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On Blocks, Tempering and Particle MCMC
for Systems Identification

Adam M. Johansen

Department of Statistics, University of Warwick, Coventry,
CV4 7AL, UK (e-mail: a.m.johansen@warwick.ac.uk)

Abstract: The widespread use of particle methods for addressing the filtering and smoothing
problems in state-space models has, in recent years, been complemented by the development of
particle Markov Chain Monte Carlo (PMCMC) methods. PMCMC uses particle filters within
offline systems-identification settings. We develop a modified particle filter, based around block
sampling and tempering, intended to improve their exploration of the state space and the
associated estimation of the marginal likelihood. The aim is to develop particle methods with
improved robustness properties, particularly for parameter values which are not able to explain
observed data well, for use within PMCMC algorithms. The proposed strategies do not require a
substantial analytic understanding of the model structure, unlike most techniques for improving
particle-filter performance.
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1. INTRODUCTION

We consider the problem of identification of an indirectly-
observed dynamical system in which the functional form
of the dynamics, and of the measurement system, is known
up to a collection of unknown parameters. In particular, let
{(Xt)}t≥1 ∈ XN be an unobserved homogeneous Markov
process characterized by its initial density

X1 ∼ µθ (·) (1)

and transition probability density

Xt|(Xt−1 = xt−1) ∼ fθ (·|xt−1) (2)

w.r.t to a dominating measure, e.g. Lebesgue, denoted
abusively dxt. The observations {Yt}t≥1 ∈ YN are assumed

to be conditionally independent given {(Xt)}t≥1, with
common conditional probability density

Yt| (Xt = xt) ∼ gθ ( ·|xt) (3)

w.r.t. to a dominating measure denoted dyt.

In settings in which the parameter vector, θ, is known a
priori the remaining inferential problem is one of filtering
and smoothing: deducing the conditional distribution of
the latent state sequences given the observations received.
Such inference typically proceeds via the conditional dis-
tribution of the latent sequence given the parameter value
and the observed data: pθ(x1:t|y1:t). These and related in-
ferential tasks are computationally challenging, and except
for a small number of systems with convenient analytical
structure, it is necessary to resort to numerical methods.
Particle filters are iterative Monte Carlo algorithms which
combine importance sampling and resampling techniques,
propagating a weighted sample from one iteration to the
next so as to provide an empirical approximation of each
distribution in turn. Such methods date back to Gordon
et al. (1993); see Doucet and Johansen (2011) for an
overview of the numerous developments since then.

Within this parametric framework, the problem of systems
identification is one of parameter inference: within the
specified model class, which parameter vector θ provides
the best description of the system, given the observations
available thus far? A recent overview of methods available
to address this problem is provided by Kantas et al.
(2015). Here we focus upon the particular approach of
Particle Markov chain Monte Carlo (PMCMC), developed
by Andrieu et al. (2010)

PMCMC employs particle methods within MCMC to up-
date the latent state sequence (either using Metropolis-
Hastings or Gibbs-Sampler type updates). For this strat-
egy to work reliably, it is necessary for the particle filter to
behave well — providing good estimates of the marginal
likelihood in particular — for all values of the parameter
vector within the support of the posterior distribution.
The algorithm proposed below aims to provide a particle
filter robust enough to perform well in a wide variety of
situations with minimal application-specific tuning.

Particle methods can “lose track” of the current state
when applied to data sequences which are unlikely under
the assumed model. Such a scenario can arise when the
model imperfectly describes the real world system under
study (perhaps a step change in the latent state occurs
in reality, but cannot be described by the model, or
perhaps an outlying observation which would be extremely
improbable under the model is obtained), and even if the
model is perfect, if the wrong parameter value is assumed
such a situation can arise — if, e.g., the variance of the
observation noise is dramatically underestimated.

Although the stability properties of the filter can be such
that a particle filter can recover from this problem (see,
e.g., Del Moral (2004) for a thorough exposition of these
forgetting properties and their use in controlling the ap-
proximation error of particle filters), this phenomenon can



have a substantial influence on the approximation of the
smoothing distribution and, indeed, upon the approxima-
tion of the marginal likelihood.

A natural strategy is to incorporate information from
subsequent observations into the proposal distribution.
The first step towards this strategy is the use of a good
approximation of the locally-optimal proposal distribu-
tion p(xt|yt, xt−1) within the particle filter (Doucet et al.,
2000), followed by the adoption of the auxiliary particle
filter approach (Pitt and Shephard, 1999). These methods
can improve the behaviour of particle filters, sometimes
substantially, but don’t allow information from observa-
tions beyond time t to influence the proposal at time t.
In settings in which some slight lag between observation
and estimation is permissible, it is possible to make use
of block-sampling strategies (Doucet et al., 2006) or the
closely-related lookahead methods (Lin et al., 2013).

The use of tempering to allow difficult inference problems
in which the prior and posterior are substantially different
within sequential Monte Carlo is common (Neal, 2001; Del
Moral et al., 2006b). Its use in particle filtering settings,
however, has to the best of our knowledge been restricted
to gradually introducing individual observations (Godsill
and Clapp, 2001) — and the approach advocated by
(Liu, 2001, p73–74) in which resampling is done using
a transformation of the importance weights with residual
weights retained after resampling is of a similar character.

The approach developed here employs tempering strate-
gies to emulate the block-sampling particle filter without
recourse to carefully designed proposal distributions.

2. METHODOLOGY

2.1 Block-Tempered Particle Filters

We seek to develop particle filters which are robust to
parameter misspecification: we wish to be able to apply
the algorithm to obtain good approximations of quanti-
ties associated with the model for all parameter values,
regardless of whether these values are well supported
by the data. In addition to the obvious desirability of
such robustness, it is necessary in the PMCMC context
to obtain such estimates. Our motivation is to develop
particle “filters” suitable for incorporation within a PM-
CMC algorithm and as such our main objective is to
provide the best possible approximation of the normal-
ising constant (and hence marginal likelihood; noting that
p(y|θ) =

∫
p(y|x, θ)p(x|θ)dx) for given parameter values

for a data sequence over some fixed (discrete) time interval
[[1, T ]] := {1, . . . , T}.
In order to provide greater robustness — without requiring
the construction of near-optimal proposal distributions,
perhaps in a block-sampling context, which is realistically
possible in only a small proportion of HMMs — we
consider a generic strategy which allows information about
the model which is available to be employed but requires
only that we can evaluate the transition density and
likelihood pointwise up to a normalizing constant.

The general idea is to use the two degrees of freedom
provided by the sequential importance resampling frame-
work within which particle methods exist: to produce a

sequence of distributions which is more regular and varies
more slowly than the natural sequence provided by the
filtering distributions, {pθ(x1:t|y1:t)}Tt=1, and to use pro-
posal distributions which allow us to properly explore the
support of each of these distributions in turn. Motivated by
the good theoretical properties of block-sampling (Doucet
et al., 2006), we propose to use tempered MCMC tran-
sitions in order to update blocks of variables gradually.
In contrast to applying these MCMC transitions within
a simple particle filter, the proposed strategy introduces
the influence of each observation gradually, allowing the
filter to adapt to improbable observations before fully
incorporating their contribution to the likelihood within
the importance weights. In doing this, we aim to ensure
that the successive distributions from which the algorithm
samples are always close enough to one another (in χ2-
distance, say) to allow for good approximation of their
relative normalising constants.

For definiteness, we consider a collection of distributions
with densities of the form (with t ∧ T := min(t, T )):

πθt,r(x1:t∧T ) =µθ(x1)β
1
(t,r)gθ(y1|x1)γ

1
(t,r) ·

T∧t∏
s=2

fθ(xs|xs−1)β
s
(t,r)gθ(ys|xs)γ

s
(t,r) , (4)

where {βs(t,r)} and {γs(t,r)} are a collection of [0, 1]-valued

variables defined for all s ∈ [[1, T ]], r ∈ [[1, R]] and t ∈
[[1, T ′]], with T ′ = T + L for some R,L ∈ N. These
are essentially sequences of tempering parameters. The
algorithm proceeds for T ′ iterations. During iteration t it
iterates through R steps to approximate the distribution
πθt,r over x1:t∧T . γs(t,r) determines the influence that the

time s observation has during iteration t, step r of the
algorithm and βs(t,r) plays a similar rôle for the density of

the transition from time s−1 to s during that algorithmic
iteration. βs(t,r) and γs(t,r) are each non-decreasing, both in

r for every valid s, t and in t for every valid r, s. Typically,
as one wishes to gradually introduce the influence of
observations in the order in which they arrive, one would
expect the collections to be non-increasing in s and subject
to the constraints that both collections take the value 1 for
all r when s < t−L and the value 0 for any r when t < s.
Note that L and R are each design parameters, with the
lag parameter, L, specifying the size of blocks over which
the influence of each observation is introduced and the
second parameter, R, the number of intermediate steps of
the algorithm performed for each observation.

Some simple possibilities for the tempering strategies in-
clude tempering both transition and observation densities
smoothly over a window of length L, setting

βs(t,r) = γs(t,r) =

(
1 ∧ R(t− s) + r

RL

)
∨ 0 (5)

or tempering only the observation density over such a
window, using

βs(t,r) =I{s ≤ t} γs(t,r) =

(
1 ∧ R(t− s) + r

RL

)
∨ 0, (6)

where I{s ≤ t} takes the value 1 if {s ≤ t} and 0
otherwise. Note that setting βs(t,r) = I{s ≤ t} and γs(t,r) =

I{s < t} + rI{s = t}/R recovers the simple likelihood-



tempered particle filter, with the influence of observation
t introduced over R MCMC steps during iteration t.

It should be noted that many variations of this basic struc-
ture are possible and might find application in particular
problems. A more general treatment leads to substantial
increases in notational complexity, but requires essentially
the same argument as that presented here and so we
restrict ourselves to this case in the interests of parsimony.

Algorithm 1 provides a statement of a simple generic
algorithm which employs tempering within SMC, a block-
tempered particle filter (BTPF). It can be viewed as a
sequence of importance reweighting steps followed by the
application of MCMC kernels which preserve the distri-
bution targeted at each step of the algorithm in the spirt
of generalised importance sampling (Robert and Casella,
2004), but a different interpretation will be provided be-
low. Although our motivation is controlling the fluctua-
tions of the normalising constant estimate with PMCMC
in mind, it would be possible to use this algorithm as an
alternative particle filter in many settings.

Algorithm 1 Block-Tempered Particle Filter

Initialization: Set t← 1; r ← 1
(1) Sample Xi

(1,1) ∼ q1
(2) Weight W i

(1,1) ∝ π(1,1)(X
i
(1,1))/q1(Xi

(1,1))

(3) For r = 2 : R:
(a) Resample from {W i

(1,r−1), X
i
(1,r−1)}

N
i=1 to ob-

tain {1/N, X̃i
(1,r)}

N
i=1

(b) Weight W i
(1,r) ∝ π(1,r)(X̃

i
(1,r))/π(1,r−1)(X̃

i
(1,r))

(c) Sample Xi
(1,r) ∼ K(1,r)(X̃

i
(1,r), ·)

(4) Set Xi
(1,R) = Xi

(1,R).

Iteration: Set t← t+ 1; r ← 1
(1) Resample from {W i

(t−1,R),X
i
(t−1,R)}

N
i=1to obtain

{1/N, X̃i
(t,1)}

N
i=1

(2) If t ≤ T :

(a) Sample Xi
(t,1),t ∼ qt(·; X̃

i
(t,1))

(b) Set Xi
(t,1) =

(
X̃i

(t,1), X
i
(t,1),t

)
(3) Weight

W i
(t,1) ∝

π(t,1)(X
i
(t,r))

π(t−1,R)(X̃
i
(t,r))qt(X

i
(t,1); X̃

i
(t,1))

(4) For r = 2 : R:
(a) Resample from {W i

(t,r−1),X
i
(t,r−1)}

N
i=1 to ob-

tain {1/N, X̃i
(t,r)}

N
i=1

(b) Weight W i
(t,r) ∝ π(t,r)(X̃

i
(t,r))/π(t,r−1)(X̃

i
(t,r))

(c) Sample Xi
(t,r) ∼ K(t,r)(X̃

i
(t,r), ·)

Notes:
(1) The index i is a dummy index identifying a particular

particle; each line must be carried out for every i ∈
[[1, N ]].

(2) qt are importance sampling proposal distributions.
(3) K(t,r) are π(t,r)-invariant Markov kernels (which need

not be ergodic and which are typically at least par-
tially degenerate, updating only states xt−L:t).

As the distributions targeted by this class of SMC algo-
rithms do not (in general) coincide with the sequence of
filtering distributions, a little extra work is required in
order to obtain online filtering estimates. At the end of
an iteration of the algorithm (i.e. following step 4 of Algo-
rithm 1), {W i

(t,R),X
i
(t,R)}

N
i=1 is a sample weighted to target

π(t,R) and it is reasonable to use the associated weighted
empirical measure to approximate this distribution. The
filtering distribution itself can be approximated with the
reweighted empirical measure:

p̂N (dx1:t∧T |y1:t∧T ) =

N∑
i=1

W̃tδXi
(t,R)

(dx1:t∧T )

where the weightings are given by

W̃ i
t ∝W i

(t,R)

p(Xi
(t,R)|y1:t)

π(t,R)(X
i
(t,R))

,

N∑
i=1

W̃ i
t = 1.

Note that these importance weights are readily calculated
when using the sequence of distributions described by
Equation 4, and in particular:

p(x1:t∧T |y1:t)
π(t,R)(x1:t∧T )

∝µθ(x1)1−β
1
(t,R)gθ(y1|x1)1−γ

1
(t,R) ·

T∧t∏
s=2

fθ(xs|xs−1)1−β
s
(t,R)gθ(ys|xs)1−γ

s
(t,R) ,

where we’d ordinarily expect many of the βs(t,R) and γs(t,R)

values to be identically 1, perhaps for all s < t − L as
discussed above, leading to further simplification. Expecta-
tions with respect to the filtering/smoothing distributions
can then be approximated by the expectation with respect
to this weighted random measure.

We can justify Algorithm 1 a little more formally as an
instance of an SMC sampler in the sense of Del Moral et al.
(2006b). Such samplers provide, iteratively, collections
of weighted samples from a sequence of distributions
{πn}nmax

n=1 over essentially any random variables on some
measurable spaces (En, En), by constructing a sequence
of auxiliary distributions {π̃n}nmax

n=1 on spaces of increasing
dimensions,

π̃n(dx1:n) = πn(dxn)

n−1∏
s=1

Ls(xs+1, dxs), (7)

where the sequence of Markov kernels {Ls}n−1s=1 , termed
auxiliary kernels, is formally arbitrary but critically influ-
ences the estimator variance. Standard sequential impor-
tance resampling algorithms can then be applied to the
sequence of synthetic distributions, {π̃n}nmax

n=1 .

For given values of R and T ′, we define the sequence of
extended target distributions to be:

π̃θn(dx1:n) := πθ(tn,rn)(dxn)

n−1∏
s=1

Ls(xs+1, dxs),

where the sequences rn and tn are defined as:

tn =

⌊
n− 1

R

⌋
+ 1

rn =(n− 1 mod R) + 1,

we identify xn in this sequence with x(tn,rn) in the multi-
index formulation, the forward kernels are the same pro-



posal distribution / MCMC kernels as specified in Algo-
rithm 1:

Kn(x, dx′) =


δx(dx′1:tn−1

)qtn(dx′tn ;x)
rn = 1,
tn ≤ T

K(tn,rn)(x, dx
′) otherwise

and the auxiliary (or backward) kernels are:

Ln(x, dx′) =

 δx1:tn−1
(dx′)

rn = 1,
tn ≤ T

KTR
n (x, dx′) otherwise

,

where KTR
n denotes the time-reversal of Kn with respect

to its own invariant distribution, π(tn,rn). Note that this
coincides with carrying out a standard (state-extending)
sequential importance resampling step whenever a new
observation is introduced and employing the time-reversal
kernel associated with the MCMC kernel used in the
forward direction at other steps. See Del Moral et al.
(2006b) for further details.

Remark 1. It should be understood that much of the
apparent degeneracy induced by this representation can
be eliminated at the expense of slightly more cumbersome
notation (and doing so can be essential if one wishes to
employ backward (Whiteley, 2010) or ancestor (Lindsten
et al., 2012) sampling within a particle Gibbs framework;
see Finke et al. (2014) for an example in a slightly more
complicated scenario). However, in the current setting the
main barrier to overcome before such an approach could
be employed is the partial degeneracy resulting from the
MCMC transitions: Metropolis-Hastings type moves will
inherently have positive probability of rejection for at least
some state values and consequently introduce non-trivial
dependence between the value taken by a particle during
iteration t and t + 1. In this context other strategies to
improve behaviour may be more readily applicable.

2.2 Block-Tempered Particle Filters for PMCMC

Although it is well known that the PMCMC approach is
not limited to parameter estimation for HMMs and that
quite general SMC algorithms can be embedded within
MCMC algorithms using this framework, the vast majority
of the PMCMC literature, particularly that for parameter
estimation in HMMs, employs relatively straightforward
particle filters. A notable exception is the case in which the
likelihood can take the value zero in which developments
of the Alive particle filter have proved fruitful (Jasra et al.,
2013; Persing and Jasra, 2014). There has also been some
work using other SMC algorithms in different contexts
(e.g. Finke et al. (2014); Jasra et al. (2014)), and some
effort has gone into improving the MCMC component of
PMCMC (e.g. Dahlin et al. (2014)) but when dealing with
inference for HMMs standard particle filters are generally
employed. A recursive variant of PMCMC in which the
MCMC algorithm is replaced with a corresponding SMC
algorithm was also introduced by Chopin et al. (2013).

It has been reported that vanilla particle filtering al-
gorithms can experience difficulties when some a priori
plausible parameter values are inconsistent with the ob-
served data, e.g. Owen and Gillespie (2015, Section 4.2.1).
However, although it is known that more sophisticated
particle filtering strategies can be incorporated within

the PMCMC framework by representing them as simple
SIR algorithms e.g., Andrieu et al. (2010, Section 4) who
suggest employing the representations of Doucet and Jo-
hansen (2011), little use appears to have been made of
these strategies in practice. The simplest such extension is
to the auxiliary particle filter Pitt and Shephard (1999),
which can be viewed as a standard particle filter which
targets a sequence of auxiliary distributions (Johansen
and Doucet, 2008), as exploited in a PMCMC context by
Dahlin et al. (2014) allowing an additional degree of design
freedom.

The use of the more general formulation given in (Andrieu
et al., 2010, Section 4), rather than the form specialized
to the natural HMM implementation earlier in that pa-
per, demonstrates that essentially any SIR algorithm can
be used within a PMCMC context. The SMC sampler
formulation of the algorithm described in the previous
section demonstrates that it is a SIR algorithm with final
target distribution π̃θR(T+L). Thus we can employ Algo-

rithm 1 within a PMCMC algorithm, with parameter prior
p(θ), knowing that the invariant distribution admits a
marginal proportional to p(θ)π̃θR(T+L)(x1:R(T+L)), which

by construction can be further marginalized to obtain a
distribution proportional to p(θ)πθ(T+L,R)(xR(T+L)), i.e.

the Bayesian posterior distribution of interest.

2.3 Extensions and Outstanding Questions

Numerous extensions of the technique described above
are clearly possible. Indeed, most of the improvements to
standard particle filters can also be employed within the
setting described, although some care is required to ensure
the validity of the resulting PMCMC algorithm.

We have focussed on particle variants of Metropolis-
Hastings type algorithms. It would also be of interest to in-
vestigate the potential of these ideas in the Gibbs sampling
context noting the need to develop efficient conditional
SMC algorithms in this context.

One obvious question is how best to tune L and R.
In a block-sampling setting the optimal lag is closely
related to the timescale on which the system forgets
and one can use that characteristic timescale to specify
L. R is then set to the smallest number which allows
adequate mixing based upon a pilot study. However, in
the present setting these mixing properties will vary with
the values of the parameter, θ. In the simplest case, in
which L and R are state-independent constants, this leads
to a compromise between values large enough to lead to
adequate performance in difficult regions of the parameter
space but not so large that gains in this region are
overwhelmed by increased computational costs elsewhere.
It would be still more interesting to develop “adaptive”
versions of the algorithm, in the spirit of Jasra et al.
(2014), in which the degree of tempering adapts to the
level required to obtain acceptable performance.

Similarly, the choice and specification of annealing sched-
ule in this algorithm provides a considerable degree of flex-
ibility, but developing good generic (or, better, adaptive)
approaches to this specification will be essential if such a
strategy is to be widely applicable.



3. NUMERICAL ILLUSTRATION

Space does not permit an extensive numerical study and
we content ourselves with demonstrating certain key fea-
tures of the proposed algorithm. We do not consider its
incorporation into PMCMC but instead demonstrate the
quality of the marginal likelihood estimates provided by
the core particle filtering algorithm. We illustrate the
method on a simple linear Gaussian model for which it is
possible to compute analytically the filtering and smooth-
ing distributions, together with the marginal likelihood of
any given parameter vector for an observed data sequence,
allowing an absolute assessment of performance.

We consider the case in which θ = (σf , σg), setting

fθ(x
′|x) =N (x′;x, σ2

f ); gθ(y|x) =N (y;x, σ2
g). (8)

To compare the behaviour of bootstrap and block-
tempered particle filters when there is a substantial mis-
match between the model and the observed data (en-
capsulating the key feature of both data with outlying
observations, and the case of model misspecification, in-
cluding the use of parameters inconsistent with the data),
we consider the data sequence shown in Figure 1a. Values
of σf = σg = 1 were used for all computations. Exact
filtering and smoothing distributions were obtained via
Kalman-filtering and smoothing techniques and are shown
in Figure 1b — illustrating the clear mismatch between the
two at time 74 in particular.

Algorithm 1 was implemented using variable-at-a-time
random walk Metropolis with unit proposal variance,
scanning back L steps from the final state value currently
present (i.e. running from time T ∧ t to T ∧ t − L +
1). Results are summarized in Figure 2 which shows in
panel (a) the empirical mean and standard deviation
of estimates obtained from 50 independent replicates of
various combinations of N , R and L and in panel (b) the
corresponding estimated relative (normalized by dividing
by the true value) root mean squared error (RMSE) of
these estimates.

A value of R = 0 indicates that no MCMC moves were
used (and corresponds to the standard bootstrap particle
filter when L = 1). The ordinal axis shows a proxy for
computational cost, N(1 +RL). Throughout the range of
costs considered, the bootstrap particle filter and resample
move variant (L = 1, R = 1) are dominated by a particle
filter with tempered transitions (L = 1, R > 1) and, a
fortiori, the BTPF (L > 1) in this setting: the only red
(L = 1) points in Figure 2b not to have at least one blue
(L = 3) or purple (L = 5) point below it and to their left
have relative errors greater than 2.5.

4. CONCLUSIONS

The BTPF is an approach to particle filtering that aims
to be robust to model misspecification. It intended for
use within PMCMC algorithms and might also find ap-
plications in settings in which certain observations are
highly informative and carry significant information about
the state sequence several time steps in advance. It is
our intention to stress that algorithms more sophisticated
than simple bootstrap particle filters are applicable in a
PMCMC context and that, when poor mixing is observed

and it is not feasible to increase the number of parti-
cles sufficiently to address it, more sophisticated filtering
strategies such as the BTPF should be considered.

Numerous questions about, and possible extensions to,
the BTPF emerge, as outlined in Section 2.3, suggesting
several avenues for further work.
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(a) Data sequence: generated from the model described in (8) with
σf = σg = 1 and perturbed by subtracting 10 from all observations
received at or after t = 75.
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the extent of ±1 standard deviation intervals.

Fig. 1. Data sequence and exact filtering and smoothing distributions.
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(a) Variability of marginal likelihood estimates (empirical mean ±1
standard deviation) obtained from 500 runs of various particle fil-
tering algorithms shown against computational cost. The horizontal
line shows the true value.
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(b) Empirical relative RMSE of the estimated marginal likelihood
obtained from 500 runs with each configuration (algorithms for
which the mean estimate of Z was less than one fifth of the true
value are not plotted). All logarithms are base 10.

Fig. 2. Illustration of the performance of marginal likelihood estimation based on a variety of particle filters.
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