceptable accuracy using the identified 

important KCCs. 
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1.2.2 Framework for Scalable Design Synthesis 

The previous section describes the algorithmic capabilities needed for 

scalable surrogate modelling. The scalable surrogate models are necessary for many 

design synthesis tasks as discussed in the previous section. The proposed scalable 

design synthesis is based on integration of the scalable surrogate model(s) with 

optimization routines to achieve design objectives. 

This section outlines a generic framework for Scalable Design Synthesis 

which includes: (1) scalable surrogate modelling of KPCs; and, (2) integration of KPC 

surrogate models with optimization routines to realize the objectives of a particular 

design task such as: (2A) fixture layout optimization of assembly processes with 

multiple compliant parts; (2B) assembly joining process parameter selection; and, 

(2C) corrective action of unwanted dimensional variations in assembly KPCs. The 

proposed framework provides generic guidelines for developing design synthesis 

methodologies driven by scalable surrogate models. 

Figure 1.5 shows a schematic representation of the proposed framework 

for Scalable Design Synthesis presented in the context of assembly system. In Step 1, 

data from computer simulation such as VSA or physical experimentation is used for 

scalable surrogate modelling. The resulting surrogate models are then used for 

optimization of KPI in Step 2. KPI, derived as function of KCCs and KPCs, is the 

objective function for the optimization which is subjected to constraints defined by 

KPC design tolerances and KCC operating limits.  
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Figure 1.5: Framework of Scalable Design Synthesis for assembly system 

 

The framework of Scalable Design Synthesis is presented in the context of 

the following applications: 

i. Fixture layout optimization – Automotive body-in-white or aerospace fuselage 

and wings are made of deformable sheet metal panels, which are assembled in 

compliance with part-to-part gap tolerance required by the joining process. 

Fixtures control the position and orientation of the parts in an assembly process 

to satisfy geometric and dimensional tolerating (GD&T) of assembly or 

intermediate requirements as related to a specific assembly process for example, 

part-to-part gap variation in Remote Laser Welding (RLW). VSA for assembly 

processes with compliant (deformable) parts are based on deterministic 

simulation using Finite Element Method (FEM) to model part-to-part gaps 

(KPCs) for sheet metal assembly for given clamp locating layouts  (KCCs)   
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(Rong, et al., 2000; Camelio, et al., 2003; Franciosa, et al., 2011). However, 

VSA is computationally expensive and causes optimization of fixture locating 

layout design to be a time consuming process. Hence, there is a very strong need 

for having surrogate models.  

However, surrogate modelling of deterministic KPC-KCC interrelations 

by using VSA-based simulations of assembly processes with compliant parts is 

particularly challenging due to at the least the following factors: 

- part compliancy or deformability which causes variations in a KPC to be 

sensitive to variations in multiple KCCs 

- part geometry characterised by curvatures which also affects the dependency 

of variations in a KPC on variations in multiple KCCs (Li, et al., 2001; 

Franciosa, et al., 2011) 

- initial location and alignment of clamps etc. which are set by the user and 

varies from case to case (Li, et al., 2001; Li & Shiu, 2001; Li, 2002) 

As a result, the scale of deterministic non-linearity which can be characterized 

by varying number local maximas and minimas in KPC-KCC interrelations is 

unforeseen and differs from case to case. To address the varying scale of 

deterministic non-linearity through analysis of data from VSA, a scalable 

surrogate modelling method is developed which can take into consideration 

varying non-linearity as measured by the number of local maximas and minimas 

in the underlying KPC-KCC interrelations.  

Additionally, the resulting surrogate models can include part-to-part gaps 

as KPCs and thus can be used in fixture layout optimization to determine 

optimal clamp locating layout which will minimize the objective function for 

example KPI related to quality loss due to KPC variations. Chapter 3 presents 
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the proposed methodology for scalable surrogate modelling driven fixture layout 

optimization for compliant part assemblies. 

ii. Joining process parameters selection – KPCs related to assembly joints 

defines joint quality and in general depend on joining process parameters 

(KCCs) such as power and speed in case of RLW. Due to lack of reliable first 

principle models characterizing KPC-KCC interrelations for many industrial 

joining processes such as RLW, KPC-KCC interrelations needs to be 

developed based on noisy experimental data which includes varying noise 

types. Therefore, scalable surrogate modelling is required to take into 

consideration unknown homo- and hetero-skedastic experimental data of KPCs 

and KCCs. The developed surrogate models can then be used to determine 

optimal joining process parameters (KCCs) which satisfy the tolerance criteria 

of KPCs and optimizes KPIs objectives such as process throughput or 

production yield (Phoomboplab and Ceglarek, 2008). Moreover, estimation of 

mean and variance of KPCs as function of given KCCs can also be used to 

identify process window and acceptance rate of making joints of acceptable 

quality. Chapter 4 describes the methodology for scalable surrogate modelling 

driven joining process parameters selection.  

iii. Corrective actions of unwanted dimensional variation of KPCs via diagnosis 

and design adjustment – The performance of mechanical assemblies depend on 

functional KPCs such as geometric features like part-to-part gaps, 

interferences, etc. which directly affect a product functionality required by the 

user. Unwanted dimensional variations of functional KPCs results in 

malfunctioning of the assembly. Under these conditions, design adjustment of 

KCCs affecting the functional KPCs is required and can be achieved via 
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optimal tolerance allocation (Shiu, et al., 2003; Huang, et al., 2009). Though 

first principle kinematic-based models are useful for estimating KPC-KCC 

interrelations, there is frequently lack of information allowing identification of 

a few critical KCCs which require tolerance reallocation for a specific KPCs. 

This problem is aggravated by high dimensionality of KCCs in complex 

assemblies where a KPC can be potentially affected by large number of KCCs. 

Therefore, cost-effective corrective actions require diagnosis of unwanted 

variation of KPC via identification of few critical KCCs followed by cost-

driven design adjustment via tolerance reallocation of the assembly process. 

Chapter 5 addresses the issue of KCC dimensionality reduction for tolerance 

allocation by discussing a methodology for scalable surrogate modelling to 

identify few critical KCCs closely related to a KPC of interest.   

 

1.3 Research Contributions 

This thesis proposes a novel framework of Scalable Design Synthesis for 

assembly system. The proposed methodology is motivated by the requirements of 

early stage design synthesis of a modern automotive BIW assembly. Currently 

available advanced VSA-based simulation tools and multi-physics based 

experimentation, being resource intensive with numerically intractable solutions 

require development of surrogate models of KPC-KCC interrelations. However, state 

of the art on surrogate modelling for assembly process design does not sufficiently 

address the characteristics of KPC-KCC relationships rendering them inadequate for 

practical use. To address the limitations of existing methods, the main contribution of 

this thesis is to identify three different characteristics of KPC-KCC interrelations and 

their degree or scale of significance for developing surrogate models of assembly 
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KPCs. The three identified characteristics of KPC-KCCs interrelations are as follows: 

i. Deterministic non-linearity of KPCs characterized by varying number of local 

maximas and minimas 

ii. Stochasticity of KPCs characterized by unknown homo- and hetero-skedastic 

behaviour of KPCs 

iii. High dimensionality of KCCs potentially affecting a given KPC 

Based on the aforementioned characteristics, this thesis proposes scalable 

surrogate modelling methodologies to address varying scales of characteristics present 

in the KPC-KCC interrelations of an assembly system. Specifically, the following 

algorithmic capabilities are proposed for development of scalable surrogate models: 

i. Scalability for deterministic non-linearity of KPCs 

ii. Scalability for stochasticity of KPCs 

iii. Scalability for dimensionality of KCCs 

The proposed framework of Scalable Design Synthesis provides a generic 

guideline for developing scalable surrogate models and utilizing them to solve 

optimization problems in a design synthesis task. Based on the proposed framework 

three methodologies are developed, each addressing a relevant problem of assembly 

system design synthesis task: (1) scalable surrogate modelling for fixture layout 

optimization exploring varying deterministic non-linearity in KPC-KCC interrelations 

(Chapter 3); (2) scalable surrogate modelling for joining process parameters selection 

addressing varying stochasticity in KPC-KCC interrelations (Chapter 4); and,            

(3) surrogate modelling for corrective actions to reduce unwanted dimensional 

variations in assembly KPCs dealing with high dimensionality of KCCs (Chapter 5). 
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The research contributions of the proposed methodologies are as follows: 

i. Scalable surrogate model driven fixture layout optimization:  

 Complexity in fixture related KPC-KCC interrelations due to presence of 

underlying deterministic non-linearity is addressed through development 

of scalable surrogate models. The scalable surrogate models can adapt to 

the underlying non-linearity of KPC-KCC interrelations and generate 

acceptably accurate predictions without overfitting training data unlike 

polynomial regression models commonly used for design synthesis tasks.  

 Scalable surrogate models for varying deterministic non-linearity is 

achieved by: (1) Greedy Polynomial Kriging (GPK) with a novel approach 

of tuning parameters and emphasis on the maximisation of the predictive 

accuracy for unseen test samples; and, (2) Optimal Multi Response 

Adaptive Sampling (O-MRAS) a novel method of accelerating the 

convergence of multiple surrogate models to desired accuracy levels using 

a single training sample. 

 Comparison of performance between the developed GPK approach and 

popular state-of-the-art surrogate models shows higher predictive accuracy 

for unseen test samples obtained using the GPK approach. GPK’s 

predictive accuracy is higher on an average by 30%, 55% and 44% than 

that of state-of-the-art Kriging, 2nd order polynomial regression and 3rd 

order polynomial regression, respectively. Moreover, case-studies on well-

known benchmark functions are presented to demonstrate that O-MRAS 

accelerates convergence of surrogate models to desired accuracy levels 

faster than Uniform Random Sampling (URS). For the same number of 

simulations, accuracy levels of surrogate models developed via O-MRAS 
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is 35% higher than those trained by URS. 

 Overall, a comprehensive methodology for fixture layout optimization for 

sheet metal assembly has been developed based on GPK surrogate models 

which are capable of generating accurate and realistic VSA results. 

ii. Scalable surrogate model driven joining process parameters selection: 

 Contrary to currently existing surrogate modelling of stochastic KPC-KCC 

interrelations which focuses only on homo-skedastic behaviour of KPCs, 

the proposed scalable surrogate modelling addresses varying stochastic 

behaviour of KPCs which can be homo- or hetero-skedastic.  

 Training of the homo- and hetero-skedastic surrogate models is 

accomplished by (1) statistical detection of the actual stochastic behaviour 

of KPCs; and, (2) development of best-fitting homo- and hetero-skedastic 

models via Polynomial Feature Selection with a novel approach for 

identifying critical multiplicative interactions between KCCs and focus on 

maximizing predictive accuracy on unseen test samples. 

 The proposed surrogate modelling methodology provides an estimation of 

both mean and variance of joints KPCs as a function of KCCs. On the 

other hand, state-of-the-art surrogate models are limited to estimation of 

only the KPC mean and assume KPC variance to be constant and 

independent of KCCs. 

 The scalable surrogate models have been utilized in joining process 

parameters selection for the Remote Laser Welding process for BIW 

assembly. Results attained via the proposed methodology are compared 

with that obtained from currently existing 2nd order polynomial regression. 

Differences between the results show overestimation of acceptance rate by 
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currently existing surrogate models by an average of 41%. 

iii. Scalable surrogate model driven corrective action of product failures due to 

dimensional variations in KPCs: 

 A scalable surrogate modelling methodology has been developed to 

address high dimensionality of KCCs in complex assemblies and identify 

few critical KCCs closely related to a KPC of interest. The proposed 

methodology provides a data-driven approach which has been utilized for 

diagnosis of product failures. 

 Training of the surrogate models of faulty KPCs in terms of a few critical 

KCCs has been achieved by Polynomial Feature Selection which identifies 

few critical KCCs and multiplicative interactions between them. 

 Overall, a systematic approach for corrective actions of product failures 

due to dimensional variations of KPCs is developed by utilizing the 

surrogate models of faulty KPCs for KCC design adjustment via nominal 

change and tolerance reallocation. 

 The proposed methodology is applied for corrective actions of electro-

mechanical failure in an automotive ignition switch caused by unwanted 

dimensional variations of the KPCs closely related to the fault. Critical 

KCCs are identified for the faulty KPCs by dimensionality reduction of 

the complete set of KCCs related to the switch. The number of identified 

critical KCCs is on average 83% less than the total number of KCCs in the 

switch assembly. Moreover, design adjustment of KCCs reduces 

production yield of faulty KPCs by 34 percentage points.  
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1.4 Organization of the Thesis 

Figure 1.6 illustrates the structure of this thesis. 

 

 

Figure 1.6: Research topics and organization of this thesis 

 

Chapter 2 reviews past research on modelling KPC-KCC relations 

addressing (1) deterministic non-linearity of KPCs; (2) stochasticity of   KPCs; and, 

(3) high dimensionality of KCCs affecting a KPC. 

Chapter 3 describes the methodology for scalable surrogate modelling 

driven fixture layout optimization. Surrogate models of fixture related KPCs are 

developed by the proposed GPK and O-MRAS methods. KPC surrogate models are 

used for fixture layout optimization which minimizes quality loss due to deviance of 

KPCs from their prescribed design nominal. 
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Chapter 4 presents scalable surrogate modelling driven joining process 

parameters selection. Homo- and hetero-skedastic surrogate models of joint KPCs and 

their variance are developed from noisy experimental data. Using the developed 

surrogate models process window is identified and computation of process acceptance 

rate is done. 

Chapter 5 addresses the issue high dimensionality of KCCs. Surrogate 

models of assembly KPCs in terms of few critical KCCs is developed. These surrogate 

models are applied for effective diagnosis and design adjustment of unwanted 

variations in KPCs. Design adjustment is achieved by a two-step process: (1) 

adjustment of design nominal of critical KCCs; and, (2) tolerance reallocation of 

critical KCCs. 

Chapter 6 discusses the overall findings and conclusions derived from the 

research presented in this thesis and describes possibilities for future work. 
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CHAPTER 2                                                                                                                                  

LITERATURE REVIEW                                                                                                                   

 

2.1 Introduction 

In general, surrogate modelling is used to develop computationally 

efficient and accurate representation of interrelations between KPCs and KCCs for a 

design synthesis task. To ensure quality of solution in a given design synthesis task, a 

key requirement for surrogate modelling methods is to identify and model varying 

scales of specific characteristics in the KPC-KCC interrelations which are the most 

critical to the design synthesis task. This thesis classifies characteristics of KPC-KCC 

interrelations as: (1) deterministic non-linearity of KPCs; (2) stochasticity of KPCs; 

and, (3) high dimensionality of KCCs. Deterministic non-linearity of KPCs estimated 

by computer-based VSAs with negligible or no numerical error, is characterized by 

presence of multiple local maximas and minimas. Contrary to deterministic behaviour, 

KPCs might have stochastic variations manifested as either homo-skedasticity (KCC-

independent variance) or hetero-skedasticity (KCC-dependent variance). Lastly, in 

complex assemblies, a KPC can be affected by potentially a large number of KCCs. 

Therefore for efficient design synthesis there is need of addressing high 

dimensionality of KCCs by conducting dimensionality reduction. 

This chapter reviews past research on modeling KPC-KCC interrelations. 

The review discusses how currently existing first-principle models and surrogate 

models address the aforementioned characteristics in the KPC-KCC interrelations. 

Moreover, limitations of currently existing methods and need for scalable surrogate 

models, which can address varying scales of the aforementioned characteristics, are 

highlighted in the context of the following three design synthesis tasks:  
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i. Fixture layout optimization of sheet metal assembly processes which require 

scalable surrogate models that address varying scale of deterministic non-

linearity of assembly KPCs. 

ii. Joining process parameters selection for automotive BIW assembly joining 

which require scalable surrogate models that address varying scale of 

stochasticity of joining process KPCs. 

iii. Corrective action of product failures due to dimensional variations in KPCs 

which require scalable surrogate models that address high dimensionality of 

KCCs affecting the faulty KPC. 

The remaining part of this chapter is organized as follows:  In Section 2.2, 

research addressing deterministic non-linearity in KPC-KCC interrelations is 

discussed. Section 2.3 describes past research on surrogate modelling of stochastic 

KPCs. Finally, literature review on dimensionality reduction of KCCs is presented in 

Section 2.4. 

2.2 Related work on modelling deterministic non-linearity in KPC-KCC 

interrelations 

An extensive research was done in the past to address deterministic non-

linearity in the KPC-KCC interrelations. Initial studies focused on first-principle 

analysis to integrate KPCs with KCCs. Examples include state-space modelling of 

variation propagation in multi-station assemblies, to estimate critical characteristics 

and dimensions of the final assembly (KPCs) from dimensions of sub-assemblies and 

parts  and also taking into consideration variations induced by fixture errors and part 

errors (KCCs), which led to the Stream-of-Variation-Analysis (SOVA) methodology 

(Ceglarek & Shi, 1996; Hu, 1997; Jin & Shi, 1999; Ding, et al., 2000; Ding, et al., 

2002; Shi, 2006). The SOVA method developed linear assembly response functions 
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(ARFs) which linked KPCs with KCCs. The linear-structured SOVA had various 

applications in multi-station assemblies – variation propagation in rigid body 

assemblies (Jin & Shi, 1999; Ding, et al., 2002; Huang, et al., 2007), variation 

propagation in complaint part assembly (Camelio, et al., 2003) and process-oriented 

tolerance synthesis to assign tolerance to process variables based on minimization of 

cost of tolerance allocation and subject to design tolerance of final product dimensions 

(Shiu, et al., 2003; Ding, et al., 2005; Wang & Ceglarek, 2009; Huang, et al., 2009). 

Linear models such as SOVA are an approximation of the true underlying non-linear 

relations between KPCs and KCCs (Ren, et al., 2006). Deviation between actual 

KPCs and their linear approximation, also known as linearization error, can be 

significant when there are large number of KCCs and errors induced by them is 

greater than the magnitude of the KPCs. For example, in multi-stage assembly 

processes, when there is a large number of stations and errors induced by fixture 

locators are relatively high compared to product tolerances, linearization error due to 

linear ARFs can be significantly large. To improve the performance of linear models, 

several approaches were developed to calculate the linearization error. These include 

analytical adjustment of the linearization error through non-linear mathematical 

transformations such as Taylor’s series expansion of the ARF (Carlson, 2001), 

homogenous transformation of  KCC induced errors to compute error stacking and 

coupling (Xiong, et al., 2002) and differential representation of kinematic model for 

fixture designs (Wang, et al., 2003). 

The aforementioned works depend on understanding of the underlying 

physical process to model the linearization error. Recently, hybrid approaches, 

integrating first-principle ARFs with surrogate models, have been developed to reduce 

the required understanding of the underlying physical process and to improve the 
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quality of solution from existing first-principle models. For example Ren, et al. (2006) 

developed multiple additive regression trees for the linearization error left by existing 

linear models of multi-stage assembly systems. Huang, et al. (2009) described a linear 

regression based surrogate model of process yield taking data from existing SOVA 

models to perform tolerance synthesis on fixture clamp locations. Zhou, et al. (2012) 

used the Kriging surrogate model for the linearization error on multiple KPCs in 

multi-stage assembly systems. 

The aforementioned research addressing deterministic non-linearity of 

KPCs can be classified into the following three categories: 

i. First-principle methods developing linear ARFs of KPC-KCC interrelations 

ii. First-principle methods developing non-linear ARFs of KPCs based on linear 

ARFs and analytical adjustment of linearization error of the linear ARFs by 

non-linear mathematical transformations 

iii. Hybrid methods developing non-linear ARFs of KPCs based on linear ARFs and 

data-driven adjustment of linearization error of the linear ARFs by surrogate 

models 

It is noteworthy that to develop the ARFs of KPCs through currently 

existing methods which fall under the aforementioned three categories either complete 

or partial knowledge of the underlying physical process is required. However, there is 

a growing demand for data-driven approaches which would require no or minimal 

understanding of the underlying physical processes to develop ARFs of KPCs for 

design synthesis tasks driven by numerically intractable and computationally 

expensive computer simulations.  For example, fixture layout optimization for 

assemblies with multiple sheet metal parts depends on advanced computer-based VSA 

and therefore requires data-driven approaches to develop the ARFs of KPCs in terms 
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of KCCs. 

For design synthesis tasks such as fixture layout optimization of sheet 

metal assembly, the need for data-driven approaches to develop KPC ARFs has been 

spurred particularly by the recent advancements in VSA tools addressing sheet metal 

mechanical assemblies with complex geometry and complex fixture-to-part 

interactions. For example, Liao and Wang (2007) and  Xie, et al. (2007) addressed the 

fixture-to-part contact problem by solving non-linear FEA approach, which though 

giving accurate results was computationally expensive. Recently, Franciosa, et al. 

(2014) developed FEA-based approach with an enhanced part meshing and also taking 

into consideration part-to-part and fixture-to-part surface contact modelling. The 

methodology conducts computer simulation of the final assembly KPCs by generating 

part variations and part-to-part gap variations.  

With advanced non-linear FEM models capable to simulate more and 

more complex sheet metal assemblies, there are two new emerging requirements for 

assessing data-driven approaches’ capability to generate realistic VSA results: 

i. Acceptable predictive accuracy on unseen test samples for deterministic KPC-

KCC interrelations characterized by varying number of local maximas/minimas 

(varying non-linearity of KPC-KCC interrelations) 

Due to lack of knowledge about underlying system, there is need for 

surrogate modelling methods which, through data analysis and minimal 

knowledge about the physical system, can adapt to the scale of underlying non-

linearity in KPC-KCC interrelations characterized by varying number of local 

maximas and minimas and develops surrogate models with acceptable accuracy 

for unseen test samples. 

ii. Minimal computation time required for generating training data for developing 



34 
 

surrogate models 

To develop the surrogate models, training data needs to be generated by 

running computationally expensive VSA. Input to VSA is a n d design matrix 

having ‘n’ samples of ‘d’ KCCs. To ensure that developed surrogate models 

achieve acceptable predictive accuracy in fewer simulations, the design matrix 

of KCCs is chosen by an adaptive sampling strategy to provide maximum 

predictive information in the training data (Huang, et al., 2009; Gorissen, et al., 

2010).  However, currently existing adaptive sampling strategies focus on single 

response (single KPC) models while most design synthesis applications such as 

fixture layout optimization for sheet metal assemblies involve multiple KPCs for 

example part-to-part gaps at multiple assembly joint locations. 

To meet the aforementioned requirements, this thesis develops a scalable 

surrogate modelling approach which has the following capabilities: 

i. Acceptable predictive accuracy on unseen test sample via Greedy Polynomial 

Kriging, a Kriging based surrogate modelling approach focusing on 

maximization of predictive accuracy on unseen test samples for deterministic 

KPC-KCC interrelations with varying number of local maximas/minimas  

ii. Minimal computation time required for generating training data through 

Optimal Multi Response Adaptive Sampling to accelerate convergence of 

multiple surrogate models to desired accuracy levels using a single adaptive 

sample for multiple KPCs. 

Table 2.1 summarizes related research addressing deterministic non-

linearity in KPC-KCC interrelations and highlights the contributions of the proposed 

scalable surrogate modelling approach. 
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Table 2.1: Related work on modelling deterministic non-linearity                                          

in KPC-KCC interrelations 

Model type Related work 

First-principle methods for linear ARFs of KPCs – 

Linear KPC-KCC models 

Ceglarek & Shi (1996) 

Hu (1997) 

Jin & Shi (1999) 

Ding, et al. (2002) 

Shiu, et al. (2003) 

Camelio, et al. (2003) 

Ding, et al. (2005) 

Huang & Shi (2004) 

Huang, et al. (2007) 

Wang & Ceglarek 

(2009) 

Huang, et al. (2009) 

First-principle methods for non-linear ARFs of KPCs – 

Linear KPC-KCC models with analytical adjustment of 

linearization errors by non-linear mathematical transformations 

Carlson (2001) 

Xiong, et al. (2002) 

Wang, et al. (2003) 

Hybrid (first-principle & data-driven) methods for                            

non-linear ARFs of KPCs –  

Linear KPC-KCC models with data-driven adjustment of 

linearization errors by surrogate models 

Kim & Ding (2005) 

Ren, et al. (2006) 

Huang, et al. (2009) 

Zhou, et al. (2012) 

Data-driven method for non-linear ARFs of KPCs – 

 Scalable surrogate modelling of KPCs with varying scale of 

deterministic non-linearity based on: 

 GPK1 to develop scalable surrogate models 

 O-MRAS2 to expedite convergence of GPK surrogate models 

Proposed in this thesis 

1GPK: Greedy Polynomial Kriging 
2O-MRAS: Optimal-Multi Response Adaptive Sampling 

 

 

The proposed method of scalable surrogate modelling for deterministic 

non-linearity of KPCs is used to develop an overall approach of scalable surrogate 

model driven fixture layout optimization in sheet metal assemblies which is achieved 

by the following two interlinked steps: 

i. Scalable surrogate modelling of deterministic assembly KPCs via GPK and            

O-MRAS 

ii. Optimization of fixture KCCs which integrates the GPK surrogate models of 

fixture KPCs with optimization routine to determine optimal clamp layout in 

fixtures of sheet metal assembly. 
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2.3 Related work on modelling stochasticity in KPC-KCC interrelations 

Not all design synthesis task can rely on existence of first-principle 

models to provide estimation of KPCs for given KCCs. As an example, in case of 

laser joining processes such as Remote Laser Welding (RLW), there is lack of 

comprehensive and accurate first-principle models linking joint quality characteristics 

or joint KPCs with joining process parameters or joining KCCs. Under this condition, 

design synthesis tasks such as optimal joining process parameter selection rely on 

analysis of data generated through physical experimentation, which may be subjected 

to noise such as measurement errors originating from uncontrollable parameters. 

Therefore, KPCs observed through experiments might exhibit stochastic behaviour 

which can be due to either KCC-independent homo-skedastic variance or KCC-

dependent hetero-skedastic variance. However, due the lack of first-principle models, 

it is challenging to characterize the KPC stochasticity as homo- or hetero- skedastic. 

 Several researches have been done on development of polynomial 

surrogate models of stochastic KPCs for design synthesis tasks such as joining process 

parameters selection for industrial joining processes such as Laser Transmission 

Welding (LTW), Resistance Spot Welding (RSW), etc. For joining process parameters 

selection, the polynomial surrogate models of joint KPCs are then used for two design 

tasks: (1) multi objective optimization to identify optimal joining KCCs which 

optimize joining process KPIs subject to satisfaction of design tolerances on joint 

KPCs; and, (2) identification of a process window in the KCC design space which 

gives a feasible region for achieving satisfactory joint quality determined by 

compliance of joint KPCs to design tolerances. 

In currently exiting methods addressing joining process parameters 

selection, the polynomial surrogate models of the stochastic joint KPCs are trained 
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using data generated through conducting physical experimentation. The experiments 

are designed following various design of experiments approaches such as full-

factorial, central composite combinations and others. 

However, there are two major limitations of the state-of-the-art on 

surrogate modelling of stochastic KPCs for design synthesis tasks such as joining 

process parameters selection: 

i. Assumption of homo-skedasticity of KPCs 

Current methods assume homo-skedasticity or constant variance of the 

joining KPCs over the KCC design space whereby variance of a KPC is 

attributed solely to measurement and environmental noise and hence is assumed 

to be KCC-independent. However, constant variance of all joint KPCs might be 

a strong assumption especially with the lack of comprehensive and accurate first 

principle models of all joint KPCs to confirm their actual physical behavior. An 

incorrect constant KPC variance assumption will lead to erroneous joining 

process parameters selection.  

ii. Lack of approach to select critical interactions between KCCs  

In currently existing methods, the degree of the polynomial surrogate 

model is selected based on the user’s experience. In most cases, a first or second 

order polynomial surrogate model is used to fit a KPC as a function of KCCs. 

Higher order polynomials might not be considered to avoid over-fitting on the 

limited training sample generated by experimentation. However, by restricting 

to second order polynomials, potential higher order non-linear interactions 

between KCCs, which can explain the relationship between KPCs and KCCs, 

might remain unidentified. 

To address the aforementioned limitations, this thesis proposes scalable 
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surrogate modelling for KPC stochasticity which has the following capabilities: 

i. A data-driven methodology to address the scale of KPC stochasticity based on 

(1) statistical hypothesis testing to detect homo- to hetero-skedastic behaviour of 

KCCs; and, (2) development of homo- and hetero-skedastic surrogate models 

based on the detected type of stochasticity. 

ii. Polynomial Feature Selection (PFS) method to determine critical multiplicative 

interactions between KCCs which affect a KPC. 

Table 2.2 lists research articles related to surrogate modelling of stochastic 

KPCs related to industrial joining processes. 

Table 2.2: Related work on surrogate modelling of stochastic KPCs 

Model type Related work 

Homo-skedastic surrogate models of joint KPCs via                             

1st and 2nd order polynomial regression 

 

Articles related to LTW: 

Olabi, et al. (2006) 

Acherjee, et al. (2009) 

Khan, et al. (2011) 

Zhao, et al. (2012) 

Dongxia, et al. (2012) 

Ghosal & Manna (2013) 

Wang, et al. (2013) 

Articles related to RSW: 

Darwish & Al-Dekhial 

(1999) 

Antony (2001) 

Kim (2005) 

Hamedi, et al. (2007) 

Muhammad, et al. (2013) 

Homo- and hetero-skedastic surrogate models of joint KPCs via 

Scalable surrogate modelling for varying KPC stochasticity based on: 

- Statistical hypothesis testing to detect homo- and               

hetero-skedastic behaviour of KPCs 

- Polynomial Feature Selection of KCCs  

Proposed in this thesis 

 

The proposed method of scalable surrogate modelling to address KPC 

stochasticity develops homo- and hetero-skedastic surrogate models of KPCs, which 

are then used to enhance joining process parameters selection by developing the 

following novel capabilities: 
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i. Multi-objective optimization to optimize KPIs related to joining process                      

(a) efficiency and (b) quality – 

Currently existing methods optimize KPIs only related to joining process 

efficiency such as speed of welding in case of a LTW process. In this thesis, 

homo- and hetero-skedastic surrogate models of KPCs are utilized to optimize 

KPIs related to joining process efficiency as well as KPIs related to joining 

process quality such as KCC-dependent variance of joint KPCs. 

ii. Development of process window based on homo- and hetero-skedastic surrogate 

models of joint KPCs – 

Currently existing methods identify process window in KCC design space based 

only on the homo-skedastic surrogate models of KPCs. In this thesis, stochastic 

process window is developed by taking into consideration homo- and hetero-

skedastic behaviour of joint KPCs. Additionally, homo- and hetero-skedastic 

surrogate models of joint KPCs are used to compute process acceptance rate over 

the process window. 

Table 2.3 lists research articles on application of joint KPC surrogate 

models for tasks in joining process parameters selection such as multi-objective 

optimization of process KPIs and development of process window. 
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Table 2.3: Related work on application of surrogate models of joint KPCs for tasks 

related to joining process parameters selection 

 

 

The proposed method of scalable surrogate modelling for varying 

stochasticity of KPCs is used to develop an overall approach of scalable surrogate 

model driven joining process parameters selection which is realized through the 

following two interlinked steps: 

i. Scalable surrogate modelling for homo and hetero skedastic joint KPCs via:             

(1) Statistical hypothesis testing to detect homo- and hetero-skedastic behaviour 

of KPCs; and, (2) Polynomial Feature Selection of KCCs 

ii. Joining process parameters selection which includes: (1) multi-objective 

optimization of KPIs related to joining process efficiency and process quality; 

Tasks related to joining process parameters selection Related work 
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Multi-objective optimization of KPIs related to                  

joining process efficiency 

 

 

Articles related to LTW: 

Acherjee, et al. (2009) 

Padmanaban & 

Balasubramanian (2010) 

Khan, et al. (2011) 

Acherjee, et al. (2012) 

Wang, et al. (2012) 

Wang, et al. (2013) 

Articles related to RSW: 

Antony (2001) 

Kim (2005) 

Hamedi, et al. (2007) 

Lai, et al. (2009) 

Zhao, et al. (2014) 

Multi-objective optimization of KPIs related to                           

joining process efficiency and process quality 
Proposed in this thesis 
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 Development of process window based on                                                     

homo-skedastic surrogate models of joint KPCs 

Articles related to LTW: 

Khan, et al. (2011) 

Acherjee, et al. (2012) 

Articles related to RSW: 

Fukumoto, et al. (2008) 

Han, et al. (2010) 

Development of process window based on                                                     

homo- and hetero-skedastic surrogate models of joint KPCs 
Proposed in this thesis 
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and, (2) identification of stochastic process window and computation of 

acceptance rate 

 

2.4 Related work on modelling for high dimensionality of KCCs 

In complex assemblies, there is a large number of KCCs which can 

potentially affect a KPC and often there is need for addressing high dimensionality of 

KCCs to identify few critical KCCs which are closely related to a particular KPC of 

interest. For example, design synthesis tasks such as corrective action of product 

failures due to unwanted dimensional variations in KPCs require identification of few 

critical KCCs closely related to the faulty KPC. In general, corrective action to reduce 

unwanted variations in KPCs can be formulated as the following two interlinked tasks: 

i. Diagnosis of unwanted variations in KPCs to identify a few critical KCCs 

affecting the faulty KPCs 

ii. Product/process design adjustment of the critical KCCs to reduce production 

fallout of faulty KPCs. 

It is noteworthy that a critical step in corrective action to reduce unwanted 

variations of KPCs is the diagnosis of the unwanted KPC variations. Methods related 

to diagnosis are required to address high dimensionality of KCCs present in the 

assembly process. Moreover, methods for diagnosis of unwanted KPC variations are 

required for both type-I and type-II assembly processes.                              

Mantripragada & Whitney ( 1999) classify assembly processes into two categories: (1) 

type-I assembly where parts are assembled by part-to-part mating surfaces and 

characteristics of the final product (KPCs) depend on characteristics of its constituent 

parts (KCCs); and, (2) type-II assembly, where fixtures position the parts being 

assembled and characteristics of the final assembly (KPC) depend on assembly 
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process variables such as layout of fixture locators and clamps (KCCs). Examples of 

both type-I and type-II assembly processes are shown in Figure 2.1 (a and b). 

 

 

Figure 2.1: (a) Type-I; and, (b) type-II assembly 

 

Let us now review methods on diagnosis of unwanted KPC variations 

addressing high dimensionality of KCCs for both type-I and type-II assembly 

processes. 

For type-I assembly processes, an extensive research was done in the past 

to develop mathematical models of KPCs related to the final product based on KCCs 

of the constituent parts, which are assembled to realize the final product.                           

Wu, et al. (2009) classifies these methods as: (1) linear (Chase & Parkinson, 1991); 

(2) non-linear (Nigam & Turner, 1995); (3) numerical (Varghese, et al., 1996); and, 

(4) Monte-Carlo simulation based (Skowronski & Turner, 1996;  1997).  Some of 

these methods have been implemented in commercial variation simulation analysis 

(VSA) softwares (VSA-3D, Pro/Engineer, Sigmetrix’s CETOL, and others). With 
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increase of complexity of assemblies due to large number of individual parts and 

subassemblies, numerical routines and computer based VSA programs are commonly 

used for integrating KPCs with KCCs. For example, Sigmetrix’s CETOL can simulate 

the effect of variations in large number of KCCs on variations in KPCs. 

The aforementioned VSA-based methods are useful only for forward 

analysis to evaluate KPCs for given KCCs. They do not address dimensionality 

reduction of KCCs and hence do not provide diagnostic information such as 

identification of critical KCCs related to a faulty KPC. This limitation of currently 

existing VSA-methods is critical particularly in case of complex type-I assemblies 

which face the following two challenges:  

i. High dimensionality of KCCs whose variations can potentially cause variations 

in the faulty KPC 

ii. Numerical intractability of the underlying physical process governing the KPC-

KCC interrelations  

To address the aforementioned limitations of VSA-based methods for 

diagnosis of 6-sigma root causes in type-I assembly processes, there is need for data-

driven approaches requiring minimal understanding of underlying process to address 

issues related to identification of few critical KCCs in type-I assembly processes  

(Chen, 2001). To this end, this thesis proposes scalable surrogate modelling to 

address high dimensionality of KCCs for diagnosis of unwanted KPC variations. The 

proposed scalable surrogate modelling for high dimensionality of KCCs is based on: 

i. Least squares regression based Polynomial Feature Selection to determine a 

subset of a few critical KCCs identified from a larger set of all given KCCs. 

ii. Closed-form analytical models to represent the relation between the faulty KPC 

and critical KCC closely related to it. 
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For type-II assembly processes, several studies addressed the issue of 

KCC dimensionality for diagnosis of unwanted variations of KPCs by developing 

analytical approaches. These methods focussed on KCCs related to fixture elements 

such as locators as source of dimensional variations in the final assembly. 

Traditionally these methods focused on deriving a manifold of lower dimension from 

the original KCC space. Based on the manifold of lower dimension, statistical 

representation of fault patterns was developed. Overall, methods, which generate 

lower dimensional manifold of KCCs, can be classified into three categories: (1) 

methods based on principal component analysis (PCA); (2) methods based on 

correlation clustering (CC); and, (3) methods based on least square regression (LS). 

Examples of methods based on PCA include single fixture fault diagnosis by mapping 

variation patterns in KPCs to variations in fixture KCCs such as locators and clamps 

(Ceglarek & Shi, 1996). This method was further extended to include noise present in 

in-line measurements of fixture KCCs and assembly KPCs by Optical Co-ordinate 

Measuring Machine (OCMM) (Ceglarek & Shi, 1999). PCA based fixture fault 

diagnosis was extended for multi-station assembly by Ding, et al. (2002). The 

aforementioned methods focused on single fault diagnosis whereas in real multi-

station assembly system there might be multiple KPCs with unwanted variations and it 

is important to group the KCCs based on their correlation with KPCs. This issue was 

addressed by Shiu, et al. (1996) by correlation clustering to partition the KCC into 

groups such that each group is related to a single KPC. Diagnosis in multi-station 

assemblies was also addressed using least squares regression to correlate observed 

KPC variations to potential sources of variations such as fixture locator and clamp 

variations acting as KCCs and derive a measure of significance of each source of 

variation (Apley & Shi, 1998; Chang & Gossard, 1997; Chang & Gossard, 1998; 
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Rong, et al., 2001). The aforementioned methods uses process data on KPCs and 

KCCs obtained via in-line measurements taken by OCCM. Recently, hybrid 

approaches were developed by Camelio and Hu (2004) and  Kong, et al. (2008) which 

first derives fault patterns from product and process models and then evaluates the 

significance of these patterns based on measurement data. 

The aforementioned research addresses fault diagnosis in type-II assembly 

processes through identifying variation patterns in KCC induced errors. However, 

these methods would not be suitable for identifying critical KCCs in complex type-I 

assembly processes because of the following two limitations: 

i. Need for in-depth understanding of underlying physical process – Knowledge 

about the underlying physical process is critical to model KPCs in terms of 

KCCs, which in case of the reviewed methods related to fault diagnosis in type-

II multi-stage assembly processes, are modelled through first-principle based 

approaches such as SOVA. 

ii. Lack of dimensionality reduction in the original KCC space – There is lack of 

explicit dimensionality reduction by building a final analytical model of the 

faulty KPC in terms of few critical KCCs. 

Taking into consideration, the aforementioned challenges in diagnostic 

methods for type-II assembly processes and numerical intractability of VSA-based 

methods of type-I assembly processes, the data-driven scalable surrogate modelling 

for high-dimensionality of KCCs has been proposed to address diagnosis of unwanted 

variations of KPCs in type-I assembly processes. 

Table 2.4 summarizes related work on dimensionality reduction of KPCs 

discussed in this section. 
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Table 2.4: Related work addrressing dimensionality reduction of KCCs for                        

diagnois of unwanted KPC variations 

Approach of KCC dimensionality reduction Research work  Application 

Mathematical transformation of original 

KCCs to lower dimensional space               
based on: 

 

 

 

PCA 

 

 

 

 

 

 

Ceglarek & Shi (1996) 

Ceglarek & Shi (1999) 

Ding, et al. (2002) 

 

 

 

 

Diagnosis for 

type-II               

assembly 

processes 

Correlation Clustering 

 

Shiu, et al. (1996) 

 

 

 

 

Least Squares Regression 

 

Apley & Shi (1998)           

Chang & Gossard (1998) 

Rong, et al. (2001) 

 

Designated Component Analysis 
Camelio & Hu (2004) 

Kong, et al. (2008) 
 

Scalable surrogate modelling for                  

KCC dimensionality based on: 

- Dimensionality reduction in the original 

KCC space to identify critical KCCs 

related to faulty KPC 

- Closed form analytical models of faulty 

KPCs in terms of critical KCCs 

Proposed in this thesis 

Diagnosis for 

type-I               

assembly 

processes 

 

The proposed method of diagnosis of unwanted dimensional variations of 

KPCs via scalable surrogate modelling for KCC dimensionality is used to develop an 

overall approach of scalable surrogate model driven corrective action of product 

failures due to dimensional variations in KPCs which is formulated as the following 

two interlinked tasks: 

i. Diagnosis via scalable surrogate modelling to identify critical KCCs affecting 

faulty KPCs  

ii. 2-stage design adjustment: (1) optimal nominal change; and, (2) optimal 

tolerance re-allocation of the critical KCCs to reduce production yield of the 

faulty KPCs. 
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2.5 Conclusions 

The discussion presented in this chapter shows the limitations of currently 

existing methods for surrogate modelling in design synthesis for addressing varying 

scales of deterministic non-linearity of KPCs, stochasticity of KPCs and high 

dimensionality to KCCs affecting a KPC. Firstly, there is lack of systematic approach 

of developing surrogate models of deterministic KPCs with varying non-linearity for 

computer simulation driven design synthesis tasks such as fixture layout optimization 

for sheet metal assembly. Secondly, though several researches address surrogate 

modeling based on experimentation data for design synthesis tasks such as assembly 

joining process parameter selection, modeling stochastic behavior of KCCs 

characterized by unknown homo- and hetero-skedasticity is not addressed. Lastly, 

there is need for developing surrogate models which can identify a few critical KCCs 

closely related to a KPC for design synthesis tasks such as corrective action to reduce 

unwanted dimensional variations of KPCs. 

To address each aforementioned challenge, this thesis proposes scalable 

surrogate modelling. 

Based on the idea of scalable surrogate modelling, the following three 

methodologies of scalable surrogate model driven design synthesis are developed: 

i. Scalable surrogate model driven fixture layout optimization – Chapter 3 

develops Greedy Polynomial Kriging (GPK) to develop scalable surrogate 

models for deterministic KPCs related to sheet metal assembly. GPK is agnostic 

to the scale of deterministic non-linearity in KPCs and develops surrogate 

models with acceptable predictive accuracy for unseen test samples. 

Additionally, Optimal-Multi Response Adaptive Sampling is proposed to 

accelerate the convergence of multiple surrogate models to desired accuracy 
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levels. GPK surrogate models are utilised for fixture layout optimization of sheet 

metal assembly. The GPK surrogate models are integrated with optimization 

routines to identify optimal fixture layout in sheet metal assembly. 

ii.  Scalable surrogate model driven joining process parameter selection – In 

Chapter 4, scalable surrogate models addressing homo- and hetero-skedastic 

behavior of joint KPCs are developed. Statistical hypothesis testing and 

Polynomial Feature Selection (PFS) has been developed to generate the homo- 

and hetero-skedastic surrogate models of joint KPCs, which are then utilized for 

joining parameters selection through optimization of joining process KPIs, 

identification of process window and computation of process acceptance rate. 

iii. Scalable surrogate model driven corrective action of product failures due to 

dimensional variations of KPCs – Chapter 5 develops corrective actions of 

unwanted dimensional variations in faulty KPCs by scalable surrogate model 

driven dimensionality reduction of KCCs to identify a few critical KCCs closely 

related to the faulty KPC. In this chapter, the developed surrogate models are 

applied in a two-stage design adjustment process to minimize production yield 

of faulty KPCs through (1) nominal change; and, (2) tolerance re-allocation of 

the critical KCCs.  
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CHAPTER 3                                                                                                                                             

SCALABLE SURROGATE MODEL DRIVEN                                        

FIXTURE LAYOUT OPTIMIZATION 

3.1 Overview of the chapter 

Application of advanced computer-based VSA for design analysis of 

automotive BIW assembly processes has become a common practice. For example, 

analyzing effect of fixture layout (KCCs) on part-to-parts gaps (KPCs) in sheet metal 

assemblies frequently requires Finite Element Method (FEM)-based VSA models 

(Liao & Wang, 2007; Xie, et al., 2007; Franciosa, et al., 2014; Ceglarek, et al., 2015). 

However, VSA programs cannot be used effectively for design synthesis because of 

their: (1) computational expense, which prohibits efficient global optimization within 

time constraints; and, (2) numerical intractability which makes reverse engineering 

difficult if not impossible and instead requires experience-based trial-and-error. 

Therefore, an analytical surrogate model is often required to enhance VSA’s practical 

applicability in design synthesis tasks. 

For VSAs with deterministic output, the scale of non-linearity of the   

KPC-KCC interrelations, characterized by varying number of local maximas/minimas, 

is unknown due to complex nature of the underlying physical process. Currently, 

existing approximation techniques in design synthesis such as high order polynomial 

regressions cease to address the scale of non-linearity of KPC-KCC interrelations 

without overfitting limited number of samples used for training the surrogate models. 

However, overfitting training samples leads to poor predictive accuracy for unseen test 

samples. Therefore, there is a requirement for scalable surrogate modelling methods 

which can develop surrogate models with acceptable predictive accuracy for unseen 
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test samples for KPC-KCC interrelations which have a single maxima/minima as well 

for those which have multiple local maximas/minimas.  

To address the aforementioned need, this chapter builds upon the idea of 

scalability for deterministic non-linearity proposed in Chapter 1 as part of the 

framework of surrogate model driven Scalable Design Synthesis. The requirements to 

achieve scalability for deterministic non-linearity are: 

i. Develop a surrogate models which can adapt to the scale of deterministic non-

linearity present in KPC-KCC interrelations and give acceptable predictive 

accuracy for unseen test samples. 

ii. Minimize computational time required for running VSA to generate training data 

for developing surrogate models of multiple KPCs 

The aforementioned requirements are addressed in this chapter by 

developing scalable surrogate modelling for deterministic non-linearity of KPCs 

which includes:  

i. Greedy Polynomial Kriging (GPK), a novel approach of training Kriging-based 

surrogate models of deterministic KPCs  by maximizing predictive accuracy on 

unseen test samples 

ii. Optimal Multi Response Adaptive Sampling (O-MRAS) a novel method to 

expedite convergence of multiple surrogate models to desired accuracy level 

using a single training sample of KCCs.  

Furthermore, development and application of the proposed scalable 

surrogate modelling for deterministic non-linearity in KPC-KCC interrelations is 

discussed in the context of fixture layout optimization for sheet metal assemblies 

which uses a FEM-based VSA for analysis of assembly KPCs such as gaps between 

mating parts for given fixture related KCCs such as layout of fixture clamps.  
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The overall contribution of this chapter is developing a comprehensive 

methodology of scalable surrogate model driven fixture layout optimization for sheet 

metal assemblies based on the following two interlinked approaches: 

i. Scalable surrogate modelling of deterministic assembly KPCs, which develops 

surrogate models of assembly KPCs using training data generated from VSA 

ii. Optimization of fixture KCCs by utilizing the KPC surrogate models to determine 

optimal fixture KCCs which minimize a cost-based Key Performance Indicator 

(KPI). 

Figure 3.1 highlights the proposed methodology of scalable surrogate 

model driven fixture layout optimization. 

 

Figure 3.1: Scalable surrogate model driven fixture layout optimization 

 

The proposed methodology of scalable surrogate model driven fixture 

layout optimization is demonstrated using case studies on sheet metal assemblies from 

automotive and aerospace industries. Performance of GPK is compared with that of 

state-of-the-art Kriging and other currently existing surrogate modelling methods. 
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Moreover, performance of O-MRAS is compared with that of state-of-the-art uniform 

random sampling.  

Notations related to the methods developed in this chapter are listed as 

follows. Notations of KCCs ( x ) and KPCs ( y ) used in this chapter are similar to the 

generic ones introduced in Chapter 1. However, in this chapter KCCs and KCCs are 

specifically related to fixture layout optimisation for sheet metal assemblies. Hence 

notations of KCCs and KPCs are redefined in this chapter highlighting their meanings 

as related to fixture layout optimisation. 

Notations 

x  Set of ‘d’  KCCs 1 2
{ , ,..., }

d
x x xx , where i

x  is the ith KCC in x 

representing location of the ith clamp in a given fixture layout 

y Set of ‘r’  KCCs 1 2
{ , ,..., }

r
y y yy , where 

j
y  is the jth KPC in y 

representing part-to-part gap the jth location on the sheet metal 

assembly where a joint such between the mating parts is to be made 

( )f  Surrogate model integrating KCCs ( x ) with a KPC ( y ) 

  Parameters of the surrogate model ‘ f ’ 

lower

j
x  Permissible lower operating limit of 

th
j  KCC where 1,2,...,j d  

upper

j
x  Permissible upper operating limit of 

th
j  KCC where 1,2,...,j d  

  Coefficients of a regression model of the ‘d’ KCCs                                                          

i.e. = 1 2 d
, ...    

X  Design matrix having ‘n’ samples of ‘d’ KCCs 

i
x  th

i  sample of ‘d’ KCCs i.e. 1 2
{ , ,..., }

i i i id
x x xx  

i
y  th

i  sample of ‘r’ KPCs i.e. 1 2
{ , ,..., }

i i i ir
y y yy  

S  ‘ n ’ training samples generated by running VSA i.e. 
1

{ ,  }
n

i i i
 x yS  

N Number of iterations of surrogate modelling performed 

T
S  Training matrix where samples generated from each iteration of 

surrogate modelling is accumulated 
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t Number of test samples on KCCs and KPCs used to measure 

accuracy of the surrogate model ‘ f ’ on unseen test samples 

V
S  ‘ t ’ test samples on KCCs and KPCs used to measure accuracy of the 

surrogate model ‘ f ’ on unseen test samples i.e. 
V 1

{ , }
t

i i
S x y  

MSE Measure squared error calculated as average of the square deviances 

between actual KPCs obtained from VSA and predicted KPCs 

obtained from the surrogate model ‘ f ’ 

R2 Coefficient of determination of the surrogate model ‘ f ’ 

j
y  Average of the 

th
j KPC obtained from the ‘t’ test samples 

2
R

j
 Coefficient of determination of the surrogate model of the 

th
j KPC 

2

avg
R  Average of the R2 obtained from individual surrogate models 

m Number of polynomial terms derived from the KCCs 

p Order of the polynomial of the KCCs (x) 

( )h x  ‘m’ polynomial terms of  x  i.e. 1 2
( ) { ( ), ( ),..., ( )}

m
h h hh x x x x  

h  Subset of polynomial terms of x  i.e.  h h  

D
h  Set of polynomial terms of x arranged in descending order of their 

correlation with KPC ‘y’ 

A
h  Set of polynomial terms of x arranged in ascending order of their 

correlation with KPC ‘y’ 

H n m  input matrix of polynomial terms h 

i
  are deviances of the actual KPC i

y  and predicted KPC ˆ
i

y  for ‘n’ 

training instances where 1,2,...,i n  

( )g x  Regression model of ‘m’ polynomial terms of KCCs (x)  

ik
  Distance between two points 

j
x and k

x along the 
th

j  KCC 

( )R  Covariance structure of the Gaussian process regression or Kriging 

( )Z x  Gaussian process used to model local non-linearities 

2  Variance of the Gaussian process 

j
  Sensitivity parameter of 

th
j  KCC in covariance structure of Kriging 

where 1,2,...,j d  
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j
  Smoothing parameter of th

j KCC in covariance structure of Kriging 

where 1,2,...,j d  

θ  All parameters related to the  covariance structure of Kriging i.e. 

1 2 1 2
{ , , , ; , ..., }

d d
     θ  

( )L  Loss function which gives an aggregate measure of the error of the 

surrogate model 

( ) h  Generalized estimation of the loss function ( )L  obtained by the 

method of k-fold cross validation 

*
h  Optimal set of polynomial terms of KCCs (x) which minimises ( ) h  

and selected by Polynomial Feature Section 

*
( )  Optimal value of generalized loss function obtained from optimal set 

of polynomial terms 
*

h  

p* Optimal polynomial order selected by Polynomial Feature Section 

(PFS) 

  User-defined convergence tolerance used as stopping criteria of PFS 

*
θ  Optimal parameters of the  covariance structure of Kriging 

( )j

C
X  Adaptive sample of 

th
j  KCC where 1,2,...,j r  

( )j
υ  Values of the adaptive sampling criterion assigned to the ‘n’ design 

points in ( )j

C
X  

C
X  A single n d  matrix obtained by merging adaptive samples 

(1) (2) ( ) ( )
, ... ,...

j r

C C C C
X X X X of  ‘r’ individual KPCs 

n  Number of design points in 
C

X  after removing duplicate entries 

( )i
R  Cluster of design points obtained after clustering n design points in 

C
X by k-means clustering where k=n and 1,2,...,i n  

( )i
μ  Centroid of the points in 

( )i
R  

( )
( )

i

j
d x  Distance of the design point 

( )


i

j
x R from the centroid  of the cluster 

( )i
R  

( )

max

i
d  Distance of the farthest point from the centroid  of the cluster 

( )i
R  

( )

R
( )

i

j
 x  

The merit of the point 
( )


i

j
x R  
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( )

R-max

i  The highest merit in cluster 
( )i

R  

1
  User-defined weights assigned to distance criteria 

2
  User-defined weights assigned to merit criteria 

( )

*

i
x  Optimal point selected from cluster 

( )i
R  

*

C
X  Optimal adaptive samples consisting of optimal points each selected 

from 1,2,...,i n clusters i.e. * (1) (2) ( ) T

* * *
[ , ,..., ]

n

C
X x x x  

( ) ( )
[L , U ]

y y

k k
 Tolerance limits on KPC k

y  where 1,2,...,k r  

k
m  Nominal of KPC k

y  where 1,2,...,k r  

1
K  and 2

K  User-defined Taguchi loss coefficients 

( )
k

C y  Cost of quality loss due to deviation of KPC k
y  from nominal where 

1,2,...,k r   

( )C y  Total cost of quality loss obtained as a sum of quality losses from ‘r’ 

individual KPCs 

 

The remaining part of this chapter is organized as follows: Section 3.2 

expands the motivation for the research presented in this chapter by discussing the 

challenges in fixture layout optimization for sheet metal assemblies. Next, Section 3.3 

presents a generic overview of surrogate modelling of KPCs from computer-based 

VSA and highlights the scope for research on scalable surrogate modelling to address 

deterministic non-linearity of KPCs.  Section 3.4 reviews state-of-the-art Kriging 

method and currently existing adaptive sampling techniques and discusses their 

limitations. Next, the proposed methodology for scalable surrogate model driven 

fixture layout optimization is developed through the following two approaches: (1) 

scalable surrogate modelling of deterministic assembly KPCs presented in Section 

3.5, which details the GPK and O-MRAS methods; and,   (2) optimization of fixture 

KCCs discussed in Section 3.6, which formulates the fixture layout optimization 

problem using the GPK surrogate models. Section 3.7 demonstrates the proposed 
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methodology with case studies from automotive and aerospace industries. Finally, 

Section 3.8 summarises the research presented in this chapter. 

 

3.2 Motivation for the research 

One of the important design synthesis tasks related to automotive BIW 

assembly production system is fixture layout optimization for the assembly process. 

Fixtures play an important role in the assembly process by providing accurate locating 

of parts to be assembled and hence significantly influence the final dimensional 

quality of the finished products. Moreover, fixtures also provide accurate clamping to 

maintain gaps between mating parts of an assembly within specified design tolerances 

which are critical for making feasible joints between the parts by an industrial joining 

process. For example, the Remote Laser Welding process requires gap between 

assembly mating parts to be within 0.05 mm to 0.4 mm at locations where welding is 

to be done. Therefore, optimal fixture layout optimization is important to ensure 

acceptable quality of the final assembly. 

A significant number of researches have been done in the past on fixture 

layout optimization for sheet metal assemblies. Research on fixtures can be classified 

into two areas: (i) fixture design analysis which involves mathematical modelling of 

the relationship between fixture KCCs and KPCs based on first principle or 

fundamental physical laws from kinematics and finite element methods; and (ii) 

fixture layout optimization which utilizes the first principle mathematical models to 

determine fixture KCCs which maximize assembly process capability subject to 

design tolerances of KPCs. For fixture design analysis, a lot of work has been done to 

model the effect of fixture KCCs for example clamping forces, clamps’ locations on 

the assembly KPCs such as part deformations, gap/contact between mating parts. The 
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KPC-KCC mathematical models developed through fixture design analysis was then 

integrated with optimization routines such as linear programming, genetic algorithms 

etc. to conduct fixture layout optimization (Menassa & DeVries, 1991; Kashyap & 

DeVries, 1999; Camelio, et al., 2002; Chen & Xue, 2008). In the aforementioned 

cases, efficient optimization of fixture KCCs via direct integration of the KPC-KCC 

models with optimization routines was possible due to the specific problem scenarios 

addressed, assumptions made and computationally inexpensive KPC-KCC assembly 

response functions (ARFs) developed through first-principle based modelling. 

However, in recent years research on compliant part assemblies with specific 

gap/contact requirements between mating parts, has led to development of advanced 

VSA methods (Franciosa, et al., 2014) which, though able to accurately estimate 

assembly KPCs for given fixture KCCs, cannot express the KPC-KCC relationships as 

closed-form and computationally inexpensive analytical functions unlike fixture 

design analysis methods developed previously. Consequently, efficient global 

optimization of fixture layout by direct integration of optimization routines with the 

new generation of fixture design analysis tools has become computationally 

prohibitive. Moreover, due to numerical intractability of such fixture design analysis 

tools, deducing critical KCCs for a given KPC is practically infeasible thereby making 

reverse engineering, required for applications such as fault diagnosis, a trial-and-error 

based exercise. 

 Under the aforementioned conditions, surrogate models of KPCs can be 

used for applications such as fixture layout optimization. To develop surrogate models 

which can generate realistic VSA results, this chapter proposes scalable surrogate 

modelling for deterministic assembly KPCs which provides the following two 

capabilities: 
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i. Acceptable accuracy for unseen test samples in case of deterministic KPC-KCC 

interrelations whose scale of non-linearity in terms of number of local 

maximas/minimas is unknown  – This is achieved by Greedy Polynomial Kriging 

(GPK) 

ii. Minimal computation time required generating training data for developing 

surrogate models of multiple assembly KPCs – This is addressed by Optimal-

Multi Response Adaptive Sampling (O-MRAS). 

     

3.3 Brief overview of surrogate modelling from computer-based Variation 

Simulation Analysis (VSA) 

This section provides a brief overview of the steps required, in general, for 

developing surrogate models of deterministic KPCs from computer-based VSA. The 

discussion is presented without referring to any particular surrogate modelling or 

adaptive sampling method. The significance of the steps for achieving accurate 

surrogate models from minimal number of computer simulations is discussed. 

Furthermore, the scope for research on surrogate modelling and adaptive sampling 

methods to achieve scalability for deterministic non-linearity is highlighted. 

A surrogate model is an analytical function which predicts a KPC for 

given KCCs. The surrogate model can be expressed as ŷ = f (x), where ŷ is the 

predicted value of the KPC and x 2 d1
x ,x x   is a  d-dimensional input of KCCs. 

Each KCC is bounded within permissible lower and upper limits:
lower upper

j j j
x x x  , 

where j=1,2…d. The space of all feasible KCCs is called the experiment region or 

design space and is denoted by D, which is a d-dimensional hyper-rectangle. 

The surrogate model ‘ f ’ is defined by several parameters ( ), details of 

which depends on the choice of the surrogate model. For example, regression 
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coefficients = 1 2 d
, ...    are parameters in a linear regression model with ‘d’ KCCs. 

Similarly, number of hidden layers, learning rate and weight matrix are parameters of 

a neural network.  In general, surrogate modelling of KPCs from VSA involves 

identifying suitable values of the model parameters ‘ ’ through the iterative process 

shown in Figure 3.2. 

 

 

Figure 3.2: Surrogate modelling of KPCs from VSA 

 

The five steps of surrogate modelling of KPCs from VSA, as shown in 

Figure 3.2, are described as follows: 

Step 1: Sample initial design matrix of KCCs by space filling – 

Input to VSA is a n d design matrix 
1

={ }
n

i i
X x having ‘n’ samples of ‘d’ 

KCCs. In the first iteration, the initial design matrix of KCCs is generated based on 

various design of experiments approaches such as full-factorial, central composite 
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combinations and others. 

Step 2: Run VSA to generate training data – 

Each row of the n d design matrix X represents a sample fixture layout 

for the assembly defined by locations of ‘d’ clamps (KCCs), 1 2
{ , ,..., }

i i i id
x x xx  

where {1, 2,..., }i n . For each fixture layout, FEM-based VSA estimates ‘r’ assembly 

KPCs 1 2
{ , ,..., }

i i i ir
y y yy  which can be for example part-to-part gaps at ‘r’ welding 

spots where a permanent joint between the mating parts needs to be made via a joining 

process such as Resistance Spot Welding (RSW), Remote Laser Welding (RLW) or 

other joining process. 

In each iteration of the surrogate modelling process, shown in Figure 3.2,  

‘n’ training samples 
1

{ ,  }
n

i i i
 x yS  on KCCs and KPCs are generated and accumulated 

in a training matrix T
S  which is used to develop the surrogate models in that 

iteration. The number of instances in T
S  grows as n, 2n, … Nn, where ‘N’ is the 

number of iterations performed.  

Step 3: Train KPC surrogate models – 

During the current iteration, the training matrix T
S is used to estimate the 

parameters (  ) of the surrogate model. The actual method applied to determine    

depends on choice of the surrogate model. For example, least squares method is used 

to determine the coefficients in case of a linear regression model. 

Step 4: Check if model accuracy is acceptable – 

In this step, test samples
V 1

{ , }
t

i i
S x y  are used to evaluate the accuracy of 

the surrogate models, based on a criteria such as mean-squared error (MSE), 

coefficient of determination (R2) or others. Mean squared error for the 
th

j KPC is 

calculated using Eq. (3.1) 
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2

1

1
ˆMSE ( )

t

j ij ij

i

y y
t 

                                                   (3.1) 

where 
ij

y and ˆ
ij

y are the actual and predicted KPCs for the 
th

i  test sample and 

{1,2,..., }i t . Coefficient of determination is computed using Eq. (3.2). 

                                         

2

2 1

2

1

ˆ( )

R 1

( )

t

ij ij

i

j t

ij j

i

y y

y y







 






                                                     (3.2) 

where 
j

y is the average of the 
th

j KPC obtained from the ‘t’ test samples as  

1

1 t

j ij

i

y y
n 

  . The coefficient of determination ( 2
R

j
) measures the accuracy of the 

surrogate model relative to a naïve model where all predictions are made using the 

average of the observed values. 2
R

j
 varies from 0 to 1 where a higher value indicates 

better model accuracy. 

In case of multiple KPCs, average of the accuracy of individual surrogate 

models, for example 
2 2

avg

1

R R
r

j

j

r


 , is computed  to decide the stopping criterion            

( ) of the surrogate modelling process. The stopping criterion can be a user-defined 

minimum average accuracy required from the surrogate models. 

Step 5: Select design matrix of KCCs via adaptive sampling – 

If the stopping criterion in Step 4 is not met, further iteration needs to be 

done to generate additional training data by running VSA and enhance the surrogate 

models. Unlike for the first iteration, design matrix of KCCs for subsequent iterations 

is generated by an adaptive sampling strategy (Lovison & Rigoni, 2011). Adaptive 

sampling of KCCs ensure that desired accuracy of the surrogate models can be 

achieved in as few iterations as possible by selectively sampling KCCs from specific 
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regions in the KCC-design space. For example, KCCs might be selected from a region 

where the underlying function of a KPC has a steep slope to ensure that the training 

data T
S  includes instances from regions of local maximas and minimas. Essentially, 

adaptive sampling expedites convergence of the surrogate model to desired accuracy 

level. Simpson, et al. (2001) presents a review of different strategies for adaptive 

sampling and compares its effect on model accuracy with that of uniform random 

sampling of the input parameters to computer simulation. The design matrix of KCCs 

generated via adaptive sampling is then fed back to Step 2 where further training data 

is generated by running VSA. 

The two main steps of surrogate modelling of KPCs from VSA are: (1) 

Step 3 which involves surrogate model training using data generated from VSA; and, 

(2) Step 5 which selects design matrix of KCCs via adaptive sampling. Significance of 

these steps and scope of research on methods for surrogate model training and 

adaptive sampling to achieve scalability for deterministic non-linearity is discussed as 

follows: 

i. Training of KPC surrogate models in Step 3 – Surrogate model training involves 

estimating parameters θ  of the model from the training data generated by VSA. 

The chosen surrogate modelling technique (for example polynomial regression, 

kriging, ANN, SVM etc.) has an impact on prediction accuracy and convergence 

to desired accuracy level. Techniques which can give more accurate surrogate 

models for deterministic KPCs with varying number of local maximas/minimas 

in lesser simulations are preferred. This gives the scope to review limitations of 

currently existing techniques and develop novel ones to achieve scalability for 

deterministic non-linearity. 

ii. Selecting KCC design matrix via adaptive sampling in Step 5 – Most sheet metal 
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assemblies in BIW manufacturing involves multiple KPCs which are estimated 

by VSA for given KCCs. To reduce computation time required to generate 

training data for developing surrogate models of multiple KPCs, it is desirable to 

use the same design matrix of KCCs for running VSA. Therefore, adaptive 

sampling which selects KCC design matrix based on non-linearity of the 

underlying KPC-KCC interrelation must address multiple KPCs in a single 

adaptive sample to avoid generating multiple disparate adaptive samples, each 

for a single KPC. Hence there is a requirement to develop multi-response (or 

multi-KPC) adaptive sampling for Step 5. 

 

3.4 Related work on surrogate modelling from computer-based Variation 

Simulation Analysis 

 

As discussed in the previous section, surrogate modelling of KPCs from 

VSA has two main steps: (1) surrogate model training which involve estimating the 

model parameters; and (2) adaptive sampling to generate design matrix on KCCs to be 

given as input to VSA. This section reviews related work on surrogate model training 

and adaptive sampling. 

This chapter specifically focuses on the Kriging method for training the 

surrogate models of deterministic KPCs. Section 3.4.1 describes the state-of-the-art 

Kriging technique. Related work on Kriging is reviewed and their limitations in 

addressing scalability for deterministic non-linearity are discussed. To address these 

limitations, Greedy Polynomial Kriging (GPK) is proposed in this chapter. There are 

other methods for training surrogate models. Examples include polynomial regression, 

neural network, support vector machine and regression trees. A comprehensive review 

of different methods applied for training surrogate models from computer simulation 

for engineering design optimization tasks is given by Simpson, et al. (2001), Wang 
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and Shan (2007) and Chen, et al. (2014). Based on the case studies of sheet metal 

assemblies, this chapter provides comparison of accuracy of GPK, state-of-the-art 

Kriging (henceforth referred in this thesis as Ordinary Kriging (OK)) and other 

popular methods for surrogate model training found in the literature. 

Section 3.4.2 reviews past research on adaptive sampling and discusses 

their limitations in the context of multi-KPC or multi-response VSA. To address these 

limitations, Optimal-Multi Response Adaptive Sampling (O-MRAS) is developed in 

this chapter to combine multiple adaptive samples each generated for a single 

response or KPC. 

3.4.1 Review of related work on Kriging for surrogate model training 

Since its inception in geo-statistics as a distance-weighted predictor of 

average grades of mineral ores, Kriging has been a popular technique for training 

surrogate models of deterministic responses obtained from computer-based simulation 

models. Barton (1998), Simpson, et al. (2001), Martin and  Simpson (2004), Kleijnen  

(2009) and  Li, et al. (2010) showed that the predictive accuracy of Kriging is better 

than other surrogate modelling methods using well-known benchmark functions.  

 Kriging is related to polynomial regression. Eq. (3.3) presents a 

polynomial regression model where a KPC ‘y’ is predicted from linear regression 

model of polynomial terms of the KCCs (x). Here 1 2
( ) { ( ), ( ),..., ( )}

m
h h hh x x x x  are the 

polynomial terms of x and 1 2
{ , ,..., }

m
  β  represents the coefficients of the 

polynomial terms in ( )h x . i
  for i=1,2…n  are deviances of the actual KPC i

y  and 

predicted KPC ˆ
i

y  for ‘n’ training instances. 

               ( ) ( ) ( )
T

i i i i i i
y g     x x β h x    (i=1,2…n)                        (3.3) 

Assuming that deviances i
  follows an independent and identically 
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distributed normal density with zero mean and variance 2 , the coefficients in β can 

be estimated by the method of least squares. However, the normality assumption about 

the deviances i
 might not be accurate under the following two conditions: (1) the 

deviances of the polynomial function from the true values of the KPC cannot be 

interpreted as random noise in case of VSA which generate deterministic output 

(Sacks, et al., 1989); and (ii) the deviances might be due to the non-linearity of the 

underlying physical process (Simpson, et al., 2001). Thus, polynomial regression, 

though providing a global approximation of the response, is not able to fit local non-

linearities, characterized by presence of local maximas and minimas, and hence results 

in poor accuracy of the surrogate model. 

Significant improvement in prediction accuracy over polynomial 

regression has been achieved by assuming that the deviances originate from a random 

process. (Blight & Ott, 1975) formulates the deviances i
  for 1,2,...,i n   as ‘n’ 

random variables jointly following a multivariate normal or Gaussian distribution of 

‘n’ variables.  When the deviances  i
  for 1,2,...,i n  are assumed to follow a joint 

normal or Gaussian distribution in ‘n’ variables, they are said to be originating from a 

Gaussian random process (Sacks, et al., 1989). The surrogate modelling method based 

on this assumption is Kriging, which therefore is also known as Gaussian process 

regression. The covariance structure of the joint Gaussian distribution is given in Eq. 

(3.4) 

                                              
2

2
( , )

l i k i k
R


   x x                                             (3.4) 

where 
2

  represents the L2 norm of i k
x x  or the Euclidean distance between the 

KCC design points i
x  and k

x .   is the smoothing parameter. Based on the 

formulation that the deviances i
  jointly follow a multivariate Gaussian or normal 



66 
 

distribution, several works (Sacks, et al., 1989; Koehler & Owen, 1996; Booker, 

1996) generalizes the kriging surrogate model as 

                        
1

ˆ ( ) ( ) ( ) ( )
m

i i i j j i i

j

y g Z h Z


   x x x x    (i=1,2…n)                    (3.5)  

which includes a regression component ( )g x  of ‘ m ’ basis functions 

1 2
( ) { ( ), ( ),..., ( )}

m
h h hh x x x x  and a Gaussian process ( )Z x . The regression component 

( )g x  generates a global approximation of the KPC while the Gaussian process ( )Z x

adjusts the surrogate model for local non-linearities such as local maximas and 

minimas. The basis functions can be terms from pth order polynomial of x. The 

random process has mean, [ ( )] 0E Z x  and covariance, 

  2
cov Z( ), Z( ) ( , ; )

i k i k
Rx x x x θ . Here, 2 is the variance of the Gaussian process 

and ( )R   is the generalized correlation function, which is defined by parameters θ . 

Frequentist approach exist for finding the best linear unbiased estimators of  β  and 

2  for a given ( )h x  and θ . The correlation function ( )R   essentially quantifies the 

similarity between the points i
x  and k

x . Kleijnen (2009) generalizes the correlation 

function shown in Eq. (3.4) as a product of ‘d’ one-dimensional functions expressed as 

follows 

                                            
1

( , ) ( ; )
d

i k ij kj j

j

R x x 


 x x                                      (3.6) 

Here   represents the absolute value and 1 2
{ , ,..., }

d
  θ  are the parameters of the 

correlation function where j=1,2…d. A special case of the                                      

correlation shown in Eq. (3.6) is the Gaussian correlation function  

2 2

11

( ) ( )
( , ) exp exp( )

d d
ij ij ij ij

i k

jj j j

x x x x
R

 

  
    

 
 

x x  which is based on the 
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Euclidean distance between the design points i
x  and k

x . In this case, the parameters 

of the correlation function are 1 2 1 2
{ , ,..., } { , ,..., }

d d
      θ . Moreover, the 

Gaussian correlation function is a special case of the family of exponential correlation 

functions given in Eq. (3.7) 

                                        
1

( , ) exp( )

i
d

ij kj

i k

j j

x x
R






 x x                                        (3.7) 

which has  parameters 1 2 1 2
{ , , , ; , ..., }

d d
     θ , where 

j
  is the sensitivity 

parameter which controls how quickly the correlation drops with distance 

ik ij kj
x x    along the jth KCC and 

j
  is the smoothing parameter which determines 

the smoothness or differentiability of the surrogate model with respect to the jth KCC. 

Maximum likelihood estimation is popularly used to estimate parameters β and θ of 

the Kriging surrogate models. 

 A lot of work has been done on developing Kriging surrogate models 

based on the function prescribed in Eq. (3.5). Past research assume that the regression 

component, ( )g x  of the Kriging surrogate model is either a constant or a polynomial 

of x. However, specifying a constant regression component ( )g x =β0 is trivial and 

might not be an accurate global approximation. Moreover when ( )g x  is a polynomial, 

the order of the polynomial is often set from the user’s  knowledge about the 

underlying physical process, which may not be adequate especially for complex VSA 

models wherein KPCs are estimated from KCCs based on multiple mathematical 

formulations and their solutions obtained either analytically or numerically. 

Furthermore, using all the terms from the user-specified polynomial as features or 

explanatory variables in the regression component ( )g x  might lead to overfitting 

especially for higher order polynomials. Under these conditions, there is need for  
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feature selection which can identify features *
( )h x  to be used in the regression 

component  ( )g x  of the Kriging surrogate model. Recently, Couckuyt, et al. (2012) 

emphasized the importance of feature selection for Kriging and suggested a Bayesian 

weighting approach and iterative maximum likelihood to select important features 

from an initial predefined set of features. However, defining the initial set of features 

might require knowledge about the underlying physical process. Previously, Wang & 

Shan (2007) and Kleijnen (2009) and several other suggested that the features can be 

terms from the pth order multivariate polynomial of x, where ‘p’ can be suitably chosen 

by the user. This chapter proposes that ‘p’ can be algorithmically determined. 

Choosing the order of the polynomial ‘p’ and selecting an optimal subset of 

polynomial terms should be done by optimizing an objective function, which is 

closely related to the accuracy of the regression model.  

At this point, it is noteworthy that in the past, feature selection for kriging 

focused on variable screening to identify few variables from the original set input 

parameters. Multiplicative interactions between the input parameters are not 

considered to generate new features. Related work on variable screening for Kriging 

was done by (Welch, et al., 1992; Linkletter, et al., 2006) who eliminated unimportant 

variables from the original set of input parameters (x) based the on scaling parameter

j
  of the variable. 

Another important aspect of Kriging surrogate models is the correlation 

function of the Gaussian process ( )Z x , which adjusts the model to local non-

linearities. The correlation function, also known as kernel function in literature, has a 

significant impact on the prediction error of Kriging surrogate models on unseen test 

samples (Sacks, et al., 1989). The exponential kernel function is popularly used for 

developing Kriging surrogate models for engineering design optimization tasks 
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(Kleijnen, 2009). Most applications use the Gaussian correlation function because it is 

infinitely differentiable with respect to the input parameters (which are KCCs in the 

context of fixture layout optimization) and generates smooth response surfaces from 

the surrogate models. However, the assumption that responses are always smooth to 

changes in input parameters might not be valid in all applications. Furthermore. 

maximum likelihood estimation (MLE) has been conventionally applied to determine 

the parameters 1 2 1 2
{ , , , ; , ..., }

d d
     θ of the Kriging surrogate models (Kumar, 

2006; Wang & Shan, 2007; Ben-Ari & Steinberg, 2007; Kleijnen, 2009; Toal, et al., 

2011; Chen, et al., 2014; Wessing, et al., 2014). However, though MLE might give an 

adequate accuracy on training samples which is used to develop the surrogate model, 

it might not ensure minimization of error on unseen test samples.  

Based on the aforementioned discussion, the limitations of state-of-the-art 

Ordinary Kriging affecting achievement of scalability for deterministic non-linearity 

are summarized as follows: 

i. Predefined features for regression component – Currently existing Ordinary 

Kriging surrogate models require polynomial order for the regression 

component to be defined by the user. For complex VSA of sheet metal 

assemblies, defining predefined features might be challenging due to numerical 

intractability of the VSA. 

ii. Optimization of kernel function by MLE – State-of-the-art Ordinary Kriging 

determines parameters θ of the kernel function through MLE which though 

providing good accuracy for the training samples, might not ensure acceptable 

accuracy on unseen test samples. 

To address the aforementioned limitations of Ordinary Kriging, this 

chapter develops the Greedy Polynomial Kriging method based on the following two 
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interlinked approaches: 

i. Polynomial Feature Selection – To determine optimal order of the polynomial 

without predefined initialization and select an optimal subset of polynomial 

terms which maximize predictive accuracy of the regression component ( )g x , 

this chapter develops the polynomial feature selection (PFS) approach. Terms 

from higher order polynomials are iteratively added if addition of a term results 

in decrease of the generalized prediction error of ( )g x till a stopping criterion is 

reached. The generalized prediction error of the regression component ( )g x  is a 

measure of the average model error on unseen test samples. Moreover, to ensure 

that higher accuracy is reached in fewer computation, polynomial terms are 

added in a greedy order determined by the correlation of a term with the KPC, 

where a term with higher correlation with the KPC is evaluated before a term 

with lower correlation with the KPC. 

ii. Kernel optimization via minimization of generalized model error – An important 

requirement for addressing scalability for deterministic non-linearity of 

assembly KPCs is ensuring acceptable predictive accuracy of the surrogate 

model on unseen test samples for KPC-KCC interrelations with varying number 

of local maximas and minimas. Though state-of-the-art Ordinary Kriging 

method models local maximas and minimas, it does not ensure maximum 

predictive accuracy on unseen test samples. To address this limitation, this 

chapter proposes kernel optimization approach based on minimization of the 

generalized prediction error on unseen test samples to determine optimal θ  for 

the exponential kernel function 
1

( , ) exp( )

j
d

ij ij

i k

j j

x x
R






 x x . 

Table 3.1 summarizes related work on state-of-the-art Kriging and 
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highlights the contribution of the proposed GPK method. 

Table 3.1: Review of feature selection and kernel optimzation for Kriging surrogate 

models 

Approach of                            

feature selection  

Approach of                     

kernel optimization 
Related work 

O
rd

in
a

ry
 K

ri
g

in
g

 

Pre-defined set of features 

(lack of feature selection) 

 

 

Kernel optimization via 

maximum likelihood 

estimation 

Sacks, et al. (1989) 

Odeha, et al. (1994) 

(Booker, 1996) 

Koehler & Owen (1996 

Rajagopalan & Lall (1998) 

Høst (1999) 

Lee (2005) 

Jakumeit, et al. (2005) 

Forsberg & Nilsson (2005) 

Li, et al. (2008) 

Gao & Wang (2008) 

Dubourg, et al. (2011) 

Huang, et al. (2011) 

Toal, et al. (2011) 

Luo, et al. (2012) 

Chen, et al. (2014) 

Wessing, et al. (2014) 

Variable screening to identify 

critical input parameters   

Welch, et al. (1992) 

Hoeting, et al. (2006) 

Linkletter, et al. (2006) 

Feature selection from 

predefined set of features  
Couckuyt, et al. (2012) 

G
P

K
 

Polynomial Feature Selection 

- Does not require pre-defined 

set of features 

- Selects polynomial terms 

based on minimization of 

generalized model error 

Kernel optimization via 

minimization of generalized 

model error 

Proposed in this chapter 

 

Section 3.5 elaborates the proposed GPK method for training scalable 

surrogate models of deterministic assembly KPCs. 

3.4.2 Review of related work on adaptive sampling 

Surrogate modelling of KPCs from VSA is an iterative process as shown 

in Figure 3.2 and in each iteration a KCC design matrix is chosen as input to VSA. In 

the first iteration,  the design matrix of KCCs is chosen based on design of experiment 

approaches such as full-factorial design of experiments (DOE), fractional-factorial 

DOE, Latin Hypercube Sampling (LHS), Orthogonal Arrays and other approaches 

(Simpson, et al., 2001). In subsequent iterations, the KCC design matrix is generated 
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using an adaptive sampling strategy, which analyses the existing training instances 

and samples points from specific regions of the KCC design space based on the 

adaptive sampling criteria (Kleijnen, 2009). This section reviews currently existing 

methods of adaptive sampling. Capabilities and limitations of state-of-the-art methods 

are discussed in the context of surrogate modelling from VSA which outputs multiple 

assembly KPCs for fixture related KCCs given as input.   

Adaptive sampling focuses on improving the predictive accuracy of a 

surrogate model over the entire design space of KCCs. (Currin, et al., 1991) suggested 

maximum posterior entropy to generate an entropy-optimal design matrix of KCCs for 

single-KPC surrogate modelling. Another approach of adaptive sampling for kriging-

based surrogate models is to select a new sample point x
C  which has the maximum 

mean squared error    
2

ˆ ˆMSE ( ) ( ) ( )y E y y x x x , estimated from the existing 

kriging surrogate model (Sacks, et al., 1989; Jin, et al., 2002). The aforementioned 

approaches focus on predictive error of the existing surrogate model to identify the 

adaptive sample. However, they do not consider non-linearity of the underlying input-

output interrelations. Kleijnen and Van Beers (2004) suggested an approach of 

adaptive sampling which takes into consideration non-linearity of the underlying 

input-output function. Points were sampled from subareas in the design space of the 

input parameters, where the underlying input-output function has local maximas or 

minimas. Recently, Lovison and Rigoni (2011) have proposed Lipschitz criteria based 

adaptive sampling which selects points from subareas having non-linear behaviour of 

the input/output function.  The design space of the input parameters is divided into 

simplexes by Delaunay triangulation. A local complexity criterion called Lipschitz 

constant (L) is computed for each simplex. Candidate points are generated throughout 

the design space using a space-filling strategy such as uniform random sampling, full-
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factorial design of experiments or others. The merit of each candidate point is 

calculated as a product of the Lipschitz constant of the point’s residential simplex and 

the Euclidean distance of the point from the nearest vertex of its residential simplex. 

The top ‘n’ points, ranked according to merit, are selected as the adaptive sample X
C  

to be used for next batch of simulations. The Lipschitz criteria-based adaptive 

sampling selects design points, which are near or at the local maximas and minimas of 

the underlying input/output function. Hence this criteria is preferred for emulating 

local non-linearities of the underlying input-output function. 

The aforementioned sampling approaches provide useful criteria of 

generating design matrix of KCCs. However, a major limitation of the aforementioned 

methods is that they are either intended for single-response or single-KPC computer 

simulations or take union of the individual adaptive samples (1) (2) ( )
, ,...,

r

C C C
X X X  

generated independently for ‘r’ responses. This limitation is aggravated if the 

individual adaptive samples have few instances common amongst themselves thereby 

making simulations for the full set of adaptive sample forbiddingly time-consuming. 

To address this problem, an Optimal Multi Response Adaptive Sampling (O-MRAS) 

is developed in Section 3.5. O-MRAS integrates a single-response adaptive sampling 

criterion with k-means clustering and a weighted selection strategy to generate a single 

adaptive sample from ‘r’ disparate adaptive samples. To initially generate the 

individual adaptive samples ( )j

C
X where 1,2,...,j r , O-MRAS can be integrated with 

any state-of-the-art adaptive sampling criteria. Lipschitz criterion is specifically used 

with O-MRAS for the case-studies discussed in this chapter. 

Table 3.2 summarises currently existing methods of adaptive sampling and 

highlights the capability of the proposed O-MRAS approach. 
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Table 3.2: Review of state-of-the-art on adaptive sampling 

Approach of adaptive sampling Related work 

Single response adaptive sampling Sacks, et al. (1989) 

Currin, et al. (1991) 

Jin, et al. (2002) 

Kleijnen & Van Beers (2004) 

Lovison & Rigoni (2011) 

Multi response adaptive sampling Proposed in this chapter 

 

3.5 Scalable surrogate modelling of assembly KPCs 

 This section develops scalable surrogate models addressing the 

deterministic non-linearity of assembly KPCs estimated by computer-based VSA. 

Figure 3.3 outlines the steps of developing scalable surrogate models from computer-

based VSA.  

 

Figure 3.3: Scalable surrogate modelling of assembly KPCs from VSA 

 



75 
 

The steps of developing the scalable surrogate models, as shown in Figure 

3.3, are adapted from the generic approach of surrogate modelling of KPCs described 

in Section 3.3. The work presented in this section focuses on developing the following 

two methods (1) GPK for training the KPC surrogate models in Step 3; and,                             

(2) O-MRAS for generating adaptive sample of multiple KPCs in Step 5. 

Section 3.5.1 describes GPK and O-MRAS is presented in Section 3.5.2 

3.5.1 Greedy Polynomial Kriging (GPK) 

A KPC from a computer-based VSA is assumed to be deterministic as 

same value of the KPC is obtained repeatedly for the same values of KCCs. Any noise 

in the KPC, due to numerical error of VSA, is considered negligible for practical 

applications. Figure 3.4 shows the plot of a deterministic KPC (y) with respect to a 

KCC (x).  

 
Figure 3.4: Surrogate modelling of determinstic assembly KPCs 

 

Kriging surrogate model of the KPC y is given as  

                             ˆ ( ) ( )y g Z x x                                                          (3.8) 
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whereby the regression component 
1

( ) ( )
m

j j

j

g h


x x  provides a global 

approximation of the KPC (shown by  the blue dashed curve in Figure 3.4). The local 

non-linearities such as 1
 through 4

 are modelled by the Gaussian process ( )Z x . 

Details of the regression component, ( )g x and the Gaussian process ( )Z x are 

described in Section 3.4.1. 

This section proposes Greedy Polynomial Kriging (GPK), a novel 

approach of developing Kriging surrogate model of deterministic KPC based on the 

following two methods:  

i. Polynomial Feature Selection (PFS) which identifies an optimal regression 

component ( )g x . PFS is discussed in Section 3.5.1.1. 

ii. Kernel Optimization (KO) which determines optimal parameters θ  for the 

exponential correlation function (also commonly known as kernel function). KO 

is described in Section 3.5.1.2. 

 

3.5.1.1   Polynomial Feature Selection 

Feature selection identifies the best set of features 
*
h h which generates 

an accurate global approximation of the response. Features are also called basis 

functions as they can be derived from the control parameters (x). For example, h can 

be terms from the pth order polynomial in x in which case 

1

1 2 1 1 2
( ) { , ,..., } { , ,..., }

p p p

m d
h h h x x x x


 h x  where ‘m’ is the number of terms in the pth   

order polynomial. 

The approximation done by the regression component is assumed to be a 

linear combination of features 1 2
{ , ,..., }

m
h h hh as shown in Eq. (3.9). 
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                       0 1 1
ˆ ...

m m
y h h                                                       (3.9) 

The coefficients 0 1
{ , ,..., }

m
  β are determined by the method of least squares and 

are given as  

                                                T 1 T
(H H) H


β y                                                      (3.10) 

where H is the n m  input matrix of features h and y is 1n  vector of the KPC 

obtained from the training dataset 
T 1

S { , }
n

i i
y x . The difference between the actual 

and predicted response can be computed based on the instances in the training dataset 

T 1
S { , }

n

i i
y x  as follows 

                         ˆ
i i i

y y    (i=1,2,…,n)                                              (3.11) 

Since the errors calculated in Eq. (3.11) are on the individual training samples from 

the dataset T
S , an aggregate measure of the model’s prediction error is required.  The 

aggregate error of the model is calculated as the mean of the squares of the individual 

errors and is also called mean-squared error (MSE) loss function. The individual 

errors calculated in Eq. (3.11) depends on the coefficients β which in turn depend on 

the features h used in the regression component. Therefore, it is apt to consider the 

MSE loss function as a function of the features h for the given dataset T
S . Based on 

this premise the MSE loss function can be expressed as 

                                         
2 2

T

1 1

1 1
ˆ( | S ) ( )

n n

i i i

i i

L y y
n n


 

   h                               (3.12) 

Feature selection identifies the best subset of features 
*
h h which minimizes the 

MSE loss function. However, it is noteworthy that the loss function in Eq. (3.12) not 

only depends on the features h but also on the training dataset T
S  used to compute the 

individual prediction errors i
  for 1,2,...,i n . Therefore, to estimate the prediction 

error of the regression component which is independent of the training sample, a 
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generalized estimation of the MSE loss function ( ) h is obtained by the method of k-

fold cross validation (Kohavi, 1995), which is described in Appendix A. The 

generalized MSE loss function ( ) h  is a measure of the regression component’s 

prediction error on unseen test samples.  

Polynomial Feature Selection (PFS) identifies the best set of features 

*
h h which minimizes the generalized loss function ( ) h . PFS is formalized as the 

following optimization problem 

                                                 
*

arg min
 


h h

h ( ) h                                                 (3.13) 

 PFS generates a solution to the minimization problem stated in Eq. (3.13). 

The selected features are used in the regression component of the Kriging surrogate 

model to develop the best possible global approximation of the underlying non-linear 

relationship between the KPC y and the KCCs x. To do this, multiplicative 

interactions between individual KCCs in relation to the KPC are considered in the 

following two ways: 

i. One-way interaction – This type of interaction is suggested to model the linear 

effect of a single KCC on the KPC. One-way interactions are represented as

~
i

y x , where i=1, 2,…, d. 

ii. Generalized n-way interaction – This type of interaction models the functional 

dependency of the KPC on multiplicative effects between one or more KCCs. A 

generalized n-way interaction is denoted as 1 2

1 2
..~ . dpp p

j d
y x x x  where i

p  is an 

integer. n-way interaction between KCCs can be generated by considering terms 

from pth order polynomial of the KCCs 1 2
{ , ,..., }

d
x x xx . In this case individual 

interactions are determined by solutions to the Eq. (3.14) given below. 
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1

d

i

i

p p


  where {0,1,... }
i

p p  for {1,2,... }i d                            (3.14) 

In general, a feature hk can represent a generalized n-way multiplicative 

interaction between the KCCs. When n=1 features denote linear functional 

dependency ~ ( ) 
i i

hy xx . For high-order multiplicative interactions between one or 

more KCCs, the features can be generalized as 1 2

1 2
( ) ... dpp p

d
h x x xx and the subsequent 

functional dependency with the KPC is 1 2

1 2
( ) . .~ . dpp p

d
y h x x xx . The objective of PFS is 

to determine an optimal polynomial order ‘p’ and individual polynomial features such 

as 1 2

1 2
... dpp p

d
x x x which must be included in the regression component of the Kriging 

model. ( , )ph x  is defined as the set containing the individual terms of the pth order 

polynomial of 1 2
{ , ,..., }

d
x x xx . ( , )ph x  can be represented as shown in  Eq. (3.15). 

                           1

1 1 2
( , ) { , ,..., }




p p p

d
p x x x xh x                                        (3.15) 

The number of features in ( , )ph x  is the number of unique solutions to Eq. (3.14). 

The basic logic of PFS is to: (i) to iteratively increase the order of the 

polynomial p as 1, 2… and so on over iterations j =1, 2… till no satisfactory reduction 

of generalized MSE loss function ( ) h  is obtained; and, (ii) to identify an optimal 

subset of features, 
*
( , ) ( , )p ph x h x for a given polynomial order ‘p’ during each 

iteration. 

Initially, the algorithm sets *
h . During jth iteration when p=j, a greedy 

forward selection and backward elimination method is ran to determine subset of 

*
( , ) ( , )p ph x h x which must be added to *

h . The criterion for selection and 

elimination of a term is the decrease in the generalized MSE   * h  upon inclusion or 

exclusion of the term. At any stage of the algorithm, the generalized MSE for *
h is 
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calculated by a k-fold cross validation process (described in Appendix A). The 

forward selection process iteratively adds features from ( , )ph x by decreasing the 

generalized MSE. Backward elimination runs nested within forward selection and for 

a set of features already selected in *
h , it attempts to further reduce the generalized 

MSE by removing those features, whose elimination decreases generalized MSE. The 

proposed approach of forward selection with nested backward elimination is better in 

removing sub-optimality from the selected features than only forward selection of 

features into the initial null set or only backward elimination from a full set of 

features. The terms are checked for selection and elimination in descending and 

ascending order of their absolute correlation with the KPC y . Selection or elimination 

of features based on increasing or decreasing correlation of the feature with the KPC 

induces a preferential greedy nature to the algorithm in selecting the polynomial 

features.  

Let us denote the set of features sorted in descending order of their 

absolute correlation with y  as 
1 2

( , ) { , ,..., }
D D D D

p h h hh x where 
1

D
h  and D

m
h has the 

highest and lowest absolute correlation with y  respectively.  Similarly, let us define 

the set of features sorted in ascending order as 
1 2

( , ) { , ,..., }
A A A A

m
p h h hh x  where 

1

A
h  

and A

m
h  hence has the lowest and highest absolute correlation with y  respectively. 

After the optimal subset of features *
( , )ph x  are determined, the MSE of 

*
h  is assigned to *

( )p , as a measure of goodness of the polynomial order ‘p’. 

Iterations are stopped when the percentage drop in *
( )p  compared to *

( 1)p   is 

less than an user-defined convergence tolerance ‘ ’.  

In summary, PFS runs an inner iterative loop to determine optimal terms 

for a given polynomial order and an outer iterative loop to select a suitable polynomial 
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order ‘p*’. The final outcome is an optimal set of features *
h  containing selected terms 

from polynomial of up to order ‘p*’. The feature selection algorithm is summarized in 

the pseudo code given below. 

-------------------------------------------------------------------------------------------------------- 

Input: T 1{ , }ni iyS x  and   0 

Output:
*h and p   

//selection of order of the polynomial ‘p’ starts here                                                                       

let 
*h and j=0 

while true 
  let j=j+1 

  let  ( , )jh h x ,   h  and  
*h  

  compute sorted set 
Ah  from h  

  let i=0 
  //forward selection starts here 
  while i  
    let i=i+1 

    compute   
* { }Aihh  

    if (  
*h ) 

      let 
* { }Aihh  

      let     
* { }Aihh  

    elseif       
* * { }Aihh h  

      let  
* * { }Aihh h  

      let      
* * { }Aihh h  

    endif 

    let  
*h  

    compute sorted set 
Dh  from 

*h  

    let k=0 
    //backward elimination for each forward selection step starts here 
    while k  
      let k=k+1 

      compute   * \ { }Dkh h  

      if      
* * \ { }Dkhh h  

        let 
* * \ { }Dkhh h  

        let     
* * \ { }Dkhh h    

      endif   
    end 
    //backward elimination for each forward selection step ends here 
  end 
  //forward selection ends here 

  let   
*( )j h  

  let p j     

  if (  1j ) and     ( ) ( 1) [ * ( )] / 100j j j  break 

end 
//selection of polynomial feature-mapping parameter ‘p’ ends here                                                                       

-------------------------------------------------------------------------------------------------------- 

At this stage, it is to be noted that the PFS has the following two 
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contributions towards generating the global approximation for the Kriging model:          

(1) it generates integral-power transformed KCCs and captures multiplicative 

interactions between the KCCs; (2) it identifies critical features, which are derived 

from the original KCCs through power transformation and multiplicative interactions, 

based on minimization of generalized prediction error of the regression component on 

unseen test samples. In this algorithm, power transformation of KCCs is specifically 

done with integral powers. 

Using the set of critical features *
h identified by PFS, the GPK surrogate 

model of KPC y  is developed by completing the Kernel Optimization. 

 

3.5.1.2   Kernel Optimization 

Using the selected features *
h  the Kriging surrogate model of the KPC y 

can be written as 

                                         * *

0 1 1
ˆ ... ( )

m m
y h h Z       x                                     (3.16)  

The Gaussian process ( )Z x  has mean, [ ( )] 0E Z x , covariance,

  2
cov Z( ),Z( ) ( , ; )

i k i k
Rx x x x θ . Here, 2 is the variance and ( , )

i k
R x x  is the 

exponential correlation function also known as kernel function which measures the 

similarity between two points. The exponential correlation function can be expressed 

as  

                                        
1

( , ) exp( )

j
d

ij kj

i k

j j

x x
R






 x x                                      (3.17) 

which has  parameters 1 2 1 2
{ , ,..., ; , ,..., }

d d
     θ . The coefficients β  of the 

regression component and variance of the Gaussian process 2  can be calculated by 

the method of Best Linear Unbiased Estimation (BLUE) from given training dataset 
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S
T and θ . The BLUE method is described in Appendix B. 

For given S
T and θ , after β  and 2  are determined by BLUE, the 

Kriging model can be used to predict the KPC from the KCCs. The difference 

between the actual and predicted KPC can be computed on the dataset 
T 1

S { , }
n

i i
y x  

as follows 

                         ˆ
i i i

y y    (i=1,2,…,n)                                              (3.18) 

The aggregate error of the model is calculated as the mean of the squares of the 

individual errors and is also called the mean-squared error (MSE) loss function. The 

individual errors calculated in Eq. (3.18) and indeed the MSE loss function depend on 

the coefficientsβ , Gaussian process variance 2  and correlation parameters θ . 

Since, β and  2  can be expressed in terms of θ , it is apt to consider the MSE as a 

function of θ for the given dataset T
S . Based on this premise the MSE loss function 

can be expressed as 

                                      
2 2

T

1 1

1 1
ˆ( | S ) ( )

n n

i i i

i i

L y y
n n


 

   θ                                  (3.19) 

The parameters θ  of the correlation function can be pre-defined or estimated by 

maximum likelihood estimation (MLE) using the training samples. However, MLE 

though ensuring a good fit on training data might not minimize the prediction error on 

unseen test samples. To address this issue this chapter proposes a kernel optimization 

method which focuses on the minimization of the generalized MSE ( ) θ  computed by 

k-cross validation. The minimization problem is prescribed in Eq. (3.20). 

                                               
*

arg min
d


θ

θ ( ) θ                                                     (3.20) 

To solve the aforementioned minimization problem an adaptive GA is 
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proposed. The surrogate model is developed over several iterations including 

generation of training data by running computer simulation of VSA. Over the 

iterations, size of the training data T
S  increases thereby creating a larger space to be 

searched. To enable search over a larger space the following two parameters of GA 

are updated over the iterations: (1) number of chromosomes = 10+5(j-1); and, (2) 

number of generations = 25+10(j-1); where ‘j’ indicates count of the current iteration. 

Therefore 5 extra chromosomes are added every iteration and the GA is ran for 10 

extra generations. This is suggested to ensure more extensive search by GA to obtain a 

better solution for optimal θ  as the size of training data increases over iterations of 

the surrogate modelling process. Additionally, to avoid redundant number of 

generations and indeed redundant computation time, an early stopping criterion for 

GA is set whereby if there is no decrease in the global best value of the fitness 

function ( ) θ  over last 5 generations, then GA is stopped. 

 

In this section, GPK, a novel variant of the popular Kriging method of 

training surrogate models, has been developed. An important requirement for 

addressing scalability for deterministic non-linearity is developing surrogate models 

with acceptable predictive accuracy on unseen test samples for varying scale of 

deterministic non-linearity in KPC-KCC interrelations characterized by presence of 

varying number of local maximas and minimas. Though ordinary Kriging is preferred 

for emulating non-linearity of the underlying function, it does not ensure a minimal 

predictive error (or maximal predictive accuracy) on unseen test samples. Therefore to 

address scalability for deterministic non-linearity, GPK focuses on minimization of 

generalized prediction error for both feature selection and kernel optimization of the 

Kriging surrogate model. 
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3.5.2 Optimal Multi Response Adaptive Sampling (O-MRAS) 

Adaptive sampling is used to analyze the existing training samples and 

suggest the design matrix of KCCs (x) for subsequent batch of simulations. Existing 

adaptive sampling methods can be used to analyse data on individual KPCs and 

generate ‘r’ disparate adaptive samples (1) (2) ( ) ( )
, ... ,...

j r

C C C C
X X X X  for each KPC 

individually where ( )j

C
X  is a n d  matrix and 1,2,...,j r .  

This section develops Optimal Multi Response Adaptive Sampling                  

(O-MRAS) to aggregate ‘r’ disparate adaptive samples, each of which is individually 

generated by a currently existing single response adaptive sampling method. 

The objective of O-MRAS is to select a final sample 
C

X  which is best 

representative of all the KPCs. For the adaptive sample ( )j

C
X  of the 

th
j KPC where 

1,2,...,j r  let us define a 1n   vector ( )j
υ  having values of the adaptive sampling 

criterion assigned to the ‘n’ design points in ( )j

C
X  by the single-response adaptive 

sampling method. ( )j
υ  is henceforth referred in this chapter as the merit vector. For 

example, if Lipschitz criterion is used to generate the individual adaptive samples then 

( )j
υ  is the Lipschitz criterion based merit vector (Lovison & Rigoni, 2011) of ‘n’ 

design points in the adaptive sample ( )j

C
X .  

The O-MRAS is achieved through the following three steps: 

A. Generate adaptive samples for individual KPCs – Adaptive samples for the 

individual KPCs can be generated through any currently existing single-

response adaptive sampling method. The outcome of this step is ‘r’ disparate 

n d  adaptive samples (1) (2) ( ) ( )
, ... ,...

j r

C C C C
X X X X each for a single KPC. 

Additionally, for each single-KPC adaptive sample, the 1n   merit vector 
( )j
υ

containing values of the adaptive sampling criteria for each point in ( )j

C
X  is 
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also available. 

B. Perform k-means clustering to identify ‘n’ groups – This step starts by merging 

the points from ‘r’ single-KPC adaptive samples into a single n d  matrix 
C

X

, where n  is the number of design points after removing duplicate entries. 

Similarly, the ‘r’ independent merit vectors 
(1) (2) ( )

, ,...,
r

υ υ υ is compiled in a 

1n   vector C
υ . If no duplicate design points are found between the ‘r’ 

individual adaptive samples, then  n rn . On the contrary if all the individual 

adaptive samples are exactly same then n n  and 
C

X  is declared as the final 

adaptive sample and the algorithm stops. Hence the number of design points n  

in the compiled matrix 
C

X  can take all possible integral values in the range 

[ , ]n rn  depending on the specific problem being addressed. The strategy of     

O-MRAS is to distribute the design points in 
C

X  into ‘n’ groups and then 

select the best representative design point from each group to generate a final 

sample of ‘n’ candidates of KCCs for next batch of computer simulations.           

k-means clustering (Hartigan & Wong, 1979) is used to group the points in 
C

X

into ‘n’ clusters 
(1) (2) ( )

, , ...,
n

R R R . Allocation of points to the clusters is done by 

minimizing the within cluster sum-of-squared errors as shown in Eq. (3.21). 

                                                 
( )

2
( )

1

arg min
 

 
i

j

n
i

j

iR x R

x μ                                     (3.21) 

where (1) (2) ( )
{ , ,..., }

n

C
 R R R R X  and 

( )i
μ  is the centroid of the points in ( )i

R

. The minimization problem suggested in Eq. (3.21) is solved by the clustering 

algorithm suggested by Hartigan and Wong (1979).  

C. Identify optimal point from each cluster – In this step a single point from each 

cluster is chosen as the best representative of the points in the cluster. One 
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strategy can be to select the centroid of the cluster. To address the selection of 

a representative point from each cluster ( )i
R  where 1,2,...,i n  a multi-

objective evaluation process is suggested which takes into consideration the 

following two criteria (1) distance of an individual point from its cluster 

centroid; and, (2) merit of the point obtained from the single-KPC adaptive 

sampling method. Based on the results of the k-means clustering the 1n   

merit vector C
υ  is partitioned into ‘n’ sub-vectors (1) (2) ( )

R R R
, ,...,

n
υ υ υ  where ( )

R

i
υ  

is the merit vector of the points in cluster ( )i
R  and 1,2,...,i n . The 

representative design point from the ith cluster is selected by the maximization 

process suggested in Eq. (3.22). 

                     
( )

( )

*
arg max

i
j

i




x R

x

( ) ( ) ( )

max R

1 2( ) ( )

max R-max

( ) ( )
i i i

j j

i i

d d

d


 



 
 

 

x x
 ( 1,2,..., )i n        (3.22) 

where ( )
( )

i

j
d x  is the Euclidean distance of the point ( )i

j
x R  from the 

centroid  of the cluster ( )i
R , ( )

max

i
d  is the distance of the farthest point from the 

centroid  of the cluster ( )i
R . ( )

R
( )

i

j
 x  is the merit of the point ( )i

j
x R  and 

( )

R-max

i is the highest merit in cluster ( )i
R . Moreover 1

  and 2
 are user-defined 

weights assigned to the distance criteria and the merit criteria respectively. 

Solution of Eq. (3.22) can be identified by searching over all points ( )i

j
x R

and selecting the point which maximizes the objective function. The optimal 

adaptive sample is * (1) (2) ( ) T

* * *
[ , ,..., ]

n

C
X x x x , which is the KCC design matrix 

for the next batch of VSA. 
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The O-MRAS algorithm is summarized in the pseudo-code given below. 

-------------------------------------------------------------------------------------------------------- 

Input:
(1) (2) ( ), ... r

C C CX X X , 
(1) (2) ( )

, ,...,
r

υ υ υ , 1 and 2  

Output: 
* (1) (2) ( ) T

* * *[ , ,..., ]n
C X x x x  

//optimal multiple-response adaptive sampling starts here 

Merge
(1) (2) ( ), ... r

C C CX X X into a single n d  matrix CX  by removing duplicate points 

if any 

Merge 
(1) (2) ( ), ,..., rυ υ υ  into a single  1n  vector Cυ  based on matrix CX    

Partition 
(1) (2) ( ), ,..., nR R R into ‘n’ cluster by k-means clustering 

Assign the centres of the clusters to 
(1) (2) (n){ , ,..., }μ μ μ μ  

Partition Cυ  into 
(1) (2) ( )

, ,...,
nR R Rυ υ υ based on results of clustering 

let i=0 
while ( )i n  

  let i=i+1 

  let  
2

( ) ( )( )i i
j jd x x μ  

( )i

jx R    

  let 
( ) ( ) ( )

max max{ ( ) }i i i
j jd d  x x R  

  let 
( ) (1)

( )
i

j j
R Rx   

  let 
( ) ( ) ( )

max max{ ( ) }
i i i

j j  
R R x x R   

  solve


 


 
  
 
 

( )

( )
( )

( ) ( )

max( )

* 1 2( )

max max

( ) ( )
arg max

i

i
i

j

i i
j ji

i

d d

d

R

R
x R

x x
x  

end 

let 
* (1) (2) ( ) T

* * *[ , ,..., ]n
CX x x x  

//optimal multiple-response adaptive sampling ends here  

-------------------------------------------------------------------------------------------------------- 

   

    In the case studies discussed in Section 3.7, Lipschitz criterion is used 

to generate the ‘r’ individual adaptive samples. 

    

 

3.6 Fixture layout optimization 

 

This section presents the mathematical formulation of the fixture layout 

optimization using surrogate models of assembly KPCs. 

The scalable surrogate modelling methodology described in Section 3.5 

can be applied to develop GPK surrogate models of assembly KPCs such as gaps 
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between mating parts as a function of the fixture KCCs such as the fixture clamping 

forces, clamp location etc. The data generated by VSA analysis tool is used to train the 

surrogate models. 

Assuming that in a given sheet metal assembly, ‘d’ fixture KCCs 

1 2
{ , ,..., }

d
x x xx  influence ‘r’ assembly KPCs 1 2

{ , ,..., }
r

y y yy , the surrogate model 

of  KPC k
y  is given as  

                                        ( )
k k

y f x                                                     (3.23) 

Let the allowable tolerance limits for KPC k
y  be ( ) ( )

[L , U ]
y y

k k
 then the cost 

of quality due to deviation of the KPC from nominal can be described as 

                             
 

 

2 ( ) ( )

1

2 ( ) ( )

2

, [L , U ]
( )

, ( , L ) (U , )

y y

k k k k k

k
y y

k k k k k

K y m y
C y

K y m y

  
 

    

                  (3.24)   

where nominal of KPC k
y  is

( ) ( )
L U

2

y y

k k
k

m


 . 1
K  and 2

K  are user-defined Taguchi 

loss coefficients. The cost ( )
k

C y  can be computed for given KCCs by replacing the 

KPC with its GPK surrogate model. The total cost to be minimized for fixture layout 

optimization is given by 

                                                     
1

( ) ( )
r

k

k

C C y


y                                                 (3.25) 

Additionally, the optimization is done subject to design constraints on the 

KCCs. If KCC 
j

x is allowed to vary within the limits ( ) ( )
[L , U ]

x x

j j
 then the fixture 

design optimization problem is formulated as follows 

          ( ) ( )

( )

L U {1, 2,..., }
x x

j j j

C

Subject to x j

Minimize

d   

y
                         (3.26) 

The objective function of the fixture layout optimization problem depends 
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on the KPCs surrogate models. Therefore depending on the surrogate model, the 

optimization problem can be linear constrained or non-linear constrained optimization 

and therefore has to be solved by a suitable method. Based on GPK surrogate models, 

the objective function is non-linear and therefore can be solved by evolutionary 

optimization methods such as Genetic Algorithm. In the case studies presented in 

Section 3.7, Genetic Algorithm is used to solve the constrained non-linear 

optimization. 

 

3.7 Case Studies 

This section demonstrates the proposed methodology of scalable surrogate 

model driven fixture layout optimization using case studies related to sheet assembly 

in automotive and aerospace Body-In-White (BIW) manufacturing. The case studies 

consider body panels which consist of two mating parts and are joined by an assembly 

joining process such as Resistance Spot Welding (RSW), Self-Pierce Riveting (SPR) 

or Remote Laser Welding (RLW). Typically, a joining process requires a specific 

alignment or gap control between mating parts to be maintained within tight design 

tolerances. For example, to make a weld of acceptable quality, RLW requires the part-

to-part gap to be between 0.05 mm to 0.4 mm at locations where a weld is to be made. 

When part-to-part gaps at welding locations are not within the design tolerances there 

are welding defects such as under-cut, porous weld, poor finishing and corrosion-

prone welds. The major challenge in maintaining the part-to-part gaps within design 

tolerance is the geometrical variation of sheet metal part which is induced during their 

fabrication process such as forming, stamping or rolling due to material properties, 

tooling setup and other factors. Geometrical variations in mating parts result in gaps 

between them. Under these conditions, fixture locators provide proper spatial 
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alignment of the parts and fixture clamps force mating parts to achieve part-to-part 

gaps within design tolerances. VSA based on Finite Element Method (FEM) 

(Franciosa, et al., 2014) analyses the non-linear relationship between assembly KPCs 

such as part-to-part gaps and KCCs such as fixture clamp locations and estimates the 

KPCs for given KCCs. Figure 3.5 shows KPCs and KCCs of an assembly on which 

two weld stitches (linear lap joints) are to be made. Clamps are used to control the 

part-to-part gap (KPC) along a weld stitch. Each clamp is moved between pre-

specified initial (Pi) and final (Pf) positions and the Euclidean distance between the 

current position of a clamp and its initial position is the KCC associated with the 

clamp (xj). The part-to-part gap along a weld stitch changes as clamps are moved 

between their initial and final positions. KCCs associated with the clamp positions are 

parameterized to vary in the range [0, 1]. The fixture layout is defined by the position 

of the clamps. 

 

Figure 3.5: Clamp layout of sheet metal assembly for welding 

Two case studies on sheet metal assembly are used to demonstrate the 

methodology of scalable surrogate model driven fixture layout optimization. Table 3.3 

summarizes the case studies. Details of each case study are discussed in two parts:           

(1) scalable surrogate modelling of assembly KPCs which develops surrogate models 

to integrate part-to-part gaps at weld locations with fixture layout; and, (2) fixture 

layout optimization which utilizes the KPC surrogate models to minimize cost-based 
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Key Performance Indicator (KPI) subject to design tolerances of clamp locations. 

Table 3.3: Case studies on scalable surrogate model driven fixture layout optimization 

Case Study No. of KCCs (x) 
No. of KPCs              

( y ) 
Joining Process Application 

Hinge and door 

inner panel 

assembly 

6 13 
Remote Laser 

Welding 

Automotive 

door assembly 

Longitudinal 

stiffener and 

skin section 

assembly 

3 11 Self Pierce Riveting 
Aircraft wing 

assembly 

  

The remaining part of this section is organized as follows: Section 3.7.1 

presents the hinge and door inner panel assembly followed by discussion on the 

longitudinal stiffener and skin section assembly in Section 3.7.2. Additional case 

studies based on well-known benchmark functions are discussed in Section 3.7.3 to 

demonstrate the performance of GPK surrogate models on non-linear input-output 

functions with a varying number of local maximas and minimas. 

3.7.1 Door inner panel and hinge assembly 

    The hinge and door inner panel assembly is a part of automotive vehicle 

door assembly which involves sheet metal parts with complex geometry having 

multiple planes in different angles and orientations and different material thicknesses. 

Figure 3.6 shows the hinge and door inner panel assembly. This assembly has 13 

RLW stitches and involves 16 clamps to maintain part-to-part gaps at stitch locations 

within the design tolerance of 0.05 mm to 0.4 mm. Moreover, the clamps are grouped 

into six clamp panels whereby movement of clamps in the same panel depends on 

movement of the clamp panel itself. Therefore locations of 6 clamp panels are 

considered as the KCCs. KPCs are part-to-part gaps at 13 stitch locations. One 



93 
 

instance of FEM-based VSA to estimate 13 KPCs for given KCCs takes 22 minutes 

on an average. To address the computational expense of VSA, surrogate models of 

assembly KPCs are used for fixture clamp layout optimization. 

Scalable surrogate model driven fixture layout optimization for the door 

inner panel and hinge assembly is discussed in the following two subsections – 

Section 3.7.1.1 describes scalable surrogate modelling of the assembly KPCs using the 

proposed GPK and O-MRAS methods. Next Section 3.7.1.2 discusses the fixture 

layout optimization using the GPK surrogate models of the assembly KPCs. 

 

 

Figure 3.6: Door Inner Panel and hinge assembly having 13 stitches (W1-W13) 

 

 

 

 

3.7.1.1 Scalable surrogate modelling of KPCs in door inner panel and hinge 

assembly 

    Scalable surrogate models of the assembly KPCs are developed through 

several iterations of the following five steps: 

Step 1: Sample initial design matrix of KCCs by space filling – 
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The door inner panel and hinge assembly consists of 6 KCCs which are 

used to control 13 KPCs. A full-factorial DOE with L levels per KCC will require 

L6 FEM instances of VSA and approximately 
6

0.37L  hours. For example, full 

factorial DOE with 4 levels will require over 63 days to complete. Hence to 

reduce computational time, an initial 100 6  design matrix of KCCs is generated 

by uniform random sampling which selects n=100 points from the KCC design 

space. The initial design matrix of KCCs is used to run VSA in the first iteration. 

In subsequent iterations a 100 6  design matrix of KCCs is generated through        

O-MRAS.  

Step 2:  Run VSA to generate training data – 

The 100×6  design matrix of KCCs represents 100 clamp layouts. The 

KPC design matrix is given as input to VSA which estimates the KPCs for each 

instance of clamp layout. Additionally, VSA also uses the CAD model of the 

parts, material properties and geometrical variations of individual parts as input to 

analyse interactions between KCCs and KPCs. The design matrix of KCCs and 

the KPC estimation from VSA are compiled in a single training dataset

100

1
{ , }

n

i i i




S x y , where i

x  and i
y are KCCs and KPCs of the 

th
i instance of clamp 

layout. 

 

Step 3: Train KPC surrogate models via GPK – 

 New training dataset 100

1
{ , }

n

i i i




S x y  generated during the current iteration 

is added to the dataset T
S  which has which has all the training data generated till 

the current iteration ‘k’. Over the iterations number of training samples in T
S  

grows as , ,...,n 2n kn  and so on. During the current iteration, GPK surrogate 
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models are developed using the dataset T
S , A GPK surrogate model of a KPC ‘y’ 

can be represented as 

                                                         
1

ˆ ( )
m

j j

j

y h Z


  x                                         (3.27)  

where the regression component 
1

m

j j

j

h


  models the global behaviour of y and 

Gaussian process ( )Z x  captures local non-linearities. Section 3.5.1 describes the 

regression component and the Gaussian process in details.                       

The GPK method identifies suitable features 1 2
{ , ,.., }

m
h h hh  for the 

regression component via Polynomial Feature Selection (PFS) and determines 

parameters 1 2 1 2
{ , ,..., , , , ..., }

d d
     θ  of the exponential correlation function by 

Kernel Optimization (KO). PFS and KO are described as follows: 

A. Polynomial Feature Selection – The features 1 2
{ , ,.., }

m
h h hh  used in the 

regression component of GPK are terms from pth order polynomial of the 

KCCs. PFS identifies suitable polynomial  order ‘p’ and best subset of 

terms 
*

h  from the pth order polynomial to be used in the regression part 

of the GPK model. This is achieved by: (1) iteratively increasing the 

order of the polynomial p as 1, 2… and so on over iterations j =1, 2… till 

drop in 5 fold cross validation (CV) Mean Squared Error (MSE) from 

previous iteration is less than a cutoff of 5%; and, (2) identifying a subset 

of polynomial terms for a given polynomial order ‘p’ during each 

iteration. As an illustration, Figure 3.7 shows the drop of CV MSE over 

iterations of PFS for KPCs 1, 6 and 13. It is noteworthy from Figure 3.7 

that for KPC6 a higher drop in CV MSE is observed after selecting terms 
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from 4th order polynomial than after adding terms from 3rd order 

polynomial. This observed behaviour demonstrates the capability of PFS 

to identify higher order multiplicative interactions between KCCs in an 

iterative fashion without pre-specifying the order of the polynomial. 

Table 3.4 presents a summary of results from PFS for KPCs 1, 6 and 13. 

The selected features are used for developing the regression component 

of GPK. Accuracy of the regression component is evaluated by 5 fold 

cross validation and is expressed as the average degree of determination 

(R2) over the cross validation folds. As seen in Table 3.4, a high R2 of 

KPC13 shows the effectiveness of PFS to identify polynomial terms 

which can provide an accurate global approximation of the KPC through 

the regression component. 

 

 

Figure 3.7: Drop in cross-validation MSE over iterations of Polynomial Feature 

Selection for KPCs in door inner panel and hinge assembly 
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It is noteworthy that PFS identifies optimal feature set 
*

h based on 

minimization of CV MSE to ensure that GPK’s regression component 

gives maximum predictive accuracy on unseen test samples. 

 

Table 3.4: Summary of results from Polynomial Freature Selection for                              

KPCs 1, 6 and 13 in door inner panel and hinge assembly 
KPC 

Index 

Highest polynomial 

order identified 

No. of features in final 

solution 

Average Cross 

validation R2 *           

(Scale: 0-1) 

1 7 31 0.86 

6 7 15 0.83 

13 3 11 0.93 

                       *R2 : Degree of determination which varies over a scale of 0-1 

 

B. Kernel Optimization – In GPK surrogate models, the Gaussian process 

( )Z x  captures local non-linearities in the underlying KPC-KCC 

interrelations. The Gaussian process is characterised by the exponential 

correlation function also known as kernel function. Kernel Optimization 

(KO) identifies suitable parameters 1 2 1 2
{ , ,..., , , , ..., }

d d
     θ  of the 

exponential kernel function. An adaptive Genetic Algorithm (GA) 

minimizes 5-fold cross validation MSE of the GPK surrogate model to 

identify optimal θ . In adaptive GA the number of chromosomes and 

number of generations are set based on number of instances in training 

dataset T
S  of the current iteration. As the number of instances in T

S  

increases over several iterations of the surrogate modelling method, the 

number of chromosomes and number of generations are adaptively 

increased to allow more extensive search over a larger search space. 
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However, if CV MSE does not decrease over last 5 generations, an early 

stopping criteria terminates GA to avoid redundant computation.  

It is noteworthy that minimization of 5-fold cross validation MSE in 

Kernel Optimization ensures that predictive error of the GPK model on 

unseen test samples is minimized.  

Figure 3.8 shows the performance of GA over several generations 

for KPC2. It is noteworthy that the early stopping criterion has 

terminated GA due to no decrease in CV MSE. 

 

 
Figure 3.8: Kernel Optimization by adaptive GA for GPK model of KPC2 in door 

inner panel and hinge assembly 

 

KO adjusts the global approximation provided by the regression 

component of GPK for local non-linearities and hence further improves 

the predictive accuracy of GPK models beyond what has already been 



99 
 

achieved by PFS. Additional improvement in predictive accuracy by KO 

is demonstrated in Table 3.5 which shows CV R2 before and after KO is 

performed for KPCs 1, 6 and 13 of this case study. 

 

Table 3.5: Additonal improvement of CV R2 by Kernel Optimization for KPCs 1, 

6 and 13 in door inner panel and hinge assembly  

KPC Index Cross validation R2  

before KO 

Cross validation R2  

after KO 

1 0.86 0.94 

6 0.83 0.93 

13 0.93 0.98 

GPK surrogate models are developed for the 13 KPCs in this case study 

based on PFS and KO, which have been demonstrated in details in the 

aforementioned two steps A and B. 

Step 4: Check if model accuracy is acceptable – 

To check accuracy of the GPK models average degree-of-determination 

2

avg
R  over 13 KPCs is calculated using the test data. If 2

avg
R 0.9  then iterations are 

stopped else further iterations are done to generate more training data from VSA 

and re-develop the GPK models. For the next iteration, design matrix of KCCs is 

generated by O-MRAS which is described in Step 5. 

Step 5: Select design matrix of KCCs via O-MRAS – 

O-MRAS generates design matrix of KCCs through the following three 

steps: 

A. Generate adaptive samples for individual KPCs – In this case study 

adaptive samples for individual KPCs 1 2 6
, , ...,y y y  are generated using 

Lipschitz criterion (Lovison & Rigoni, 2011) through the following three 

sub-steps: 
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A.1. Tessellation of the design space: KCCs in the training sample 

T
S , are used to partition the KCC design space into simplexes 

through Delaunay triangulation (Lee & Schachter, 1980).  Let 

us denote the individual simplexes as 1 2
, , ...,

s
u u u . Each simplex 

has (d+1) vertices for a d-dimensional KCC design space. Let us 

denote the vertices of jth simplex as 
( )ju

X . In this case study d=6 

For illustration, Figure 3.9 presents a 2-D Delaunay tessellation 

of a 5 5  grid of KCC1 ( 1
x ) and KCC2 ( 2

x ). The actual 

Delaunay triangulation is done in a 6-D space. 

 

 

Figure 3.9: 2D Delaunay Triangulation 

 

A.2. Generation of Candidate Points: A space-filling strategy is 

applied to generate Candidate Points (CPs) whose merit will be 

evaluated based on Lipschitz criteria. For the case studies in this 

chapter, ‘3n’ CPs are generated by uniform random sampling. 
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Out of ‘3n’ CPs, ‘n’ points will be selected in the final sample. 

Figure 3.10 shows 75 CPs generated by uniform random 

sampling. Every CP is assigned to the simplex in which it 

resides. Let 
( )ju

v be the CPs belonging to simplex 
j

u .  

 

 

Figure 3.10: 75 candidate points generated by uniform random sampling 

 

 

A.3. Selection of adaptive sample from candidate design points: In 

this step we evaluate the merit of each CP that are generated in 

the previous step. The merit of the ith CP in 
( )ju

v is computed as 

shown in Eq. (3.28).                               

                
( ) ( )

( ) ( ) ( )

2
( ) minj j j

u uj j
k

u u u

i j i k
merit LC u



  
x X

v v x                   (3.28) 

The merit of a CP is product of the Lipschitz Constant (LC) of 

its resident simplex and the Euclidean distance between the CP 

and the nearest vertex of the simplex. LC, which is critical to the 
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Lipschitz criteria based adaptive sampling, is a measure of non-

linearity of a simplex and is determined as suggested by Eq. 

(3.29).   

                           
   

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )
,

2

( ) : sup

j j

u u uj j j j j
i k
u uj j

i k

u u

l i l k

j
u u

i k

y y
LC u








x x X

x x

x x

x x

                         (3.29)      

where  ( )ju

i
y x is an actual KPC obtained from VSA for KCC 

( )ju

i
x . Next the CPs from individual simplexes and their 

computed merits are flattened into a 3n d matrix ‘V’ and 3 1n  

vector ‘m’ respectively. The adaptive sample of the jth ( )j

c
X KPC 

is generated by selecting ‘n’ CPs from V having ‘n’ highest 

merit. 

Using Lipschitz criteria 13 adaptive samples (1) (2) (13)
, ,...,

C C C
X X X are 

generated for the 13 KPCs. At this stage a single adaptive sample *

C
X

will be extracted from the 13 individual adaptive samples.  

B.  Perform k-means clustering to identify n=100 groups – Lipschitz 

criteria based adaptive sampling have been applied in the previous step 

to identify 13 individual adaptive samples each having 100 points.  

Therefore a total of 1300 points have been generated. The individual 

adaptive samples (1) (2) (13)
, ,...,

C C C
X X X  are merged into a single 1300 6  

matrix 
C

X . In this step k-means clustering is applied to cluster the 1300 

points in 100 groups.   

C. Identify optimal instance from each cluster – This step identifies an 

optimal point from each cluster found in the previous step. Individual 
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points in a cluster are evaluated based on following two criteria: (1) 

proximity of the point to the cluster centroid; and, (2) merit of the point 

obtained from the Lipschitz criteria based single-KPC adaptive sampling. 

The optimal point in a cluster is chosen by the optimization strategy 

prescribed in Eq. (3.22). The weights assigned to the proximity criteria 

and merit criteria are 1
 =0.5 and 2

 =0.5 respectively. The point which 

maximizes the weighted average of proximity criteria and merit criteria is 

selected as the optimal point from the cluster. 

Overall, O-MRAS identifies a single optimal adaptive sample *

C
X  of 100 

instances from 13 individual adaptive samples. *

C
X  is then used as the KCC design 

matrix for VSA in the next iteration. In this case study, O-MRAS has been ran for 6 

KCCs and 13 KPCs. The three steps of O-MRAS  namely (1) selection of adaptive 

sample for individual responses; (2) k-means clustering; and, (3) identification of 

optimal instance from each cluster, are done over the 6-dimensional KCC design 

space. The O-MRAS is illustrated on 2-dimensional case studies in Appendix C.  

Discussion of results from scalable surrogate modelling of KPCs 

Results of scalable surrogate modelling of the KPCs related to door inner 

panel and hinge assembly are discussed as follows: 

i. Achievement of desired predictive accuracy on unseen test samples – Predictive 

accuracy of the GPK models is evaluated on unseen test samples which are not 

used in the model training process. Predictive accuracy is measured in terms of 

average degree of determination, 
2

avg
R  of the GPK models and the desired 

accuracy level is 2

avg
R 0.9 . The GPK models achieve the desired levels in the 

second iteration. Figure 3.11 shows the performance of GRK and OK models 
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over four iterations. 

 

Figure 3.11: Perforamce of GPK and OK surrogate models for door inner panel and 

hinge assembly 

 

ii. Comparison of performance with state-of-the-art Ordinary Kriging – Ordinary 

Kriging (OK) models are developed using the same training data, which is used 

for developing GPK models. The OK models are characterized by constant 

regression component and parameters of correlation function determined by 

maximum likelihood estimation (MLE). As shown in Figure 3.11, 
2

avg
R  of GPK 

models after four iterations is higher than 
2

avg
R of OK surrogate models by 42 %. 

This highlights that GPK’s PFS and KO based on minimization of generalized 

model error, which is estimated by 5-fold cross validation, has imparted better 

accuracy to the surrogate models in lesser number of iterations. 

iii. Scalability for deterministic non-linearity – Learning the scale of non-linearity 

present in the underlying KPC-KCC interrelations through data analysis has 

been proposed as a capability of GPK models. Non-linearity of a KPC with 
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respect to KCCj can be understood in terms of smoothness of the KPC surrogate 

model along KCCj. Smoothness with respect to KCCj is controlled by the 

corresponding smoothing parameter 
j

 in the exponential correlation function 

of the Gaussian process. The proposed Kernel Optimization (KO) for GPK 

focuses on identifying a suitable 
j

 which represents the underlying non-

linearity in the KPC-KCCj interrelation without compromising the surrogate 

model’s overall accuracy on unseen test samples. It is also expected that 
j

 will 

be different for different KCCs depending on the interaction between the KCC 

and the KPC. As an example, in the GPK model of KPC2, the smoothing 

parameters determined by KO are [1.28, 2, 1.37, 2, 0.43, 2] for KCCs 1 to 6 for 

R2=0.975 on unseen test samples. This shows that GPK has been able to identify 

different scales of non-linearities at an acceptable test R2 for KPC2. In this 

particular case, KPC2 is smooth and infinitely differentiable with respect to 

KCCs 2, 4 and 6. Figure 3.12 shows smooth response surface of KPC2 with 

respect to KCC2 and KCC4.  Figure 3.13 shows a smooth profile diagram of 

KPC2 with respect to KCC2 and has a single global maxima and minima. On the 

other hand, KPC2 is rough and non-differential with respect KCCs 1, 3 and 5 as 

shown in the response surface in Figure 3.14 and profile diagram in Figure 3.15 

which has multiple local maximas and minimas. 
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Figure 3.12: 2D response surface of GPK model of KPC2 with respect to KCC2 and 

KCC4 in door inner panel and hinge assembly 

 

Figure 3.13: Profile of KPC2 with respect to KCC4 in door inner panel and hinge 

assembly 
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Figure 3.14: 2D response surface of GPK surrogate model of KPC2 with respect to 

KCC1 and KCC4 in in door inner panel and hinge assembly  

 

Figure 3.15: Profile of KPC2 with respect to KCC1 in in door inner panel and hinge 

assembly 
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iv. Comparisons with other state-of-the-art-surrogate models – Using the same 

training data, surrogate models are trained by five other well-known state of the 

art methods which are frequently used to address non-linearity in the output. 

These methods are Neural Network (NN), Support Vector Machine (SVM), 

Gradient Boosting Machine (GBM), k-nearest neighbours (k-NN) and 

Classification and Regression Trees (CART). Parameters of these methods are 

tuned based on 5-fold cross validation. Moreover, 1st, 2nd and 3rd order 

polynomial regressions, which are frequently used for surrogate modelling in 

design synthesis are also included in the comparative study. Figure 3.16 shows 

comparison of performance between GPK and other methods. As evident GPK 

has performed better than state-of-the-art methods. 

 

 

Figure 3.16: Comparison of peformance between GPK and state of the art methods 

for hinge reinforcement assembly 
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3.7.1.2 Fixture layout optimization for door inner panel and hinge assembly 

 

The surrogate models developed in the previous section are utilized for 

fixture layout optimization in the door inner panel and hinge assembly.  The GPK 

surrogate models of the assembly KPCs are represented as                                                                                                                  

                                           ( )
k k

y f x                                                  (3.30) 

where k=1,2,…13. 

The weld stitches in this assembly are created by Remote Laser Welding 

which requires part-to-part gap to be within 0.05 mm to 0.40 mm at weld locations. 

Therefore, the allowable tolerance limits on KPC k
y  are                                              

( ) ( )
[L , U ]

y y

k k
 = [0.05 mm, 0.40 mm].  The cost of quality due to deviation of the KPC ‘

k
y ’ from nominal can be described as 

                             
 

 

2 ( ) ( )

1

2 ( ) ( )

2

, [L , U ]
( )

, ( , L ) (U , )

y y

k k k k k

k
y y

k k k k k

K y m y
C y

K y m y

  
 

    

                  (3.31)   

where nominal of KPC k
y is 

0.05 0.40
0.225

2
k

m


  mm. 1
100K   units/mm and 

2
1000K   units/mm are Taguchi loss coefficients. A higher penalty is assigned to 

out-of-tolerance deviance to deter identification of clamp locations (KCCs) which 

generate an unacceptable gap between mating parts (KPCs). The cost ( )
k

C y can be 

computed by replacing the KPC ‘ k
y ’ with its surrogate model. The total cost to be 

minimized for fixture layout optimization is given by 

                                                     

13

1

( ) ( )
k

k

C C y


y                                                 (3.32) 

Moreover, the optimization is subject to design constraints on the KCCs. 

Based on the clamp parameterization described in Figure 3.5, all KCCs 
j

x  for 
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j=1,2,…,6 are allowed to be within limits 
( ) ( )

[L , U ]
x x

j j =[0,1]. Therefore, the fixture 

layout optimization problem is given as follows 

          
( )

0 1 {1,2,...,6}
j

C

Subject to x

M

j

in

   

y
                                  (3.33) 

Genetic algorithm is applied to solve the aforementioned optimization. 

Settings of the GA are as follows: 

i. Size of chromosome pool – 20 

ii. Number of generations – 50 

iii. Crossover probability – 0.60 

iv. Mutation – 0.1 

The optimal solution after 50 generations of GA is described as follows: 

i. Optimal fixture clamp parameters (KCCs) – 1 2 3 4 5 6
( , , , , , )x x x x x x =                    

(0.3123, 0.3253, 0.0009, 0.0029, 0.9063, 0.6296) 

ii. Optimal part-to-part gaps at 13 weld locations (KPCs) in mm – 

1 2 3 4 5 6 7 8 9 10 11 12 13
( , , , , , , , , , , , , )y y y y y y y y y y y y y =(0.2225, 0.1595, 0.1643, 

0.3691, 0.1847, 0.3674, 0.3021, 0.2831, 0.2202, 0.1283, 0.0670, 0.1776, 

0.2099) 

iii. Optimal cost of quality due to deviation of KPCs from nominal –  9.6766 

units  

As evident from the results, all optimal KPCs are within desired tolerance 

limits of ( ) ( )
[L , U ]

y y  = [0.05 mm, 0.40 mm]. 
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3.7.2 Longitudinal stiffener and skin section assembly 

This case study is a part of aircraft wing assembly. The assembly, as 

shown in Figure 3.17, consists of the following two parts: (1) skin-section of the 

fuselage and (2) longitudinal stiffener which attaches the wing with the fuselage. The 

skin-section and longitudinal stiffener is a sub-assembly of the overall aircraft wing 

assembly. The joining process for this assembly is Self-Piercing Riveting (SPR) which 

requires part-to-part gaps at riveting locations to be within 0.05-1 mm. Riveting for 

this assembly is done at 11 spots. Part-to-part gaps at the riveting locations are 

controlled by 3 clamps. Figure 3.18 shows the riveting spots and clamps which are 

used to maintain part-to-part gaps at the riveting locations. 

 

 

 

Figure 3.17:  Longitudinal stiffener and skin section assembly 
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Figure 3.18: KPCs (gaps at riveting locations) and KCCs (clamp positions) in 

longitudinal stiffener and skin section assembly 

 

Positions of the three clamps (KCCs 1 to 3) determine the fixture layout. 

For a given fixture layout, FEM-based VSA estimates part-to-part gaps (KPCs) at 11 

riveting locations. A single instance of VSA takes 7 minutes on an average for this 

assembly.   

Scalable surrogate models for deterministic non-linearity of KPCs are 

developed using the proposed GPK and O-MRAS methods. The surrogate models are 

then used to conduct fixture layout optimization. The remaining part of the case study 

is described as follows: Section 3.7.2.1 describes the scalable surrogate modelling of 

the assembly KPCs. Next, Section 3.7.2.2 discusses fixture layout optimization using 

the KPC surrogate models. 

3.7.2.1 Scalable surrogate modelling of KPCs in longitudinal stiffener and skin 

section assembly 

    The scalable surrogate models of the assembly KPCs are developed 
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through the following five steps: 

Step 1:  Sample initial design matrix of KCCs by space filling –  

Design matrix of KCCs for the first iteration consists of n=50 points 

generated through uniform random sampling. For subsequent iterations, design 

matrix having 50 points is generated through O-MRAS. 

Step 2: Run VSA to generate training data – Each row of the KCC design matrix 

represent a fixture layout. The design matrix of KCCs is given as input to VSA 

which estimates KPCs for n instances of fixture layout present in the KCC design 

matrix. 

Step 3: Train surrogate models via GPK – The GPK surrogate models are 

developed using the training data T
S  which has all the data generated till the 

current iteration. GPK surrogate model of KPC ‘y’ is developed based on 

Polynomial Feature Selection (PFS) and Kernel Optimization (KO) which are 

described as follows: 

A. Polynomial Feature selection – PFS identifies optimal features for the 

regression component of GPK surrogate model based on minimization of 

5-fold CV MSE. As an illustration, Figure 3.19 shows the drop of CV 

MSE over iterations of PFS for KPCs 1, 6 and 11. Table 3.6 presents a 

summary of results of PFS for KPCs 1, 6 and 11. From the results, it is 

evident, that a high CV R2 (0.96) for KPC1 after PFS indicates that the 

global approximation by the regression component has an acceptable 

predictive accuracy. However, a low R2 (0.34) of the regression 

component of KPC11 indicates requirement for further improvement by 

KO. 
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Figure 3.19: Drop in cross-validation MSE over iterations of feature selection for 

KPCs 1, 6 and 11 longitudinal stiffener and skin section assembly 
 

Table 3.6: Summary of feature selection for KPCs 1, 6 and 11 of longitudinal stiffener 

and skin section assembly 
KPC 

Index 

Highest polynomial order 

identified 

No. of features in 

final solution 

Cross validation 

degree of 

determination 

(CV R2) 

1 6 8 0.96 

6 4 6 0.84 

11 4 5 0.34 

 

B. Kernel Optimization – This is applied to determine the parameters θ  of the 

correlation or kernel function of the Gaussian process based on 

minimization of generalized prediction error of the GPK model. The search 

for optimal θ is done by the adaptive GA method. Figure 3.20 shows the 

performance of the adaptive GA for kernel optimization of KPC1. It is 

noteworthy that though depending on number of instances in the training 
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data, the number of generations of GA was set as 75, the early stopping 

criterion terminated GA thereby avoiding redundant search. 

 

Figure 3.20: Kernel Optimization by adaptive GA for GPK model of KPC1 in 

longitudinal stiffener and skin section assembly 

 

KO further improves the predictive accuracy of the GPK models on 

unseen test samples beyond what has already been achieved by PFS. Table 

3.7 summarizes the additional improvement in CV R2 achieved by KO. 
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Table 3.7: Additonal improvement of CV R2 by Kernel Optimization for KPCs 1, 6 

and 12 in longitudinal stiffener and skin section assembly  

KPC Index Cross validation R2  

before KO 

Cross validation R2  

after KO 

1 0.96 0.99 

6 0.84 0.97 

13 0.34 0.90 

 

Based on PFS and KO, GPK surrogate models are developed for the 11 

KPCs related to the longitudinal stiffener and skin section assembly. 

Step 4: Check if model accuracy is acceptable – 

Model accuracy is measured by average degree-of-determination 
2

avg
R  on 

the test samples for 11 KPCs. Surrogate modelling is stopped if 2

avg
R 0.9 else 

further iterations are conducted to generate model training data and re-develop the 

GPK models. Design matrix of KCCs for VSA in subsequent iterations is 

generated by O-MRAS, which is described in Step 5. 

Step 5: Select design matrix of KCCs via O-MRAS –  

 Design matrix of KCCs is generated by O-MRAS through the following 

three steps: 

A. Generate adaptive samples for individual KPCs – In this case study 

adaptive samples for individual KPCs 1 2 11
, , ...,y y y  are generated using 

Lipschitz criterion (Lovison & Rigoni, 2011). Each adaptive sample 

contain n=50 instances of KCCs. This is done by the following three sub-

steps which are same as those in the case study on door inner panel and 

hinge assembly discussed in Section 3.7.1: 
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A.1. Tessellation of the design space 

A.2. Generation of Candidate Points 

A.3. Selection of adaptive sample from Candidate Points 

B. Perform k-means clustering to identify n=50 groups – Using Lipschitz 

criteria based adaptive sampling 11 single-KPC adaptive samples each 

having 50  instances of KCCs have been generated.  The individual 

adaptive samples (1) (2) (13)
, ,...,

C C C
X X X  are merged into a single 550 3  

matrix 
C

X . k-means clustering is applied to divide the 550 instances 

into 50 groups. 

C. Identify optimal instance from each cluster – An optimal instance from 

each of the 50 clusters is chosen by a weighted selected strategy which 

takes in consideration the following two criteria: (1) proximity of CPs 

from cluster centroids; and, (2) merit of the CPs as obtained from 

Lipschitz criteria based single-KPC adaptive sampling. Weights 

assigned to the aforementioned two criteria are: 1
ω =0.5 and 2

ω =0.5 .  

Overall, O-MRAS identifies a single optimal adaptive sample *

C
X  of 50 

instances from 11 individual adaptive samples. In this case study, O-MRAS has 

been done over 3-dimensional space. The O-MRAS is further illustrated on 2-

dimensional case studies in Appendix C.  

Discussion of results from scalable surrogate modelling of KPCs 

Results of surrogate modelling of the KPCs related to longitudinal 

stiffener and skin section assembly are discussed as follows: 

i. Achievement of desired predictive accuracy on unseen test samples – The 

desired predictive accuracy on unseen test samples is evaluated by 
2

avg
R , which 
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is computed on the test dataset. Figure 3.21 shows GRK models have achieved 

2

avg
R >0.9  in six iterations. 

 

 
Figure 3.21: Performance of GPK and OK surrogate models for longitudinal 

stiffener and skin section assembly 
 

ii. Comparison of performance with state-of-the-art Ordinary Kriging – Figure 

3.21 highlights that GPK’s PFS and KO based on minimization of generalized 

model predictive error has developed more accurate surrogate models in lesser 

number of iterations as compared to OK. 

iii. Scalability for deterministic non-linearity – KO identifies suitable smoothing 

parameters 
j

 for KCCj based on minimization of generalized model 

predictive error. A suitable smoothing parameter should manifest the non-

linearity in the underlying KPC-KCC relations as well maximize accuracy of 

the surrogate model on unseen training samples. For instance, in this case 

study smoothing parameters of KCCs 1 to 3 for KPC2 determined by KO are  
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[2, 2,  2] at a R2=0.975 on unseen test samples. This shows that GPK has been 

able to identify a smooth and differentiable relationship between KPC2 and 

KCCs 1 to 3 at an acceptable test R2. Figure 3.22 shows the 2D response 

surface of KPC2 with respect to KCC1 and KCC2. Figure 3.23 presents the 

profile of KPC2 with respect to KCC1 which has a single global maxima and 

minima. On the other hand, for KPC1, smoothing parameters determined by 

kernel optimization are [1, 1.4, 2] for KCCs 1 to 3 at R2=0.989 on unseen test 

samples. This implies that KPC1 is smooth and infinitely differentiable with 

respect to KCC3 and has single global maxima. However KPC1 is rough with 

respect to KCC1 and KCC2 and has multiple local maximas and minimas. For 

illustration, 2D response surface of KPC1 with respect to KCC1 and KCC3 is 

shown Figure 3.24 while profile of KPC1 with respect to KCC1 is shown in 

Figure 3.25. 

 

Figure 3.22: 2D response surface of GPK surrogate model of KPC2 with respect to 

KCC1 and KCC2 in longitudinal stiffener and skin section assembly 
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Figure 3.23: Profile of KPC2 with respect to KCC2  in longitudinal stiffener and skin 

section assembly 

 

Figure 3.24: 2D response surface of GPK surrogate model of KPC1 with respect to 

KCC1 and KCC3 in longitudinal stiffener and skin section assembly 
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Figure 3.25: Profile of KPC1 with respect to KCC1 in longitudinal stiffener and skin 

section assembly 

 

iv. Comparison with other state-of-the-art surrogate models – Performance of  

GPK is compared with the following state-of-the-art methods – Neural 

Network (NN), Support Vector Machine (SVM), Gradient Boosting Machine 

(GBM), k-nearest neighbours (k-NN) and Classification and Regression Trees 

(CART) which are frequently used to model non-linearity in input-output 

interrelations. For each of these methods, parameter tuning is done by 5-fold 

cross validation.  Moreover, 1st, 2nd and 3rd order polynomial regressions are 

also included in the comparative study. Figure 3.26 shows comparison of 

performance between GPK and other methods. As evident GPK has performed 

better than these methods. 
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Figure 3.26: Comparison of peformance between GPK and state of the art methods 

for longitudinal stiffener and skin section assembly 

 

3.7.2.2 Fixture design optimization for longitudinal stiffener and skin section 

assembly 

The GPK models developed in the previous section are used for fixture 

layout optimization for this assembly. A cost based KPI which depends on the 

deviation of the assembly KPCs from nominal is minimized subject to design 

tolerances on assembly KCCs. The parameters of the optimization problem are as 

follows: 

i. Tolerance limits of KPCs – ( ) ( )
[L , U ]

y y

k k
 = [0.05 mm, 0.40 mm] for 

k=1,2,…,11. 

ii. Nominal of KPCs, 
0.05 1

0.5025
2

k
m


  mm for k=1,2,…,11. 

iii. Taguchi loss coefficients – In-tolerance loss coefficient,  1
100K   

units/mm and out-of-tolerance loss coefficient, 2
1000K   units/mm 

iv. Design tolerance of KCCs –
( ) ( )

[L , U ]
x x

j j =[0,1] for j=1,2 and 3. 
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Cost of quality due to a KPC’s deviation from nominal is given as 

 
 

 

2 ( ) ( )

1

2 ( ) ( )

2

, [L , U ]
( )

, ( , L ) (U , )

y y

k k k k k

k
y y

k k k k k

K y m y
C y

K y m y

  
 

    

                         (3.34)   

Fixture layout optimization minimizes total cost given as follows. 

                                                     

11

1

( ) ( )
k

k

C C y


y                                               (3.35)                                                       

subject to 0 1
j

x   for 1, 2,3j  . 

Genetic algorithm is applied to solve the optimization. Settings of the 

GA are as follows: 

i. Size of chromosome pool – 20 

ii. Number of generations – 50 

iii. Crossover probability – 0.60 

iv. Mutation – 0.1 

The optimal solution after 50 generations of GA is described as follows: 

i. Optimal fixture clamp parameters (KCCs) – 1 2 3
( , , )x x x =                    

(0.6749, 0.1886, 0.4208) 

ii. Optimal part-to-part gaps at 13 weld locations (KPCs) in mm – 

1 2 3 4 5 6 7 8 9 10 11
( , , , , , , , , , , )y y y y y y y y y y y =(0.3463, 0.1639, 0.0801, 0.0432, 

0.1751, 0.9849, 0.9398, 0.0650, 0.5982, 0.6201, 1.9135) mm. 

iii. Optimal cost of quality due to deviation of KPCs from nominal –           

2125 units  

As evident from the results, all optimal KPCs are within desired 

tolerance limits of ( ) ( )
[L , U ]

y y

k k
 = [0.05 mm, 1 mm] except KPC11. Out-of-tolerance 

gap for KPC11 in the optimal clamp layout indicates the need for additional clamps 
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for this assembly. 

3.7.3 Additional case studies 

 

Greedy Polynomial Kriging (GPK) is developed in this chapter as a 

scalable surrogate modelling method for deterministic KPCs estimated by VSA of 

sheet metal assemblies. It is expected that GPK should provide an acceptable 

prediction accuracy on unseen test samples for the scale of non-linearity in 

underlying KPC-KCC interrelations characterized by varying number of local 

maximas and minimas. To demonstrate the capability of GPK to address scale of 

deterministic non-linearity, it is used to develop surrogate models of seven well-

known benchmark functions: (1) two unimodal functions having single maxima or 

minima; and, (2) five multimodal functions having multiple local maximas and 

minimas. Accuracy of GPK is evaluated by computing R2 on unseen test samples 

and is compared with that obtained from Ordinary Kriging (OK). 

For comparative study using a benchmark function, surrogate models 

using both GPK and OK are developed based on the iterative surrogate modelling 

method outlined in Figure 3.2. During each iteration, a design matrix of x is 

generated by selecting 25 points via uniform random sampling from the domain of x. 

The response at these 25 points is calculated by the benchmark function. A training 

dataset 
1

{ , }
n

i
y




T
S x  stores all the training data generated till the current iteration. 

The number of samples in T
S  increases as 25, 50… over the iterations.  OK and GPK 

surrogate models are developed and their R2 is determined on an unseen test dataset 

40000

1
{ , }

i
y




V
S x which is not used in training the surrogate models. V

S  is generated 

by using a 200×200  grid on the domain of x as the design matrix and computing the 

response y using the benchmark function. The stopping criteria of iterations is 
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2
R 0.90  on the test sample. 

The seven benchmark functions used for the comparative study are as 

follows: 

i. Branin function – unimodal and evaluated in  1
[ 5,10]x    and 2

[0,15]x   

                2 2

2 1 1 1

5.1 5 1
( 6) 10(1 ) cos( ) 10

4 8
x x x x

  
                          (3.36) 

ii. Booth function – unimodal and evaluated in [ 10,10]
i

x    

                                  2

1 2 1 2

2
( 2 7) (2 5)x x x x                                        (3.37) 

iii. Rastrigin function – multi-modal and evaluated in  [ 5.12,5.12]
i

x    

                         
1

2 2

1 2 2
10cos(2 ) 10c2 (2 )0 osxx x x                            (3.38) 

iv. Cross-in-tray fuction – multi-modal and evaluated in  [ 10,10]
i

x    

               

0.1

1

2 2

1 2

2
0.0001 sin( ) sin( ) exp 100 1

x
x x

x



      
  

  

                  (3.39) 

v. Schwefel function – multi-modal and evaluated in [ 500,500]
i

x    

                                 1 1
837.9658 sin sin

2 2
x x x x                           (3.40) 

vi. Griewank function– multi-modal and evaluated in [ 10,10]
i

x     

                                 
2 2

1 2 1

1
cos cos 1

4000 4000 2

x x x
x

 
   

 
                           (3.41) 

vii. Shubert function– multi-modal and evaluated in [ 2,2]
i

x     

                     cos ( ) cos ( )
5 5

1 2

i 1 i 1

y i i 1 x i i i 1 x i
 

  
      
  
                   (3.42) 

Surjanovic and Bingham (2013) provides detailed description about the 

aforementioned benchmark functions. 2D plots of these functions are given in 

Appendix D. 
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Comparison of  R2 on unseen test sample obtained from OK and GPK for 

the aforementioned seven benchmark functions is shown in Figures 3.27 to 3.33. 

 

 

 

Figure 3.27: Performance of GPK and OK surrogate models for Branin function 

 

 

 

Figure 3.28: Performance of GPK and OK surrogate models for Booth function 
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Figure 3.29: Performance of  GPK and OK surrogate models for Rastrigin function 

 

 

 

 

Figure 3.30: Performance of GPK and OK surrogate models for Cross-in-tray 

function 
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Figure 3.31: Performance of GPK and OK surrogate models for Cross-in-tray 

function 

 

 

 

 

Figure 3.32: Performance of GPK and OK surrogate models for Griewank function 
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Figure 3.33: Performance of GPK and OK surrogate models for Shubert function 

 

 

GPK is expected to learn the scale non-linearity in the underlying input-

output interrelations characterized by varying number of local maximas and 

minimas. GPK’s capability to emulate non-linearity in output-input interrelations can 

be verified by visualising and comparing the actual and GPK-predicted profiles of 

the response (y) with respect to one of the input parameters (x). To this end, Figures 

3.34 to 3.40 shows the actual and GPK-predicted profiles of ‘y’ with respect to 1
x  for 

each of the seven benchmark functions discussed in this section. Additionally, profile 

predicted by OK is also included in the plots. 
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Figure 3.34: Actual, OK- and GPK-predicted profiles of Branin function  

 

 

Figure 3.35: Actual, OK- and GPK-predicted profiles of Booth function  
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Figure 3.36: Actual, OK- and GPK-predicted profiles of Rastrigin function  

 

 

 

Figure 3.37: Actual, OK- and GPK-predicted profiles of Cross-in-try function 
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Figure 3.38: Actual, OK- and GPK-predicted profiles of Schwefel function 

 

 

 
 

Figure 3.39: Actual, OK- and GPK-predicted profiles of Griewank function 
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Figure 3.40: Actual, OK- and GPK-predicted profiles of Shubert function 

 

 

 

Discussion of results – Significance of the results obtained in this section is 

discussed based on the following two aspects: 

i. Comparison of R2 on unseen test samples – As evident from the results, both 

OK and GPK give comparatively high R2 for the unimodal Branin and Booth 

functions. However, for the multimodal functions, GPK’s Polynomial Feature 

Selection and Kernel Optimization done based on minimization of generalized 

model error have helped it to achieve higher R2 on unseen test samples with a 

smaller training dataset having lesser number of training instances. GPK’s 

capability to achieve an acceptable predictive accuracy on unseen test samples 

with minimal number of training instances is a significant advantage for 

developing acceptably accurate surrogate models from computationally 

expensive VSA models in minimal computation time to generate training data. 
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ii. Addressing scale of deterministic non-linearity in output-input 

interrelations – To address scalability of deterministic non-linearity, the 

following two criteria needs to be taken into consideration: (1) emulation 

of non-linearity in output-input interrelations characterized by presence of 

maximas and minimas; and, (2) acceptable predictive accuracy on unseen 

test samples. Currently existing methods of surrogate modeling such as 

polynomial regression which are frequently used for design synthesis 

emulate non-linearity in output-input interrelations at the expense of 

overfitting training samples and giving low predictive accuracy on unseen 

test samples.  

GPK focuses on achieving scalability for deterministic non-

linearity by addressing the aforementioned two criteria in a non-

conflicting manner whereby GPK surrogate models emulate non-linearity 

in output-input interrelations while generating acceptably accurate 

prediction on unseen test samples. Figures 3.34 to 3.40, showing 

comparison between actual and GPK predicted profiles of the benchmark 

functions, demonstrate GPK’s capability to achieve scalability for 

deterministic non-linearity by emulating non-linearity in underlying 

KPC-KCC interrelations at acceptable predictive accuracy on unseen test 

samples. 

3.8 Summary 

This chapter focuses on developing scalable surrogate models having 

acceptable accuracy on unseen test samples for deterministic and non-linear KPCs 

whose scale of non-linearity is characterized by varying number of local maximas 

and minimas present in the underlying KPC-KCC interrelations. The consideration 
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of scale of non-linearity in deterministic KPCs is critical for developing accurate 

surrogate models which can generate realistic Variation Simulation Analysis (VSA) 

results in design synthesis tasks such as fixture layout optimization for sheet metal 

assemblies which require surrogate models of computationally expensive VSA for 

efficient global optimization within limited time resources. Currently existing 

surrogate models such as high order polynomial regression, frequently used in design 

synthesis, cease to address non-linearity in KPC-KCC interrelations without 

overfitting training samples. 

In order to address this problem, this chapter developed scalable 

surrogate modelling for deterministic assembly KPCs based on the following two 

interlinked methods: (1) Greedy Polynomial Kriging (GPK) which generates 

acceptably accurate predictions for output-input interrelations having single maxima 

or minima as well as for those having multiple local maximas and minimas; and, (2) 

Optimal-Multi Response Adaptive Sampling (O-MRAS) which accelerates the 

convergence of multiple surrogate models to reduce time required for generating 

training samples from computationally expensive VSA. 

The two main steps in GPK are: (1) Polynomial Feature Selection (PFS) 

which identifies features for the regression component of GPK models; and, (2) 

Kernel Optimization (KO) which determines optimal parameters of the correlation or 

kernel function of GPK models. Both PFS and KO focus on minimization of 

generalized prediction error of the model to identify features and correlation 

parameters respectively.    

To expedite the convergence of a surrogate model an adaptive sampling 

method is used to generate design matrix of KCCs to be given as input to VSA. 

Currently existing adaptive sampling methods focus on single response whereas 
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sheet metal assemblies in automotive Body-In-White (BIW) manufacturing have 

multiple KPCs. To address this challenge, O-MRAS combines multiple adaptive 

samples generated for individual KPCs using a currently existing single-response 

adaptive sampling criteria. This is achieved by following three steps: (1) generating 

‘r’ individual adaptive samples and merging them in a common design matrix; (2) 

clustering the common design matrix into ‘r’ groups; and, (3) selecting a point from 

each group based on an optimization strategy. 

Furthermore, the proposed scalable surrogate modelling for 

deterministic assembly KPCs has been developed in the context of fixture layout 

optimization for sheet metal assemblies. This has led to the development of a 

comprehensive methodology of scalable surrogate model driven fixture layout 

optimization which has the following two interlinked approaches: (1) scalable 

surrogate modelling for deterministic assembly KPCs to develop GPK surrogate 

models of assembly KPCs; and, (2) optimization of fixture KCCs which utilizes the 

GPK surrogate models to determine optimal fixture layout. 

Scalable surrogate model driven fixture layout optimization has been 

demonstrated using case studies on sheet metal assemblies from automotive and 

aerospace industries. 
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CHAPTER 4                                                                                 

SCALABLE SURROGATE MODEL DRIVEN                                       

JOINING PROCESS PARAMETERS SELECTION 

 

4.1 Overview of the chapter 

Not all design synthesis tasks related to automotive BIW production 

system are supported by first-principle based Variation Simulation Analysis (VSA). 

In such cases, design synthesis tasks addressing optimal characterization of KCCs 

and KPCs to optimize Key Performance Indicators (KPIs) rely on data generated 

from physical experiments or in-line measurements taken by sensors. For example, 

there is a lack of useful and accurate first-principle models of all joint KPCs for 

sheet metal assembly joining made by Remote Laser Welding (RLW) process. 

Therefore, design synthesis task like joining process parameters selection to 

determine optimal joining process KCCs and KPCs depend on analysis of data from 

physical experiments or in-line measurements taken by sensors. 

The data on KPCs obtained from experiments or in-line measurements 

are often subjected to stochastic deviations which can be random homo-skedastic 

noise due to measurement error or uncontrollable factors or can be KCC-dependent 

hetero-skedastic variance. Accurate characterization and quantification of the KPC 

stochasticity is critical for identification of KPC control limits and computation of 

process acceptance rate. However, currently existing surrogate models of stochastic 

KPCs, such as 1st and 2nd order polynomial regressions, focus only on homo-

skedastic noise. Therefore currently existing surrogate models of stochastic KPCs 

are not sufficient for addressing the scale of KPC stochasticity which can vary from 

homo- to hetero-skedasticity.  
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To address the aforementioned challenge this chapter expands the idea 

of scalability for stochasticity proposed under the framework of Scalable Design 

Synthesis in Chapter 1. Scalability for stochasticity requires identification and 

characterization of underlying homo- and hetero-skedastic behaviour in KPCs from 

experimental data. This is achieved by developing data-driven scalable surrogate 

modelling of homo- and hetero-skedastic KPCs which provides the following three 

capabilities: 

i. Developing best fitting homo-skedastic surrogate models of stochastic KPCs 

based on minimization of generalized prediction error of the models 

ii. Statistical hypothesis testing to detect hetero-skedasticity in the best-fitting 

linear model  

iii. Enhancement of the linear models to characterize hetero-skedasticity based on 

minimization of generalized prediction error of the models 

Polynomial Feature Selection (PFS) described in the previous chapter is adapted here 

for building the best-fitting homo- and hetero-skedastic surrogate models of KPCs. 

Furthermore, scalable surrogate modelling for homo- and hetero-

skedastic KPCs is developed in this chapter to address joining process parameters 

selection for industrial joining processes used in automotive BIW assembly 

production. The homo- and hetero-skedastic surrogate models of joint KPCs are 

utilized to conduct joining process parameters selection which provides the 

following two capabilities: (1) Multi-objective optimization of KPIs related to 

joining process efficiency and process quality; and, (2) Development of process 

window and computation of process acceptance rates based on homo- and hetero-

skedastic surrogate models of joint KPCs. 

Overall, the main contribution of this chapter is developing a 
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comprehensive methodology of scalable surrogate model driven joining process 

parameters selection based on the following two interlinked approaches: 

i. Scalable surrogate modelling for homo- and hetero-skedastic joint KPCs 

ii. Joining process parameters selection based on homo- and hetero-skedastic 

surrogate models of joint KPCs. 

Figure 4.1 highlights the main approaches involved in the proposed methodology of 

scalable surrogate model driven joining process parameters selection. 

The proposed methodology is applied to characterize the RLW process 

of joining sheet metal assemblies for automotive BIW production. Comparison of 

results with those obtained from currently existing surrogate models is also 

presented. 

 
Figure 4.1: Scalable surrogate model driven joining process parameters selection 
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The rest of the chapter is organized as follows: Section 4.2 outlines the 

motivation for the research presented in this chapter. Next the methodology of 

scalable surrogate modelling for joining process parameters selection is developed 

through the following two approaches: (1) scalable surrogate modelling for homo- 

and hetero-skedastic joint KPCs, which is described in Section 4.3; and, (2) joining 

process parameters selection, which is discussed in Section 4.4. This is followed by 

an industrial case study on RLW joining process for automotive BIW assembly 

production in Section 4.5. The significance of the results from the case study is also 

discussed. The chapter ends with a summary of work done in Section 4.6. 

 

4.2 Motivation for the research 

An important aspect of BIW assembly production for automotive 

vehicles is the joining process whereby mating parts in the assembly are permanently 

linked by mechanical joints such as welds, rivets and others. 

Joining technologies such as Resistance Spot Welding (RSW), Self-

Piercing Riveting (SPR) etc. have been used and recently Remote Laser Welding 

(RLW), because of its economic advantages (Bea, et al., 2011), is being 

implemented for joining in BIW assembly production. Effective and systematic 

implementation of a new joining process in industrial production requires joining 

process parameters selection. A critical element in addressing the aforementioned 

two requirements for joining process parameters selection is an analytical model 

integrating joint KPCs with joining process KCCs. 

Several researches have been done on developing surrogate models of 

joint KPCs in terms of joining process KCCs. The joint KPC surrogate models are 

trained using data generated through experiments. However, the major limitation of 
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currently existing surrogate models is the assumption that variance of joint KPCs is 

due to homo-skedastic measurement error or uncontrollable parameters and is 

independent of the KCCs. Under the assumption of homo-skedasticity, though KPCs 

change as functions of KCCs, their variance remains constant over the design space 

of KCCs. Figure 4.2 shows a homo-skedastic model with constant KPC variance. 

 
Figure 4.2: Constant variance surrogate model of joining KPC 

 

The major challenge of homo-skedasticity assumption is that it might 

lead to inaccurate characterization of the process window and computation of 

acceptance rate. For example, in the homo-skedastic scenario shown in Figure 4.2, 

acceptance rate is higher at (KCC, KPC)=( 1
x , 1

y ) than at (KCC, KPC)=( 2
x , 2

y ) 

because KPC= 1
y  is further away from the nearest specification limit. However, if 

the KPC variance is actually hetero-skedastic as shown in Figure 4.3, acceptance rate 

at (KCC, KPC)=( 1
x , 1

y ) is lower than at (KCC, KPC)=( 2
x , 2

y ) though KPC= 1
y is 

further away from the nearest specification limit. This is because KPC variance, 1
  

being higher than 2
  causes higher fallout. Therefore, as illustrated by Figures 4.1 

and 4.2, computation of acceptance rate is affected by erroneous characterization of 
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KPC stochasticity.  

 

 
Figure 4.3: Hetero-skedastic surrogate model of joining KPC 

 

 

Taking into consideration the aforementioned limitation of homo-

skedastic models, joining process parameters selection will significantly benefit from 

a data-driven method which is agnostic to the actual relationship between joining 

process KCCs and joint KPCs and can address the scale of stochasticity in joint 

KPCs, which can vary from homo- to hetero-skedasticity, through data analysis. To 

address this need, this chapter proposes scalable surrogate modelling for homo- and 

hetero-skedastic joint KPCs. 

 

 

4.3 Scalable surrogate modelling for homo- and hetero-skedastic joint 

Key Product Characteristics 

The three main steps of scalable surrogate modelling for homo- and 

hetero-skedastic joint KPCs, as shown in Figure 4.4, are: 

Step A – Develop homo-skedastic surrogate model of joint KPC 
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Step B – Detect hetero-skedasticity via statistical hypothesis testing  

Step C – Enhance homo-skedastic surrogate model to characterize hetero-

skedasticity 

Additionally, the best-fitting surrogate models in Steps A and B are 

generated via Polynomial Feature Selection (PFS) method developed in Chapter 3. 

PFS develops the best-fitting surrogate models of the joint KPCs based on 

minimization of generalized model error 

 

 
Figure 4.4: Scalable surrogate modelling for homo- and hetero-skedastic joint KPCs                      

 

 

 

Few notations are introduced below before describing the 

aforementioned three steps in details.  
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Notations  

x  Set of ‘d’  KCCs 1 2
{ , ,..., }

d
x x xx , where xi is the ith KCC in x 

representing the ith KCC of joining process  

y Joining process KPC for surrogate modelling 

x  Subset of ‘ d  ’  KCCs 1 2
{ , ,..., }

d
x x x 

    x x , where i
x  is the ith 

KCC in subset x  

h  Set of ‘m’ features or basis functions for the KPC  where 

1 2
{ , ,..., }

m
h h hh  are derived from the original KCCs (x) 

f Surrogate model of the KPC 

β  Coefficients of the surrogate model i.e. 0 1
{ , ,..., }

m
  β  

ŷ  Estimated KPC from surrogate model i.e. 

1 2 0 1 1 2 2
ˆ ( , ,..., ) ...

m m m
y f h h h h h h          

h  Set of ‘ m ’ features or basis functions for the variance of KPC 

where 
1 2

{ , ,..., }
m

h h hh are derived from the original KCCs (x) 

f  Surrogate model of the variance of KPC 

β  Coefficients of the surrogate model i.e. 
0 1

{ , ,..., }
m

  β  

2̂  Estimated variance of KPC from surrogate model i.e. 

2

1 2 0 1 1 2 2
ˆ ( , ,..., ) ...

m m m
f h h h h h h           

y ~ xi ~ indicates functional dependency of y on xi.  

n Number of experiments performed 

T
S  Training data which is a design matrix of ‘n’ observations on 

‘d+1’ variables (‘d’ KCCs and one KPC):
T 1

{ , }
n

i i
yS x  

MSE Mean squared error of the surrogate model f measures the 

discrepancy between actual and predicted values and is 

calculated as 
2

1

1
ˆ( )

n

i i

i

MSE y y
n 

   

The remaining part of this section is organized as follows: Section 4.3.1 

describes PFS in the context of joining process KCCs and joint KPCs. Section 4.3.2 

describes the Steps A to C of developing homo- and hetero-skedastic surrogate 

models of joint KPCs. Section 4.3.3 summarizes the major outputs of the proposed 
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scalable surrogate modelling of joint KPCs. 

4.3.1  Polynomial Feature Selection 

In this chapter PFS is used to develop best-fitting surrogate models of 

joint KPCs. Moreover, when hetero-skedasticity is detected, PFS is also used to 

develop the best-fitting surrogate model of the hetero-skedastic KPC variance. Best-

fitting surrogate models maximize predictive accuracy through minimization of 

generalized model prediction error on unseen test samples. In this chapter PFS 

determines optimal polynomial interactions between joining process KCCs 

1 2
{ , ,..., }

d
x x xx to develop the best-fitting surrogate model of joint KPC ‘to 

develop the best-fitting surrogate model of joint KPC ‘y’. The PFS algorithm has 

been developed in Chapter 3. In this chapter PFS has been adapted from Chapter 3 

where it has been applied to determine optimal polynomial interactions between 

fixture related KCCs such as clamp locations to develop best-fitting global model of 

KPCs such as part-to-part gaps between mating parts of an assembly. For detailed 

description of the PFS algorithm, the reader is suggested to refer Section 3.5.1.1 of 

Chapter 3. 

 

4.3.2 Homo- and hetero-skedastic surrogate models of joint KPCs 

The three main steps of scalable surrogate modelling                               

(shown in Figure 4.4) to address stochastic behaviour of a joint KPC are described as 

follows: 

Step A – Develop homo-skedastic surrogate model of joint KPC 

This step fits the best-fitting surrogate model of the joint KPC assuming 

that the noise associated with the joint KPC is homo-skedastic noise originating from 

measurement errors and/or uncontrollable factors. PFS (as described in Section 
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4.3.1) is applied to identify an optimal polynomial order p* and set of multiplicative 

features 
*

* * *

1 2

*
{ , ,..., }

m
h h hh . The homo-skedastic model is developed based on the 

features identified by PFS and can be represented as follows 

                   *

* * * * * * *

0 1 1 2 2
ˆ ...

m m
y h h h                                             (4.3)                          

where *

* * * *

0 2
{ , ,..., }

m
  β  are coefficients of the regression model and determined 

through the method of least squares. Based on the homo-skedastic model, deviances 

between the actual and predicted KPC can be calculated as follows:  

                           ˆ  
i i i

y y   ( 1,2,...i n )                                          (4.4) 

where ‘n’ is the number of samples in the training data, i
y  and 

*

* * * * * * *

0 1 1 2 2
ˆ ...

i i i m im
y h h h         are the actual and predicted KPC respectively for 

the 
th

i  sample. 

Step B – Detect hetero-skedasticity via statistical hypothesis testing 

In this step, hetero-skedastic behaviour of the KPC is assessed by the 

Breusch-Pagan (BP) test (Koenker, 1981). The BP test detects hetero-skedasticity in 

the KPC by assessing functional dependency between the variance of the KPC and 

the features (h*) used to develop the homo-skedastic model of the KPC shown in Eq. 

(4.3). If the actual variance at the ‘n’ design points of the experiment are 

2 2 2 2

1 2
, ... ,...,   

i n
 then hetero-skedasticity as a function of h* can be represented as  

                  * *

* * *

0 1 1 2

2

2
...

i i m imi
h h h                                          (4.5) 

In absence of information about the actual variance at the ‘n’ training points, the 

least squares residuals as obtained from Eq. (4.4) are used as estimates 2 2ˆ
i i

  and a 

model of the hetero-skedastic variance is developed as follows 

                                     * *

* * *

0 1 1 2 2

2ˆ ...
i i m imi

h h h                                          (4.6) 
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The null hypothesis (H0) of the BP test of hetero-skedasticity states 

                                             *0 1 2
: ... 0

m
H                                                (4.7) 

Therefore the alternate hypothesis (H1) states: 

                                              *1 1 2
: ... 0

m
H                                               (4.8) 

The coefficients (β ) of the model in Eq. (4.6) is determined using the method of 

least squares and the degree of determination of the fitted model is calculated as 

follows: 

                                              
2

2 2 2

2

ˆ
2 2 2

1

ˆ( )
R

1
( )

1 i i

n

i i

in



 

 






 



                                          (4.9) 

where the estimated residual is * * *

0 1 1 2 2

2

* *
...

î i i m im
h h h        . The test statistic 

of the BP test is 2

2

ˆ
Rn


, which under the assumption of the null hypothesis follows 

Chi-square distribution with ‘
*

m ’ degrees of freedom i.e. 2 *

2 2

ˆ
R ~

m
n


 . For a chosen 

level of statistical significance ‘ ’, 0
H is rejected if the p-value or the                   

probability ( 2

2

ˆ
t nR


 ) is less than or equal to , where *

2
~

m
t  . In case 0

H is true, 

hetero-skedasticity in the observed data for KPC y is not detected and final surrogate 

model of the joint KPC is given as  

                        * *

* * * * * * *

0 1 1 2 2
ˆ ...

m m
y h h h                                     (4.10) 

Eq. (4.10) also represents the estimated conditional mean of the KPC ̂x  as a 

function of the joining process KCCs. KPC variance is constant over the design 

space of the KCCs and is estimated from the residuals obtained in Eq. (4.4) as 

follows 

                                                        
2 2

1

1
ˆ

n

i

in
 



                                                  (4.11) 
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For joining process parameter optimization and process window selection, the joint 

KPC is considered to be normally distributed as 2ˆ ˆ~ ( ),y N  
x

, which has a          

KCC-dependent mean ̂x  and constant variance 2̂ .  

If 0
H is rejected at the chosen level of significance ‘ ’, Step C is 

performed to update the surrogate model of the KPC with hetero-skedasticity and to 

develop a surrogate model for the hetero-skedastic KPC variance using PFS. 

Step 3: Enhance homo-skedastic surrogate models to characterize hetero-

skedasticity 

The homo-skedastic model of the KPC obtained in Eq. (4.3) assumes that 

the residuals 
i
 for 1,2,...,i n  are independent and identically distributed Gaussian 

white noise and hence can be represented 2
~ (0 ),

i
N  . Under this assumption, the 

least squares estimate of the model coefficients *

* * * *

0 2
{ , ,..., }

m
  β is given by  

                                
1*

( )
T T

H H H


β y                                              (4.12) 

where H is 
*

( 1)n m   feature matrix derived from the original design matrix of 

KCCs and y is 1n vector of observations on KPC y. However, if BP test in Step B 

detects presence of hetero-skedasticity, the normal distribution of the residuals needs 

to be modified as 2
~ (0 ),

i i
N  where 2

i
 is the variance at the ith design point. 

Under this condition, the model in Eq. (4.3) can be transformed as, 

                            * * * * * * *

0 1 1 2 2

ˆ 1
( ... )i

i i m im

i i

i

i

y
h h h   





 
                                        

or                                            
T

i ii
y   h                                                        (4.13) 

The variance of the transformed residuals is ) 1(
i

Var    and therefore the 

transformed model is homo-skedastic. The data for the transformed model can be 
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represented as Wy y  and H WH where W is a n n  weight matrix as shown in 

Eq. (4.14). 

                                               
1

0

0
n

w

W

w

 
 

  
 
 

                                           (4.14) 

where 2
1/

i i
w  . In absence of information about the actual variance 2

i
  at the ith 

design point, the residuals of the initial homo-skedastic model can be used as White 

consistent estimator 2 2ˆ
i i

   (White, 1980). The coefficients 
*

β  are now updated 

using the weighted data H  and y  as follows 

                                                  * 1
( )

T T
H H H


 yβ  

or                                        
1

*
( ) ( )

TT
WH WH WH W



 yβ   

which can be simplified as follows  

                                                  1*
( )

T T
H WH H W


 yβ                                         (4.15) 

Using the new coefficients, the surrogate model of the KPC is updated as follows 

                                         * * * * * * *

0 1 1 2 2
ˆ ...

m m
y h h h                                         (4.16) 

As the variance of the KPC has been found to be hetero-skedastic and 

dependent on the KCCs, this step also develops the best-fitting surrogate model of 

the hetero-skedastic KPC variance. PFS (as described in Section 4.3.1) is applied to 

identify an optimal polynomial order ‘
*

p ’ and set of multiplicative features
*

h . The 

model developed for the KPC variance through PFS is represented as 

                       2 * * * * * * *

0 1 1 2 2
ˆ ...

m m
h h h                                       (4.17)                          

Overall, the output from Step C are surrogate models of KCC-dependent mean ( ̂x ) 

and KCC-dependent variance ( 2̂
x

) of the hetero-skedastic joint KPC as functions of 
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the process KCCs. For joining process parameter optimization and process window 

selection, the hetero-skedastic KPC is considered to be normally distributed as

2ˆ ˆ( )~ ,y N  
x x

, which has a KCC-dependent mean ̂x  and KCC-dependent variance

2̂
x

. 

 

4.4 Joining process parameters selection 

Joining process parameters selection focuses on the following two 

aspects: (1) multi-objective optimization to optimize process KPIs subject to design 

tolerances on joint KPCs and joining process KCCs; and, (2) identification of 

process window in the KCC design space and computation of process acceptance 

rate. 

4.4.1 Multi-objective optimization of joining process Key Performance 

Indicators  

Key Performance Indicators (KPIs) related to the joining process can be 

classified into the following two types: 

i. KPIs related to process efficiency – The efficiency of a joining process can be 

evaluated based on KPIs such as cycle time, throughput, number of units 

produced per shift and others. KPIs related to process efficiency are closely 

related to joining process KCCs. For example, in case of RLW, welding cycle 

time can be expressed as a function of the speed of welding, which is a critical 

KCC affecting joining process efficiency related KPIs such as cycle time. In 

general, ‘PE’ process efficiency related KPIs 

(1)

KCC

(2)

KCC

KCC

( )

KCC

( )

( )
( )

( )
PE







 
 
 

  
 
 
 

x

x
Φ x

x

can be 
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represented as functions of the KCCs 1 2
{ , ,..., }

d
x x xx . 

ii. KPIs related to process quality – Joint quality is determined by joint KPCs such 

as penetration, weld bead width, weld surface concavities and others which 

must satisfy pre-defined design tolerances. To produce acceptable joint quality, 

joining process KCCs must be within process window (discussed in detail in 

Section 4.4.2). However, even though KCCs are within process window, KPCs 

might violate required design tolerances because of their variance which can be 

KCC-dependent hetero-skedastic variance. Under these conditions, it important 

to identify KCCs which optimizes process quality related KPIs such as quality 

loss due to hetero-skedastic KPC variance. In general, ‘PQ’ process quality 

related KPIs 

(1)

KPC

(2)

KPC

KPC

( )

KPC

ˆ ˆ( , )

ˆ ˆ( , )
ˆ ˆ( , )

ˆ ˆ( , )
PQ







 
 
 

  
 
 
 

x x

x x

x x

x x

μ σ

μ σ
Φ μ σ

μ σ

can be represented as functions of 

KCC-dependent mean ( ˆ
x

μ ) and variance ( ˆ
x

σ ) of the KPCs where ˆ
x

μ  and ˆ
x

σ  

represent ‘r’ KCC-dependent mean and variance of ‘r’ joint KPCs. 

The multi-objective optimization to optimize process-efficiency and 

process quality related KPIs is formalized as follows 

                    KCC*

KPC

( )
arg min

ˆ ˆ( , )D


 

x x x

Φ x
x

Φ μ σ
 subject to KPC

y ψ  and KCC
x ψ      (4.18) 

where D is d-dimensional design space of KCCs and KPC
ψ represent design 

tolerances of joint KPCs. The design tolerances define the range for KPCs which 

make a joint of acceptable quality. KCC
ψ  are operating limits on joining process 

KCCs which also define the boundaries of the KCC design space D. The 

optimization in Eq. (4.18) can be solved by meta-heuristic search algorithms such as 

Genetic Algorithms. 
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4.4.2 Identification of process window and computation of acceptance rate 

The process window defines a region in the KCC design space where 

joining process parameters will produce acceptable joints within required design 

tolerances KPC
ψ  for ‘r’ KPCs. A design tolerance can be one of the following two 

types (1) one-sided (lesser or greater than a limit); or, (2) bounded (between 

specified lower and upper limits). The KCC process window is derived by mapping 

the KPC design tolerances to the KCC design space D via the surrogate models 

linking KPCs with KCCs. Moreover, KPC design tolerances and surrogate models 

can also be used to compute the acceptance rate or probability of making an 

acceptable joint at any point x inside the KCC process window. 

This chapter proposes the following two types of analyses for the 

identification of the process window and the computation of acceptance rate: 

i. Mean only analysis – In this case only the KPC mean is taken into 

consideration to derive the process window in the KCC design space and 

compute acceptance rate. In this type of analysis homo- or hetero-skedastic 

KPC variance is not used for deriving the process window and computing the 

acceptance rate. For  KPC ‘y’ with a one-sided design tolerance max
y  , the 

KCC process window (PW) is determined as follows 

                                       PW  = max
ˆ{ | }D   

x
x                                     (4.19) 

where ˆ ( )f 
x

x  is the KCC-dependent mean of the KPC and |  indicates ‘such 

that’ in set theory notation. In this case, the acceptance rate (AR) at a point x 

inside the process window can be computed as 

                                        max
(0 )yAR Prob                                     (4.20) 

here KPC ‘y’ follows a normal distribution ˆ~ ( , )y N  
x . For homo-skedastic 
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KPCs, the variance ̂ x  is constant 
2̂ whereas for hetero-skedastic KPCs, the 

variance ̂ x  is KCC-dependent function ( )f x . 

ii. Worst-case analysis – Joint KPCs exhibit stochastic variation which can be 

attributed to either measurement error (homo-skedastic) or systematic deviance 

(hetero-skedastic) due to complex underlying interrelations between joint 

KPCs and joining process KCCs. The worst-case analysis takes into 

consideration the variation of the KPC within ‘ q ’ sigma levels where ‘q’ is 

specified by the user. When the KPC variance is hetero-skedastic, the process 

window is determined not only by the design constraints on the KPCs but also 

by the KCC-dependent variance. As a result, the acceptance rate varies over 

the process window as a function of the KCC-dependent hetero-skedastic 

variance hence leading to a stochastic process window.  For a KPC ‘y’ with 

one-sided design tolerance max
y  , the KCC process window ( PW ) and 

acceptance rate  (AR) at point x inside the process window are determined as 

shown in Eq. (4.21) and Eq. (4.22), respectively. 

                                       max
ˆ ˆ{ | }PW D q     

x x
x                             (4.21) 

                                             max
(0 )yAR Prob                                   (4.22) 

where KPC ‘y’ follows normal distribution ˆ~ ( , )y N  
x  which a constant 

homo-skedastic variance ̂ x = 
2̂  or a KCC-dependent hetero-skedastic 

variance ̂ x = ( )f x . 

Table 4.1 enumerates all possible cases for ‘mean only’ and  ‘worst-case’ 

analyses of the process window and computation of the acceptance rate for 

each of the two types of design tolerances (one-sided and bounded) with 

respect to a single joint KPC ‘y’.
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Table 4.1: Process window and probability of acceptable joint with respect to KPC ‘y’ 

Analyses of process 

window 

 

 

 

 

 

Design Tolerance 

Mean only analysis Worst-case analysis at ‘ q ’ sigma levels 

Process Window (PW) Acceptance Rate (AR) Process Window (PW) Acceptance Rate (AR) 

 

O
n

e 
si

d
ed

 

 

Lesser than 

max
y   

*

max
ˆ{ | }D   

x
x  

***

max
(0 )Pr b yo    max

ˆ ˆq   
x x  max

(0 )yProb    

Greater than 

min
y   

min
ˆ{ | }D   

x
x  min

( )yProb   min
ˆ ˆq   

x x  min
( )yProb   

 

B
o

u
n

d
ed

 

min max
y    min max

ˆ{ | }D     
x

x

 

min max
( )Prob y  

 

max

**

min

ˆ ˆ{ | }

ˆ ˆ{ | }

D q

D q

  

  

  



  

x x

x x

x

x

 

min max
( )Prob y    

                              * |  indicates ‘such that’ in set theory notation; **
  indicates intersection of two sets; *** ˆ~ ( , )y N  

x  
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The quality of a joint is assessed by multiple joint KPCs 

1 2
{ , ,..., ,... }

j r
y y y yy . For KPC ‘j’, where 1,2,...,j r , the identification of the 

process window (
j

PW ) and the computation of the acceptance rate (
j

AR ) is done 

using the guidelines given in Table 4.1. The final process window and acceptance 

rate, taking into consideration all KPCs, is obtained from Eq. (4.23) and Eq. (4.24) 

respectively. 

                                                     
1

r

j

j

PW PW


                                                  (4.23) 

                                                      
1

r

j

j

AR AR


                                                   (4.24) 

It is noteworthy that the final process window (PW) is an intersection of the 

individual process windows 
j

PW  and the final acceptance rate AR is a product of the 

individual acceptance rates 
j

AR where {1,2,..., }j r . 

4.5 Case study 

In this section, the proposed methodology of scalable surrogate model 

driven joining process parameters selection is applied to characterize the KCCs and 

KPCs of the RLW joining process for automotive BIW assembly production. 

Starting from experimental data as shown in Figure 4.1, full-factorial design of 

experiment for the joining process KPCs is developed to conduct physical 

experimentation. For each experiment, the joint KPCs are measured by microscopic 

imaging. 

This section is organized in the following three subsections: Section 

4.5.1 describes the joint KPCs, joining process KCCs and experimental setup related 

to the RLW case study. Next, the scalable surrogate model driven joining process 
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parameters selection is demonstrated in two parts. Firstly, in Section 4.5.2, a step by 

step demonstration of the scalable surrogate modelling of homo- and hetero-

skedastic joint KPCs is presented based on one of the joint KPCs. This subsection 

also summarizes the results of the surrogate modelling for all the other KPCs. Next, 

Section 4.5.3 utilizes the surrogate models of the joint KPCs to conduct the joining 

parameters selection in the following two parts: (1) optimization of the joining 

process KPIs; and (2) analyses of the process window and computation of 

acceptance rate. 

4.5.1 Case study description and experimental setup 

In RLW for BIW assembly production, the welding between two mating 

parts of galvanized steel sheet metal assembly is made in the lap joint configuration, 

shown in Figure 4.5. However, contrary to a conventional lap joint, a minimum gap 

of 0.05 mm has to be maintained between the mating parts being welded to allow 

zinc vapours to escape. The requirement for minimum gap of 0.05 mm between the 

mating parts is critical for RLW because sheet metal panels, being made of 

galvanized steel, have outer coating of zinc which evaporates during welding and 

non-removal of zinc vapours creates porosity and cracks in the weld. The minimum 

gap is achieved by creating humps or dimples on the mating surfaces by dimpling 

process (Gu, 2010). 

Moreover, the maximum gap between mating parts which allows 

formation of a weld is 0.40 mm. If, due to geometric variations of the mating sheet 

metal parts, the gap is more than 0.40 mm at the weld locations, fixture clamps are 

used to achieve a smaller gap. Chapter 3 has discussed fixture layout optimization 

for sheet metal assemblies to maintain gaps between mating parts within specific 

limits. 
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Figure 4.5: Cross-sectional view of lap joint with gap between welded parts 

 

An extensive research has been done in the past on developing first-

principle models for KPCs and KCCs of laser welding process in lap joint and other 

configurations. However, there is lack of accurate first-principle models for the 

specific case of making a lap joint by laser welding where there is a gap between 

welded parts. Therefore, data-driven surrogate modelling has been proposed in this 

chapter to develop analytical functions integrating RLW joint KPCs with RLW 

process KCCs. 

The following joint quality KPCs are taken into consideration to 

determine quality of welds made by RLW as suggested by Ford (2010):                   

(1) penetration; (2) interface width (s-value); (3) Top Surface Concavity (TSC); (4) 

Bottom Surface Concavity (BSC); (5) Top Seam Width (TSW); and, (6) Bottom 

Seam Width (BSW). The different KPCs and their design tolerances are shown in 

Table 4.2. Thickness of the lower and upper parts involved in the welding process 

are denoted as lower
T and 

upper
T  respectively. 
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Table 4.2: Weld quality KPCs for RLW joining  

Weld KPCs (y) Design Constraints Micro-section image 

Penetration lower lower
0.3 yT T   

 

Interface width         

(S-Value) 
lower upper

0.9min( , )y T T  

 

Top surface concavity 

(TSC) 
upper

0.5y T  

 

Bottom Surface 

Concavity (BSC) 
lower

0.5y T  

 

Top seam width 

(TSW) 
NA 

 

Lower seam width 

(LSW) 
lower

y T  

 
 

The KPCs related to weld quality produced by RLW are briefly 
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explained as follows. Weld bead ‘penetration’ directly affects mechanical strength of 

the weld. According to ANSI/American Welding Society (ANSI/American Welding 

Society, 1989) standards, ‘penetration’ is defined as the distance the weld extends 

only in the lower part.  Several researches relate weld strength to weld interface 

width, also referred as s-value (Benyounis, et al., 2005). ‘Top surface concavity’ 

(TSC) is the depression of the weld’s top surface that extends below the top surface 

of the upper sheet (ANSI/American Welding Society, 1989). TSC reduces ‘s-value’ 

and mechanical strength of the weld. Similarly, ‘bottom surface concavity’ (BSC) 

also reduces mechanical strength of the weld 

Additionally, ‘top surface seam width’ (TSW) and ‘lower surface seam 

width’ (LSW) are also analyzed in this study as both of these KPCs are related to 

aesthetics of the weld bead. 

In RLW process, KCCs which affect the joint KPCs are laser power, 

welding speed, part-to-part gap, upper material thickness and lower material 

thickness. Table 4.3 presents full-specification of the experimental setup. The 

objective of this research is to study the effect of welding speed and part-to-part gap 

(KCCs) on the joint KPCs. Variations in parameters such as laser source power, 

material thicknesses (upper and lower) are assumed to contribute to random noise in 

the KPCs.  

Table 4.3: Experimental setup for study of KPCs and KCCs in RLW joining process  

Parameters Allowable Value Controllable 

Weld bead length (Ls) 18.0 mm NA (constant) 

Lower thickness ( lower
 ) 1.0 ± 0.016 mm No 

Upper thickness ( upper
 ) 0.75 ± 0.04 mm No 

Laser power (P) 2.3 ± 0.0078 kW No 

Welding speed (s) [1.0 ÷ 4.0] m/min Yes 

Part-to-part gap (g) [0.05 ÷ 0.4] mm Yes 
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Experiments were performed on 12 cm × 4 cm overlapping metal strips, 

known as coupons, having same alloy and thickness specifications as the sheet metal 

parts of the actual assembly. Transverse linear welds of 18 mm are welded by RLW 

on the coupons in lap joint configuration. Gap between the welded parts is created 

using metal strips of required thickness. Figure 4.6 shows an RLW weld made on 

overlapping coupons. 

 

 

 

Figure 4.6: Transverse linear weld by RLW on overlapping coupons 

 

 

The operating limit of welding speed (s) is [1.0 ÷ 4.0] m/min and that of 

part-to-part gap (g) is [0.05 ÷ 0.4] mm. Based on the operating limits of welding 

speed and part-to-part gaps, design space D for the KCCs is generated and a full 

factorial design of experiments is setup with four levels of welding speed (1, 2, 3 and 

4 m/min) and seven levels of part-to-part gap (0.05, 0.1, 0.15, 0.2, 0.25, 0.30, 0.4 

mm). Two replications are performed for each combination of speed and gap. Table 

4.4 and 4.5 presents the micro-section images of the weld beads for experiments in 

replications 1 and 2, respectively. 
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Table 4.4:  Micro-section images of RLW stitches in replication 1 

 

Table 4.5:  Micro-section images of RLW stitches in replication 2 

 

 

For each experiment, post-processing of the weld is conducted to 

measure the six KPCs listed in Table 4.2. A cross-sectional cut at 9mm is made 

across the weld bead (as illustrated in Figure 4.7). 

 

 

Figure 4.7: Cross-section cut of RLW stitch for measurement of KPCs 
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The cut samples are subjected to metallographic inspection and then 

analysed using an optical microscope attached to a camera. Figure 4.8 shows an 

image generated during the post-processing of the cut samples. Initially, 56 

experiments (28 sets and 2 replications per set) are performed. 3 experiments are 

rejected due lack of weld formation. Therefore, n=53 experiments are used for 

analyses in this case study. 

 

 

Figure 4.8: Micro-section image with measurements of KPCs 

 

4.5.2 Scalable surrogate modelling for homo- and hetero-skedastic joint KPCs 

This section demonstrates the three steps of scalable surrogate modelling 

with respect to KPC ‘penetration’. A summary of results for all the other KPCs is 

also given. The three steps of scalable surrogate modelling are described as follows: 

Step A – Develop homo-skedastic surrogate model of joint KPC 

Polynomial Feature Selection (PFS) is ran to determine optimal 

polynomial order (
*

p ) and features ( *
h ) for ‘penetration’. Initially the algorithm 

sets *
 h . Multiplicative features from polynomial of order p=1,2,3… and so on 
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are iteratively added to *
h  based on reduction of cross validation (CV) mean squared 

error (MSE) 
*

( ) h , which is estimated by 5 fold cross-validation. During iterations 

over p=1,2,3…, the ‘goodness’ of the current polynomial order ‘p’ is ( )p , which 

is the same as *
( ) h , where *

h are the features selected till the current polynomial 

order. The algorithm stops if 
( ) ( 1)

100
( )

p p

p

 




 
  , where  =1% is a user-

defined convergence tolerance. Figure 4.9 shows the CV MSE (
*

( ) h ) obtained for 

polynomial order p=1,2,3 and 4. The plot in Figure 4.10 shows the percentage drop 

in CV MSE over increasing the order of the polynomial. In this case the algorithm 

stops after p=4 as no further reduction of CV MSE is observed. Table 4.6 presents a 

summary of the selected features *
h . 

 

 

Figure 4.9: Drop in cross validation mean squared error during                           

polynomial feature selection 
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Figure 4.10: % drop in cross-validation mean squared error during                           

polynomial feature selection 

 

Table 4.6: Summary of features selected for penetration 

Selected features                

(hj) 

Regression coefficient                      

( j
 ) 

Coefficient p-value                                       

prob ( 0
j

  ) 

S 0.77165 4.33e-10 

s2 -0.17701 7.18e-12 

g3 -3.19781 0.00472 

 

 

The homo-skedastic surrogate model fitted for ‘penetration’ is given in 

Eq. (4.25). 

2 3
0.1206 0.77ˆ 17 0.1770 3.197( , ) 8

penetration
ss s gg                    (4.25) 

The coefficient of determination (R2) of the surrogate model in Eq. (4.25) is 0.7078. 

At this stage the surrogate model is fitted assuming that it is homo-skedastic and 

therefore an estimate of the constant variance of penetration is calculated from the 

residuals of the fitted model. The estimated constant variance is 
2

0.0188ˆ
penetration

  . 

Table 4.7 summarizes the results of Step A for all six welding KPCs addressed in this 

case study. 
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Table 4.7: Summary of homo-skedastic surrogate models of joint KPCs

Weld KPC Feature 

selected 

(hj) 

Regression 

coefficient    

( j
 ) 

Coefficient 

p-value                                

prob( 0
j

 

) 

R2 Surrogate model of KPC mean             

( ˆ
y

 ) [mm] 

Constant 

homoscedastic 

KPC variance (
2ˆ
y

 ) [mm2] 

Penetration 

S 0.77165 4.33e-10 

0.7078 
2 3

0.1206 0.7717

0.1770 3.197

ˆ

8

penetration
s

s g

 

 


 

0.0188 
s2 -0.17701 7.18e-12 

g3 -3.19781 0.00472 

S-Value 

S -1.1380 1.50e-10 

0.8531 
2

2

2.6596 1.1380

3.9703 0.1576

6.4457

ˆ
s value

s

g s

g






 





 
0.0366 G 3.9703 0.0006 

s2 0.1576 8.32e-07 

g2 -6.4457 0.0112 

TSC g2s 0.9205 1.13e-10 0.568 
2

0.1356 0.92ˆ 05
tsc

g s    
0.0082 

BSC 
S -0.1654 4.41e-08 

0.73 
4

0.5045 0.1654

0.0

ˆ

006

bsc
s

s





 
 

0.0067 

s4 0.0006 0.0476 

TSW 

S -2.3124 7.08e-05 
0.8823 

 

 

2

3

3.7128 2.3124

0.7136 0.1742

0.07

ˆ

37

tsw
s

s gs

s

 







  
0.0209 s2 0.7136 0.0038 

Gs -0.1742 0.0389 

s3 -0.0737 0.0222 

BSW 
s3 -0.1058 <2e-16 

0.9716 

3

5

1.6969 0.1058

0

ˆ

.0050

bsw
s

s

 




 0.0137 

s5 0.0050 <2e-16 
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Step B – Detect hetero-skedasticity via statistical hypothesis testing 

The homo-skedastic model of ‘penetration’ obtained in Eq. (4.25) is 

tested for hetero-skedasticity in this step using the Bruesch-Pagan (BP) test. 

The optimal polynomial order and features identified for ‘penetration’ 

are *
3p   and 2* 3

{ , },s s gh  respectively. The BP test fits a surrogate model on the 

residuals of the homo-skedastic model: 

              2 2

0 2 3

3

1î i ii i
s s g v        ; ( 1,2,...,53)i                    (4.26) 

The null hypothesis ( 0
H ) of the BP test assumes homo-skedasticity. The test statistic 

is 2

2

ˆ
nR


=10.5155, where n is the number of experiments and 

2

2

ˆ
R


 is coefficient of 

determination of the model fitted in Eq. (4.26). The test statistic follows Chi-Square 

distribution with 3 degrees of freedom i.e. 
2

2 2

3ˆ
~nR


 . The p-value of the test is 

0.01466. Therefore at 0.05   level of significance, 0
H is false and hetero-

skedasticity is detected for ‘penetration’. Based on hetero-skedasticity, the homo-

skedastic model of ‘penetration’ will be updated by weighed least squares regression 

in Step C, which will also develop a surrogate model for the hetero-skedastic 

variance of ‘penetration’ using PFS. Table 4.8 summarizes the results of the BP test 

for all the six KPC analyzed in this case study. 

Table 4.8: Summary of results of Breusch-Pagan test of hetero-skedasticity 

Welding 

KPC 

Chi-Square 

distribution 

d.o.f* for 

test 

statistic 

Test 

statistic 

p-value 
0

H  (homo-

skedasticity) is 

True/False 

Step C  

required 

(Yes/No) 

Penetration 3 10.5160 0.0147 False Yes 

S-Value 4 11.1510 0.0249 False Yes 

TSC 1 0.4683 0.4938 True No 

BSC 2 2.9939 0.2238 True No 

TSW 4 12.4400 0.0144 False Yes 

BSW 2 2.9213 0.2320 True No 
      *d.o.f – Degrees of freedom 
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Step C – Enhance homo-skedastic surrogate models to characterize hetero-

skedasticity 

The homo-skedastic model of ‘penetration’ is updated by weighted least 

squares regression in this step. The weight matrix 2 2 2

1 2 53
(1/ ,1/ ,...,1/ )W diag     is 

a 53 53 diagonal matrix where 2

i
  is the variance of ‘penetration’ at the ith design 

point, where i=1,2,…,53. Since, actual 2

i
  is unknown, the residuals obtained from 

the homo-skedastic model in Eq. (4.25) are used as White consistent estimates of 

‘penetration’ variance 2 2ˆ
i i

  . Therefore, the weight matrix is given as 

2 2 2

1 2 53
(1/ ,1/ ,...,1/ )W diag    .   

W is now used to update the coefficients of the homo-skedastic model of 

‘penetration’ using the weighted least squares method. The updated hetero-skedastic 

surrogate model of ‘penetration’ is as follows. 

                      2 3
0.0858 0.81ˆ 17 0.1860 3.148( , ) 8

penetration
ss s gg                (4.27) 

 

This step also determines a surrogate model for the hetero-skedastic variance of 

‘penetration’ through PFS. The fitted model for KPC variance is shown in Eq. 

(4.28). 

                      2 2 3
0.1514 0.2570 0.1294ˆ ( , 0.0 84) 1

penetration
s s s sg                  (4.28) 

Table 4.9 summarizes the final homo- and hetero-skedastic surrogate models 

developed for the joint KPCs analyzed in this case study. 2-D plots of the homo- and 

hetero-skedastic surrogate models of KPC mean ( ˆ
y

 ) and variance (
2ˆ
y

 ) are shown 

in Table 4.10 and Table 4.11. 

 

Appendix E describes an experimental verification of the surrogate 

models developed in this section. 
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Table 4.9: Summary of final homo- and hetero-skedastic surrogate models of RLW joint KPCs 

 

Weld KPC Feature 

selected 

(hj) 

Regression 

coefficient (

j
 ) 

Coefficient 

p-value 

[prob (

0
j

  )] 

R2 Surrogate model of KPC 

mean                                 

( ˆ
y

 ) [mm] 

KPC variance (
2ˆ
y

 ) 

[mm2] 

H
et

er
o

-s
k
ed

as
ti

c 

Penetration 

s 0.8117 < 2e-16 

0.9950 2 3

0.0858 0.8117

0.1860 3.148

ˆ

8

penetration
s

s g

 

 



 

2

32

0.1514 0.2570

0.1294 0.018

ˆ

4

penetration
s

s s

 

 



 

s2 -0.1860 < 2e-16 

g3 -3.1488 < 2e-16 

S-Value 

s -1.6923 2.35e-11 

0.9081 
2

2

2.9350 1.6923

4.7311 0.2759

6.5696

ˆ
s value

s

g s

g






 





 

2

2

0.0035 0.253ˆ 0

0.0589

s value

g

sg

s




 





 

g 4.7311 0.0074 

s2 0.2759 5.13e-08 

g2 -6.5696 0.0373 

TSW 

s -3.9907 0.2385 

0.9158 2

3

4.6274 3.9907

1.3927 0.4666

0.15

ˆ

81

tsw
s

s gs

s

 







  

2

3

2

0.1480 0.0519

0.2239 0.0174

0.00

ˆ

08

tsw
s

g s

s

g

 





   s2 1.3927 0.4036 

gs 0.4666 0.0090 

s3 -0.1581 0.5041 

H
o
m

o
-s

k
ed

as
ti

c TSC g2s 0.9205 1.13e-10 0.868 
2

0.1356 0.92ˆ 05
tsc

g s    
0.0082 

BSC s -0.1654 4.41e-08 
0.835 

4

0.5045 0.1654

0.0

ˆ

006

bsc
s

s





 
 0.0067 

 s4 0.0006 0.0476 

BSW 
s3 -0.1058 <2e-16 

0.9716 
3

5

1.6969 0.1058

0

ˆ

.0050

bsw
s

s

 




 0.0137 

s5 0.0050 <2e-16 
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Table 4.10: 2D plots of homo- and hetero-skedastic surrogate models of KPC mean 

 

Welding KPC Plot of KPC Mean Surrogate Model 

Penetration 

 

S-Value 

 

TSC 

 

BSC 

 

Continues to next page… 
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TSW 

 

BSW 
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Table 4.11: 2D plots of homo- and hetero-skedastic surrogate models of KPC 

variance 

 

Welding KPC Plot of KPC Variance Surrogate Model 

Penetration 

 

S-Value 

 
TSC Constant Variance 

BSC Constant Variance 

TSW 

 
BSW Constant Variance 

 

 

 

4.5.3 Joining process parameters selection 

The homo- and hetero-skedastic surrogate models of the joint KPCs 

developed in Section 4.5.2 are utilized to conduct the joining process parameters 

selection in two parts: (i) multi-objective optimization of the joining process KPIs 

(Section 4.5.3.1); and, (ii) identification of the stochastic process window and 
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computation of the acceptance rate (Section 4.5.3.2). 

4.5.3.1 Multi-objective optimization of joining process Key Performance    

Indicators 

In this case study a bi-objective optimization is conducted to optimize the 

following two KPIs: 

i. Process efficiency related KPI – The process efficiency related KPI taken into 

consideration in this case study is ‘welding cycle time’ which needs to be 

minimized. The ‘welding cycle time’ is inversely related to the welding speed 

(s) which is a KCC of the RLW process. In this case study, the ‘welding cycle 

time’ is modelled as negative of the welding speed ( )s . 

ii. Process quality related KPI – In this case study, the hetero-skedastic variance 

of the ‘penetration’ 2ˆ ( , )
penetration

s g  is considered as a process quality related 

KPI. The bi-objective optimization problem solved in this section focuses on 

the minimization of 2ˆ ( , )
penetration

s g  to identify the welding speed (s) and part-

to-part gap (g) which give minimum variance of the ‘penetration’. 

Based on the aforementioned two KPIs, the bi-objective optimization 

problem optimizes the KPIs shown in Eq. (4.29).  

 

     1

2 2 3

2

KPI _
KPIs

ˆKPI ( 0.1514 0.2570 0.1294 0.0184, )
penetration

cycle time s

s g s s s

 




 

   

      (4.29) 

 

Here 1
KPI is related to process efficiency while 2

KPI  is indicative of process quality.  

The design tolerances of the weld KPCs, as shown in Table 4.3 are 

constraints in the bi-objective optimization problem. Given the thickness of the lower 

material, lower
T =1.0 mm and thickness of the upper material, 

upper
T =0.75 mm, the 

formulation of the constrained bi-objective optimization is prescribed as follows. 



173 
 

             
[

2

*

3
, ] 0.1514 0.25

[ , ] a
70

r
0.1294 0.018

g m
4

in
s g D s s

s g
s

s

   


 


                     (4.30) 

subject to, 

Penetration:            2 3
0.3 0.0858 0.8117 0.1860 3.1480 8 1.00s s g     

S-Value:                 2 2
2.9350 1.6923 4.7311 0.275 0.909 6.5696s g s g     

TSC:                                         2
0.1356 0.920 05 .375g s   

BSC:                                    
4

0.5045 0.1654 0.0 50006 0.s s    

BSW:                                    
3 5

1.6969 0.1058 0.00 .050 1 0s s   

where the KCC design space is {1.0 4.0} {0.05 0.40}D s g      . 

The aforementioned optimization problem is solved by the Fast Elitist 

Non-Dominated Sorting Genetic Algorithm (also known as NSGA II) (Deb, et al., 

2002). NSGA II is a computationally efficient solver of multi-objective optimization 

problems. For this case study, NSGA-II implementation in the Multiple Criteria 

Optimization (“mco”) package of R Statistical Computing platform is used.       Table 

4.12 lists the parameters of NSGA-II used in this case study. 

Table 4.12: Parameters of NSGA-II algorithm 

Algorithm parameter Value used 

Population size 20 

Number of generations 50 

Cross-over probability 0.70 

Mutation probability 0.20 

 

Figure 4.13 shows the optimal Pareto front of feasible solutions. As 

evident, lesser welding cycle time or higher process efficiency ( 1
KPI ) can be 

achieved at the expense of higher variance of ‘penetration’ or lower process quality  

( 2
KPI ) and vice versa. Table 4.13 lists the KPIs from the optimal Pareto front and 

the corresponding joining process parameters. 
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Figure 4.11: Optimal Pareto front for bi-objective optimization of RLW joining 

proess Key Performance Indicators 

 

Table 4.13: KPIs from optimal Pareto front and                                                   

corresponding joining process parameters  

1
KPI  (-Speed) 2

KPI  (
2ˆ
penetration

 ) Welding Speed (s) Part-to-part gap (g) 

Best 

-3.017 

Worst 

0.048 
3.017 0.104 

-2.996 0.047 2.996 0.095 

-2.861 0.044 2.861 0.098 

-2.788 0.041 2.788 0.097 

-2.555 0.032 2.555 0.070 

-2.518 0.030 2.518 0.070 

-2.489 0.029 2.489 0.068 

Worst 

-2.243 

Best 

0.018 

2.243 0.052 

 

 

Discussion of results – As evident from both Figure 4.13 and Table 4.13, the process 

efficiency, measured in terms of the welding cycle time, can be increased at the 

expense of the process quality measured here by the variance of penetration ( 2
KPI ). 

The optimal Pareto front shown in Figure 4.13 can be used as a decision making 

guideline to set appropriate joining process parameters.  

It is noteworthy that the bi-objective optimization described in this 
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section has been enabled by the proposed scalable surrogate modelling of homo- and 

hetero-skedastic joint KPCs which detects relevant hetero-skedastic behaviour of 

joint KPCs and develops analytical functions of both KCC-dependent mean and 

variance of the joint KPCs. 

 

4.5.3.2 Identification of process window and computation of acceptance rate 

The process window defines the feasible region in the 2-D design space 

of the joining process KCCs welding speed and part-to-part gap. 

Moreover, identification of process window and computation of 

acceptance rate is done based on each of the following types of analysis: 

i. Mean only analysis whereby variation of the KPCs is not considered 

ii. Worst-case analysis whereby KPCs variance is taken into consideration and 

upper and lower ‘q=1’ sigma limits are used to determine compliance to KPC 

design tolerance. 

In this case study, the process window is graphically generated over a 

100 100 mesh grid of the two KCCs.  The conditions defined in Table 4.1 are used 

to find the process window for each KPC. The final process window which satisfies 

design tolerances of all six joint KPCs is obtained by taking the intersection of the 

individual process windows. A MATLAB program has been developed to generate 

the individual process windows and the final process window.  

The acceptance rate is computed in terms of the probability of an 

acceptable weld at each design point inside the process window using the formulae 

listed in Table 4.1. 

Table 4.14 shows the 2D plot of process window, 3D surface plot of the 

acceptance rate and 2D contour plot of the acceptance rate for the ‘mean only’ and 

‘worst-case’ analysis. 
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Furthermore, mean and  one sigma control limits of the six joint KPCs, 

analysed in this case study, are shown in Figure 4.12 to illustrate the effect of homo- 

and hetero-skedasticity on the estimation of the control limits. As evident from 

Figure 4.12, for homo-skedastic KPCs such as TSC, BSC and BSW, width between 

the control limits is constant over the process window of welding speed (KCC) due 

to their constant KCC-independent variances. On the other hand, for hetero-skedastic 

KPCs such as penetration, s-value and TSW, the width between the control limits 

varies over the process window of the welding speed due to their changeable KPC-

dependent variances. 
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Table 4.14: Process window and acceptance rate for RLW joining process 

 

Process 

window 

analyses 

2D plot of process Window 3D surface plot of acceptance rate 
3D surface plot of acceptance rate 

Mean 

only 

 
  

Worst-

case at 

q=1 

sigma 

limits 
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Figure 4.12: Mean and one sigma control limits of joint KPCs 
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Discussion of results – The significance of the results obtained from the case study on 

RLW joining process is discussed based on the following two aspects: 

i. Trade-off between process efficiency and process quality – There can be trade-

off between the process efficiency and the process quality related KPIs of the 

joining process. In case of a trade-off, the optimal process efficiency is obtained 

at the expense of process quality. Results from the case study illustrate the trade-

off between the process efficiency and the process quality in the RLW joining 

process as explained here. 

In this case study, the process efficiency is related to the welding cycle 

time which is modelled as negative of the welding speed ( s ), where higher 

process efficiency is achieved at a lower negative welding speed. On the other 

hand, the process quality is represented by the hetero-skedastic variance of 

‘penetration’ 2ˆ ( , )
penetration

s g  where higher process quality is achieved at lower

2ˆ ( , )
penetration

s g . The results from the bi-objective optimization show that higher 

process efficiency (lower s ) is attained at lower process quality (higher 

2ˆ ( , )
penetration

s g ). This is illustrated by a summary of the best and worst results 

obtained by solving the bi-objective optimization problem, as shown in Table 

4.15 given below. 

 

Table 4.15: Best and worst Key Performance Indicators obtained from bi-objective 

optimization for joining process parameters selection  

Key Performance Indicators 
 

  
Process efficiency 

(higher process efficiency is 

from lower s ) 

Process quality 

(higher process quality is 

from  lower 
2ˆ
penetration

  ) 

Q
u

al
it

y
  

  
 

o
f 

so
lu

ti
o

n
 Best 

- 3.017 m/min 

Worst 

0.048 mm2 

Worst 

-2.243 m/min 

Best 

0.018 mm2 
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Another important measure of process quality is the acceptance rate (AR) 

which is the probability of making a joint of acceptable quality at a design point 

inside the KCC process window. The computation of AR has been enabled by 

the surrogate models of KCC-dependent mean and variance of the joint KPCs. 

Within the process window, the acceptance rate is varying as illustrated in Table 

4.14. The variation of the process acceptance rate can cause a trade-off between 

the process efficiency and the process quality when a monotonic increase in the 

process efficiency, evaluated by welding speed, is not accompanied by a 

monotonic increase in process quality, measured by acceptance rate, over the 

process window, as illustrated in Figure 4.13. Consequently, the maximum 

process efficiency does not correspond to the maximum process quality.  For 

example, consider the process window and acceptance rate computed for the 

‘mean only’ analysis shown in Table 4.14. The maximum welding speed at 

which a feasible weld can be made is 3.03 m/s however acceptance rate at this 

speed is 0.31 (or 31 %). The maximum achievable acceptance rate is 0.60 (or 60 

%) which is achieved at a lower welding speed of 2.27 m/s. 
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Figure 4.13: Non-monotonic change of process quality for monotonic change of 

process efficiency 

 

 

ii. Impact of homo- and hetero-skedastic models on identification of process 

window and computation of acceptance rate – The scalable surrogate modelling 

proposed in this chapter allows the identification and characterization of homo- 

and hetero-skedastic behaviour of joint KPCs through data analysis. 

Characterization of hetero-skedastic behaviour leads to identification of a 

process window and computation of an acceptance rate which is expected to be 

significantly different than that obtained from currently existing surrogate 

models which address only homo-skedastic behaviour of joint KPCs.  

To compare results obtained from the proposed method and state-of-the-art 

surrogate models, the case study presented in this section is analyzed using 

second order polynomial regression models which assume homo-skedasticity 

of all KPCs. The following four joining process characteristics are derived 

from the results: (1) maximum feasible welding speed giving welds of 
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acceptable quality ( max
s ); (2) acceptance rate at maximum welding speed                 

( max
AR-s ); (3) maximum acceptance rate over the process window ( max

AR ); 

and, (4) welding speed at which maximum acceptance is obtained ( max
s-AR ). 

The comparison of the aforementioned four process characteristics derived 

from the state-of-the-art 2nd order homo-skedastic polynomial regression 

(Acherjee, et al., 2009) versus those obtained from the proposed homo- and 

hetero-skedastic models is given in Table 4.16. The results highlighted in the 

dotted red, blue and green boxes on Table 4.16 shows significant differences in 

the results obtained from the proposed and currently existing surrogate models 

of joint KPCs as explained below. 

 

Table 4.16: Comparison of process window analyses                                                             

by state-of-the-art 2nd order homo-skedastic polynomial model and proposed 

methodology 

Process window 

analyses 
Methodology 

max
s  max

AR-s  max
AR  max

s-AR  
Actual 

AR
 

Mean only 
State-of-the-art 3.03 0.36 0.64 2.70 0.56 

Proposed 3.03 0.31 0.60 2.27 NA 

Worst-case at 1-σ 

limits 

State-of-the-art 3.21 0.10 0.62 2.79 Infeasible 

Proposed 3.21 0.09 0.17 3.12 NA 

max
s - Maximum feasible welding speed; max

AR-s - Acceptance rate at maximum welding speed 

max
AR - Maximum acceptance rate over the process window; max

s-AR - Welding speed at which 

maximum acceptance is obtained 
 

 

Table 4.16 indicates that the currently existing surrogate models which 

assume that all joint KPCs are homo-skedastic, lead to erroneous joining 

process parameters selection as highlighted in the following three significant 

instances: 

A. Erroneous estimation of maximum acceptance rate  ( max
AR ) in ‘mean-only’ 
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analysis – 

The state-of-the-art surrogate models estimate a maximum 

acceptance rate  ( max
AR ) of 0.64 (or 64 %) at 2.70 m/min of the welding 

speed; however actual acceptance rate at this welding speed as computed 

by proposed methodology is 0.56 (or 56 %). Hence, currently existing 

methods overestimate max
AR by 8% points. This case is highlighted by the 

red-dotted box in Table 4.16. 

B. Erroneous estimation of maximum acceptance rate ( max
AR ) in ‘mean-only’ 

analysis – 

 For the worst case analysis of the process window and the 

computation of acceptance rate at 1-σ limits’, the currently existing 

methods overestimate max
AR by 45 %  points as indicated in the blue 

dotted box in Table 4.16.   

C. Erroneous estimation of welding speed for maximum acceptance rate                

( max
s - AR )  in ‘mean-only’ analysis – 

For the worst case analysis of the process window and the 

computation of the acceptance rate at 1-σ limits’, the currently existing 

methods identify the welding speed at which maximum acceptance is 

obtained ( max
s-AR ) as 2.79 m/min, which is an infeasible welding speed 

according to process window developed through the proposed 

methodology. This case is highlighted by the green-dotted box in Table 

4.16. 
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4.6 Summary 

The successful implementation of a new joining process in automotive 

Body-In-White (BIW) assembly production depends on accurate joining process 

parameters selection. The quality of the solution in joining process parameters 

selection critically depends on the capability of the surrogate models, integrating 

joining process KCCs with stochastic joint KPCs, in addressing the scale of KPC 

stochasticity which varies from homo- to hetero-skedasticity. However, currently 

existing homo-skedastic surrogate models of joint KPCs do not address the scale of 

stochasticity in joint KPCs and therefore might lead to inaccurate results for joining 

process parameters selection.  

To address the aforementioned challenge, this chapter has developed an 

approach for scalable surrogate modelling of homo- and hetero-skedastic joint KPCs 

which identifies and characterizes appropriate stochasticity of joint KPCs through data 

analysis. Data from physical experimentation is given as input to the proposed method 

which models the homo- and hetero-skedastic noise in the joint KPCs based on the 

following three steps: (1) development of homo-skedastic surrogate model of joint 

KPC; (2) detection of hetero-skedasticity via statistical hypothesis testing; and,                

(3) enhancement of homo-skedastic surrogate models to characterize hetero-

skedasticity. As output, surrogate models of KCC-dependent mean and variance of 

joint KPCs are obtained. 

Based on the homo- and hetero-skedastic surrogate models of joint KPCs, 

this chapter has developed a comprehensive approach of joining process parameters 

selection which focuses on the following two design synthesis tasks: (1) identification 

of optimal KCCs which optimize process KPIs subject to design tolerances on KPCs 

and operating limits of KCCs; and, (2) identification of process window and 
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computation of acceptance rate. 

Overall, this chapter has developed a comprehensive methodology of 

scalable surrogate model driven joining process parameters selection based on the 

aforementioned two interlinked approaches namely: (1) scalable surrogate modelling 

of homo- and hetero-skedastic joint KPCs; and, (2) of joining process parameters 

selection based on homo- and hetero-skedastic surrogate models of joint KPCs.  

The proposed methodology of scalable surrogate model driven joining 

process parameters selection has been applied for characterization of KCCs and KPCs 

in the Remote Laser Welding joining process for sheet metal assembly. The results 

have been compared with those obtained from state-of-the-art homo-skedastic models 

of joint KPCs. Significant differences between the results demonstrate the usefulness 

of the proposed methodology as a data-driven approach of addressing design synthesis 

tasks, such as joining process parameters selection in BIW assembly production, 

which rely on noisy experimental data in the absence of accurate first-principle 

models.  
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CHAPTER 5 1                                                                                              

SCALABLE SURROGATE MODEL DRIVEN                                                              

CORRECTIVE ACTION OF PRODUCT FAILURES DUE TO 

DIMENSIONAL VARIATIONS OF                                                          

KEY PRODUCT CHARACTERISTICS 

 

5.1 Overview of the chapter 

In mechanical assemblies, product failures can be triggered by unwanted 

dimensional variations in KPCs.  In complex assemblies there can be a large number 

of KCCs which can potentially influence a KPC. Therefore, dimensionality reduction 

of of KCCs is critical for design synthesis tasks such as corrective action of product 

failures which require diagnosis of unwanted variations in KPCs (Shi and Zhou, 

2009). For diagnosis it is necessary to identify few critical KCCs closely related to the 

faulty KPCs. 

Currently existing methods of KCC dimensionality reduction focus on 

identifying statistical fault patterns by deriving a lower dimensional manifold as a 

function of the original KCCs and depend on first-principle models to formulate an 

initial analytical model linking KPCs with KCCs. Methods based on the 

aforementioned approach exist for diagnosis of fixture induced errors in multi-station 

type-II assembly processes. 

However, there are two limitations of the aforementioned state-of-the-art 

diagnosis methods: (1) lack of dimensionality reduction in the original KCC space; 

and, (2) need for knowledge about the physical process governing the KPC-KCC 

                                                
1 Based on papers (1) Pal, A., Franciosa, P., & Ceglarek, D., 2014. Root cause analysis of product 

service failures in design-A closed-loop lifecycle modelling approach. In Proceedings of 24th CIRP 

Design Conference, Milan, Italy, pp. 165-170; and, (2) Pal, A., Franciosa, P., & Ceglarek, D., 2014. 

Corrective Actions of Product Service Failures via Surrogate Modelling of Dimensional Variations. In 

Proceedings of the 2014 Industrial and Systems Engineering Research Conference, Institute of 

Industrial Engineers, Montreal, Canada, pp. 2271-2280. 
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interrelations. The aforementioned limitations are critical particularly for complex 

type-I assemblies which face the following two challenges: (1) variation in a KPC can 

be affected by potentially a large number of KCCs; and, (2) KPC-KCC interrelations 

are modelled by numerically intractable Variation Simulation Analysis (VSA). 

To address the aforementioned challenges, this chapter builds upon the 

idea of scalability for KCC dimensionality introduced in Chapter 1 under the proposed 

framework of Scalable Design Synthesis. Scalability for KCC dimensionality has the 

following two requirements: 

i. Dimensionality reduction of KCCs with minimal knowledge about underlying 

causality between dimensional variations in the faulty KPC and the assembly 

KCCs 

ii. Closed-form analytical model of the faulty KPC in terms of few critical KCCs 

To meet the aforementioned requirements, this chapter develops scalable 

surrogate modelling for KCC dimensionality, as a data-driven approach for diagnosis 

of unwanted variations in KPCs, which provides the following two key capabilities: 

i. Identification of few critical KCCs and their interactions closely related to the 

faulty KPC based on Polynomial Feature Selection (PFS) which has been 

adapted in this chapter to address KCC dimensionality 

ii. Surrogate model of the faulty KPC in terms of critical KCCs and their 

interactions 

 Furthermore, scalable surrogate modelling for KCC dimensionality is 

discussed in this chapter in the context of a corrective action (CA) to reduce unwanted 

variations in faulty assembly dimensions (KPCs) in type-I assembly processes. A 

corrective action of unwanted variations in faulty KPCs requires diagnosis to identify 

few critical KCCs closely related to the faulty KPCs. In this chapter, diagnosis is    
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achieved by scalable surrogate modelling for KCC dimensionality which determines 

the critical KCCs related to the faulty KPCs and develops surrogate models of the 

faulty KPCs in terms of the identified critical KCCs. The surrogate models of faulty 

KPCs are then utilized in a two-step design adjustment process which minimizes 

production yield of the faulty KPCs via: (1) optimal nominal change; and,                  

(2) tolerance re-allocation of subassembly dimensions (KCCs). 

Overall, this chapter develops a systematic methodology of scalable 

surrogate model driven corrective action for product failures due to unwanted 

dimensional variations of KPCs based on the following two interlinked approaches: 

i. Diagnosis via scalable surrogate modelling for KCC dimensionality 

ii. Two-step design adjustment to reduce production yield of faulty KPCs 

The outcome of the corrective action is recommend engineering changes such as 

adjusted nominal and tolerance of the critical KCCs related to the faulty KPCs. 

Additionally, a cost-benefit analysis is presented to show the increase in cost of 

manufacturing due to the adjusted KCC tolerances versus reduction in cost of quality 

loss due to unwanted variation in KPC. 

Figure 5.1 highlights the main approaches involved in the proposed 

methodology of corrective action of product failures due to unwanted dimensional 

variations of KPCs. 
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Figure 5.1: Scalable surrogate model driven corrective action of product failures due 

to dimensional variations of KPCs 

 

The proposed methodology is applied to address warranty failures in an 

automotive ignition switch assembly. 

The remaining part of this chapter is organized as follows: Section 5.2 

outlines the motivation for the research presented in this chapter. Next, the proposed 

methodology of scalable surrogate model driven corrective action of product failures 

due to dimensional variations of KPCs is developed in Section 5.3 based on the 

following two methods: (1) diagnosis via scalable surrogate modelling for KCC 

dimensionality; and, (2) two-step design adjustment. Next, Section 5.4 demonstrates 

the proposed methodology through an industrial case study of automotive ignition 

switch assembly. Finally, summary of the research done in this chapter is presented in 

Section 5.5. 

Notations related to the methods developed in this chapter are listed as 

follows. Notations of KCCs ( x ) and KPCs ( y ) used in this chapter are similar to the 
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generic ones introduced in Chapter 1. However, in this chapter KCCs and KCCs are 

specifically related to corrective actions of product failures due of unwanted variations 

in assembly dimensions (KPCs) caused by variation in individual part dimensions 

(KCCs). Hence notations of KCCs and KPCs are redefined in this chapter highlighting 

their meanings as related to corrective actions of product failures. 

Notations 

x  Set of ‘d’  KCCs 1 2
{ , ,..., }

d
x x xx , where i

x  is the ith KCC in x 

representing the ith individual part dimension 

y Set of ‘r’  KCCs 1 2
{ , ,..., }

r
y y yy , where 

j
y  is the jth KPC in y 

representing the jth faulty KPC 

N Number of times Variation Simulation Analysis is performed to 

generate training data which is used for developing surrogate 

models of faulty KPCs 

*
x  Critical KCCs closely related to the faulty KPC ‘y’ 

*
h  Optimal set of polynomial features obtained from the critical KCCs 

*
x  

( )f  Regression based surrogate model of the faulty KPC ‘y’ in terms of 

critical KCCs 
*

x  closely related to it 

*
β  Coefficients of the regression model of optimal set of polynomial 

features *
h  

FRi Failure region related to the ith faulty KPC where 1,2,...,i r  

LFLi, UFLi Lower and upper failure levels respectively of FRi 

( )
i i

g y  Manufacturing probability distribution of the ith faulty KPC where 

1,2,...,i r  

i
M  Production fallout of the ith faulty KPC where 1,2,...,i r  

j
  Initial design nominal of the jth KCC 

j
x  where 1,2,...,j d  

j
T  Tolerance of the jth KCC 

j
x  where 1,2,...,j d  

kp
C  Process capability of manufacturing the jth KCC 

j
x  where 

1,2,...,j d  
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j
  Nominal change applied to the jth KCC 

j
x  where 1,2,...,j d  

lower

j
 , upper

j
  Allowable lower and upper limits respectively of nominal change 

due to manufacturing constraints on the jth KCC 
j

x  where 

1,2,...,j d  

j
C  cost of tolerancing required to achieve a tolerance Tj of KCCj  where 

1,2,...,j d  

A
j
, B

j
 User-defined constants for the tolerancing cost model 

CW Cost of quality loss is proportional to the fallout of the faulty KPCs 

j
a  Binary variable indicating whether the jth KCC 

j
x  where 

1,2,...,j d is selected as a critical KCC. 
j

a =1 if the jth KCC is 

selected as a critical KCC else 
j

a =0 

opt

j
  Optimal nominal change of applied to the jth KCC 

j
x  

i
M   Production fallout of the ith faulty KPC after optimal nominal 

adjustment where 1,2,...,i r  

 

 

5.2 Motivation for the research 

Type-I assembly products are frequently found in components and sub-

components of an automotive vehicle. An example of type-I assembly is the electro-

mechanical automotive ignition switch operated using a key. Components such as the 

ignition switch are complex and assembled from multiple individual parts. The final 

assembly dimensions (KPCs) are related to a large number of individual part 

dimensions (KCCs). Coupling between KCCs and stack-up of their variations can 

potentially cause unwanted variations in the final assembly KPCs. 

Unwanted variations in assembly KPCs which are closely related to 

normal functionality of the assembly can trigger product failures such as warranty 

failures in service which results in warranty costs, customer dissatisfaction and safety 
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issues. Hence corrective action to reduce unwanted dimensional variations in assembly 

KPCs is of paramount importance. 

In electro-mechanical components, failures are related to faulty KPCs such 

as misalignment between mating surfaces causing electrical malfunctioning. 

Tolerances are allocated to KPCs based on the requirement for normal functionality of 

the component. Failure occurs when the KPC is out-of-tolerance due to uncontrolled 

manufacturing variations of KCCs. Out-of-tolerance KPCs are triggered as result of 

challenges in design such as sensitivity of a KPC on a large number of KCCs due to 

ill-conditioned design, stack-up of variations from individual KCCs and lack of 

process-oriented tolerance allocation, which leads to low yield from manufacturing      

(Ding, et al., 2005; Ceglarek & Prakash, 2012). Also, failures related to warranty are 

caused, though less expected, by the presence of failure regions inside the defined 

design tolerances (in-tolerance failures), which occur due to erroneous characterization 

of customer attributes during early product development, and unexplored interactions 

during the design phase (Mannar, et al., 2006). Such interactions may go unnoticed by 

designers due to the increasing complexity of product and production systems as well 

as reduced time for new product development. Hence failures due to out-of-tolerance 

or in-tolerance KCCs may be caused by a variety of complex underlying root causes. 

Under these conditions, corrective action will significantly benefit from a 

methodology that is agnostic to the underlying failure root causes but can recommend 

engineering changes and provide a cost-benefit analysis. 

Current tools for VSA which estimate KPCs for given KCCs based on 

first-principle analysis are necessary but not sufficient for corrective action due to 

their lack of information about few critical KCCs closely related to the faulty KPC and 

due to absence of an analytical model of their specific relationship with the latter. This 
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makes corrective actions costly, time-consuming and case-specific reverse engineering 

requiring knowledge about underlying root causes which can potentially cause 

malfunctioning of the product. 

To eliminate the dependency on case-by-case heuristic analysis, this 

chapter develops scalable surrogate model driven corrective action of product failures 

due to dimensional variations of KPCs based on (1) diagnosis via scalable surrogate 

modelling for KCC dimensionality; and, (2) two-step design adjustment to reduce 

production yield of faulty KPCs. 

5.3 Scalable surrogate model driven corrective action of product 

failures due to dimensional variations in KPCs 

    Failures in type-I assembly products can be caused by unwanted 

dimensional variations of assembly KPCs. The proposed method of diagnosis via 

scalable surrogate modelling for KCC dimensionality focuses on addressing direct or 

consequential failures caused by unwanted dimensional variations in assembly KPCs. 

Failures are caused by a product malfunctioning which critically depends on 

dimensional variations of  KPCs such as gaps, contacts or inclination between mating 

surfaces. Assembly KPCs depend on dimensions of individual parts and sub-

assemblies (KCCs). When KPCs do not meet the tolerance required for normal 

functioning of the product, failures occur. For example, if a clearance or contact 

between two mating surfaces is required for normal functioning, then interference 

between the two surfaces will cause failure. 

The proposed methodology first diagnoses few critical KCCs whose 

dimensional variations are closely related to the faulty KPCs. A surrogate model of 

the faulty KPCs as a function of the critical KCCs is also developed. This is followed 

by a two-step design adjustment process using the surrogate models of faulty KPCs to 
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determine an optimal nominal change and tolerance reallocation of the critical KCCs 

which minimizes production fallout of faulty KPCs.  The steps of scalable surrogate 

model driven corrective action are elaborated in Figure 5.2. 

 

 

Figure 5.2: Corrective action of product failures due to                                         

dimensional variations of KPCs 

 

The two major components of the methodology are described as follows: 

A. Diagnosis via scalable surrogate modelling for KCC dimensionality – Steps A.1 

through A.4 is done to identify few critical KCCs relates to the faulty KPC: 
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 Step A.1: Identify faulty KPCs – Fault tree diagram is used to map the failure 

mode to dimensional KPCs, such as gaps, contacts between mating surfaces. 

Moreover, a sample of failed parts is subjected to inspection and measurement 

to confirm that the faulty KPCs, which are identified from analyzing the fault 

tree, do not satisfy the tolerance required for the normal functioning of the 

component. 

 

 Step A.2: Conduct Variation Simulation Analysis of faulty KPCs – Data 

from VSA is analyzed to identify critical KCCs related to the faulty KPCs and 

develop surrogate models of the latter. Data is generated by simulating 

dimensional variation of KCCs and faulty KPCs through the following two 

steps: 

A.2.1. Setup input to VSA – Datum Flow Chain (DFC) technique (Whitney, 

2004) is applied to nominal CAD of the component to determine 

individual parts whose dimensional variation are the KCCs in this case.  

Nominal, tolerance and probability distribution are defined for the 

KCCs. Next assembly constraints are introduced between the KCCs to 

define mating surfaces. 

A.2.2. Run VSA for ‘N’ times –VSA generates KCCs by random sampling 

based on the nominal, tolerance and probability distribution defined in 

the previous step. Based on first-principle analysis, such as kinematic 

analysis, VSA determines the optimal assembly configuration for given 

KCCs and KPCs of interest are estimated by measuring the related 

geometric features such as clearance or inclination between mating 

surfaces. VSA is run for ‘N’ times and KCCs and KPCs are recorded 
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for each run. Data generated by simulation is used to train the surrogate 

model. 

 Step A.3: Identify critical KCCs and their interactions related to faulty 

KPCs – In complex assemblies, variations in a large number of KCCs can 

potentially affect variations in the faulty KPCs. This step addresses the high 

dimensionality of KCCs to identify the few ones closely related to the faulty 

KPCs. The main objective is to develop the best fitting surrogate model of a 

faulty KPC based on minimization of the generalized prediction error of the 

model. KCCs selected to achieve the best fitting model are considered as the 

critical KCCs related to the faulty KPC. 

The aforementioned best fitting surrogate model of a faulty KPC in 

terms of critical KCCs is achieved by Polynomial Feature Selection (PFS), 

which is adapted from Chapters 3 and 4 to selectively identify critical KCCs 

and multiplicative interactions between them which accurately models the 

faulty KPCs. 

In this section, PFS is adapted in the context of surrogate modelling 

for dimensionality reduction to address identification of critical KCCs. 

Variations in ‘d’ KCCs, 1 2
{ , ,... }

d
x x xx  are considered to develop surrogate 

model of a KPC ‘y’. The surrogate model of the KPC is based on critical 

KCCs 
*
x x  which is a subset of the full set of KCCs. The surrogate model 

is represented as 

                                                           
*

( )y f x                                                   (5.1)                                                                                                                               

      Since KCCs interact non-linearly to affect variations in KPCs, the objective of 

PFS is to analytically model the underlying non-linear relationship between the 

faulty KPC and the critical KCCs.  
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In this chapter critical KCCs (
*

x ) and their polynomial interactions ( *
h ) 

affecting faulty KPCs is identified using the Polynomial Feature Selection (PFS) 

algorithm. The PFS algorithm has been developed in Chapter 3. In this chapter PFS 

has been adapted from Chapter 3 where it has been applied to determine optimal 

polynomial interactions between fixture related KCCs such as clamp locations to 

develop best-fitting global model of KPCs such as part-to-part gaps between mating 

parts of an assembly. For detailed description of the PFS algorithm, the reader is 

suggested to refer Section 3.5.1.1 of Chapter 3. 

 

 Step A.4: Develop surrogate model of faulty KPCs from critical KCCs -   

Critical KCCs and their interactions are determined in the previous step. The 

final surrogate model is built on the full training data using the polynomial 

terms  *
h . The final surrogate model is represented in Eq. (5.4). 

                                 * *

* * * *

0 1 1 2 2
...

m m
y h h h                                        (5.4) 

     where 
*

m  are number of features in *

* * * *

1 2
{ , ,..., }

m
h h hh  and 

*

* * * *

1 2
{ , ,..., }

m
  β  are coefficients of the surrogate model determined by the 

method of least squares. 

B. 2-step design adjustment of critical KCCs – The 2-step design adjustment focuses 

on reducing production fallout of faulty components at minimal increase in costs of 

manufacturing due to adjusted tolerance of critical KCCs. KPCs such as gaps or 

inclinations between mating parts are required for normal functioning of the 

product. Faulty KPC, such as interference instead of clearance, lead to 

malfunctioning of the component. A range of dimensions for KPCi liable to cause 
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product malfunctioning is defined as a failure region FRi=[LFLi,UFLi] where the 

lower and upper failure levels are LFLi and UFLi respectively.  

In this step, adjustment of the nominal and tolerances of critical 

KCCs is done to reduce production fallout of KPCi within the failure region FRi. To 

address this, a two-step design adjustment is suggested: (1) nominal change of 

critical KCCs; and (2) tolerance reallocation of critical KCCs based on the adjusted 

nominal. 

Furthermore, it is assumed that the nominal change of KCCs can be 

achieved at no additional cost of manufacturing while tolerance reallocation is 

accompanied by an increase in cost of manufacturing. 

The critical elements in the 2-step design adjustment are the 

surrogate models of faulty KPCs developed by diagnosis via scalable surrogate 

modelling for KCC dimensionality. The surrogate models links faulty KPCs with 

few critical KCCs closely related to the faulty KPCs. 

The two steps of the proposed design adjustment process are 

described as follows: 

 Step B.1: Nominal change of KCCs – Nominal adjustment of KCCs is 

performed to minimize the total production yields of faulty KPCs. Let gi be the 

probability distribution of the dimensional variations of ith faulty KPC i
y . The 

production fallout of KPC i
y  is obtained as 

                                          
UFL

LFL

( )
i

i

i i i i
M g y dy                                                 (5.5) 

The constrained optimization problem to minimize total production yield of all 

the faulty KPCs is described as follows: 
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                      Minimize, 
1

r

i

i

M


 , Subject to 
~ ( , )

6
k

j

j j j

p

lower upper

j j j

T
x N

C
 

  



 

            (5.6) 

Here,   
j

 =Initial design nominal of 
j

x  

            
j

T = Tolerance of
j

x  

            
kp

C = Process capability of manufacturing 
j

x  

            
j

 = Nominal change applied to
j

x  

             
lower

j
  and  

upper

j
 =Allowable lower and upper limits of nominal 

change due to manufacturing constraints. 

KCCs are assumed to follow normal distribution. The probability 

distribution gi of the faulty KPCi depends on the probability distribution of the 

critical KCCs and can be derived as a function of the probability distribution of 

the individual KCCs. The mapping of the probability distribution of KPCi from 

the probability distributions of the individual KCCs is enabled by the surrogate 

model of KPCi. Since the surrogate model might have a higher order 

polynomial and multiplicative terms, KPCi is not a linear combination of the 

critical KCCs related to it. In this case, gi might not be derivable as a closed-

form function of the normal distributions of the individual KCCs. Therefore, 

kernel density estimation (KDE) is applied to approximate the integral in 

Equation (5.5). 

The optimization problem prescribed in Eq. (5.6) can be solved by 

meta-heuristic search techniques such as Genetic Algorithm. Let  i
M   be the 

reduced production yield of faulty KPCi after nominal change of the critical 

KCCs. 
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 Step B.2: Tolerance reallocation of KCCs - Adjustment of tolerance is 

accompanied by change in cost of manufacturing. The cost of manufacturing 

particularly related to tolerance reallocation of assembly KCCs is referred to as 

cost of tolerancing. A tighter tolerance with less variation requires higher cost 

of tolerancing. Chase (1999) suggests several methods to calculate the cost of 

tolerancing from tolerance of individual assembly dimensions. In this chapter, 

cost of tolerancing is modelled using the reciprocal squared relationship 

between the cost and the required tolerance of KCC. The cost of tolerancing 

required to achieve a tolerance Tj of KCCj is calculated as, 

                                               
2

B
A

j

j j

j

C
T

                                                    (5.7) 

where A
j
and B

j
are user-defined constants for the tolerancing cost model. 

Moreover in this step, cost of quality loss due to unwanted variations 

in KPCs, such as warranty cost, is also taken into consideration.  The cost of 

quality loss (CW) is proportional to fallout  of faulty KPCs and is given by,               

                                             
1

D
n

W i

i

C M


                                                  (5.8) 

where D is the cost of quality loss per failure. 

The optimization problem of determining tolerance reallocation of 

critical KCCs focus on minimization of the total cost incurred due to cost of 

tolerancing and the cost of quality loss. Eq. (5.9) formulates the tolerance 

reallocation. 

Minimize, Total Cost=
1

d

j j

j

a C


 + CW, Subject to ~ ( , )
6

k

jopt

j j j

p

T
x N

C
     (5.9) 
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Here, 
j

a =0 if jth KCC is selected as a critical one for at least of the else 
j

a =1 if 

not. 
opt

j
  is the optimal nominal change of 

j
x  determined in Step B.1.                

Aj and Bj are constants which determine fixed and variable costs of producing 

tolerance
j

T . Rest of the variables has same meaning as in the nominal change 

optimization problem formulated in Eq. (5.6). 

The optimization problems in Steps B.1 and B.2 are solved by 

Genetic Algorithm with settings as follows: (1) Population size: 20 chromosomes; 

(2) No. of generations: 150; (3) Crossover rate: 0.80; and (4) Mutation rate: 0.20.     

 

5.4 Case Study 

The proposed methodology for corrective action of product failures due to 

dimensional variations of KPCs is demonstrated with an industrial case study of 

automotive ignition switch. Corrective action is suggested for a warranty failure 

related to the ignition switch. Figure 5.3 presents an exploded view of the ignition 

switch showing individual components 1-5.  

 

Figure 5.3: Exploded view of automotive ignition switch with individual parts 
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  A warranty failure directly related to ignition switch is ‘Sticky key’ 

whereby when the key is turned from Ignition to Start position, the ignition switch 

malfunctions and the key is incapable of returning to Ignition position by an internal 

spring-back action due to interference between mating surfaces of individual parts.   

Moreover, there is a consequential warranty failure caused by the 

aforementioned malfunction. Overstay of the key at the Start position allows 

excessive current to flow through starter motor resulting in ‘Starter motor burnout’, 

which is an electro-mechanical failure i.e. consequential electrical failure caused by 

dimensional variations of internal components of the ignition switch which is a type-I 

mechanical assembly. 

    Results of the case study are presented in two parts as follows:                

(A) diagnosis via scalable surrogate modeling for KCC dimensionality; and,             

(B) 2-step design adjustment via nominal change followed by tolerance reallocation of 

critical KCCs. The results are detailed as follows: 

 Case study results of part A: Diagnosis via scalable surrogate modelling for 

KCC dimensionality is described in the following four steps: 

o Step A.1: Identify faulty KPCs - Warranty data is analysed to find 

‘Sticky Key’ and ‘Start motor burnout’ incidents reported by 

customers. The ignition switch is found to be replaced for both failures. 

The fault tree diagram of ‘Sticky key’ problem as shown in Figure 5.4 

identifies that the misalignment of stator within the body of the ignition 

switch is a potential cause of the failure. 
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Figure 5.4: Fault tree diagram of ‘Sticky key’ failure in ignition switch 

 

 

X-Ray Computer Tomography (CT) scanning of faulty ignition 

switches shows that misalignment of the stator within the body causes 

interference between the lock and the cam. This is illustrated in Figure 

5.5. 

    

Figure 5.5: Lock & cam interference due to stator 

 

In this case study, the gap between the lock and the cam is taken into 

consideration as KPC, which in the case of clearance allows free 

rotation of the cam inside the lock but in case of interference causes the 

‘Sticky key’ failure. Measurements from a sample of failed ignition 
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switches show interferences of more than 0.02 mm has caused both 

‘Sticky key’ and ‘Starter motor burnout’ failures. Hence, the objective 

of this case study is to reduce production fallout of ignition switches 

with lock-cam interference of more than 0.02 mm. The KPCs required 

for the free movement of the key are clearance at both upper and lower 

ends of the cam and lock contact. Therefore, the KPCs are 

KPC1=Upper Clearance and KPC2=Lower Clearance. ‘Sticky Key’ 

occurs in case of interference or faulty KPCs at either end. 

 

o Step A.2: Conduct Variation Simulation Analysis of faulty KPCs - 

Datum flow chain (DFC) of the ignition switch is prepared from the 

nominal CAD of the ignition switch. Joints J1-J8 are the mating surfaces 

as shown in Figure 5.6. The cam and lock mating surface is indicated 

by joint J4 . The VSA model used in this case study is Statistical 

Variation Analysis for Tolerancing (SVA-TOL) (Franciosa, et al., 

2010). KCCs are of two types: (i) Rotational-α, β and γ for rotations 

about x, y and z axis respectively; and (ii) Translational - Δx, Δy and 

Δz for movement along x, y and z axis respectively. A total of 24 KCCs 

can affect variation in the KPCs. All KCCs represent deviations from 

the original dimensions and therefore have a nominal of zero.                 

SVA-TOL is run N=3000 times to generate the data for developing the 

surrogate models.  

 



205 
 

 

Figure 5.6: Datum Flow Chain of Ignition Switch 

 

o Step A.3: Identify critical KCCs and their interactions related to 

faulty KPCs - The optimal order of the polynomial identified by PFS 

for both KPCs is p*=3 in this case study. The Forward Selection-

Backward Elimination algorithm selects the critical KPCs by fitting 1st, 

2nd and 3rd order surrogate models successively. 5 fold cross validation 

is performed to determine selection or elimination of a feature. The 

total number of candidate polynomial terms with multiplicative 

interaction is 24+242+243=14424 out of which 4 critical terms are 

identified by PFS for each KPC. Critical KCCs present in these terms 

are 3 and 5 at model R2 = 0.901 and 0.923 for KPC1 and KPC2 

respectively. Table 5.1 summarizes the results of PFS. 
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Table 5.1: Results of Polynomial Feature Selection for diagosis                                            

to identify critical KCCs 

Initial design nominal  

Total no. of  

KCCs 

No. of critical 

KCCs 

Critical KCCs 

Upper clearance (KPC1) 24 3 
2

 , 3
 & 11

  

Lower clearance (KPC2) 24 5 
2

 , 3
 , 11

 , F21
x & 23

x  

 

o Step A.4: Develop Surrogate Model of faulty KPCs from critical 

KCCs - Based on the critical KCCs identified in the previous step, the 

final surrogate model is built using the full training data. The final 

surrogate models are as follows: 

             
F 31

5

F 42 4
1.16 10 1.61 1.63FR  

   ( . . )
F 43 F 11 F 43

2 47 4 66          (5.10)                                         

                                   4

32 F 42 F 4
4.22 10 1.58 1.56FR  
     

                                     x ( . x . x )
F 11 F 21 F 21 F 53

37 01 45 91                                 (5.11)                       

 

 3-D plots of the surrogate models are shown in Figures 5.7 (a) and (b). 
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Figure 5.7: Surrogate models of (a) Upper; and (b) Lower Clearance 

 

 Case Study Results Part (B): 2-step design adjustment of critical KCCs – 

The surrogate models developed in the previous step are used for the two step 

design adjustment to reduce production yield of faulty KPCs. The input to the 

optimization models related to the design adjustment process are listed in 

Table 5.2.  
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Table 5.2: Input to two-step design adjustment 

Input to 

GA 

 

KCCs 

Initial Tolerance 

(TKCC) 

(in radians or 

mm**) 

LB-UB* for 

Nominal 

change 

(radians or 

mm) 

Process 

Capability 

Fixed Cost of 

Tolerancing (A) 

(in monetary 

units) 

Variable Cost 

of Tolerancing 

(B) 

(in monetary 

units) 

F42
  0.08 

0-0.1 1.33 

6.75 1.20 

F43
  0.08 2.80 2.75 

F11
  0.20 4.50 0.88 

F21
  0.13 2.80 2.75 

F53
  0.13 2.80 2.75 

*LB – Lower Bound & UB – Upper Bound ; **radians for rotational KCCs & mm for translational 

KCCs  

 

Results of nominal change and tolerance reallocation of KCCs are detailed as 

follows: 

o Step B.1: Nominal adjustments of critical KCCs – The nominals of the 

critical KCCs are adjusted to minimize the total fallout of faulty KPCs. 

In this stage, minimization is done by keeping the tolerance constant. 

Therefore manufacturing costs related to nominal change is assumed to 

be negligible. Due to the manufacturing constraints upper and lower 

bounds of the nominal change of each KCC is specified.  

The nominal change in this step reduces ‘Sticky key’ cases from 

38.82% to 13.34%. 

 

o Step B.2: Tolerance reallocation of critical KCCs – In this case study, 

the cost of quality loss due to unwanted dimensional variations of 

KPCs is derived from the cost of warranty failure of the ignition switch. 

To demonstrate the impact of the tolerance reallocation on failures and 

related costs, this step in done in the following two ways – (1) only 

tolerance reallocation assuming nominal change have not been done; 

and, (2) tolerance reallocation following nominal change. As shown by 
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results in Table 5.3, only tolerance reallocation reduces percentage of 

‘Sticky Key’ cases from 38.82% from 7.97% but at a total cost which is 

highest among the three types of design adjustments. 

 

Summary of results 

Summary of results is presented as follows: Table 5.3 presents a 

summary of the adjusted nominal and tolerance of the critical KCCs and associated 

cost of warranty and cost of tolerancing. Figure 5.8 shows percentage of faulty KPC1 

and KPC2 before and after the corrective action (CA). Next Figure 5.9 shows cost of 

tolerancing and cost of warranty before and after CA. Furthermore, cost-benefit 

analyses are shown in Figure 5.10 for the following three types of CA: (1) Nominal 

change; (2) Tolerance reallocation; and (3) Nominal change followed by tolerance 

reallocation. For cost-benefit analysis in case of each of the three aforementioned types 

of corrective action, cost of tolerancing is the “cost” component and decrease in cost 

of warranty after performing the corrective action is the “benefit” component. 
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Table 5.3: Summary of results of corrective actions of warranty failure in automotive ignition switch 

 

CAs 

Results 
Before CA 

After CA 

Only Nominal Change Only Tolerance Reallocation 
Nominal Change & 

Tolerance Reallocation 

Nominals of KCCs 

F42 F43 F11 F21 F53
[ , , , ]      

(in radians or mm) 

[0, 0, 0, 0, 0] [0.025, 0.014, 0.1, 0.1, 0] [0, 0, 0, 0, 0] [0.024, 0.0142, 0.10, 0.10, 0] 

Std. Dev. of DPs 

F42 F43 F11 F21 F53
[ , , , ]      

(in radians or mm) 

[0.08, 0.08, 0.20, 0.13, 

0.13] 

[0.08, 0.08, 0.20, 0.13, 

0.13] 

[0.005, 0.005, 0.024, 0.016, 

0.016] 

[0.007, 0.008, 0.019, 0.015, 

0.016] 

% of Faulty FR1 19.68 6.36 4.13 1.64 

% of Faulty FR2 19.14 6.98 3.84 2.76 

% of ‘Sticky Key’ 38.82 13.34 7.97 6.39 

Cost of Tolerancing 

(in monetary units) 
997 997 2822 1584 

Cost of Warranty 

(in monetary units) 
5775 1980 1190 648 

Total Cost 

(in monetary units) 
6772 2977 4012 2232 
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Figure 5.8: Percentage faulty KPC1 and KPC2 before and after corrective action 

 

 

 

Figure 5.9: Cost of tolerancing and warranty before and after corrective action 
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Figure 5.10:  Cost-benefit analysis of corrective actions 

 

 

Discussion of Results – The significance of results from the case study is discussed 

based on the following three aspects: 

i. Dimensionality reduction for identification of critical KCCs affecting faulty 

KPCs – The scalable surrogate modelling approach identified 3 and 5 critical 

KCCs from a total of 24 for KPC1 and KPC2 respectively. Reducing the 

number of KCCs is crucial as tolerance re-allocation incurs cost, which will be 

lesser when fewer KCCs are adjusted. 

ii. Sensitivity Analysis of faulty KPCs with respect to critical KCCs – The 

surrogate models expresses the faulty KPCs as analytical response functions of 

critical KCCs. For complex assemblies analyzed by numerically intractable 

VSA models, the KPC surrogate models can be utilized as closed-form 

assembly response functions (ARF) integrating KPCs with KCCs. Availability 

of ARF enables sensitivity analysis of the KPCs with respect the KCCs which 
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is crucial for traditional approaches of tolerance allocation (Chase, 1999) 

during type-I assembly process design. 

iii. Corrective action of product failures – Overall, the surrogate models have 

expressed faulty KPCs as analytical response of critical KCCs and their 

interactions. Closed-form relations between faulty KPCs and critical KCCs 

have been used in determining production fallout of faulty KPCs, which is then 

minimized by the proposed two-step design adjustment. As indicated in the 

results, the best approach for corrective action to achieve minimization of 

fallout of faulty KPCs, in this case, is nominal change followed by tolerance 

reallocation. This approach minimizes both the fallout of faulty KPCs and total 

the cost given by the sum of warranty and tolerancing costs. 

It is noteworthy from Figure 5.8 that the total percentage of faulty KPCs is 

over 38 %. This high initial percentage of faulty cases can be explained by the 

ill-conditioned design of the ignition switch assembly wherein variations of 

lock and cam upper and lower clearances (KPC1 and KPC2) is affected by 

variations of critical KCCs ( 2
 , 3

  and 11
 ) which affects both the KPCs. When 

two KPCs share multiple critical KCCs the assembly design is ill-conditioned. 

Under ill-conditioned design, the total percentage of faulty KPCs is high 

(Phoomboplab and Ceglarek, 2008; Huang, et al., 2009)  

 

5.5 Summary 

In complex assemblies, dimensional variations in a KPC can be affected 

by variations in a large number of KCCs. Addressing the dimensionality of KCCs is 

crucial for design synthesis tasks such as the diagnosis of unwanted variations in 

KPCs by identification of few critical KCCs closely related to the KPC of interest. 
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Currently existing methods for the diagnosis of KPC variations have the following 

two limitations: (1) they do not address the dimensionality reduction of the original set 

of KCCs to identify fewer critical KCCs; and, (2) they rely on the in-depth 

understanding of the physical process governing the KPC-KCC interrelations through 

closed form first-principle models.   

To address the aforementioned limitations, this chapter has developed an 

approach for the diagnosis of unwanted variations in KPCs via scalable surrogate 

modelling for KCC dimensionality. The proposed method is data-driven and is 

independent of the actual physical process through which variations in KCCs lead to 

variations in faulty KPCs. The critical KCCs are identified by Polynomial Feature 

Selection which searches through the original set of KCCs to determine a few critical 

KCCs and their multiplicative interactions through development of best fitting 

surrogate models linking the faulty KPCs with the critical KCCs. 

Furthermore, scalable surrogate modelling for KPC dimensionality is 

developed in this chapter to address the corrective action of product failures triggered 

by dimensional variations of KPCs. Such failures occur in type-I assembly products, 

for which, though advanced Variation Simulation Analysis (VSA) models exist for 

estimating KPCs from KCCs,  there is lack of systematic approach of corrective action 

of failures due to unwanted variations in KPCs which are closely related to the normal 

functionality of the assembly. To address this need, a systematic methodology of 

scalable surrogate model driven corrective action has been developed based on the 

following two interlinked approaches: (1) diagnosis via scalable surrogate modelling 

for KPC dimensionality to develop surrogate models of faulty KPCs in terms of few 

critical KCCs; and, (2) two-step design adjustment which utilizes the surrogate models 

to minimize production fallout of the faulty KPCs via nominal change followed by 
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tolerance reallocation of the critical KCCs. 

The proposed methodology was demonstrated through an industrial case 

study on the warranty failures related to an automotive ignition switch. The results 

indicate a successful dimensionality reduction of KCCs from an initial set of twenty 

four KCCs to the final sets of three and five critical KCCs for KPC1 and KPC2, 

respectively. Furthermore, as a result of the proposed corrective actions, the total 

production yield of faulty KPCs is reduced from 38.82 % to 7.97 %. 
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CHAPTER 6                                                                                       

CONCLUSIONS, CRITICAL REVIEW AND FUTURE WORK 

 

    This chapter summarizes the methodologies developed in this thesis and 

discusses the conclusions and overall findings derived from the research presented in 

the previous chapters. Moreover, a critical review of the proposed methods in terms of 

advantages and limitations is presented. A discussion on the computational effort 

required for developing scalable surrogate models is also given. Broader impact of the 

research in terms of engineering relevance and applications is also discussed. 

Furthermore, future work based on the current research is discussed. 

6.1 Summary  

 

In automotive industry, there is a growing expectation to improve the 

quality of integrated product and production system design solutions by design 

synthesis in order to reduce failures and subsequent engineering changes during ramp 

and consequential delays to launch of full-production. Design synthesis of automotive 

body-in-white (BIW) assembly system focuses on determining optimal Key Control 

Characteristics (KCCs) and Key Product Characteristics (KPCs) which optimize Key 

Performance Indicators (KPIs) related to the assembly system subject to design 

tolerances of KPCs and operating limits of KCCs. A critical element of design 

synthesis is the assembly response function (ARF) integrating KPCs with KCCs 

interrelations. However, design synthesis tasks driven by computer-based Variation 

Simulation Analysis (VSA) or physical experimentation involve two challenges:      

(1) lack of analytical ARF between KPCs and KCCs interrelations; and, (2) resource 

intensive simulation and experimentation. 

 Few studies were done in the past to address the aforementioned 
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challenges by surrogate models. However, there is lack of systematic approach to 

develop surrogate models which can adequately address the following three crucial 

characteristics of KPC-KCC interrelations: (1) varying deterministic non-linearity of 

KPCs as measured by number of local maximas and minimas; (2) varying 

stochasticity of KPC-KCC interrelations which can be measured by homo- to hetero-

skedastic behaviour; and, (3) KCC dimensionality affecting a KPC of interest. The 

aforementioned challenges contribute to the fundamental requirements of many design 

synthesis tasks related to assembly system in automotive and aerospace industries.  

To address the aforementioned challenges, this thesis proposed three 

fundamental methodological enablers for surrogate model development in design 

synthesis tasks in order to address the KPC-KCC interrelations with minimal 

knowledge about the underlying physical processes. The three proposed 

methodological enablers are: (1) scalability for deterministic non-linearity of KPCs; 

(2) scalability for stochasticity of KPCs; and, (3) scalability for KCC dimensionality 

affecting variations in a KPC. 

 The aforementioned three methodological enablers are developed in this 

thesis for Scalable Design Synthesis (SDS). The SDS framework is based on the 

following two interlinked approaches: (1) scalable surrogate models addressing the 

aforementioned three characteristic of KPC-KCC interrelations; and, (2) integration of 

the scalable surrogate models with optimization routines to determine optimal KPCs 

and KCCs for the given design synthesis task. 

Based on the SDS framework three methodologies are developed each 

addressing a characteristic of the KPC-KCC interrelations. 

Firstly, scalable surrogate model driven fixture layout optimization for 

sheet part assemblies addresses varying deterministic non-linearity of assembly KPCs 
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such as part-to-part gaps which are estimated by VSA for given fixture clamp locating 

layout (KCCs). The KPC surrogate models are utilized to determine optimal clamp 

layout. 

Secondly, scalable surrogate model driven joining process parameters 

selection develops surrogate models of assembly joining KPC-KCC interrelations 

which can vary from homo-to hetero-skedastic behaviour. The homo- and hetero-

skedastic surrogate models are then used for the following two tasks (1) multi-

objective optimization of process efficiency and quality; and, (2) identification of 

process window and computation of acceptance rate. 

 Lastly, scalable surrogate model driven corrective action for product 

failures addresses the issue of high dimensionality of KCCs.  Efficient diagnosis of 

failures due to dimensional variations of KPCs is achieved through dimensionality 

reduction of KCCs which identifies few critical KCCs closely related to the faulty 

KPCs. Surrogate models integrating the faulty KPCs with the identified critical KCCs 

are developed. The surrogate models are used for KCC adjustment to reduce 

production yield of faulty KPCs. 

6.2 Conclusions 

The Scalable Design Synthesis framework is expected to leverage and 

complement the capabilities of currently existing VSA softwares and physical 

experimentation to deliver quality design solutions within time constraints for design 

synthesis tasks related to assembly system. To this end, the major achievements of this 

thesis are summarized as follows: 

i. Scalable surrogate model driven fixture layout optimization 

The major achievement of this methodology is enabling the application of 

advanced VSA softwares in efficient design synthesis tasks such as fixture 
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layout optimization for sheet metal assemblies. The crucial element is 

development of scalable surrogate models of KPC-KCC interrelations from 

VSA. The proposed scalable surrogate models generate realistic VSA results for 

underlying KPC-KCC interrelations which have varying deterministic non-

linearity. To achieve this, scalable surrogate modelling for deterministic non-

linearity has been developed based on the following two novel methods: 

A. Greedy Polynomial Kriging  (GPK) – This method develops a novel 

approach of training Kriging surrogate models focusing on 

minimization of generalized prediction error on unseen test samples 

B. Optimal Multi Response Adaptive Sampling (O-MRAS) – To reduce 

computation required for generating training data from VSA,             

O-MRAS provides a novel approach of accelerating convergence of 

multiple surrogate models using a single training sample 

Optimization of fixture KCCs is done by utilizing the GPK surrogate 

models of part-to-part gaps (KPCs) to determine optimal fixture layout (KCCs). 

The proposed methodology is applied to industrial case studies of sheet 

metal assemblies from automotive and aerospace industries. Comparison with 

state-of-the-art methods shows that predictive accuracy of GPK is on an average 

55% higher than 2nd order polynomial regression, which is most commonly used 

for surrogate modelling in design synthesis. Moreover, O-MRAS accelerates 

convergence of multiple surrogate models faster than currently existing Uniform 

Random Sampling (URS) as demonstrated by the fact that surrogate models 

trained by O-MRAS are 35% more accurate than those trained by URS in same 

number of simulations. 

ii. Scalable surrogate model driven joining process parameters selection 
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The main achievement of this methodology is enabling efficient use of 

physical experimentation for design synthesis tasks which lack first-principle 

based VSA models of KPC-KCC interrelations. The proposed methodology 

allows accurate characterization of stochastic behaviour of KPCs frequently 

observed in physical experimentation. This is achieved by scalable surrogate 

modelling for KPC stochasticity which identifies and characterizes varying 

stochasticity of KPC-KCC interrelations in design synthesis tasks such as 

joining process parameters selection. 

Scalable surrogate modelling for KPC stochasticity is achieved by the 

following three steps: 

A. Development of homo-skedastic model of KPCs 

B. Detection of hetero-skedasticity in the homo-skedastic models via 

statistical hypothesis testing 

C. Enhancement of homo-skedastic models to characterize the hetero-

skedastic behaviour of KPCs detected by statistical hypothesis testing  

Moreover, best fitting homo- and hetero-skedastic models are developed 

by Polynomial Feature Selection which focuses on minimization of generalized 

prediction error on unseen test samples. 

Homo- and hetero-skedastic surrogate models are developed for joint 

KPCs of Body-in-White (BIW) assembly joining processes. The surrogate 

models are utilized in joining process parameters selection which includes the 

following two capabilities: (1) multi-objective optimization, which contrary to 

state-of-the-art methods on Laser Transmission Welding and Resistance Spot 

Welding, not only optimizes joining KPIs related to process efficiency such as 

cycle time, welding speed etc. in case of laser welding but also minimizes KPIs 
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related to process quality such as KCC-dependent hetero-skedastic variance in 

joint quality; and, (2) identification of process window and acceptance rate of 

the joining process taking into consideration homo- and hetero-skedasticity of 

joining process KPC-KCC interrelations. 

The proposed methodology is applied to characterize the Remote Laser 

Welding (RLW) process for BIW assembly joining. Results from the case study 

provide the following two important insights about the RLW process: 

A. Presence of both homo- and hetero-skedastic KPCs – Scalable 

surrogate modelling for the RLW joint KPCs shows that both homo- 

and hetero-skedastic joint KPCs are present in the RLW joining 

process. The presence of hetero-skedastic KPCs having KCC-

dependent variance contributes to the results of joining process 

parameters selection being significantly different from that obtained 

from currently existing homo-skedastic surrogate models. For 

example, acceptance rate estimated by state-of-the-art 2nd order 

polynomial regression is on an average 41% higher than that computed 

using the proposed scalable surrogate models. 

B. Trade-off between process efficiency and process quality – The major 

impact of presence of hetero-skedastic KPCs is the non-monotonic 

change in process quality over a monotonic change in process 

efficiency. This is illustrated by the variation of acceptance rate over 

the process window as explained below. 

The process window determines the operating conditions of the 

joining process KCCs which can deliver joint KPCs within their 

design tolerances. However, KCCs which are within the process 
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window and which maximize process efficiency related KPIs might 

not deliver maximum process quality such as maximum acceptance 

rate. For example, in RLW if process efficiency needs to be 

maximized then maximum welding speed within the process window 

will be preferred for running the process. However, maximum welding 

speed might not give maximum acceptance rate. Consequently there is 

a trade-off between KPIs related to process efficiency and quality. 

 The proposed methodology provides the capability to 

analytically address the trade-off between KPIs related to process 

efficiency and quality. 

iii. Scalable surrogate model driven corrective actions for product failures due to 

unwanted dimensional variations of KPCs – 

The main achievement of this methodology is a data-driven approach of 

addressing corrective action in a complex assembly without requiring in-depth 

understanding of the underlying physical process and experience based trial and 

error in KCC adjustment. The crucial element in this methodology is diagnosis 

of the assembly failure through dimensionality reduction of large number of 

KCCs found in complex assemblies. Overall, the proposed corrective action 

involves the following two approaches:  

A. Diagnosis via scalable surrogate modelling of faulty KPCs to identify 

few critical KCCs and develop surrogate models of the faulty KPCs in 

terms of the identified critical KCCs 

B. Two step design adjustment which takes as input the surrogate models 

of faulty KPCs and suggests optimal nominal change and tolerance 

reallocation of critical KCCs to minimize production yield of faulty 
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KPCs 

The proposed methodology focuses on type-I assemblies for which though 

accurate VSA models exist to conduct forward analysis but there is lack of 

systematic approach of dimensionality reduction of KCCs required in tasks such 

as diagnosis of unwanted variations in KPCs. In complex type-I assembly 

products, dimensional variations of KPCs closely related to a failure mode can 

potentially be affected by variations in a large number KCCs. Due to numerical 

intractability of VSA models of complex assemblies involving a large number of 

KCCs, there is lack of information about critical KCCs closely related to the 

faulty KPC and a model of their specific relationship with the latter. This makes 

corrective action case specific and experience based trial-and-error reverse 

engineering. The proposed methodology reduces the dependency on case-by-

case heuristic analysis by integrating failure modes with design models such as 

VSA via surrogate modelling of faulty KPCs in terms of few critical KCCs 

The proposed approach is applied to reduce warranty failures related to an 

automotive ignition switch. Here, warranty failures caused by dimensional 

variations in KPCs of the switch are analyzed. Results show significant 

dimensionality reduction of KCCs. The number of critical KCCs identified for 

the faulty KPCs is on an average 83% less than the total number of KCCs 

present in the switch assembly. Moreover, the production yield of faulty 

switches can be reduced by 34 percentage points by following the KCC 

adjustments recommended in this study. 
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6.3 Critical Review 

This section provides a critical review of the methodologies developed in 

this thesis. Firstly, advantages of the proposed approach are highlighted in Section 

6.3.1. This is followed by a discussion about the limitations of the same in Section 

6.3.2. Lastly, Section 6.3.3 discusses the positive and negative aspects related to 

computational effort required for developing surrogate models. 

6.3.1 Advantages of scalable design synthesis 

The advantages of the three scalable surrogate model driven design 

synthesis methods developed in this thesis are summarised as follows: 

i. Accurate surrogate models for deterministic VSA which provide computationally 

efficient approach of achieving quality design solutions within time constraints – 

This is demonstrated through a comparative study of time-constrained fixture 

layout optimization via direct integration of VSA with GA versus fixture layout 

optimization via surrogate modelling. For the two sheet metal assembly case 

studies described in Chapter 3, fixture layout optimization results are significantly 

better within given time constraints. Cost of quality is 80 % and 50% less when 

surrogate models are used for the doing the fixture layout optimization. 

ii. Identification of stochasticity in KPCs in absence of comprehensive and useful 

first-principle based models – Design synthesis tasks lacking useful first-principle 

models rely on noisy experimentation data for developing KPC-KCC interrelations. 

Proposed scalable surrogate model allows accurate identification of the noise as 

KCC-independent/dependent variance through statistical hypothesis testing. This 

information is then used for characterising design synthesis requirements. Case 

study shows significant difference between results obtained via proposed approach 

and those obtained by state-of-the-art methods. 
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iii. Identification of critical KCCs closely related to a KPC of interest –For complex 

assemblies identifying critical KCCs can be challenging because a large number of 

KCCs can potentially affect a KPC. The proposed method of scalable surrogate 

model identifies critical KCCs with least knowledge about the underlying physical 

process governing the KPC-KCC interrelations. 

Overall benefits of scalable design synthesis 

The design synthesis tasks discussed in this thesis can be addressed by 

trial-and-error approach whereby accurate results might be achieved through the 

application of in-depth knowledge and experience of the physical processes. However, 

experience-driven trial-and-error approach might not be feasible for design of 

products and processes for at least the following two reasons: (i) product and process 

design and requirements of design synthesis changes frequently and are case specific; 

and (ii) knowledge and experience of the designer limits quality of design synthesis 

solution. 

Under the aforementioned conditions, scalable surrogate model driven 

design synthesis provides an analytical and algorithmic approach of addressing design 

synthesis requirements within time constraints. 

 

6.3.2 Limitations of the proposed scalable design synthesis  

Driven by requirements of the design synthesis tasks discussed in this 

thesis, the proposed surrogate models individually address the following three 

characteristics that are present in KPC-KCC interrelationships: (i) deterministic non-

linearity; (ii) stochasticity; and, (iii) KCC dimensionality. However, there might be 

design synthesis tasks which require addressing more than one of the aforementioned 

characteristics. 
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The limitation of the surrogate modelling methods (developed in Chapters 

3, 4 and 5) is that they take into consideration each of the aforementioned three 

characteristics one at a time. Though the proposed methods are building blocks for the 

framework of Scalable Design Synthesis, they might not be sufficient for design 

synthesis tasks such as multi-station fixture layout optimization for batch of parts. 

Though deterministic VSA can be used to analyze fixture KCCs (for example clamp 

locations) and assembly KPCs (such as part-to-part gaps), multi-station fixture layout 

optimization for batch of parts introduces the following additional challenges: 

- stochastic variation in KPCs due to variations of shape from one part to another 

- potential high dimensionality of KCCs related to a KPC due coupling of KCCs 

between multiple stations  

Under the aforementioned conditions, there is requirement to further enhance 

the proposed methods to address more than one of the three characteristics namely 

deterministic non-linearity, stochasticity and KCC dimensionality present in KPC-

KCC interrelations. 

Future work discussed in Section 6.4 outlines an approach to address multiple 

characteristics present in KPC-KCC interrelations. 

 

6.3.3 Review of computational effort in scalable design synthesis 

Computational effort is an important aspect for developing surrogate 

models. This section reviews the advantages and disadvantages with respect to 

computational effort required for developing scalable surrogate models. Moreover, 

overall benefit obtained via the scalability effort is also described. The discussion is 

based on the design synthesis task of fixture layout optimization for which 

computational time is a crucial aspect. 
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Let us introduce few notations followed by a brief recapitulation of the 

surrogate modelling approach for fixture layout optimization. 

 

Notations 

N Number of iterations performed by the surrogate modelling process 

( N )

VSA
t  Computational time spent on running VSA till Nth iteration 

( N )

OK
t  Time taken to run OK till Nth iteration 

( N )

GPK
t  Time taken to run GPK till Nth iteration 

(N)

Total-OK
t  Total computational time taken for training OK models till Nth iteration 

( N)

Total-GPK
t  Total computational time taken for training GPK models till Nth iteration 

 

For fixture layout optimization, a computationally expensive VSA is used 

to estimate assembly KPCs from given fixture KCCs. For the door inner panel-hinge 

assembly discussed in Chapter 3, one run of VSA takes on an average 22 minutes. 

Both OK (state-of-the-art method) and GPK (proposed method) are used to develop 

surrogate models of KPC-KCC interrelations based on VSA. The surrogate models are 

developed by the iterative process discussed in Section 3.3 of Chapter 3. In each 

iteration, 100 simulations of VSA is ran. Therefore the computational time spent on 

running VSA till Nth iteration is given by 

                            (N)

VSA
22 100 22 100 ... Nt       times                                (6.1) 

All the data generated till current iteration is used for training the 

surrogate models. Therefore, sample size of training data grows as

100,2 100,..., N 100  . Due to increasing size of training data computational time 

required for running OK and GPK also increases. Let ( N )

OK
t and ( N )

GPK
t be the time taken to 

run OK and GPK till Nth iteration. Therefore total computational time till Nth iteration 

is the sum of ( N )

VSA
t  and time taken to build surrogate models till Nth iteration and is 
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given by 

for OK as 

                                                  (N) (N) (N)

Total-OK VSA OK
t t t                                                    (6.2) 

and for GPK as 

                               (N) (N) (N)

Total-GPK VSA GPK
t t t                                                  (6.3) 

A key consideration is to run VSA till OK and GPK surrogate models 

attain degree of determination
2

R 0.90 . OK and GPK surrogate models reached the 

required 
2

R in N=8 and N=2 iterations respectively. GPK has been ran for an 

additional two iterations to observe its performance with respect to R2 and 

computational time. 

Figure 6.1 and 6.2 shows R2   and the computational time of OK and GPK 

models over N=1, 2…, 8 iterations. 

 

 

Figure 6.1: Comparison of degree of determination (R2) of OK and GPK 
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Figure 6.2: Comparison of computational time of surrogate modelling between                

OK and GPK 

 

Figure 6.3 shows the total computational time of surrogate modelling 

which includes time taken by VSA and time taken by the surrogate modelling 

algorithms. 

 

Figure 6.3: Comparison of total computational time of surrogate modelling between                

OK and GPK 

 

Based on the results shown in Figures 6.1 and 6.2, the advantages and 

disadvantages with respect to computational time are as follows: 

- Advantages: (i) GPK method reaches required accuracy in significantly less 
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number of iterations; and, (ii) a significant saving in total computational time is 

achieved through GPK which delivers surrogate models of desired accuracy in 

4406.45 minutes which is appromimately 
1

4

th of the total time taken by OK. 

Hence the main advantage is faster development of surrogate models. 

- Disadvantages: (i) As shown in Figure 6.2, GPK takes significantly higher 

computational time than OK for the same number of samples in training data; 

and, (ii) rate of increase of computational time of GPK is higher than that of OK 

with increase in number of samples in training data. This disadvantage might be 

considerable if computational time of VSA is siginifcantly lower. However, for 

practical engnieering application, VSA with a low computational time might not 

be feasible. 

 

Overall benefit of scalability 

Despite higher computational time taken by GPK than OK for same 

number of samples in training data, the overall benefit achieved by GPK stems from 

the fact the total computational time taken by GPK is significantly less than that taken 

by OK. VSA models are computationally expensive. Therefore it is desirable to apply 

surrogate modelling methods such as GPK which can address the underlying non-

linearity in the data and generate surrogate models of required accuracy in minimal 

total time of computation. 

Minimising the total computational time is important for design synthesis 

tasks such as fixture layout optimization which rely on computationally expensive 

VSA. 
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A note on computational effort required for addressing stochasticity and KCC 

dimensionality 

This thesis also addresses varying stochasticity and KCC dimensionality in 

the context of relevant design synthesis tasks discussed in Chapter 4 and 5 

respectively. The primary objective of scalable surrogate models for varying 

stochasticity and KCC dimensionality have been to address limitations and challenges 

which state-of-the-art methods do not take into consideration such as effect of 

stochasticity in calculation of acceptance of joining process and identification of 

critical KCCs for corrective actions. Computational effort for design synthesis tasks 

such as joining process parameters selection and corrective actions of product failures 

as considered in the scope of this thesis might not be significant. However when 

similar design synthesis task will be needed over multiple assembly stations, a 

consideration of computational time will be required. 

 

6.4 Future Work 

In this thesis, methodologies have been developed to address the following 

three design synthesis tasks: (1) fixture layout optimization for sheet metal assemblies; 

(2) joining process parameters selection for automotive BIW assembly joining; and,                     

(3) corrective actions of production failures due to unwanted dimensional variations in 

KPCs. 

Future work related to the aforementioned three design synthesis tasks and 

requiring development of surrogate models is summarized as follows: 

i. Surrogate model driven robust fixture layout optimization – In sheet metal 

assemblies, fixture KCCs such as clamp locating layout control KPCs such as part-
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to-part gaps. The KPC-KCC interrelations are also affected by geometry of the 

parts. Due to variations in the stamping process, geometry of parts is subjected to 

variations and manifest as deviations from the nominal. This type of part variations 

is also called part shape error (Cai, et al., 2009). The KPC-KCC interrelations 

depend on part shape errors. For a single part, fixture design analysis tool with 

negligible numerical error, gives deterministic estimates of KPCs for given KCCs. 

However, when a batch of parts is analysed, estimation of KPCs, subject to part 

shape errors, varies for given KCCs. The variations in KPCs due to shape error of 

parts can be treated as a stochastic noise. Therefore surrogate models for robust 

fixture layout optimization for a batch of parts would require addressing of KPC 

stochasticity originating from part shape errors. 

To enable surrogate modelling driven robust fixture layout optimization, 

the proposed Greedy Polynomial Kriging (GPK) method can be extended to 

address stochastic KPCs. Depending upon requirements of the design synthesis 

task, the following two problem scenarios need to be addressed:  

A. Magnitude of variation in KPCs due to part shape errors is comparable 

to KPC dimensions - In such cases, the design synthesis task might 

require estimation of the KPC variance. To address this need, GPK 

needs to be enhanced to predict both KPCs nominal as well as  

variance 

B.  Magnitude of variation in KPCs due to part shape errors is negligible 

compared to KPC dimensions – In such cases, KPC variation might be 

ignored without affecting the quality of the solution. To address this 

scenario, the negligible stochastic noise in KPCs can be eliminated 

through statistical methods such as Singular Value Decomposition. 
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After removal of the noise, the KPCs can be treated as deterministic 

and the GPK approach can be applied for surrogate model 

development.  

ii. Homo- and hetero-skedastic surrogate modelling of joint KPCs in multi material 

assemblies – Joining processes such as Resistance Spot Welding, Remote Laser 

Welding etc. are applied for vehicle body assembly in industries such as 

automotive and aerospace. Vehicle bodies are made of sheet metal panels which are 

characterized by attributes such as material type, thickness and surface coating. A 

particular combination of these attributes is commonly known in the automotive 

industry as stack-up. Developing surrogate models for joint KPCs for different 

stack-up require conducting separate batches of experiments, which can be resource 

intensive. Future work needs to be done on methods which can provide the 

capability to reduce the number of experiments that need to be done to develop 

surrogate models of acceptable accuracy for a new stack-up. Existing data, 

surrogate models and similarity between stack-up attributes can be utilized to 

determine adaptive sample of KCCs required to run experiments for a new stack-

up.  

iii. Design for service performance via surrogate modelling driven design 

optimization – In this thesis, a scalable surrogate modelling driven corrective 

actions is proposed to address product service failures such as electrical 

malfunctioning caused by dimensional misalignment. The proposed methodology 

has been applied to the industrial case study on automotive ignition switch as a 

reactive approach of corrective action for warranty failures. In future, there is need 

to expand the proposed framework for developing methods which can proactively 

conduct product and process design optimization. Such methods will focus on 



234 
 

improving reliability of product performance in service. Warranty and other 

service related information from previous generations of products needs to be 

integrated with the design optimization during new product and process 

development. This should take into consideration the reliability and failure rate in 

design optimization to develop a comprehensive approach of design for service 

performance, which will go beyond currently existing methods of design for 

serviceability and maintenance which addresses design for ease of product 

maintenance and repair. 

 

6.5 Broader Impact 

Overall, the methodologies develop in this thesis are seen as building 

blocks of a broader engineering framework that seeks to create capabilities required 

for achieving shorter time-to-market with “zero-defect” production. Developing 

systematic approaches to achieving this target is important because  in the face of 

growing market competition on a global scale manufacturers are often required to 

shorten time-to-market, which is closely dependent on integrated product and process 

design time and ramp-up time. To achieve this goal in a cost-efficient manner, 

manufacturers are also required to achieve “zero-defect” capabilities which entail              

(i) minimizing engineering changes after prototype release from design; and (ii) rapid 

identification and root cause analysis of production faults during ramp-up. Shorter 

time-to-market with “zero-defects-capabilities” allows a longer period of full 

production thereby generating higher return-on-investment.  

Managing time-to-market with “zero-defect” capabilities is important 

especially for emerging manufacturing processes such as assembly of automotive 

body panels from remote laser welding (RLW). Successful integration of emerging 
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technologies with existing production systems requires understanding the capabilities 

and limitations of existing computer-aided engineering (CAE) tools and information 

and communications technologies (ICT) and developing systematic methodologies to 

complement CAE and ICT tools. The methodologies developed in this thesis 

contributes to developing a holistic research framework of Lifecycle Analytics 

Development (LAD) which includes research and development of tools to complete 

existing CAE and ICT tools. 

LAD encompasses the ecosystem of research, development, verification & 

validation and implementation of key technical enablers required on top of and 

beyond current CAE and ICT tools to operationalize shorter time-to-market with 

“zero-defect” capabilities in product lifecycle. Under the framework of LAD, the key 

emphasis is given to development of approaches which allows integration of 

heterogeneous engineering models and data from different phases of product lifecycle 

such as design, manufacturing and field2 through data exploration, visualization and 

machine learning to support or enable the application of CAE and ICT tools for 

different engineering tasks in the product lifecycle. Methods developed in the 

ecosystem of LAD are classified into two categories: (i) methods for intra-loop tasks; 

and, (ii) methods for inter-loop tasks (Ceglarek, et al. 2009).   

Intra-loop tasks require data and models from the same phase of product 

lifecycle. Examples of intra-loop task include statistical process control (SPC) which 

uses manufacturing data for monitoring product quality. In design phase, design 

synthesis focusing on design optimization tasks such as fixture layout optimization, 

joining process parameters selection etc. uses simulation and experimentation data 

related to product and process design. Though necessary, simulation and 

                                                
2 Field phase starts in a product’s lifecycle when it starts being used by the customer. 
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experimentation is not sufficient for achieving quality design synthesis results within 

time constraint. Therefore surrogate model such as those developed in this thesis are 

required to complement simulation/experimentation and enhance their practical 

applicability.  

Inter-loop tasks require integration of data and models from more than one 

phase of the product lifecycle such as addressing warranty failures  by using data from 

manufacturing and field phases of the product lifecycle (Mannar, et al., 2006).                    

Inter-loop tasks such as root cause analysis and corrective actions of warranty failures 

creates a closed-loop product lifecycle management system which provides feedback 

from one phase to enable engineering task into another. 

Methodologies related LAD act as crucial enablers to address intra and 

inter loop tasks such as the aforementioned ones. Scalable Design Synthesis proposed 

in this thesis fits into this broader framework of LAD and focusses particularly on 

integrated product and process design during the design phase 

Figure 6.1 shows the intra and inter loops under the research framework 

of LAD. 
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Figure 6.4: Lifecycle Analytics Development – intra and inter loop approaches 
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APPENDIX A 

                               K-FOLD CROSS VALIDATION 

 

K-fold cross validation is commonly used to compute the generalized 

prediction error of a predictive model f , which is measure of its average predictive 

error on unseen test samples. It is motivated by two fundamental problems in machine 

learning: 

i. Model selection – Most statistical predictive models requires tuning of model 

parameters. Examples of models parameters include parameters of the 

correlation function of a Kriging surrogate model, number of hidden layers of 

a neural network, number of leaves in a decision tree and others.  Feature 

selection which involves finding a subset of the explanatory variables ( x ) to 

be used as predictors in a model is special case of model selection. The 

objective of model selection is to determine optimal model parameters 
*
θ  or 

subset of features 
*
x x  in case of feature selection which minimize the 

model’s prediction error which is also called model loss function  L as it 

measures the discrepancy between actual y and predicted ( , )f x θ  

response/target.  

ii. Performance estimation – The prediction error or loss function L of a model 

for given parameters and explanatory variables is a measure of the model’s 

performance. It is used to compare performance of different statistical 

predictive models. 

An essential requirement of both model selection and performance 

estimation is that the measured prediction error or loss function should reflect true 

prediction error of the model observed on the entire population. However, estimation 
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of model’s true prediction error is possible only under availability of unlimited data, 

which seldom happens. Therefore an expected value of the true prediction error/loss 

function E[ ]L   is to be estimated from a limited and observable data 
T 1

S { , }
n

i i i
y


 x . 

It is to be noted that for the expected loss   , to be a reliable estimate of the true 

model error, must be computed on unseen validation sample and not on the data used 

to train the model. Model selection and performance estimation, when done on the 

basis of   which is computed on unseen validation sample, ensure that the model 

generalizes well on unseen validation sample and does not overfit the training sample. 

Therefore it is desirable that  is the model’s generalized prediction error or average 

prediction error observed on unseen validation sample. 

The requirement of a generalized prediction error   is the motivation for 

k-fold cross validation which enables computation of   through repeated random sub-

sampling of the training data T
S . For given model parameters θ  and explanatory 

variables or features x , estimation of  through k-fold cross validation involves the 

following three steps: 

A. Randomly divide the training sample T
S  into k folds or validation samples 

(1) (2) ( )

V V V
, , ,

k
S S S each approximately of m n k  instances 

B. For each 1,2,...,j k  perform the following sub steps: 

- Train the model 
( )j

f using instances from ( )
{ }

g

T g j
S  

- Consider ( )

V

j
S as the validation sample and predicted the response for  

instances in ( )

V

j
S  

- Compute loss function 
( )j

L using the actual and predicted values for fold 

( )

V

j
S . For example, the mean squared error loss for the 

th
j fold is 
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computed as   ( ) ( )

1

1
,

m
j j

i i

i

L y f
m 

  x θ  

C. Compute the generalized prediction error   by taking average of ‘k’ fold 

errors i.e. 
( )

1

1 k
j

j

L
k




  . 

The number of folds ‘k’ is set by the user and is usually kept at 3, 5, 10 

etc. depending upon computational effort required to train the model f  and number 

of instances in training sample T
S . 

The k-fold cross validation technique is used in this thesis for polynomial 

feature selection and surrogate model parameter tuning (for example parameters of 

GPK correlation function). 

Detailed research on k-fold cross validation is done by (Shao, 1993; 

Kohavi, 1995) and other authors. 
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APPENDIX B 

BEST LINEAR UNBIASED ESTIMATOR OF KRIGING 

 
 

The Gaussian Polynomial Kriging (GPK) surrogate model can be 

expressed 

                            
1

ˆ ( ) ( )
m

j j

j

y h Z


  x x                                                (B.1) 

whereby the linear regression 
1

( )
m

j j

j

h


 x provides a global approximation of the 

response over the domain of control parameters and the local non-linearities are 

modelled by the Gaussian process ( )Z x . The regression component is based on 

polynomial features 1 2
( ) { ( ), ( ),..., ( )}

m
h h hh x x x x . The Gaussian process ( )Z x  has 

mean [ ( )] 0E Z x  and covariance,   2
cov Z( ), Z( ) ( , ; )

i k i k
Rx x x x θ . Here, 2 is 

the variance of the Gaussian process and ( )R   is the exponential correlation function, 

which is described as 

                                        
1

( , ) exp( )
d

ij kj

i k

j j

x x
R






 x x                                         (B.2) 

( )R   has parameters 1 2
{ , , , ; }

d
   θ . For given ( )h x and θ , best linear unbiased 

estimators (BLUE) of variance of the Gaussian process 2  and coefficients of the 

regression component, 1 2
{ , ,..., }

m
  β and can be expressed as a function of the 

training data and θ . The process of determining BLUE for 2  and β is now 

described. 
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Given training sample 
T 1

S { , }
n

i i i
y


 x , Eq. (B.3) suggests a linear predictor 

of the response ( )y x  at an unseen test point x . 

                                                 Tˆ ( )y  x w y                                                         (B.3) 

where T

1 2
[ , ,..., ]

n
y y yy is a 1n  vector of the response obtained from the training 

sample T
S  and w  is a 1n  weight vector. The expected mean squared error of the 

linear estimator prescribed in Eq. (B.3) as is  

                              
22 Tˆ ˆ[ ( )] E[ ( ) ( ) ] E[ ( ) ]MSE y y y y      x x x w y x                  (B.4) 

where ( )y x is the actual response at the test point x . 

The BLUE of ( )y x  is given by the weight vector w  which minimizes ˆ[ ( )]MSE y x  

subject to the unbiasedness constraint 

                                                 T
E[ ] E[ ( )]y w y x                                                    (B.5) 

Let H  denote the n m  design matrix of a set of  ‘ m ’  polynomial features ( )h x  and 

R be the n n  correlation matrix based on training samples 
T 1

S { , }
n

i i i
y


 x  for response 

y . The correlation between the untried design point x and instances in the training 

sample T
S  is T

1 2
[ ( , ), ( , ),..., ( , )]

n
R R R   r x x x x x x . All correlations are computed 

based on the exponential correlation function  ( , );
i k

R x x θ , which has given 

parameters θ .  Based on these definitions the MSE can be rewritten as 

                                   T Tˆ[ ( )] [1 2 ]MSE y    x w Rw w r                                      (B.6) 

Moreover the unbiasedness constraint suggested in Eq. (B.5) implies that T H w h , 

where T

1 2
[ ( ), ( ),..., ( )]

m
h h h   h x x x  are the polynomial features at the point x .  The 

weight vector w  of the BLUE satisfies the following Langrangian formulation 

                                        
T

T

0      
    

    

hH

w rH R
                                                    (B.7) 
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where   is the Lagrange multiplier for the constrained minimization of ˆ[ ( )]MSE y x . 

The BLUP of ( )y x  obtained after inverting the partitioned matrix and is given by  

                 T 1 1 T 1 1 T 1 1 T 1ˆ( ) ( ) ( )y
          x h H R H H R y r R y H H R H H R y         (B.8)       

It is noteworthy that the estimated coefficients β̂ of the polynomial features ( )h x  are 

the generalized least squares estimate T 1 1 T 1ˆ ( )
  

β H R H H R y and hence Eq. (B.8) 

can be simplified as follows. 

                                           1ˆ ˆˆ( )y
    x h β r R y Hβ                                           (B.9) 

Moreover the maximum likelihood estimation (MLE) of the process variance 2 is  

                                     2 T 11 ˆ ˆˆ ( ) ( )
n

 
  y Hβ R y Hβ                                            (B.10) 

At this stage it is important to note that both β̂  and 2̂  have been derived as 

functions of the parameters θ  of the exponential correlation function R( ) . θ  are 

either set by the user R  or can be determined by the method of MLE. The log 

likelihood is a function of the coefficients β  of the regression model, the process 

variance  2  and parameters θ  of the correlation function R . Now given the 

estimated regression coefficients β̂  and estimated process variance 2̂ , the MLE of 

θ  is obtained by minimizing 1/ 2ˆ( )
n

det R , which is a function of the correlation 

parameters θ  only. Hence using the given training sample
T 1

S { , }
n

i i i
y


 x , the 

parameters of the correlation function can be determined by running an optimization 

algorithm such as conjugate gradient, Nelder-Mead, BFGS etc. which identifies 

optimal θ  which minimizes the log likelihood. 

The correlation function R( ) is also referred to as the kernel function. 

Kernel optimization for kriging refers to determining the correlation function/kernel 
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parameters θ  and this can be done by MLE. In this thesis, a hybrid approach of 

kernel optimization bas been developed which integrates MLE with minimization of 

the kriging surrogate model’s generalized prediction error which is estimated by k-fold 

cross validation. Using case studies on surrogate modeling for fixture design analysis 

tool, the proposed hybrid approach to kernel optimization has been shown to generate 

kriging surrogate models which have a better performance on unseen test samples than 

those for which kernel optimization is done by state of the art MLE. (Sacks, et al., 

1989) describes the process of generating BLUE estimator for the regression 

coefficients and variance  of Gaussian process. 
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APPENDIX C 

ADDITIONAL CASE STUDY ON                                                                      

OPTIMAL MULTI RESPONSE ADAPTIVE SAMPLING 

 

C.1 Introduction 
 

This appendix illustrates Optimal Multi Response Adaptive Sampling            

(O-MRAS) method using 2-D benchmark functions which are commonly used to 

evaluate surrogate modelling algorithms. The objectives of this appendix are (i) to 

describe the steps of O-MRAS using 2-D examples; and, (ii) to compare performance 

of O-MRAS with uniform random sampling. 

The iterative surrogate modelling approach described in Chapter 3 is used 

to develop Greedy Polynomial Kriging (GPK) surrogate models of two well-known 

benchmark functions. Figure C.1 schematically describes the surrogate modelling 

approach used for the comparative study. To compare performance of O-MRAS 

versus uniform random sampling, the GPK surrogate models are built first using       

O-MRAS (process 1) and then by uniform random sampling (process 2).  

In iteration one, the design matrix of control parameters ( x ), for both 

process 1 and 2, is generated by 2 factor 5 level full-factorial design and therefore has 

25 instances. During each subsequent iteration, the design matrix on x   having 25 

instances is generated by O-MRAS for process 1 and by uniform random sampling for 

process 2. Iterations are stopped when average degree of determination (R2) of the 

surrogate models exceeds 0.90 on a test dataset from 200 200 regular grid of x 

In this appendix, selection of design matrix via O-MRAS (Step 5 of 

process 1) is described in details. 
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Figure C.1: Comparative study of surrogate modelling via O-MRAS versus Uniform Random Sampling 
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C.2 Optimal Multi Response Adaptive Sampling 

This section illustrates using two bivariate benchmark functions how an 

adaptive sample for multiple responses is generated by O-MRAS. Details about 

benchmark functions are described by (Surjanovic & Bingham, 2013). The benchmark 

functions used for this comparative analysis are: 

i. Three hump camel function  – This bivariate function is evaluated in the domain 

[-2,2]
i

x    for i=1 and 2. Eq. (C.1) shows this function. 

                                              

6

2 4 21

1 1 1 1 2 2
2 1.05

6

x
y x x x x x                                     (C.1)                                                                

     

Figure C.2 shows plot of the function in the aforementioned domain. 

 

 

Figure C.2: 3 hump camel function 

 

ii. Shubert function – This bivariate function is also evaluated in the domain 

[ , ]
i

x 2 2    for i=1 and 2. Eq. (C.2) shows this function. 

                             
5 5

2 1 2

1 1

cos ( 1) cos ( 1)
i i

y i i x i i i x i
 

  
      
  
                      (C.2)                     
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Figure C.2 shows plot of the function in the aforementioned domain. 
 
 
 

 

Figure C.3: Shubert function 

 
 

GPK surrogate models of 3 hump camel function ( 1
y ) and Shubert 

function ( 2
y ) are developed through the iterative processes shown in Figure C.1. 

During each iteration in process 1, adaptive sample of the control parameters ( x ) is 

generated by O-MRAS, which has three major steps. The steps of O-MRAS are 

illustrated using the bivariate examples as follows: 

A. Generate adaptive samples for individual responses – Adaptive samples for 

individual responses ( 1
y  and 2

y ) are generated using Lipschitz criterion. 

This result in two design matrices (1)

C
X and (2)

C
X each having 25 instances or 

points from the domain of the control parameters. Each point has an 

associated merit i
  which measures the goodness of the point for being 

selected in adaptive sample. Figure C.4 and C.5 show the 25 points selected 
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for 3 hump camel function and Shubert functions respectively. As expected, 

Lipschitz criterion based adaptive sampling has chosen points from regions 

where the functions are steep. 

 

Figure C.4: Adaptive sample of 3-Hump Camel function 

 

 

Figure C.5: Adaptive sample of Shubert function 
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Adaptive samples of (1)

C
X and (2)

C
X have a total of 50 points which are shown on 

a 2-D grid in Figure C.6. To run the simulations, an optimal adaptive sample 

*

C
X of 25 points is identified from the union of (1)

C
X and (2)

C
X in steps B and C. 

 
 

 

Figure C.6: 50 points from adaptive samples of 3-Hump of Shubert function 

 

 

B. K-means clustering to identify 25 groups – The points generated by adaptive 

sampling on individual responses are clustered into 25 groups by k-means 

clustering. ‘k’ represents number of clusters or groups to be identified hence 

in this case k=25. Figure C.7 shows the 25 clusters identified. 
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Figure C.7: 50 points grouped in 25 clusters 

 

C. Identify optimal point from each cluster – Points in each cluster is analysed 

to identify an optimal point which is the best representative of the cluster. 

The optimal point is the one which maximizes a weighted average of merit 

and proximity to the cluster centroid. Figure C.8 illustrates the selection of 

an optimal point for a cluster which as 3 candidate points.  
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Figure C.8: Cluster-wise selection of optimal point 

 

In summary, O-MRAS generates a single adaptive sample from individual 

adaptive samples of multiple responses. Merging individual adaptive samples and 

identifying a single adaptive sample which is an optimal representative of the 

individual adaptive samples is important for computationally expensive simulation 

routines such as fixture design analysis tools. Hence for practical applications           

O-MRAS drastically reduces time that would have been required to simulate ‘r’ 

individual responses separately. 

 

C.2 Comparison of performance of O-MRAS and uniform random 

sampling 

Surrogate models such as GPK are trained over multiple iterations of 

computer simulation. During each iteration adaptive sampling identifies the design 

matrix of control parameters ( x ) which must be used as an input to computer 
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simulation. Data generated from simulation is then used to train the surrogate model 

during the current iteration. The objective of adaptive sampling is to identify the 

design matrix of x so that the resulting training data would be most informative in 

developing the surrogate models and hence accelerate achievement of the stopping 

criteria. In effect adaptive sampling reduces the number of computer simulations 

required to build surrogate models of desirable accuracy. A comparative study 

between O-MRAS and uniform random sampling is done by training GPK surrogate 

models for 3 hump camel function and Shubert function in an iterative manner. Each 

iteration adds 25 points to the training data. Design matrix for the 25 points is 

identified by O-MRAS and uniform random sampling. Figure C.9 shows the average 

R2 of the GPK surrogate models over different iteration. It is evident that O-MRAS 

helps GPK surrogate models to achieve an average R2 of more than 0.90 in lesser 

number of iterations than uniform random sampling. 

 

 

Figure C.9: Comparative analysis of O-MRAS and Uniform Random Sampling for 

developing GPK surrogate models 
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APPENDIX D                                                                                                                                                           

2D PLOTS OF BENCHMARK FUNCTIONS 
 

 

 

Figure D.1: 2D plot of Branin function 

 

 

 

Figure D.2: 2D plot of Booth function 
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Figure D.3: 2D plot of Rastrigin function 

 

 

 

 

Figure D.4: 2D plot of Cross-in-tray function 
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Figure D.5: 2D plot of Schwefel function 

 

 

 

Figure D.6: 2D plot of Griewank function 
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Figure D.7: 2D plot of Shubert function 
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APPENDIX E           

                                                                                                                                                 

EXPERIMENTAL VERIFICATION OF SURROGATE MODELS 

FOR JOINING PROCESS PARAMETERS SELECTION 

 

 

Chapter 4 has developed homo- and hetero-skedastic surrogate models of 

Key Product Characteristics (KPCs) in terms of Key Control Characteristics (KCCs) 

related to joining process parameters selection.  The proposed surrogate models are 

developed based on data from physical experimentation in absence of comprehensive 

and useful first-principle based models of the joint KPCs. 

This appendix presents experimental verification of the surrogate models 

developed in Chapter 4. Experimental verification for surrogate models of joint KPCs 

is necessary because of the lack of first-principle based models of the joint KPCs. This 

is in contrast to the surrogate models developed in Chapters 3 and 5 where data is 

taken from first-principle based Variation Simulation Analysis (VSA)3.  

To perform the experimental verification, physical experimentation on 

Remote Laser Welding (RLW) was performed at KCC1=welding speed=2.8 m/min 

and KCC2=part-to-part gap=0.2 mm. The welding speed was selected as 2.8 m/min as 

it is within the process window identified in Section 4.5.3 of Chapter 4. Each 

experimental sample was subjected to microscopic imaging (as described in Section 

4.5.1 of Chapter 4) to measure the actual part-to-part gap and the following six KPCs 

related to the RLW process: (i) penetration; (ii) s-value; (iii) top surface concavity 

(TSC); (iv) bottom surface concavity (BSC); (v) top seam with (TSW); and, (vi) lower 

                                                
3 Accuracy of surrogate models developed in Chapters 3 and 5 are limited to the accuracy of VSA. 

Hence experimental verification of surrogate models developed in Chapter 3 and 5 are dependent on the 

experimental verification of VSA itself, which is beyond the scope of this thesis. 
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seam width (LSW).  

The proposed homo- and hetero-skedastic surrogate models of the joint 

KPCs are used to predict the mean, variance, upper control limit and lower control 

limit of each experimental replication. The control limits are calculated at 3 sigma 

limits.  

The objective of the experimental verification is to ascertain whether the 

observed (actual) KPCs are within the predicted upper and lower control limits. 

Table E.1 shows the experimental data realted to KCCs and actual 

(observed) KPCs. Table E.2 shows predicted mean and predicted control limits of the 

KPCs for the five replications. 

 

Table E.1: KCCs and actual (observed) KPCs for experimental verification 

KCCs Actual KPCs 

Welding 

speed 

Part-to-

part gap 
Penetration S-Value TSC BSC TSW LSW 

2.8 0.09 1.04 1.04 0 0 1.33 0 

2.8 0.155 0.97 1.21 0.13 0.05 1.26 0.5 

2.8 0.205 0.96 1.29 0.18 0.01 1.14 0.41 

2.8 0.13 1.06 1.12 0.15 0 1.14 0 

2.8 0.205 0.96 1.29 0.18 0.01 1.14 0.43 

 

Welding speed is measured in m/min and part-to-part gaps are measured 

in mm. All the six KPCs are measured in mm. 

It is noteworthy that welding speed and part-to-part gaps listed in Table 

E.1 were not used to train the surrogate models. Hence the experimental verification 

described in this appendix provides verification on unseen test samples. 
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Table E.2: Predicted mean and predicted control limits of KPCs 

Penetration 

Mean UCL LCL 

0.898 1.510 0.286 

0.888 1.501 0.276 

0.873 1.485 0.261 

0.893 1.506 0.281 

0.873 1.485 0.261 

S-Value 

Mean UCL LCL 

0.732 1.142 0.322 

0.935 1.494 0.376 

1.053 1.704 0.402 

0.863 1.370 0.356 

1.053 1.704 0.402 

TSC 

Mean UCL LCL 

0.156 0.428 -0.116 

0.198 0.470 -0.074 

0.244 0.516 -0.028 

0.179 0.451 -0.093 

0.244 0.516 -0.028 

BSC 

Mean UCL LCL 

0.077 0.313 -0.158 

0.077 0.313 -0.158 

0.077 0.313 -0.158 

0.077 0.313 -0.158 

0.077 0.313 -0.158 

TSW 

Mean UCL LCL 

1.019 1.353 0.686 

1.104 1.349 0.859 

1.169 1.314 1.025 

1.071 1.354 0.789 

1.169 1.314 1.025 

LSW 

Mean UCL LCL 

0.227 0.575 -0.121 

0.227 0.575 -0.121 

0.227 0.575 -0.121 

0.227 0.575 -0.121 

0.227 0.575 -0.121 

 

Figure E.1 plots the actual and predicted KPCs. 
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Figure E.1: Visualisation of actual, predicted mean and predicted control limits of 

KPCs 

 

Salient points about the results  

The following salient points about the experimental verification are to be 

noted: 

- In Table E.2, negative values in predicted LCL for TSC and BSC indicate change 

of weld surface curvature from concavity to convexity 

- In Table E.2, negative values in predicted LCL for LSW indicate width of the 

lower surface of the weld when it is convex in shape 

- Plots shown in Figure E.1 show that all joint KPCs are within the predicted UCL 

and LCL 
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