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Projective Pibred Schemes,

"This thesis takes the construction (due %o Grothendieck) of
the projective fibred scheme of a coherent sheaf and investigates
certain aspects of its geonecitry, (and., in Chaonter IV, topolo,{’;y).
In Chapter I, after quoting the basic definitions, of the vrojective
fibred scheme of & with its projection W E&-—«»B- X and fundamental
invertible sheaf 0(1) on [FE, and giving some simple illustrative
examples, we turn (é§ 2,3) to some particular features of the geometry,
notably the Fitting svhschemes and the dominating component (and
interactions between the two), Here and thronghout most of the work
we keep close 1o geometrical intuition by considerihg only coherent
modules on locally-noetherian, reduced schemes, In an avvendix
we introduce some sheaves that are in-a sense universal for coherent
sheaves on projective varicties., (These do not play any essential role
in the rest of the thesis).

Chapter II is concerned with the canonical homomorphism o(,
E > W, 0(1) which is known to be an isomorphism when & is
locally~free, We extend this result to a larger class of sheaves:
and show, for example, that ® is an isomorphism if ®€ is normal.
In view of this result, and for general reasons, it is of interest
to look for examples of smooth projective fibred schemes, This we
do in Chapter III and show that a "generic" Module E of the type
tha,t’ locally has a resolution O-~——> Og—-ﬁ-)o}(} -— & >0 (U, smoo-
where fa(x)=0)has smooth P€ in a neighbourhood of [Pe(x)'

Chapter IV considers the (sinoular)cohomology ring of IPE€ when

€ is a sheaf on a comvlex variety (with the classical topology).

He include a discussion of the.effecton céhomology of blowing-up

a smooth variety with centre a smooth subvariety.



Preface.,

e v . ot A S——

The projective fibred scheme (*fibré nrojectift) construction
of Grothendieck (EGA IIéfi) associales to each quasi-coherent Crk—
Hodule &€ on a scheme X, an X-schene . IPE ~———3>» X, whose
geometric fibres are projective spaces, Two cxtreme examoles are
well-known, First, if g is locally~free of rank r +the fibres
of 163 have constant dimension -1 and lfﬁ is essentially an
algebraic projective bundle, Second, if &€ is the sheaf of ideals
defining a regular subschemgféf a regular noetherian scheme X
then [P€ is obtained by blowing up X with centre Y, a construction
which (at least for the case:Y, a point ) dates from the classical
era of the subject., However, the vprojective fibred scheme of a
general coherent sheaf & y Wwhich appears to combine many of the
features of these two extreme examples (cf, Chanter I§ 3(ii1)),
has not received much attention. (We should mention (15) which
shows how certain classical problems on projective embeddings of
varieties can be expressed in terms of projective fibred schenmes. )
We envisage that the construction may play a central role in a
future theory seeking to distinguish and classify Modules by
goeometric proverties of their associated fibred schemes,

Our theme then is the geometric theory of modules; or rather,
since such a theory is not yet realised, we take some tentative
steps towards it, With the excepticn of Chapter I §l and Chapter
II §l the work presented here is thought to be original, When it
leans on work of others (especially Chapter II§2 and Appendix, and
Chapter IV §l) due acknowledgement is made.

My grateful thanks are due to Prof., R.L.E. Schwarzenberger
for encouraging me to grasp the nettle of algebraic geometry, for
suggesting the line of research pursued here, and for his patient

support and guidance.

Financial supvort was provided by an SRC Research Studentship,
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Chapter I llements of the Geometry of Projective Tibred Schemes,

Introduction,

. The chapter is divided into 3 sections and an appendix, §1
contains the basic definitions, summarised frow BGA II, and adds
some examples to motivate the rest of the chapter., An important
characteristic of 8: projective fibred scheme - &le when € is
coherent is the way the dimeuasions of the fibres vary. This is
expressed by the Fitting subschemes of € in X which are global
analogues of the FPitting invariants of a module in commutative -
algebra, We glve the definitions in §2. Intuitively the

"Fitting subschene Fn(a) is the subscheme of X over which the

fibres of ’feE have dimension 2 n-l.

§ 3 treats of some further geometrical features of hD£ where

E is a coherent Module over aﬁ integral, noetherian scheme X,

Ve are concerned especially with the dominating component of E&,
Q(€), which is the unique irreducible component of PE with
surjective projection M: Q(€ ) == X, If € is a torsion-—freev
sheaf this is reflected in some properties of Q(& ), wth applicai;;‘.ons
in Chapters II and IV,

In the Appendix we define some sheaves ’U,, on projective
spaces over an algebraically closed field k, which are universal
for coherent sheaves on projective varieties over k in the sense
that P€ is induced by embedding the variety X in some projective

space and restricting [PU to X.



"§1 Basic Definitions and Uxannieg,

It V is a vector space over a field k we write PV for the
projective space of l-dimensional linear subspaces of the duel
space V¥ = Hom(V,k). This is dual to the classical construction
of the "projective space associated to a vector swnacc": the
difference is forced because we wish %5 globalise the construction
as Tollows., To each quasi-coherent sheaf over a scheme X there is
associated a X-scheme, 7 : P&~ X, (called the "projective
fibred schemd' of £), such that the fibre 7'(x) over a point x in
X is canonically isomorphic toP(E®k(x)). The construction of

PE is due to Grothendieck (EGA IT§4), and is a case of a more
general construection, that of the homogeneous spectrum of a sheaf
of graded algebras (EZA II§§2,3). In this section we reproduce
the details of this construction, thereby fixing our notation

(which is in the main consistent with that of EZA).

ile first define the homogeneous spectrum of a ring, Let S
graded. . . .

be a commutativegring: that is, as abelian group S5 = &35, and
nyo

the multiplication in S is such that S,S,< S (myn € Z). An
nam
element xeSris called homogeneous of degree r,

+
Given x €S, (r>0), let T = {x“ \neZ }, (vy convention,

x® =1 ). T is a multiplicatively closed subset of S and the

-
associated ring of fractions, S, = T S, is graded by putting

X
(5,), = {f/x" lf‘(—Sﬂ"A,n e‘ZT] Let S, = (s,), = {f/X" ‘fésm,n G‘Zf}
(EGA IT 2.2),



Let S, = (S, and assume that S_ is generated (as a ring

n>o
or as an ideal in S, it makes no difference) by S,. An ideal
p of S is said to be graded if p =@ (pnS,). With these
n30

preliminaries the homogeneous spectrum of S (called "Proj 5")
can be defined as follows:
(1) Its underlyj.ng set is the set of graded prime ideals
p of 5 such that S+7L- D..
(ii) The subsets D+(x) = {E&Proj S I }:én] , Where
xéS“ for some n9 0, form a basis for a topology on Proj S.
(iii) Proj S5 has the structure of a.ringed space determined
vy Ol0yx) = sy
With this structure Proj S is a separated scheme (EGA.II
Prop. 2.4.2). Each D+(x) with its induced ringed space structure
is isomorphic to the affine scheme Spec S(x\'
If A is a ring and S a graded A-algebra with X = Proj S
then O;is an A-Algebra: in other words X is a seperated scheme
over Spec A (EGA II Prop. 2.4.6). |
If M is a graded module (graded by both positive and negative
indices, M = QM»\ ) over a graded ring or A-algebra, S, then
M determines naegeaf of modules on X. For xéSr y let
My * (Mx),= {m/x”‘memrh ' n),O‘ . Then Myyis a module over Sy
Let d,e be integers._(d0), and let f& Sd , £€5,. There is a
canonical isomorphism of rings S“f’)-ﬁﬁ (Sm\g‘l/ge, and if we
identify these two rings there is a canonical isomorphism of
modules M (?5\ -5-.) (M“))Sd/ge,H'ence‘ (BgA II 2.2.3) there are
canonical homomorphisms Sw)—-> E)(e 3) and I:I“)---) M“ 9), which

together define the sheaf of modules on Proj S:



BGA IT Proposition 2.5.2,

On X = Proj S there is a unigue quasi-coherent O;{—-Module
M such that for fe 5 . we have P(D+(f), 7)) = M(g). The restriction
hemomorphism P(D+(f), M) i (D+(fg), it ), for f,z homogeneous
in S+, is the canonical homomorphisn ILJE) D Id.g) o

As an important examvle of this construction there are the
sheaves q‘(n) (neZ) defined velow. ior ng'Z, ¥(n) is the graded

module over S defined by (M(m))k =M .. In particular S(n) is a

+k
. —
graded S-module (where 8, = 0 for n<0), and we put O;gn) = S(n).

Assuming that S, is generated by S) we have (EGA 11 2.5.9) (‘)‘)511)

1
is an invertible 0X-Module for all neZ . (2.5.14) For mn€ %,
O'X(m)® & (n) = & (m+n) and & (n) = (O'x(l))®n, both up to
0;‘ X X X

canonical isomorphism. (2.5.15) For any graded S-Module M,
~ —~
M(n) = ‘.‘~1®0X(n), up to canonical isomorphism,

The above constructions have the following functorial prop-
erty, (BGA TI 2.8.9) . Let A,A' be two rings and ¥ : A' === 4
a ring homomorphism defining a morphism "P : Spec A ——>» Spec Al,
Let S' be a graded A'-algebra and let S = S'@A' A, which is an
A-algebra graded:by the S£®},A.A Let M' be a graded S'-module and
put ¥ = M! ®A'A = 1‘/['8,38. Let Y = Spec A , Y' = Spec A', X = Proj 'S
X' = Proj 3'. Then there is a commutative diagram:

p QS S

e
Y -—-—@---b Y!
which (EGA IT Proposition 2,8,10) identifies the scheme X
with the product X'x . ¥ . (dis the morphism defined by
D e ?-l(g) where ¢ : .S‘ — S,fo(s') = s'@1 ). Further there
is a canonical isomorphism @ *(ﬁ') ~Es 1.

In particular, if A = TIA' for some multiplicatively closed

subset T of A and ¥: A' ——3> A is the canonical homomorphisnm,



then Spec A ©—~—» Spec A' is an open embedding and
X =Proj(s'® A,A) is canonically jdentificd with n~'(Spec A).
Consequently (EGA Prop 3.1.2) if Y is a scheme and B a sheaf of
graded algcbras over Y, then Proj’g can be constructed as a schene
over Y by gluing ("rccollement"),
Further, if | is a sheaf of graded O;-mod~.1les, the sheaves
P(U,/n )y define, by the gluing process, a sheaf of modules Jﬁ,
on Proj 'g e In particuiar, if g is generated by gl, then the
J(n) aefine invertible sheaves on Proj B : (K1) is called the

fundamental sheaf,

By (ECA IT 3.3.2), for each n > O there is a canonical
homomorphism of O'X-—Modules Pyn: My —> Tf*,f’fi(n) , where
T is ‘b.he projection  Proj g — Y, /on is defincd over each
open UcX by mapping mé P(U,Jnn) to the element @ of
(v, W%ﬁ(n)) = P(ﬂ"U,,/T'i(n)) which restricts to m/L in each
r'(D+(f), ./ﬁ(n)), fe F(U,‘gl). In particular we note for later
reference the morphisms
‘gn ﬂ*O(n).

We complete this summary of the construction of homogeneous
spectra with the result (EGA II 3.6) which shows the construction -
is functorial in a restricted sense. Suppose 'g, ’é' are two graded
Algebras, each generated by its component of degree 1, and suppose
@2 g — g/ is a graded homomorphism which is surjective., Let

X = Proj8 , X' = Proj& . Then if p is & point in X', i.e a
graded prime ideal of ‘g'(U) such that ?I(U) 4_‘ Py y"(p) is
a graded prime ideal of € (U) and gl(U)qﬁaf'lpl Hence v t—-ab-(,;'(p)
defines a function @ $: X' =——» X, It can be verified that é is
the set—theoretic map underlying a morphism of schemes (which we
shall also denote by é ) and. that é is in fact a closed embedding
("immersion fermé"). Further (3.6.3) O’X,(n) is canonically

* ,
isomorphic to @ OX(‘_n). For thme facts, ceneralisations and



3
further propertics, we refer the reader to 1HGA II § 3.

The two examples of the Proj construction with which we shall
be principally concerned are (i) the projective fibred scheme of a
quasi-coherent @’},-Module (Ben 118 4) and (ii) the blow-up
{
("éclatement”) of a quasi-coherent sheaf of ideals in OX (that is,

of a subscheme of X)), (BGA II §8).

(1)Projective fibred schemes,

Definition. (2GA II 4.1.1) If &€ is a quasi-coherent o;{-—lklodule,
PE ,the projective fibred scheme of & , is the X-scheme, Proj 8E
where %€ is the symmetric Algebra:.of £.

Let us summarise the construction of BE : If © is a module
over a ring A, the symmetric algebra of I is the A-algebra SAE
with a canonical A-linear monomorphism i: B ——e——sS AE satisfring
the universal pronerty :-

if i': B ——=—» S' is an A-module homomorphism where S!' is
an algebra over A, there is a unique A-algebra homomorvhism

< SAE ~——3 3! such that oi =1,

This property defincs SAE uniquely up to isomorphism. ‘le shali
sometimes abbreviate notation and write 3E for E'AE when ro coni‘usic;n
can result. SE is a graded algebra over A such that (SE)O ® A,
(SE)1 ¥ 3  and i is a monomorphism onto (SR)

Lemma (1.1)

If B is an algebra over A, A —-» B, there is a natural

10

isomorphism 5,i®,B = SB(B ®AB).
Proof.

It suffices to show i@®1l: E@3 ~——» SA}S@B has the universal
property: |

if S' is a B-~algebra and we have a B-linear homomorpvhism

it: B @AB ~—>» 3', there is a unique B-algebra homomorphism



&t S,E®B ~——»S' such that «fi®l) = 1i'.

The universal property of 1: L ~—i» 3 AE gives a unique A=

/ ————= 31 guch that the diagrem

alpgebra homomorphism e ¢ 3 Al

L

below commutes:
] et S T
o i’ .
.L‘)@B e rnome ety 3
o« induces & = o ® IB: SAE@B — SI1@®B = 3', Then the following

diagram commutes and so o has the required oronerty.

]_?i > SJXJ(‘
@B 1ot J>SE®B
N Py
. o
|I /“
gt St@ B

Uniqueness of &« follows from the fact that im(SAE) generates
SAE®B as a B-module, LJ
By applying the lemma in the case B = A'I",' a ring of fractions
ol A,it can be seen that if X is a scheme and € a quasi-coherent
O'X-Module then the symmetric algebras of the modules E (),
(U open affine in X) form a quasi-coherent OX—Algebra €c.
We list below some basic properties of PE = Prcjge.

Provosition ‘{‘1,2)

(1) If f£: Y ——=— X is a morphism of schemes and & is a
quasi-coherent OX-—Module, there is a canonical isomorphism
d: PE€) ——» vx PE, anair OQ)t is the
fundamental invertible sheaf on [P (f°&€ ) there is an isomornhism
o(l)'*}?.ﬁ 0-(1') where p: Yx le’ﬁ—-—-‘» IPE€ is the projection.
(31)21f £ ——> El is an epimorphism of D’X-—diulOS, there
is induced a closed embedding of X -schemes: IPE"‘-J.---* [P& o such

that 3" (1), = ‘0(1)8,



(iii) Since (8€ )l = & ( gives o canonical morphisn
* \
A E——> 1‘.'_%_0(1). ho homomorvhism T & ——-3 (O{1) (884 IT 4.1.5.1

%
defined as the compogsite of o« with the canonical homomorphisn

_ TT*TT* o). g(l)y is surjective.

Remarks,

(i) is the global version of Lemma (1.1) avove. If we apply
it to the case Y - Spec k (k, a field), so f: Spec k =~——3= X
is a geometrical (k-valucd) voint of X, we see that the fibre YxXlP&
is isomorphic to [P(E®k). Here £®k is a vector svace over k,
so S(E@k) is a volynomial algebra and Proj(3(E®k)) = P (E®k)
is the associated projective space. Thus the geometric fibres of
. ﬂ’& -——» X are projective spaces which explains the
terminology "projective fibred schemes",

(ii) follows from (p.S) above since an epimorphism & ~———> E_,,

t
induces an epimorphism 58 ---->’€8. D

If € is coherent and locally free lf& may be considered +to

be a projective bundle of locally constant rank. Fer general
E the dimensions of the geometrical fibres of PE vary (in fact.

upver semicontinuously over X) and it is this vhich makes the
geometry of [PE potentially interesting. It is to be hoped that
study of the geometry of projective fibred schemes will yield :‘-..nsi.ghts
into the algebraic structure of modules and Modules., Experiment
shous, however, that the structure of [PE can be far from transparent
(for example, unpleasant singularities can, and often do, occur),
and a preliminary step, before any such program can be instigated,
must be to isolate for study a class of sheaves large enough to be
interesting, whose projective fibred schemes have good geometric
properties, This is the philosophy behind the investigations of

Chapters II and IIT,



(ii) Blowins-un a agnagi-coherent sheaf of ideals,

Suppose X is a scheme and 0] is a quasi-~coherent sheaf of
ideals in OX' Let gl(:} ) be the graded Ox—!&lgobra n:ég’}n
Definition (ECA II 8,1.3)

The X-scheme l/’: Proj (er( %)) -3 X i obtained by

.
bloving-up the ideal 1, Alternatively we say Proj(g'r(‘} )) is
v

the blow-up of X with centre 9 (or centre Y, if Y is the subscheme
of X defined by ‘)). e write X = Proj(gr( ‘) ).

Since gr(? )+ is generated by  gr( /) )1 = 2 , We have
the canonical invertible (73-(--Module, J@).

If U is an open set in X such that UaY = ¢ then [ (U,') )
= 0 and ['(U, gr('))) = r(U, OX)' Therefore P restricts to
an isomorphism ,o"(U) ——— U,

The inclusion ] = (gr( :) )l) L /] ) induces an
Ox-Algebra epimorphism 5] ——— gr(j )y and hence a closed
embedding i X > P . (If X is irreducible then so is
X and, anticipating §3(i), we may say X is the dominating
component of E;) .)

An imvortant case occurs when Y is a subscheme regularly
embedded in a noetherian scheme X, Then i is an isomorphism, By
localising at the ideal defining Y, this follows from the following
characterisation of regular noetherian local rings.

Provosition (1.3)

Suppose A is a noetherian locyl ring with maximal ideal m,
A is regular if and only if the graded A-algebra homomorphism:
0o
¢ SA(m) o Z. m™
n=0
is an isomorphism,
Proof,

We start from another characterisation of regular noetherian

local rings: A is regular if amd only if (sce eoge (16))



-
?0’: SA/m(m/md) — % (1nn/mn+1) is an isomorphisn,

- . . - ~ ~ . .
Hote that 5 m/m = B,(m)/n3,(m Therefore if 8

° 2/ Alm)/mS, (m) rore 1t ¢ 1

/
an isomorphism so is glo and A is regular.
. H
Conversely if A is regular, (,9 is an isomorphism ang, by

Naokayama's lcmma, ’0 is surjective, To prove f" is injective

we have a commutative diagram:

(5,(m), 3=t (5, (m), -

l Prsa @n

n+l n n, n+l
m < > m > m/m e 0

o

S SA(mx)x/m(SA(m) )n-—-> 0]

where Y’n ie determined by ‘f/n(xl.xz. '""xn+1)=((X1X2)‘353""‘Xn+1)'
IT o e ker )29,, s then «= \f,/‘(o(') for some «'e keryp,w1
fo

Consequently ker On el n ml(SA(m) )n
i=1

= 0 - since (SA(m))rr is a finitely-
generated A-module and A is noetherian,

Therefore }0 is an isomorphism, D

Let us Bive a few low-dimensionsl examples of
projective fibred schemes to illustrate some of the features

that are considered in general in {§2,3.

1. Blowing-up ghe point O in Cz, :
C 2 = Spechx,y] . The blow-up in question is [P(ﬁ)

where M  is the ideal (x,y? in A ::C[x,y] , considecred
as an A-module: M = Ae @ Af /(ye-xL). Then [P(f1) is
the subvariety of Proj(a [e,f]) = lP’IxC2 , defined by

the graded ideal generated by ye-xf. The exteptional
fibre of M: P(f) ——-—m- > € is w(0)=P'x {0} witn

dimension 1., The other geometric fibres dre points,



}

2. To illustrate the effect of torsion in the sheef £,
congsider the module, o~ be @ AT / (}:(ye~—xf)))(£;.,as above)

~ . .
I1) dis the uwnion

Then ye-xf 48 a torsion element in Ii. IP(
of irreducible components [ (11) and [P1 x Y where Y 1is

u L v, 2 o .. . " v
the y-axis in € ., (Since M is obtained from M Dy

L . . ~. . o~ - -
factoring out the torsion , IP (1) embeds in Fan by Froposivien
(1.2)(41).)

3. Even vhen & is torsion-free [P€ noy still be

reducible, Tor example P ©0%) is reducible as nay be

-

seen by dimensional considerations. The fibre 7(0) has
dimension 3 vwhich is equal %o the dimension of T{"( (',2—-0).
Hemce N (0)is an irreducible component of 1P(I~x (9] T'x) and
the other component is the closure of m( ¢2-—O), o @oT) say.
MoM = A(e1,e2,f1,f2) /(ye1-xf1, yez_—xfz)
Therefore in SA(M Qli), x(e1f2-—e2f1) = y(e1f2-e2f1) =0
Hence Q(fi ofi) is defined by the ideal generated by
ye,-xfy, ye,~xf,, and e14j‘.‘2---e?_f1 . Q(f eff) is noy
itself a projective fibred scheme, The fibre over O of
Q(ff @ ¥) is the surface e;fo-e Ly = C ; the other fibres
are projective lines,
Here Qi @) is en example of what we call the
dominating component, which we define in §3. First in § 2
~we define the Fitting subschemes which describe the way the : -

dimensions of the geometric fibres of a PE very over the

points of the base schene,



I2.

§2 The Fittin7T swbschemes of a coherent sheaf.

The Pitting invariants of a module of finite nresentation over
a ring A are certain ideals in A, defined, for instance, in {12)
(Aopendix 4~3(b) p.145 ), and well-known to students of Commutative
Algebra, Their construction has the property of "commuting with
localisation" nece;sary to capture the interest of geometers‘
which allows the definition to 5@ globalised so that to a coherent
CjX—Module over a scheme X we assoclate some subschemes of X: these
we propose to call the FPFitting subschemesg of the Module. Our
freatment is essentially that of (12but with more geometric
emphasis.
We begin with a well-known corollary to Nakayama's lemma.
Lonna (2.1) |
Suppose A is a local ring with maximal ideal m and residue
field k = A/m, and M is a finitely generated module over A, If
a «.. 98, are elements of M such that their residues generate
the vector space M/mi then 8,y -+.,8, generate M,
Proof.
Let N be the submodule of M generated by ag,... ,a . Then
M = mM + N ; therefore M/N = m(i/N) and Nakayama's lemma implies
M/m =0, O
Suppose €is a coherentczx-module on & scheme X: i.e, each
point p of X has an affine neighbourhood U = Soec A and a
finitely presentable module M over A such that if V' = Spec AS"
V = Spec AS' are affine open subspaces of U with Vi< V +then

E (V) =3MQ§AS, and the restriction homomorphism

E (V) —mm—emp € (V)
0
, > U@L,

M6§AS —

is induced by the canonical homomorphism AS —— AS" We denote



'u'

13 .

this by £, = M. If g = din(c(p)® ) where k(n) = A /oA,
the residue field at v, then Lewmma(2.1)shows that U moy be
chosen so that M = £{U) is generated by q elenents. (First
choose U' such thatléfU, _— and M!' contains elements By 2g
whose germs st p generate ézp = ié. Let W be the submodule
of H' generated by a,,-«.,aq; then (M'/N)P = Mé/Np =0 and
so there iz a neizhbourhood U of p such that (M'/N)a = 0, Hence
EU = ﬁ['I = :\TU and U has the reguired property.) Then the restriction
of e to U has a resolution: .
@'Up _____ > OUq e R S > 0
Let e be the function defined on the point-set of X by
e(x) = din (k(x)® € ).
If xe¢U then e(x) §a-= e(p) ; i.e. e is upver semi- continuous
at p. Hence for neZ, F_ = {xeX ‘ e(x)}n’] is closed in X. In
fact, each Fn= can h_e:c:anonically: endowed with a structure sheaf sgo

that it becomes a closed subscheme of X.

First consider the affine case, X = Spec A and M a finitely

presentable A~module with a free resolution

PLE S > M > O .

¥ can be represented by a (pxq)-matrix ¥ = (\rij)i=1,...,p with
. i=]1...
entries in A, (;.e. Y(al'...,ap) = (bl""-bq) i=l,..q

where bj ='§_:, \Ij.ai. ). For 1l¢ngq 1let In(M,Y) be the ideal
(%3

in A generated by the subdeterminants of \P of size (q - n + 1) x

(¢ = n + 1). (If there are no such subdeterminants,i.e, if

Q-n3yp, then I (,¥) =0.) henndq, let I (1,¥) = A,

It is shown below that each In(M,Y/) depends solely on M and is

independent of the resolution wused to define it. So we may use

the notation I_(M). T (1) is the n™ Fittine invarient of M. (cf.

(12) p,145)



Lemna (2,2)°
Given two free resolutions of H:

v VY a ¢

A° ——--—-;—) A ----/3- M e O

AT __._\f._,;. AS --f-g. M e O
defining, for each n, ideals I = In(m,y) ) and I! = In(M,‘F,)
respectively, then In = Ir'l'
Proof,

Je may suppose A is a local ring: for if Ap is a localisation

of A at a prime pé Svec A, tensoring a resolution of M by Ap gives
a resolution of Mp,

App LA A(pl — M ——> 0
which shows that In(Mp,:F) =1 (4, ¥), < A+ Then the lemma in
case A is local implies In(M)p = I;l(M)p for all peSpec A and
it follows that In(M) = IA(I‘»‘I) for general A. So we assume that
A is local,

For this proof we regard In(o() as a function of a matrix «.
Then if ¥ is a (px g)-matrix, ol a (p'x p)-matrix and/@ a (pxq)-
matrix, we have I (Y&) ¢ In(‘fl")' and I (BY) € I_(Y¥). Hence
if o(,f;ar.e invertible, In(/zx,bot) = In(‘f’).

Note that In(M, ¥) is unaltered if we modify the resolution |
by introducing a direct summand

veol
P @4t _--—I--;- 22 @ab 3> M ——>. 0,

the effect on ¥ being to augment it with a (tx t) identity matrix

thus: \‘P fo)
o| 1*

In particular, the cases g -~ np and n>q can be seen to present

no anomalies, In short, we have In(\}’) = In(‘}‘ ) where ?: Yo 1t

Consider the two given resolutions of M. Since A% is free,

) / ] /
there exists a homomorphism o @ A% —> 2% such that?‘a o(/=$o .



. 7 t . /. . .
If &'t A e 1m\f/ is an cpimorphism, the direct sum

/ ] +
K =KX Qo Aq_ OAL ———n A is also an epimorphism, For if

3 .
a € A, there exists a'e A? such that io(a') =;0/(a,); then
a - oc/(a')el';cr 50/—- 1m\fz im o

. . !, .

Since 1m)"\< im o(\y there exists a homomorphism

/3: AT > A’ @ 1% such that V- «¥/3

Ap @ A -—-,;,'--‘P Aq @ At '-';"-'P 1 s (.

([ P

Ar _....i/_.... AS -—--f---;a- M ———>.0

/

Then In(\f/) I (wf//‘ I (wf . Ye claim that I, (ou,l«)
In(\p). Since &K is an epimorphism, Aq@A ¥ ) @ kereX, ker ol
is a projective module and therefore free (since A is a local
ring) of rank u = g+t-s, There is a commutative triangle:

oAt Ty 4% gt

Since ker o £ m‘}’, im‘f’ = (im"f"n AS) Dker X = imoL"T/ (4] Au.
Therefore there exists /B/ (PO O —a> P Oa’  suen

that the following triangle commutes:

(Ap @ A 00?; ® Iu

/ A \
Ap®A ——-—1———->Aq®A = S
Hence I («¥) = I ¥ 1% = I_(FA) <1_(¥)

Therefore In(\l?')\< I ( ¥) - I (V). similarly I (¥) ¢
In(\f/) which proves the lemma and establishes that the ideals

( e i riants of M.
1\ V) are invari C]



Lemma (2.3)

The Fitting invariants of a module commute with change of
rings: i.e, if B is an A-algebra; Ww: A ——3 B, Il a finitely
presentalile A-module, and IvIB is the B-module M @AB, then

T () = (1 (1))B.

Proof.

If AP --'\P-'b-' AT e u 3 0 is a free resclution

of M then its tensor product with B is a freeresolution of MB'
/
P Yy 30 > e 0,
where ¥ is represented by the matrix (w(‘]’ij)): the lemma follows

immediately.

Corollary (2.4_)

Let p€Spec A and k = Ap/pAp, the residue field at p. Then
din(M®k) 2 n if and only if In(M) £ p.
Proof.

{ 0 if n<dim(11®k)

By definition I_(M®k) = |
i k if n>din(M@k) while

by Lemma (2,3)In(M®k) is the residue at p of In(M). Therefore
In(M®k) = 0 if and only if In(M) £ pe
Corollary (2.5)

Pitting invariants commute with localisation (putting B = ‘A‘S
in Lemma(2,3)); consequently, if € is a coherent

X
th _. N ) .
n'" Fitting invariants of the modules & (U) (for U affine open

-iodule, the

in X) form a quesi-coherent sheaf 3n of ideals in OX

type, such that OX/ jn is supported.on F . (This last assertion

yo0f finite

follows from Corollary(2.4)).

Definition (2.6)

The nth M™Mtting subscheme of 5 is the closed subschene Fn

with structure sheaf OX/ 9n'
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(i) Suppose X is a noetherion scheme which is integral (i.e.
reduced and irreducible), and Eis a coherent OX~~I.Ioaule. This
section is concerned with some aspects of the geometry of ﬁ?&
which involve the IPitting subschemes oi‘g.

The goneric rank of € is defined to be the rank (dimension)

of the generic fibre, dimK(E ® K), where K is the function field
of X, Let N be the generic rank of € .
If V=X Y where Y is the (11 + 1) Pitting subscheme
of €, then & is a locally-free 0, ~odule of 1anh I.
) = ‘P(EV) is reduced and irreducible: we write Q(E)
for the (scheme~theoretic) closure of P(Eﬂ,) in E(E), and

call Q (E) the dominating component of PPE. It is the unique

irreducible component of Péwith surjective vrojection onto X.
(1t € is a torsion sheaf, N =0 and Q(E ) is empty).

To give an explicit algebraic description of (Q(E& ), suppose

M is a finitely-presentable module over a reduced noetherian ring
A. Ve are, of course, interested in the case U = Spec 4 is affine
open in X such that 8U = ﬁ. Since X is irreducitle it follows
that for each generic point (minimal prime ideal) p € Spec A,

Ap = K and dimK(M®Ap) = N. In particular, the (N + 1)}Ch Pitting

idezl, I is not included in p.

N+l

If sel (s # 0) then M_is a locally~free (that is, proj-

N+1!

ective) module over AS. The kernel of the ring homomorphism,

SAM e SA

x(s) =s{cre SAM \ s =0 for some né?[,}.

It follows that, over U = Spec A, Q(E) is defined by the graded

ideal 7( = SQ *(s)’: {CJ'ESAM I II\T+1\<'~/amn(a")} *

H+1

Ms ig the graded ideal



e collect together some basic properties of 'X‘ in the
the following proposition.
Provosition (3.1)

(1) ?( N (SAI\-I)O =0

(i1) Let D(M) be the set of prime ideals q in S

AM such

that qn (SAI-:I)O is & winimal prime in (S M), ¥ A. Then

A
X =N {a] cénmi.

(111) If A is a domain, )( is prime.

Consequently if A is a domain,x is the unique smallest prime

ideal in 8,1 such that ‘X n (3,)1), = O.

(iv) If T is a multiplicatively-closed subset of A (and
(7))

then T N(M) = X(T'H). In particuler (letting T = A-p where

the ring of fractions T"(SAM) is identified with S

p iz a prime ideal in A) the consiruction of 'ﬁ commutes with
localisation in A. Thus 'ﬂ, defines a coherent sheaf of graded
idezls in 58 and hence a subzcheme of lP&
Proof,

(1) 1If ae%n (SAM)o and sel, ., then s’a = 0 for
some n, Hence (sa)n = 0 and, since A is reduced, sa = 0,

Since for each minimal prime ideal p of A there exists s € IN+1

such that sfp it follows that aep. Thus aeNp = O,
(ii) Suppose q€D(M). If xe X and x#q, then for

n . . .
sel s'x =0 implies s€q and so IN+1$ q/\(SAM)° s wWhich

N+1!
is not the case, Therefore 'X < g, and 'XC:/\ {q f qé€ Q(M)f-

If s €A, there is a one-one correspondence between those
prime ideals of S&-I that do not contain s and the prime 3dezals

of (SAM)S = MS, given by q t—-=3 sq.

Sa
S
Further, if séa, then g€ (M) if and only if s™'g e};(ms).

it then MS is locally~free, Therefore if p is a

sely,

prime ideal in A then pSA Hg is prime in S, Mg, It follows that
) s
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]

N {pSA 1 l p<di, D minimal{
s

N foleenty ]
=0 [J.O prove this note that we may

reduce to the case, MS free: for localisation commutes with formation

of finite intersections and since AS is noetherian it has only

finitely many minimal prime idecals, But if H is free SA I, is
~»
S

a polvnomial ring and the result follows because A is reduccd]
Let xe/\{q \ qe_Q(I‘:I)i and let X be the image of x in Age
Then Eéf\{q l qGQ(MS)j = 0., Therefore s = 0 for sonme n, and

G(X.(G). Tt follows that /\{q l qe’)(M)} C—'—/\X( = ,X .

(iii)Suppose A is a domain and 07 #.X Then there exist
n
115, € Iy 5 such that sy 0 # 0 and 92 o, $ 0 for a2ll n,
, kil N an 1 =] .2
Hence @[ 0 e(5H) crz/+ 0 e(sm), . ( u)s' (i=1,2) and
1 1 1 2 i
(SM)SlS2 are aomains, so 03 72/1 # Oe(SM)slsz; i.e., for

all n, (sl'sz)ncrlcr2 F O. Therefore 07 o'2¢ 'X, .
(iv) If&"(-‘,'I""X,(I.I)) & =/t Eeklt),ter) and 'é'eII“l(T":-i)
= 'I“I M). 5 = s/t' then s?¢ = 0 for some n; therefore
5°¢ =0 and O'G'X,(T"M).
Conversely suppose TreX(T"M), F=c/t (red, teT), If
s eIy, (M) then s/l e I, (T M) and (s/1)"F =0 for some n.
Therefore t'si0 = 0 for some t'€ T; & =(ct!)/(t1t)e 'X(S).T-'.
If {sl, oo i is a finite set of generators for I y We
have 'X(T 1) Ci=1(’x(sl . ) ( l’x(s )) A 'X 7, 0
Remark: (ii) implies that Q(E ) is reduced, whether PE is
reduced or not. (Indeced the scheme-theoretic closure of a reduced

scheme is always reduced (1GA* I 6.10.6)).



B

(i1 Yorsion and torsion~free =zhenves,

An in’ccgral‘noetherian schenme, X, has a gquasi-coherent sheaf
R (X), the "sheaf of rational functions", such thas if U = Spech
is an affine open subscheme of X then ['(U,&(X)) is the total
ring of fractions of A i.e. the ring of fraciions a/b, where a,h € A
and b is not a zero-divisor in A. (EGA* I 8,3) .
1t & is a quasi-coherent &X—E\-‘Iodule, the canoniczl monomorphism
O%--—-)-Q(X) defines by tensoring, a homomorphism of O;{-I.Iodules

£ 2 & e Seq(ﬂ(x).

The torsion sub—lodule of £ is by definition (EGA¥ I 8.4), the
kxernel v& of t
0~ 7€ wer € L R(X).
X

8 is said to be torsion-free if7& = 0, and € is a torsion

sheaf if £ = 7€,
For anyf, &/rf_ is torsion-free and v€ is a torsion sheaf,
Let £ be a coherent @'X-Module and Spec A = U an affine
open subscheme of X such that EU = ﬁ. Suopose K is the total ring
of fractions ol A, Then [' ( U,7€) is the kernel:

0 -—»[(UJE) —s M —> HOK

m =3 mn@l
Hence " (U ,7€) = {meM , sm = O for some s €A, s not a zero-divisor}

Definition: mell is a torsion element if sm = O for some s € A where

8 is not a zero-divisor. The set of torsion elements of M forms a

submodule TM , the torsion subnodule of M,

Thus & 1is a torsion-free &X-uodule if and only if for all
affine open Uc %X, £ (U) has trivial torsion submodule,
Let us see what implications this has for the dominating

component of € . Suppose O # se€I, ,, where s is not a zero-



&

divisor. (Such an s exists since the set of zoro-divisors in A is

= Uy
mel 1Y

. . . . . - i
only if¥ 11. 1(:: o, for some i, which is not the case), Tnen(a’é ’\f‘/
T+

the union of the wminimal vrime ideals of A, U Dy and I
i
n . .
5°0 =0 for some n and so O is a torsion element, Therefore
'Xn < T, In particular, if 8 is torsion-frce, 'X nll =0,
In order to interpret this geometrically we make a definition.
Definition (3.2)
L
If 5 = i@ Si is a graded ring and q a gradeld ideal of 3
=0

defining a closed subscheme & in Proj S, then the linear hull

of @ is the closed subscheme of Proj S defined by the graded ideal
generated by agn Sl = 0
This definition extends in the obvious fashion to annly to a
closed subschene Q, of Proj 5 , Where ’5 is a graded Ox—Algebra.
It is easy to see that forming the linear hull commutes with
change of base, Let SO ——— Sc') be an S

inducing the commutative diagram

o~algebra, and S'= SGS 34

Proj S' ——2%e—> Proj s

!

Spec S(') e —— 5DEC So .
Let q' = ¢3¢, the idcal defining the closed sutscheme Q! = oL"Q
in Proj S'. Then if T (respectively Q') is the linear hull of 0
(resp. Q') in Proj S (resp. Proj S'), we have Q' = o' Q.

Note that if k is a field and 5 is the polynomial ring k[t,,...'t"]
then Proj S = [Pn(k) (n~dimensional nrojectiverspace over k), and

Q is the smallest (reduced) linear subspace which contains Q as a

subscheme, Q is said to be normally ombedded in P (x) it T =P _(x).

Consider now from this point of view the subscheme G(E€) in

JPE . e have the following proposition.



Provosition (3.3)

If £ is a coherent O;{~I>Iodu1e, the lincar hull of Q(&) in
]Eg/ i the subscheme [P(E:/I-E,). Consequently € is torsion-frec
if and only if the linear hull of O(€) is P& itselr.
Procef,

Ue have shovn above that if &€ is torsion~frce then (X NI = 0,
Where MM = 8(U), U affine open in X and ‘X, is the graded ideal
defining Q(E)U in E(&U) = Proj(Si). Hence the linear hull of
Q(E) is defined by the trivial ideal and is therefore PE itselr,

P (€/7&) is a subscheme of P& vy Provosition(1,2(ii),and
since &€/ y& 1is torsion-free, we have a( E/re) = P(E/ze).
Here 6,(18/13) is the linear hull of Q(€ /z&) in P(&/z&),
but this is clearly the same as the lincar-~huvll in JP& . Murther
the definition of Q(&) as a scheme-theoretic closure implies
that Q(&) = (& /7&), and the proposition follows. [J

Such results as these are perhaps more geometrically sugrestive
if expressed as far as possible in terms of the seometric fibres,
Accordingly, and with a glance ahead towards Proposition(3.5), we

state ¥

Corollary (3.4)

If the coherent Module & is torsion-free then each geometric
fibre of the dominating comvonent Q(& ) is normally embedded in
its geometric fibre of PE. The converse implication holds provided

[P€ is a reduced scheme.

Procf,

This is a consequence of the second asscrtion of Provosition
(3.3) and the preceding remarks on linear hulls and change of base.,
The assumotion that PE ve reduced is necessary for the inference:

if L is a subschenme of [Eﬁ such that for each sgeometric point



of X, OSpec K ==——-> X, we have Lx,Snec k = ];BEKXSpec Iy
N

then L = P&. e set L 4o be the linear hull of o). J

Let us give a specific example to illustrate these considerations,
Consider the Cix-ﬂodule £ where X = Eg(k) = Svec k[x,y,3)
(k, a field), ana & = M where 1 is the ideal generated by
x2, Xy %, ygz in 'kfx,v,é] , considered as a module over k[x,y,z).
Then M isa torsion-free module and, writing u=x2, V=XY 2, w=y22,
M is generated by u,v,w, subject to relations yzu-xv = yv-xu = O,
2 2
(For if «x +B xyz +¥y7g = o,«,(;,‘o’e k[x,vy,2] then
yz divides X, &= yz Y say, and
x diviges ¥, ¥=1x ' say; SO
xyz(xo(’+ p + yxl) = 0, /3= --xo(/—-y7’, and du +/1v + ¥ =
o' (yzu - xv) = 7/(yv - xw),) Therefore [PE is the subscheme of
XX Ez(k) defined by equations
yzu = xv = 0
() { yv - xw = 0, where (u:v:w) are homogencous
coordinates in Ez(k). Hencc the dimensions of the geometric
fibres of P& over k-valued points of X are as follows:

point - |x=y=0 l x=2=0, y#0 ‘ otherwise

dimension I 2 | 1 0

(%) imoly y(v2 - zuvw) = 0 and it may be seen that Q(&) is
defined by the 3 equations yzu — xv =0, yv - xw = O', v2 —zuw = 0,
fhen x=y=0 the fibre Q(E),,,is the conic in [PE,, , (= 1&_)
defined by v2 - zuw = 0, vwhich degenerates into 2 coincident
lines when 2z=0, In either casec Q(E&)

(0,02)

Q ) = over all other int x .
PE,,,. UE) - BE, other points (x,y,s)

is normally embedded in



[
ﬁ?‘

48 a concequence of Provosition (3.3)we have the fTollowing
result which finds anplication as a ey step in the nroof of the

main result of Chapter II( Theorem 2.7, p.51 ).,

Prononition (3. 5)

Suonose X is an intecral nocetherian scheme, and & is a torsion-
free coherent O'X-I.Iodule with projective fibred scheme Wi PE s 1
and assume [PE& is_reduced: then the coherent OX—I-Iodule . 6(1)
is torsion-free,
Proof,

Let U=Spec A be an affine open subscheme of ¥ such that

EU-—. I  and consider o€ Tf_x_(?/(l)(U) = P(n"'U, G(l)),

Considering ¢ as a section of the canonical line bundle its szeros
form a closed subscheme z,. of codimension ¢ 1 in EE. (To be
precise, suspose VST U is an open subscheme such that [ (V, &(1))
is afree O(V)—moszle of rank 1 gencrated by e, say. Then 7!‘-;” se
for sone s€ J(V) and BAV is the subscheme defined by the
vrincival ideal (s) in O’(V)o)

Now suvpose a €A where a is not a zero-divisor and ao = O,
Then‘ if U' is a Zariski-densc open subset of U such that a]U,
is invertible, o vanishes on WUY, Consequently, by the definition
of Q(&€) as a scheme-theoretic closure, we have Q(E)AMU is &

subscheme of Sr' If we consider the restriction o, of ¢ to a

of 1?5—-——-;»)(, 0, is a section of the hyper-

geometric fibre g >

[}
plane bundle: hence Za- iseither a hypeeplane in Po or the whole
o
of Eo . But T_ contains the geometric fibre of Q(£), whence
[
8orollary (3.4)implies I:r = [Po . Therefore, since € is reduccd,
L

= i.e. ¢ =0, and hence T, (1) is torsion-free. O
- €, ' *



(iii)e conclude §3 with a construction wvhich sheds some lisghi
on the gcometry of O(£) and how it is related to the Mitding
subschemes of & , The key peint is contained in the following
lemnma.,

Lemnz, (3.6)

Sunpose € is a torsion~free OX-I-Iodxtle vhiclk is not locally-—
free, Let q = max(e(x)lxex) (where e( ) is the fibre-dimension
function defined v.13), and F_ the a*® Fitting subscheme of € in X.
Supvpose /D ¢ X' w«—ed> X is the blow-up of X with centre Fq, and
let &' be the torsion—free OX,-Module g - f*£/7(,,;“g). Then

dim(k(x)@&l) < g for all x€ X', ;
Proof.
Let ‘x € X be a point such that e(x) = q. Then, as shown.

(. ), there is an affine open neighbourhood, U = Spec A, of x

and an A-module M = £(U), where M has a presentation

> o

L S I P ¥ > 0,
i.e. M is generated by q elements Agy e ,aq.

Y is represented by a matrix (‘Fij) where Yij e x, 1£i€q
1€ j€p. (Here x is the point x as ideal in A), Since &£ is not
locally-free, Yij = 0 for some ij. Then F A U is defined by the
ideal I = Iq generated by Il <ifq, 1< ispl.

The open subset of X!, IO'(U) = Proj{ Z I") is covered by

the affine open sets U, 13 = Spec Aij’ where \Pij* 0 and

(( E :I ‘f‘ ) . Here,and beléw, it is necessary to
1j
dlstlnguish between an element ¢"¢I considered as a member of

( 2 : I ) = A and considered as a member of ( Z I )
n=o Az O
We hope to avoid notational confusmn by writing ¢ when the

latter is meant. Thus, é ( ZI

ncov

Assume for example that \}’11 # O and consider Myq=

A.. & M as a module over Al‘t'

A it 1 has a presentation:

11 M



11 ; 11 Hyq=—> 0.
Then b = é (\f'il/¢ll) ® a, is a torsion clement in Ml].:
for Y ;b = Y @ = 1@ 2. ¥, 48, =0&H,.  Note that

V., is not a zero-divisor in All(although it may be in A); for
there is a non-(zero-divisor) "€ I and then @ = Yll(CT'/CF] l\

in All innlies \rll' is not a zero-divisor in A

11°
Now consider HM../ ¢ this hasapresentation with matrix
11 Allb
1
\P“/ ‘Fu \'KJ
Yai/3,

Hence the q'» Fitting ideal I (tyy/ Apgb) = Ajy.  Simoe M, /vl
is a quotient of Mll/Allb, it follows that Iq(Mll/ 7M,) = A
Applying this argument to each Uij yields Fq( £') = ¢) ,

which is the assertion of the lemma. 0
We have produced a birational surjective morphism, P tX'——3~X

! ¥
and a torsion-free O'X,—Module £ = /7&/ 4 (/J *E) such that

/
£ ,E, have the same generic rank and xnexajec dim E(x) >

/
max, dim E(x)’ orovided € is not loéally~free, Thus we may define

xeX
- ~1)/ -
recursively, morphisms f’(n 1): x(n)=(x(n )) ———m :g(n 1)

and Ox(n) ~lfodules e(n)= ( a(r(x—'.;.)), = /"n-”’ka(n-‘%(/JM’*E.(M)}

until when n = M say, xmeai"‘;lim E (2) = generic rank of £ = N,
and so €(M) is locally free.

Let r be the composite

e x) o pxM L > X' ——pm X

and “-l— = E(M), the locally~free O'i-—lrlodule of rank N’.',
the generic rank of &€ . There is a canonical epimorphism

P € —+ F. By Proposition (1.2), this induces a closed
embedding E‘? L [P(/’Jﬂs) = fPE,x X  and hence a



commutative diagram

pe <5
7 N
(3.7) B¥— >

e

| l’
3= X

% r

H

l?}is an intesral scheme andﬁ is a prorer morphism: therefore
/'3'( P¥) is closed and must be Q(€). Thus f; induces a proper
surjective birational morphism lf:"—---av Q(€). Ve may say,
using the susgestive traditional lansuage, that Q(E) is covered
by fibres (projective spaces of dimension il-1 Jlying over points

of X and infinitely-near voints of the Fitting subschemes of £ in X.



Q.

Apvendix: Universal Sheaves for Projcetive Geometry,

Throughout this anpendix we work over an algebraically closed
field k. We propose to define some coherent sheaves, (over projective
spaces), which we dignify with the title "universal”, and their
associated Fitting subschemes, the "universal Fitting svbschenes®,
in view of the following propverty. If X is a projective variety
over k (in the sense of Serre(FAC) i.e. a reduced scheme of finite
type over k which embeds as a closed subscheme of some projective
soace P(k™) ), and & a coherent OX-Module, there are embeddings
X G . (for some N depending on & ) such that the Pitting
subschemes of € in X are the restrictions of the universal Pitiing
subschemes in [PN' |

Suppose V,UU are finite-dimensional vector spaces over k of
dimensions p,q respectively. The svnace of k-linear maps, Hom(\/’,‘.!),
is naturally isomorphic to \7®W, Let P be the projective svace

P ((V®v) ) with projection TM: P ——» Spec k. We have the
canonical epimorphism {(Prop.(1.2)iii)):
(@) ) ——m> 0p(1) = 0
Dualising and tensoring with g(l) yields: -
0 v O s (W (T @) (1),
There are natural isomorvhisms:
(n (o)1) = (WVe(nu)(1) = Homey( WV, (W H)(1))
Therefore there is induced a map
k= [0, — [(Homg,( v, (7" 1)(1))),
and we let the image of 1 be £ in ["(Homap( n*v,( 1r*w)(1))).
Thus & is a homomorphism of UP-I.Iodules, TV -—3——-—3- (11'*‘-.-»1)(1),
| Definition;

The universgal DP-—IYIodulie ‘L(,(V,W) is the cokernel of g H

7V Ees (WD) ——> UV ) ——> O
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£1.

We have mode this definition independent of any choice of
bases in the vec‘;or spaces V,W. However, it may be 1;113,1:. the
construction is more persypicucus when degcribed in terms of such
bases., Let {vl, ,vp} , {Wl’“' ,wqi be bases of V,W

raspectively, {{’17,‘ . -,"\'rpj the dual basis of V, and L = TO u.

Then P = Proj'(Ski) = Proj k[c,’/')ij] where 7pij i=lyeeeyQ33=L,e0ryD
is the bagis of L given by ?ij = ngwi' .The canonical

epimorphisn T T === O_(1) is deéfined over D ( P..) ¥
o P + LIOij y
- ~ v - -
P“PP-->~ ( )ﬁﬁ/ foij)uij vhere ugs is the canonical
generator of 0(1)(D+(75ij)). Hence, taking the dual homomorvhismn

as explained above, £ is defined over D+(C?Jij) by
V’ v' (7 v
- fol P13 || ® vy € 1O ULMIOLP, )

V
Here a sectioh }:]_: ©i38Yy; n L@ka'P(l)(D+(7oij)) is
vritten in matrix form:
Y11 0 - Y
Ya1 . . Yoo
* x 3
by virtue of the isomorphism T L(1) = Hom (W Vv, (Wu)(1)).
P
A closed voint t in D+(7~oij) is a one~dimensional subspace
[
of L = L, and if t is generated by Ztuﬂ%‘/’ y Ve may write the
homogeneous coordinates ('b%) of t in matrix form

1 . .
. . - . h -t
where i3 7‘ 0.

tg1 . - Top
Thus if 1;“/J = t“/‘/tij (so0 (“t“(,) are inhomcgeneous coordinates
for t) the geometric residue of E over t can be identified with
the linear morphism V—-~3>W whose matrix with respect to the chosen

bases is:



In this formulation it becomes clcar that the Pitling subschenes
of W(V,4) in P are (brojective) determinantal varietics: Fis
defined by the craded idcal in k[ Fipr s ?qp] generzted by
the (g-n+l) X (q=n+l) subdeterminants of the matrix

fll . . . ?alp

?ql . . . qu .
Such varieties have been widely studied. For examole, the
results of (8) imply that the singularities of F, are normal, In

fact F
n+

1 is the singular locus of Fn.

The rest of this avpendix is devoted to the constructions that

demonstrate the universality of the sheaves 1[,.



Let X be a projective varicty over k, with O/(l) a veny
ample invertible O’X-ﬁlodule, and & a coherent sheaf on X,
For 0, EMm) = £ O™ is gencrated by its global
sections: i.e, writing £l= E(n), if (r'el)x is the OA"
Module ¥ P@l vhere M: X ——-3 Spec k is the siructure
morvhisn and F‘&': T, €I (a vector space over k), then the
canonical merphism’ (f_'f,’)X e £I is an epimorphism. (4)
Let H be the kernel, so we have the short exact seqguence:

0 > K e ((E), ——> €

Tor n>> 0, ’ff((n) is generated by global sectlons and we have the

> O,

exact sequence;

(K (n))y L (re) ) s Em) —> 0

\/
/\

7’5 defines a global section jo of the locally free O..—Module
Iiom0(r(1((n))x, (F'ci) (n)) % (M (K(n))y ® F‘(ﬁ) (n)).
Note that if m is large enough then '1( £ 0 and P (x) Lo
for a2ll closed points xgX.

In general if Fisa locally free OX-.¢Iodule, a never—zero
section defines an exact sequence

0 o O ——> Fr G s 0

where § is locally-free, Hence theidual sequence
I SN U, A
is exact and induces an embedding X G IP( ..-}v)
In this way ¢ determines X -—--—-a»l?((r'('K(n));{Q(f‘El)X(n) ).
We have isomorphisms of schemes
P (M) )y @, (ME D, (2))") PP (k)@ re)) ) =
X x where FN is the projective spa:e

N
]P((r'(k(n) Y@k(r'él) ). By projecting onto PN we have

id



defined a morphisn jn X ——— Concerning this the

N®
main result is the following theorem. The structure of the proof
is modelled on Hartshorne's treatment of the projective embedding

induced by an ample line bundle ( (4) Chewter 163 ).

Theorem (A,1)

There is an integer N (depending on € ) such that if n> n,

i, is a closed embedding. '
Proof.

Let x€X be a closed point., We first show there is g positive
integer nx, depending on x, such that if n}/nx, then jn is an
isomorphism at x: i.e. jn separates x from other points of X and
from its infinitely near points. This means (i) if vyeX, y # x,
then jn(y) # jn(x), and (ii) if Sn,x : ‘O!f,j(x) —— O’X,X
is the induced local homomorphism of local rings, 3n,x is surjective,
By the usual Nakayama's lemma argument (ii) is equivalent to:

(i1)' the induced morphism of cotangent spaces,

ne s(x)/ | n
—f"]()y')- —— i %12 is surjective.
me . -x
’ "'?93(1)

Let Ix be the sheaf of ideals in OX defined by the closed
subscheme {x}. To establish (i), let n be a positive integer such
that Ix(n') is generated by its global sections when n'>n_,
Then we have the following commutative diagram with exact top

row and exact columns:

0 ——> [M(K(n))®I_(n') ~——> O (K (n))y(nt)

l

k(n)G}Ix(n') “““ —> () () = K (n+n')

l l

0 0

If yéX, y # x, tihere exists se[" (¥ (n))®I(I_(n')) such that
s(y) # 0. IfS is the image in Pf((rh“n') of s, then 3(y) # o,



€
€3

vhile S(x) = 0, It follows that jn+n'(x) $j (v) ,25 required.

n+nt
!
We now congsider (ii)'. Let o ¢ (Hon( M (K (n)), FE)) ve
v / / o o =P . HhV
such that o (g (x)) 7{ 0, and let S ok(lbm(r'(t((n)),r‘&) >(<r)'

If eyy vt 1€y is a basis for Hom( F(‘F{(n)),r'f,l)v then a typical

element of 5 can be written p(e gy 2t e ')/03? where p is
oyl 1 t

a homogeneous volynomial of degree v in t variables. Spec S(r 0
’ 1
is an oven affine neighbourhood of jn(x) in ]PN' There is an affine

neighbourhood, Spce A, of x in X such that ,jn(Spec A) < Spec 5,
*

and j lSpec A is induced by the k-algebra morphism & — A
n o, !

n?

"evaluation at @ "o Localising at x, suppose now that A = 0 :

o =

Xyx
we want to show that S —— 0' / is surjective,
yn XX n
' ~x
We have a short exact sequence
Sy Sy - S S — e b , D Sy
0 —> I > OX >k =—3 0
where kx is the sheaf supporied at x with stalk k., Let ’Ko= ’F(@kxz
/
‘f'(o is a non~trivial linear subspace of €. Let H be a hyperplane
/
of FE' such that & = 'k°+ H . Then the coaposite
/ /
1( > (€ )X ——d (|"5/H)y induces a surjection,
]
'f(o----} ('€/H, on the geometric stalks at x. By Nakayana's
lemma, k@ 0,‘/ 12 D (F&I/H)® 8,‘ 12 is surjective,
x x

To justify the next step of the proof we insert the following
Lenma (A.2)
It "-} is a coherent sheaf on X and is generated by its global

sections, then for a closed point x€X the k-linear map

* Q) — F) /i

is surjective.
Proof.

Note that if (¥) is surjective, and © is a coherent quotient
of } then (¥) remains surjective when T is replaced by § .

3} is generated by its global sections and is therefore a quotient



of (jcz{ for some n, 3¢ it suffices to nrove the lemma for
the zase 7% = ny; but thiz case is clear since C7X(1) is
very amplc, [
e apply the lemma to the sheaf " (n) which is generated
by its global sections: so [ (K (n+l)) ———e T((n+1)x/m2 is
n

surjective.

Now we have a commutative disgram

Mk (241)) > K1) /2~ (/M@ (Otnen) / 2 )

|

Pkeane Oy . ——ta——m (FE)® Oytnan),

where the two maps in the top row are surjective. (The second

is obtained from ®6x/ 2 3 (PE€'/mMe q/ 2 by
X
taking tensor product with O'(n+1; Suppose we fix isomorphisms

PE/E ¥ k (k-linear) and (€ /H®O' (n+1),/ 2 =z q( 2
! ~-x
(an isomorphism of modules over CT A_), The above dlagram
,

becomes:

(K (n+1)) = > ‘jx,x/ -’Ei

M(k()e Oy 4 > (MEIR0(nn), = (FE)Q O,

?

Let a € O / e and let Z e[ (K(n+l)) be chosen such
that w(3) =a . Ve deflne an element @e Hom(M(K(n+l)), Fé)
by F(f) = pf(5) where feHom(M(k(n+1)),ME') and p is the
map ["€—> \"E'/H ——i- k., Thus 3 € So-,n+l end the. above

commutative square expresses the fact that a maps onto a under

the morphism S

— / 2 . This morphism is
Cr',n'f'l : )(,x -nlx

therefore surjective and it follows that the induced morphism

n ' m fo .
"Bj (X) . — o) is uul‘jectlve.
/n2 . A;x
= £,i (x)

Thus we have property (ii)'.



Yo comvplete the proof of the theorem it suffices to note that
for each n the set Ur‘ = ?x € X Ijn is an isomorvhism at :-:s is
&

Zariski ovnen in X. (This Tollows from HGA T 6.5.4)., Ye have shown
n

I J = U o C o~ .. . The i "y - U
that X o Un nad Un .Un+1 « Therefore X n=1 Un

for some 'L . Hence jn is an isomorvwhism at every noint x of X if
n >n . Therefore -jn is a closed embedding if. n>n., D
If v=(KMHn)) and ¥ = rﬁ', j= j, embeds X in P =
f((‘}@{{)v). Let U = WA(V,4) be the universal sheaf on P.
In order to justify our use of the term "universal™ it remains to
check that j*u = 8l(n) (= 8(m+n)).
As stated (p.31) the exact scouence
vy .__.ﬁ._..-}- ‘.-Ix(n) -
induces an embedding s § X —————> IF( i@ 0 (-n (L = ‘{’Gm)

. llence s 0(1 O"{'
f?(t,(-n)) y

/
> E(n) ~——s0

/
(this by Provosition (1.2)(ii) where £ = C’X)

Let 'ﬂ'l,"ﬁ'? be the projectionss

PEO®0 (-n))
//"1 111\‘
X P= P (1)

Then O’(l) Tr 0 (-n)@IT 0 (1), where OP(I) is the
P(Cl-n) 2
fundamental invertible shecaf on P, Therefore j O’P(l) =

S5 04(1) = a"(8 10T Or(m) = o) Oy(m) = Oyl

LK "
Therefore applying j to the sequence which defines Y

Vp & WP(l) ——> Y ~———0

gives

Vx

* ~ B3 ~ '
and it may be seen that g = Y i therefore j U = & (n) =& (m+n).

™
UX(n) — ] U 0,

Thus any cohecrent X-—I.Iodule on a projective variety is, up to
tensoring with an invertible sheaf (a"Serre tuist"), induced from
a universal lodule. Since tensoring with an invertible sheaf does

not alter the projective fibred scheme and the Fitting subschenes,



(ieee. [P(E(am)) = PE  ana I“H(E(mﬂl)) =F (&) ) all

n

projective Tibred schemes of coherent sheaves on X and the

subschemes arc induced from the universfl cxamples by restriction.
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aptoer | he honcmor-Hhism < i @T
Chanter TT Ti ongmorohisn ol ¢ £ > T M(1).

Introduction.

It is natural to ask how much is lost in passine from a MNodule
to its projective fibred scheme. We shall show that, given a
vrojective fibred scheme with vrojecticn W :lP&*-—----b X and its
fundamental invertible sheaf 0(1), then in certsin circumstances
the Module & can be reconstructed. It is well known that if E is

locally-free the canonical homomorphism & ¢ &

- ., 0)
(Chapter I, Proposition (1.2){iii)) is an isomorphism, and it is
this result that we seek to cxtend to more general coherent sheaves,
Our main results are Theorems (2,7) and (3. 4).

The proofs maize essential use of the vector fibred schenc
construction. §1 is mainly devoted to the definition and basic
properties of the construction, summarised from LEGA¥* T .4, sufficient
for the applications in the following sections., The main theme of
the chapter, the discussion of &, begins with §2, and Theorem (2,.7)
is proved, under the assumotion that the coherent Module E satisfies
a condition (Definition (2.4)) of a rather technical nature. §3
dicusses further this condition and gives examples of situations

in which it is satisfied.



§1 vector fibred schemes,
>

The vector fibred scheme associated with a quazi-coherent
O;‘—-I-Iodule € is the X-scheme, affine over X, W : WE —> X
where Y€ = Spec '5'8. That is, if U = SpecA is an affine open
in X such that S‘U =T fcr an A-module E then W'U % Spec S
where S is the symmetric algebra of E).

The principal properties of this construction are developed
in‘ E(}Av‘% I.9.4, where the results of this section may be found,
-with the exception of Proposition (1,3) (which pushes to a
categorical conclusion ideas implicit in LGA* 1.9.4.14) and
Proposition (1,4) (which we require to apply in § 2).

rAI‘he:c'e is a functor (EGA* 1.9.4.8), Fe : §_9P_1°x~->gg_r_1§, defined
as Tollous: if i3 T——> X is an X-schene, Fé(T)tnome'(f-x-ay @;T)’
and if g ¢ T' —=>» T is an X-morphism of X-schemes th“:en
Fe(g) @ P (1) ——=> T (T') naps (u s £*& —> OF) to the
composite fV*E =g*f¥¢ A5 o> 0’1, —— O:r,.
Jenma (1.1) (EeA* 1 Proposition 9.4.9).

For any guasi-coherent Ox—rtlodule € the functor Fe is
rerresentable by the X~scheme WE and the qvé'—homomorphism
3% —_—3 ( induced by the canonical homomorphism -3 T
mw*E > O;/é, & - 5HE
Proof.

This follows from the sequence of canonical isomorphisms

functorial in T (in the category of X-schemes):

: 7, WE) —=-» Hom BE 0.0 where f is th
Homx(l‘, VE) = 00,‘—‘\\3( « T) ( T i e

structure morphisa T ——=% X )



¢

r o - 3
REES gome(b,f;én) (by the universal proneriy of the
b 3

symmetric alecebra)

s ]];Om&(f-x& y O3)  (since the funcior £% is coadjoint
T
to £, (FGA 0.4.4.3.1) )

=T (T).

The following facts about VE , ouoted without w»roof,
follow easily from the definition or from the above universal
propverty.

Gemma (1.2) (37A% T Proposition 9.4.11)

(i) W& iz a contravariant functor in € from the catesory
of quasi-coherent Ox-Modules to the category of affine
X-~schenes,

(ii) 1f € is an O;‘-Mod,ule of finite tywne (resmectively
of finite presentation), W€ is of finite type (respectively,

of finite presentation) over X.

(1ii) If €, are two quasi-coherent Ox—rﬁodules,\\/(g &%)
is canonically isomorphic to Ve XXW“‘}‘. )

(iv) Let g : X' —~» X be a morphism: for each quasi-
coherent q(-‘lodule € ' \V(g’*ﬁ.) is canonically isomorphic to

(VE) -VEx X,

(v) The X-morphism V3 > W& induced by an epimorphism
of gquasi-coherent O;-—T-iodules, £ —>F, is a closed
immersion. D

Remarks: (a) As a special case of (iv) let X' Spec X, for a
ficld K: K is an extension of k(x) where x= g(X') and
WE X x Spec K 1is canonically isomorphic to \V(g*e)

=\ (e* ®k( 1){) (where €* is the vector space over k(x),
x .



x
Ex/mﬁ,b’ﬂhe K-valued voiuts of W (€ @(K) form the space
- . . '\ )

. v
Hom (3vec K, W{€@ &)) = Hon (@ ¥, L ) = (E€® X) .
Spee K k(%) K k() b
Thus the geometric Tibre of WE ——2 X over the K-valued point

g is the K—vector space dual to E,x @k(x;f{: which justifioes
the term "vector fibred scheme".

(v) In1.2(iv) "canonically" should be interpreted as
follows: a morphism of Ox—;’.?odules P : € ——-3» T induces
the X-mornhisn \V(?p\ :WF-——>WE and then, by change of
base, an X'-~morphism \V} X Xt ——>>WExu', 4 also
induces a morphism of Orx,—(-Iodules g*?o I g*:l—
and hence an X'-morphism \Y (5% F) —> VWV (g€ ). These
two X'-morphisws are compatible with the isomorphisms of

1.2(iv): i.e. we have a commutative diagram

VACEE D puem—— > W (g*€)

n n

W () XK cememm (€)X X

Similar remarks apnly to 1.2(iii).

e proceed now to some categorical algebraic properties
of the functor \V . Let X[T] be the X-scheme \V(O;) (EGA¥1
9.4.12), If £ : Y —> X is an X-scheme, J(Y) is the Ux—
Algebra £ OY’ Then we have isomorphisms (EBCA*1 9.4.13),

Hom (¥ x[r]) = Homﬁio;,f*GY) ¥ &AM,
and ["(X ,A(Y)) has a ring structure, functorial in Y, which
displays X[T1 as a ring X-scheme (i.e. a rinc object in the
category of X-schemes). If £ is a quasi-coherent Ox—f:lodule

then Hom (Y ,WE) = HomOY(E(Y), Q) = Hom 6,((&,J‘HY))



and {oma(ﬁ LA))  is a module over the mins [ (X ,&(Y)).
X
Thus T :WE--—> X is a module X-scheme over the ring L-scheue
x{u].
Sﬁppose 5,'4 are tuo quasi-coherent CL~Kodulcs. Let
@ 'Homx(\\lg WP —> Homa (F,%E) be the isomorvhism
X
defined by 1lomx(\vg,,\v:§) -Z=» Hom (BF,BE) * vion o (F, BE).
0X.A\ . 67&
The canonical mononmorphism Ei-~—> BE€ induces a monomorphisn
Hom (':l y &) =——=—> Hon (’4','58) and we thereby identify
e'x GX
fon g (3,€ ) with & subgroup of Hom . (F,BE). Let
X Ox
L = ?"(Homa(?,ﬁ)). I, is characterised as a subset of
X
Hom (WE,WF) by the rollowing result.
X

Provosition (1.3).

Suppose o € Hom (WE,V3): then x€ L if and only if
&K is a morphism of module X~schemes,

Consequently, W ( ) is a fully faithful contravariant
functor from the category of quasi-coherent O;‘-?-Iodules to the
category of module X-schemes over the ring X-scheme X[T].
Proof.

Suvpose €L and ¥ ) = o' & Homox(’lf ,E). Then for
each X—-scheme f : Y -—-> X +the following diagram commutes by

virtue of the universal vroverty (Lemma (£.1)):

Homax(ﬁ,ﬁY) —————— —> lom s (F,47)

~ o & X
u l
Hom 0Y( Eqp O,) ———> Hon OY("fM, 0,)

- IH

oy ~)
Homx(Y , VE) e Homx(Y ,WVF)
The top rovw is a M (x ,AY)-module homomorohism: therefore « is

a morphism of module X-schemes.



Conversely let «& IIomx(\‘\/é,\\/:\l) with « a morvhism of
module X-zchemes, Letﬁo(_tx) = ¢ Homﬁ(t}, SE): then for
X
) ‘.
any X-scheme f: Y == X, o induces a2 nodule homomorphicm

Hom‘9 (BE,AY ) ————> Hom  (F,AT ).

- ﬁ G

The module structure of Hona (BE,AY ), defincd by the
2 3

isomorphism Hom Y = I s o
! 5, Mﬁ(ge'ﬂ' ) & Omo,x(& yAY ), is given

explicitly as follows (ef. ZGA*1 9.4.14): if h,h'elloma ﬂ'SE,RY)
A
X

and S,y -+ 15, aTe sections of £ over an open set U in X
and t €[ (U ,AX), then
(h + h') (5,5, TT(MQ.) + ' (s,))

and (t. h)(s .. s ) = t“Wh(s ).
Now 1et Y be the X-scheme \V (17“6 )[T] where i : Ut X

is the inclusion morvhism and T is an indeterminate. Then

AY = (’gﬁ)['l‘] l U. If h e Homo A‘('BE,AY') ve have

>,

X
/
T,(hoo(') = (T.h) & . Ifxe[(U,73) and o('(x) = Tt ert 7,

where Z't € r‘(U "z‘;&)k then ((T.h)° “’)(x) = (T.h)(Z°+ oae +z“) =
n
Z T*h(z,), and if we choose h such that h(U) is the
t=o

canonical inclusion BE(U) ————m gC(U)[T], then

" n
szL.

E fl‘LZ.
3 t ts0 '
$41 and x ¢ Homox(qu)- D

t=0
0 if

| d

Therefore =z .

If K is a field and i : Spec K —3> X is a {-valued point
of X with i(Spec K) = x¢ X, then HomX(Spec K,WE) 1is the space
of K-valued points of the fibre mW'(x) = WE™ (i.e. the K-rational
geometric fibre over x, in the terminology of EGA*I 9.4,10, and
of remark (a) ».39 above): HomX(Spec K, X{1]) =(x, i,K) = K,
Hence Provosition (1.3) confirms (and generalises) the fact that,
if K€L < Homx(\Vé,W"-l) tﬁen « induces a vector space homomorvhism

on each geometric fibre, IIomX(SPec Ky VE) ——> Homx(Spec K, W3).
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We express this by sayine, 6 is lincar on seomeiric fibres., The
following Proposition is a result in the converce direction, vroved
under the assumntion that WE is a rcduced scheme; it may be considered
a s*brcrgﬁhening of Proposition (1.3) in that case,

Proposition (1.4)

IfE.7F are qgasi—coherent o;(-Modules such thet WE is reduced
and if « : \V&--~----> V% is o morphism over X, then K is induced
by an OX-Module morphisn ‘:{ ——» £ if and only if & ig lineca
on all geometric fibres,

Proof.

It remains to shéw that if «e€ Homx(\VE,\V?.") is linear on
geometric fibres then ¢ (¢ )e Hom (F,E&), i.e, ifso(oc)t ss the
component ofy}(o( ) in Hom (3 ,£) and /3==§0(o( ) - ?(“ )16 Hom (’-}"58)
then 3 =0, Assume /3# 0 and restrict to an affine open
U = Spec A « X such that ‘“7{-u =F, & =F and Blv = b€ Hom, (F,SE),
b# O, Since SE is reduced there exists a prime ideal p in SE
such that b(F)f p. Then p A (SE)y = q is a prime ideal in A
such that b(F)df qSE: therefore if K = Aq/qu, the residue field
at q, b induces a non-zero homomorphism

b, = b®1: F® K —> U @K = SK(E®K). Thus & fails to
be linear on the K-rational gcometric fibre over qe X,

A similar argument proves the following, in a "classical"

algebro-geometric contexti:

Proposition (1.5)

If X is a reduced scheme of finite type over an algebraically
closed field K, and €, 1 are coherent sheaves un X such that \73
is reduced and « :WE-=—>»V¥7 is an X-morphism, then & is induced
by an GX-—Module homomorphism ‘:{' — & if and only if K is

linear on each geometric (K—rational) fibre over a closed point

of X,
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Proof,

Vith notation as in the proofl of (1.4.), I dis of finive type
over A and SE is of finite type over K: it follows that the
intersection of the maximal ideals of SE is O, and so the ideal
p can be agsumed to be maximal, Then q = pA (b"E)O is maximal
in A, (for if aq < q'4 A, the ideal of SE genecrated by o' and p

*. ¥
ig proper and strictly larger than p). Thus g is a closed (K-

rational) point of X, and the result follows as in (1.4). O

Remerk on the relations between locally-free coherent sheesves,
their associanted fibred schemes, and algebraic vector bundless
If X is a scheme defined over a field k, eand F ——-p X
is an slgebraic vector bundle with fibre kr, then the sheaf
of germs of algebraic sections of F. 3 , is a2 locally-free
0 X-—I‘-‘lodule of rank r. The k-valued points of the vector
fibred scheme ¥+ form a vector bundle duel to TI.
on P¥, (1) is the sheaf of germs of sections of the
! hyperplane bundle'; the line bundle (dual to the Hopf bundle)
whose global sections are linear forms on cach fibre of IPF{
Hence W (O(1)) should be regarded as the (algebraic
analogue of) the Hopf bundle. If W:[PHF----» X 15 the
projection then i F———3 (1) induces an eubedding
V(O (1)) cemms rr*\V? and projecting onto W1 gives a
morphism W ( (1)) —==-> W} , which can be identified

with blowing-up the zero section in W% ,



In this section and the next we show that, under certain

.condi'bions, the canonical OX-Module morphism & E,----) 'IT,;iﬁ/(l)
is an isomorphism, In order to construct an inverse morphism
/3 : T, 0(1) —3> & | when it exists, we use the vector
fibred scheme consjcruction described in él. That is, we shall
first construct a morphism of schemes v s VE ——» \/(‘rr)_ 6’(1))
and show that v =\V(/3) for some 3 . Sufficient conditions

for the existence of /3 are made the hypothesig of Theoren(2,7)
below, and further elucidsted in the followingé}.

Our results are proved under aporopriate "finiteness"
assumptions on schemes and sheaves, Tlaixs, in the sequel X will
be a reduced ¢TIy ene and all 0;("Modules considered will
be coherent.

Let £ be & coherent &meodule gsuch that the projeciion
T : PE—-> X is surjective; i.e. £ is not a torsion sheaf,

The canonical epimorphism f[¥€ =——-> 0(1) induces a morphism
of vector fibred schemes over [PE, h' :V((}(1)) —=> VW @*E ).
This is a closed immersion by Lemma (1.2)(v). W(W*E) is
canonically isomorohic with lPE)__{X\VE ((1.2)(iv)): composing

h' with the projection onto VE defines a aorphism of schemes h,

W(BQ) ——> V@mee) = PEx Ve

], l
_ V€
Similarly the epimorphism H*H*G(l) —3> (1)

induces a morphism uw : Y (0(1)) —=\ (ﬂ*a(l)).

/,

e

™,



Lo,

Lemma (2,1)
(i) The following diagram is commutative:
PE ——g-> V(F(1) -———sr PE
‘n’l l h lrr (2.1.1)

X et WE s

>4

(here i,j are the immersions onto the respective zero sections).
Given a k~valued point of X, % = Spec k ———» X (k, a field)
the diagram induced from (2.1.1) by restriction to fibrcs over

X is canonically isomorvhic with

() > I > [P(v)
i wlf h J,
¥

X b > %

where V is the vector space over k, 6@‘), H_is the fundamental
line bundle ( = "hyperplane bundle") on [P(V) and h, : T 7
collapses the zero section of H.

(ii) The restriction of h : W (O(1)) = j(PE) > WE - i(X)
is an isomorphism.
Proof.

(i) The commutativity of (2.1.,1) is clear from the definition
of h. Further, construction of (2.1.1) commutes with chance of |
base X; for, taking account of remark (b) after Lemma (1.2), if

f : X! «—=—=» X is an X-scheme then the morphism (defined
similarly to h) h' : W (O@)") ~—> W (&, where £I= £*E
and (J(1)' is the fundamental invertible sheaf on lP(S'), is
canonically identifiable with the pull-back of h by the projection
\YJ (51) - W (€ ). In particular when X' = Spec k the second
assertion of (i) follows from remark (a) after Lemma (1.2) and

v

the identification of h in the case § =V , a vector space over

ks > T xP(V)

\L



(i) Let U = Speec A be an affine open subset of X such
that Elu - T for an A-module L. Then V(g !U) -~ i{U) is
covered by affine oven sects Spec((SAE)y) vhere el (o ¢ 0).
(As in Chap.'f_é’l the subscript o means "localisation away from
" (SAE):; is a graded ring with component of degrec O denoted
by (SAE%GO')

h"(Spcc(SAE)f)' = Spec R,  where

R_ = ((SAE)‘ﬂ[t])t = (SAE)M&, ., 571,

The resiriction of h to Spec Rf, corresponds to the A-algebra
homomorﬁhism (SAE)cr e (SAE)(G—)B; , t"] uniquely determined
by x F——> (xfr)t vhen x€ B, (In varticular o v——> 1,
and so 1/0- = t°),) This homomorphism is evidently surjective,

and if p/oé —-—>» 0 then (rrp = 0 for some r,; so p/c,!Jl = 0 and

the homomorphism is injective, therefore an isomorphisn. C]

Lemma (2,2)
u is constant on each fibre h':(x), er(‘rr* Ow)).

Proof.

Either x€ V€~ 1(X) and h:(x) has a single point or

x e i(X) and h;'(x) is a fibre of T : IPE ~—~=> X mapped by u,
to the point T (n'(z)). 0O
It follows that there is a unique (set-theoretic) map
v : We—=>W (7 ,0(1)) such that  (v,)(n,) = u,. e want
to: assert that in fact there is a morphism of X-schemes
v : Yé ——>V (W*O'(l)) with vh =u .
V(G
3 T~
VE ==~~~ >V (r,00)

For this purnose there is the following lemma (uGA IT 8.11.1):



Lenna (2,3

Let U,V be two schemes, h = (ho,)\) U e V&
surjective morphism,. We supposc that

1) A 0'V e h OU = (ho)x_ O—U is an isomorphism;

2) the underlying svace of V is the quotient svace of the
underlying space of U by the relation R : h(x) = ho(y) (which
condition is always satisfied when the morphism h is open or
closed or, a fortiori, proner).

Then, for any scheme !, the map IHom(V,¥) ~———= Hom(U,¥),
which takes a morvhism v ¢ V —— 3 to the morphism u = vh
(0t U —» 1), is a bijection from Hom(V,?) to the set of morphisms
u = (u,M) ¢ U~==>4 such that u, be constant on cach fibre

h-:(x). O

Note that our morphism h : W(J (1)) ——> W& is surjective
(by virtue of Lemma (2.1) and our assumption that ¥ : PE~> X
is surjective), and satisfies condition 2): in fact h is a
projective morphism in the sense of EGA II Definition(5.5.2):

A morphism of schemes h ¢ X ~——> Y is projective if there
is a quasi-coherent O'Y—-Module € of finite type such that X is
Y-isomorphic to a closed spbscheme of Pe.

BGA IT Theorem (5.5.3): any projective morphism is proper.

We delay until §3 of this chapter the discussion of when
h satisfies condition 1), so we make the following convenient
definition:

Definition (2.4)

A coherent O’X-Module € satisfies condition (A) if the

morphism 7& : O\Ve D 11&.0\\/6(“15 an isomorphism.
Theoughout the remainder of this section 8 will be a

coherent O;(-—I:Iodule which satisfies condition (A).



4.

Provosition (2,.5)

(1) There is a unique morphism v : WE——3 \Y (W*ﬁ(l))
such that vh =‘u.

(ii) v is an X-morphism and is linear on geometric fibres.
Proof.

(1) This now follows immediately from Lemmas (2.2) and (2.3).

(1i) We have the commutative diagram:

WO @) Yo (T, O(1))
TP
h l“,
/A\

We WV (m,0()

and a morphism v : VY& ————> \V(TT* 0’(1)) completing the

commutative square

Vo)

Y

Wn*n, Q)

\ |

l

WE e V(1,0 (1))

The commutativity of the triangle

X
/ \
WE (T, (1))

follows by elementary diagram chasing, since h is an epimorphism.

Thus v is an X-morphism.
To show that v is linear on geometric fibres we make use of

the following construction. Suppose given a commutative square

of schemes

and an OS.Module ’K. Then there is an G’Y-—Module homomorphism



S,

w : i*g*”(z(,-—--) h,f* K defined as follous:
(h¥*,h,) is a pair of adjoint functors (L3A 0 4.3) and there
is the natural isomorphism
¢ . Hom O,Y(i*g*"({, hy £59C) ~—Fem> Tom o z(},).*i*g*"K , £%K)
E?ecall that if u :i*{_-:*T(

v h*f*k is an Y—-l'»Iodule homomorphism
then So(u) : h*i*g*'k ~———3 %P is the composite of

h*(u) : i¥i*g, K ————m> h¥h, £* X and the canonical homomorphism
(444.3.3) h¥h, £if 3= £%14 ] To define (U it suffices to specify
70( w) h*i*gﬂ(—_—-—» T#* 3 but hiixg K = prgxg K
and we put g,ﬂ (w) = f¥(e ) where e is the canonical homomorphisn
gte, W —=K.

Returning to the proof, suvpose i : Spec k == X is a

k=-valued voint of X and i'PE = E& X Spec k is the corresponding
geometric fibre of lPE; so we have the diagram

i*P€ ——ep—> [PE
| "
Spec k  —————y——> X
There is the morphism W : i¥*[, 1) ——> ITI*J‘.'* O (1) (as dcfined
above) and ﬂ"*i'* 0(1) is canonically isomorphic to £®k. Thus
® induces W (@) : V(€ ® k) —~——> V (i*W*O(l)), and we

claim that Y (W) is precisely the morphism induced by
v : V& ———> (W, 0 (1)) when restricted to the geometric fibre.
To check this ii suffices, (since W (i'* (1)) —a W (i*€) ¥

\V(Tfl*i’*ml)) is a birational map) to verify that the following

triangle commutes:

1 WV(OQ) = W(EY(1))

WGE*E) = V(i 1)) ——> W (1#m, 0(1)) = 3 W, ),

This diagram can be augmented as follows:



i* (1)

- W (L, 0(1))
|

|

Vin*adr* 0(1)) - W {p#a*q,, 0(2))

Wi @(1))
(*)

V(Tare 01)) = W (55T, 0(2))
and it remains to show that the upper triangle (¥) is commutative.

(*) is induced by the followingz diagram of Module homomorphicms:

1% G 1) < it*ypxqm, O(1)

T (w)

Ml 0(1) == e, O(1)

which commutes by definition of W .Thus our claim is justified.
In particular it follows that i°(vw) :\/(f&k) ——> \V(i*“.,\;O'(l))

is k-=linear, D

Corollary (2.6)

If \V& is reduced, there exists a unique 0X~Module homomorphism
/3 : 7, 0(1) -———> € such that v = \\/({3).
Proof.

This follows from Proposition (1.4). []

With the following theorem we reach our objective in this section.

Theorem (2,7)

Suppose X is a reduced noetherian scheme and ﬁis a coherent,
torsion-free O’X-Ivlodule [satisfying condition (4)] such that WE
is reduced, Then A: T, O(1) ~—~—>§ is inverse to the canonical
homomorphisn o 3 & ——=> T, O(1). |

Proof,
First note that if W€ is reduced then so is PE, In fact,

if S is a reduced graded ring and x¢ Sl then S(x) is reduced,



O
s

(using the notation of Chapter I él)t for if :b«n is a nilpotent
d x
-t A

element of S(y), (-n) = O for some d>0; hence =S = 0 for
some T, (xt)m‘d =0 and so xt = 0eS and l;n = 0,
x

We have the following diagranm:

W (@)

h a h
(2.7.1)
g Vi, 0(2)) Ve
e WA T, U2 o
Ve v = ‘/(/3) W ()
[’I‘he right~hand triangle coumutes since MEE s O’(l)
factors T —7" ., O(1) ——> O’(l)

indueing a commutative digrams

V(oW —YLs V(TT 01) —s W (T%E)

\K/

wm, 0) eI j

Applying Lemma (2.3) and using again the fact that € satisfies

condition (A), (2.7.1) implies \Vo( \V{S \V" i.e. \V(ﬁ «) = id .

Hence, by Proposition (1.4), {3,0( = idg » It follows that « is
a monomorphism onto a direct summand of T 0'(1), Let K be a
direct complement of & (&), so that TI, 0’(1) r oK

In the case &€ is locally-free, K: & —ees T, 0(1) s
an isomorphism. This well-inown fact (cf. EGA IIT Proposition 2.1.15)
is easily verified as follows: suppose €U =% where U = Spec A
and E is a free A-module with basis fxl, + v yx }.Then 5,8 is the
polynomial algebra Alxq,-:+,x ], and each ¢ e[(U, T, 0(1)) =
™ (r'u, (1)) is a family ,«ie(sAm)(xi) (i=1,+n) such

that x,0p = xja-; € (SAE)(X'.X.)‘ We may write o, = pi/xrfl

where each P, is a polynonial of degree m and homogeneous.



Then xix

we mavy out m =1 and o, = I/x. where te Alx .. % = N
S i /1 ‘:l’ ' n-!l ’

and t is independent of i. The map o t——n G, [ (U, T, O(1) - &,

is inverse to O(U : B —3 (U, . J(1)) so «, is an isomorphisn,
Returning to the genersl case, there is an open dense set U

in X such that fU is locally-free, and therefore 'kU = 0,

Conzequently 'K is é, torsion sheaf., But if 8 is torsion-irce,

Proposition (3.5) of Chapter T implies that W, (1) is torsion-

free, and therefore k = 0, D i
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$3

conditions sufficient for the coherent a'.{--.T«‘Iodule € +to satisfy

We take up the guestion left open in § 2 and discuss sone

condition(A). In this comnection the notion of a normal scheme
is relevant. le recall the definitions:

An integral domain A is normal if A is intcgrally closed in
its field of fractions.

A schenme is pormal if it is reduccd and irreducible, and
has a covcring by affine ovnen sets, Spec Ai’ where each Ai is a
normal integral domain.

The following result is standard and well-knowm,(e.g BGAIIT

4.3.12 ),
Lemma 3.1)

If f: P-—» Q is a surjective proper birational morphisnm
vhere P,Q are integral locally noetherian schemes and Q is normal,
then C7Q—~-~> f*C?P is an isomormhism,

Proof.

Y4ince f is vproper f* G'P is a coherent, in pnarticuler a
finite O'Q—tiodule. Since f is birational f, OP is a svb-Algebra
of R(q), the sheaf of rational functions on Q. Hence the
normality of Q imwlies OQ = £, OP- D

1f € is a coherent O'X-Liodule such that WE is a normal,
locally noetherian schemg then [P&, and hence \V&(l), is intcgrai
and Y(O0@) ——> VE is a surjective prover birational
morohism: consequently Lemma (3.1) implies condition (A) is
satisfied in this case.

In order to state a conclusion which depends on proverties
of [PE rather than V& we show that the normgli’cy of PE is

equivalent to that of VE.



hssune £ is a coherent 6{-—1*:30(11110 vhere X is a locally
noetherian schemne, Then f& is a normal scheme if and only it
VYE is a normal schene,

Proof,

Suppocse VE is normal: then since \V(O(l)) - j(fPE—) = VE - 1(X)
(Lemma (2.1)(i1)), W (0(1)) ~ i(PE) is novmal. Clearly this
implies VW ((J(1)) is normal, and to deduce that IPE is normal
we apoly the following well=known result:

A ring B is normul if and only if +the volynomial rins B([¥]
is normal.

Conversely suvnpose IPE— is normal, Using our usual notation

(as in the proof ol Lemma (2.1)(i1)) and vriting S = S,B , we have

A
Syis a nornal ring for each ¢ & Sl = H, Let Ko be the field of
fractions of Sy Then K, the field of fractions of 3, is a simple
transcendental extension of K¢ K _—~—> K,(t) = K. We regard
n

S as a subring of S [t] via the monomorphism defined by x w—s(x/ n)t

for xeS . Thus we have 'bne sequence of subalgebras of K:
1 —
g q‘w[t] < u‘ﬂ[’b,f] = S‘rC X,
Since Slc) is integrally-closed in K., qo,)[t] is integrally-closed
in ¥ (t) =K. If yeK and y is intgral over 5 then, a fortiori,
o
over q ')[t]. Therefore yée S(c,‘['b]c- S’_. Hence ye S _

y is integral

for all a—esl £ 5, consequently y €3S and S5 is integrally-closed

in K, That is, S is normal and thus WVE is normal, D

Corollary (3.3
¢ PE is normel then & satisfies condition (a). []

We may now statc as @ consequence of Theorenm (2-7)0

Theorem (3.4)
Suppose X is a reduced noetherian schenme and € is a coherent

torsion-free (7 ..Module such that [P€ is a normal scheme, Then the

canonical homomorphism o ¢ & ——>T, 0/(1) is an isomorphism. []




As an application of Theorem (3.4) we nrove the following:

Theorcn (2,5)

Suppose X iz an intesral noetherian schene and 8 is a torsion-
° - O iag 1o of . . Pe ;
free coherent X-u\Ioau_ e of generic rank N, such that £&€ is a
normal scheme. Then there exists a vrover surjective birstional
morovhism P i Z&=———> % ond a locally-free oi-ﬁlodule of rank
¥, 1 , such that &% PeT .
Proof,

The construction described in Chapter Ié}}(iiikives a commutative

diagram

P¥ 3 >[PE

[}
i ln—
X

r

~
where P, p are proper birational surjective morphisms and t is

X

v

locally-free of rank N, TNote that since P is normal, in particular
integral, WPE= @Q(&€). Lot 05(1), 0?(1) be the fundomentnl

. -~ ¥
invertible sheaves on [P€, B¥ respectively, Then 0.4(1) =P 0£(1)

(vy Chap. I, Proposition (1.2){i) and (ii)). Since F is locally-

x 0,

/’x- l?'-} e .
(Lemma (3.1)), and /’« J) ¢ /‘5*7%0&(1) = G 1)@/9* p3 = Oe(].).

|?%

Therefore /D*':} = Px “* (74(1) =W, F*&,;(l) = W*Q(l)
€ , by theorem (3.,4). D

free 0(1) X . Since PE is normal,

3

The interest of such theorems devends upon the prevalence or
otheruise of sheaves with normal projective fibred schemes. Here
are some examples:

(1) Sheaves € with smooth PE. 1In the following chép’cer
we shall investigate such sheaves (on a smooth varicty defined
over a field ) and show that there do indeed exist non-trivial

examples,



(2) The result of blowing-uo a normal scheme vith centre a
regularly embedded subscheme 1s a normal scneme,

(3) If € is a coherent lModule with B&€ normal and & is a
locelliy~frce coherent Module then P(E€OTF) is nornnl. [F‘or if
P€ is nornal, V€ is normal, hence W (€ ©F) is noral and therefore
[P( cOF) is nor}nal.J In contrast if ﬁ)g is smonth and g is

not locally--frce then f( £ %) is not smooth.

e close the chanter with a single examonle to show how o nay
fail to be an isomorphism if normality conditions are not satisficd.
Connider the following example of a non-normal isolated singulavity
i : - - C? 4 AT
in o comnlex surface ((13) p.54). : —— is the

. , i 3 4
morohisn @ (u,v) = (wyx,¥,2) vhere w=v, x=uv, y=u"v, z=u'v, S0
the imare of q) is the surface V = Speec A vhere

3 2
A =C [‘1’13‘:13’12] [ {z=xy, x =yw b
Then V is not normal at O, since, in the language of the theory of
. 2 . : , .
comnlex analytic spaces, u v is a function weakly holomorphic
but not holomorvhic at O on V. In fact
2 2
(% u2v = X /W = YW/X =¥y /Z = zx/y on V wherever the
terms are defined. But if I is the maximal idcal <w,x,y,z> in A
: 2 . _
of the point O in V, then (%) shous that u v defines a section

of (1) over |P(I) which is not in the image of « .



Chanter ITI Smaooth Proijective ®ibred Schemes,

Throughout the following chapter X will be a scheme defined

over a field k, locally of finite tync and smooth over k.

él. A smoothaess eriterion for [P&

Yo consider the cucstion of smootvhnems for “,’5 where & is
a coherent OX—«IJod'ule.

In the first place we may assume, without essential loss of
generality, thot k is algebraically closed: for if Kk is the
algebraic closure of k, X= X x Spec &, é: E@ﬁi , then

PE =z P x X PE x Spec K and [P€ 1is smooth

opec k

2]

over £ if and only if fPE is smooth over k,(since ke—m—% ig
faithfully flat).

Assume then k is algebraically closed: we proceed to formulate
the smoothness question in terms of local gencrators and relations
for € in a neizhbourhood of a closed (i.e. k-rational) point of
X. Bach such voint x€ X hasg an affine oven neighbourhood U =
Spec A vwhere A is a regular noetherian k-~algebra such that the
restriction of € to U can be resolved:

68"‘"""9' U% ——— § ——>0 for some p,q.
This situation is expressible in a number of equivalent ways as

follows., Let & (U) =2, so E is an A-module with resolution

AP 5 3t » I > 0 .

If f is represented by a matrix (fij) (1igq,1$58p), With
.,a)=(b,---,b) where b, Z,f a),
p vl S

we have a k-algebra homomorphism k[Xll’ 5t XQP] A

entries in A, (i.e- f(al,- ’

ij
defined by Xij PR fij' Bqguivalently, we have a morphism

ra _ -
of affine schemes, ?0 : U —> /A = Spec k [xll"” xij’ cue xqp].
Clearly 70 determines & over U, and is determined by & once

a choice of resolution has been made.



. o)
The vector space over k of closed points of [{l\*q is here
o . D C . :
identified with ‘L(k ; Jcl), the space of k~lincar mans K P 1S,
or with Mp q(k), the sopace of pxg matrices over k.
PeQ

Let % be the matrix of indeterminates Xll . e e

. . . 4
. .

X
ql - -+ Tap

Let Jr be the ideal in k[xll, . ..,xqp] generatea by the

~

(r+1) % (r+l) subdeterminants of 7\, » Let r‘l be the closed sub-

schene of /A re

defined by the ideal J . ote that ¢”'[7  is tho
(g~r)th Fitting subscheme of EU' By an elementary lenma of linear
algebra, a matrix (with entries in a field) has rank not greater
than » if and only if every (r+l) X (r+l) subdeterminant venishes.

Consegquently the closed points of ['rare just those matrices over

- 8 c = [ won Y coe L7 pq: \
k of rank § r. We have O r(') c f;_ [;c f‘r+l <A Pmin(p,q,

where rr is a closed subscheme of Fr+l' Tn fact Fr-l is the
sinzular locus of Pr and f‘r -~ rr_l is smooth of dimension
r(p+q-r). For these facts and o’qher properties of the:déterminantal
varieties I"r , sce e.g. (9) and (8).

Returning to the principal object of study, we have defined
the morphism }0 t U > [A PA 1 the generic rank of & y
dimK(EG}{{) (where K is the field of fractions of A), is g-r, then
@ (N [-'r . e seek conditions (of transverselity type) on 70
necessary and sufficient for lP& to be smooth in a neighbourhood
of a point yé ﬂ_'(x). e shall apply the Jacobian criterion for
smoothness in the following version.
Lemma (1.1) (Jacobian criterion)

Suppose X is a locally noetherian scheme over k, Y is a closed
qubscheme with J its sheaf of ideals, x is a point of Y, such that

X is smooth at x and dimxx = n, Then the following are equivalent:



o~
)

7o\ . o N - e

(i) ¥ is smooth at x and dim Y = n-pj
¥ £
‘-

(ii) din Y > n-p and there exist clements gy, .- 48
&y e,

in J_ such that dgyy- .. ,dgp are linesrly indevendent
" T
in Q X(x)‘

Further, if Y is sm(')oth at x and dim Y = n-p, then Byre o 18,

€ J
X
penerate J if and only if rank (dgl" o e ’dgm) = .
(A useful refcrence for the Jacobian condition and related matters
is (1) Chapter VII §5 ; the above is contained in Theorem 5.8 and
Corollary 5.9)-
[PEU is defined as a subscheme of Ux@q_l = Proj Alzl’m’zz;}

by the qgraded idgeal of Afzq,--- ,zq] generated by Py T where

F. = g_‘: fijzi' By suitable choice of bases we can assume ('0 (x)
is the matrix 0 0

vhero I, is the r'« r' identity matrixz, r'= rank f£(x) =

. ) : 1 if iy g~r' and j=i+
bnd 9] - . t o« @ = J L p-(l
a dlmk(x)(I @k(x)) That is, fla (x) {O othervise

IF (€ )(x)c a-l is the subspace of dimension q=i-r! defined

by By = Bgy T C = By T 0. Thus D+(zj)n ‘P(S)&): (b

if j > q-I" .
We now consider D+(Zj) ~P(E )(Jd for jg§q-r'. For convenience

take j=l. In D+(z1) we replace homogeneous coordinates (zl:. ..t )
q

by inhomogeneous coordinates  (%,,- .. ,'z‘q) (2, = Zi/zl’izz""’Q)

q,
and write Py = Z.fij.'v:i, 5uly e .y De

=1
At this stage it is convenient to introduce parameters on X
near x,. X is smooth at X and so there is a Zariski neighbourhood
of x (which we suppose to be U itgelf, shriniking U if necessary),

n
with an &tale morphism U —> A k) (0= dimxX). Equivalently
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there is a systen of parsmeters Xy ,xnc—: x (x-where‘__}; is the

maximal ideal in A of the point x), such that if k [t cie gt ] —» A
177ty

is the k-algebra homomorphism determined by tit-—w—a» X.y then A
i

is étale over k ['tl, v ,'bn].

canrent : S , 2
The cotanzent space to X at x is the vector spoce Q.,(x) = x/x
N
(over the field A/x = k), which has a basis §dx,,---,dx_}

. . 2
where dxils the residue class of Xi' mod X . If FeA, tuen

. 1 . 3F
ar(x) ¢ 'O'X(X) and we write dF(x) ZzF (x)dx ' where ﬁi(X)
is in A/X .

I (x,z) € UXD(z)C Ux[F 1+ then

Q Uxf_l(x’z) = Q (x) QEQ (z) y with basi

-q...l
gdxl' . dx d'é d'z'q‘ . In terms of this basis df‘j(x,z) =
9 n
q,
f
d(Zi‘ §By) (x2) = Z(Z%__.LJ \ Z 5
oy ergl Sl T {x) x| 2; + zfij(x)dzi.
v

n e 4
i Z(Z;f” ()5 | an, + D" gy (x)an.

ket V021 7% in2

Therefore, the Jacobian matrix, J, of (df‘)__l at (x,2)
J'i=ly.ceyp

has the form: n - q-1 =
0 0 A
Jg o= J!
P
0 I,
v

q
f,. -
where the subnatrix JT hes E b—-lJ (x) g, as entry in the
— Bxk i
(j k) position. 1=

J has rank r if and only if the matrix J'', formed of the
first p-r' TOWS of J', has rank r-r', J'!' may be interpreted

as the matrix of the linear map, the composite of:

p 25 1kP,xY) —> L(ker £(x), k%/ker z).
b4
Here T is the tangent snace (__/x at x, D7o is the derivative

of f’ at x, ker z is a hyverplane in lr (strictly, z € [P -1



a . . . . v :
= lP(k ") so z is a one~dimensional subsvace of (k%) and ter
is the kernel of a generator of z).

Let A
4

il

{«e L(x®, %" w(kor £(x)) < ker z } . Then
ren< J'' = r-r' if and only if the linear snace DP (Tx) N Az
has codimension r=r' in Dp (Tx)° Thus we are led to the
following result,
Leama (1.2)

If y is a closed voint in O(€ ) with W (y) = x and

y = (x,2) € E3xB 1, then PEis smooth at y if and only if

codin (D?O(Tx)n A D?(TX)) = p-pt,

Note that r-r' is the "excess dimension” of the fibre Lpem;
i,e, T=r! = dim lPE(K) ~ (peneric rank of &)
Proof,

If codim (D?(Tx)n Ay Dcp(’.[‘x)) = r-r' then rank J = o,

Since dimyle, 2 dimy Q(E) = (n+g=1)=r y the Jacobian Criterion
(Lenma (1.2)) inplies PE€ is smooth at y.

Conversely if PE is smooth at y then dimyl?g = dimy QE) =

(n+q=1)-r and the final assertion of Lemnma (1.2) implies rankJ = r,
. F /m = Tyt
Thercfore codim (D)o(’l‘x)r\ Ay D(ID\LX)) =r-rt, (]

To interpret this lemma as a transversality statement we suvwose
that f(x) = 0 ; this is vermissible since (cf. p.13) B is generated
in a neichbourhood of x by q = dimk(x)(E®k(x)5 elements, Then
r' =0 and AzzfoceL(kp,kq) l ind € ker z} . Hence

ain [ = ain ([,n4)) = r(o+a=r) = 2(pto-l-z) = =,
The foot that o (U)<[}, U is smooth, p(x) =0 ana [ is a
T
cone with vertex O, together imply that Df) (Tx)crr, Let
w € f‘r n AN D?(TX) where w is a resular point of rr; then
Dy (Tx) is transverse to l"rn A, in r'r at w if and only if

codin (D? (Tx) A Azj’ DF(TX)) =r . This shows that if transversality
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holds at one such voint w it holds at all such noints, and we say
. , 5 . = . 3
simply that D(p (TX) is transverse to | /\AZ in ] . hus we have:
r £

Corollary (1.3)

(1) £y = (x,8) € &) , as in Lomma (1.2), then [PF is

smooth at y if and orly if Dep (T.) is transverse to | AA in r.
x r g T

(11) JPEis smooth at all points of !P&(x) =1"Yx) (and
therefore smooth in a neighbourhood of Pg(x)) if and only if
D?(Tx) is transverse to rr/\ A, in Pr for all cé& 1°
Proof.

(i)follows from Lemma (1.2) and the remarks above.

(i1) : If P& is emooth at ye o(€ )(y)

irreducible at y and thercfore there is an ovren neighbourhood V of

then PE€ is locally

v in PE such that PEAV = Q(€ )a V. lence Q(E )(‘{’ contains an
oven subset of [PEC{) and 1t follows that Q(&€ )(x)= ﬁ)é(x\ . low

(i1) follows from (i)e

§ 2 mxamvles of Smooth Projective Fibred Schemes.
7

There is onc case where the criterion of Corollary (1.3)(ii)
can be used to demonstrate the existence of smooth projective

fibred schemes, Let r = p<aq : that is, we consider sheaves &

with resolution O e DS—-'—\‘:)O% > £U > 0  where Y

is a monomorphism with ¥ (x) =0.
FPor this case Fr = L(kp,kq). Ve write T = D?(Tx) and say
T is good if T is transverse to Az for all ze u?l—l' Ue consider the

o i f sood T of dimensi N 1
question of the existence of soo o) imension s Let Gs,pq-s

be the Grassmann variety of vector subspaces of dimension s in

L(k%,x%). Let QZ = {re Gy, po—s

i.e S l is the set of T not transverse to A . S 2 is a
e Co 7 2 Z

codin(Tna Ay T) £ r-—l} :

?

Schubert subvariety of GS pg-s" (For facts on Grassmann varieties
?



and Schubert gsubvariceties we refer to (9) ). Then dim G =

Sy D=
s(pg-=) and dim L, = (s-2+1) (pg=p-s4r-1) + {pges) (r--1)
= s{pg-) = (s=p+l1) since r=mn),
£/ P .
Lot g = z, 7)€ -1 X Gs,pq-—s l codth(T/\AZ, ™ < r-l} .
Then 8 iz a closed subvariety of [P( 1X G of dimehsion
. i

5, Pa—5

s(pg~s)=(o-p=-q+2)., If W is the projection ‘B-——-é» G '
8,00-8

{(zyDt—=> T, then WB is a closed subvariety of GS y Which is
y DQ=5

strictly contained in G_

&, Dg=5 1if s> ptg~2, The set of good T is the

complement of TTB in Gs,pq—s and therefore this is o non-enoty
Zariski-open subset provided s >p+q-?,

From these considerations we may say that, provided X is smooth
of dimension s > p+a~2, a "goneric! O;{-Module of the type considered
(i.e. with a resolution in a neichbourhood Y. of x

0 > 3§-~-~> O%“..__;, £U-—--->o,
where ¢ = dim E(y) ) hn.s a projective fibred scheme which is
smooth in a neighbourhood of ﬂ)g’(x)' The signifiecance of the
condition dimX > p+g=2 1is verhaps more evident when it is
exoressed in the form afn+ -%—(s-n) where s = dim X, and
n = g-p = g=r is the generic rank of f .

In the above U is assumed to be a Zariski neichbourhood of x:
however we may admit a larger class of sheaves by supposing only
that U is an étale neighbourhood of x, i.e. that there exists a
Zariski neighbourhood U' of x and a (surjective) étale morphism
U ——=> U' such that £®0U has a resolution

0 —— 0 —08 s> £®@U.._..__>. 0.
(This follows either from the method of proof used in §l, or by
noting that P (& ®0U) = ‘PEU' X U is smooth if and only if

'PgU' is smooth),
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Chanter TV The Cohomolory of Comnley Projective Mihred Schemes,

e consider algebraic varieties over the comnlex field & (in
v senarated
the sense of 3erre (FAC); that is, varieties sre reduccd sohomes
of finite type over €). In addition to the Zarisici tonology each
such variety has aﬂ associated structure as a complex analytic
space with the'classical" topology. 'hen we write of the cohomology
" 3%

groups L (V,€) or H (V,2) of a veriety V we mean singular cohom—
ology (wvith approvriate coefficients ) of V with this tonolocy.

Our task is to calculate as far as possible the cohomology
ring of the vrojective fibred scheme FE of a coherent sheaf € on
a comvlete, smooth variety W in terms of the cohomology of V and
discrete invariants (such as characteristic classes) of £ ,This
is most feasible wheanEis itself smooth but even for this case
our results are not complete, and we end with a conjecture,

Our approach is via the construction described in Chapter I,

§3(iii) which involves successive blowings-up of subvarieties
of V., e thercfore begin by discussing in some detail the effcct
on cohomology of blowing up a regular subvariety of.a smooth variety,
These results may well be known although it seems no clear ztatement
of them appears in the literature;(but see{l4)and remarks below).

It is to be expected that the results of this chapter have
analogzues which hold for varieties over any algebraically closed
Tiecld of characteristic O and suitable algebraically defined
cohomology theory, such as the Algebraic de Rham cohomology,
introduced by Grothendieck in (11) and systematically treated by
Hartshorne (5 ). However in-the present state of algebro-

seometric knowledse the finite characteristic case cammot be
o . _

treated because (i) there is as yet no satisfactory cohomology
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theory in characteristic p, and (i1) "resolution of sin~ularities"

is not available.

él Cohomolory ond blowins—un,

Supnose Y is a smooth closed subvariety of a smooth complete
varieiy X. Lét xbe the blow-up of X with centre Y. e propose to
describe the cohomologv ring H%(X;Z) in terms of the cohonology
of X and Y and invariants of the embedding Y C——> X, Our recsult
and many of the formal details of the proof are modelled on Manin's
account (14) of the K~theory of X’ (i.e. the Grothendieck éroup of
locally~free sheaves on XO. Differences (and simplifications) in
the proof for cohomology result from the richer structure of
cohomology compared with K-theory (in particuler, the relative
cohomology groups and the exact sequences).,

The method turns upon the following easy,--formal, and known
result.

Lemma (1.0)
Sunpose given the following commutative "prism" of abelien

grouns such that the two triangles are exact and Y is an

isomorphisms: o
k-' j'
A'...../......i..;.} B!

Then the following triangle is cxact:

A' ®B
““V \i"fﬂ
A < 3!

ko ¥y 3"

Proof: Standard diagram chasing, [:]
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Sunnose Fi X! ———3» X iz the blovw-un of X with centre ¥, let
Y = 'Y and let 23 Y! w3 ¥ be the restriction of f to I'.
Let m = codimC(Y,X) and T = dimc(i{),

If N is the (algebraic)vnormal hundle of the embedding
i3 Y =—> X, the sheaf of (germs of) scctions of N,/L , iz a locally
free UY-I:Iodule of rant m, isomorphic to ( } /}Z)V, vhere } is
the sheaf of ideals defininz Y in X, Thus Y! % P( }/ ) 2).

Let N' be the normal bundle (rank 1) of fhe embedding j: Y'—» X',
The sheaf of sections of N' is dual to 0(1), the fundamental
invertible sheaf on (.}/ )’2). Hence W' can be identified with
the bundle of closed points of W((J(1)).

We refer to (10) for the theory of Chern classes of coherent
locally-free sheaves in algebraic geometry and to (eve.)(2)  for
the tovological theory. If F is a complex vector bundle of rank
n on a complex variety Y the Chern class ci(F) is a cohomology
class in Hzi(Y, Z), i=1l,--yn. The conventions of algebraists and
topologists agree in that if *} is the sheaf of sections of the
algebraic vector bundle F then ci(q-) = ci(F ). The Chern classes
are characterised by the folloiing well-known result,

Pronosition (1.1)(Cohomology of préjective bundles).

Let F be a rank n complex algebraic vector bundle on a complex
variety Y, "} the coherent locally-free sheaf of (germs of) alrebraic
sections of F, and W:P¥-—>7Y the associated projective fibred

. * . % *
variety., Then T induces a monomorphism W ¢ H (Y) ——>H (P3F)
*l
on cohomology(with integer coefficients), and . H \[E})’
x ¥
considcred as an algebra over H (Y) by virtue of W , is generated

by h = 01(0(1))4 HQ(lP:}), subject to the relation
(-D)ie, ™ = o (cp= 1)
2 0y O

% %
Phus H (Y') is determined by H (Y) and the Chern closses of .



We shall toke for granted the theory of Poincaré dunlity in
homology and cohomology. Consider the honmolosy exact sequence
of the pair (X,Y) (coefficients in Z.):

. . 1 \

We have isomorophisgs, given hy dualitys

H(X) % 12T (%)

B (7) = BTNy
Substituting in (1.2) yields:
(1.3)  eee ——> P20 (1) e BT () I (XY )= aee
e write H%( ) = ;§Hi( ), and H.( ) = :(:2 1T
the grading, and express (1.3) as an exact triangle:

H,(X,Y)

L

H(¥) s ' (X)
Ly
Here i, is the so-called Gysin (or umkehrungs) homomorvhism induced
by the inclusion i: Y e X,
The pair (X',Y') gives rise to a similar triangle and we can

construct the following diagrams:

H,(X,Y)
B (Y1) 5 | >H (X')
(1.4) * .
f*
i’ H,(X,¥)
1 (Y) o =1 (X)

* *
The homomorphism of ¢ H (Y) === H (Y') is defined by
o(y) = g#(y)'cm—l<F)' where F is the rank m-1 vector bundle

on Y! defined by the ahort exact sequence:

*

Ly

i( ), thus suppressing

@,
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Since T induces a homcomorphism  Xt- Y'ag—-—-;» X -y it
Tollows +that Tt H(Xt,71) meese H, (X,Y) is an izomorvhism,
The coumutativity of (1.4) follovs from a number of formulase which
we collect together as
Lemna (1.5)

. . ¥ 3, }

(1) ifyen (v), iiy = yeo (¥) ;

(11) e () =1 ;

* o L3Nl * *' » -;‘:

(111) if y&ll (Y)7 f 1_—*45’ = J—,\;(g y'cm—l(F));
% * *

(iv) £ =id. ¢ H () =———mp 1 (x)

(v) irf yeker j, < H (Y') then y = ¢ Bxye0, l(F).

Proof,

(i):'This is a standard consequence of the theory of Chern
classes, (see, for example, (7)).

(ii) If we write ¢ =1 + Cp oy k.. . for the total
Chern class, then formally

c(F) = g*q(Hé{c(N') = g*c(N)/(l ~ h) where h = -cl(nv).
m-
Hence cm—l(F) = Z {,’*cm__l_i(N)hi and
gxc,_q(F) = E%fi cmnl_i(N)g%(hi) =1, since
g*(hi) = Oizofor i m-l, ang g*(hm-]‘) =1,

(iv): Dy virtue of the identity f£(f'x.y) = x.f,y it
suffices to vrove f,1 = 1., This follows from the fact that if
Ny € B (X)) M4 €1, (X')  are respectively the fundamental
homology classes of X,X', then f ')'X' = l'lx. (ef. (3)).

(1ii): f*(f*i*v - j*(gﬁy-cmﬁl(F))) = f*f*i*y - i*g*(gfy.cm_l(p))
= iy - i,_L(.V-g*Om_.l(F)) = 0, (by (ii) and (iv)).

j*(f*i*y - 5*(8*%0,“_1(5’)) = g%i%'i*y - j*j*(g*y.cm__l(r“))

= g*(y.cm(n)) - (gfy.cm_l(F))cl(N') (by (1) and the analogous
result j*j%y = Y-CI(N') )
= 0 since g*cm(n) = cm_l(F).cl(H').

-X.
Therefore it suflfices to vrove that ker(f,) N ker(j ) = 0,



We sketch a geometrical proof (from 2 sirmlicial noint of vicw ————
as proved by S. Lojesiewicz, comnlex znalytic swnaces are trionoulable),
Suppose ¢ is a simvlicial n~cycle whoze homology class in Hn(i{')
o “ . 7 ) . .*
is the Poincaré dual of a cohowology class s € ]cer(’.f‘*) A er(i ).
o nmay be assumed transverse to Y! (vy subdividing end mazing
each simplex transverse to Y'), Since j s = 0,0n Y! is on
(n-2)~cycle homologous to O in Y', Then therc exists an n-cycle
’ ’
o, homologous to ¢, such that the simplices of ¢ lic in X' - Y,
For suppose 97 =0 n Y' where 7T is a (n~1l)~-chain in Y'. Y
can be "thickened" to a (triansulated) disc-bundle neighbourhood
D of Y!' in X' with projection t: De—=> Y, [’l‘here is a deformation
retract along the fibres of t, X! &% Y! —=—3p» X! =D |, Then
-l . . (£'7)) ' I,
t™7 is an (n+l)-chain and o (om= At 7))~ T uhcre o' is
. al l . .
as required., (See diagrams), Now f(o)a~ 0 in X and if
[} b ! 1 N ) . o
(o) = 01, ¥ may be made transverse to Y in X, Then T | the
! . s
"proper transform" of ¥ | (i.e. the closure in X' of f‘(?/\ (2=¥))
N )

[
is a chain in X' such that o= o , i.e, o~ 0.

D

t7
'
1. 2. 3. 1Y
*
(v): A tyoical element ye Il (Y') can be written uniguely in
m-1

i *
the form y = E &ihl vhere a.€ H (Y). If ju =0 then
l‘.‘o me4

0 = j*j.x,Y = =yh, = -.Z aihl+1 . Therefore (by Proposition (1.1))
* ire <3 * Vi
a .18 cm-—i<N) =a; 4 (i=1,+++ ym), Hence y = ‘Z:; a 1€ cm-—i-l(“)h

. .X. . N
= am__lcm_l(F). If a .= 88, then g,y = a.g*cm_l(b) = a (vy (i1))

* ¥%
and g gy.0,_4(F) = ge.c () = vy D
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Apolying Lemms (1,0) to (1.4) mives an exact triansle

(1.6) \ H'V'( /1 e:~+f*

i
Xt

H

Furthor & is a monomorphism (for if 0 = Xy = ¢ yeC, 1(I!‘),

]

.':Ax.
then 0 = g, (g 3r.cm~l(F)) = v, g‘%cm_l(l?) y): therefore

- D i, ds a monomorphism and (1.6) yields a short exact sequence
*
3 et &L . 3 * s *
(1.7) 0 s 1 (7) Xy (v) o8 (x) d¥Ts 5 (x1)es 0
*
The homomorphisms o,i.,3,,f resvect the grading and raise

degrees by 2(m-1), 2m, 2, O, resvectively. Therefore, restoring

B2y @ 15(x)
(—0(* 1*) Hs-2m(Y)

Hn

the gradins in (1.7) we have 1 (x1)

(Tn varticular if s<2m, B (X') = ©°2(v') @ B°5(x). )

Thus (1.7)determines the additive structure of H*(X'). e turn
novw to consider the multivnlication.

Let H*(Y)N be the ring with additive proup H (Y) and
multiplication o defined by — ¥ie¥, = yyype, (N). Thus H*(Y)N
is an associative ring (without unit), commutative in the sense

that = (-1)d4c8 ¥yy-dee v, Ypo¥y »  This definition is

Y162
* %
motivated by the proverty : i H (Y)N——--—)-H (X) is a ring
- - - .*.
homomorphism, (for 1*(y1.y2) = 1*(y1y20m(13)) = 1*(Y1(1 1-)(3’2))
= (L)) ).
*
Similarly we define the ring H (Y')N, with multiplication
Y1o¥p = Y1y (M)
Finally we define multiviication in H (Y')., @ B (X) by
* % * %
(710%7) 6 (pr%p) = (e i xlyy +yi(eixy) *yp0y, 4 %%, )
It is straightforward to verify that with this definition

* *
i (Y')N' @ H (X) becomes an associative ring, which is commutative,



N

again in the evident "graded" sense,

The following lemma shows that the multinlicative striacture
of H%(X') is also determined by (1.7).
Lemaa (1.8)

The additive homomornhisms

e H (Y1), © T (X)

. *
~ @iy, 2 I (Y)N

A

H*(Y')N, ) 1—1*(x) ————p H,*(X')

) *
J-F + f
appearing in (1.7), are ring homomorphisms,

Proof,

i

*
If ypyp€ B (Y) ther (~x@1i)y, (-x@ i)y,

¥ ¥*
( "(g yl)cm_l(F)l i—,\.yl)o( "'(g yz)om_l(F)y ix."f2 )

( ~(6"5 1) (8 7)o,y () =(&'y e (M) ("1 1,0,) +
(g*yl)cm_l(F)(g*yz)cm_l(F')cl(N') » Lypeiy, ) o=
(=€ (13720, Moy () 4 8y ov,) ) (sinoe o (W) = o 1 (F)o (1)
= (~o @i*)(yloyz). and i*i,xy=ycm(N) )
If (7,0%)) (7p0%,) € B (Y1), © H'(X)  then
(e + £y 0%)o (F0%p)) =
(Ga *+ 20 1 2y (6757 5,) yyype (1), xpxy ) =

* % , X% %
j*((g i xl)y2 + ylkg 1 xz) + ylyzcl(N')) + T (xlxz) =

]

30" x)yy + 7y (572 R) + yyype (1)) + 2 (xyx,)
(£7%,) (3,95) + <j*y1><f_*x2> + () Garg) + (£ (27x,) =
(357, +f*x1)(j*y2 + £ xy), 0
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§2 Cohomolory of 1?5 e

It 1} is a locally-free cohcrent sheaf on a complete variety

X then Proposition (1,1) shows that H*(ﬂh(') isdetermined by

e
H'(X) and theChern classcs of 4 . It would be over—ootimistic
to exoect any such neat result for Hﬁfifg ) when & is a general
torsion~free coherent sheaf, but we can prove sonme partial results
in this direction. The consiruction described in Chapter I, 3(iii)
defines a locally-free sheaf ¢ closely related to the given sheaf

éi and we can use this to apvroach the cohomolosy of Eﬁi.

Chavter I (3.7) gives a commutative square:

Pt > o(€)

1 F l
X _ > X

/}

where /J'[’ are voroper birational surjective morvhisms and F ois

!

a locally~free gsheafl on ;C, a quotient sheaf of /J*E s of rank equal
to the generic rank of €. /> is thecomosite of 2 succession of
blowings-up centred at Fitting subschemes,
Results of Hironaka on resolution of singularities (6) show
that the sequence of blowings-up can be replaced by another sequence
whose centres are smooth suhschemes. Hironaka proves ((6), consequence
1 of Corollary 1, v.144) that if 5'(, X are birational varieties
there exists X'~———»X, obtained by a finite succession of blowings-
up with non-singular centres, such that X" dominates i. Thus
in our case there exists a birational morvhism X".-f.l_g. % such
that f.,f' can be realised by a succession of blowings-up with
non-singular centres, Then = /JI*? is locally~free on X' and
o ]

combining the above commutative square with the commutative souares

PY > P1

J !

~

) I ¢



! L
we have Pt > > O &)
(2.1) v n
Y
X-1| __ﬂ” .}‘— .

As a firgt consequence we may state

Promosition (2.2)

¥ ¥ ¥*
The homomorohism WM ¢ H (X) =we—— H (Q(€)) induced by the
projection W is a monomorvhiszm,

PI‘OO f . ’
1l *

{D .

and [ : H (X') —

. LYd *
H (X) =m0 (X")  is a nonomorvhisn (Lemma (1.5)(iv))

¥ 1
> 11 (P¥) is a monomorphisi (Provozition

* 5% ® %

n > ! A
(1.1)). Therefore £ _/)' n

3 - *
is a monomorphism and so W

is a monomnorphism, D

is birational we have (as in Lemma (1.5)(iv))
~n “',)* ¥ X%
(P = ide s H(E)) ———>1 (0(€)).

* : o
Consequently H (Q(&€)) can be identified via A" with a

L]
Since pY

subring of H%(IP?/) and H (Q(€)) is additively a direct summand
of H(PT). As grouwss H ((€)) ¥ H(PF)/ker /7“* .

If X is smooth then, given sufficient information on the
centres of the blowings-up of X and the Chern classes of ':l" '
the cohomology of \E?’ can be determined in princivole by the
results of él.

Since H*(Q(E )) = H*(IFT{’)/L:er fj;' we arc interested in
characterising kerp} . If y& kox () then, writing h = o, (0(2))
in H((€)) <K (PF),

Pl Talyn®) = Ty Plen®) =T (Bt = 04 f.e.Wyiyn')
is in ker /';;_. Thus if K ={y€ }I*(\?}), 'ﬁ'%(yhj‘)e ker fl; for all i}
there is a group epimorphism H*(Q(E )) ——> H%(lf? )/ . This is
as much as we are able to prove but i{ scems rezsonable to conjecture

that if P& iz smooth (so PE = n(g) ), then H*(ﬁ’g) = H%(lf?S/K .
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