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PROJEGI'IVE FIBRED SCHEr.rES---

M. J. ColloV

Thesis aubmdt t ed for the degree of Ph.D., University of Haruick, 1973.



Abs tz-ac't •

. This thesis takes the oonetz-uctaon (due to GrothendiEJck) of

the pr'oj ectLve fibred scheme of a coherent sheaf and investiGates

certain aspects of its gco:i1otry, (and, in Chauter IV, to:polo{C;Y).

In Chapter I, after quoting the basic df!finitions, of the nrojoctivG

fibred schomeof E vd th its projection rr : fE--··~X and fundamental

invertible sheaf ~(l) on !PE, and giving some simple illustrative

examp.l.es, we turn (¢~ 2,3) to some particular features of the geometry,

notably the Fitting subechemes and the dominating comporierrt(and

interactions between the tHO). Here and +hr-oughou'tmost of the vror-k

ire keep olose to geometrical intuition b,Y considering only coher-ent

modules on locally-noetherian, reduced schemes. In an appendix

we introduce some sheaves that are in: a sense universal for coherent

sheaves on p:rojeC'~ive varieties. (These do not play any essential role

in the rest of the thesis).

Chapter II is concerned \'Ti th the canonioal homomo:tphismC{,

[ ---~ If*o(1) whf.ch is known to be an isomorphism when E is

locally-free. Ue extend this result to a larger class of shcavea..

and show, for example, that cl. is an isomorphism if ~e is normal.

In viel..rof this result, and for general reasons, it is of interest

to look for examples of smooth projective fibred schemes. This we

do in Chapter III and show that a "generic" Module E.. of the type

that locally has a resolution O-~ 0& r:> ~ --~ f. U-~ ° .(U,smooi

where p(x) =0, has smooth \pt in a neighbourhood of rPc(x).

Chapter IV consdder's the (singular) cohomology ring of!PE when

E is a sheaf on a comul.exvariety (1']ith tho classical topology).

He include a disoussion of the,effect on cohomoLogy of bloHing-up

a smooth variety ~lith centre a smooth subvariety.



The projective fib:rcd scheme (l1fibre Drojcctifll) construction

of Grothendieck (EGAII A. 1'1.) associates to each quasl=cohecerrt tr-~ X

Module E. on a scheme X, an X-scheme 11: IPE ---~ X, vhose

geometric fibres are TJrojective spaces. rl'J.IO extreme exampLes are

1·1ell-::.i10..rn, PirGt, if E is locally-free of rank r the fibres

of !PE have constant dimension r--L and \.Ps. is essentially an

algebraic projective bundle. Second, if E is the sheaf of ideals
y'

defining a regular subscheme~of a ree:ular noethor-Lan scheme X

then i€ is obtained by blo"Vlingup X \d th corrtr-e Y, a cunstruction

which (at least for the case: Y; a point ) dates from the classical

era of the subject. However, the projective fibred scheme of a

general coherent sheaf E , Hhich appears to c0mbine many of the

features of these two extreme examples (cf. Chanter I§ 3(iii)),

has not recei.ved much attention. (He should mention (15) lIhich

ShO\'lShow certain classical problems on projective embeddi.ngs of

varieties can be expressed in terms of projective fibred schemess )

\ole envisage that the construction may play a central roll; in a

future theory seeking to distinguish and classify Modules by

geometric properties of their associated fibred schemes.

Our theme then is the geometric theory of modules; or rather,

since such a theory is not yet realised, we take some tentative

steps tOlvards it. vii th the exception of Chapter I ~I and Chapter

II §l, the wor-kpresented here is thought to be original. Hhen it

leans on work of others (es-pecia1Iy Chapter I ~ 2 and Appendix, and

Chapter IV tl,) due acknowl.edgemerrt is made.

My grateful thanks are due to Prof. R.L.E. Schwarzenberger

for encouraging me to grasp the nettle of algebraic geometry, for

suggesting the line of research pursued here, and for his patd errt

support and guidance~

Financial support was provided by an SRCResearch Studentship.
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I.

Introductio~

. The chapter is divided into 3 sections and an appendix. f 1
contains the basic def'ini tions, summarised f'r-ou, EGAII, and adds

some examples to motivate the rest of the chapter. An important

characteristic of a projective fibred scheme ..!PE.. when E is

coherent is the fmy the ddmensions of the fibres val"-J. This is

expressed, by the ]'i tting subschemas of E in X which are global

Rnalo[.'Uesof the Fitting invariants of a module in commutative

algebra. He give the definitions in ~ 2. Intuitively the

'Fitting subscheme F (e)
n

is the subscheme of X over which the

fibres of ~€ have dimension ) n-1.

~ 3 trea.ts of some further geometrical features of lPE wher-e

£. is a coherent Module over an integral, noetherian scheme X.

He ar-e concerned especitt1ly vd th the dominating component of rC,
Q( € ), uhich is the unique irreducible component of JPE vli th

aur j ect.Lve projection If: Q( E.) -~ X. If C is a torsion-free

sheaf this is reflected in some properties of Q( E. ), Hth applications

in Chapters II and IV.

In the Appendix \'le define some sheaves 1.L, on projective

spaces over an algebraically closed field k , "lhich are universal

for coherent sheaves on projective varieties over k in the sense

that ~f is induced by embedding the variety X in some projeotive

space and restricting ru.. to X.



2.

~ I Basic Definitions and }~x~;:mlcfJ.7------------~·....----
11' V is a vector apace over a. field k He wri te ~ V for the

projective space of I-dimensional linear subspaces of the due.l

space VV :::Hom(V,k). This is dual to the classical construction

of the "Drojective space associated to a vector space": the

difference is forced because we vlish J.:;o globalise the construetion

as follows. To each quasi-coherent sheaf over a scheme X there is

associated a X-scheme, 'IT : IPE----~X, (called the "projective

fibred schemJ' of e), such that the fibre 1('(x) over a point X in

X is canonically isomorphic tof(£®k(x)). The cons tr-uctLon of

(PE. is due to Grothendieck (EGA I!94), and is a case of a more

general ~onstruGtion, that of the homogeneous spectrum of a sheaf

of grad ed algebras (EGA II~§ 2,3). In this S €lotion we reproduce

the details of this construction, there-by fixing our no+.ation

(which is in the main consistent with that of EGA).

We first define the homogeneous spectrum of a ring. Let S
I?,Tadedbe a commutativeA,ring: that is, as abelian group S = ®:3h. and

" ~o
the multiplication in S is such that SnS~c S (m,n' ~). An

1'14''''

element x, Sr is called homogeneous of degree r.

Given x € Sr (r'>0), let T = t x" \n,,'7,..+J, (by convention,

XO = 1 ). T is a multiplicatively closed subset of S and the-,associated ring of fractions, S)( r;a T S, is graded by putting

(S)() d = if/X" \re Srl\+d' n E~}. Let S(x)= (S")o = {f/X" If Eo Srt1. ' n (Z"]
(EGA II 2.2).



..:).

Let S+ ~ (95.,. and. assume that 5+ is generated (as a ring
",)0

or- as an ideal in S, it makes no difference) by 51' An ideal

.E. of 5 is said to be g,r..§S'!.£SLif .l2::0 (12.." Sn)' Hith these
"lO

preliminaries the homogeneous spectrum of 5 (called "Pr-oj S")

can be defined as folloi'Ts:

(i) Its undorly:ing set is the set of graded prime ideals

.l?. of S such that 5...+- .l2.-.

(ii) '1111esubsets D...(x ) = t .l2~Proj S I X~J2.1 ' wher-e

x '-S~ for some n'70, form a basis for a topology on Proj S.

(iii) Proj S has the structure of a~ringed space determined

~1ith this structure Proj S is a separated scheme (EGA:.II

Prop. 2.4.2). Each D...(x ) with its induoed ringed space structure

is isomorphic to the affine scheme Spec S~,.

If A is a ring and S a graded A-algebra "lith X = Proj S

then ~iS an A-Algebra: in other "lords X is a seperated scheme

over Spec A (EGAII Prop. 2.4.6).

If M is a gr~ded module (graded by both positive and negative

indices, Iv! = (t)MI\ ) over a graded ring or A-algebra, S, then
I\6:'Z.

M determines a sheaf of modules on X. For x E. S , letr

M~, r;: (M)()o = {m/x"lm E: M.. f\ ' n~O~ • Then M{Jl)isa module over Se"",,

Let d,e be integers ..()O), and let f~ Sd' g'-Se. There is a

canonical isomorphism of rings S(l~)-i'-+(SUyf1e'and if we

identify these two rings there is a canonical isomorphism of

modules ?vI tis) _a~ (Mlf))S'lfe.' Hence (EGAII 2.~.3)

canonical homomorphisms S(f)--" S(fs) and l\f)-~ M{f9l'

ther-e are

which

together define the sheaf of modules on Proj S:



EGAII Proposition 2.5.2•

On X:: Proj S thore is a unique quasi-coherent ~-Module

M such that for f€ ;:)r we have r(D+(f)f IT ) :: Mef). The restriction

homomorphism r (D_/f), TI ) --~ (D...(fo:), 'it ), for f,o: homogeneous

in S+' is the canonical homomorphicm th ---~ l~g'r Cl

As nn important example of this construction thore are the

sheaves (1(1.) (nE-Z) .dcf'Lned beIow, For n~Z, n(n) is the graded
X

module over S defined by (M(n))k = Mn+k- In particu}ar Sen) is a--graded S-module (wher-e Sn = 0 for n c O}, and we put<';[n) = Sen).

Assuming that S+ is generated by SI we have (EGA11 2.5.9) (Jin)
is an invertible tTx-Module for all nE:Z. (2.5.14) F'or m,n~~,

(Jx(m)®(}: ,,"x(n) = "'x (ra+n) and lrx(n):: «(jl1) )®n, both up to

"canonical isomorphism. (2.5.15)For any grad0d S-Module M,

ii(;;) = Tr® "'in), up to canonical Laomor-pha sm,

The above constructions have the i'ollolving functorial prop-

arty, (BGAII 2.8.9) _ Let A,AI be two rings and t : AI --~A
a ring homomorphism defining a morphism ~: Spec A ~ Spec AI.

Let S I be a graded AI-algebra and let S = S I®A' A, uhdch is an

A-algebra graded-, by the SI ®.,A•. Let M' be a graded SI-module andn f~

put M = MI ®A,A = M'®sf3. Let Y = Spec A , yl = Spec AI, X :;: Proj'S

XI :: Proj SI. Then there is a commutative diagram:

X __ L~
!
y ___ ~'>- yt

'f
which (EGAII Proposition 2.8.10) identifies the scheme X

,od th the product XI 1i- y,'{. (~is the morphism defined by

E I-- ?;I(:~~)wher-e F: S' -~ S, r (s') 0:: s !® 1 ) _ Further there

is a canonical isomorphism ~ 1(.(£1,) -= .~ 'M.
In particular, if A = T-'AI for some multiplica ti vely closed

subset T of A and '1': AI ---~ A is the canonical homomorphism,
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then Spec A ~ Spec A' is an open embedding and

X = Pl.·ojCS'® A,A) is canonically idontific)d ~rith n-1(Spec A).

Consequently (BGAProp 3.1.2) if' Y is a scheme and ~ a sheaf of

graded alGebras over Y, thon Proj'S can be constructed as a scheme

over Y by gluing (llrocollementtl).

Fur-ther , if JlL is a sheaf of graded t\- -snoduLes , the sheaves

rCU,Al )-- define., by the gluing process, a sheaf of modules·1it

on Proj ~ • In particuJar, if -g is genera ted by ~ l' then the

0' (n) define invertible sheaves on Proj ~ : er(l) is called the

fundamental s~.

By (EGAII 3.3.2), for each n ~ 0 there is a canonical

homomorphismof (JX-Modules P n:
IT is the projf!ction Proj 'f5 ---~

open Uc:X by mapping mer(U,J1ln)

r (U, Tf*.ffi(n)) = r(lf'U, 1ft (n)) '"1hich restricts to m/I in each
_,

r(D+(f), .I71(n)), s:e r(U'~l). In particular "le note for later

,...
mn -_~ rr1C~n) , \"1hore

Y. fn is definod over each

to tho element ...
ofm

reference the morphisms

,.p _. - ;.. n*(j(n).~n

He complete this summary of the construction of homogeneous

spectra with the r~sult (EGAII 3.6) l'1hicn shows the construction'
I

is functorial in a restricted sense. Suppose'S, .g are tvlO graded

Algebras, each generated by its component of degree 1, and suppose
J'1': S --.~ S is a graded homomorphismuhich is surjective. Let

X = ProjS ,X' = Projg'. Then if l' is a point in Xt, i.e a
I

graded prime ideal of ~ (U) such that -g1(U) 4= p , ~-I{p) is

a graded prime ideal of g (U) and ~ 1(u) ¢y' (pl Hence p I- ....r'(p)

defines a function ~: X' -;. X. It can be verified that ~ is

the set-theoretic map underlying a morphism of schemes (which He

shall also denote by ~ ) and that ~ is in fact a closed embeddine

("immersion ferme;!), Further (3.6.3) O"x,(n) is canonically

isomorphic to ~ -J(- l'x(n). For th:'m facts, eeneralisations and
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further proper-Gics, HO refer the roader to gGA II § 3.

'I'h e tHO examples of tho PTOj cono bnuc't lon Hi th i-Jhich HO sha l L

be principally concerned are (i) the projectiY8 fibred scheme of a

q_uasi-coherent rf -IIodule
X (EGA II ~ 4) and (ii) the b1oH-UP

C' ccla t emerrt'") of a quasi-coherent sheaf of ideals in (jX (tha t is,

of a sube cheme of X-), (BUll. II ~ 8) •

(i )Proj ective fibred schcme~~

Definition. (EGA II 4.1.1) If t is a quasi-coherent <.lX-Module,

IPE. ,the projective fibred scheme of E , is the X-scheme, Proj 'gE.

where t)E. is the symmetric Algebra, .of' £. .
Let us summariseche construction of se ~ If 1~ is a module

over a ring A, the symmetric Rlgebra. of E is the A-algebra s n
A

l-Tith a canonical A-linear monomorphism i: E -~ sAn satisfying

lihe universal property :-

if i': E ---~ S' is an A-module homomorphism where S' is

an algebra over A, there is a unique A-algebra homomorphism

0( : SAB -~ S' such that ol.i:::: i'.

'I'h l s property defines SAI~uniquely up to isomorphism. :re shall

sometimes abbreviate notation and \-Trite SE for S E when :r:o confusion
A

can result. SE is a graded alGebra over A such that (SE) ~ A,o
(SE)

I

Lemma {l.l)

'!'!!!I 1',1
- ":'.J and i is a monomorphism onto (SE)l.

If B is an algebra over A, A --~ B, there is a natural

isomorphism

Proof.

It suffices to ShOH i®l: }~®B ~ SA}i:®B has the universal

property:

if S' is a B-algebra and He have a B-linear homomorphism

i': g @AB ~ S t, there is a unique B-algebra homomorphism
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such that o(o(i~l) = i'.

The uni ver sn.L property of i: E -_.J> SA:t~ giver:! El, unique Ji..-

algebra homomor-ph'l sm 0(. J: SAg --->- ~)' such that the diagra.m

belOH commutes:

Ji' i --~ c< E_J ')A'

! jI

!0(1
E~B c· ,----~'J

0(' induces '" = 01® In: SAY!,®B -~ S' ® B = S'. Then the fo llo\"ling

diag:t.~amcommutes and so 0{ has the required :oro')crty.

E --------~

!
E~B

~
S' === SI® B

Uniqueness of ci f'oL'Lowsfrom the fact that im(SAB) generates

SAE®B as aB-module. 0
-IBy applying the lemma in the case B = AT, a ring of fractions

O:.L A.it can be seen that if X is a scheme and e.. a quasi-coherent

0"X-Bodule then the symmetric algebras of the modules £. (U),
(U open affine in X) form a quasi-coherent "x-Algebra -gE...

We list below some basic properties of lPc.= PrcjSt..

Pro~osition -(1.2)

(i) If f: Y ----;. X is a morphism of schemes and E. is a

quasi-coherent oX-I.10dule, there is a canonical isomorphism

q>: and if 0(1) I is the

fundamental invertible sheaf on lP (f*&) there is an isomornhism

0'(1)' :::(p.~j'-()(1) wher-e p: Y)( 'T1PE--~ lPE is the projection.
1\.

( .. )'-'IfJ.1.--

,
t. -~ C is an epimorphism of erX-r,~pdu1es,

JPE'-.--->- !PE..
J

there

is induced a closed embedding of X;-schemes: ., such

that
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(1·1·l·) C' •;::>J..nce ( gives a canonical morphism
0(,: E.---)- 11:)(_ (J(l). Tho homomorphism n*E ---;;,. CJ( 1) (~,,.,~ II 4 ' r: r

\ J_'.J\...T.t1. • ..L • ./ • .

~:-defined as the compoc i to of eX. i'lith the canonical homomor-phf.em

U(l) 1 is surjective.
l1cmarks.

(i) is the global version of Lemma (1.1) above. If He appLy

it to the case Y = Spec le (k, a field), so f: Spec k ---~ X
is a geometrical (k-valuod) point of X, He see that the fibre Y"'XlP£

~ ("011 isomorphic to LP(E®k). Here £0k is a vector space over k,... 0

so s(E®k) is a nolynomial algebra and Proj (3(E® k) } = !? (E®k)

is the associated projective space. Thus the geometric fibres of
IT: !P£ --~ X are projective sD"lces,1..hich explains the
terminology "projective fibred schemes".

(ii) f'oLl.owo from (p.S) above since an epimorphism
Iinduces an epimorphism $£ ---~ -gS • 0

I

£-->E..

If t is coherent and locally free irE- may be considered to
be & projective bundle of locally constant rank. Fer general
E the dimensions of the geometrical fibres of \PE. vary (in fact

upper semicontinuously over X) and it is this which makes the
geometry of ~t potentially interesting. It is to be hoped that
stu~ of the geometry of projective fibred schemes will yield insights
into the algebraic structure of modules and Modules. Experiment
shows , however, that the structure of re,. can be far from transparent
(for example, unpleasant sin~larities can, and often do, occur),
and a preliminary step, before any such program can be instigated,
must be to isolate for study a class of sheaves large enough to be
interesting, Hhose projective fibred schemes have good geometric
properties. This is the philosophy behind the investigations of

Chapters II and III.
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(ii) ]1o~'lil1fl-UT) a f11Vl,8i-(':..oher.<:l!.:L~J1Ci1.fof id£~'Js.

Suppose X is a scheme and j is a quasi-coherent cheaf of

icloals in Let be the graded Ox-Algebra

Definition (EGA II 8.1.3)
The X-scheme t: l'roj (er( 1)) -~~-? X is obtainod 'fJy

bloV:~21e-U])the idca4_._ Alternatively He say Proj(gr( 1)) is

the b Low=up of X vli:~hcentre ~ (or centre Y, if Y is the subschema

0:£ X defined by 1). Ue i'll'ite X = Proj (er( ~ )).

Since gr( ~ )+ is genera.ted by gr( 1 )1 = 1 ' we have

the canonical invertil)] e clX·-r.Iodule, 0(1).
If U is an open set in X such that U 1\ Y = ¢ then r (u,1)

= 0 and r (U, gr( 1)) = r (u t Ox). Therefore f restricts to

ll(U) --~ u.

] = (er( J )1) c..__~ gr( 1) induces an

tJ x-Algebra epimorphism 5 j ---;. er( 1 ), and hence a closed

i: X ~<--~)ttP1. (Ir X is irreducible then so is

an isomorphism

The inclusion

embedding

X and, anticipating §3 (s ), we may say

component of nP1 .)
...X is the dominating

An important case occurs when Y is a subscheme regularly

embedded in a noetherian scheme X. Then i is an isomorphism. By

localisine at the ideal defining Y, this f'o Tl ows from the follo\'1ine

characterisation of regular noetherian local rings.

Pronositio~~)

Suppose A is a noetherian local ring with maximal ideal m.

A is regular if and only if the graded A-algebra homomorphism:
00

'f . SA(m) ~ 2:. mn.
n=O

is an isomorphism.

Proof.

We start from another characterisation of regular noetherian

local ring~~: A is regular if end only if (sce e.g. (16))
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is an Lcoraor-plri.sm,

Note that
I

an isomorphism so is 'f and A is regular.
I

Conver se Iy if A is regular, tp is an isomorphism and, by

Nakayama t s lemma, 'f is su:r:',jectivc. To prove r is injective

we have a commutativ8 diagram:

(SA(m))n+l- 'r11 -~ (SA(m»n ----~SA(Tl1i/m(SA(m») --~ 0

!f.., 1r- 1 n

mn ~ mnjmn+1 _~ 0n+l
m '-....----

wher-e tl't is determined by 'f'...(xrx2• •••• xn+l)=«xlx2).x3.···.xn+l).

If tl( ~ kcr p~ , then CI<.:; 'VnJ 0<') for some ~' t leer ?,"+l.

Consequently ker y:>" C '21 mi(SA(m»)n

= 0 since (SA(m»n is a finitely-

generated A-module and A is noetherian.

Therefore f is an isomorphism. 0

Let us give a fe~'l low-di.men~:ion::'l examples of
projective fibred schemes to illustrate SO!Ileof the features

{~2,3.
Blowing-up §he point 0 in C2.

Spec er x,y] The bloH-up in question is JP (N)

that are considered in general in

=

where is the ideal (x,y) in A = {,[ x,y], considered

the subvariety of

N ~ Ae (j) Af / (ye-xi>. Then If'(in
1 2Proj(A [e,f]) = }p x( ,defined by

isas an A-module:

the graded ideal p,enerated by
fibre of n: lP (iT) ~ {: 2

ye-xf. The eXQeptional

is 11....(0):-:: 1P1)( f oL 1Iith

dimension 1. The other eeometric fibres are. .poLnte ,



1J •

2. To illustrate the effect of torsion in the shc~f F.- .
ccne Lder- tIle nodule, N' ~ Ae (;j) Af / (x(ye-xf)/,(J.,2cC above )

Then ye--xf i:::: a tO~E:ion eLenorrt in J.1. JP (NI) in the un ion

of irreducible conponorrtc a: (Ti) and (p1" y whor-e Y is
u II 2 Ithe y-axis in a: • (Since 1'1 is obtained from N by

.- If' ,..,
factoring out the torsion I 1P (Tn embeds in (II) by Pr opos iticn

(1.2)(ii).)

3. Even when C is torsion-free lPE nay still be

r'educ fb Le, For example If (r:: (J)}cl) is reducible as may be

seen by dimensional consd der-at i0113. The fibre n'l 0) has

h . '",-I( r 2_0).dimension 3 uhic a.s equa.l to the dimension of Ii II,;

Hemce n-I(o) is an irreducible component of JP (M @}J) and.

the other component is the cLoaur-e of n" ( ([.2_0), Q(fI ~ }1) saY.

H@H IV A(e1,e2,f1,f2) l(ye1-xf1, y(;J2_-Y..f'2)

Therefore in SA (til eN), x(e1f2-e2f1) = y(e1f2-e2f1) = 0

Hence is defined by the ideal generated by

• Q(fi EbB) is nay

itself a projective fibred scheme. The fibre over 0 of

Q(M @ N) is the surface e1f2-e2f1:: C ; the other fibros

are projective Jines.

Here Q (N 9 r:) is en example of what vie call the,

domina ting component, 11hich "re define in ~ 3. First in f 2

. we define the Fitting subschemes whLch describe the way the .-.

dimensions of the geometric fibres of a WE vary over the

paints of the base scheme.



12.

The FittinG invariants of a module of f'Lnd t o ores ent.a+Lon over

a ring A are certain LdeaLs in A, dcf'Lned , for instance; in (12)

(Aupendix 4-3(b) p.145 ), and 't-lcl1-kno,:m to students of Commutative

Algebra. Their construction has the property of 11 commuting 17it.h

localisation" necesnary to capture tho interect of geometers,

whi ch al l.ovs the definition to be glorJalised so tha.t to El. coherent

O'X-1\'[oduleover a scheme X Ne associate some subs chemes of X: these

we propose to call the Fitt::"ng subschemes of the Module. Our

treatment is essentially that of (12 but '\vith more geometric

emphasis.

\l e begin with :t well-knol-;n corollary to Nakayama's 1emma.

Lemma(2.1)
Suppose A is a local ring '\vith maximal ideal!!! and residue

field k = A/m, and TIlis a finitely generated module over A. If
aL, '" ,a~ are elements of M such that their residues generate

the vector snac e M/!!}M then ai' .•. ,at- generate M.

Proof.

Let N be the submodule of IiI generated by at"" ,at;. Then

M ::: m.M + N therefore MIN = !!!(;,i/N) and Nakayama's lemma implies

MIN = O. 0
Suppose e is a coherent ~X-:"Iodule on a scheme X: i. e. each

point p of X has an affine neighbourhood U = Spec A and a

finitely presentable module Mover A such that if V' = Spec AS"

V = Spec A~, are affine open subspaoes of U with V' ~ V then
.::>

e(V) = M®AS' and the restriction homomorphism

---~ € (V')
II

~ M®ASI

is induoed by t~e oanonical homomorphism A --~S . AS,. He denote
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-this by E u = M. If q ::: dim( le ( p )® E ) ken) ""A IpAp' p'
the residue field at p, then Lemmab.1) chows that U IDa;)" be

chosen so that M·_ E.(U) is generated by q eLenen t.s , (F'irst

choose U' such that, EU' :':: M' and M' contains elements Cl,,'" P"
...

whose germs at p generate e = tJl'. Let N be the eubmodul,ep p

of f.,!, generated by ai,· •• ,a,,; then (M'/H) :::;M'/N = 0 and... P p p

so there i~:3 a neI rhbouz-hood U of p such that (rp /H)~ = O. Hence

eU = MU ::: Nu and U has the required property.) 'Ph en the restriction

of €. to U has ar-eso Lu t Iont

oup -----~ () uq ----~ t.U -----> 0 •
Let e be tho function defined 011 the point-set of X by'

e(x) = dim (k(x)® £ ).

If Xi: U then e(x), q = e(p) ; 1.e. e is upper semi- continuous

at p. Hence for n~'L, Fn = f x ~X , e(x) ~ n \ is closed in X. In

fact, each F can be rcanorri.ca'l ly endowed with a structure sheaf so
11'

tha t j_ t becomes a, c10Bed subscheme of X..

First consider' the affine case, X = Spec A and M a finitely

p:cesentable A-module with a free resolution

AP --~-~ A
q

---~ M ---~ 0

'f can be represented by a (p X q)-matrix i' = (t .. ). 1
~J ~= ,'''JP

;=l ...q
- "

with

where

entries in A, (Le. 'f!(al .': ·,ap) = (bl,· .. ,bq)
11

b. = L.. 'r.a. ). For- l~ n, q let I (M,t) be the idealJ . II ~ n
~:'J ,J

in A generated by the subdeterminants of f of' size (q - n + l)X

(q - n + 1). (If there are no such subdeterminants,Le. if

q - n ~ Pt then I (M,"") = 0.) Uhenn)q, let
n

It is shotm below that each !n (M,'r) depends solely on M and is

independent of the resolution used to define it. So \'le may use

the notation I (M). I (M) is the nth Fittinl! invaMcmt of M.(cf.n n

(12) p.145)



,~.
Lemma ( 2 02) -.

Given tHO free resolutions of J.1:

A1) 'f_> Aq

r '/1/
A -_~,~ AS

'I--> N -~O
cpl

--> f,1 --~O

defininG', for each n, idenls In = In(M,'f )

respectively, then I = Ifn n·

I
and I' = I (H, t' )n n

Proof.

\Je may suppose A is a local ring: for if A is a localisation
p

of A at a prime p," Spec A, tcnsoring a resolution of J\I by A f,;ives
p-

a resolution of M ,
n- "

AP-~A~ ~M -->0p p p

which shows that I (M ,'+') = I (I,I, 't') <l A • Then the lemma inn p n p p

case A is local implies I (TIl) = I' (lIT) for all p ~ Spec A andn p n p

it f'o Ll.owa that I (r.r) = I' (M) for general A. So VIe assume thatn n

A is local.

For this proof we regard I (01..) as a function of a rna+r-Lx 0(. •n

Then if 'f' is a (p)( q)-matrix, oL a (pf~ p)-matrix and far: (px q)-

In (f3'f') ~ In (t ).Hencematrix, we have I ('f'tJ{) s; I ('It)' andn ....-: n

if ot..,f3are invertible, In (fofO(.) = In('r).

Note that I (M, \f ) i~ unaltered if we modify the resolutionn

by introducing a direc"t summand.

AP 6) At '¥ €I:) I'" Aq ~ At --;.. M 0,-- ~ :>

the effect on l' being to augment it vIith a (t x t) identity matrix

(
''P 0)
~ It;

In particula~~ the cases q

thus:

- n~p and can be seen to present

no anomalies. In short, we have -I (t) = I ('r )n n wher-e r = 't'$ It.

Consider the tHOgiven r,esolutions of M. Since Aq is free,

there exists a homomorphism ()(,': Aq ~ AS such that r/o(' = 'f .
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If ,./1/ •• At . \!..I" • h' tl d' t~ --+ J.m, r.s an opamor-pi J.8m, 10 t.r ec sum

I II q t s
oC- '" cC ® 0(.: A e A -~?" A is also an epimOl'lJhism. For if

a € AS, there exists at€- Aq such that f (at) = pl(a); then

a - o/(at)E,.kor cpl=: im 'r= im 0<':
im't'~ Lm ecq; there exd.s ts Cl. homomorphism

A
r -_._-~~ AP €> At such that '/-" = Ciy-/3
Since

AP eAt -IV--;' Aq@At -__,.. .. -~o·,i'.!.

t~ 'f t~ 5"
II

'1'" rp'
Ar AS ;.oM -->-',.0----> --

I ~ ~ ~
Then In(t) = In (~'fP) ~ In(Ol'f). vIe claim that Il1(o(t)~

In (~). Since 0(.. is an epimorphism, Aq <D At ~ AS 0 ker- c<... ker- 0(

is a projective module and therefore free (since A is a local

ring) of rank u :-::q+t-s. There is a commutative triangle:

Aq $ At __~ > AS S AU

~~
A

~ ~ ~s .-uSince ker ot. ~ im I' im f == (im r 1\ A ) (±) ker cc == J.moLf~ A •

Therefore the:;_'eexists p': (AP @ At) fD AU ~ APeAt such

that the following triangle commutes:

\'lhich proves the lemma and establishes that the ideals

are invariants of M. 0
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The l"ittin,z invariants of a moclule commuteHith change of

rings: i. e. if B is an A-a1eebra, (J.): A ---;... D, VI a finitely

pr-es ent.ahl,e A-module, and Hn is the B-module M®AB, then

I (r.L)aB (I (M) )B.
n

Proof.

If A1' 3_)-. Aq --~ M ---)0. 0 is a free resolution

of Mthen its tensor pr-oduct with B is a freeresolutiol1 of r'~t
'#"

BP -~ Bq -~ M ----> 0,
,

wher-e 'f is represented by the matrix (w(f.. .»: the lemma follows
~J

immediately.

Corolla;;:y (2.4)

Let p f. Spec A and k = Ap/PAp' the r-eaLdue field at p. Then

dim(M®k) ~ n if and only if I (M)~ p.n

Proof.

By defini tion I (M® k)n =
if n~dim(H&k)

if n> dim(M(8)k) ,"lhile

by Lemma(2 .3)In (H@)le)is the residue at p of In (M). Therefore

I (M®k) = 0 if and only if I (M) ~ p.n n

Corollary: (2.5)
Fi tting invariants commute ;li th localisation (putting B = ~

in Lemma(2.3»i consequently, if E. is a coherent "X~.1odule, the

nth FittinG invariants of the modules E(u) (for U affine open

in X) form a. quc..si-cohcrent sheaf j n of ideals in ()X' of fini te

type, such that a-xl 'n is supported,on F • (This last assertionn

follo\'16 from Corollary(2.4».

Definition (2.6)

The nth Fittinra subscheme of [

with structure sheaf (Jxl 'ne
is the closed subscheme F

n



II.

I

~ 3

(i) Suppose X is a noetherian BohemewhLch is intee;ral (i.e.

reduced and irreducible) t and £ is a coherent Ux·-Eodule. This

section is concerned vli th some aspects of the Geometry of l\?S
whioh involve tho 1i'itting subschemes oi't.

The goneric ran!c of £ is defined to be the rank (dimension)

of the generic fibre, dimK(E ® K), wher-e K is the function field

of X. Let N be the generic rank: of E. •
If V = X - Y where Y is the (N + l)th Fitting subscheme

of E , thon E V is a locally-free CJV-Iviodule(If a ank N.

TiI(V) = lP(tv) is reduced and irreduciblo: He 1-.Trite Q(£,)

for the (scheme-theoretic) closure of lP(£. V) in iP (E. ), and

call Q. ( £) the dominatinlS comnonent of PE.. It is the unique

irreducible component of Pt:Hith surjective projection onto X.

(If E. is a torsion sheaf, N = 0 and Q ( E.- ) is empty).

To give an explicit algebraic description of Q(€), suppo s e

M is a finitely-presentable module over a reduced noetherian ring

A. Vie are, of course, interested in the case U = Spec A is affine

open Ln X such that £ U = M. Since X is irreduci'.:.le it f'oLl.ows

tha t for each e;eneric point (minimal prime ideal) pE.Spec A,

Ap = K and di~(M®Ap) = N. In particular, the (N + 1) th Fitting

ideel, IN+I is not included in p.

If sE-I
N
+I, (s :/. 0) then Msis a locally-free (that is, proj-

ective) module over A • The kernel of the ring homomorphism,s

SAMs is the graded ideel

= s { (T' € SAM \ sno- = 0 for some n f ~ ) •

It f'oLkows that, over U = Spec A, Q( £) is defined by the graded

ideal 1- = n i.. 1O-ESAM I IN+l~Jann(O"') J ·
s E- IlI+l



\10 collect togethel' aomebasic properties of 1in the

the follo\-ling proposition.

P!:9..P.O..;'1.:it i01);_1h1.)

(i) i f\ (Sil)o = 0

(ii) Let D(M) be the net of primt:l ideals q in SAMsuoh

that q" (SAH)O is a Il.tinimal prime in (SAM)o ~ A. 'I'h en

1- = f'. f cd q i]2(r.I) 1 •
(iii) If A is a domain, }l is prime.

Consequently if A is a domain,~ is the unique smallest prime

ideal in SAMsuch that 1r\ (SiI)o = o.

(Lv) If T is a multiplioa:tively-olosed subset of A (and

the ring of fractions r,('(sAN) is identified 'rli th S'l'-~\.(Tl.T) )

then T:' "j..,(M) = ).(T-1M). In partioula.r (letting r1' = A-p wher-e

p is a prime ideal in A) the conafzcuc tdon of i- commutes Hith

localisation in A. Thus ~ defines a coherant sheaf of graded

ideals in SE. and he1100 a subo chcme of !Pe.
Proof.

and then ns a = 0 for

some n. Hence (sa)n = 0 and, since A is reduced, sa = O.

Since for each minimal prime ideal p of A there exists sE IN+I

such that s 1pit follo ..m tha.t a E: p , Thus a ~IIp = O.

(ii) Suppose q e D(M). If:x. "1 and x f q, then for

s € IN+I, snx = 0 implies s' q and so IN+I ~ q 1\ (SAM)o, whdch

is not the case. Therefore "'f., c::. q, and XC:f\ {q I q~ 12(M)I.

If s ~A, there is a one-one correspondence between those

prime ideals of S1'1 that do not contain s and the prime ;_dea,ls

of (s ~M) = SAM , given by q ....---:JI- s-Iq•
1~ s 0,S •

Further, if sf. q, then q' ll(M) if and only if

If Se IN+I then Ms is locally-free. 'I'h er-ef'or-e if p is a

prime ideal in As then pSAMs is prime in SAMs. It follows that
s s



(\ tq \ q f ](t.!)) = II {-£'lSI\. 11s \ P <l A, p minimal ~
s= 0 [TO pr-ove this 110 t.e that we may

reduce to the cas e , M free: for localisation commutes ui th formations

of finite intersections and since A is noetherian it has onlys

finitely many minimal prime ideals. But if r.I is free SA r.r iss ss
a poIynomfal rine and the r esu'l t f'oL'lows because As is reducedJ

and let x be the image of x in A •
S

Then x.:n (q \ q e 12(Hs)j = o.

x c 'X(8). It f'oL'Lowsthat A (q I q E .n(r.r)l c::. ('\ le s ) = 1..
(iii)suppose A is a domain and 0;, ~ f X. Then +hez-e exist

n n 1sl,82 t IN+l such that sl ~l f 0 and 82 ~2 r 0 for all n.

and rJ.2'+ 0 ~(SM) • (SH) (i=1,2) andIt s2 si
(j.lCi'2!1 F 0 Eo (SM) i i.e. for

sls2
(sls2)n(;1 Ci'2 1= O. Therefore 0"""1rr-2~ }, •

(iv) If er' T"''jJ.J1)) er :::er /t (cr~'X-([;l),t ~ T) and s€. IN+l (T-t:.1)

= T-'rU+1 (M) ~ s = sit' then sn 0'" = 0 for some n; therefore

'8n;. = 0 and ~ E1(T-~'!).

Conversely suppose 7r~ t(T-1M), a: = o:It (<re A, t E. '11). If

s ~ IN~'l(M) then s/l ~ IN+l (T-'M) and (s/l)"1~ = 0 for some n,

Therefore t'sncr = 0 for some tff T; r; =(crt')/(t't)~ ~(srT-'.

Therefore snx = 0 for some n, and

Hence Ci'._lJ~ 0 ~ (8M)
,,/1 "i

(Sg) are ciomains, so
81s2

all n,

If {sI" ",s 2 is a :finite set of generators for I~Tl' we
t 1'1 I' ) (1') l~+

-I n -I n -t -I
have l.)T M)c i=l('X(S.)·T = i=l~(S.) .T = 1-.T•

J. J.
o

Remark: (ii) implies that QC£.) is reduced, whether- IPt is

reduced or not. (Indeed the scheme-theoretic closure of a reduced

scheme is always reduced (EGA* I 6.10.6».
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An integral noetherian scheme~ K, has a quasd-soohcr-errt sheaf

R (X), the Il sheaf of rational funetions", such thad> if U = ~)pecA

is an affine open subs cherne of X then r(u,~(x))is the total

ring of fractions of A; i. e. the ring of fra.ctions oib, wher-e a, b c, A

and b is not a zero-divisor in A. (EGA~ I 8.3)

If c.. is a quasi-coherent &'x-;\IodUle, the canorri.ce.L monomornhism

~--~ ~ (X) def'Lnes, by +ensor-Lng , a homomorphismof ~-I.Iodule~1

t : e. ----> E ~R. (X).
X

The torsion sub-!Iodule of £. is by definition (I:GA* I 8.4), the

kernel ..,E. of t

o ---;.. -re ---~ E _..'L_jIoo£® ~(x).

"'"E is said to be torsion-free if -r E = 0, and E.. is a j_;orsioll

sheaf if E = TE..
For any E , Cl re. is torsion-free and 't € is a torsion sheaf.

Let £. be a coherent '" X-Module and Spec A = U an affine
...

open subacheme of X such that Cu = M. Suppose re is the total ring

of fractions 0; A. Then r (U t -rE.) is the kernel:

--~~ M ---? !r®l-
m'_---~ m®l

Hence r (u t 7e.) = [m ~M I srn = 0 for some s £. A, s not a zero-divisor J
Defini tion: me 11is a torsion element if sm = 0 for some s €. A where

s is not a zero-divisor. The set of torsion elements of !vI forms a

submodule -rM, the torsion sub:'lodule of M.

Thus t is a torsion-free ttr-IIodulc if and only if for all
II.

affine open U c: X, £, (U) has trivial torsion submodu'Le,

Let us see what implications this has for the dominating

component of E.. Suppose ° f s, I1'J+l' wher-e s is not a zero-
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divisor. (Such an s exists since the set of zoro-divisors in A is

tho union of the ;ninimal pr Lme ideals of A, U1.' 1)1.' i and I'T 1 C VI),
1-{- J. 1.

only if II' -1c: p , for some i, uhi ch is not the cas e) • 'I'hcn (O""E "i 'JI
~T -]. I'"

11
S "" ::::0 for some n and so \r is a torsion e'Lemerrt , 'I'ho r cf'or e

y_,AEC1U. In particular, if E is torsion-free, 'X" I.1 ::: O.I

In order to interprot -[;his geometrically He make a definition.

1?£fhnition (3.2)
00

If S = .0 S, is a gra(lod rine and q a erach~dideal of S
J.:'D J.

defining a c Lo sed subscheme,Q_ in Proj S, then the lin(On,rhull

of Q.. is the cloned subacherne of Pro1j S defined by the gracled.Ld ea.L

This defini tion ex tends in tho 0bvi.ous fashion to app Iy to a

closed sube cheme Q of?roj -$ , wher-e ~ is a graded "'x-Algebra.

It is easy to see that forming thCl linear hull commutes\"lith

chango of baso. Let

inducing the commutative diagram

Proj Sf --- of ). Proj' S.

! !
Spec So >- Speo So

Let q' = qS,t, the ideal defining the closed subschorne Q I = 0(-1 Q

in Proj S'. Then if Q (respectively Qf) is the linear hull of Q

(resp. QI) in Proj S (resp. }'roj SI), '1-19 have QI = ce'Q.
Note tho.t if k is a field and S is the polynomial ring k [t.,... t ]. "

S ::: lPn(k) (n-dimensional projective;space over k}, andthen Proj

Q is the smallest (reduced) linear subspace whioh contains Q as a

subscheme. Q is said to be pormally cmbedded in ~n(k) if Q = ~ n(k).

Consider now from this point of view the subacheme Q(E.) in

f£. He have the fbllo"dng proposition.



ProDQ.si..:,tion(). 3)

If E is a coher-orrb 6~C;'Iodule, the linear hull of Q( 8.) in

r£. is tho subocheme JP (&. / 'Ce) ~ Consequently t is torsion-freG

if and only if tIll) linear hull of Q( E) in !PE.. itself.
Pr-oof',

He have ehovrn above thnt if E is torsion-froE' thcn 1- 1\ n = 0,

,..here M = C (U), U affine open in X and 1., is the [,Tadod ideal

defining Q( E)U in JP (Eu) = Proj (SH). Henco the linear hull of

Q( E) is dofinecl by the trivial Ldca.I and is therefore \PE itself.

IP (E / ,E.) is 8. subccheme of \PE by Proposition(1.2)(ii) ,nnd

since El re is torsion-free, lie have Q(e/r&) = IP(E/,e).
Here 0,( EI Te ) is the linear hull of Q(E /r c.) in lP( e /7:E ) t

but this is clearly the same as the linoar-hull in JPE. Further

the definition of Q(E) as a schemo-theoretic closure implies

that Q( e) = Q( El,s. ), and the proposition follows. o
Such results as these are perhaps more t:cometrically sug::::estive

if expressed as far as possible in terms of tho ~eometric fibres.

Accordingly, and ~ith a glance ahead towards Proposition(3.5), wo
state ..
Corolla.ry (3..4)

If the coherent Module C is torsion-free then each geometric

fibre of the dominating componerrt Q( E) is normally embeddedin

its geometric fibre of If>8. The converse implication holds provided

lP£ is a reduced scheme.

Proof.

This is a consequence of the second assertion of Proposition

(3.3) and the preceding remarks on linear hulls and change of base.

The aasumpHon that IPs. be reduced is necessary for the inference:

if 1 is a subscheme of IfS. such that for each geometric point
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of X, Spec 1~ -----> X, '1'10 have L xy3ncc 1~ = lBE."Xspecle,,.... 1~
II.

then L = tete He set L to be the linear hull of Idi£.) • 0

Let us give a specific example to illustrate these considerations.

Consider the crx~locl.Ule S
(k , a field), and E.. = 11
2 2x , xyz, y z

V!here

wher-e II is the ideal genera ted by

Then M

in k[x,y,z] , considered as a module over k(x,y,z].

f 1 2 2is a torsion- "reo modu e and, VITi tine: u=x , v==xyz, 'Vl=y Z,

M is ~onerated by U,V,Il, subject to relations yzu-xv = ;lV-XU = O.

(For if then

x divides)',

I
()f. = yz. cl.. say, and

I
l = x '6 say; so

yz divides 0(,

I I
xyz(xo{ + (J + y ~ ) = 0,

o/(yzu - xv) - 'J'(yv -

I I(3= -xc{-y), and wu 'r: +'6\"1 =

};:Vl). ) 'rhel.'efore !PE. is the subacheme of

x X 1P2 (k) defined by oquations

{
yzu - xv = °
yv-xw=o wher-e (us v: H) are homogeneous

coordinates in lP2(k). Hence the dimensions of the e;eometric

fibres of !PE over k-valued points of X are as follows:

point x=y=O

1 °
X=z=O, ytO otheruise

dimension 2

ruld it may be seen that Q(~) is

2yzu - xv = 0, yv - XVI '" O~ v -zml = 0.defined by the 3 equations

~'lhen x=y=O the fibre Q( e ){O } is the conic in
,0,%

defined by 2
v - zuw =: 0, "Jhich degenerates into 2 coi"cident

lines when z=O. In either caso Q(£)( is normally embedded in
o,","Z.)

\pc Q(E) => IDe over all other points (x,y,z).
(.,(o,O,~) • u.. "-( }(•• tj."L) ".~.~



result l!h:i,ch finds cl'rplicatiol1 as a key :.::t8D in the ;)I'oof of' the

maf,n rG~3u._'I+ o-r CI1C,])·ter11(' Tlr'o'~-' 2 7 51)v -.Ch . 1".c ...:n1 •• p. •

SU'(),)ose X is em inten;r2.1 noc ther-Lan s ch eme, c1.YJdE. is a torsioll-

free co lier-errt (JX-I.ToQuleHith pro.j oc+I vc fi bred 8chcme rr: 1rE.-·.._-)oo X

and assume es is reduced: thon the cohcr cnt O'x-Hodule 1\".:;. LY(l)

is torsion-free.

Proof.

Lo t U=SpeoA be an af'f'Lne open sube cheme of X such that

and consiaer o-~ tr.;;.tr'(l)(U) ::: r(rf'U, 0'(1)).

Considerine r as a section of the canonical line bundle its zeros

form a closed subacheme ;0- of codimens ion :;. 1 in fe. (To be

pr ec i.uo , sunpoae vcn-Iu is an open subacherne such +ha t reV, &(1))

is af'r eo C>"(V)-moduleof rank 1 generated bye, say. Then 0"" == ce~r
for some s ~ "tV) and ~cr'1\ V is the subsoherne defined by the

pr Lncf.pa.I ideal (s) in (;r(V).)

NOH suopos e a ~ A wher-e a is not a zero-divisor and a (J -. 0.

Then if U' is a Zariski-densc open subset of U such that alu•

is invertible, (j vanishes 011 rr-1u'. Consequently, by the dcfini tion

of Q( e) as a scheme-theoretic closure, we have Q( £ )1\ Ti~ is a

subschema of Er. If we consider the restriction 0-; of er to a

geometric fibre !Po of lPe~x, U; is a section of the hyper-

plane bundle: hence 'Jtr iseither a hype:ep1une in !Po or the \-Thole
0

of lP • But"" contains the geometric fi bra of Q( £., ), whenceo >0-0
60rollary (3.4) implies !a-: = lPo • Therefore, since fSis reduced,

•
~ = \pe, i.e. o: = 0, and hence TT*0'(1) is torsion-free. 0
r



(iiirC conclude § 3 Hith a construction vrh.i.ch sheds some light

on the r~'cometryof Q( 8) and how it in related to the FittinG

subschcmes of E .. The key point is contained in the follo'l"Ting

lemma.

Lemma(3~6)

Sunpose E.. is a torsion-free Ox-Module vhd cl, is not locally-

free. Let q = max(e(x)lxcx) (\-1here e( ) is the fibre-dimension

J ) th cfunction defined p , 3 , and F'q the q Fitting sube cheme of c. in X.

Suppose f: X I ---->- X is the b low-up

let E' be the torsion-free C)X,4IodUlO

dim(k(x)S Cl) <:: q for all xC:X'&

of X with centre F , and
q

8..' = f*Eh(,~e ). Then
.

Proof.

Let x £ X be a point sucb that e(x) = q. Then, as shown

(p. ), there is an affine open neighbourhood, U = Spec A, of x

and an A-module M = E,(U), uhore 1<1 has a presentation

AP 'I-' ~ Aq __ Y' jlIIo M __ ..".. 0,

i.e. M is generated by q elements aI' ••• ,aq•

y is represented by a matrix (t ..) ~fhere Yij E:. ~, l' i' q,~J

l' j 'p. (Here .2S is the point x as ideal in A). Since E- is not

locally-free, f'j = 0 for some ij. Then F nU is defined by the
~ q

ideal I = I generated by f'l-' .. 11.& i ~ q, 1.& j ~ p ~ •
q ~J 00

The open subset of XI, fl(U) = Proj ( ~ In) is covered by

the affin(o o~en sets) Uij =
A. . ... 2:;In
1J ( "=. tj 0

Spec A.. , where 'Y .. f 0 and
l.J ~J

Here,and belOw, it is necessary to

distinguish between an eLemenf tre I considered as a member of
00

( ~ In)O = A and considered as a member of
"~,,

::I.
t-le hope to avoid notational confusion by writing 0= when the

co
- '"' nlatter is meant. Thus, 'Y .. ( ( L.... I )r

~_J "c.,
Assume for example that 'Y11 i= 0 and consider MIl=

All ® AM as a module over All- MIl has a presentation:



-------------------- 26.

Then

Ap Aq 1€>f 1< 0
ll-~ ·11 )00 .'111--';> •

'1.
b == ~ (~Iill q; 11) ® aiL'~1

for ""lIb =L fil ® ai = l® ~ '+'ilai =O'Hll• Noto that

'VII is not a z.ero·-divisor in All (althoush it may be in A)j for

there is a non-( zero-di visor) V'E. I and then r:r'::: 'f 11(0:/ '¥ 11)

is a torsion element in MIl:

in All implies 't II' is nO'1;a zoro-divlsor in AJI•

N01., consider MIll Ab: this hasapresentation Ni.th matrix
11

1
~ /-1.1It'll

"'tj,l / ill
Til

Hence the qth F~tt';ntf. .;deal I (re I A b) AS' J.l,f I I--'- -'- ~ ..... q '/111 11 = 11• arice III ~"u
is a quotient of MII/Allb, it follows that Iq_(Mll/'7Mll) :: All.

Applying this argument to each U.. yields F ( £') = <P ,~J q

which is the assertion of the lemma. 0
Wehave produced a birational surjective morphism, f :X'-;>X

and a torsion-free ClX,-Module such that

~ c' cc ,~ have the sam6 generic rank and x~~ dim ~(x) ;>
max,dim e'( )' provided E.. is not locally-free. Thus we may define
xi-X x
recursively, morphisms f (n-l): x(n) =(x(n-l)) __ ~ ~(n-l)

and O'x{n) -<lodule" e. (n) = ( e. (n-I», Q /"-')* E_(A-':hf/ •. ,I$E_I..,))
until vrhen n = 1-1 say, x?ll ..p.im e ~~~= generic rank of E. = N,

and so C (M) is locally free.

Let f be the composito

X= X(M) _--? X (M-J ) ,. ~ X' -~ X

and 1- = £.(M), the locally-free 6'"X-I,Iodulc of r-ank N°.,

the generic rank of e.. There is a canonical epimorphism

('*e. -~ "f. By Proposition (1.2) , this induces a closed

embedding .IP "l c.__~ IP (f 0):-€) = (PE. X X and hence a



commutative diagram

!Pi-is an intecral scheme and f is a proper morphism: therefore

'f ( JP':f ) is closed and must be Q( €. ). Thus f induces a proper

surjective birational morphism {fl ,. Q( E..). He may say,

'Usin[,;the sUD.;'gestivetraditional Language, that Q( E.) is covered

by fibres (projective spaces of dimension lJ-l )lying over points

of X and infini t.e Iy-near- 'points of the Fi tti~g subschemas of £, in X.



Throughout this appendix He work over an algebraically closed

field k. \lo propose to define some coherent sheaves, (over projectiv~

SpaCGfJ),wh i.ch we dignify ..lith the ti tLe "universal", and their

associated Fitting subschemas, the "universal l!'itting subs chemea'",

in vieH of the follqwing pro:r;>erty. If y~ is a projective variety

over k (in the sense of Serre(FAC~ i.e. a r€duced scheme of finite

type over le "I-1hichembeds as a closed subscheme of some projective

SOB,cejp(k!1) ), and E. a coherent- 0-X-Module, there are embeddings

X (:. )e IPH (for some N depending on E ) such tua t the Pi ttine

subschemas of £. in X are the rostriotions of the uni.ver'aa'l Fitting

subschemas in n?N.
Suppose V,U are finite-dimensional vecior spaces over k of

dimensions p,q respectively. The ooace of k-linear mapn, Hom(V,'J),
.,

is naturally isomorphic to V@H Let P be the projective space

JP «v® Hr) \-1ith projection TT: P _. Spec k, He have the

canonical epimorphism (Prop.(1.2Xiii)):

rr-x,( (V® ;l)" ) ----> 0pel) - • 0

Dualising and tensoring l1ith (J(l) yields:

o ---~ (Jp --__. (IT*(V®U))(l).

/

There are natural isomorphisms:

(n*(V®U))(l) * '" * * *';:; (11 V) ®( n H)(l) ~ Hom.,.p(11 V, ('IT 1'1)(1))

Therefore there is induced a map

k = rtlp )0 f(Hom.,.p( n~-v,( n\l)(l))),
* *and we let the Lmage of 1 be 'E in r(Hom",p( IT V, ( 'TT H)(l))).

tar -1(. '2! *
'I'hua :E is a homomorphismof (..lp-Modules, 'IT V _A .~ ( rr H)(l).

,Defini ti(;mj

The universal () p-Ilodule U(Y,i-l) is the cokernel of ~

rr*v _S~ (rr;:';l)(l) ----~ U (v.v) -~ 0
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He have made thin defini tion Lnd.ependorrt of an,y cho I co of

bases in tho vector spaces VtHr HO',IGvcr,it may be th,OJ.tthe

construction is more perspicuous Hhen describod in terms of such

1.'Qspoctively, {vI' ... ,v j tho dual basis
p

Then p.,. ProJ(skL) = Proj k [~\)

is the basis of L ii ven by 'f ij = vj G Hi.
*.., ~

epimorphiam TT L ---> v (1)P
AoI

( ~j dJ .. )u ..f' T ~J ~J

generator of li(l)(D+Crij)).

of V, and L = V ® H.

Hhere i=l, ... ,qjj=l,'" ,p

.The canonical

is defined over by

vrher-e u ..
~J

is the canonical

Hencef taking the dual hornomor-phd.sm

as explained above, ~
II

is defined over D (c1J •• )
+ 7 ~J

by

1 1----

Here a sectioh ~ 'f ""'~I.L.." . . "" ... . ~J ~J~J
\Tritten in matrix form:

by virtue of the isomorphism

u..
~J

in

. .. '/'~P)
'f/qp

* * -J(-'TT L (1) .,. Horn (n V, (1'£ H)(1) ) •
p

A closed point t in D+( r ij) is a one-d.imensional subspace

of t = L, and if t is eenerated by l:. tCilpiol{, ,vTO may \-Tri te the

homogeneous coordinates (t~)

(

~1

tql

of t in matrix form

l"lhere

Thus if t«f = t~~/tij (so (t~f)are inhomcgeneous coordinates

for t) tho eeometric residue of ~ over t can be identified with

the linear morphism V-~ W whose matrix Hith respect to the chosen

bases is:



:30.

( -
)tIl tIp

\ t t. ql qp

In this formulation it becomes clear that the Fi ttine; subachemes

of U(V,:f) in Pare (i)rojective) do terrnj.narrte.Lvarieties: 1<' is".n

defined by -~he craded iu.oal in k rfll? ... , f q_p] gener2.ted by

the (q-n+l) X (q-11+l) subdetc~minants of the matrix

. . .

. .

-Y'qp
Such varieties have been Hidely studied. For example, the

results of (8) imply that the sineularities of'Pn are normal. In

fact F 1 is the singular locus of F •n+ 11

The rest of this appendix is devoted to the constructions that

demonstrate the universality of the sheaves 'Lt.



Lot X be a projective variety ove» Je, Hith ()(l) a vel',,!

ample invcrti bd e LT;{-l.'iodulo,and f_ a coherent chord' on X.

For ID »0, E (m) E ® O(l)fi1 a s genor<1tcclby it.s global

sections: i.e. Hriting £'= t(m), if (f'It:')X is tho ,,~-

Modu.Le 1T'Y.r£.' wher-e 11": X -_._> Spec k is the structure
I I

morphism and. re. = TT-I(. £. (a vector space over k), then tho

canonical morphism' (rC')x --).. e' is an epi.raor-ph Lem , (4)

Le t 1< be the kernel, so we have the short exact sequence:
tU I Io --> r\ --->0 (re.:) -~ s _. -)0- o.X .

For n» 0, i«n) is generated by global sections and ~·.Jehave '~he

exact sequenco;

-f defines a global section p
,

HomtJ,} r ('K(n) )X' (r& )x(n))

Note that if m is large enough

of the LocaLkv free (j..-Module, A
.., I

~ (r (k(n))x ® r (E )x(n)).
ttl(

then i<x" 0 and l' (x ) l 0

for all closed points x € X,

In general if' ::t is a locally free 0-X-Modulet a never-zero

section defines an exact sequence

o --,.,. et --->0 1- ---+ tf --__".. 0X

where t; is locally-free. Hence the:~duin sequence

o ---~ l1v -----)0 t" ---+ ()_---+ 0X

is exact and induces an embedding X ~ __~ ~(~v).

r .,'" " I VIn this waytf determines X --~lP« (t"\.(n))X®(rf.)X(n))).

He have isomorphisms of schemes

1P« r(,f«n))~ ®,,(rE')X(n))V) ~ IP«r ('k(n) ):®o-(r~)x) ) ~
~ x

X X IF;~ uhcr e ~,J' is the projective space

lP( (I" ('K(n))'® (rt') t). By projecting onto If> n we have
k
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defined a mor~hism J• • x --~ IFn • 1 N" Concerning this the

main re8ul t is ttle following theorHm. The structure of the proof

is modelled. on Hc),rtshorne's tl'eatmcnt of the proj ecti ve embedding

induced by an ample line bundle ( (4) Charrt er- I ~ 3 ).

Theorem

There is an in,teger t1_ (depending on E.. ) such that if n> 'L,

j is a closed embedding.n

Proof.

Let x s X be a closed point. ~'le first show there is a pos:Ltive

integer nx' depending on x , such that if n~nx' then jn is an

isomorphism at x: i.e. j separates x from other :iJoints of X andn

from its infinitely near points" This means (1) if s « X,

then j (y) 1- j (x}, and (ii) if J . :(j11) '( ) - __ ~
n n n,x .!l.,J x

y I x,

r:;x,«
is the induced local homomorphismof local rings,"J is surJ' ecti ve 0- n,x
By the usual Nakayama's lemmaargument (ii) is equivalent to:

(ii)' the induced morphism of cotan~ent spac8~,

.!!l1P,j(7m'l >
, .!!If, j (x )

Let Ix\ be the sheaf of ideals in O-X defined by the closed

subscheme {xJ. To establish (i), let n be a positive integer such

is surjective.

that I (n t) is generated by its global sections when n ' >n •x 0

Then we have the fo1loHing commutative ddagz-amwith exact top

row and exact columns:

0-4 r (k(n))® I (n ' ) ----~x

!
1<(n )® I (nr ) ------)0l x

o !
o

If y t: X, Y '" x, there exists s ~ r (t< (n))® r(Ix (n' )) such that

s(y);; o , If s is the image in r'f«n+n1) of Sf then s(y) f 0,
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11hile sex) == 0. It fol1.o'l1s that

Wennw consider (ii)'. Let

j ,(x) t j I (y) ,[CS requ.ired.. n+n n+n -

0" G (Hom(r(f{(n)), re'» be

such that IT(r (x ) t 0, and let SO'",n= S\c(Hom(r(i-«n»9rf.')V)(0").
If el,··· ,et is a basis for Hora(r (k(n»),r£')V then a typical

element of ;3 can be uri +t en
fr, n Hhere p is

a homogeneous »o Iynomf.al of degree r in i variables. Spec

is an open affine neighbourhood of jn (x ) in 1PrJo 'I'hece is an af'f'Lne

ne i.ghbour-hood , Speo A, of x in X such that

and

j (Spec A) c= Spec S ,n - tr,n
is induced by the k-algebra morphism S ---,... A

tr, n '
"ova'lua t.ton at d) ". Localising at x , suppose now that A = ():r x:r A,_
we want to shaH that S --~ er v/~,n x;?' illy:

\~e have a. shor-t exaot sequence

is surjective.

o --+ Ix --,.. (JX --~ le --~ 0x

wher-e k is the sheaf supported at x ,.,ith stalk k ,x Let 1< = '"k®k :o x
1-< is a non-trivial linear subspace of rE~ Let H be a hyperplanee

, , ..f/
of rE such that rE == ,,+ H. 'I'hen the compoa i teo

1< -----=>- (rt/)x --~ (rC/H)x: induces a surjection,,1< -~ rEIn,o

lemma, 1<® lJ,J I2
x

on the geometric stalk3 at x. By Nakayama's

---:>- (rE'/H) ® EJ"/I2 is surjective.
x

To justify the nex t step of the proof we insert the folloVling

Le:n~a(A. 2)

If' 1- is a coherent sheaf on X and is generated by its global

sections, then for a closed point x £. X the k-linear map

r (1(1») --4-

is surjective.

Proof.

Note that if (*) is surjective, and e is a coherent quotient

of ~ then (*) remains surjective when ~ is replaced by ~ •

:t is generated by its global sections and is therefore a quotient
,-



of CDO-x for some n, ::;0 it suf'f'Lccc to prove the lemma for
n

the CGse 1= (}x; but this case is clear since is

very ample. 0

lJe apply thE' lemma to the sheaf 1«n) whLoh in generated

by its global s ec t.i.ons r so rCf\.(n+I)) ----). 'K(n+l)x/m2 is
-x

surjective.

Nowwe have a' commu+a ti ve di.agr-am

r (1< (n +I)) --..;... 1<(n +1) / 2

1. x ~

r(1\(n+l))® {):x __ f?i_,x

where the hro maps in the top ro", are surjective. (r_j_lhesecond

is obtained from 1<.. ® eT,; 12 ---> (rE' !H)® O,j 12 by
x x

taking tensor product with LT(n+ll.) Suppose \,10 fix isomorphisms

re'/H ~ k (le-linear) and (rf'/H)® l!:,x(n+l) / 2 ';i ():x / 2
x m ,x mA- -x +x

(an isomorphi.sm of modules over V.X _ ). 'I'he above di.a~'7a.m,.iI..
becomes:

r (1< (n+1)) -- !:..- ~ " / 2X,x' m

1 ,(X ,
rC-k(n+I))® tJX,x --+ (rE )®~(n+l)x ~ (rc:)® ttx,:
Let a € ~x~x/ ~ and let a€. r (1«n+l)) be chosen such

thai; w(-a) = a • He define an element 'Ii E: Hom(r(1«n+l)) ,rE!)v
by R(f) = pf(a) where f t Hom(r(1<,(n+l)), re-') and p is the

-map rE'___. rE'/ll -__"..k, Thus a: ~ So-,n+l '?l:ldth;e above

commutative square expresses the fact that ~ maps onto a under

the morphism S > Lrx / 2. This morphism isO'"",n+l ,x .!!lx
therefore surjective and it folIous that the induced morphism

E.!r,j (x)/2
/ .!!!Jt,j (x)

Thus we have property (ii)'.

is surjective.



..,. c.:~ .......

To complete the proof of tho theo~em it ~uffioes to note thnt

for each n the s wt u == 1x Go X I j is an iSOI:lor:;;himnat::: l isn n ,

Zariski oocn in X. ('rhis f'o Ll.ous from J~GA I 6.5.4). ~.Jn have shown

that X == V U and U c: U c:: . . Thorefore X -. 0 Un n n n+l • ri=L n

for some tt. • Honce jn is nn isomornhi::;m at ever.'l :rain'!; x of X if

n >'1.. . Thorefore .j is 0. closed embedding if n >tt.. 0n

If V = r(1«n)) and \.J = fe-' , j = jn embeds X Ll P =
f «(r®H)"). Let 'lA = U(V,~1) be the universal sheaf on P.

In order to justify our use of the term "und ver-sa.L" it remains to

check th&-,!; 'X-u. ,."

J = ( = t. (m+n )};

As stated (p. 3'1) the exact scquence

induces an embedding s: X --~

VX' i. -~ Ux(n) ---~ £'(n) ---~ 0

II' ( L c& 6X (-n) )
v

(L e V@H)

(this by Pro posLtd on (1.2)(ii) wher-e E' =

Let rrl,1i2 be the projections:

lP (L ® "x(-n) )
_../ 11~

X ~ rTl P = JP (L)

Then &(1) = TT; (}x(-n)®rr; "p(l), wher-e
IP(.:' "C·''»

fundamental invertible sheaf on P. Therefore

6p(l) is the

s"&p(l) =
;: ":'{ (n)•s* TT;' ~l)(l) = s*(&p.:®1T~ &x(n)) = s*-n; tT x(n)

r(I.\~·"n
Therefore applying j 7<" to the sequence whdch defines 'U

gives

and it may be seen

*,,1
Vx ---~ HX(n) ----)0 j V\ -----.+ 0,

J.*~ - J'* t) I ~ e'(n.)tho..t }i = 'f; therefore vt C == £ (m+n).

Thus any coherent X-i-Iodule on a projective variety is, up to

tensorin[~ ,-:itIl an invertible sheaf (a"Serro tvri.st"), induced from

a universal Nodule. Since tensorin~ Hith an invertible sheaf does

not alter the pr,1jective fibred scheme and the Fitting subschemes,



ob.

(i.e. IF ( e (:'1+n)) ~ !PS [mel p (£. (m+n)) ""F (£)) all
n 11

projective fibred schemes of cohorent sheaves on X and the FittinG

::lUbs~hornosar o induced from the U11ivGrsO,1cxampl es "by restriction"
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It is natural to ask howmuch is lost in paSSJnr~from et Hodule

to its projective I'Lbred scheme. VIe shall ShON that, ,r~ivena

projective fibrcc1 aohen.e ",i t.h projccticn n : IPE-----~X and its

fundamental invertible sheaf ()(l), thEm in cezrte.Ln c'i.r-cums tano cs

the r>IoduleE. can be reconstructed. It i8 wel.L knotrn tha + if £ is

locally-free the canonical homomorphismeX: E -~ 1T7;' &(1)

(Chal)ter I, Proposition (1.2)(iii)) is an Lsomor-nhism, and it is

this r eauLt that vIC seek to extend to more general coherent sheaves.

Our main results are 'I'heor-ems (2.7) and (3. 4).

r:eheproofs make essential usc of the vect.or fi br-ed acherac

construction. §l is mainly devoted to the definition and basic

properties of the construction, summarised fl'om I~GA* I 9.4, nuf'f'Lcl.errt

for tho ap111icf;,tiol1ain the foIlo'line; nections. 'I'he main t.hemc of'

t},le chapter, the discussion of 0(., begins "'ith ~2, and Theorem (2.7)

is proved, under the anaump'tLon that the coherent ModuLe e. satisfies

a condition (Definition (2.4)) of a rather technical nature. ~)

d~usses further this condition and gives examples of situations

in which it is satisfied.



The vector fibred scheme [>,ssociated with a. quaad=coher-en't

~-Moclule £ is the X-scheme, aff:i.ne over X, n : We --)- X

where \VE.. = Spec '5'£. That is, if U: SpecA is an affine open

in X such that E \U = E fer an A-module E then n" U ':t Spec S

wher-e S is the symmetric algebra of E).

The principal properties of this construotion are developed

in EGA')i-I.9.4, wher-e the results of this section ~naybe found,

"'ith the except ton of Proposition (1.3) (vrhich pushes to a

categorical conclusion ideas implicit in ~GA"(-1.9.4.14) and

Proposi tion (1.4) (whi.ch HO require to apply in ~ 2).
o

There is a functor (EGA'~ 1.9.4.8), F~ : ~3ch--~:'~ns, defined~ --x --
as follo~;B: if f: T---..;> X is an X-scheme, I£.(T)~Hom8'(f'x'c.,~T)'

'T
and if e: T' ---~ T is an X-morphism of X-schemes then

Ji'.: (g) : F (T) ---~ F£.(T') maps (u : f*f.. --)00 "1-) to the
~ £. *

compon i,to f";+€ =g*f*t -~-~ ~/.g* er. ---;..
T

~L~e~~,m=a~(l~.l~)(EGA* 1 Proposition 9.4.9).

For any quasi-coherent () -~.rodulc £
X

representable by the X-scheme \VE and the

the functor Ft,. is

{J -homomornhism
\\It. -

1r'i:' E --~ a induced by the canonical homomorphism £_::_,. 'SSlie.
Proof.

This follows from the sequence of canonical isomorphisms

functorial in T (in the catt-'<sory of X-schemes):

Hom (rr, \VC) -F~ Ho~ (~£, f..&,.)
X v,,~A'.~

structure mor-phi su T ---'> x )

(\-There f is the



(by the universal property of the

symmetric al~ebra)

(since the functor f* is coadjoint

=Ii£_(T).

The f'oLl owf.ng facts about \VE:. , Quoted ~-.'ithout or oor ,

f'ol Low easily from the def'ini t i.on or from t he above uni vcraal

pr opar ty .

fiemma(1.2) U~jA':f J Proposition 9.4.11)

(1) \Ye.. is a contravariant functor in £. from the cat c.-ory

of qU8.si-coherent O,,-Hodules to the cate~nry of affine

X-schemes.

(ii) If £ is an ~-~Ilodule of finite typo (resnectively

of fi.nite presentation) f \Vc i.s of finite type (respectively,

of finite nresentation) over X.

(iii) If f.,'=l- are tHO quasi-coherent ~~-~IJOdUles,W(E..eT)

is canonically isomorphic to \VE ~x'W1.
(iv) Let e : XI ---~ X be a mornhism: for each quasi-

coherent f) -',Iodule S, \V (g-);- £_) is canonically isomorphic to
X

( \VC) = \V E.. X X I •
. (X') X

(v) The X-morphism\V=\-- ---~ \VE.. induced by an epimorphism

of quasi-coherent ~-"1odules, £. ---~ 1-; is a closed

immersion. 0
Remarks: (a) As a special case of (iv) let XI='Spec K, for a

field K: K is an extension of k(x) lIhere X= g(XI) and

\VE X Spec Ie
X

=\V ie: (g) x) (where COX
k()I.)

is canonically isomorphic to ,\I (e'<- E.)

is the vector space over k(x),



EX/M €~)'rhe je-valued points of \V (E"( e In
- I( • Q)('1

Horn (3nec le, W (EY.® l()) ~ Horn (£x ® K, K ) ~~ (£"~ K)".
Sp" k k{j() k k(lll K(.x'l

Thus the ,c~oometric fibre of' \Vt --J>. X over the K-vall_l,ed point

form the s paco

"g is the Ie-vector space duaL to £: ® K; whi.ch .ju:::;tifioG
k(x,

the term "vector fibred s chcmc'",

(b) Inl .2(iv) "uanonically" should be interpreted as

fo1101-lS: a morphism of tJx -nodules 'f: f:_.---.lJ.. t- inducts

the X-mornhisnJ \V(f): \Vt---~ \YE- and then, by change of

base I an XI-morphism \V t X x I ---;> \V E.x. '\ I. f also

induces a moruhism of 6"x,-r,jOclU1es g';~r : £?:~.C ---.,.. g* 1-
and hence an, XI-morphism \Y (C'x,'1--) --->\V (g';:·C). These

two X'-morphis~s are compatible with the isomorphisms of

I .2 (i v): i. e. wo have a commuta ti ve diagram

------...:~ \y (g*C)

III
Similar remarks apnly to 1.2(iii).

~'1eproceed nOH to some categorical algebraic properties

of the functor \V • Let X[T] be the X-scheme \V «(J) (EGA*l
)(

9.4.12). If f: Y --~ X is an X-scheme, A(y) is the 0--
X

Algebra ~ (jy. Then He have isomorphisms (Y~GA':';'l9.4.13),

Hom (Y ,x[T1) ~ Hom (tt,f.tt) ~ reX ,}\.(Y)),
" 8-" y

and reX ,A(Y)) has a ring s t.ructur e , functorial in ~ ::hich

displays X[T] as a ring X-scheme (L e. a rine obj ect in the

ca tegor-y of X-schemes). If E.. is a quasi-coherent Ox-:;Iodule

then Hom x(Y ,\VE)' -;; HomA(E(y), Cl) ~ Hom(j(E.. ,A(y))
Vy Y X



and Hom b: ( £ ,A (Y) ) is Cl module ovor the rin". r (,(,A (y) ).
"'-

111ms TT : \VE.---~ X is Cl modulo X-r5chemo over- the ri]1,'::';X-sche,ae

Suppose C, tare bro 0,uctsi-coherGnt A -~,=odulos. LetVx -

r :Homx (\YE, \Vf-) ---~ Horn~,) i ,';£.) be the isomorphism

defined by lIomx(W£,\V:t,) _g:-J>. Hom (!3+,bC) ~ IIornCt_(1-,~S).
")("A\~. x

The canonical monomorphism E... ---~ 'gE- induces a monomor-pha s.n

Hom.cL.('::J. , c) ----> Horn0- (1-, '5£ ) and Ne thereby identify
Vx x

Hom ~ ('::J., E) w i th a subgr-oup of Hom&,("l, 'bE.). Let
v~ x

L = ,(,-'(Hom t7,F'1-, €.)) • IJ is characterised as a subset of

Hom (\Ye, W'l) by the r'o Ll.owt.ng reeul, t.
X

Pronosi tion (1.31.

Suppose 0( ~ Hom X (\VC, \Vi-): then 0( E. L if and only if

~ is a morphis~ of module X-schemes.

Consequently, \V ( ) is a fully fai thful contravariant

functor from the category of quasi-coherent ~-:;IOdules to the

category of modu'l s X-schemes over the ring X-8cheme X(T).

Proof.

Su opo s e 0(.. E: Land 'f (0<.) = 0/.' ~ Hom" (':{ , £ ). Then for
x

each X-scheme f: Y ---> X the following diagram commutes by

virtue of the universal property (Lemma (t.l)):

Hom (E. Jt Y) -------> HomfJ (1- ,J\ Y)
(j,,' (-ooc') "

til ~II
HomA (E(Yl" <'- ) -----> Hom0 Cl(,(), "'Y)

Vy Y y

III (o£,,-) m
IIom/Y , WE) --------~ Homx(Y ,\'11-)

The top row is a rex ,JlY)-module homomorohism: therefore 0( is

a morphism of modu l.e X-schemes.



Corrver-ceIy lot t(E; Har:nX(\Vc, \Y=t) Hi tll Cl( a morphism of

module X-schemes. Let cp (<<) :=: ,I)(' E Hom t:J. ( t f ~t:.): then for
x

any X-schome f: Y ---~ X, 0(' induces a module homomorphism

Hom,o. (';£ , .f\.. r ) -----+ HomAXC':f ,Jl y ).
v,,-AI~ u

The module structure of HOIitJ,,_t\19( ~€ ,Jt '[ ), dcf'Lncd by the

inomorphism Homew_AI~(be,JL Y ) ~ Homtr,,( E.. ,.It y ) 7 is given

explicitly as f'oLl.ows (cf. EGA->'l 9.4.14): if h,h'f-llom ('5c,JtY)
8,(A~

and s , ... ,s" are sections of e. over an open set U in X
1

and t ~r (U ,Ax), then
tt

(h + hl)(StSz· .. 8rt) == 11(h(8.) + hl(s.»
t:I,,' ~

(t ,h)( S 1.S?r .. • s t\) == t ".TTh(sL) •
L';t

let Y be the X-scheme \V (i *e )[:1'] where i : IT '---~ X

and

is the inclusion morphism and T is an indeterminate. Then

Ay = ('g€.)tT] I U. If
I I

T. (h 00() == (T. h)o 0<. •

h 'Horn... (~€ ,Ay- ) \'1e have
ux-Al~

If x f.. r(U ,'1) and o<,.'(x) = zo+ .•. + 20",

«T.h).o/)(x) == (T.h)(zo+··· +zt\) -where z . f F'(u .,~E). then
~ l- "

L: rr~h(z.), and if He choose h such that h(U). "t~O
canonical inclusion 'SE (u) --->0 S£(u) [TJ, then

is the

ThereforG

1'\

= L:Tzv
L:O

i + 1 and ()('~ Hom" ('1 , t. ).
X

o
If K is a field and i: Spec K -> X is a K-va1ued paint

of X l'li th i(Spec K) = x, X, then HomX(Spec K,\VC) is the space

of K-valued points of the fibre n-'(x) = Wf:.,x (i.e. the K-rational

geometric fibre oyer x, in the terminology of ]i;GA*I9.4.10, and

of remark (a) 9. J'I above): Homx(Spec K, XlT1) = reX, i*K) .:. K.

Hence Proposition (1.3) confirms (and generalises) the fact that,

if of. ~ L c:: HOfiX(We f \\"1) then 0( induces a vector space homomorphislill

on each geometric fibre, lIo~(Spec K, \f€.)



He expr-e s s this by sayinG, ~{is Lincar- on peor;J.etJ~ic :fibrc8. 'Plio

f'oL'l.ovri.ng Pro posf tLon is a rEJsult in the convcr-e e direction, proved

under the aasumpbfon that \Vf, if_; a reduced SOhOI118; it may be conn Lder-orl

a strc1henine of Proposition (1.3) in that C(1,~e.

Propos:i.tion (1.4)

If e;'" are quasi-coherent CTx-Hodules such tha,t \YE- is renuoed

and if' 0( : \YE.. ----~ \Vl- is a mor phd.smover X, then 0( is induced

by an t)X-Module morphism 1--.>- E. if and only if "" is linoar

on all geometric fibres.

Proof.

It remains to sh~ni that if "'-€ HOillx(WE.,\V1-) is linear on

geometric fibres then cp (0( ) E: Hom(1 ,c. ), 1.e. if f (~)1. is the

component of'f (~ ) in Hom(''1 , E.) and p ee 'f (0(. ) - <f (0£ )1'- Hom (1-, '5f)

then (3::: O. Assume f3 1= 0 and restrict to an affine open

U - Spec A c:: X such that 'i; = P, E = F.u U
b 1= O. Since SE is reduced there exists a prime ideal p in SE

such that b(F)~ pe Then p A (SE)O = q is a prime ideal in A
such that b(F)~ qSE: therofore if K = A /qA , the residue fieldq q

at q, b induces a non-zero homomorphism

Thus 0( fails to

be linear on the K-rationa1 geometric fibre over q~X.

A similar argument proves the follovling, in a IIclassical"

a1gebro-geometric context:

If X is a reduced schcme of finite type over an a1p:cbraically

closed field K, and E ,1- are coherent sheaves on X such that \Vc

is reduced and 0<.: \VE ---,> \Vi- is an X-morphism, then D( is induced

by an 6"X-Hodule homomorphism ':f )0 E.. if and only if 0( is

linear on each geometric (Ie-rational) fibre over a closed point

of X.



Proof.

Hi tIl not<:tiol1 a:5 in the proof of (1.4), E is of finite t./pe

over A and SE is of fir.i"te type over K: 1t follol-lS that the

intersection of the maximal ideals OI SE is 0, and so the ideal

p can be aasurned to be maximal. Then q = pl\ (SE)O is maximal

in A, (:for if Cl< q'<1A, the Ldea.I of S}ii genorated by q' and p
"¢. -:I-

is proper and strictly larger than p~. ThuD q is a closed (K-

rational) p()int of X, and the result follo\'ls &'s in (1.4). 0

Rem~rk on the relations between locally-free coherent

their associated fibred schemes, and alecbraic vector bundl.eo ;

If X is a schcme defined over a field k, and F ---~ X

is an algebraic vector bundle 11ith fibre kr, then the sheaf

of germs of alcebraic sections of F 1- is a locally-free
. , J

oX-l'·Iodule of rank r. The lo-va.Lued pof.nt s of the voctor

fi bred scheme \'l form a vector bundle duel to .P.

On (Pt, (Y(l) is the sheaf of germs of sections of. the
U #
hyperplane bundle, the line hundle (dual to the Hopf bundle)

whose global sections are linear forms on each fibre of ~r.r.
Hence W ( "(1» should be ree:El.rdedas the (aleebraic

analogue. of) the IIopf bundI e, If rr: 1Pq.----~X 1S the

projection then rr· 1- ----~> &(1) induces an e!-:lbedding

\V ( "" (1» (_---~ rr"'\Vf and projectine onto W"t eives a

morphism \V ( (j( 1» ----~ \Vt , whLch can be identified

"ri th bloiling-up the zero section in \Vi- .



t,«
-, f..,..~.

In this section and the next we show that, under certain

conditions, the canonical oX-I.lodulc morphism ci.: E-·--~"Ir;;"'tl)

iE: an isomorphism. In order to cons truct an inv~rs(_, morphism

f->: n* (}(l) -~ C, ..Then it exists, He use the vector

fibred scheme construction described in ~1. That is, "'TO shall

first construct a morphism of schemes v: \VE --~ W (TT.x- (T(l))

and show that v = \V (jl) for some (3 • Sufficient condi tLons

for the existence of f are made the hypothesis of rl;hcol~em(2..7)

beLow , and further elucidated in the follm·rine ¢ 3.

Our· results are proved under appropriate "finiteness"

assumptions on sche;nes and sheaves. Thus, in the sequel X will
no other Lan ..Q..be a reducoo.·.( ... scheme and all VX-Hodulcs consirlerod Hill

be coherent.

Let, E be a coherent &"x·~Modulecuch that the proJection

n : lPe-~ X is surJective; i.e. E. is not a torsion sheaf.

Tho canonical epimorph:i.sm n-r.-£ -:;.. 6(1) induces a morphism

of vee-tor fibred schemes over teE, h': V ( &(1)) --~ \Y Clr*c.. ).
This is a closed immersion by Lemma(1.2)(v). \V(lT*E..) is

canonically isomorphic \'li th !PE X X \Vc ((1.2) (iv)): c.omposing

h ' with the proJection onto \VE. defines anorphism of schemes h.

Similarly the epimorphism rr*rr*¢T(I) ---> 0"(1)

induces a morphism u': 'V (() (1)) ----i> \V (rr",lr (1) ) •



IIo .

l,emma (2.1 )

(i) The fol1o\vin!; diagram is commutative:

---..,.--»- W( (1(1)) - - - ..:_,. !PE
-J !h !If (2.1.1)

i------;. ve. -----~Xx
(here i, j are the imruersions onto thc respective zero aec tdons },

Given Cl k-va1ued point of X, '* = Spec k ----?Io- X (k , a field)

the di agr-aminduced from (2.1.1) by res triction to fibres over

* is canonically isomorphic '"Iith

1P(V) " 1P(V)-----~ H ------->
~ ~ 11.. !:.,.,

* ------;.. V :,. *-
wher-eV is the vector space over k , E(~), H_is the fundamental

.., ...
line bundle (= "hyper-plane bundle") onrCI[) and h:>::: H----> V

collapses the zero section of H.

(ii) The :restriotion of h: \V ( &(1)) - j «(PC) ---~ \Ye - i(X)

is an isomorphism.

Proof.

(i) The commutat~vity of (2.1.1) is olear from the definition

of h. Further, construotion of (2.1.1) oommutes 'lith change of

base X; for, taking account of r-emark (b) after Lemma(1.2), if

f : X' ---_. X is an X-soheme then the morphism (defined

similarly to h) h ' : \V ( (j(l)') --~ \V (c_.'), where £,= f;:'-t,

and 0'(1)' is the fundamental invertible sheaf on !p(e'), is

canonically- identifiable \'lith the pull-back of h by the projeotion
I\V (e) -->- \V (£. ). In pa.rticular when X' = Speo k +he cecond

assertion of (d ) f91101;'s from r-emark (a) after Lemma(1.2) and
/'

the identification of 11in the case E = V , a vector space over

k: '" va ----~ V xP(V)

~.~
V



~ f.

( ~:L)

flu.
Lot U = Spec A bo an affine open subset of X 8uch

:c= for an A-cnodu Lo I:. Then \V (e IU) - i CU) is

trhcr e Ii E: B (a- f 0).covered by affine O'Den sets

(As in Chap. I ~ J. the subscript tr moans IIlocalisation auay from

0"''' (sAlo:~. is a graded ring l'li. Gh component of de(~rec 0 denoted

by (SAE)'r).)

h-'(SPt!c(SAE)q-)' = S_oec R o: wher-e

RO".- «SA]!;)(trft])t = (SA1~~r)rt f t-'].
The restriction of h to Spec Rcr corresponds to th-e A-a.1e:ebra

homoiIlorphis:n ---'~~ (SAE){Q"",[t, t-I] uniquely determined

vrhen x E B. (In :particular CT"\---;'" tfby x~-->

and so l/c:r- t---;> t"".) This homomorphism is evidently surjective,

and if p/j --~ 0 then (J""tp = 0 for some r, so p/~c:I= 0 and

the homomorphism is injective, therefore an isomorphism. 0

J.Jomma(2.2 ),

u is constant on each fibre ~I(x), x~W(1f-J(.(}(l».

Proof.

Either x t VE.- i(X) and h-'(x) has a single point or
o

x E i(X) and h~(X) is a fibre of 'IT : IPE ---~ X mapped by Uo

to the point 'TT (h-I(x». 0
It follows that there is a unique (set-theoretic) map

such that

to: assert that in fact there is a morphism of X-schemes

v : \vt.. --~ \V (If *(}(1» Hi th vh = u •

\V «()(l»

h!~
\VC - - - ~ \V (IT ')ftr(l»

V

For this pur-cone there is the f'o l.Loutng lemma (BGA II 8.11.1):



I.c;';1;n:; (2. 3)

Let U,V be hlo schemes, h = (ho, \ ) u ----> V a

surjective mornhism. We sunpose that
lS an isomorphism;

2) the underlying space of V is the quot~ent space of the

underlyinr:; space of U by the relation R: ho(x) = ho (y) (Hhich

concli tion is alvJays sa.ti8fi cd when the mor-phd sn h is open or

closed or, a fortiori, proper).

Then, for any scheme '.T, the man Hom(V,U) --..;. Horn(U,\I),

wh l.ch taken a morphism v: V --..,:...:1 to the mor-plri.sro u ''':vh

(u U ---,. \"1), is a bijection from Eom(V,',!) to the set of mor-prrisms

u = (u., r) : U ---> H such th<!,t Uo be cons tcrrt O'{J eaoh :fibre

-I 0h.(x).

note that our morphism h : \V (8' (1)) --> \YE. is surjective

(by virtue of Lemma(2.1) and our assumption that 11 :\PE.--:;. X

js surject.:i,veL and satisfies condition 2): in fact h is a

projective morphism in the sense of BGAII Definition(5.5.21:
A morphism of schemes h: X --:>- Y is projective ~f there

is a quasi-coherent try-MOdUle t. of finito type such that X is

Y-isomorphic to a closed sMbscheme of fPC.
BGAII Theorem (5.5.3): any projective morphism is proper.

He delay until § 3 of this chapter the discussion of when

h satisfies condition 1), so we make the follol'ling convenient

definition:

Definition (2.AL

A coherent <'"X-Modulee. satisfies condition CA) if the

morphism A: C7\ve. ---;. h)!r . l\V&(.)iS an isomorphism.

Th:roughout the remainder of this section E \"1111be a

ooherent (J. -Houule wlri ch satisfies condition (A).x



Pro"O':)sition (2.2_L

(i) T'here is a unique morphism "IT \VE---~ W ( IT * cr(l))
such that vh = u.

(ii) v is an X-morphism and is linear on geometric fibreG.

Proof.

(i) This novI fol10"19 immediately from Lemmas (2 ..2) and (2.3).

(ii) He have the commutative diagram:

\V (n 7r. IT* (j( 1) )

h

and a morphism v: Vf.._ --~:)o \V (IT *&(1)) completing the

commutative square

\V (j(l)

h

---------+ \V (11 * II * 0'(1))

I
!

v
The commutativity of the triangle

fo110"19 by elementary diagram chasing, since h is an epimorphism.

Thus v is an X-morphism.

To show that v is linear on geometric fibres we make use of

the f01101tling' construction. Suppose given a commutative squar-e

of schemes

y ---:---+ X
l-

and an (7S-Modu1e 'k. Then there is an 6-y-Module homomorphism



so.

to : i1~g;,c1<., - ~ h.)(_f':~'k defined as fo Ll.ous;

(h~~,h)) is a pair of adjoint functors (r;,:iA 0 4.3) and there

is the natur~1 isomorphism

-<f : HOIno-)i'*g-x,1{, h*f-K'1<)--=-::> Homb';b:)~'i·)(-g*1<,f'~~1<)

fuccall that if 11. : i *g*1<. \)0 h*f1~1<is an lJy-HoduJ.e homomorphism

then 'feu) : h"-i*g*1< - ,.. 1'';':-'(.( is the composite of

h*(u) : h*i')(-g*1<'---~ h*h*f* 1< and tho canonical homomorphism

(4.4.3.3) h~<h-l(.f{:'1< ,.. f-)('''k,.] To define W it suffices to specify

f (W) : h*i-*g/k ~ f*1<; ,but h*i*g*'k = f'*g*g*1<

and He put cf (W) = 1'*( e) vrher-e e is the canonical homomorphism

Returning to the proof, suppose i: Spec k ---~ X is a

k-valued point of X and i·lEe = irE. X Spec k is the corresponding

geometric fibre of lPE.; so we have tho diagram

i·1PE. --:n-~ [Pt
~rr' 1 !n

Spec k x
J.

There is the morphism

.above) and rr~*i'* (j(l) is canonically isomorphic to E®k. Thus

W induces \V ({/)) : \V (£ ® k ) --+~ \V (it:-Tr*0'(1)), and we

claim that V (W) is precisely the morphism induced by

v : WE -- >- or * () (1)) when restricted to the geometric fibre.

To check this it suffices, (since \V(i'*~(l))

\V (1T~*il*0-(1)) is a birational map) to verify that the follo.dng

triangle commutes:

This diagram can be augmented as follows:



S1.

i·(u)---------------1> \V (i I,t: 11~·lT1f (J(1) )

(*) II
\V ( rr'?:- n/_v.i 1* ()( 1) )

"

1
\V ( -0-'~_i' * CJ( 1) ) -----~ \V ( :L -If IT_),.er( 1) )

and it remains to ahow that the upper- trianele (*) is commutative.

(-*) is induced by the follo'l-ling diagram of J,lodulc homomorphismo:

i'*&(l)

i Tr'*( W).04----

i f7(- Tf -x- TT 1(_ &( 1 )

II
n'-X·i ·x· TT -l(- (J (1)

<----

whf.ch commutes by dofini tior. of W • 'I'hus our claim is justified.

In particular it f'oLkows thi:t.t i·(v) :\I(f~k) ---~ \V(i-X-R,cO'(l))

is le-linear. 0

Corollary (2.6)

If \VE. is reduced, ther€; exists a unique t)X-Module homomorphism

f: IT-x- ()(l) -~ E such that

Proof.

This folloHs from Proposition (1.4). 0
WiJh the following theorem we reach our objective in this section.

Theorem (2.7)
Suppose X is a reduced noetherian scheme and Cis a coherent,

torsion-free CTx-Module[satisfying condition (A)1 such that ~E.

is reduced. Then~: TT* (}(l) -)- E- is inverse to the oanonical

homomorphism0{ : £ --~ TT* tr(l).

Proof.

First note tha.t if we is reduced then so is fi?t. In fact,

if S is a reduced graded ring and x C SI then S(x) is r-educed,



(using t.he nota t Ion of Chapt.er I ~l):

(
t \ d

element of Sex)' ~n) = 0 for some

( )r+dsome r-, xt = 0 and so xt = OES

for if ~
nx

d> 0; hence

is a nilpotent

and

lle have the following diagram:

• -._;=. \VE.\V (0()

[The rieht-hand triangle commutes since Tf * e.. --~. ()(l)

factors rr 'e -~ n" TT_:t- 6''(1) > (l(l)

inducing a commutative digram:

\V (~(l))

\
-----40 ~C\V(O< ) 1

!..l

Applying Le~ma (2.3) and using again the fact that £ satisfies

condition (A), (2.7.1) ir.:tplies \Vo(,tI\V~= id\vt; i.e. W(f!'oc<') = idwe
Hence, by Proposition (1.4), foo<. = ide. It folIous that 0( is

a monomorphismonto a direct summandof 1T* 0'(1). Let 1< be a

direct complement of e{(E), so that n*(j(l) ~ E$1< •
In the case e is locally-free, IX: E. -......,. 11* <'"(I) is

an isomorphism. This \-lell-kno~'1nfact (cf. EGAIII Proposition 2.1.15)

is easily verified as f'oLl.ows r suppose tu = E where U = Spec A

and E is a free A-module ..lith basis {xl'" .,xnl.rr1hen SAI~is the

polynomial algebra A[xl, .. · ,xn], and each 0-" r(U, tl* 0'(1)) =

r(T{IU, (j(l)) is a family ,<riE:(SAE)(X.) (i = 1, ... ,n) such
1

that x.ir. = x.er.: E- (SAE)(. ). \-le may \vrite 0-. = p.1 m
J. J. J j xix j J. J. xi

wher-e each p. is a polynomial of degree m and homogeneous.
1



Then
mX,X.p,

1 J'J_

mX,X,p.
J J_'J

1 and

rn-I l' 'dx , r 1va .G~; P,.
J_ '1

11e may nut m = 0", == x/x,J_ J_
""here -t; ~ A[x1 •.. ',X 1} ~ }:.. . IV.. .

and t is independent of L The map q.. t----~ t , r (U, 1T.;(.tr( 1)) --.!> l~f

is Lnvcr's e toC£U: E --~r(U,1r.~()(l)) soo'U is an isomorphism.

l1eturniwr, to the general case, there is em Op011 dcne e set U

in X such +hat E.U is locally-free, and therefore 1<U =0.

Consequently 'k is a to.L'sion sheaf. But if e in torsion-froe,

Proposition (3.5) of Chapter:r implies that -rr;~(}(l) is torsion-

free, and thorefore 1< = o. 0



He ti1!("G up the quectLon left opon in ~ 2 and

corid i,tiona sufficient for the coherent t\-Hodule

discuss aomo

E.. to oatisfy

condi tion(AJ. In this connection the notion of a no rma.L f\chemc

is relevant. lIe r~call the definitions:

An inte,0;ral domain !i. is normal if A is intcJgrally closed in

its field of fractions.

A scheme is normal if it is reduced and irreducible, and

has a covering by affine onen sets, :3pocA., vhcr-e each A. is a
1 ).

normal inteeral domain.

'I'he follo"ling reoul t is standard and "rell-kno,·m, (e.g lWAIII
4.3.12 ).

Lemma(3.1)

If f: p__, Q is a surjective proper birational morphism

"here P, Q arc inteeral locally no ether-Lan schemes and Q is no rma.L,

then is an Lsomor-nh l sm,

Proof.

Sinco f is proper f*~p is a coherent, in particulcx a

finite &Q-::odule. Since f is birational fo).O-p is a s"b-Algebra

of 1t(Q), the sheaf of rational functions on Q. Hence the

normali ty of Q im~)lief:; "Q = f~_(Jp. 0
If £- is a coherent 6'x-I,:odule such that \VS is a normal,

locally noetheriayt schemq then JP£" and hence \V (J(l), is Lrrtcgr a'L

and W (j(l) -_~ we is a surjective proper birational

morphism: consequently Lemma(3.1) implies conclition (A) is

satisfied in this caso.

In order to state a conclusion \1hich depends on properties

of 1Pe r-athor tho,n \IE- He show tlw,t tho norm~li ty of PE is

equivalent to th~t of VE.
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'I'hoor-em (3.2'--"'--~~-~
Assume Cis 8, coherent

noethcr-Lan schene , Then fE is a normal scheme if and only if

\YE is a normal scheme.

Proof.

SUPP08e ~f:. is normal: then since \V ( t) (1)) - j (!PE) :: WE- - i(X)

(Lemma(2.1)(ii)), \V (()(l)) - j(\PE.) is normal. Clearly this

implies \V (0(1)) is normal, and to deduce that IPE...is normal

He apply the folloH:tng weLLe-knovn result:

A ring B is normaL if and only if the polynomial rin(~ B [.-..:]

is normal.

Conversoly suppos e !pt. is nonma.L, Using our usual notation

(as in tho proof o f Lemma (2.1)(ii)) and vrriting S == SAB , HO have

S(v) is a norrna.l ring for each 0-'= SI = E. Let KCI'"be the field of

fractions of S(~) Then K, the field of fractions of S, is a simple

transcendental extension of K", :

S as a subring of 1uJt]via the monomorphismdefined by x ~»(x/ n)tn

for x," S • Thus we have the sequence of suba Lgebr-as of K:
n

s c: s Jt J C S [t, -£"1] ~ S c:. K.-V, (0") (T

Since S tu) is int~grally-closed in KO"', iO""}[t1is integrally-closed

in K (t) -= K. If y,K and y is intgral over S then, a fortiori,
tr

Hence r« S
Q"

for all 0-'- SI ~ E, consequently yES and S is integrally-closed

in K. t' S J.' s normal and thus \Vc is normal.'11ha as , o
Corollar;r C3 • 3.)..

If !PE is norma.1then E. satisfies condition (A). 0
\ie may now statc as a. consequence of Theorem (2.7).

J.'~. a reduced noetherian scheme and £, is a coherentSuppose X -

torsion-free 0';::-r.1odulesuch that tPE. is a normal scheme. Then the

_I £ ~ TT* ()( r) is an isomorphism. 0canonical homomorphism ~: --



As an application of Theorem (3.4)we provo the following:

Suppose X is an intecsral noetherian schemc and £ is 2. torsion-

free coherent () X-IIToduleof generic r-ank N, such that Pe.. is a

normal scheme. 'I'heri there exists a :oroper surjective birc:vtional

mor"9hism -p : X--~ X and a locally-free o~-I,lod.uleof rank
A

N, 1 ,such that e

Proof.

'I'he construction described in Chapter I~3(j~ii1!;ives a commutative

lPl--------> IPE.r- f t.
X --7-----;;.. X

wher-e f, 1are proper birational surjccti ve morphisms and 1- is

locally-free of rank H. Hate that since WE:i.s normal, in particular

integral, lP£= Q(E.-)~

invertible sheaves on tt>E, 1P=f respectivelYe '11hen "':I(l) ~ f * ()~(l)
(by Chap. I, Proposition (1.2)(i) and (ii». Since 1- is locally-

free Tf'* 6:f-( 1) ~ 1- •
(Lemma(3.1», and 10)1.. C??il) ~ f*f*tlr,.(l) ~

t='f ~f* n'* O~(l) ~ Tf* f* t\(1)
= £

Since

by theorem (3.4).

is normal, f ~'+et,:} ~ (Jiff..

~ (1'j1}1*~n - &£_( 1) •
= 1i"*lt(l)

o
Thereforo

The interest of such theorems depends upon the prevalence or

otherwise of sheaves with normal projective fibred schemes. Here

are some examples:

(1) Sheaves £., Hith smooth !pE.. In the folloHing chapter

\'le shall investigate such sheaves (on a smooth variety defined

over a field) and Sh01l1that there do indeed exist non-trivial

examples.
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(2) The r ecu l,t of blouing-u") a normal scheme vzit h ccnt'r e a.

rec,"u:larly embedded subacheme is et normal scheme.

(3) If E is a coherent I!Iodule vd.th II£ normal and -={- is Cl

J.oc,~lly-frcc coherent I,jodule then 1P ( €. o 1- ) is 11or:1,1,1. [For if

,tP£ is normal, \V£ is normal, hence \V (£. s"1 ) is nor-na L and t.hcr-e f'or-e

If ( £. e :t) is nor;nal. ] In corrtr aan if' fPc if:: srnoobh and £. is

not locally·-fj~Ge then lP ( E Et) t) i;:l not smooth.

He close tho chaptor Hi th a sinr-;le examo Le to ShOH how ~ F1Cy

fail to be an isomorphism if normaH ty conditions are not aa t i.sI'Lcd,

CODsider the folloHinS example of a Don-normal LsoLated sinn:ulm:i ty

in a com~lex surface «13) p.54). is the

mor-ohd sm 4> (u.v ) = ( ....r,x,y,z) wher-e 3 4
'Yl=V, X==UV, y=u v , 7-:o:U v, so

the imase of ~ is the surface V = Spec A wher-e

A = C [H,x,y,zl / ('·lZ-X.Y, X3_Y1}>

Then V is not normal at 0, since, in the language of the theory of
2

com-;)lcx ana'Lv t l c spaces t U v is a function vlenlcly holornorphic

but not holornorohic at 0 on V. In fact

2U v ==
2= y /z = zx/y on V wherever the

terms are defined. But if I is the maximal ideal (ll,x,y,Z) in A

th(::n (*) shoHs that
2

definesof the l)oint ° in V, u v a section

of tt(l) over lPeE) wlrLch is not in the image of c<.. •
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Chanter III~,;...:...;;..:;....=;;;..

ThrouBhout the following chapter X will be n scheme defined

over a field k , locally of fini te ty~)O and smooth over k,

Ho consider the qucct Lori of smoo thneas for irE wher-e £ .~s
a coherent 0x-:t,Iodule.

In tho fh'st pLace \-10 may assume, 'Hithout GflSontial loss of

ge:r1or8,li ty, thu,t k is algebraically cJ.osed: for if K is the

algebraic c10;;;1,1.l'Oof le,
...
x= X)( Spec R, E = E ®tr_

X

and Iff
, Lhcn

x ...,= JPE ~ Spec le
0pec le is smooth

over K: j.f and only if I.P~ is smooth over k , (since k~ is

faithfully flat).

Assume then le is algebraically closed: we proceed to formulato

the mnoothness question in terms of local generators and relations

for E a.n a ne:i{~hbourhooc1 cf a closed (i.e. k-rational) point of

x. Each such point x c X has an affine open neighbourhood U =
Spec A Vlhere A is a regular noetherian k-r.lgebra such thc1t the

restriction of e to U can be resolved:

(Jq ---"> E ----> 0
U

for some p,q.

This situation is expressible in a number of equivalent \'Jays as

f0110i-[8. Let C (U) = E , so E is an A-module Hi th resolution

--....:~ 0 •

If f is represented by a matrix (f .. ) (l~i~ q,l ~j~p),
J.J

vii th
p

= Ef..a.),
j~1 J.J J

---~~ A

entries in A, (i.e. f(al,· .. ,ap) = (bp' .. ,bq) wher-e bi

..te have a k-algebra homomorphism k(XI1··· x .. ,'" x J, J.J qp

defined by x.....~ f ..•l.J J.J

h l/) U -, ~ lA pq = Specof affine se ernes, I -r In

Equivalently, HO have a morphism

Clearly f determines S over U, and

k r xII' ..• x .. , ... X J.. ~J qp

is determined by e once

a choice 01 resolution has been made.



The vector space over k of closed noints of DOIA~' is hero

identified ,-;1 tih 1(kP, J-;:C1)! the space of le-linear mans D 0k' --)I. k'~

or with M q(k), iha space of pMqmatrices over k.
p, --

Let "f be the matrix of indeterminates

. .

Let Jr be the ideal in k [xII' ••. ,xqp] genera teQ by the

(r+l) )( (r+l) subde t er-nri.narrba of 1v .. Lot rr be the clOGed sub-

schemo of lA pq dofined by the idoal J Note that -r is tho
l'
. 'P l'

(q-r)th Fitting subacheme of e U. By an eLemen tary Lonma of linear

algebra, a matrix (ui th entries in a field) has rank not &;reater

than r if and only if every (r+l»)( (1'+1) subdeterminant vanishes.

Consequently the closed points of r are just those matrices overr

o = Co C .hI c: ... ere r ...ciA pq= r. ( ,
r r+l mU1 1), q,

k of rank f. r. He have

where r is a closed
r subschema of r 1. In fact r 1 is the1'+ r-

and r - r 1 in smooth of dimension
l' 1'-sins-ular locus of rr

r(p+q-r). For these f'ac ts and other propcrties of the~dcterminailtal

varieties rr ' see e.g. (9) and (8).

Returning to the principal object of' study, we have defined

VJ u _ .....In pg. If th Cthe morphism I: -- In e generic rank of (;,. ,

dim:r(E®X) (uher e K is the field of fractions of A), is q-r, then
n_ le

'f' (u)e rr • He seek conditions (of transversality type) on r
necessary and sufficient for !pe to be smooth in a neighbourhood

-I
of a point ye IT(x}, He shall apply the Jacobian cri torion for

smoothness in the follo';1ing version.

Lemma(1.1) (Jacobian criterion)

Suppose X is a loc''',lly noetherian scheme over k , Y is a closed

subscheme with J its sheaf of ideals, x is a point of Y, such that

X is smooth at x and dimxX= n. Then the follouing are equivalent:
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I. \ Y • , , t .,\.J.) J.S :JmOOliIl ali X ann U1IU,,! --
-".

(ii) dimxY ~ n-p and there exint clements POl' '" ,n'~>- '-'p

Pur ther, if Y is smooth at x and dim Y = n=p , thenx

generate Jx if and onl~lif rank (del" •• ,dgm) :::p ,
(A useful reference for the Jacobian condition and related matters

is (1) Chapter VII ~5

Corollary 5.9)-

the above is contained in 'I'heor-em5.8 and

is defined as a subncheme of U J(. le 1q-
A[zl"" tZqJ generated by

:::;Proj A[z~t'" ,zl
J. Cl

by the graded ideal of
'\-

F = 2:: f .. z .•
j 1:.1. J.J J.

By suitable choice of bases viC can assume

is the matrix

l
0 0

0 Irt

'I'lhero I t is the r'J(r'r

)
q - di~c(x)(E®k(X».

JP (e )(x) c 1f'1-1
That is, f .. (x)

J.J

matrix, r'= ra~c f(x) c

= [1 if i'>q-r' and j:O:l+p-qo otherwise •

identity

is the subspace of dimension q-l-r' defined

by • = Z ::: O.q-r'+1
if j > q-r'.

He now consider

+ake j=l. ,'rereplace homogeneous

by inhomogeneous coordinates
"l-

and write F
j
::: E f..z., j=l, ... ,pe'~IJ.J J.

At this stage it is convenient to

coordinates (Zl:" .:Zq)

(Zi = Zil Zl'i=2 " .',q)

introduce parameters on X

:nearx•. X is smooth at:x:and so there is a Zariski neighbourhood
of x (\'1hichwe suppose to be U itself t shrinking U if necessary) t

\-lithan ~talo morphism U ~/An(k) (11::: dimxX). Equivalently



there in a nystom of par-ametcr-s

rnax i.maLideal in it of tho point x), cuch that if k (t1?· •• ,tnl -~ A

is the le-algebra homomorphismdetermined by t.l-~ x.,
1 1

then A
is etale over k (tl, ... ,tn].

.0.1 2
The couan.tcn t space to X at x is the vector sna.ce .r(x) = yx.

- A -

(over the field AI!;. = x), wh Lch has a basis {dx .." .. ,dx 1..... n I
2

wher-e dxiis the residue class of xi' mod lS. If FeA, t~lcn

d:&'(x)e .n~(x) and we write dF(x) = t~(x)dx.
. i.~I~X. l'

1

wher-e

is in AI?!:. •

C u",{f l'q-
'1""n u(x)

then

e .0i
lP

(~)
- q-l

In terms of this basis

"Tith basis

~dxl"" ,ax ,dz2,· .. ,dz i.n· q
'l- ~

deL f .. Z. )(x,z) = L.
l.J l.

.~~ 1 "~I

ai.(x,z) =
J

't-
+ ~ f .. (x)dz .•

~ lJ 1
... ~ '2..

f .. (x)dZ .•
lJ 1

Therefore, the Jacobian matrix, J, of (aFj)j=l, .•. ,P at (x,z)

has the form:
~t\ ~

q.-1

0 0 1J = Jf
P

0 Ir, I
t!!.;.j (x )

~

the submatrix J' has - as entry in thewhere z.
l.

(j,k) :position.
'::'1 ~

J has rank 1" if and only if the matrix Jfl, formed of the

firs t :p-r I rOi'TSof J I, has r-ank r-r I • J I I mBybe interpreted

as the matrix of the linear map, the composite of:

Tx ~-~ J.J(kP,kq) -~ L(ker f(x), kg/ker z).

Here T is the tangent space (~/!;.2)'" D.tx, Dr' is the derivative
x

. a hy-ocrplana in k
q (strictly, 7. E lPq_lof r' at x, ker z J.S ~
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is the kernel of a ~enerator of z).

Let Az ,- {o(6i: L(k;'),\:(1) \ ()[(J;:cr f'{x) c.: ::er z ~. Then

r2,n~<'J" = r-r' if and only if the linear SDCtCC DfO (rrx>" Az
has cod i.rneris Lon r-r' in Dp (Tx) c Thus we are led to the

follovlin,~7 r enuLt ,

If' Y is a closed noi.rrt in Q( E) ,d th 11(y) = x and

y = (x , z) E Ld)( 1P L" then )Pc 10 smooth at y if' and only ifq-
= r-r'.

Noto that 1'-1" :1.s the "excess dimension" of the fibre 1PE(]:)i

i.e. 1'-1" = dim IP£(x) - (generic r'an'c of e)
Proof.

If codim (])(b(T )" A t D£b(~p »-r x z T X = 1'-1" then rank J :::r.

Since dim IPE ~ dim Q( E) ::: (n+q-l)-r ,
y y

(Lemma (1.2» implies rE- is smooth at y.

Conversely if ~E. is smooth at y then

the Jacobian Crit~rion

(n+q-l)-r and the final assertion of Lemma

dim irE. = dim Q(s..) =y y
(1.2) implies rank: J = r-,

Therefore codim (D..o(T)" A , D'f(1i1» = 1'-1".( x Z x o
fro interpret this lemma as a transversali ty statement vre SUp'JOSB

that f(x) = 0 ; this is permissible since (cf. p.i3) E is generated

in a nei0,'hbourhood of x by q = dimk(x) (B®k(x) j elements. Then

1" = 0 and A ;fO(~L(kP,kq)z
dim rr dim (rrn Az) = r(p+q-r) - r(p+q-l-r)

The fact that rp (U) c:: r;" U is smooth, <f (x) = 0

imcic;; ker z J • Hence

= r.

and r
l'

is a

cone Hith vertex 0, together imply that Dr (Tx) c: fr. Let

vi ~ r1''' Az 1\ ry(Tx) wher-e w is a rer;ular point of rr; then

Df (Tx) is transve~'se to r1''' Az in rr at '1'1 if and only if

codim (Dr (Tx) ."\ Az:' Dr (Tx» = r. This sholls that if transversali ty



hoLdc at one such 'Joint H it holds at all such voo Lrrta I and ue sny

simply tha t DCf ('11)

.Q_orol1m:·:1..j1._ 3)

'(i) If y = (x,z) c Q(€') , as in Lemma (1.2), then !PE ir.:;

is tramNcrse to r ('\A
r' Z

. lilln •
I'

'I'hue He havo ;

smooth at y if and orrIy if Dtf ('l'x) is tr2.mworse to f1 A A in r:,.r z ...
(Li ) lfE- j_f.) smooth at all points of IPE(x1 = n-I(x) (and

therefore smooth in a neighbourhood of pcS(x)) if anrl only if

D cO (Tx) is transverse to r /'I A in r for all z ~ f 1.
T I' Z I' q_

Proof.

(i)folloHS from Lemma (1.2) and the r-emar-ks above.

(ii): If!PE. is cmoo th at YEQ(E)(X) then!PE is locally

irreducible at y and therefore there is an 0~9n noighbourhood"Y of

y in lPE such that IPt" Y = Q(E ) 1\ V.. Hence Q( £. t"'<, contains an

open subset of ~f (xl and it f'o l.Lous that (i( E ix) = 1P£(X' • ITo~l

(ii) follows from (i).

§ 2 }~xA.mnles of Smooth Projective Fib:r::,cdSchemes.

There is ono case '\'Therethe criterion of CorollaI"J (1.3)(ii)

can be used to demonstrate tho existence of smooth projeotive

fibred schemes. Let I' == p c' q : that is, He consd dee sheaves E

with resolution 0 ~ 0 & r~,,~-~ E.U-~ 0 where 'P

is a monomorphismHith 'V (x ) =0.

For this case rr ::0 L(kP,kq). He \'Trite T = Dy'('l'x) and say

T is good if T is transverse to Az for all Zt ~-l. Ue consider the

qucs t i.on of the existence of [~oodT of dimension s , Let Gs,pq-s

be the Grassmann var-Le ty of -vector subs paces of dimension s in

L(k'P,kq). IJet D = ~ T ( G I codim(TI\ A , T) ~ r-11z t s,pq-s Z

. 1""\ Ls the set of T not +ranevcrn e to A • 1""\ is al.e. ~J,..z Z .l.Lz
Schubcrt subvarioty of G • (For facts on Grassmann varietiess,pq-s



and Schubert subvar-LotLes HO z-cf'cr- to (9) ). 'I'h cn d i.m G
S,pq_-8

::

s(pq-s) and

(since r=1)).

'i'hen S If,~ Cl, closed cubvar-i eby of JP X G of ddrnenaLonq-l s,pq-s
s(pq-s)-(s-p-q+2). If lr is tho projoct:ion 2>-~ G ,

. Stpq-s
(Zt'J.')'_~ Tt then 11"13 is El closed subvariety of G t which is

s,pq-s

if s,,>p+q-2. The sot of Bood 'I' Ls the>:ltriotly corrba ined in Gs,pg-s
complement of TTS in Gs ,}1Q-S and thorefore this if; a nori-empby

Zariski-open subset provided s >p+q-2.

From thono considerations vie may say that, provf.ded X is smooth

of dimension s > p+Q-2, a 11 generic" ~-!10dUIB of the type coric i.dor-ed

(i.e. Hith a resolution in a neishbourhood U__- of x

0---+ (J~-~ (jri-'- ~ EU--:>o,

wher-e q = dim £. (x)) hp_sa projective fibred scheme lfhich is

smooth in a neighbourhood of !PE-(x). The significance of the

conclition dimX> p+q-2 is perhaps more evident when it is

expres80d in the form q ~ n + ~(s-n) uhere s = dim K, and

n ::: q••p = q-r is the generic rank of C •
In the above U is assumed to be a Zariski nei~hbourhood of x:

howeve.r vTe may admit e larger class of sheaves by supposing only

that U is an 6tale neighbourhood of x, i.e. that there exists a

Zariski neighbourhood ut of x and a (surjective) 6tale morphism

U --~ ut such that E®OU has a resolution

o >- 6& -->Ori -~ E®tJu-
(This fo110"l-1seither from the method of proof used in ~1, or by

notine that fP (£®(}U) = JP£UI X U is smooth if and only if

is smooth).



He consider alc:ebraic varieties over tho 00]111'')10::': field t (in

~ " (l:\\C)~. . f~e1)o.ratedthe sense or .:)orru '11. ; °vhat lS, var LetLes ore reduced schemes

of fivi te type over t). In addition to tho Zarisjd t()"}lolocyeach

such variety has an associated. structure as a complex analytic

space Hi tIl the" classical" to !)OI OL;Y" G ~Ihenue l"lrite of the cohomol ogy
* ~~.

Crou:!:J,3II (V, C) or II (V, -a) of a variety V HO mean aingular cohom-

oLogy (Hith n.ppropriate coefficients ) of V "!'lith tllis tonolOGY.

Our task is to calculate as far as possible the cohomoLocy

ring of ·the projective fibred schome !PE of a coherent c;hoaf E on

a com"9leto, smooth variety V, in terms of the cohomology of V and

discrete invariants (such as characteristic class8s) of £. .This

is most feasible when /:PE-is itself smooth but even for this case

our results ar-e Hot complete, and Ne end i'l'ith a conjecture.

Our approach is via the construction d8scribcd in Chapter I,

~ 3 (iii) whi ch invol vcs successive bloHings-up of subvarieties

of V. ~"1etherefore begdn by discur.ming in some detail the effect

on cohomology of blo\"Jing up a rocuJ.ar subvariety of a smooth variety.

These r csul ts may Hell be known although it seems no clear statement

of them appears in the literature; (but see!14)and remarks beIov},

It is to be expected that the results of this chapter have

analogues ·\'lhich hold for varieties over any algebraically closed

field of characteristic 0 and suitable aleebrnically defined

cohomology theory, such as the Algebraic de Rhamcohomology,

introduced by Grothendieck in (11) and systematically treated by

Hartshorne (5). HONGVerin·the "present state of algebro-

~eometric knoHled?;'e the finite characteristic case cannot be
:.>

treated because (i) there is as yet no satisfactory cohomology
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theory in cl1aracteristio p, and (ii) "r ecoIut.t on of sin'Dl18.r-:itios"

ie not available.

~:;U"p')08e Y is a smooth ol.os ed subvariety of a smooth complete

varie'~y x. Let Xbo tho b.Low-upof X ,<6.th centre Y. ".le pr-opoae to
.\!.,

descri be tho cohomoLogv rine.; H" (X~Z) in terms of tho cohomol.ogy

of X and Y and invariants of the ernboddLng Y c___~ X. Our result

and many of the formal deba'i Ls of the proof are modelled on 1,ianinCs

account (M.) of the K-theo:cy of Xl (1. e. the Grothendieck f,TOUpof

locally-free sheaves on X~. Differences (and simnlifications) in

the proo'f for e-ihomoLogy result from the richer 3tructurc of

cohomoLogy compar-ed "71 th K-theory (in part i cuLar , the relative

oohomoLogy ,groups and tho exact sequences).

The method turns upon the fo110""in[; easy, 'Sorma1, and known

result.

Lemma(1.01

Sunpose given the following commuta't i.ve "prism" of abeLLan

groups such that the tHO trinne1es are exact and ~ is an

isomorphism: rf'<
At' --1111i....Br'

cl c, (3
Y'(A ---0;----'> B

J.

Then the follovIing triane1e is exact:

A' ® B-ot)/ ""-i '+ [l
A <.,;,_'"- B'

k v-I "
0' 0 J

Proof: Standard d.iagram chasing. 0
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SurY)ose f: X' --->- X is the bLovi-un of X Hi th centro Y, let

Y' = f'y and let g: Y' --,.. 1 be the restriction of f to Y'.

Let m:: codimc(Y'X) and r::: dimC(X)"

If N is the (algebraic),normo.l bundle of the cmbeddinfS

i 1 --:> Xt the sheaf of (germs of) sections of H, n.. , is a locally'

free (Jy-Eodule of .rank m, isomorphic

the sheaf of ideals defining 1 in X.

to ( 1 / 1. 2 r, wher-e )

Thus Y' ~ lP ( ) / \ 2).•

is

Let N' be the normal bundle (ranlc 1) of -the embedding j: 1'-> XI.

The aheaf of sections of N' is dual to 0"(1), the fundamental

inverti blo sheaf on ( J / f). Hence N' can be identified ui th

the bundle of closed points of \y (0'(1)).

Ue refer to (10) for the theory of Chern classes of coherent

10cn1J.y-free sheaves in algebraic geometry and to (e.g.)(2) :for

the topological theory. If F is a complex vector bundle of rank

n on a complex variety 1 the Chern class c.(F) is a cohomology
~

class in II2i(y, l), i=l,"',n. The conventions of algebraists and

topologists agree in that if ':f is the sheaf of sections of the

a1gebraio vector' bundle F then o . ('1-) = c. (F ). The Chern classes
~ ~

are characterised by the folloi~ing wcl1-kno"In result.

ProDosition (1.1}(Cohomo10gyof prmjcctive bundles).

Let l!' be a r-ank n complex al.gebr-ado vector bundle on a complex

variety Y, ~ the coherent locally-free sheaf of (germs of) algebraic

sections of F, and 1f :1Pt--~ Y the associated projective fibred

variety.
*. *() *Thon 11 induces a monomorphism1T : II Y -...;Ja. H (!Pi-)

on oohomo10ey(,·tith inteGer coefficients), and H* (!PT),
.x- -x.

considered as an algebra over H (Y) by virtue of rr , is eenerated

by h = c1(~(1))' H2(fi), subject to the relation

~ (_l)ici(F)h
n-i

i:0
.\t. ·x· ."

Thus H" (Yt) is determined by Ii (Y) and the Chern classes of N.

= o (c = 1)o o



He shall to.Jce for er,mt.ed the th0.oj~y of Poinc:J:>"'c dunl.L 1;;;,r :i.n

homolofY and cohomology. Consider +he horno Lorjy exact aequence

of the pair (X, Y) (coefficients in Z):

(1.2) ••• -~ H.(Y)~ H.(X)--> H.(X,Y) --~ H. l(Y)-~ •••a ~ ~ ~-

He have isomorophisms, eiven hy duali t;;r:

H.(X) ~ H2r-i(X)
a

H. (Y) ':=' H2r-2m-i(y) •
a

Substituting in (1.2) yields:

(1.3) ••• --> n2r-2m-i(y)_..,a.. H2r-i(X)_-;a.- IIi (X,Y)---~ •••• '.

'* cO iITe "lri to H ( ) = @ H ( ),
. ;:'4)

DO

and H_~() = @E.(),
• i.&0 ~

thus suppressing

the grading, and. express (1.3) as an exact t.rianc)e:

/(X,y)

* "" *H (Y) ------> II (X)
i*

Here i .. is the so-called Gysin (or umkchrungs) homomor-phism induced....

by the inclusion i: Y .. X.

The pair (XI,Y') gives rise to a similar trianglo and ve can

construct tho

-)~ -l(.

'I'he homomorphism cL: H (Y) __._-+ H (Y I ) is defined by

\"There F is the ranlc m-I vector bundle

on Y' defined by the short exact sequence:

*o __ . ~~N' --~ e N -->-. F -~ O,



owSince f induces et hOlJ1comorphism XI- YI...-~~ X _ Y it

follous thQt
is an i30mol'])hir:w.

Tho cOi:1mutativity of (1.4) folIous :from a number- of forraul[;,c Nhich

N0 collect together as

0)(.

if yE II (Y), i~
i i.xY :::y.o (H)

m
(ii) &*Cm_l(F)::: 1

*(iii) i:fyC'i:H (Y), 0)(. ')i-

f i ~/.Y ::: j ~c(e Y. 0 1 (F) ) ,.... " m-

* * *f.~f = id. II (X)-~ H (X) ;

*(if yE. ker j* c:: H yl) ·x·
then y = g g.iY.o l(F).m-

(iv)

(v)

Proof.

(i): This id a standard consequence of the theory of Chern

classes, (see, for example, (7».

(ii) If we vl:eite C::: 1 + cl + c2 + ••• for che total

Hence

Chern class, then formally

* -x.c(F) = g Q(rr)/c(N') ::: e c(N)/(l - h)
ME-1* i

c (r) = 5 cl' (N)h andm-I m- -~
ho .

g·X·crn_l(F) = ~ cm_l_i (1r)e.j/hJ.) = 1,

i i: (>. ( m-I)ei\.(h ) = 0 for J. m-I, and g.)!;h

wher-e h = -cl (n f) •

~ince

= 1.
(iv): By virtue of the identity f*(f~~.y)::: x.f~ it

suffices to prove f*l = 1. This follo\'JS from the fact that if

ttx" H2r(X), .-zXI£H2r(Xf) are respectively the fundamental
J

homology classes of X,X', then f'lI:ttXI = 'tX• (of. (3».

* * .J(- *(iii): f-j(.(f i.;,Y - j*(g Y.Crn_1(F») = f*f i~ - i.x.e-x.(gY.Crn_l(F)

= i,.;i - i*(y.e*Om_l(F» = O. (by (ii) and (iv».

*( * . ( .;(- (F) ) * 7(. ~. (*
j f i~ - J* g y.cm_l I = e i· i~ - j j* e Y.Crn_l(F»

= g·~(Y.Cm(n» - (gi<Y.Cm_l(F»Cl(lJl) (by (i) and the analogous

result j*j~ = Yocl(lJl) )

= 0 since g*Cm(N) = Crn_l(F).cl(nl).

Thorefore it suffices to provo that



70.

SUPt,lOfle 'V is a simplici2.l n-cycle whos e homology class in En(XI)

*is the PoLncar e dual of a 001101'1010.<::1 class se kOl'(f-l<_)" kor(j ).

er may be assumed +r-anevcnae to Y I (by subdf v:i_din8 .md rne,:inc;

oach simplex transverse to YI). -)(-

Since j s = 0, ITI\ Y I is an

(n·.2 )-·cyclc homo l.ogoue to 0 in Y I. Then there exi.s t.s em n-oyc Le
, I

fT"', homologous '1:;0 cr, such +ua t the simplices of V" li 0 in X I - y' •

For suppose ~1' = er" Y I, vrher e ., is a (n-l)-cha.in in Y I. Y I

can bo "thickened" to a (tria.ngulated) disc-bundlo noie;hbourhood

D of Y I in XI \~ith proj ect Lon t: D-)- Y I. [rllhere is a dcf'oxmation

retract along the fibres of t, XI .;. yl --)0 X' - DJ. Then

t -17 is an (n+l)-chain and cr_{o-- a {f'7i).......cr' uhcr e (1" is

as required. (See diagrams). I
Now f(cr) '" 0 in X and if

I ~ ,f( er) = '1, I iU., may be made transverse to Y in X. 'I'hen , the

"proper transformll of
,

1 t (i.e. the closure in XI of

had . X' 1 th t '..,"_-cr' t' ,is a c aan an suo la" a , e. tr,..., O.

-)I-

(v): A typical element 'YE II (y,) can be \'Tritton uniquely in
..-t
~ i

the form y = ~ a.h
i= 0 ~'"-t* i+lo = j j.x-Y = ~h. = -22 aih •

-x- ;$.O

ago .(N) = a. 1 (i=l,'.' ,m).m-I m-~ ~- ·x·
= a lC l(F). If a 1= g at then g......y =m- m- m- "

* -)(.
and g g~,-y.cm_1(F) = g a.cm_l (F) = y.

*where a.£ H (Y).
a If

Therefore (by Proposition (1.1))

j~ = 0 then

...-t.~ * .
Hence y = ~ a le 0 . l(ll)h1

1::0 m- m-~-
a.g*cm_l (1;» = a (by (ii))

o



t s ,

Applying Lemmo(1.0) to (lv4) ,r:;jyes all exact trj_cmr:le

H,;"(r) ---:.~Q._?:~-~ II"/" (y I) m II .;;.(X)

'" .". /i-):.+f-X-
n" (XI)

(1.6)

·x-
Furthor 0( is a monomorphism (for if 0::: f1{ y = C; Yocm_.l(T<'),

then
:-Y.-o '" g,,(g y. c l(F)) = y. e-» I (Ii') = y)., theC'cfore,~."I m- ~/'In-

(1.7)

is a monomorphism and (1.6) yields a short exact soquonce
*-x- _ II< Oi. 7;' -)(_. +f *° -~ II (r) --_'::'_-)00 H (Y') (1) H (X) J.~_ ......H (X')~ 0

-lE-
The homomor-ohd sms O<:,i.x-,j.;:_,f respect the grading and raise

degrees by 2(m-I), 2m, 2, 0, respectively. Therefore, restoring

(In uarticular if s < 2m,

HS (X I) ;: _1:
s-2 (y I ~ (!) .Hscn._

t=-l><tft i* Hs-2m(y)

HS(X') ~ HS
-
2(yt) G HS(X). )

the grndin-; in (1.7) 1'10 have

-)(.

Thus (1.7)detiermines the additive structure of H (XI). He tur-n

novr to consider the multi~)lication.

* *Let H (Y)N be the ring \lith additive group n (Y)

m~lltiplication 0 defined by YloY2::: Y].Y2cm(N). Thus

is an associative ring (uithout unit), commutative in the sense

motivated by the property!

-_ (_l)dcg Yl·deg Y2 Th' d f' 't' ,YloY2 Y20Yl • a.s e arn, 10n 18

* *i*! H (Y)N--':" H (X) is CL ring

*homomorphism, (for i*(YI.Y2) = i*(YlY2cm(N)) = i*(Yl (i i?(Y2))

that

*Similarly we define the ring H (Y')Nt with multiplication

YloY2 = YlY2cl(N').

Finally vre define multiplication in n-l<-(Y')NIG H-lt-(X) by

-* * * *(yl,xl)o(Y2'x2) = «g i xI)Y2 + yl(g i x2) + Y1oY2' xlx2).

It is straightforward to verify that 't-lith this definition
.x- -lE

II (Y')NI 6) II (X) becomes an associative ring, vhdch is comnu'ta'td.ve,



7'2..

aGain in the evident "c:racled"Gonse.

The folloHing lemma shmrs that the multi ::;licati ve r.: tr1Jct1Jr(~

~emLl~ (1.SD
The additive homomornhisms

* * *-~ 0 i* : II CY)n ------> H CY' \p 0 II (X)

j* + f'X- ; H~'(Y' )17' e H* (X) --~. n* (X')

appearing in (1.7), are ring homomorphisms.

Proof.
*If Yl'Y 2E II (r) then ( - 0( ~ :i..r.)Y1 (-0(. G) i.x-}y 2

* *( -(g y1)cm_1(F), i'.Yl)O( -(g Y2)cm_1(F), i.)(-12 )
~;.* * * .x-*( -(g i i~l)(g Y2)Cm_1(F) -(g y1)cm_1 (p)(g i i~2) +

* -)(.
(g Yl)Crn_l (F)(g Y2)cm_1 (F)C1 (IP)

( -g~'(Y1Y2Cm(N) )cm_1 (F) , i*(y lOY) ) (sinoe

.,. (-01 e-l*)(Y10Y2).

:;

=

,i~1·i'XY2 ) =
cm(N) ~ cm_l ([.,)cl (H' ) :

-l(•

and i i.xy=ycm (n) )

) *() *( \ ( t·· y~' J':'>. H (X'If \Y1'Xl), Y2'X2 11 N' \lJ'.. • }

(j-l(' + f*)(Yl'X1)"(Y2'X2)) :::
oX· *-¥.. **

(j-x. + r )(g i x1)Y2"*y1(g i x2)+ Y1Y2c1(N') x1x2)
.j!- ,x, , ,x, -l(. *

j*«g i x1)Y2 + Y1~g i x2) + Y1Y2cl (N')) + r (xlx2) =
* * * -l(. *

j*«j f x1)Y2 + y1(j f x2) + Y1Y2cl(N'») + f (xlx2) =
'* * * ".(f xI)( j~2) + ( j~ I )( r x2) + ( j -xcV 1)( j -KY2) + (f xl)( l' x2) =

(j-xYl + f*xl )(j-xY2 + f ~".x2)· 0

then

=



If -=r is et local::t.y-f:eoo cohcr-errt sheaf on Cl- oompLet e varioty

X then Pr opos I tiOll (1.1) GbO\'18 that n-;<(U'"l ) if'>determined by
.x-

H (X) and th()Chorn classos of 1- ~ It uou Ld be ovc:e-09timifJtic
-t:-

to ex ooot any such nea t r-e su Lt for II (!Pe) trhcn £. is a general

torsion-free cohorent she<1f, but He can prove some partial results

in this direction. 'I'he cons ~ruction d.oscri bod in Chap t er- I, 3(iii)

defines a locally-free a.ieaf 1- closely related to tho given sheaf

C. and we can use this -1:;0 appr-oach tho co homoLogy of !pE.

Chauter I (3.7) gives a commutative square:

iP~------f'-------~
...
X

Q( t )

1
---------)). X

f
where f If are Droper birational surjective mor-phf.sms and 1- is

... *alocally-free sheaf on X, a quotient sheaf of fE, of rank equal

to the generic r-ank of f", P is the oomoosd te of a succession of

bloHings-up centred at Fitting subschemas.

Results of Hironaka on resolution of singularities (6) shO\-1

that tho sequence of blovrings-up can be replaced by another sequence

whose contres are smooth subschemes. Hironaka prover.; «6), consequence

1 of Corollary 1, p.144)
...

that if X, X are birational varieties

there exists X"--+ X, obtained by a finite succession of blo\'lings-

up "d th non-singular centres, such that X"
_.

domina.tes X. Thus
I

in our cas e there exis ts a bira tiona.l morphism X'I _f_;.. X: such

that tol can be realised by a succession of blo\-lings-up vii th

non-sinL~lar centres. Then ".1. __ t>' * "t
,- I T is locally-free on /C' and ,

combining the abov8 commutative square \-lith the commutative square:

IPi' ----_~ if>t
! t
xu ---- .. X



14.

(2.1)

, -Vira?t--_·f-·__·_--?-- Q( z )

~'l I"
II

Xl' ----f--------->x •

HO have

As 0, first consequence He may state

* -re *The homomor-olri sm IT: H (X) --- H (Q( e )) induced by the

projection Tr is a monomor-olri sm,

Proof.
'X

3> H (X") is a monomor-phdsn (Lemma (1.5) (iv) )
* ·x- .J(- ,

and IT' H (X:') -->' II (lP=l) is a monomor-phf.sm (?roDo:,d tion

(1.1)). *in a monomorphism and so IT

is a mo~omorphi8m. [J

Since i".
r-",t;"'"·x- I

is bira tiona1 VIe have (as in Lemma (1.5) (iv ) )
* -l(.= id. e H.(Q( f )) ----~ H (Q( £ )).

*Consequently H (Q( E ))
~* I

subring of H (!Pi)
of H*( !Pt') .

can be identified, via p';") with a
7~

and H (Q( t. )) is addi ti vely a direct summand

As groups H-l(-(Q( t)) ~ H*(l.Pi-' )/ker 1'~.
If X is smooth then, given sufficient information on the

'":1.'centres of the blo'.·lings-up of X and the Chern classes of I

the cohomology of \p'1-' can be determined in princi-ple by the

resul ts of ~ 1.

* ,." * 0'/ -,Since II (Q( E )) = H (h 1-) ker f; "le ar-o interested in

characterising kez- f~-. If y'- ker f~.then, writing h = cl ( (5'(1))

* *in H (Q( £. )) c:: H (If 1- ) ,
'I ' ( i) _ n f-II ( , i) - n (3" ) i _ .' n' ( i)f -:t-11-x. yh - -)(. ':c yn - -x.y· ~(.Y h - 0, J..e. I -x- yh

" • T ( -x- I Iii' )is in ker f .;;.. Thus J.f h. := l Y '- H O£l) n_~(yh''')f ker f-x- for all i

* *there is a group epimorphism II (Q( £ )) -~ II (1ft )/K. This is

as much as "le are able to Dl""ovebut it seems r02,conable to conjecture
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