
This is a repository copy of Are Short Proofs Narrow? QBF Resolution is not Simple..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/92569/

Version: Accepted Version

Proceedings Paper:
Beyersdorff, O, Chew, L, Mahajan, M et al. (1 more author) (2016) Are Short Proofs
Narrow? QBF Resolution is not Simple. In: Ollinger, N and Vollmer, H, (eds.) 33rd
Symposium on Theoretical Aspects of Computer Science (STACS'16). Symposium on
Theoretical Aspects of Computer Science (STACS'16), 17-20 Feb 2016, Orleans, France.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik . ISBN 978-3-95977-001-9

https://doi.org/10.4230/LIPIcs.STACS.2016.15

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Are Short Proofs Narrow? QBF Resolution is not

Simple.

Olaf Beyersdorff1, Leroy Chew1, Meena Mahajan2, and Anil

Shukla2

1 School of Computing, University of Leeds, United Kingdom

2 The Institute of Mathematical Sciences, Chennai, India

Abstract

The groundbreaking paper ‘Short proofs are narrow – resolution made simple’ by Ben-Sasson

and Wigderson (J. ACM 2001) introduces what is today arguably the main technique to obtain

resolution lower bounds: to show a lower bound for the width of proofs. Another important

measure for resolution is space, and in their fundamental work, Atserias and Dalmau (J. Comput.

Syst. Sci. 2008) show that space lower bounds again can be obtained via width lower bounds.

Here we assess whether similar techniques are effective for resolution calculi for quantified

Boolean formulas (QBF). A mixed picture emerges. Our main results show that both the relations

between size and width as well as between space and width drastically fail in Q-resolution, even in

its weaker tree-like version. On the other hand, we obtain positive results for the expansion-based

resolution systems ∀Exp+Res and IR-calc, however only in the weak tree-like models.

Technically, our negative results rely on showing width lower bounds together with simul-

taneous upper bounds for size and space. For our positive results we exhibit space and width-

preserving simulations between QBF resolution calculi.

Keywords and phrases proof complexity, QBF, resolution, lower bound techniques, simulations

1 Introduction

The main objective in proof complexity is to obtain precise bounds on the size of proofs in

various formal systems; and this objective is closely linked to and motivated by foundational

questions in computational complexity (Cook’s programme), first-order logic (separating

theories of bounded arithmetic), and SAT solving. In particular, resolution is one of the

best studied and most important propositional proof systems, as it forms the backbone of

modern SAT solvers based on conflict-driven clause learning (CDCL). Complexity bounds

for resolution proofs directly translate into bounds on the performance of SAT solvers.

What is arguably even more important than showing the actual bounds is to develop

general techniques that can be applied to obtain lower bounds for important proof systems.

A number of ingenious techniques have been designed to show lower bounds for the size

of resolution proofs, among them feasible interpolation [21], which applies to many further

systems. In their pioneering paper [6], Ben-Sasson and Wigderson showed that resolution size

lower bounds can be elegantly obtained by showing lower bounds to the width of resolution

proofs. Indeed, the discovery of this relation between width and size of resolution proofs was

a milestone in our understanding of resolution, and today many if not most lower bounds for

resolution are obtained via the size-width technique.

Another important measure for resolution is space [17], as it corresponds to memory

requirements of solvers in the same way as resolution size relates to their running time. In

their fundamental work [1], Atserias and Dalmau demonstrated that also space is tightly

related to width. Indeed, showing lower bounds for width serves again as the primary method

to obtain space lower bounds. Since these discoveries the relations between resolution size,

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

width, and space have been subject to intense research (cf. [13]), and in particular sharp

trade-off results between the measures have been obtained (cf. e.g. [4, 5, 24]).

In this paper we initiate the study of width and space in resolution calculi for quantified

Boolean formulas (QBF) and address the question whether similar relations between size,

width, and space as for classical resolution hold in QBF. Before explaining our results we

sketch recent developments in QBF proof complexity.

QBF proof complexity is a relatively young field studying proof systems for quantified

Boolean logic. Similarly as in the propositional case, one of the main motivations for the field

comes via its intimate connection to solving. Although QBF solving is at an earlier state

than SAT solving, due to its PSPACE completeness, QBF even applies to further fields such

as formal verification or planning [7,16,25]. Each successful run of a solver on an unsatisfiable

instance can be interpreted as a proof of unsatisfiability; and this connection turns proof

complexity into the main theoretical tool to understand the performance of solving. As in

SAT, QBF solvers are known to correspond to the resolution proof system and its variants.

However, compared to SAT, the QBF picture is more complex as there exist two main

solving approaches utilising CDCL and expansion-based solving. To model the strength of

these QBF solvers, a number of resolution-based QBF proof systems have been developed.

Q-resolution (Q-Res) by Kleine Büning, Karpinski, and Flögel [20] forms the core of the CDCL-

based systems. To capture further ideas from CDCL solving, Q-Res has been augmented

to long-distance resolution [2, 28], universal resolution [27], and their combinations [3].

Powerful proof systems for expansion-based solving were recently developed in the form of

∀Exp+Res [19], and the stronger IR-calc and IRM-calc [9].

In this paper we concentrate on the three QBF resolution systems Q-Res, ∀Exp+Res, and

IR-calc. This choice is motivated by the fact that Q-Res and ∀Exp+Res form the base systems

for CDCL and expansion-based solving, respectively, and IR-calc unifies both approaches in a

natural way, as it simulates both Q-Res and ∀Exp+Res [9]. Recent findings show that CDCL

and expansion are indeed orthogonal paradigms as Q-Res and ∀Exp+Res are incomparable

with respect to simulations [10].

Understanding which lower bound techniques are effective in QBF proof complexity is

of paramount importance for progress in the field. In [11] it was shown that the feasible

interpolation technique applies to all QBF resolution systems. Another successful transfer of

a classical technique was obtained in [12] for a game-theoretic characterisation of proof size

in tree-like Q-Res.

Our contributions

The central question we address here is whether lower bound techniques via width, which

have revolutionised classical proof complexity, are also effective for QBF resolution systems.

Though space and width have not been considered in QBF before, these notions straight-

forwardly apply to QBF resolution systems. However, due to the ∀-reduction rule in Q-Res

handling universal variables, it is relatively easy to enforce that universal literals accumulate

in clauses of Q-Res proofs, thus always leading to large width, irrespective of size and space

requirements (Lemma 4). This prompts us to consider existential width — counting only

existential literals — as an appropriate width measure in QBF. This definition aligns both

with Q-Res, resolving only on existential variables, as well as with ∀Exp+Res and IR-calc,

which like all expansion systems only operate on existential literals.

1. Negative results. Our main results show that the size-width relation of [6] as well

as the space-width relation of [1] dramatically fail for Q-Res, even when considering the

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

tighter existential width. We first notice that the proof establishing the size-width result

in [6] almost fully goes through, except for some very inconspicuous step that fails in QBF

(Proposition 5). But not only the technique fails: we prove that Tseitin transformations of

formulas expressing a natural completion principle from [19] have small size and space, but

require large existential width in tree-like Q-Res (Theorem 6), thus refuting the size-width

relation for tree-like Q-Res as well as the space-width relation for general dag-like Q-Res.

As the formulas for the completion principle have O(n2) variables, they do not rule out size-

width relations in general Q-Res. However, we show that different formulas, hard for tree-like

Q-Res [19], provide counterexamples for size-width relations in full Q-Res (Theorem 7).

Technically, our main contributions are width lower bounds for the above formulas, which

we show by careful counting arguments. We complement these results by existential width

lower bounds for parity-formulas from [10], providing an optimal width separation between

Q-Res and ∀Exp+Res (Theorem 17).

2. Positive results and width-space-preserving simulations. Though the negative

picture above prevails, we prove some positive results for size-width-space relations for tree-

like versions of the expansion resolution systems ∀Exp+Res and IR-calc. Proofs in ∀Exp+Res

can be decomposed into two clearly separated parts: an expansion phase followed by a

classical resolution phase. This makes it easy to transfer almost the full spectrum of the

classical relations to ∀Exp+Res (Theorem 18).

To lift these results to IR-calc (Theorem 19), we show a series of careful space and

width-preserving simulations between tree-like Q-Res, ∀Exp+Res, and IR-calc. In particular,

we show the surprising result that tree-like ∀Exp+Res and tree-like IR-calc are equivalent

(Lemma 14), thus providing a rare example of two proof systems that coincide in the tree-like,

but are separated in the dag-like model [10]. In addition, our simulations provide a simpler

proof for the simulation of tree-like Q-Res by ∀Exp+Res (Corollary 16), shown in [19] via a

very involved argument.

Our last positive result is a size-space relation in tree-like Q-Res (Theorem 19), which we

show by a pebbling game analogous to the classical relation in [17]. Not surprisingly, this

only positive result for Q-Res avoids any reference to the notion of width.

As the bottom line we can say that QBF proof complexity is not just a replication of

classical proof complexity: it shows quite different and interesting effects as we demonstrate

here. Especially for lower bounds it requires new ideas and techniques. We remark that in

this direction, a new and ‘genuine QBF technique’ based on strategy extraction was recently

developed, showing lower bounds for Q-Res [10] and indeed much stronger systems [8].

Organisation of the paper. We start by reviewing background information on classical

and QBF resolution systems (Sect. 2), including definitions of size, space, and width together

with their main classical relations (Sect. 3). In Sect. 4 we prove our main negative results

on the failure of the transfer of the classical size-width and space-width results to QBF.

Section 5 contains the simulations between tree-like versions of Q-Res, ∀Exp+Res, and IR-calc,

paying special attention to width and space. This enables us to show in Sect. 6 the positive

results for relations between size, width, and space in these systems. We conclude in Sect. 7

with a discussion and directions for future research.

2 Notations and preliminaries

Quantified Boolean formulas. A (closed prenex) quantified Boolean formula (QBF) is a

formula in quantified propositional logic where each variable is quantified at the beginning of

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

the formula, using either an existential or universal quantifier. We denote such formulas as

Q .φ, where φ is a propositional Boolean formula in conjunctive normal form (CNF), called

matrix, and Q is its quantifier prefix. The quantification level lv(y) of a variable y in Q .φ is

the number of alternations of quantifiers y has on its left in the quantifier prefix of Q .φ.

Classical resolution. Resolution (Res), introduced by Blake [14] and Robinson [26], is

a refutational proof system manipulating unsatisfiable CNFs as sets of clauses. The only

inference rule is
C ∨ x D ∨ ¬x

C ∪D
where C,D denote clauses and x is a variable. A Res

refutation derives the empty clause �. If we only allow proofs in form of a tree, i.e., each

derived clause can be used at most once, we speak of tree-like resolution, denoted ResT.

QBF resolution calculi. Q-resolution (Q-Res) [20] is a resolution-like calculus that

operates on QBFs in prenex form where the matrix is a CNF. It uses the propositional

resolution rule above with the side conditions that variable x is existential and if z ∈ C, then

¬z /∈ D. In addition Q-Res has a universal reduction rule

C ∨ u
C

C ∨ ¬u (∀-Red)
C

where variable u is universal and all other existential variables x ∈ C are left of u in the

quantifier prefix.

In addition to Q-Res we consider two further QBF resolution calculi that have been

introduced to model expansion-based QBF solving. These calculi are based on instantiation

of universal variables: ∀Exp+Res [19], and IR-calc [9]. Both calculi operate on clauses that

comprise only existential variables from the original QBF, which are additionally annotated

by a substitution to some universal variables, e.g. ¬xu/0,v/1. For any annotated literal lσ,

the substitution σ must not make assignments to variables right of l, i.e. if u ∈ dom(σ), then

u is universal and lv(u) < lv(l). To preserve this invariant, we use the auxiliary notation

l[σ], which for an existential literal l and an assignment σ to the universal variables filters

out all assignments that are not permitted, i.e. l[σ] = l{u/c∈σ | lv(u)<lv(l)}. We say that an

assignment is complete if its domain is all universal variables. Likewise, we say that a literal

xτ is fully annotated if all universal variables u with lv(u) < lv(x) in the QBF are in dom(τ),

and a clause is fully annotated if all its literals are fully annotated.

The calculus ∀Exp+Res from [19] works with fully annotated clauses on which resolution is

performed. For each clause C from the matrix and an assignment τ to all universal variables,

∀Exp+Res can use the axiom
{

l[τ] | l ∈ C, l existential
}

∪ {τ(l) | l ∈ C, l universal}. As its

only rule it uses the resolution rule on annotated variables

C ∨ xτ D ∨ ¬xτ
(Res).

C ∪D

In contrast, the system IR-calc from [9] is more flexible. It uses ‘delayed’ expansion and

can mix instantiation with resolution steps. Formally, IR-calc works with partial assignments

on which we use auxiliary operations of completion and instantiation. For assignments τ

and µ, we write τ ⊻ µ for the assignment σ defined as σ(x) = τ(x) if x ∈ dom(τ), otherwise

σ(x) = µ(x) if x ∈ dom(µ). The operation τ ⊻ µ is called completion as µ provides values

for variables not defined in τ . For an assignment τ and an annotated clause C, the function

inst(τ, C) returns the annotated clause
{

l[σ ⊻ τ] | lσ ∈ C
}

.

Axioms in IR-calc allow to infer
{

x[τ] | x ∈ C, x is existential
}

for each non-tautological

clause C from the matrix and τ = {u/0 | u is universal in C}, where the notation u/0 for

literals u is shorthand for x/0 if u = x and x/1 if u = ¬x. Rules in IR-calc comprise the

(Res) rule above together with the instantiation rule
C

inst(τ, C)
for a (partial) assignment

τ to universal variables.

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Simulations. Given two proof systems P and Q for the same language (TAUT or QBF),

P p-simulates Q if each Q-proof can be transformed in polynomial time into a P -proof of

the same formula. Two systems are called p-equivalent if they p-simulate each other.

In [9] it was shown that IR-calc p-simulates both Q-Res and ∀Exp+Res, while [10] shows

that Q-Res and ∀Exp+Res are incomparable, i.e., IR-calc is exponentially stronger than both

Q-Res and ∀Exp+Res. However, ∀Exp+Res can p-simulate Q-ResT [19].

3 Size, width, and space in resolution calculi

The purpose of the section is twofold: first to review the measures size, width, and space

and their relations in classical resolution; and second to explain how to apply these measures

to QBF resolution systems. While this is straightforward for size and space, we need a more

elaborate discussion on what constitutes a good notion of width for QBF resolution systems.

3.1 Defining size, width, and space for resolution

For a CNF F , |F | is the number of clauses in it, and w(F) denotes the maximum number of

literals in any clause of F . We extend the same notation to QBFs with a CNF matrix.

For S one of the resolution calculi Res, Q-Res, ∀Exp+Res, IR-calc, let π
S
F (resp. π

ST
F)

denote that π is an S-proof (tree-like S-proof, respectively) of the formula F . For a proof π

of F in system S, its size |π| is defined as the number of clauses in π. The size complexity

S(
S
F) of deriving F in S is defined as min {|π| : π

S
F}. The tree-like size complexity,

denoted S(
ST
F), is min {|π| : π

ST
F}.

The width of a clause C is the number of literals in C, denoted w(C). The width w(F)

of a CNF F is the maximum width of a clause in F . The width w(π) of a proof π is the

maximum width of any clause appearing in π, and the width w(
S
F) of refuting a CNF F in

S is defined as min{w(π) : π
S
F}. Again the same notation extends to quantified CNFs.

Note that for width in any calculus, whether the proof is tree-like or not is immaterial,

since a proof can always be made tree-like by duplication without increasing the width. We

therefore drop the T subscript when talking about proof width.

The third complexity measure for resolution calculi is space1, first defined in [17]. In-

formally, it is the minimal number of clauses that must be kept simultaneously to refute a

formula. Instead of viewing a proof as a DAG, we view it as a sequence of CNF formulas

F0, F1, . . . , Fs, where F0 = ∅, � ∈ Fs, and each Fi+1 is obtained from Fi by either erasing

some clause, downloading an axiom, or adding a clause derived by some S-rule from clauses

in Fi. In the latter case, one of the premises of the inference may also simultaneously be

deleted. For such a proof σ, Space(σ) is the maximum number of clauses in any Fi, i ∈ [s].

The space to refute F , denoted Space(
S
F), is the minimum Space(σ) over all S-refutations σ

for F . The same notions apply to QBFs, where F0, F1, . . . , Fs is a sequence of CNF formulas,

all with the same quantifier prefix.

If we modify the inference step so that the clause(s) used to obtain the inference are

erased in the same step, then any clause can be used at most once and we obtain a tree-like

space-oriented S-proof. Correspondingly we can define Space(
ST
F) as the minimum space

used by any tree-like proof sequence refuting F .

1 Also called clause space, to distinguish it from variable space or total space. We consider only clause
space in this paper, and so we call it just space.

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3.2 Relations in classical resolution

We now state some of the main relations between size, width, and space for classical resolution.

We start with the foundational size-width relations of Ben-Sasson and Wigderson [6].

◮ Theorem 1 (Ben-Sasson, Wigderson [6]). For all unsatisfiable CNFs F in n variables the fol-

lowing holds: S(
ResT

F) ≥ 2
w
(

Res
F
)

−w(F)
and S(

Res
F) = exp

(

Ω

(

(

w
(

Res
F
)

−w(F)
)

2

n

))

.

Space complexity was introduced in [17] and relations between space, size, and width are

explored (cf. also [13,22]), establishing the size-space relation for tree-like resolution:

◮ Theorem 2 (Esteban, Torán [17]). For unsatisfiable CNFs F , S(
ResT

F) ≥ 2
Space

(

ResT
F
)

−1.

The fundamental relation between space and width for full resolution was obtained in [1];

a more direct proof was given recently in [18].

◮ Theorem 3 (Atserias, Dalmau [1]). For all unsatisfiable CNFs F the following relation

holds: w(
Res
F) ≤ Space(

Res
F) + w(F) − 1.

3.3 Existential width: What is the right width notion for QBF?

We wish to explore the possibility of a similar approach as in [6] to prove analogues of the

classical results above for QBFs. The following simple example shows, however, that the

relationships in Theorem 1 and Theorem 3 do not carry over for the system Q-Res (cf. the

Appendix for the proof).

◮ Lemma 4. For the false QBFs Fn = ∀u1 . . . un∃e0∃e1 . . . en.(e0) ∧ (¬ei−1 ∨ui ∨ ei) ∧ (¬en)

we have S(
Q-ResT

Fn) ∈ O(n) and Space(
Q-ResT

Fn) ∈ O(1), but w(
Q-Res

Fn) ∈ Ω(n).

As this example illustrates, it is easy to enforce that universal variables are accumulated

in a clause, thus leading to large width. Hence the following question naturally arises: can

we obtain size-width or space-width relations by using the tighter measure of only counting

existential variables?

This aligns with the situation in the expansion systems ∀Exp+Res and IR-calc, where

clauses contain only existential variables. In this respect, it is worth noting that the above

example indeed does not demonstrate the failure of the size-width relationship in expansion-

based calculi. For instance, in ∀Exp+Res, a tree-like refutation could download the existential

variables of axioms annotated with ui/0 for i ∈ [n], and generate the empty clause in O(n)

steps with width just 2 at the leaves and 1 at the internal nodes.

Thus, to get a consistent and interesting width measure for QBF calculi, we consider the

notion of existential width that just counts the number of existential literals. This approach

is justified also for Q-Res as the calculus can only resolve on existential variables, and rules

out the easy counterexamples above. Formally, we define the existential width of a clause C

to be the number of existential literals in C, and denote it by w∃(C). Using w∃ instead of w

everywhere, we obtain the existential width of a formula w∃(F), of a proof w∃(π), and of

refuting a false sentence w∃(
S

F).

For the expansion systems ∀Exp+Res and IR-calc the notions of existential width and

width coincide. (In particular, distinct annotations of the same existential variable are

counted as distinct literals.) Hence we can drop the ∃ subscript in width of proofs in these

systems. For the width of the sentence itself, there is still a difference between w and w∃.

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4 Negative results: Size-width and space-width relations fail in Q-Res

In this section we show that in the Q-Res proof system, even replacing width by existential

width, the relations to size or space as in classical resolution (Theorems 1 and 3) no longer

hold for both tree-like and general proofs.

Firstly, we point out where the technique of [6] fails. A crucial ingredient of their proof is

the following statement: if a clause A can be derived from F |x=1 in width w, then the clause

A ∨ ¬x can be derived from F in width w + 1 (possibly using a weakening rule at the end).

We show that the statement no longer holds in Q-Res.

◮ Proposition 5. There are false sentences ψn, with an existential literal b quantified at the

innermost level, such that the sentence ψn|b=1 is false and has a small existential-width proof,

but ψn itself needs large existential width to refute in Q-Res.

Proof. The sentence ψn is constructed by taking the conjunction of two sentences with

distinct variables. The first sentence is a very simple one: ∃a∀u∃b. (a ∨ u ∨ ¬b) ∧ (¬a). It is

a true sentence, but if b is set to 1, it becomes false. The second sentence is a false sentence

of the form ∃~x.Gn(~x), where Gn is any unsatisfiable CNF formula over the ~x variables, such

that Gn needs large width in classical resolution. One such example is the CNF formula

described by Bonet and Galesi [15], that we denote as BGn. BGn is an unsatisfiable 3-CNF

formula over O(n2) variables with w(⊢ BGn) = Ω(n).

Now define ψn as ∃~x∃a∀u∃b. (a ∨ u ∨ ¬b) ∧ (¬a) ∧ BGn(~x). Note that the clauses (a ∨

u ∨ ¬b) ∧ (¬a) contain a contradiction if and only if b = 1. Thus ψn|b=1 can be refuted

with existential width 1 using just these two clauses: a ∀-Red on (a ∨ u) yields a which

can be resolved with ¬a. On the other hand, to refute ψn, the contradiction in BGn must

be exposed. Since all the variables involved are existential, Q-Res degenerates to classical

resolution, requiring (existential) width Ω(n). ◭

The example in Proposition 5 can be made ‘less degenerate’ by interleaving more existential

and universal variables disjoint from ~x and putting them in the first sentence. All we need is

that b is quantified existentially at the end, the first sentence is true as a whole but false if

b = 1, and this latter sentence can be refuted in Q-Res with small existential width.

We now show that it is not just the technique of [6] that fails for Q-Res. No other

technique will work either, because the relation from Theorem 1 between size and existential

width itself fails to hold. The same example shows that the relation from Theorem 3 between

space and existential width also fails to hold.

We first give an example where the relation for tree-like proofs fails.

◮ Theorem 6. There exist false QBFs CR′
n over O(n2) variables, such that S(

Q-ResT
CR′

n) =

nO(1), w∃(CR′
n) = 3, Space(

Q-ResT
CR′

n) = O(1), and w∃(
Q-ResT

CR′
n) = Ω(n).

The formulas CR′
n are Tseitin transformations of a natural completion principle from [19].

The proof can be found in the Appendix and is similar, but slightly more involved than the

proof for our next Theorem 7. Since tree-like space is at least as large as space, Theorem 6

also rules out the space-width relation for general dag-like Q-Res proofs.

However, Theorem 6 cannot be used to show that the size-existential-width relationship

for general dag-like proofs fails in Q-Res, because CR′
n have O(n2) variables. We show via

another example that the relation fails to hold in Q-Res as well. This example cannot be

used for proving Theorem 6 because it is known to be hard for Q-ResT [19].

◮ Theorem 7. There is a family of false QBFs φ′
n in O(n) variables such that S(

Q-Res
φ′

n) =

nO(1), w∃(φ′
n) = 3, and w∃(

Q-Res
φ′

n) = Ω(n).

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Proof. Consider the following formulas φn, introduced by Janota and Marques-Silva [19]:

∃e1∀u1∃c1c2 . . .∃en∀un∃c2n−1c2n.
∧

i∈[n]

(

(¬ei∨c2i−1)∧(¬ui∨c2i−1)∧(ei∨c2i)∧(ui∨c2i)
)

∧
∨

i∈[2n]

¬ci.

We know from [19] that φn have polynomial-size proofs in Q-Res (but require exponential-size

proofs in Q-ResT). However, in order to prove Theorem 7, we need a formula with constant

initial width. To achieve this we consider quantified Tseitin transformations of φn, i.e. we

introduce 2n+ 1 new existential variables xi at the innermost quantification level in φn, and

replace the only large clause in φn by any CNF formula that preserves satisfiability. Let φ′
n

denote the modified formula:

φ′
n = ∃e1∀u1∃c1c2 . . .∃en∀un∃c2n−1c2n∃x0 . . . x2n
∧

i∈[n]

(

(¬ei ∨ c2i−1) ∧ (¬ui ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)
)

∧ (1)

¬x0 ∧
∧

i∈[2n]

(xi−1 ∨ ¬ci ∨ ¬xi) ∧ x2n. (2)

Note that w∃(φ′
n) = 3. We refer to the clauses in (2) as x-clauses. It is clear that from the

x-clauses, we can derive the large clause of φn in 2n+ 1 resolution steps and get back φn.

Thus S(
Q-Res

φ′
n) ≤ S(

Q-Res
φn) + 2n+ 1 ∈ nO(1).

We now show that φ′
n needs large existential width. Let π be a proof in Q-Res, π

Q-Res
φ′

n.

List the clauses of π in sequence, π = {D0, D1, . . . , Ds = �}, where each clause in the

sequence is either a clause from φ′
n, or is derived from clause(s) preceding it in the sequence

using resolution or ∀-Red. There must be at least one universal reduction step in π, since all

the initial clauses are necessary for refuting φ′
n, some of them contain universal variables, and

the only way to remove a universal variable in Q-Res is by ∀-Red. Let i be the least index

such that the clause Di is obtained by ∀-Red on Dj for some 0 < i. Since all x variables

block all u variables, Dj and Di cannot contain any x variables. We use this fact to show

that w∃(Di) = Ω(n). Our strategy is to associate some set with each clause in π in a specific

way, and use the set size to bound existential width.

We associate the following sets with the literals of φ′
n and the clauses of π.

σ(x0) = ∅

∀i ∈ [2n] σ(xi) = [i] = {1, 2, . . . , i}

σ(¬x0) = [2n]

∀i ∈ [2n] σ(¬xi) = [2n] \ [i] = {i+ 1, . . . , 2n}

∀i ∈ [n] σ(ei) = σ(ui) = σ(¬c2i) = σ(c2i−1) = {2i}

∀i ∈ [n] σ(¬ei) = σ(¬ui) = σ(¬c2i−1) = σ(c2i) = {2i− 1}

∀D ∈ π σ(D) =
⋃

l∈D

σ(l).

Note that for any literal ℓ, σ(ℓ) and σ(¬ℓ) are disjoint.

For D ∈ π, let πD be the sub-DAG of π, rooted at D.

◮ Claim 8. πDi
contains at least one x-clause (axiom clause of type (2)).

Proof. The parent Dj of node Di contains a universal variable which is then removed through

∀-Red to get Di. The universal variables appear only in clauses of type (1), but are blocked

by the c-variables in every clause where they appear. Thus, before a reduction is permitted,

a c-variable must be eliminated by resolution. Since all c-variables appear only positively in

type (1) clauses, some x-clause must be used in the resolution. ◭

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

We show that all clauses in πDi
that are descendants of some x-clause have large sets

associated with them. In particular, we show:

◮ Claim 9. Every clause D in πDi
such that πD contains an x-clause has σ(D) = [2n].

Deferring the proof briefly, we continue with our argument. From Claim 9 we conclude

that σ(Di) = [2n]. Recall that none of the x variables belongs to Di. All other literals

are associated with singleton sets, so Di must contains at least 2n literals in order to be

associated with the complete set [2n]. Since Q-Res proofs prohibit a variable and its negation

in the same clause, at most n of the literals in Di can be universal variables. Thus Di has at

least n existential literals, hence w∃(Di) = Ω(n).

It remains to establish the claimed set size.

Proof of Claim 9. We proceed by induction on the depth of descendants of x-clauses in πDi
.

The base case is an x-clause itself and follows from the definition of σ.

For the inductive step, let D be obtained by resolving (E ∨ z) and (F ∨ ¬z). There are

two cases to consider:

Case 1: Both (E ∨ z) and (F ∨ ¬z) are descendants of x-clauses (not necessarily the

same x-clause). Then by induction, σ(E ∨ z) = σ(F ∨ ¬z) = [2n]. So σ(E) ⊇ [2n] \ σ(z)

and σ(F) ⊇ [2n] \ σ(¬z). Since σ(z) and σ(¬z) are disjoint, σ(E) ∪ σ(F) = [2n]. Thus

σ(D) = σ(E) ∪ σ(F) = [2n] as claimed.

Case 2: Exactly one of (E ∨ z) and (F ∨ ¬z) is a descendant of an x-clause. Without

loss of generality, let F ∨ ¬z be the descendant. Then E ∨ z is either a type-(1) clause

or is derived solely from type-(1) clauses using resolution. However, observe that the only

clauses derivable solely from type-(1) clauses via resolution, without creating tautologies as

mandated in Q-Res, are of the form (c2i−1 ∨ c2i) for some i. It follows that z is not an x

variable. Hence σ(z) and σ(¬z) are distinct singleton sets. Further, z cannot be a u variable

either, since resolution on universal variables is not permitted in Q-Res.

Now note that for any type-(1) clause C, σ(C) = {2i−1, 2i} for the appropriate i. Similarly,

σ(c2i−1 ∨ c2i) = {2i− 1, 2i}. So if E ∨ z is one of these clauses, then σ(E ∨ z) = σ(z) ∪ σ(¬z)

and σ(E) = σ(¬z). Further, as in Case 1, by induction we know that σ(F ∨ ¬z) = [2n] and

σ(F) ⊇ [2n] \ σ(¬z). Hence, σ(E ∨ F) = [2n] as claimed.

This completes the proof of the claim, and of the theorem. ◭

The above counterexamples are provided by formulas that require small size, but large

existential width. We will now illustrate via another example that also large size and large

width can occur. These examples are very natural formulas based on the parity function,

which have recently been used in [10] to show exponential size lower bounds for Q-Res,

and indeed a separation between Q-Res and ∀Exp+Res. We will later use these formulas in

Section 5 to also show a separation for width between Q-Res and ∀Exp+Res.

Let xor(o1, o2, o) be the set of clauses expressing o ≡ o1 ⊕o2; that is, {¬o1 ∨¬o2 ∨¬o, o1 ∨

o2 ∨ ¬o, ¬o1 ∨ o2 ∨ o, o1 ∨ ¬o2 ∨ o}. In [10], the sentence QParityn is defined as follows:

∃x1, . . . , xn ∀z ∃t2, . . . , tn. xor(x1, x2, t2) ∪
⋃n

i=3
xor(ti−1, xi, ti) ∪ {z ∨ tn,¬z ∨ ¬tn}.

The xi variables act as the input for the parity function, and the ti variables are defined

inductively to calculate Parity(x1, . . . , xi).

We now complement the exponential size lower bound from [10] by a width lower bound.

◮ Theorem 10. w∃(
Q-Res

QParityn) ≥ n.

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Proof. Observe that the contradiction occurs semantically because of z ∨ tn, ¬z ∨ ¬tn. In

response to the existential player’s choice of x1, . . . , xn the universal player has to play z as

x1 ⊕ · · · ⊕ xn in order to win. In Q-Res we cannot reduce z while any of the t variables are

present; and due to the restrictions in Q-Res we cannot resolve the descendants of z ∨ tn with

descendants of ¬z ∨ ¬tn until there is at least one ∀-reduction.

We will assume without loss of generality that this happens on the positive literal z.

Therefore before this ∀-reduction step we have essentially a resolution proof π from Γ =

xor(x1, x2, t2)∪
⋃n

i=3 xor(ti−1, xi, ti)∪{tn}, where we can ignore the z literal in z∨tn because

it does not restrict any resolution steps in this part of the proof.

The clause D that occurs in π immediately before the ∀-reduction must only contain

variables from {x1, . . . , xn}, else the reduction is blocked.

We now use the following observation.

◮ Claim 11. Suppose x1 ⊕ · · · ⊕ xn � C with C a clause, then C is either a tautology or C

contains all variables x1, . . . , xn.

Proof. Suppose the clause C is not a tautology, but the variables xi, i ∈ I 6= ∅, do not

appear in C. Since C is a non-tautological clause, there is exactly one partial assignment

α falsifying C. By setting the variables xi, i ∈ I, appropriately, we can increase α to an

assignment satisfying x1 ⊕ · · · ⊕ xn, but still falsifying C. Hence x1 ⊕ · · · ⊕ xn 2 C. ◭

Γ introduces new variables, but these variables are definitions: given an assignment to

the x variables they have exactly one satisfying assignment. Furthermore, the theory of Γ

is a conservative extension of the theory of x1 ⊕ · · · ⊕ xn. This and Claim 11 mean that

∀i ∈ [n], xi ∈ var(D), and therefore D has existential width n. ◭

5 Simulations: Preserving size, width, and space across calculi

After these strong negative results, ruling out size-width and space-width relations in Q-Res

and Q-ResT, we aim to determine whether any positive results hold in the expansion systems

∀Exp+Res and IR-calc. Before we can do this we need to relate the measures of size, width,

and space across the three calculi Q-Res, ∀Exp+Res, IR-calc. Of course, such a comparison

in terms of refined simulations is also interesting in its own as it determines the relative

strength of the different proof systems. As size corresponds to running time, and space to

memory consumption of QBF solvers, such a comparison yields interesting insights into the

power of QBF solvers using CDCL vs. expansion techniques.

It is known that IR-calc p-simulates ∀Exp+Res and Q-Res [9], and that ∀Exp+Res p-

simulates Q-ResT [19]. We revisit these proofs, with special attention to the width parameter,

and also obtain simulating proofs that are tree-like if the original proof is tree-like. The

relationships we establish are stated in the following theorem:

◮ Theorem 12. For all false QBFs F , the following relations hold:

1.
1
2S(

IRT-calc
F) ≤ S

(

∀Exp+ResT
F
)

≤ S(
IRT-calc

F) ≤ 3S(
Q-ResT

F).

2. w(
IR-calc

F) = w(∀Exp+Res
F) ≤ w∃(

Q-Res
F).

3. Space(∀Exp+ResT
F) = Space(

IRT-calc
F) ≤ Space(

Q-ResT
F).

These results follow from Proposition 13 and Lemmas 14, 15 below. Our first simulation of

∀Exp+Res by IR-calc only needs to complete partial annotations in axioms (cf. the Appendix):

◮ Proposition 13. Any proof in ∀Exp+Res of size S, width W , and space C can be efficiently

converted into a proof in IR-calc of size at most 2S, width W , and space C. If the proof in

∀Exp+Res is tree-like, so is the resulting IR-calc proof.

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

◮ Lemma 14. ∀Exp+ResT p-simulates IRT-calc while preserving width, size, and space.

Proof Sketch. The idea is to systematically transform an IRT-calc proof, proceeding down-

wards from the top where we have the empty clause, and modifying annotations as we go

down, so that when all leaves have been modified the resulting proof is in fact an ∀Exp+ResT

proof. This crucially requires that we start with a tree-like proof; if the underlying graph is

not a tree, we cannot always find a way of modifying the annotations that will work for all

descendants. The Appendix contains the details of the inductive construction. ◭

The simulation in Lemma 14 exhibits an interesting phenomenon: while it shows that

the tree-like versions of ∀Exp+Res and IR-calc are p-equivalent, it was shown in [10] that

in the dag-like versions, IR-calc is exponentially stronger than ∀Exp+Res. Thus ∀Exp+Res

and IR-calc provide a rare example in proof complexity of two systems that coincide in the

tree-like model, but are separated in the dag-like model.

◮ Lemma 15. IRT-calc p-simulates Q-ResT while preserving space and existential width

exactly and size upto a factor of 3.

Proof Sketch. We use the same simulation as given in [9]. This simulation was originally for

dag-like proof systems, but here we check that it also works for tree-like systems and observe

that space and existential width are preserved. The Appendix contains the details. ◭

As a by-product, these simulations enable us to give an easy and elementary proof of the

simulation of Q-ResT by ∀Exp+Res, shown in [19] via a more involved argument.

◮ Corollary 16 (Janota, Marques-Silva [19]). ∀Exp+ResT p-simulates Q-ResT.

Using again the width lower bound for QParityn (Theorem 10) we can show that item 2

of Theorem 12 cannot be improved, i.e. we obtain an optimal width separation between

Q-Res and ∀Exp+Res.

◮ Theorem 17. w∃(
Q-Res

QParityn) = Ω(n), but w(∀Exp+Res
QParityn) = O(1).

Proof. By Theorem 10, QParityn requires existential width n in Q-Res. To get the

separation it remains to show w(∀Exp+Res
QParityn) = O(1). For this we use the following

∀Exp+Res proofs of QParityn from [10]: the formulas QParityn have exactly one universal

variable z, which we expand in both polarities 0 and 1. This does not affect the xi variables,

but creates different copies t
z/0
i and t

z/1
i of the existential variables right of z. Using the

clauses of xor(ti−1, xi, ti), we can inductively derive clauses representing t
z/0
i = t

z/1
i . This

lets us derive a contradiction using the clauses t
z/0
n and ¬t

z/1
n .

Clearly, this proof only contains clauses of constant width, giving the result. ◭

6 Positive results: Size, width, and space in tree-like QBF calculi

We are now in a position to show positive results on size-width and size-space relations for

QBF resolution calculi. However, most of these results only apply to weak tree-like systems.

6.1 Relations in the expansion calculi ∀Exp+Res and IR-calc

We first observe that for ∀Exp+Res almost the full spectrum of relations from classical

resolution remains valid.

◮ Theorem 18. For all false QBFs F , the following relations hold:

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1. S
(

∀Exp+ResT
F
)

≥ 2
w
(

∀Exp+Res
F
)

−w∃(F)
.

2. S
(

∀Exp+ResT
F
)

≥ 2
Space

(

∀Exp+ResT
F

)

− 1.

3. Space
(

∀Exp+ResT
F
)

≥ Space(∀Exp+Res
F) ≥ w(∀Exp+Res

F) − w∃(F) + 1.

Proof Sketch. Proofs in ∀Exp+Res first download the axioms, leading to clauses containing

only annotated existential literals. After that only classical resolution steps are performed

and Theorems 1, 2, and 3 can be applied. More details are contained in the Appendix. ◭

By the equivalence of ∀Exp+ResT and IRT-calc with respect to all three measures size,

width, and space (Theorem 12) we can transfer all results from Theorem 18 to IRT-calc.

◮ Theorem 19. For all false QBFs F , the following relations hold:

1. S(
IRT-calc

F) ≥ 2
w
(

IR-calc
F
)

−w∃(F)
.

2. S(
IRT-calc

F) ≥ 2
Space

(

IRT-calc
F
)

− 1.

3. Space(
IRT-calc

F) ≥ w(
IR-calc

F) − w∃(F) + 1.

6.2 The size-space relation in tree-like Q-resolution

We finally return to Q-Res. Most relations were already ruled out in Section 4 for both

Q-Res and Q-ResT. The only relation that we can still show to hold is the classical size-space

relation (Theorem 2), which we lift from ResT to Q-ResT.

In classical resolution, this relationship was obtained using pebbling games [17]. We

observe that the same approach works for Q-ResT as well (cf. the Appendix for details, in

particular Lemma 23 on the pebbling characterisation), giving the analogous relationship.

◮ Theorem 20. For a false QBF sentence F , S(
Q-ResT

F) ≥ 2
Space

(

Q-ResT
F
)

− 1.

7 Conclusion

Our results show that the success story of width in resolution needs to be rethought when

moving to QBF. Indeed, the question arises: is width a central parameter in QBF resolution?

Is there another parameter that plays a similar role as classical width for understanding QBF

resolution size and space?

Our findings almost completely uncover the picture for size, space, and width for the most

basic and arguably most important QBF resolution systems Q-Res, ∀Exp+Res, and IR-calc.

The most immediate open question arising from our investigation is whether size-width

relations hold for general dag-like ∀Exp+Res or IR-calc proofs. The issue here is that in the

classical size-width relation of [6] the number of variables enters the formula in a crucial

way. For the instantiation calculi it is not clear what should qualify as the right count for

this as different annotations of the same existential variable are formally treated as distinct

variables (which is also clearly justified by the semantic meaning of expansions).

For further research it will also be interesting whether size-width or space-width relations

apply to any of the stronger QBF resolution systems QU-Res [27], LD-Q-Res [2], or IRM-calc [9].

However, we conjecture that the negative picture also prevails for these systems.

Acknowledgements. This work was supported by the EU Marie Curie IRSES grant

CORCON, grant no. 48138 from the John Templeton Foundation, EPSRC grant EP/L024233/1,

and a Doctoral Training Grant from EPSRC (2nd author).

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

References

1 Albert Atserias and Víctor Dalmau. A combinatorial characterization of resolution width.

Journal of Computer and System Sciences, 74(3):323–334, 2008.

2 Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications.

Form. Methods Syst. Des., 41(1):45–65, August 2012.

3 Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF resolution systems and

their proof complexities. In SAT, pages 154–169, 2014.

4 Paul Beame, Christopher Beck, and Russell Impagliazzo. Time-space tradeoffs in resolution:

superpolynomial lower bounds for superlinear space. In STOC, pages 213–232, 2012.

5 Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity: Separa-

tions and trade-offs via substitutions. In ICS, pages 401–416, 2011.

6 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple.

Journal of the ACM, 48(2):149–169, 2001.

7 Marco Benedetti and Hratch Mangassarian. QBF-based formal verification: Experience

and perspectives. JSAT, 5(1-4):133–191, 2008.

8 Olaf Beyersdorff, Ilario Bonacina, and Leroy Chew. Lower bounds: from circuits to QBF

proof systems. Electronic Colloquium on Computational Complexity (ECCC), 22:133, 2015.

9 Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. On unification of QBF resolution-based

calculi. In MFCS, II, pages 81–93, 2014.

10 Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. Proof complexity of resolution-based

QBF calculi. In Proc. Symposium on Theoretical Aspects of Computer Science, pages 76–89.

LIPIcs series, 2015.

11 Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Feasible interpolation for

QBF resolution calculi. In Automata, Languages, and Programming - 42nd International

Colloquium, ICALP 2015, pages 180–192, 2015.

12 Olaf Beyersdorff, Leroy Chew, and Karteek Sreenivasaiah. A game characterisation of tree-

like Q-resolution size. In Proc. 9th International Conference on Language and Automata

Theory and Applications, volume 8977 of Lecture Notes in Computer Science, pages 486–498.

Springer-Verlag, Berlin Heidelberg, 2015.

13 Olaf Beyersdorff and Oliver Kullmann. Unified characterisations of resolution hardness

measures. In SAT, pages 170–187, 2014.

14 Archie Blake. Canonical expressions in boolean algebra. PhD thesis, University of Chicago,

1937.

15 Maria Luisa Bonet and Nicola Galesi. A study of proof search algorithms for resolution and

polynomial calculus. In Proceedings 40th Annual Symposium on Foundations of Computer

Science, IEEE, 1999.

16 Uwe Egly, Martin Kronegger, Florian Lonsing, and Andreas Pfandler. Conformant plan-

ning as a case study of incremental QBF solving. In Artificial Intelligence and Symbolic

Computation AISC 2014, pages 120–131, 2014.

17 Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and

Computation, 171(1):84–97, 2001.

18 Yuval Filmus, Massimo Lauria, Mladen Miksa, Jakob Nordström, and Marc Vinyals. From

small space to small width in resolution. In 31st International Symposium on Theoretical

Aspects of Computer Science, STACS 2014, pages 300–311, 2014.

19 Mikolás Janota and Joao Marques-Silva. Expansion-based QBF solving versus Q-resolution.

Theor. Comput. Sci., 577:25–42, 2015.

20 Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quantified

Boolean formulas. Inf. Comput., 117(1):12–18, 1995.

21 Jan Krajíček. Interpolation theorems, lower bounds for proof systems and independence

results for bounded arithmetic. The Journal of Symbolic Logic, 62(2):457–486, 1997.

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22 Oliver Kullmann. Investigating a general hierarchy of polynomially decidable classes of

CNF’s based on short tree-like resolution proofs. Electronic Colloquium on Computational

Complexity (ECCC), 99(41), 1999.

23 Meena Mahajan and Anil Shukla. Level-ordered Q-resolution and tree-like Q-resolution are

incomparable. submitted manuscript, 2015.

24 Jakob Nordström. Pebble games, proof complexity, and time-space trade-offs. Logical

Methods in Computer Science, 9(3), 2013.

25 Jussi Rintanen. Asymptotically optimal encodings of conformant planning in QBF. In

AAAI, pages 1045–1050. AAAI Press, 2007.

26 John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal

of the ACM, 12:23–41, 1965.

27 Allen Van Gelder. Contributions to the theory of practical quantified Boolean formula

solving. In CP, pages 647–663, 2012.

28 Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified boolean satisfiab-

ility solver. In IEEE/ACM International Conference on Computer-aided Design, ICCAD

2002, pages 442–449, 2002.

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Appendix

The appendix contains all proofs and details omitted from the main part of the paper due to

space constraints.

Missing proofs from Section 3

Lemma 4. For the false QBFs Fn = ∀u1 . . . un∃e0∃e1 . . . en.(e0) ∧ (¬ei−1 ∨ ui ∨ ei) ∧ (¬en)

we have S(
Q-ResT

Fn) ∈ O(n) and Space(
Q-ResT

Fn) ∈ O(1), but w(
Q-Res

Fn) ∈ Ω(n).

Proof. We denote the clauses in Fn as follows:

Fn =∀u1 . . . un∃e0∃e1 . . . en.

C0 : (e0) ∧

For i ∈ [n], Di : (¬ei−1 ∨ ui ∨ ei) ∧

Dn+1 : (¬en)

For the upper bounds consider the following proof. For i ∈ [n], let Ci = (u1 ∨· · · ∨ui ∨ ei).

For i ∈ [n] in sequence, resolving Ci−1 and Di on variable ei+1 gives Ci. Resolving Cn and

Dn+1 on variable en gives the clause U = (u1 ∨ · · · ∨ un). Finally, applying ∀-Red on the

clause U yields the empty clause in n more steps.

This is a tree-like proof of size O(n). Further, each resolution step involves an axiom

clause, so at each step we need to hold just two clauses, and so the space requirement is

O(1).

Concerning the width lower bound, by the order of quantification in Fn, every existential

literal in Fn blocks any ∀-reduction. Therefore, in any refutation, when a ∀-reduction is first

used, the clause C has only universal variables. At this point, the empty clause is derivable

from C by a series of ∀ reductions. Note that if any clause is dropped from Fn, the resulting

sentence is no longer false. Thus any refutation must use all clauses. Hence C must have all

universal variables in it; it must be (u1 ∨ · · · ∨ un) as all ui variables have been accumulated,

without being reduced. Then clause C has width n. ◭

Missing proofs from Section 4

Theorem 6. There is a family of false QBF sentences CR′
n over O(n2) variables, such that

S(
Q-ResT

CR′
n) = nO(1), w∃(CR′

n) = 3, Space(
Q-ResT

CR′
n) = O(1), and w∃(

Q-ResT
CR′

n) =

Ω(n).

Proof. Consider the following formulas CRn, introduced by Janota and Marques-Silva [19]:

CRn = ∃x1,1 . . . xn,n ∀z ∃a1 . . . an∃b1 . . . bn.

(Ci,j) (xi,j ∨ z ∨ ai), i, j ∈ [n]

(Di,j) (¬xi,j ∨ ¬z ∨ bj), i, j ∈ [n]

(A)
∨

i∈[n]

¬ai

(B)
∨

i∈[n]

¬bi.

CRn is constructed from a principle called the completion principle. Consider two sets

A = {a1, . . . , an} and B = {b1, . . . , bn}, and depict their cross product A×B as in the table

below.

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

a1 a1 . . . a1 a2 a2 . . . a2 an an . . . an

b1 b2 . . . bn b1 b2 . . . bn b1 b2 . . . bn

The following two-player game is played on the above table. In the first round, player 1

deletes exactly one cell from each column. In the second round, player 2 chooses one of the

two rows. Player 2 wins if the chosen row contains either the complete set A or the set B;

otherwise player 1 wins. The completion principle states that player 2 has a winning strategy.

The false sentence CRn expresses the notion that player 1 has a winning strategy. For each

column

[

ai

bj

]

of the table (denote this the (i, j)th column), there is a boolean variable xi,j .

Let xi,j = 0 denote that player 1 ‘deletes bj ’ (i.e, keeps ai) from the (i, j)th column, and

xi,j = 1 denotes that player 1 keeps bj in the (i, j)th column. There is a variable z to denote

the choice of player 2: z = 0 means ‘choose top row’. The Boolean variables ai, bj , for

i, j ∈ [n] encode that for the chosen values of all the xk,ℓ, and the row chosen via z, at least

one copy of the element ai and bj respectively is kept. (eg. (xi,j ∧ z) ⇒ bj).

It is known that CRn has O(n2) proofs in Q-Res, and even in Q-ResT [23]. However

CRn has large existential width, and in order to prove Theorem 6, we need a formula with

constant initial existential width. To achieve this we proceed similarly as in the Tseitin

transformations, i.e., we introduce 2n+ 2 new existential variables (i.e, ~y, ~p) at the innermost

level in CRn, and replace the two large clauses in CRn by any CNF formula which preserves

their satisfiability. Let CR′
n denote the modified formula

CR′
n = ∃x1,1 . . . xn,n ∀z ∃a1 . . . an∃b1 . . . bn∃y0 . . . yn∃p0 . . . pn.

(Ci,j) (xi,j ∨ z ∨ ai), i, j ∈ [n] (3)

(Di,j) (¬xi,j ∨ ¬z ∨ bj), i, j ∈ [n] (4)

¬y0 ∧
∧

i∈[n]

(yi−1 ∨ ¬ai ∨ ¬yi) ∧ yn (5)

¬p0 ∧
∧

i∈[n]

(pi−1 ∨ ¬bi ∨ ¬pi) ∧ pn. (6)

Note that w∃(CR′
n) = 3.

It is clear that from the type-(3) clauses of CR′
n, we can derive the large clause

∧

i∈[n] ¬ai

of CRn in n+ 1 resolution steps. Similarly we can derive the large clause
∧

i∈[n] ¬bi of CRn

from the type (4) clauses in n+ 1 steps. The proof refuting CRn uses each of these large

clauses n times; see below. Thus S(
Q-ResT

CR′
n) ≤ S(

Q-ResT
CRn) +O(n2) = O(n2).

We briefly sketch the refutation of CRn from [23] to analyse its space requirement. The

fragment Wj starts with clause A, successively resolves it with clauses from C∗,j to get

z ∨ x1,j ∨ . . . ∨ xn,j , eliminates z through a ∀-reduction, then successively resolves it with

clauses from D∗,j to get Wj = ¬z ∨ bj . It is easy to see that O(1) space suffices to construct

this fragment. The overall proof starts with the clause B, successively resolves it with

W1,W2, . . . ,Wn (reusing the space to construct successive Wj ’s), and finally gets ¬z which

is eliminated through a ∀-reduction. Again O(1) space suffices.

Finally, we show that CR′
n needs large existential width.

Let π be a proof in Q-Res, π
Q-Res

CR′
n. List the clauses of π in sequence, π =

{D0, D1, . . . , Ds = �}, where each clause in the sequence is either a clause from CR′
n,

or is derived from clause(s) preceding it in the sequence using resolution or ∀-Red. There

must be at least one universal reduction step in π, since all the initial clauses are necessary

for refuting CR′
n, some of them contain universal variables, and the only way to remove a

universal variable in Q-Res is by ∀-Red. Let t be the least index such that in the clause Dt,

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

a ∀-Red step has been performed on the only universal variable. Without loss of generality,

let the universal literal be the positive literal z; the argument for ¬z is identical. As the

existential variables, ~a,~b, ~y, and ~p all block the universal variable z, none of them is present

in the clause Dt. We use this fact to show that w∃(Dt) = Ω(n). Our strategy is to associate

some set with each clause in π in a specific way, and use the set size to bound existential

width.

We associate the following sets with the literals of CR′
n and the clauses of π.

σ(z) = ∅ = σ(¬z)

∀i ∈ [n] σ(ai) = [n] \ {i} = {1, . . . , n} \ {i}

∀i ∈ [n] σ(xi,j) = σ(¬ai) = {i}

∀i ∈ [n] σ(¬yi) = [n] \ [i] = {i+ 1, . . . , n}

∀i ∈ [n] σ(yi) = [i] = {1, . . . , i}

∀j ∈ [n] σ(bj) = [n] \ {j} = {1, . . . , n} \ {j}

∀j ∈ [n] σ(¬xi,j) = σ(¬bj) = {j}

∀j ∈ [n] σ(¬pj) = [n] \ [j] = {j + 1, . . . , n}

∀j ∈ [n] σ(pj) = [j] = {1, . . . , j}

∀D ∈ π σ(D) =
⋃

l∈D

σ(l).

Note that for variables v in ~a, ~b, ~p, ~y, the sets σ(v) and σ(¬v) form a partition of [n].

For D ∈ π, let πD be the sub-DAG of π, rooted at D. Consider the sub-DAG πDt
of π.

We have the following observations:

Observation 1. πDt
contains at least one type-(1) clause as a source; this is because z ∈ Dt,

and the only initial clauses containing z are the type-(1) clauses.

Observation 2. πDt
does not contain any clause of type (2): as z ∈ Dt, we know that

¬z /∈ Dt. Therefore if some type-(2) clause is present in this sub-DAG, the only way

to remove ¬z is via ∀-Red. This reduction will take place before the reduction on Dt,

contradicting our choice of index t. We also conclude that the literal ¬z cannot appear

anywhere in πDt
.

Observation 3. πDt
does not contain any type-(4) clause: we know that Dt does not contain

~p and ~b variables (because they block z). Any use of type (4) clauses introduces ~p variables

and possibly ¬b literals. Removing ~p variables introduces ¬b literals. But ¬b can be

removed only by resolving with b, which is only in type-(2) clauses. We have already seen

that type-(2) clauses are not present in πDt
.

Observation 4. No clause in πDt
contains a literal ¬xi,j , since ¬xi,j are introduced only in

type (2) clauses.

Observation 5. For any clause C derived solely from type (3) clauses, σ(C) = [n]. This is

true for type-(3) clauses by definition of σ. Using only these clauses, the only resolution

step possible is with a y variable as pivot. The claim can be verified by induction on

depth: Since σ(yi) and σ(¬yi) partition [n], [n] \ σ(yi) and [n] \ σ(¬yi) also partition [n].

We show that all clauses in πDt
that are descendants of some type-(1) clause have large

sets associated with them. In particular, we show:

◮ Claim 21. Every clause D in πDt
such that πD contains a type-(1) clause has σ(D) = [n].

Deferring the proof briefly, we continue with our argument. From the Claim we conclude

that σ(Dt) = [n]. Recall that the variables ~a,~b, ~y, ~p and the literals ¬xi,j ’s are not present in

Dt. The only literals left are positive xi,j ’s. These literals are associated with singleton sets,

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

and the variables xi,j for different values of j give the same singleton set. So we conclude

that for each i ∈ [n], there must be some xi,j ∈ Dt. Hence w∃(Dt) = Ω(n).

It remains to establish the claimed set size.

Proof of Claim 21. We proceed by induction on the depth of descendants of type-(1) clauses

in πDt
. The base case is a type-(1) clause itself and follows from the definition of σ.

For the inductive step, let D be obtained by resolving (E ∨ r) and (F ∨ ¬r). There are

two cases to consider: both are descendants of some type-(1) clauses, or only one of them, say

(E ∨ r), is a descendant of a type-(1) clause. In the former case, by the induction hypothesis,

σ(E∨r) = [n] and σ(F ∨¬r) = [n]. In the latter case, σ(E∨r) = [n] by induction hypothesis,

and σ(F ∨ ¬r) = [n] from the observations above. ((F ∨ ¬r) is not a descendant of any type

(1) clause. But it belongs to πDt
which has only type-(1) and type-(3) clauses. So it must be

a descendant of only type (3) clauses, and hence has [n] associated with it.)

Thus in both cases, we have σ(E ∨ r) = σ(F ∨ ¬r) = [n]. So we have σ(E) ⊇ [n] \ σ(r)

and σ(F) ⊇ [n] \ σ(¬r). Observe that the pivot variable r can only be either an ~a or

a ~y variable. Thus σ(r) and σ(¬r) are disjoint, and hence σ(E) ∪ σ(F) = [n]. Thus

σ(D) = σ(E) ∪ σ(F) = [n] as claimed. ◭

This completes the proof of the Theorem. ◭

Missing proofs from Section 5

Proposition 13. Any proof in ∀Exp+Res of size S, width W , and space C can be efficiently

converted into a proof in IR-calc of size at most 2S, width W , and space C. If the proof in

∀Exp+Res is tree-like, so is the resulting IR-calc proof.

Proof. In IR-calc, when an axiom is downloaded, the existential literals in it are annotated

partially. However in ∀Exp+Res, the annotations are complete; all universal variables at a

lower level than a literal appear in its annotation. To convert a proof π in ∀Exp+Res to one

in IR-calc, all that is needed is to follow up each axiom-download with an instantiation that

completes the annotations as in π. This introduces at most one extra step per leaf but does

not increase width. Also observe that the space required has not changed: to instantiate a

clause we can reuse the same space. ◭

Lemma 14. ∀Exp+ResT p-simulates IRT-calc while preserving its width, size, and space.

Proof. Recall the main reason why IRT-calc proofs differ from those in ∀Exp+ResT: axioms

are downloaded with partial rather than complete annotations, and annotations can be

extended at any stage by the inst operation.

The idea is to systematically transform an IRT-calc proof, proceeding downwards from

the top where we have the empty clause, and modifying annotations as we go down, so that

when all leaves have been modified the resulting proof is in fact an ∀Exp+ResT proof. This

crucially requires that we start with a tree-like proof; if the underlying graph is not a tree,

we cannot always find a way of modifying the annotations that will work for all descendants.

Let π be an IRT-calc proof of a false QBF F . Without loss of generality, we can assume

that every resolution node has, as parent, an instantiation node. (If it does not, we introduce

the dummy inst(∅, ∗) node between it and its parent.) Since the proof is tree-like, we can

also collapse contiguous instantiation nodes into a single instantiation node. Thus, as we

move down a path from the root, nodes are alternately instantiation and resolution nodes.

We consider each resolution node and its parent instantiation node to be at the same level.

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Starting from the top, which we call level zero, we transform π to another proof π′ in

IRT-calc maintaining the following invariants: after the ith step, all the instantiated clauses

up to level i are fully annotated and the instantiating assignments are complete. Thus the

instantiation steps become redundant. This further implies that after the last level (when we

reach the axiom farthest from the top), the resulting proof is in fact a ∀Exp+ResT proof.

At level 0: The node at this level must be a resolution producing the empty clause,

followed by a dummy instantiation with the empty assignment. Thus the clauses at this

level are already fully annotated, but the instantiating assignment is far from complete.

Pick an arbitrary complete assignment, say σ, and instantiate the empty clause with σ.

Clearly the invariants hold now.

Assume that the invariants holds after processing all nodes at level i− 1.

At level i: Let D be an instantiated clause at level i − 1, obtained by instantiating

some clause C by an assignment σ. That is, D = inst(C, σ). By the induction hypothesis,

D is fully annotated and σ is complete. Let C be obtained by resolving E = (G ∨ xτ)

and F = (H ∨ ¬xτ). We need to make E and F fully annotated. Let E = inst(I, β1) and

F = inst(J, β2) in π. Replace E by E′ = inst(I, β1 ⊻ σ) and F by F ′ = inst(J, β2 ⊻ σ).

As σ is complete, both β1 ⊻ σ and β2 ⊻ σ are complete, and hence both E′ and F ′ are

fully annotated. The resolution step is now performed on xτ ′

, where τ ′ = τ ⊻ σ is the

resulting annotation on x. It is easy to see that the resolvent of E′ and F ′ is D, so the

intermediate instantiation step going from C to D becomes redundant.

It is clear that the simulation preserves width. It also does not increase size: we

may introduce dummy instantiation nodes to make the proof ‘alternating’, but after the

transformation, all instantiations — dummy and actual — are eliminated completely. It is

also clear that the simulation preserves the space needed, since the structure of the proof is

preserved. ◭

Lemma 15. IRT-calc p-simulates Q-ResT while preserving space and existential width ex-

actly and size upto a factor of 3. That is, S(
IRT-calc

F) ≤ 3S(
Q-ResT

F), Space(
IRT-calc

F) ≤

Space(
Q-ResT

F), and w(
IR-calc

F) ≤ w∃(
Q-Res

F).

Proof. We use the same simulation as given in [9]. This simulation was originally for dag-like

proof systems, but here we check that it also works for tree-like systems, and we observe

that space and existential width are preserved.

Let C1, . . . , Ck be a Q-ResT proof. We translate the clauses into clauses D1, . . . , Dk,

which will form the skeleton of a proof in IR-calc.

For an axiom Ci in Q-ResT we introduce the same clause Di by the axiom rule of IR-calc,

i.e., we remove all universal variables and add annotations.

If Ci is obtained via ∀-reduction from Cj , then Di = Dj ; we make no change.

Consider now the case that Ci is derived by resolving Cj and Ck with pivot variable x.

Then Dj = xτ ∨Kj and Dk = ¬xσ ∨Kk. It is shown in [9] that the annotations τ and σ

are not contradictory; in fact, no annotations in the two clauses are contradictory. So if

we define D′
j = inst(σ,Dj) and D′

k = inst(τ,Dk), then the annotations of x in D′
j and ¬x

in D′
k match, and we can resolve on this literal. Define D′

i as the resolvent of D′
j and D′

k.

We can perform a further instantiation to obtain Di = inst(η,Di), where η is the set of

all assignments to universal variables appearing anywhere in D′
i. Di has no more literals

than Ci. For details, see [9].

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Note that to complete this skeleton into a proof, we only add instantiation rules. Thus, if

the original proof was tree-like, so is the new proof. If the original proof has size S, the new

proof has size at most 4S, since each resolution may now be preceded by two instantiations

and followed by one instantiation. However, this is an overcount, since we are counting

two instantiations per edge, one from the parent and one from the child, and contiguous

instantiations can be collapsed. That is, every instantiation following a resolution step can

be merged with the instantiation preceding the next resolution and need not be counted

separately. The only exception is at the root, where there is nothing to collapse it with.

However, at the root, the instantiation itself is redundant and can be discarded. Thus we

obtain a new proof of size at most 3S.

Further, if the original proof had existential width w, then the new proof has width w

since each Di has at most (annotated versions of) the existential literals of Ci.

Regarding space, observe that simulating axiom download and ∀-Red do not require

additional space. At the resolution step, the simulation first performs additional instantiations.

But instantiation does not need additional space. So the space bound remains the same. ◭

Missing proofs from Section 6.1

Theorem 18. For all false QBFs F , the following relations hold:

1. S
(

∀Exp+ResT
F
)

≥ 2
w
(

∀Exp+Res
F
)

−w∃(F)
.

2. S
(

∀Exp+ResT
F
)

≥ 2
Space

(

∀Exp+ResT
F

)

− 1.

3. Space
(

∀Exp+ResT
F
)

≥ Space(∀Exp+Res
F) ≥ w(∀Exp+Res

F) − w∃(F) + 1.

Proof. This theorem follows from the analogous statements for classical resolution. We just

describe how to apply those results to ∀Exp+Res.

We know that in ∀Exp+ResT proofs, leaves corresponds to the expanded clauses from

F . The expanded clauses contain only existential (annotated) literals and no universal

literals. Let G be the QBF obtained after expanding F based on all possible assignments of

universal variables. Clearly, G contains no universal variables and hence can be treated as a

propositional CNF formula (all variables are only existentially quantified). That is, if G is

the matrix of clauses in G, then G asserts that G is satisfiable. Also, w(G) = w(G) = w∃(F).

Refutations of F in ∀Exp+Res (respectively, ∀Exp+ResT) are precisely refutations (resp.

tree-like refutations) of G in classical resolution; the size, space and width are exactly

the same, by definition. That is, S(
ResT

G) = S(∀Exp+ResT
F), w(

Res
G) = w(∀Exp+Res

F),

Space(
Res
G) = Space(∀Exp+Res

F), and Space(
ResT

G) = Space(∀Exp+ResT
F). Now the The-

orem follows by applying Theorems 1, 2, and 3, on G. ◭

Missing details from Section 6.2

Theorem 20. For a false QBF sentence F , S(
Q-ResT

F) ≥ 2
Space

(

Q-ResT
F
)

− 1.

Before getting into the proof, we describe the pebbling game.

◮ Definition 22. (Pebbling Game) Let G = (V,E) be a connected directed acyclic graph

with a unique sink s, where every vertex of G has fan-in at most 2. The aim of the game is

to put a pebble on the sink of the graph following this set of rules:

1. A pebble can be placed on any source vertex, that is, on a vertex with no predecessors.

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2. A pebble can be removed from any vertex.

3. A pebble can be placed on an internal vertex provided all of its children are pebbled. In

this case, instead of placing a new pebble on it, one can shift a pebble from a child to the

vertex.

The minimum number of pebbles needed to pebble the unique sink following the above rules

is said to be the pebbling number of G.

Consider the proof graph Gπ corresponding to a Q-Res proof π of a false QBF F . In Gπ

clauses are the vertices and edges go from the hypotheses to the conclusion of inference rules

(i.e, ∀-Red, resolution steps). Clearly Gπ is a DAG with initial clauses as sources and the

empty clause as the unique sink. Also the in-degree of each vertex in Gπ is at most 2. Hence

the pebbling game is well defined in Gπ.

We now show that the space required to refute a false QBF sentence F coincides with

the minimum number of pebbles needed to play the pebble game on the graph of a Q-Res

proof of F . The relation holds for tree-like proofs as well.

◮ Lemma 23. Let F be a false QBF in prenex form. Then the following holds:

1. Space(
Q-Res

F) = min{k : ∃ Q-Res proof π of F , Gπ can be pebbled with k pebbles};

2. Space(
Q-ResT

F) = min{k : ∃ Q-ResT proof π of F , Gπ can be pebbled with k pebbles}.

Proof Sketch. The proof is exactly the same as in classical resolution.

Let π be a Q-Res proof whose proof graph Gπ can be pebbled with k pebbles. (If π

is treelike, then Gπ is a tree.) Note that the vertices of Gπ are clauses in the proof. The

space-oriented Q-Res (respectively Q-ResT) proof sequence with clause space k is constructed

by maintaining at each stage exactly the pebbled clauses. By the rules of the pebbling game,

adding a clause to the current set is valid because the added clause is either at a source node

and hence an axiom, or it has all predecessors pebbled and hence can be inferred. Further,

if π is tree-like, then it can be shown that there is a k-pebble sequence where no node is

pebbled more than once (once a node is pebbled, no predecessor of the node need be pebbled

again). So the above construction will yield a tree-like space-k proof sequence.

In the other direction, given a space-k proof as a sequence σ, we can construct a

corresponding DAG G with nodes for each clause appearing anywhere in σ, and edges

reflecting how the clauses are used for inference in σ. Thus we obtain a proof π with Gπ = G

(it is the same proof as σ, just represented differently). We can pebble G with k pebbles

by maintaining the invariant that at each stage, pebbles are placed on exactly the clauses

present in the corresponding formula in the sequence σ. If σ is a tree-like space-k proof, we

construct a corresponding tree with a distinct node for every copy of a clause introduced at

some stage in σ, and then pebble it as above. We omit the details. ◭

With Lemma 23 we can now prove Theorem 20 similarly as in classical resolution.

Proof of Theorem 20. This proof too is almost identical to the proof for classical resolution

[17]. We give a brief sketch.

Let S(
Q-ResT

F) = s. Consider a tree-like Q-ResT proof π of F (i.e, π
Q-ResT

F), of size s,

and let T be the underlying proof-tree.

In contrast to classical resolution, a proof graph in Q-Res may have unary nodes cor-

responding to ∀-reductions. In particular, for a proof in Q-ResT, there may be paths

corresponding to series of ∀-reductions. Once the lower end of such a path is pebbled,

the same pebble can be slid up to the top of the path; no additional pebbles are needed.

So without loss of generality we work with the tree T ′ obtained by shortcutting all paths

containing unary nodes.

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Let dc(T) be the depth of the biggest complete binary tree that can be embedded in T ′

or in T . (We say that a graph G1 is embeddable in a graph G2 if a graph isomorphic to G2

can be obtained from G1 by adding vertices and edges or subdividing edges of G1.) Clearly,

2dc(T)+1 − 1 ≤ s.

By induction on |T ′|, we can show that dc(T) + 1 pebbles suffice to pebble T ′. Hence,

by the argument given above, dc(T) + 1 pebbles suffice to pebble T as well. Now, using

Lemma 23, we obtain Space(
Q-ResT

F) ≤ dc(T) + 1. Hence

2Space(
Q-ResT

F) − 1 ≤ 2dc(T)+1 − 1 ≤ s = S(
Q-ResT

F)

as claimed. ◭

© Olaf Beyersdorff, Leroy Chew, Meena Mahajan and Anil Shukla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

	Introduction
	Notations and preliminaries
	Size, width, and space in resolution calculi
	Defining size, width, and space for resolution
	Relations in classical resolution
	Existential width: What is the right width notion for QBF?

	Negative results: Size-width and space-width relations fail in Q-Res
	Simulations: Preserving size, width, and space across calculi
	Positive results: Size, width, and space in tree-like QBF calculi
	Relations in the expansion calculi Exp+Res and IR-calc
	The size-space relation in tree-like Q-resolution

	Conclusion

