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Abstract

Energetic ion dynamics play an important role in magnetic confinement fusion
(MCF) plasmas, as well as in the solar wind. In the former case, energetic ions such as
neutral beam injection (NBI) ions and fusion-born alpha-particles, can interact with global
modes in tokamak plasmas leading to instabilities that might result in loss of confinement
and energy. In the latter case, ion dynamics must be taken into account in order to explain
in situ and remote observations of heating of the solar wind, which show the occurrence of
anisotropic heating of ions, as well as magnetohydrodynamics turbulence and intermittency
all at the same time.

In this thesis we address two scenarios in plasma physics where ion dynamics play a
key role modifying the mass and energy transport in the plasma, specifically, ion cyclotron
emission (ICE) in MCF plasmas, and preferential ion heating due to intermittent magnetic
fields in the solar wind. ICE results from a radiative instability, probably the magnetoacous-
tic cyclotron instability (MCI), driven by energetic ions in MCF plasmas. Understanding
the underlying physics of ICE is important for the exploitation of ICE as a non-perturbative
diagnostic for confined and lost alpha-particles in deuterium-tritium (D-T) plasmas in fu-
ture thermonuclear fusion reactors [McClements et al., Nucl. Fusion, 55, 043013 (2015);
Dendy and McClements, Plasma Phys. Controlled Fusion, 57, 044002 (2015)]. On the other
hand, preferential ion heating in the solar wind, observed as the occurrence of an ion beam
which drifts along the background magnetic field with a velocity close to the local Alfvén
speed, is still an open problem. Despite the large amount of studies conducted in this issue,
none of them included intermittency self-consistently. Therefore, the relationships between
preferential ion heating and intermittency have remained unknown, until now.

We study in detail the previously mentioned scenarios through numerical simula-
tions using the hybrid approximation for the plasma, which treat ions as kinetic particles
and electrons as a neutralizing massless fluid. Our hybrid simulations of the MCI confirm
predictions of the analytical theory of the MCI, and recover some features of ICE as ob-
served in D-T plasmas in JET. Furthermore, by going deep into the nonlinear stage of the
MCI, we recover additional features of ICE which are not predicted by the linear theory of
the MCI but are present in the measured ICE signal, resulting in a good match between our
simulation results and the measured ICE intensity in JET. On the other hand, we present
the first study of preferential ion heating in the fast solar wind including intermittent elec-
tromagnetic fields in a self-consistent way. We find that the temporal and spatial dynamics
of the mechanisms driving preferential ion heating in our simulations (gyrobunching and ion
trapping by the electric field), the ion temperature anisotropy T⊥/T‖ (perpendicular tem-
perature/parallel temperature), and the degree of correlation between velocity and magnetic
field fluctuations, show strong dependence on the level of intermittency in the electromag-
netic fields.
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Chapter 1

Introduction

Plasma, the so-called fourth state of matter, is a system that consist of interpene-

trating populations of positive ions and electrons, and is charge neutral as a whole.

In a plasma, the kinetic energy of collisions exceed binding energy of electrons to

nuclei. Unlike liquids and solids where the interactions between atoms are short-

ranged, that is, atoms only interact with their nearest neighboring atoms; in plasmas

there are large-range interactions which allow charged particles to interact with the

entire plasma through electromagnetic fields. The plasma is very sensitive to exter-

nal perturbations, i.e. to external electric and magnetic fields, and to changes in

its parameters such as number density and temperature. As a result of these per-

turbations, the plasma exhibits complex behavior and collective phenomena such as

oscillations and the generation of coherent structures in physical space, and under

certain conditions the plasma can become unstable leading to the generation of ex-

ponentially growing electromagnetic fields that significantly modify the transport of

mass and energy within the plasma.

These rich and complex dynamics of the plasma can be studied using different

levels of description, which include different levels of detail in their description of the

plasma. These levels of description for the plasma are presented and compared in

Sec. 1.1. Then, we introduce the hybrid approximation for the plasma in Sec. 1.2, the

level of description for the plasma that we use in our studies of energetic ion effects

on fusion and solar-wind plasmas. Finally, in Secs. 1.3.1 and 1.4.3 we introduce

some scenarios relevant to fusion plasmas of the JET tokamak experiment and to

solar-wind plasmas where energetic ions play an important role modifying the whole

plasma dynamics.
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1.1 Levels of description for the plasma

In general, the plasma dynamics can be described using different levels of detail,

depending on the temporal and spatial scales at which the phenomena under study

occurs. For example, we might use a level of description for the plasma that take into

account the dynamics of individual charged particles constituting the plasma when

studying plasma oscillations in a vacuum tube in the laboratory with characteristic

time scales up to a few milliseconds, or we might use a level of description for the

plasma that treats the whole plasma as a magnetised fluid when studying plasma

phenomena occurring at spatial scales as large as the solar system and temporal

scales ranging from hours to days. Here, the former level of description for the

plasma is known as the kinetic theory for plasmas, and the latter is know as the

ideal magnetohydrodynamics (MHD) theory for plasmas. These two theories are

the two extreme levels of description of the plasma used nowadays. In the kinetic

theory for plasmas the dynamics of charged particles are governed by the Lorentz

force

dxl
dt

= vl , (1.1)

ml
dvl
dt

= eZl (E + vl ×B) , (1.2)

where xl and vl are the position and velocity of trajectories of each charged particle

of species l, which can be electrons or ions, ml and Zl are their corresponding mass

and atomic number, e is the magnitude of the electron charge, and E and B are the

vector electric and magnetic fields, respectively. In this theory, the electromagnetic

fields are evolved self-consistently through the complete set of Maxwell’s equations:

∇ ·E =
σ

ε0
, (1.3)

∇ ·B = 0, (1.4)

∇×E = −∂B
∂t

, (1.5)

∇×B = µ0

(
J + ε0

∂E

∂t

)
, (1.6)

where σ is the total charge density, J is the total current density vector, and ε0 and

µ0 are the vacuum electric permittivity and magnetic permeability, respectively.

Solving the Eqs. (1.1) and (1.2) is equivalent to solve a continuity equation in
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phase space, the so-called Vlasov equation, of the probability distribution function

fl(x,v, t) for each plasma species l,

∂fl
∂t

+ v · ∇xfl + ql (E + v×B) · ∇vfl = 0, (1.7)

where the subindex l can refer to either electrons (e), or some ion species (j), ql is

the electric charge of species l; qe = −e for electrons, and qj = eZj for ion species j.

In addition, ∇x = x ∂
∂x + y ∂

∂y + z ∂
∂z is the Cartesian gradient operator in physical

space, and ∇v = vx
∂
∂vx

+ vy
∂
∂vy

+ vz
∂
∂vz

is the gradient operator in velocity space.

Eq. (1.7), together with Eqs. (1.3) to (1.6) are called the Vlasov-Maxwell equations,

and represent an alternative formulation of the kinetic theory of the plasma that

can be used to introduce the equations of the MHD theory for plasmas.

The ideal MHD theory describes the plasma as a magnetised single fluid

whose dynamics are given by a set of equations derived from the Vlasov equations

for electrons and ions. In this level of description it is assumed that the plasma is

quasi-neutral, that is, the electric charge density σe = −ene is everywhere equal in

magnitude to the ion charge density σi =
∑N

j=1 eZjnj . Here the sum is over the

N different ion species present in the plasma. The equations of the MHD theory

establish relations between the first three statistical moments of the electron and ion

distribution functions: the number density nl, the bulk velocity ul, and the pressure

rank-2 tensor P̂l, which are defined as:

nl(x, t) =

∫
fl(x,v, t)d

3v, (1.8)

ul(x, t) =
1

nl(x, t)

∫
vfl(x,v, t)d

3v, (1.9)

P̂l(x, t) = ml

∫
(v −Um) (v −Um) fl(x,v, t)d

3v, (1.10)

where the subindex l refers to either electrons, or any ion species, ml is the mass of

species l, and Um is the plasma mass flow velocity defined as:

ρmUm = meneue +
N∑
j=1

mjnjuj , (1.11)

where ρm = mene+
∑N

j=1mjnj is the plasma mass density. In order to calculate the

MHD equations for the plasma we first integrate Eq. (1.7) over the entire velocity

space to obtain a continuity equation for electrons and each ion species

3



∂nl
∂t

+∇x · (nlul) = 0. (1.12)

Next, we multiply each continuity equation by ml and sum over electrons

and all ions species to obtain the mass continuity equation for the plasma:

∂ρm
∂t

+∇x · (ρmUm) = 0. (1.13)

If we instead multiply Eq. (1.12) by the electric charge ql = eZl, qe = −e for

electrons, and sum the resulting equation of ions to that of electrons, we obtain the

electric charge continuity equation, also known as the current conservation equation,

for the case when there are no sources or sinks of electric charge. Using the quasi-

neutrality condition for the plasma σe+σi = 0, where σi =
∑N

j=1 qjnj , this equation

becomes

∇ · J = 0, (1.14)

where J = en (Ui − ue) is the total current density, n refers to the total number

density:

n ≡ ne =
N∑
j=1

Zjnj , (1.15)

and we have defined the total ion’s bulk velocity Ui as:

Ui =

∑N
j=1 (Zjnjuj)∑N
j=1 (Zjnj)

. (1.16)

To obtain the second MHD equation of the plasma, the plasma momentum

equation, first we multiply the Vlasov equation by mlvl and integrate it over the

entire velocity space. The resulting momentum equation for electrons and ions is:

∂ (mlnlul)

∂t
+∇x · P̂l +∇x · (mlnlUmUm)− σl (E + ul ×B) = 0, (1.17)

where P̂l is the pressure tensor of species l defined in Eq. (1.10). After substitut-

ing Eq. (1.12) into Eq. (1.17), we sum all the resulting equations for the different

plasma species l, and rearrange the terms in order to obtain the following momentum

equation for the plasma:

4



ρm

(
∂Um
∂t

+Um · ∇xUm
)

= −∇ · P̂ + J ×B, (1.18)

where P̂ = P̂e + P̂i is the total plasma pressure. In the ideal MHD theory it is

assumed that the electrons have plenty of time to follow the ion dynamics and reach

thermal equilibrium. This assumption is equivalent to neglecting electron inertial

effects, that is, the first term of Eq. (1.17) for electrons becomes zero. Substitut-

ing Eq. (1.12) into this equation and rearranging terms we obtain the following

generalised Ohm’s law:

E = −ue ×B −
1

en
∇x · P̂e. (1.19)

Substituting ue in terms of the total current density J and the total ion

bulk velocity Ui into Eq. (1.19), along with Ampere’s Law in its Darwin limit

(∂E/∂t→ 0), we obtain the following form of the generalised Ohm’s law:

E =
1

µ0en
(∇x ×B)×B −Ui ×B −

1

en
∇xP̂e. (1.20)

Generally, it is assumed that the plasma pressure P̂ in Eq. (1.18) is isotropic,

that is, the pressure tensor becomes a scalar pressure P , which obeys an equation

of state. The two common models for the plasma pressure P are the adiabatic law

d

dt

(
P

ργm

)
= 0, (1.21)

and the isothermal law

P = n (Te + Ti) , (1.22)

where γ = (2 + N )/N , with N being the number of degrees of freedom of the

plasma, and Te and Ti are the constant electron and ion temperatures.

In this way, the ideal MHD theory for plasmas is defined by the set of

Eqs. (1.13), (1.14), (1.18), (1.20) and (1.5), along with an equation of state for

the plasma pressure, which might be either Eq. (1.21), or Eq. (1.22). At this point

it is important to note that, contrary to the kinetic theory, in the MHD approxima-

tion for the plasma all the detailed information of the distribution of electrons and

ions in velocity space is lost.

So far, we have presented two extremes in levels of description for the plasma,

namely, the kinetic theory and the ideal MHD theory. As expected, there are other

levels of description of the plasma in-between these two, each including different

5



levels of detail for describing the dynamics of the plasma. Among the existing levels

of description typically used to study fusion and solar-wind plasmas are:

Kinetic theory

This level of description is well suited for studying plasma phenomena oc-

curring at time scales comparable to and below the electron gyro-period, and

spatial scales where charge separation plays a key role in the plasma dynamics.

This theory evolves the full electron and ion probability distribution function

f(x,v, t), together with the full set of Maxwell’s equations.

Gyrokinetic theory

This level of description for the plasma is well suited for studying strongly

magnetised plasmas where the relevant time scales are larger than the elec-

tron and ion gyro-period, and the spatial scales of the small fluctuations of

the plasma parameters are comparable to the electron and ion gyro-radius,

but much smaller than the size of the plasma or the variation length-scale

of the equilibrium plasma parameters such as the background magnetic field

and the number density of the bulk plasma in a magnetically confined fu-

sion plasma, for example. In this theory the electron and ion dynamics are

divided into the fast gyro-motion of each plasma species, and their relative

slow drift motion along the magnetic field B. This allows us to simplify the

dynamics of the charged particles forming the plasma to the motion of their

gyro-centre in physical space R, together with the evolution of the parallel

(v‖) and perpendicular (v⊥) components of the gyro-centre velocity with re-

spect to the magnetic field direction [Hatzky et al., 2007; Barnes, 2009]. This

theory evolves the full set of Maxwell’s equations along with the gyro-centre

probability distribution function for each plasma species f(R, v‖, v⊥).

Hybrid theory (kinetic-fluid)

This level of description for the plasma is used to study plasma phenomena

where ions play an important role modifying the entire plasma dynamics. The

plasma phenomena that can be studied with the hybrid theory for the plasma

must occur at spatial scales comparable to the ion gyro-radius and temporal

scales comparable to the ion gyro-period [Winske and Omidi, 1993; Winske

et al., 2003]. Quasi-neutrality holds everywhere for this theory. The hybrid

theory for the plasma describes the full kinetic dynamics of ions, that is, evolves

the full ion probability distribution function f(x,v, t), and treat electrons as

a charge-neutralising massless fluid. The electric field is advanced through a

6



generalised Ohm’s law (Eq. (1.20)) and the magnetic field is advanced using

Faraday’s Law (Eq. (1.5)).

Multi-fluid theory

The multi-fluid theory for the plasma is well suited to study plasmas close

to thermodynamic equilibrium where the relevant temporal and spatial scales

are larger than the ion gyro-period, and larger than the ion gyro-radius, re-

spectively [Ofman, 2010]. In this level of description, quasi-neutrality holds

everywhere, the electrons are treated as a charge-neutralising massless fluid,

and each ion species is treated as a different fluid. The electric field is evolved

through a generalised Ohm’s law and the magnetic field is advanced using

Faraday’s Law.

Ideal MHD theory

This level of description for the plasma is well suited to study plasma phe-

nomena occurring at time scales well above the ion gyro-period and at spatial

scales well above the ion gyro-radius, for example, to study the propagation of

the solar wind through the solar system. As described in this section, the ideal

MHD theory treats the plasma as a single magnetised fluid, which dynamics

is given by a mass continuity equation (Eq. (1.13)), a momentum equation

for the plasma (Eq. (1.18)), and an equation of state for the plasma pressure.

The electric field is evolved through a generalised Ohm’s law and the magnetic

field is advanced using Faraday’s Law.

Further details to describe the plasma can be included in these theories; for

example, in the kinetic theory we might have included collisions between the different

plasma species, or we might have included an equation derived from the Vlasov

equation for evolving the full plasma pressure tensor P̂ in the MHD theory. Finally,

it is important to mention that there are other levels of description apart from

those mentioned above which, although are not widely used, might be employed to

study interesting scenarios in magnetically confined fusion plasmas. These theories

are the hybrid gyrokinetic-kinetic theory for the plasma [Lin et al., 2011], which

uses gyrokinetic theory for electrons and kinetic theory for ions, and the hybrid

gyrokinetic-fluid theory [Mishchenko et al., 2014], which uses gyrokinetic theory for

ions while electrons are treated as a fluid.

7



1.2 The hybrid approximation for the plasma

In this section we further discuss the hybrid approximation for the plasma introduced

in Sec. 1.1. This level of description for the plasma is specially well suited for

phenomena occurring about and above the ion inertial length and the ion gyro-

radius, and with a duration comparable to the ion gyro-period [Winske and Omidi,

1996; Clark et al., 2013b]. This approximation enables us to address evolution of

the plasma over longer time scales and larger spatial scales than the kinetic theory

for the plasma, and allows the existence of low-frequency kinetic electromagnetic

modes such as ion-Bernstein waves, ion-cyclotron waves and Alfvén waves.

The hybrid approximation for the plasma represents the different ion dis-

tributions as kinetic particles and the electrons as a charge-neutralising massless

fluid. In this approximation the ion dynamics are governed by the Lorentz force,

that is, Eqs. (1.1) and (1.2). On the other hand, the fluid electrons are modelled

as an isotropic and isothermal ideal gas, Pe = nTe, where n is the total number

density given by Eq. (1.15), and Te is the constant electron temperature. The elec-

tric (E(x, t)) and magnetic (B(x, t)) fields are linked by the generalized Ohm’s law

given by Eq. (1.20), and the magnetic field is advanced in time using Faraday’s law

(Eq. (1.5)).

The hybrid approximation for the plasma has been widely used to study

plasma phenomena relevant to space and solar-wind plasmas such as electromagnetic

instabilities driven by ion beams [Winske and Leroy, 1984; Mankofsky et al., 1987;

Akimoto et al., 1991; Winske and Omidi, 1992], the evolution of quasi-parallel shocks

at the earth’s bow shock [Thomas et al., 1990], magnetic reconnection [Krauss-

Varban and Omidi, 1995; Nakamura and Fujimoto, 1998; Yin and Winske, 2012],

the interaction of the solar wind with small comets in high Mach number flows

[Hopcroft and Chapman, 2001], and ion heating by Alfvén waves in solar wind

[Liewer et al., 2001; Araneda et al., 2009; Matteini et al., 2011; Maneva et al., 2013].

More recently, this approximation has been used to study perpendicular collision-

less shocks in laboratory plasmas [Clark et al., 2013a], as well as fusion plasma

phenomena such as the formation [Gingell et al., 2014] and evolution [Gingell et al.,

2012, 2013] of coherent filamentary structures, the so-called blobs, at the edge of

tokamak plasmas, and the occurrence of radiative instabilities driven by fusion-born

ions in deuterium-tritium fusion plasmas [Carbajal et al., 2014]. All these studies

have shown that the kinetic ion dynamics played an important role in modifying the

entire plasma dynamics; therefore, other levels of description that do not treat ions

kinetically would be inappropriate. The following sections present some scenarios
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in magnetically confined fusion plasmas and in solar wind plasmas where experi-

mental measurements and observations show the occurrence of phenomena in which

the kinetic effects of energetic ions play an important role. In Chapters 3 and 4

some of these scenarios are studied through numerical simulations using the hybrid

approximation for the plasma.
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1.3 Magnetically confined fusion plasmas

Thermonuclear fusion through the use of magnetically confined plasmas, the method

of achieving nuclear fusion by confining very hot plasmas (∼ 108 K or 10 keV) using

strong magnetic fields, represents the most promising option to exploit fusion energy

in the future to cover the increasing energy demand around the world. Extensive

experimental, theoretical and simulation work on this issue has been done during

the past half century, which has resulted in the design of three leading concepts for

experimental thermonuclear fusion reactors: tokamaks, spheromaks and stellarators.

All three concepts share some common features: using the fact that charged particles

stream along the magnetic field spiraling around the magnetic field lines, these three

concepts use strong magnetic fields to confine the hot plasma; however, the spatial

configuration of such fields is different in each case. Also, the shape of their vacuum

vessel where the plasma is kept confined by the strong magnetic fields is topologically

equivalent to a torus in all cases.

Tokamaks represent the most successful (and studied) concept of a modern

thermonuclear fusion reactor. This concept has been thoroughly studied in ma-

chines such as DIII-D, JT-60, Tore Supra, ASDEX-Upgrade, TFTR, and the Joint

European Torus (JET), which is the largest tokamak in operation nowadays. In

Fig. 1.1 we show a schematic representation of the main components of a tokamak:

the toroidal vacuum vessel, where the hot plasma (purple) is confined, the toroidal

magnetic field coils, which generate the main toroidal magnetic field (green), and

the external poloidal magnetic field coils, which generate the poloidal magnetic field

(green) used to shape and position the plasma in the vacuum vessel. At the centre of

the tokamak are the inner poloidal magnetic field coils which, through transformer

action, generate an electric current within the plasma (red arrow) that produces

additional poloidal magnetic fields that provide enhanced plasma confinement. The

toroidal and poloidal magnetic fields combine and produce a set of nested toroidal

surfaces of twisted magnetic field lines (yellow).

Theoretical calculations and experimental observations of the stability prop-

erties of tokamak plasmas have shown that by reducing the aspect ratio of a tokamak

A = R/a, where R and a are the major and minor radius of the toroidal plasma in

a tokamak, the stability of the plasma considerably increases. This result has been

used in the design of spheromaks such as START, NSTX and MAST spheromaks,

also known as spherical tokamaks, which have smaller aspect ratios (A ∼ 1.2) than

typical tokamaks (A ∼ 2.5). This is achieved by modifying the design of the toroidal

magnetic field coils. While in a tokamak, the toroidal magnetic field is produced by
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Figure 1.1: Schematic representation of a Tokamak. The very hot plasma (purple) is
confined by the twisted magnetic field (yellow) resulting from combining the toroidal and
poloidal magnetic fields, which are generated by external coils and the internal plasma
current (red arrow), which in turn is generated through transformer action by the inner
poloidal magnetic field coils. Source: Public relations department, Max Planck Institute for
Plasma Physics.

a series of individual ring-like magnets passing through the hole of the centre of the

reactor, in a spheromak the toroidal magnetic field is produced by a set of half-ring

shaped magnets connected to a central conductor post passing by the centre of the

reactor. This concept for a fusion reactor, though having good stability properties,

has not been studied as much as tokamaks.

On the other hand, stellarators are another fusion reactor concept that was

invented at the same time than tokamaks. Contrary to tokamaks where the poloidal

magnetic field is mainly produced by internal plasma currents induced by external

magnetic coils, in a stellarator the poloidal magnetic field is generated by exter-

nal helical magnetic coils placed around the vacuum vessel. Stellarators such as

HSX, Wendelstein 7-X and LHD have shown that this concept of a fusion reactor

possesses better plasma stability than tokamaks; however, their three-dimensional

nature makes them very complicated to design and model.

Furthermore, the way the plasma is generated varies from device to device, in

all cases the plasma must be initially heated by external means, for example, using

neutral beam injection (NBI) and external electromagnetic fields; this is necessary

to reach optimum temperatures at which fusion reactions start to occur. After this

initial stage, the fusion-born ions resulting from these fusion reactions are meant
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to provide all the plasma heating needed to achieve self-sustained nuclear burning,

the stage at which no external input power is needed to continue operating the

reactor. It is planned that the first generation of thermonuclear fusion reactors will

operate with a mix of deuterium-tritium as fuel. In this scenario the most probable

fusion reaction is that in which nuclei of deuterium and tritium fuse and produce

an alpha-particle and a neutron, that is,

D + T→ (3.56 MeV) He++ + (14.03 MeV) n. (1.23)

In the following sections we discuss some scenarios where the interaction be-

tween the 3.5 MeV fusion-born alpha-particles and the broad range of electromag-

netic waves occurring in magnetically confined fusion plasmas might lead to plasma

instabilities that not only modify the mass and energy transport in the plasma,

but also might be used to diagnose the evolution of the fusion-born alpha-particles

distribution in the plasma.

1.3.1 Fusion-born ion effects in magnetically confined fusion plas-

mas

In the last few years there have been significant advances in the detection and un-

derstanding of instabilities driven by energetic ions in magnetically confined fusion

plasmas. Most of these instabilities are Alfvénic in nature, and can be roughly

classified as: perturbative or frequency locked instabilities, and non-perturbative or

frequency sweeping instabilities [Sharapov et al., 2013]. In both cases, the energetic

particles excite unstable Alfvén modes through wave-particle interactions. However,

in the case of perturbative instabilities the energetic particles determine the expo-

nential growth rate of these unstable modes, but do not significantly affect their

properties, which are determined by the bulk plasma. In contrast, for the case of

non-perturbed instabilities all the properties of the unstable modes are determined

by the energetic particle distribution in phase space, which changes faster than the

plasma equilibrium.

Understanding the underlying physics of the frequency locked and frequency

sweeping instabilities in magnetically confined thermonuclear plasmas allow us to

infer the plasma parameters at which these instabilities occur. This means that

these instabilities can be used to diagnose some plasma parameters indirectly. This

is done, for example, in deuterium-tritium (D-T) plasmas of TFTR, where specific

plasma parameters and distributions of fusion-born alpha-particles are inferred by

identifying Alfvén cascade (AC) modes and toroidal Alfvén eigenmodes (TAEs)
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[Nazikian et al., 2003]. Fig. 1.2 illustrates examples of spectrograms of the magnetic

field in JET (panel a)) and MAST (panel b)). Panel a) shows the occurrence of

Alfvén modes in JET, namely, TAEs, excited by frequency locked (perturbative)

instabilities driven by ion cyclotron resonant heating (ICRH). Panel b) shows the

occurrence of chirping Alfvén modes driven by neutral beam injection (NBI) in

MAST. The properties of these latter Alfvén modes, such as their frequency, evolve

in time as the NBI energetic ions are rapidly redistributed in phase space. In

contrast, the properties of the TAEs in JET change much slower as the equilibrium

plasma bulk parameters evolve over time.

Figure 1.2: Examples of spectrograms of the magnetic field in JET and MAST. Panel a):
Spectrogram of the magnetic field in JET discharge #40329 showing (perturbative) ICRH-
driven TAEs. Panel b): Spectrogram of the magnetic field in MAST discharge #27177
showing (non-perturbative) chirping Alfvén modes driven by NBI energetic ions. Repro-
duced from Sharapov et al. [2013].

As previously mentioned, fusion-born alpha-particles will provide all the

plasma heating needed to achieve self-sustained nuclear burning in future ther-

monuclear fusion devices. In Thomas et al. [1998] and Thomas et al. [2001] the

authors studied in detail the electron and ion heating driven by fusion-born alpha-

particles during the DTE1 campaign of JET in 1997, where different mixtures of

D-T were used as sources of the NBI heating system. In these plasmas, instabilities

driven by energetic alpha-particles such as TAEs were not present [Thomas et al.,

1998], allowing a detailed study of the process of trapping and slowing down of

alpha-particles born within the core plasma, only in the presence of MHD instabil-

ities. The observed plasma heating by fusion-born alpha-particles was higher than

the theoretical predictions. This surprisingly efficient plasma heating still remains

unexplained. Knowledge about the distribution of alpha-particles in phase space

might shed some light into the mechanisms driving this heating by alpha-particles.
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No diagnostics for alpha-particles were available during this experiment.

Summarising, perturbative and non-perturbative instabilities driven by ener-

getic ions can be used to diagnose bulk plasma parameters and detailed information

about the distribution of these energetic ions in phase space. New and more pre-

cise diagnostics for this purpose are needed if we want to correctly predict and,

at a certain level, control the behaviour of fusion-born alpha-particles in the next

generation of thermonuclear fusion reactors. The next section introduces the ion

cyclotron emission (ICE), an electromagnetic instability driven by non-thermal dis-

tributions of fusion-born alpha-particles in deuterium-tritium plasmas with great

potential for being used to diagnose the evolution of the distribution of fusion-born

alpha-particles in future fusion reactors [McClements et al., 2015].

1.3.2 The Ion Cyclotron Emission

Fusion-born alpha-particles resulting from thermal D-T fusion (Eq. 1.23), will play

a key role in future magnetically confined plasmas. These ions must provide most of

the plasma heating required to achieve self-sustained nuclear burning. It is possible

that the efficiency of this heating process may be reduced, to some extent, by the

occurrence of velocity-space instabilities that take place on fast timescales, which

are shorter than the timescale on which the fusion-born particles deliver their energy

to the plasma through collisional processes [Heidbrink and Sadler, 1994]. For this

reason, it is essential to develop diagnostics to monitor the confinement and evolution

of the fusion-born alpha-particles in D-T plasmas of future thermonuclear fusion

reactors, such as ITER. As mentioned in Sec. 1.3.1, some instabilities driven by

energetic ions might be used to diagnose the plasma and to follow the evolution

of the distribution of energetic ions itself, given that there is a theoretical basis

that provides interpretation of such instabilities. A potential instability in this

category gives rise to the experimentally observed ion cyclotron emission (ICE).

This phenomenon involves the emission, from spatially localised regions of tokamak

plasmas, of intense suprathermal radiation which is spectrally peaked at sequential

ion cyclotron harmonics. This radiation appears to result from a collective instability

that is driven by a velocity distribution of energetic ions that approximates to a

drifting ring-beam, which can arise naturally, through drift orbit excursions, in

the outer edge plasma. ICE was the first collective radiative instability driven

by confined fusion-born ions that was observed in tokamak plasmas when Ohmic

heating and hydrogen neutral-beam injection (NBI) were used to heat the plasma

[Cottrell and Dendy, 1988; Schild et al., 1989]. Figure 1.3 shows the first detections

of ICE in pure deuterium JET plasmas.
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Figure 1.3: First detections of ICE in pure deuterium plasmas in JET. Panel a): ICE
power spectrum before (dashed line) and during (solid line) hydrogen NBI injection into a
pure deuterium limiter plasma in JET. Panel b): ICE power spectrum from three Ohmical
pure deuterium limiter plasmas in JET. Reproduced from Cottrell and Dendy [1988].

ICE was the only instability driven by confined fusion-born alpha-particles

that was observed both in JET and TFTR from deuterium-tritium plasmas [Cottrell

et al., 1993; Cauffman et al., 1995; Dendy et al., 1995; McClements et al., 1996,

1999]. In these tokamaks, the ICE intensity showed linear scaling with the measured

neutron flux and with alpha-particle concentration [Cottrell et al., 1993; Dendy

et al., 1995; McClements et al., 1996]. Figure 1.4 shows the scaling of properties

of the ICE intensity with neutron flux and alpha-particle concentration for pure

deuterium plasmas and D-T plasmas in JET.

During the first studies of ICE in JET, a strong correlation between ICE and

MHD activity was observed [Schild et al., 1989; Cottrell et al., 1993]. More recently,

ICE has been used in the DIII-D tokamak to diagnose energetic ion loss due to

MHD activity [Watson and Heidbrink, 2003; Heidbrink et al., 2011]. This suggests

that ICE might be exploited as a complementary diagnostic for MHD activity, as

well as for fusion-born alpha-particle dynamics, in future D-T plasmas in JET and

ITER [McClements et al., 2014, 2015]. Studies of ICE in the JT-60U [Ichimura

et al., 2008; Sato et al., 2010] and ASDEX-Upgrade [D’Inca et al., 2011] tokamaks

have extended the understanding of the dependence of ICE on the different plasma

parameters and on NBI parameters. Notably, in ASDEX-Upgrade, three different

types of ICE have been identified [D’Inca, 2014] :

• Edge ICE, driven by fusion-born ions and ICRH-accelerated ions that reach

the outer edge plasma. The typical duration of edge ICE driven by fusion-

born ions ranges from 50 µs to 10 ms; whereas the duration of ICE driven

ICRH-accelerated ions can be up to 1 s.
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Figure 1.4: Scaling of the measured ICE intensity in JET PICE with neutron flux and
alpha-particle concentration. Panel a): correlation between the ICE intensity PICE and
the measured neutron flux in pure deuterium plasmas and D-T plasmas in JET. Linear
scaling of PICE with the measured neutron flux is observed in all cases. Panel b): time
evolution of the neutron flux (dashed line), PICE (squares), and the calculated population
of alpha-particles at the outer edge plasma (solid line) in a D-T plasma in JET. Reproduced
from Dendy et al. [1995].

• ICE driven by NBI. This type of ICE is steady and continuous in time.

• Central ICE originating at the core plasma. The driving source for this type

of ICE is still unknown, but parallel NBI is needed. The typical duration of

this kind of ICE is about 100 ms.

In the next section we introduce the magnetoacoustic cyclotron instability,

the leading candidate instability driving edge ICE in JET and TFTR tokamaks.

1.3.3 The Magnetoacoustic Cyclotron Instability in fusion plasmas

Understanding the physics of the ICE emission mechanism provides a specific obser-

vational test of the theory and interpretation of energetic particle effects in magnetic

confinement fusion (MCF) plasmas in an operationally important parameter regime.

The analytical theory of ICE was originally developed in terms of the linear magne-

toacoustic cyclotron instability (MCI) [Belikov and Kolesnichenko, 1976], for which

the analytical theory was developed and applied to scenarios relevant to JET and

TFTR soon after the experimental observations in these tokamaks Dendy et al.

[1992, 1993, 1994b]; Fülöp and Lisak [1998]. This appears to capture some key

observed features of the ICE measurements in TFTR and JET experiments. In par-

ticular, the linear MCI gives rise to: simultaneous excitation of fast Alfvén waves

16



at sequential multiple cyclotron harmonics of the alpha-particles [Cottrell et al.,

1993]; strong growth rates for waves propagating nearly perpendicular to the mag-

netic field; linear scaling of the growth rate with alpha-particle concentration; and

doublet splitting of the spectral lines (c.f. Fig. 11 of Dendy et al. [1995]).

In the analytically tractable formulation of the linear MCI relevant to edge

ICE in JET and TFTR, the local fusion-born alpha-particle population is modelled

as a drifting ring-beam distribution in velocity space, with a delta function dis-

tributed perpendicular velocity, and a Maxwellian distribution of velocities parallel

to the magnetic field, that is,

f(v‖, v⊥) =
1

2π3/2u⊥vr
exp

(
−
(
v‖ − vd

)2
v2
r

)
δ(v⊥ − u⊥), (1.24)

where v‖ and v⊥ are the parallel and perpendicular velocity of the fusion-born

alpha-particles, vd and vr are the average drift along the background magnetic field

and the parallel velocity spread of the alpha-particles distribution, and u⊥ is the

magnitude of the initial perpendicular velocity of the alpha-particles corresponding

to the energy of 3.5 MeV at which alpha-particles are born in D-T fusion reactions.

This probability distribution function reflects the naturally occurring population

inversion in the velocity distribution of centrally-born alpha-particles at the outer

mid-plane edge, which have undergone large excursions from the core to the edge

plasma in JET and TFTR [Cottrell et al., 1993; Dendy et al., 1995]. A typical orbit

of such fusion-born alpha-particles is shown in Fig. 1.5.

Figure 1.5: Poloidal projection of a typi-
cal orbit of an alpha-particle born at the
core plasma and undergoing drift excur-
sions to the outer edge plasma in JET. Re-
produced from Dendy et al. [1995].
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In the context of space plasmas, radiation similar to ICE, driven by energetic

ions with drifting ring-like velocity distributions, has also been interpreted in terms

of the MCI [Dendy and Mcclements, 1993; Mcclements and Dendy, 1993]. Most

recently, the power spectrum of the downstream turbulence obtained from kinetic

simulations of reforming perpendicular shocks in space plasmas, shows clear spectral

peaks at consecutive ion cyclotron harmonics, suggesting the occurrence of ICE in

the region behind the front shock [Rekaa et al., 2014].
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1.4 Solar-wind plasma

Solar wind plasma, which is tenuous, multi-component, non-uniform, and mostly not

at thermal equilibrium, serves as the main communication channel between the sun

and the earth, which allows the propagation of energetic particles and disturbances,

such as coronal mass ejections, that might pose a threat to modern electronic devices

on earth. Therefore, it is of great importance to gain a deeper understanding of

the origin and evolution of solar wind in order to lessen, and at a certain level

prevent, the negative impact of space weather on modern life as it is known. The

region between the solar corona (the nearest region surrounding the sun) and the

heliosphere at 1 AU (the distance from the sun to the earth) spans a wide range of

spatio-temporal scales and plasma parameters, such as number density and magnetic

field strength. Therefore, it represents a naturally-occurring laboratory to study

complex plasma phenomena over a wide range of scales and plasma parameters.

For example, in situ observations of solar wind unveil the occurrence of ion heating

driven by wave-particle interactions [Marsch, 2006], at the same time that large-scale

MHD turbulence develops in solar wind [Bruno and Carbone, 2013]. Unfortunately,

the disparity between the different temporal and spatial scales at which plasma

phenomena occur, hinders the formulation of an “all-inclusive” model for solar wind.

A wide range of remote and in situ observations of solar wind carried out

during the past three decades have provided important insights into the origin and

dynamics of solar wind. These observations have permitted the classification of

solar wind according to its parameters into two types: the energetic, low-density

fast solar wind, which streams at ∼ 800 km s−1 as it radially propagates away from

the sun; and the dense, less energetic slow solar wind, which streams at ∼ 400 km

s−1 as it expands into the heliosphere. Observations of solar wind by the Ulysses

spacecraft reveal that during the solar minimum, which is characterised by a few

magnetically active regions around sunspots or coronal holes, the solar wind speed

is a function of the latitude; with the fast solar wind emerging from coronal holes

at high-latitudes, whereas the slow solar wind is confined to equatorial regions.

However, this situation changes throughout a 11-years solar cycle, with a different

scenario at solar maximum, when the coronal holes confined to high-latitudes at

solar minimum now reach lower latitudes. In this case, solar wind speed is no longer

a function of the latitude, and this new configuration produces a mix of slow and

fast solar wind over all solar corona. Figure 1.6 shows a polar plot of solar wind

speed as measured by the Ulysses spacecraft at solar minimum (left), and at solar

maximum (right). The bottom panel of this figure shows the number of sunspots or
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coronal holes as a function of time; the 11-year solar cycle is clearly observed.

Figure 1.6: Composite image of the sun showing polar plots of solar wind speed as a
function of the latitude as measured by Ulysses spacecraft at solar minimum (left), and at
solar maximum (right). The vertical and horizontal axis in the top panels are solar wind
speed in km s−1. At solar minimum (left), solar wind speed has a clear dependence with
latitude; whereas at solar maximum (right), the slow solar wind dominates, with sources of
fast solar wind scattered over the whole solar corona. Bottom panel: number of sunspots or
coronal holes as a function of time; the 11-year solar cycle is clearly observed. Reproduced
from McComas et al. [2003].

Despite the exact origin of solar wind is still not well understood, there is

some evidence [Tu et al., 2015] that fast solar wind might originate within coronal

holes due to magnetic reconnection of initially-closed small flux tubes with open

flux tubes located at coronal holes; whereas slow solar wind might originate in the

surrounding area of coronal holes during magnetic reconnection of initially-closed

larger flux tubes with open flux tubes located at the border of the coronal holes

[Schwadron and McComas, 2003].

Once solar wind originates in solar corona, it starts to expand into the he-

liosphere, streaming radially outwards away from the sun. In situ measurements of

solar-wind plasma parameters, such as number density, temperature and magnetic

field strength, show that they are different for the fast and the slow solar wind: while

the slow solar wind is relatively dense (∼ 15 cm−3) and cold (∼ 5 × 104 K), the
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fast solar wind is less dense (∼ 4 cm−3) and hotter (∼ 2× 105 K). Furthermore, the

number density and magnetic field strength are more steady in the case of the fast

solar wind; whereas for the case of the slow solar wind, these parameters fluctuate

more. Figure 1.7 shows some plasma parameters of solar wind as measured by the

Helios 2 spacecraft around day 75 of its first mission to the sun when it was ∼ 0.5

AU away from the Sun. A clear transition region between slow solar wind (left-hand

side of the plot) and fast solar wind (right-hand side of the plot) can bee seen in

these plots in-between days 74 and 75.

Figure 1.7: Solar-wind plasma parameters as measured by Helios 2 spacecraft around the
day 75 of its first mission to the Sun when the spacecraft was ∼ 0.5 AU away from the Sun.
Panels from top to bottom: solar wind speed, proton number density, proton temperature,
magnetic field strength, azimuthal angle, and elevation angle. Slow wind on the left-hand
side of the plot, fast wind on the right hand side, and the fast-slow solar wind interface in
between, can be clearly seen. Reproduced from Bruno and Carbone [2013].

In early [Belcher and Leverett, 1971; Belcher and Solodyna, 1975; Bruno

et al., 1985] and recent [De Pontieu et al., 2007; Bruno and Carbone, 2013] studies

of solar wind, strong correlations between fluctuations of the magnetic field δB and

fluctuations of solar wind velocity δU of the form

δU = ± δB
√
µ0nmp

, (1.25)

have been seen for long periods of time; this equation is the so-called Walen’s rela-

tion. Here, µ0 is the vacuum magnetic permeability, n is the plasma number density,
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and mp is the proton mass. A strong correlation between the magnetic field fluc-

tuations and solar wind velocity indicates the presence of Alfvén waves permeating

solar-wind plasma. The minus (plus) sign in Eq. (1.25) refers to pure Alfvénic waves

propagating parallel (anti-parallel) to the ambient magnetic field. Figure 1.8 shows

the time evolution of the fluctuations of the magnetic field and solar wind velocity

as measured by Mariner 5 spacecraft in its mission to Venus in 1967. During the

24 hours of measurements shown in this figure, a strong correlation between the

magnetic field and solar wind velocity can be observed, which indicates the presence

of Alfvén waves permeating solar wind [Belcher and Leverett, 1971; Belcher and

Solodyna, 1975].

Figure 1.8: Time evolution of solar polar components (RTN) of the magnetic field and solar
wind velocity as measured by Mariner 5 spacecraft. The top six curves show the magnetic
field (horizontal and vertical lines) and solar wind velocity (diagonal lines) components. The
two bottom lines show the magnetic field strength B and proton number density N . Strong
correlation between the magnetic field and solar-wind velocity is observed, which indicates
that solar wind is mainly permeated by outward-propagating Alfvén waves. Reproduced
from Belcher and Solodyna [1975].

As previously mentioned, solar wind is a complex system in which plasma

phenomena arise at multiple spatial and temporal scales. In general, the dynamics

and properties of solar wind are different for the fast and slow solar wind, and they

evolve as solar wind expands into the heliosphere. In the next sections some proper-

ties of solar wind are presented, namely, turbulence, intermittency, and preferential

ion heating; whose mutual interactions will be studied in detail in Chapter 4.
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1.4.1 Solar wind turbulence

Power spectra of the fluctuations of solar wind parameters exhibit inverse power laws

in frequency domain, resembling those observed in turbulent flows in hydrodynamics.

In the case of fast solar wind, at higher frequencies, there is an inertial range of fully

developed turbulence ∼ f−5/3 [Marsch and Tu, 1990; Goldstein et al., 1995; Bruno

and Carbone, 2013], and at low frequencies a region ∼ 1/f whose origin is coronal

[Matthaeus and Goldstein, 1986; Bruno et al., 2009; Verdini et al., 2012]. In contrast,

the slow solar wind appears to be close to a state of fully developed turbulence;

that is, the slow solar wind spectra only shows an inertial range ∼ f−5/3 [Marsch

and Tu, 1990; Bruno and Carbone, 2013]. This situation is clearly illustrated in

Fig. 1.9, which shows power spectra of the magnetic field obtained from solar wind

observations by the Ulysses and Helios 2 spacecrafts at different radial distances from

the sun in the ecliptic plane. As can be seen, the break frequency (blue dot) at which

the 1/f and the f−5/3 regions separate, is a function of the heliocentric distance,

that is, the break frequency moves to lower frequencies as the heliocentric distance

increases. It is found that the functional dependence of the break frequency in

the ecliptic plane with heliocentric distance is ∼ R−1.5, where R is the heliocentric

distance. In Horbury et al. [1996] the authors found that the dependence with

heliocentric distance of the break frequency for the case of the fast solar wind in

the polar heliosphere is ∼ R−1.1, that is, the turbulence evolution in the polar wind

is slower than the one in the ecliptic. This dependence of the break frequency on

heliocentric distance seems to be an indication of non-linear interactions between

non-adjacent scales in solar wind [Bruno and Carbone, 2013].

In Bruno et al. [1999], and more recently Salem et al. [2009] the authors

showed that intermittency, that is, occasional large-amplitude fluctuations, or bursts,

in the time series of solar wind parameters, can significantly modify the spectral

properties of solar wind in its inertial range; producing anomalous scaling and de-

partures from theoretical predictions of MHD turbulence models. In the next section

we discuss how intermittency is observed in solar wind, and how intermittency af-

fects solar wind properties.
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Figure 1.9: Power spectral density of the fluctuations of solar-wind magnetic field in the
ecliptic plane at several heliocentric distances. Left panel: power spectral density of the fast
solar-wind magnetic field fluctuations observed by Helios 2 between 0.3 and 1 AU during its
first mission to the Sun in 1976, and by Ulysses between 1.4 AU in August of 2007 and 4.8
AU by the end of 1997. The break frequency separating the 1/f and ∼ f−5/3 regions of the
power spectra shows a dependence with heliocentric distance R as ∼ R−1.5. Right panel:
corresponding power spectra of the slow solar-wind magnetic field fluctuations. In contrast
to the case for the fast solar wind, the slow solar wind spectra only show an inertial range
∼ f−5/3, independent of the heliocentric distance. Reproduced from Bruno and Carbone
[2013].

1.4.2 Observations of intermittency in solar wind

There is evidence that solar wind inertial range fluctuations incorporate intermit-

tent turbulence, that is, the occurrence of occasional large-amplitude fluctuations of

solar wind parameters [Hnat et al., 2002; Bruno et al., 2007; Chapman and Hnat,

2007; Osman et al., 2012; Alexandrova et al., 2013; Wu et al., 2013]. In addition,

intermittency is also seen in fluctuations at lower frequencies in the 1/f range of the

fast solar wind [Hnat et al., 2003; Horbury et al., 2005]. Intermittency in solar wind,

as in the case of intermittency in hydrodynamics [Frisch, 1995], can be defined in

terms of either multifractal scaling of the structure functions of solar wind fluctua-

tions [Hnat et al., 2007; Kiyani et al., 2007; Leonardis et al., 2013], or non-Gaussian
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probability distribution functions of solar wind fluctuations [Hnat et al., 2002, 2003;

Nicol et al., 2009; Wu et al., 2013; Subedi et al., 2014]. Both formalisms allow us

to characterise solar wind turbulence by means of their statistical properties. Theo-

retical models of fully developed turbulence in the absence of intermittency, predict

that the structure functions of pth order (Sp(τ)) of the measured parameter f(t)

should exhibit scaling with the temporal scale τ , that is,

Sp(τ) ≡ 〈|f(t+ τ)− f(t)|p〉 ∼ τ ζ(p), (1.26)

where 〈〉 is an average over time t, and ζ(p) = p/3 in the case of fully developed tur-

bulence in fluids [Frisch, 1995], and ζ(p) = p/4 in the case of fully developed MHD

turbulence [Kraichnan, 1965]. However, the scaling properties of the structure func-

tions of the magnetic field (f(t) = B(t)) and solar wind velocity (f(t) = U(t)) show

significant departures from the predictions of hydrodynamics and MHD turbulence

theories [Burlaga, 1991; Marsch and Tu, 1997; Horbury and Balogh, 1997], which

are signatures of intermittency [Merrifield et al., 2005, 2006, 2007]. In Fig. 1.10 the

exponents ζ(p) of Eq. (1.26) up to p = 6 for the magnetic field and solar wind ve-

locity as measured by the Wind spacecraft in 1995 are plotted. As can be seen from

this figure, ζ(p) shows a nonlinear dependence with p, which indicates the presence

of intermittency in solar wind.

Intermittency in solar wind also can be studied via the probability distri-

bution functions (PDFs) of the fluctuations of solar wind parameters [Nicol et al.,

2009; Osman et al., 2011, 2014]. Roughly speaking, in the case of fully developed

turbulence in the absence of intermittency, the PDFs of the increments of f(t), that

is, δf(t, τ) ≡ f(t + τ) − f(t), should be Gaussian for all τ . Therefore, any PDF

of δf(t, τ) different from a Gaussian distribution, would indicate the occurrence of

intermittency at scale τ . Fig. 1.11 shows the PDFs of the magnetic field increments

δB(t, τ) of the fast (left) and slow (right) solar wind. Significant departures from

Gaussianity are observed at time scales τ < 23.04 hr, which indicates the presence

of intermittency in the magnetic field.

Alternatively, intermittency can be defined in terms of phase coherence of

the modes comprising the solar wind fluctuations. Phase coherence in solar wind

has been observed in the form of coherent structures of the solar wind magnetic field

[Stasiewicz et al., 2003]. Despite there is some work studying intermittency in solar

wind from both points of view [Koga et al., 2007]: statistical (structure functions

and PDFs) and phase coherence; there is no straightforward direct link between

phase coherence and statistical intermittency properties.
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Figure 1.10: Scaling exponents of the structure functions of the magnetic field and solar
wind velocity components as measured by Wind spacecraft in 1995. The solid lines show
the theoretical predictions for fully developed fluid turbulence (K41), and magnetically-
dominated fully developed turbulence (IK). Clear departures of ζ(p) from theoretical predic-
tions can be seen, which indicates the presence of intermittency in solar wind. Reproduced
from Salem et al. [2009].

Structure functions and probability distribution functions of the fluctuations

of solar wind parameters, only can be used when very large time series of solar wind

observations are available; this is necessary in order to obtain reliable estimates of

Sp(τ) and PDF(δf(t, τ)). When the amount of data from observations is limited,

there are few other methods that can be used. One example of such a method is the

local intermittency measure (LIM), a method based on wavelet analysis [Torrence

and Compo, 1998], first introduced in Farge [1992] to study the dynamics of coherent

(bursty) structures in solar wind and to measure their contribution to the energy

spectrum. This method is explained in detail in Sec. 4.3.4, where it is presented in

the context of intermittency in hybrid simulations of preferential ion heating driven

by intermittent electromagnetic fields.

1.4.3 Preferential ion heating in fast solar wind

Observations of solar wind typically show the existence of preferential heating of

protons and alpha-particles along the local magnetic field. This preferential ion

heating is observed in the reconstructed velocity probability distribution functions

of protons and alpha-particles, which have long tails along the local magnetic field

[Hundhausen et al., 1967; Gurnett et al., 1979; Marsch et al., 1982a,b; Marsch, 2006].
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Figure 1.11: Probability distribution function of the magnetic field increments δB(t, τ)
of the fast (left) and slow (right) solar wind as observed by Helios 2 spacecraft in 1976.
Significant departures of a Gaussian distribution are observed at time scales τ < 23.04 hr.
Reproduced from Sorriso-Valvo et al. [2001].

Figs 1.12 and 1.13 show the reconstructed velocity probability distribution functions

of protons and alpha-particles as a function of solar wind speed and heliocentric

distance. In these figures the dashed line indicates the direction of the local magnetic

field. As can be seen from Fig. 1.12, the velocity distribution of protons of the

slow solar wind (left column) is anisotropic, but the occurrence of long tails along

the local magnetic field are barely visible. For solar wind speeds ≥ 460 km s−1,

however, preferential ion heating of protons is clearly observed. Another feature

of these reconstructed proton velocity distribution functions is that the initially

tenuous proton beam along the local magnetic field at small heliocentric distances

(≤ 0.39 AU), becomes more and more dense as the heliocentric distance increases.

Furthermore, an elongation along the perpendicular direction to the local magnetic

field of the core of the proton velocity distribution functions is also visible, which

seems to be more evident at small heliocentric distances.
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In a similar way, the reconstructed velocity probability functions of alpha-

particles are observed to be highly anisotropic, with the formation of a beam of

alpha-particles approximately parallel to the local magnetic field. This is shown in

Fig. 1.13.

Figure 1.12: Reconstructed velocity probability distribution function of protons as mea-
sured by Helios 2 spacecraft for several solar wind speeds and heliocentric distances. The
dashed lines indicate the direction of the local magnetic field. Reproduced from Marsch
et al. [1982b].
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Figure 1.13: Reconstructed velocity probability distribution function of alpha-particles
as measured by Helios 2 spacecraft for several solar wind speeds and heliocentric distances.
The dashed lines indicate the direction of the local magnetic field. Reproduced from Marsch
et al. [1982a].

Another parameter of solar wind that is usually measured is the ion temper-

ature, which can be decomposed in its parallel (T‖) and perpendicular (T⊥) compo-

nents with respect to the local magnetic field. In this way, a temperature anisotropy

ratio T⊥/T‖ 6= 1 can provide information about the occurrence of preferential ion

heating in solar wind. Fig. 1.14 shows the probability distribution function of T⊥/T‖
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as measured by the Wind spacecraft at ∼ 1 AU for protons (left) and alpha-particles

(right) as a function of the parallel ion beta βi = 2µ0nikBT‖/B
2
0 , where µ0 is the

vacuum magnetic permeability, ni is the ion number density, kB is the Boltzmann

constant, and B0 is the local magnetic field strength. As can be observed, the values

of T⊥/T‖ for protons and alpha-particles range from T⊥/T‖ = 0.1 to T⊥/T‖ = 10,

but the more frequent values of T⊥/T‖ at ∼ 1 AU for protons [Marsch et al., 1982b]

and alpha-particles [Marsch et al., 1982a] are Tp⊥/Tp‖ < 1 and Tα⊥/Tα‖ . 1, re-

spectively.

The mechanisms driving the observed preferential ion heating in solar wind

are still not well understood. Significant theoretical and simulation work has been

done in order to explain preferential ion heating in solar wind, see Marsch [2006]

and Matteini et al. [2011] for a review on recent studies on preferential ion heating.

All these studies provide mechanisms and configurations of solar wind plasmas that

might underlie the observed preferential ion heating, but the intermittent character

of the solar wind is not included in their models. In Chapter. 4 we present the first

study of preferential ion heating driven by 1/fγ broadband spectra of Alfvén waves

including intermittency in a self-consistent way.

Figure 1.14: Probability distribution function of T⊥/T‖ as measured by the Wind spacecraft
at ∼ 1 AU for protons (left) and alpha-particles (right) as function of the parallel ion beta
βi = 2µ0nikBT‖/B

2
0 . Dark tones of blue and red indicate more frequent observations of the

temperature anisotropy Ti⊥/Ti‖ for a given βi. Reproduced from Maruca [2012].
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Chapter 2

PROMETHEUS++: The 1.5D

hybrid code

A new code has been developed [Carbajal et al., 2013] to study the full self-consistent

dynamics of energetic ions in fusion and space plasmas using the hybrid approxima-

tion for a plasma of Sec. 1.2. This code, named PROMETHEUS++, uses paradigms

from high performance computing (HPC) that allow us to evolve the full velocity

space distributions of different ion populations by following an ensemble of super-

particle trajectories in phase space, while the dynamics of the fluid electrons and

electromagnetic fields are solved on a fixed grid in physical space. Our 1.5D simu-

lations evolve the full 3D vector electromagnetic fields with variation in one spatial

direction and time. PROMETHEUS++ allows us to simulate a wide range of plasma

conditions with plasma beta values ranging from β ∼ 10−4, for fusion plasma con-

ditions, to β ∼ 1, for astrophysical plasma conditions.

In this chapter, the structure of PROMETHEUS++ and the numerical

schemes used to solve the equations of the plasma in its hybrid approximation is de-

scribed. Next, we present the results of the benchmark of PROMETHEUS++ using

three well understood problems in plasma physics: the warm plasma dispersion re-

lation, the resonant electromagnetic ion-ion instability and the electromagnetic ion

cyclotron beam anisotropy. Finally, the benchmark results, limitations and future

work to further develop PROMETHEUS++ are discussed.

2.1 Overview of PROMETHEUS++

PROMETHEUS++ code is written in C++, allowing us to use object-oriented pro-

gramming to provide PROMETHEUS++ with a modular structure. This means
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that the functionality of each module of the code is independent of other modules,

allowing us to plug or unplug modules without modifying the rest of the code; this

way of self-contained data and functions within each module is known as encapsu-

lation in C++ programming. Each module is a C++ library made of one or several

C++ classes that communicate with other modules by passing standardized data

structures through the main function of the code. PROMETHEUS++ has two main

data structures to keep track of data relevant to each ion species and electromagnetic

fields: ionSpecies, which keeps ions’ parameters such as charge, mass, positions and

velocities; as well as bulk variables of each ion species such as the number density

nj and the ion bulk velocity uj . Similarly, the data structure electromagneticFields

keeps the data of the electric and magnetic fields. In addition, the data structure

inputParameters contains all the simulation parameters that define the plasma pa-

rameters in the simulations, and specific control parameters of each module of the

code. These simulation parameters are loaded from two input files at the beginning

of the simulation.

Figure 2.1 shows a diagram with all the modules forming PROMETHEUS++.

The modules mpi main, types and structures, together with the main function are the

core of the code. The other modules shown in orange contain the numerical solvers

for the ions and electromagnetic fields, as well as additional modules in charge of the

input/output operations during each simulation. The modules alfvenic and general-

Functions shown in blue, are optional modules that can be unplugged or replaced by

new modules according to the requirements of the simulation set-up. The module

alfvenic includes Alfvén waves into the initial condition of the simulations, and the

module generalFunctions contains specific functions and diagnostics for some spe-

cific set-ups. Additional modules can be plugged to PROMETHEUS++ to include

further physics, diagnostics, or to set up specific initial conditions.

In Fig. 2.2 we show the simulation process of PROMETHEUS++, which

consists of two stages: an initialisation stage, where the simulation parameters are

loaded, the initial conditions for ions and electromagnetic fields are set up, and the

simulation variables are normalised; followed by the simulation stage, where ions

and fields are advanced in space and time. Any additional initialisation such as

the inclusion of plasma waves is done before the normalisation of the simulation

variables.

We have used geometric decomposition as the parallel programming paradigm

of PROMETHEUS++, which is shown schematically in Fig. 2.3. This paradigm

consists of dividing the entire one-dimensional domain into sub-domains which com-

municate with each other through a Message Passing Interface (OpenMPI). Ad-
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Figure 2.1: Modules of PROMETHEUS++. The modules mpi main, types and structures
together with the main function are the core of the code, the rest of the modules com-
municate amongst themselves by passing standardized data structures through the main
function. The modules that contain the numerical solvers for the ions and electromagnetic
fields, as well as the input/output functions of the code are shown in orange. Optional
modules that can be unplugged or modified for specific purposes are shown in blue.

ditionally, within each sub-domain we use shared memory parallel programming

(OpenMP). In this way, each sub-domain represents an MPI process [Gropp et al.,

2014] with its own copy of the code, which in turn is divided into several OpenMP

threads within each sub-domain [Chapman et al., 2008]. During the initialisation

process each MPI process (sub-domain) is assigned a set of ions, for which dynamics

will be solved by its corresponding MPI process for the duration of the simulation;

that is, the link between each set of ions and its corresponding MPI process is fixed

during the entire simulation. Importantly, this hybrid parallel programming method

(OpenMP+OpenMPI) can only be used in clusters made of multi-core nodes that

have their own shared memory.

Finally, the simulation outputs, which contain all the relevant data and pa-

rameters for the post-processing process, are stored in multiple HDF5 files. The

number of HDF5 files is the same as the number of MPI processes used in the

simulations. The HDF5 format is a standard used in high-performance computing

(HPC) with excellent capabilities for managing large sets of data and allows us to
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Figure 2.2: Simulation process of PROMETHEUS++. The whole simulation process
consist of two stages: an initialisation stage, in orange, followed by the simulation stage, in
blue. Any additional initialisation (in red) is done before the normalisation of the simulation
variables.

perform the post-processing process using any software that supports the HDF5

format such as Matlab and Python. Further development will allow the outputs of

PROMETHEUS++ to be inputs of visualization software.
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Figure 2.3: Hybrid parallel programming method. We use a geometry decomposition
paradigm to divide the entire simulation domain into sub-domains which communicate with
each other through OpenMPI. Additionally, within each sub-domain we use shared memory
parallel programming (OpenMP).

2.1.1 Units and normalisation

The input and output files of PROMETHEUS++ have physical units, all in SI units.

The normalisation of the simulation variables is needed to reduce round-off errors

by combining large and small numbers, and is carried out within the code during

the initialisation stage of each simulation. In Table 2.1 we show the characteristic

plasma parameters used to normalise the simulation variables [Winske and Omidi,

1993].

Table 2.1: Characteristic plasma parameters used to normalise the simulation vari-
ables.

Length di ion skin depth

Time ω−1
i Inverse of ion plasma frequency

Velocity c Light speed in vacuum
Mass m̄i Average ion mass
Charge q̄i Average ion charge
Number density ne Electron number density (c.f. Eq. (1.15))
Electric field ωim̄ic/q̄i
Magnetic field ωim̄i/q̄i
Temperature m̄ic

2/kB kB is the Boltzmann constant
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2.2 Numerical schemes

In this section the numerical schemes used in PROMETHEUS++ to solve the equa-

tions of the plasma in its hybrid approximation are presented. First, the spatial

discretisation of the simulation domain used to solve the electromagnetic fields is

presented, followed by the description of the charge assignment and force interpo-

lation scheme that self-consistently couple the different populations of ions with

the electromagnetic fields. Next, the temporal discretisation used to advance in

time the ions and electromagnetic fields is presented. Finally, the model of numeri-

cal diffusion used in PROMETHEUS++ that provides better numerical stability is

described.

2.2.1 Spatial discretisation

We use a first-order forward finite differences on an one-dimensional staggered grid

[Yee, 1966; Buneman, 1993] with periodic boundary conditions to solve the electro-

magnetic fields in physical space. The first-order forward finite difference scheme

approximates the spatial derivative of a function f(x) with respect to x as follows:

df(x)

dx
=
f(x+ ∆x)− f(x)

∆x
, (2.1)

where ∆x is the width of each grid cell along the x-axis. Figure 2.4 shows a three-

dimensional staggered grid, which is a generalisation of three spatial dimensions of

the one-dimensional staggered grid used in PROMETHEUS++. The components

of the magnetic field B(x) (shown as H(x) in this figure) are located at the centre

of the faces of each grid cell. Conversely, the components of the electric field E(x)

are located at the middle of the edges of each grid cell. The use of a staggered

grid allows us to calculate ∇ × E at the location of the magnetic field B, while

∇×B will be correct at the location of the electric field E when a finite differences

scheme is used. Furthermore, the staggered grid transforms Eq. (2.1) from a forward

difference with an error of order ∆x to a central difference operator with an error

of order O(∆x2).

Following Buneman [1993], the number density and ions’ bulk velocity of

Eq. (1.16) and (1.15) are defined at the positions where the electric field components

are located. In the next section we introduce the method that allows us to both

define the number density and ions’ bulk velocity on the grid, and to extrapolate

the value of the electromagnetic fields from the grid to the ions’ positions.
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Figure 2.4: One grid cell of a cuboidal staggered grid used for solving the electric
and magnetic fields in physical space. A one-dimensional version of this grid is used in
PROMETHEUS++. The components of the magnetic field (shown as H in this figure) are
located at the centre of the faces of each grid cell (blue dots and vectors). Similarly, the
components of the electric field are located at the middle of the edges of each grid cell (red
dots and vectors).

2.2.2 Charge assignment and force interpolation scheme

The hybrid approximation for the plasma treats ions as kinetic particles, each gov-

erned by the Lorentz force. Typical values of the ion number density of solar wind

plasmas, n ∼ 106 m−3, and fusion plasmas, n ∼ 1019 m−3, imply that one should

solve an equivalent number of equations of motion for all the ions within the plasma,

representing a big challenge even for current computer clusters. One solution to this

problem is to use the super-particle representation for kinetic ions, as it is done in

usual particle-in-cell (PIC) plasma simulations [Hockney and Eastwood, 1989]. The

super-particle representation for plasmas assumes that the ion populations consist

of computational particles (super-particles) made of Nj ions of species j, which are

assumed to be strongly correlated so that their trajectories in phase space are ap-

proximately described by the equations of motion of the super-particle’s centre of

mass
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dxj
dt

= vj , (2.2)

Mj
dvj
dt

= eZjNj (E + vj ×B) , (2.3)

where Mj = mjNj is the mass, and xj and vj are the position and velocity of the

centre of mass of the super-particle of ion species j, respectively.

The super-particle representation for ions assumes that the super-particles

have a finite size in physical space. In computational plasma physics, the super-

particle shape in physical space is defined by the assignment function shape W (x)

[Hockney and Eastwood, 1989]. In order to have a smooth and continuous represen-

tation of ion bulk variables such as the number density n and ion bulk velocity Ui

in the hybrid simulations, the Triangular Shape Cloud (TSC) assignment function

has been used. This shape also ensures that the first derivative of n and Ui is also

continuous. In Fig. 2.5 the TSC assignment function used in PROMETHEUS++ is

shown.

Figure 2.5: Super-particle shape in physical space given by the TSC assignment function.
Figure reproduced from Hockney and Eastwood [1989]. The fraction of each super-particle
variable (e.g. charge and ion velocity) that corresponds to a given grid point p (marked
with crosses) is given by the value of the TSC assignment function shape W at that point
(c.f. Eq. (2.4)).

The TSC assignment function is defined as follows:

W (xj) =


3
4 −

( xj
∆x

)2 | xj |≤ ∆x
2

1
2

(
3
2 −

|xj |
∆x

)2
∆x
2 ≤| xj |≤ 3∆x

2

0 otherwise

(2.4)

where ∆x is the grid cell width, and xj is the position of the super-particle centre

of mass along the x-axis. Through this function we can define the bulk ion variables
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on the grid, and extrapolate the electromagnetic fields from the grid to the super-

particles’ position. For example, the number density of super-particles of species j

at an arbitrary position x is defined as:

nspj(x) =
N∑
l

δ (x− xjl) , (2.5)

where N is the total number of super-particles of ion species j in the simulation,

and xjl is the position of the lth super-particle of species j. Therefore, the number

density of ion species j at the grid point located at xp (c.f. Fig. 2.5) is given by

nj(xp) = Nj

∫
nspj(x

′)W (|xp − x′|)dx′, (2.6)

where W is the TSC assignment function (Eq. (2.4)), and Nj is the number of

ions within each super-particle. Here, the integral goes along the entire simulation

domain. Other bulk ion variables, e.g. the ions’ bulk velocity, can be defined on the

grid in a similar way.

Furthermore, the electromagnetic fields are extrapolated from the grid point

located at xp to the lth super-particle position xjl as follows

A(xjl) =

∫
A(x′)W (|xjl − x′|)dx′, (2.7)

where A(x′) can be any component of the electric or magnetic field. In this way,

Eqs. (2.4) to (2.7) completely define how ion dynamics are self-consistently coupled

to the electromagnetic fields located on the discrete staggered grid.

2.2.3 Temporal discretisation

In this section, we discuss the methods used to discretise in time the equations of the

plasma. We use a time-centered finite difference leapfrog (FDL) method [Hockney

and Eastwood, 1989; Winske and Omidi, 1993] to advance in time fields and ions in

the hybrid simulations of the plasma. This method consists of approximating the

time derivative of a function f(t) as

df(t)

dt
≈ f(t+ ∆t)− f(t)

∆t
, (2.8)

where ∆t = ttot/Nt is the time step used to advance ions and fields in the code.

This time step, which results from dividing the total simulation time ttot into Nt

small time steps, must be small enough in order to fulfill the Courant-Friedrichs-

Lewy (CFL) condition for numerical stability [Press, 2007; Pritchett, 2000]. The
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CFL condition sets a limit for the size of the time step ∆t used in each simulation

to ensure there exists enough time resolution to follow in detail the electromagnetic

fields and ions as they move along the simulation domain.

In the FDL method, positions and fields are defined at integral times tl = l∆t,

while velocities are defined at half-integral times tl+ 1
2

= (l+ 1/2)∆t. This is shown

schematically in Fig. 2.6. Here, l = 1, 2, . . . , Nt. In this way, the super-particle

equations of motion, Eqs. (2.2) and (2.3), become

xl+1
j − xlj = ∆tv

l+ 1
2

j , (2.9)

v
l+ 1

2
j − vl−

1
2

j =
eZjNj∆t

Mj

(
El(xlj) + vlj ×Bl(xlj)

)
, (2.10)

where the superscripts indicate the time at which the super-particle variables and

electromagnetic fields are evaluated. Here, El(xlj) and Bl(xlj) refer to the electric

and magnetic field as evaluated at the position of the super-particle xlj at time

tl = l∆t, which are obtained through Eq. (2.7). In Eq. (2.10) the super-particle

velocity vlj evaluated at the integer time step tl = l∆t is approximated as vlj =

(v
l− 1

2
j + v

l+ 1
2

j )/2.

Figure 2.6: Time-centered finite differences approximation leapfrog method to advance ions
and fields in time.

The time evolution of the electric field is solved through the generalised

Ohm’s law:

El =
1

µ0enl
(∇×B)l ×Bl −U l

i ×Bl − 1

enl
∇P le . (2.11)

As before, the superscripts in this equation indicate the time at which the variables
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are evaluated. Notice that all the quantities in Eq. (2.11) are calculated at the grid

points where the electric field is located. Furthermore, the value of the ions’ bulk

velocityUi at the integer time step tl is calculated using a 4th order Bashford-Adams

extrapolation [Winske et al., 2003]:

U l
i = 2U

l+ 1
2

i − 3

2
U
l− 1

2
i +

1

2
U
l− 3

2
i . (2.12)

On the other hand, the magnetic field is advanced in time using Faraday’s

law. We use a 4th-order Runge-Kutta scheme [Terasawa et al., 1986; Winske et al.,

2003] to discretise Faraday’s law in time, which provides numerical stability by

reducing high-frequency noise in the simulations. This method, also known as

subcycling, consists of dividing the original time step ∆t into NRK smaller time

steps ∆t′ = ∆t/NRK . In this way, the magnetic field is advanced from tl to

tl+s = l∆t+ s∆t′ as follows

Bl+s = Bl +
∆t′

6

(
K l

1 +K l
2 +K l

3 +K l
4

)
, (2.13)

K l
1 = −∇×E(Bl), (2.14)

K l
2 = −∇×E(Bl +

∆t′

2
K l

1), (2.15)

K l
3 = −∇×E(Bl +

∆t′

2
K l

2), (2.16)

K l
4 = −∇×E(Bl + ∆t′K l

3), (2.17)

where s = 1, . . . , NRK , and the electric field E in Eq. (2.14) to (2.17) is calculated

using Eq. (2.11) with all the right-hand side terms as evaluated at tl except for the

magnetic field, which is replaced by K calculated in Eqs. (2.14) to (2.17).

In this way, Eq. (2.8) to (2.17) completely define the time discretisation

used in PROMETHEUS++. The order of how ions and electromagnetic fields are

advanced in time is shown in Fig. 2.7.

2.2.4 Numerical stabilisation method

In general, a stabilisation method is needed in plasma simulations using the hybrid

approximation for the plasma because in this approximation the plasma cannot

self-consistently damp short-wavelength high-frequency modes, which are normally

damped by electron kinetic effects. If these modes are not artificially damped, they

will grow unbounded, generating non-physical effects in the simulations.

We include some numerical diffusion to the electromagnetic fields, E and B,
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Figure 2.7: Cycle of a time iteration of PROMETHEUS++. First, ion velocities are
advanced in time, followed by their positions (c.f. Eq. (2.9) and (2.10)). Then, the magnetic
field is advanced using a 4th order Runge-Kutta scheme (c.f. Eq. (2.13) to (2.17)). Finally,
the electric field is advanced in time using a 4th order Bashford-Adams extrapolation for
the ions’ bulk velocity (c.f. Eq. (2.11) and (2.12)).

and ion bulk variables, nj and uj (c.f. Eq. (1.15) and (1.16)), each time iteration

in order to attenuate short-wavelength modes. This method allows the existence of

small amplitude short-wavelength modes in comparison to methods similar to low-

pass filtering that set to zero all modes below a given wavelength threshold value

[Gilboa, 2013]. Regarding energy conservation, we find that numerical diffusion

provides much better energy conservation in comparison to low-pass filtering. The

numerical diffusion method we include in PROMETHEUS++ is similar to a high

order Laplace operator when a finite differences method is used to discretise the

equations of the plasma in its hybrid approximation [Müller et al., 2011]. This

method consists of two steps: if Ap is an arbitrary plasma variable located at grid

point p, during the first step the following weighted average of Ap is calculated:

Āp =
1

4
Ap−1 +

1

2
Ap +

1

4
Ap+1, (2.18)

where Ap−1 and Ap+1 is the value of the plasma variable A at the grid point p− 1

and p + 1, respectively. The second step involves a second weighted average that

gives the final value of Ap

Ap = (1− αs)Ap + αsĀp. (2.19)

Here, αs is known as the smoothing parameter, and controls the level of diffusion

used to stabilise the simulations [Müller et al., 2011].
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2.3 Benchmark tests

In order to assess the quality of the numerical schemes used in PROMETHEUS++,

hybrid simulations of well understood plasma phenomena that can be studied using

one-dimensional plasma simulations were performed. The following sections present

the results of benchmarking PROMETHEUS++ against three well known problems

in plasma physics: the warm plasma dispersion relation, the resonant electromag-

netic ion-ion instability and the electromagnetic ion cyclotron beam anisotropy.

2.3.1 Warm plasma dispersion relation

In the absence of external perturbations, the plasma should remain stable and only

natural modes of the plasma should occur due to small thermal fluctuations within

the plasma. We study two scenarios for an electron-proton plasma where these

natural modes occur, namely, when these transverse electromagnetic waves prop-

agate perpendicular (k ⊥ B0) and parallel (k ‖ B0) to the background magnetic

field. Here, k and B0 are the wavevector (also known as propagation vector) and

background magnetic field, respectively. In the strictly perpendicular propagation

case the modes that naturally occur in the plasma are: the magnetosonic wave and

cyclotron waves [Goldston and Rutherford, 1995; Stix, 1992]; while in the strictly

parallel propagation case are: the ion cyclotron wave and the whistler wave [Gold-

ston and Rutherford, 1995; Stix, 1992].

We perform hybrid simulations of an electron-proton warm plasma in order

to recover the natural modes of the plasma for each case discussed above. For

both simulations we use the following plasma parameters: electron plasma beta

βe ≡ 2µ0n0Te/B
2
0 = 1, proton plasma beta βp ≡ 2µ0n0Tp/B

2
0 = 0.01, background

magnetic field B0 = 1.37× 10−7 T, and plasma density n0 = 1010 cm−3.

Regarding the simulation parameters, we have used 1000 super-particles per

cell in each case, with a simulation domain of length L = 102.4dp divided into

1024 grid cells for the parallel propagation case, and a simulation domain length

L = 51.2dp divided into 1024 grid cells for the perpendicular propagation case. Here,

dp = c/ωp is the proton skin depth, c is the light speed in vacuum, and ωp is the

proton plasma frequency. This means that the width of each grid cell is ∆x = rp for

the case with k ‖ B0, and ∆x = 0.5rp for the case with k ⊥ B0. Here, rp = dp
√
βp

is the proton gyro-radius. For these simulations, the smoothing parameter is set

to αs = 7.5 × 10−3 and αs = 10−3, for k ‖ B0 and k ⊥ B0, respectively. For the

parallel and perpendicular propagation cases we ran the corresponding simulation for

47 proton gyro-times (tΩp = 47) and 50 proton gyro-times (tΩp = 50), respectively.
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In Fig. 2.8(a) the power spectral density in the frequency-wavenumber space

of the electric field component Ey for the hybrid simulation with k ⊥ B0 is shown.

We observe the excitation of the magnetosonic wave along with cyclotron waves up

to the sixth proton cyclotron harmonic (ω/Ωp = 6). Similarly, in Fig. 2.8(b) we

show the power spectral density of Ey for the hybrid simulation with k ‖ B0. In

this case, we identify the excited electromagnetic waves as the whistler wave and

ion cyclotron wave.
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Figure 2.8: Dispersion relation of a warm electron-proton plasma. Panel a): power spectral
density of the electric field component Ey for the hybrid simulation with k ⊥ B0. We identify
the excited electromagnetic waves as the magnetosonic and cyclotron waves up to the sixth
proton cyclotron harmonic. Panel b): same as panel a) for the simulation with k ‖ B0.
In this case, we identify the excited electromagnetic waves as the whistler wave and ion
cyclotron wave. The dashed lines in both panels show the analytic dispersion relation of a
cold electron-proton plasma with the same plasma parameters used in the simulations.

Regarding energy conservation, both hybrid simulations show a transient

phase where the plasma finds its equilibrium and continues to self-consistently

evolve. After this transient time, the total energy of the simulation with k ⊥ B0

oscillates and grows by 2.3% of its initial value by the end of the simulation. For

the simulation with k ‖ B0 we find a similar behavior, in this case the total energy

grows by 2% of its initial value, this time due to intense short-wavelength (whistler)

waves that would otherwise be damped by electron inertia effects, which are not in-

cluded in the hybrid approximation for the plasma; instead, these short-wavelength

modes are damped using numerical diffusion in our simulations (c.f. Sec. 2.2.4).
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2.3.2 Resonant electromagnetic ion-ion instability

Resonant electromagnetic ion-ion instability (REIII) occurs when a low-density

beam of ions streams along the background magnetic field B0 with respect to the

slower background ions, with relative velocity Vr > VA. Here, VA = B0/
√
µ0n0mi

is the Alfvén velocity, mi is the mass of the background ions, n0 = Zini + Zbnb is

the total ion density, nb and ni are the beam and background ion number density,

and Zi and Zb are the atomic numbers of the beam and background ion species,

respectively. When there is no net current in the system and we consider a frame

of reference where the neutralizing electron background is at rest, the ion beam

velocity is given by

Vb
VA

= (1− f)V b̂. (2.20)

where f = nb/n0, b̂ = B0/B0 is the unit parallel vector, and V = Vr/VA. In this

frame of reference the background ions drift with mean velocity

Vi
VA

= − f

1− f V b̂. (2.21)

The linear dispersion relation for electromagnetic waves propagating along

the background field in the cold plasma limit is [Sharer and Trivelpiece, 1967]

ω2 − k2c2 −
∑
j

ω2
j (ω − kVj)

ω − kVj ± Ωj
= 0, (2.22)

where ω = ωr + iγ is the complex wave frequency, k is the wavenumber, ω2
j =

njq
2
j /mjε0 and Ωj = qjB0/mj are the plasma and cyclotron frequencies, c is the

speed of light in vacuum, and qj = eZj is the electric charge of species j, where j

can refer to electrons (e), beam ions (b) or background ions (i). Here, the +(−) sign

refers to right (left) hand polarized waves, respectively.

It is found that the REIII occurs when right hand polarized waves propagat-

ing along B0 resonate with the ion beam, that is,

ω − kVb + Ωb ≈ 0. (2.23)

Notice that in the frame of reference of the beam (ω = kVb) these waves are

left hand polarized waves, that is, ion cyclotron waves; but in the electron frame of

reference they are right hand polarized waves. In the limit case of a super-Aflvénic

(Vb/VA � 1), low-density (nb/n0 � 1) ion beam the dispersion relation of Eq. 2.22

can be solved analytically. In this limit the linear growth rate of the more unstable
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mode of the REIII is approximately [Winske and Leroy, 1984]:

γm
Ωb
≈
(
f

2

)1/3

, (2.24)

occurring at wave number:

kmVA
Ωb

≈ 1

V
. (2.25)

A hybrid simulation of the REIII using PROMETHEUS++ for the case

where both the ion beam and background ions are protons, that is, Zi = Zb =

1 and Ωb = Ωi, was performed. The plasma parameters are chosen to be the

same as in Winske and Omidi [1993], that is, the ratio of the ion beam number

density to the total ion density number density is f = 0.015, the beam velocity

is Vb/VA = 10, the plasma beta of each species is unity, βj ≡ 8πn0Tj/B
2
0 = 1,

and ωi/Ωi = 104. Here, Tj is the temperature of species j where j = e, i, b. The

value of the total number density is a free parameter in this case and it is set to

n0 = 1010 cm−3. The simulation parameters are chosen such that the simulation

domain has a length L = 512dp divided into 512 grid cells, that is, each cell grid has

a length of dp, where dp = c/ωi is the proton skin depth. We use 90 super-particles

per cell for each proton population, the beam ions and the background ions, which

initially are uniformly randomly distributed along the simulation domain, and have

a thermalized distribution in velocity space with a drift along B0 given by Vi for

the background ions, and Vb for the beam ions. In this simulation the background

magnetic field B0 is parallel to the simulation domain. The smoothing parameter

is set to αs = 10−6.

The top panel of Fig. 2.9 shows the real frequency ωr(k) and linear growth

rate γ(k) of the unstable modes of the REIII as predicted by the linear theory. For

the plasma parameters used in this hybrid simulation, Eq. (2.24) and (2.25) predict

that the maximum growth rate γm/Ωi ≈ 0.19 peaks at wavenumber kmc/ωi ≈ 0.1.

As a first numerical check for PROMETHEUS++, we calculate the power spectral

density in wavenumber space of the magnetic field perturbations as function of time,

this allows us to identify the excited modes in our hybrid simulation. We plot the

power spectral density of the fluctuations of the magnetic field component Bz in

the bottom panel of Fig. 2.9, which shows the excitation of a broadband spectrum

of electromagnetic waves in the range of wavenumbers 0.05 ≤ kc/ωi ≤ 0.15 with a

peak value at kc/ωi = 0.11± 0.01 (vertical dashed line of bottom panel), consistent

with predictions of the linear theory of the REIII.
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Figure 2.9: Comparison between theory and simulation results. Top panel: Figure re-
produced from Winske and Omidi [1993]. Linear growth rates of unstable modes of the
resonant electromagnetic ion-ion instability (REIII). The solid and dotted trace show the
real frequencies ωr and linear growth rates γ of the REIII as function of the wavenumber k,
respectively. The value of the plasma parameters used for this plot are the same as the ones
used in the hybrid simulation of the REIII. Bottom panel: shading indicates the log10 of
the power spectral density in wavenumber space of the perturbations of the magnetic field
component Bz as function of time. We observe the excitation of a broadband spectrum of
electromagnetic waves in the range of wavenumbers 0.05 ≤ kc/ωi ≤ 0.15 with peak value
at kc/ωi = 0.11± 0.01 (vertical dashed line), in good agreement with the predictions of the
linear theory (top panel). Around tΩi = 35 the nonlinear stage of the REIII takes over, at
this stage modes with large amplitudes and with wavenumbers kc/ωi > 0.15 are excited.
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Next, we calculate the linear growth rate of the most unstable mode in

this hybrid simulation of the REIII. For this, we calculate the time evolution of

the normalized magnetic energy density of this mode δB2
m(t)/B2

0 , this is shown in

Fig. 2.10(b). Then, we perform a linear fit of log10 (δB2
m/B

2
0) vs t to calculate its

linear growth rate γ, which is shown in Fig. 2.10(a). For this mode we find a linear

growth rate of γ/Ωi = 0.159± 0.001, which is in good agreement with the predicted

value of Eq. (2.24), γm ≈ 0.19. The difference between the predicted and the sim-

ulation value of this linear growth rate might be due to nonlinear interactions of

this mode with the other unstable modes with similar amplitude excited around km.

Additionally, we can estimate the oscillation frequency ωr of this mode by looking

at the quasi-periodic oscillations of δB2
m(t)/B2

0 in Fig. 2.10(b). From this figure, we

estimate ωr/Ωi ≈ 0.21, in good agreement with the linear theory (c.f. top panel of

Fig. 2.9).
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Figure 2.10: Calculation of the linear growth rate of the most unstable mode in the hybrid
simulations of the REIII. Panel a): linear fit of log10 (δB2

m/B
2
0) vs t. The solid (dashed) line

shows the numerical data (linear fit). We find γ/Ωi = 0.159± 0.001 for this mode, which is
in good agreement with the linear theory. Panel b): normalised energy density of the most
unstable mode in the simulation. We estimate an oscillation frequency of ωr ≈ 0.21 for this
mode.

Regarding the energy conservation in this simulation, the total energy oscil-

lates between −0.4% to 0.6% of its initial value.
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2.3.3 Electromagnetic ion cyclotron beam anisotropy

As a final numerical check for PROMETHEUS++, the electromagnetic ion cyclotron

beam anisotropy instability (EICBAI) is studied. As the resonant electromagnetic

ion-ion instability, this instability is also driven by an ion beam and can be stud-

ied as a special case of the REIII. For the case of the EICBAI the ion beam is

dense (nb/n0 ∼ 0.1) and streams at slower velocities (Vb ≤ VA) with respect to the

background ions.

A hybrid simulation of the EICBAI with the following plasma parameters is

performed: both ion species are protons, the ratio of the beam number density to

the total ion density is nb/n0 = 0.1, the beam velocity is set to zero Vb = 0, βb‖ ≡
2µ0n0Tb‖/B

2
0 = 10, the temperature anisotropy of the beam ions is Tb⊥/Tb‖ = 5, and

βi = βe = 1. Here, Tb‖ and Tb⊥ refer to the parallel and perpendicular temperature

of the beam ions, respectively. The background ions are initially thermalised. As

for the simulation of the REIII, ωi/Ωi = 104 and n0 = 1010 cm−3. On the other

hand, the numerical parameters of this simulation are: a simulation domain length

L = 256dp divided into 256 grid cells, 200 super-particles per cell for each proton

population. Both proton populations initially are uniformly randomly distributed

along the simulation domain. The smoothing parameter for this simulation is set to

αs = 5× 10−7.

The top panel of Fig. 2.11 shows the theoretical prediction of the real fre-

quency ωr(k) and the linear growth rate γ(k) of the unstable modes of the EICBAI

for the plasma parameters used in the simulation. The bottom panel of Fig. 2.11

shows the power spectral density in wavenumber space of the fluctuations of the mag-

netic field component BZ . This plot shows the excitation of a broadband spectrum

of waves in the range of wavenumbers 0.1 ≤ kc/ωi ≤ 0.6, with the most unstable

mode occurring at kc/ωi = 0.36± 0.03, consistent with theoretical predictions (c.f.

top panel of Fig. 2.11).

Now, we calculate the linear growth rate of the most unstable mode found

in our simulation of the EICBAI. For this, we use the normalized magnetic energy

density of this mode δB2
m(t)/B2

0 , which is shown in Fig. 2.12(b). Then, we perform a

linear fit of log10 (δB2
m/B

2
0) vs t , shown in Fig. 2.12(a), which gives a linear growth

rate of γ = 0.19 ± 0.01. This result is in good agreement with the linear theory of

Fig. 2.11.

Regarding the energy conservation in this simulation, the total energy oscil-

lates between −0.3% to 0.1% of its initial value.
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Figure 2.11: Comparison between theory and simulation results. Top panel: Figure re-
produced from Winske and Omidi [1993]. Linear growth rates of unstable modes of the
electromagnetic ion cyclotron beam anisotropy instability (EICBAI). The solid and dotted
lines show the real frequencies ωr and linear growth rates γ of the EICBAI as a function of
the wavenumber k, respectively. The values of the plasma parameters used for this plot are
the same as the ones used in the hybrid simulation of the EICBAI. Bottom panel: shading
indicates log10 of the power spectral density in wavenumber space of the perturbations of the
magnetic field component Bz as function of time. We observe the excitation of a broadband
spectrum of electromagnetic waves in the range of wavenumbers 0.1 ≤ kc/ωi ≤ 0.6 with
peak value at kc/ωi = 0.36± 0.03 (vertical dashed line), consistent with predictions of the
linear theory (top panel).
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Figure 2.12: Calculation of the linear growth rate of the most unstable mode in the hybrid
simulations of the EICBAI. Panel a): linear fit of log10 (δB2

m/B
2
0) vs t. The solid (dashed)

line shows the numerical data (linear fit). We find γ/Ωi = 0.19± 0.01 for this mode. Panel
b): normalised energy density of the most unstable mode in the simulation.

2.4 Discussion

This chapter has introduced PROMETHEUS++, a new parallel code written in

C++ that solves the equations of the plasma in its hybrid approximation, where

ions are treated as kinetic particles and electrons as a charge neutralizing massless

fluid. Numerical schemes used to solve the equations of the plasma are presented, as

well as the charge assignment and force interpolation scheme used to self-consistently

couple the computational particles (super-particles) to the electromagnetic fields.

The accuracy and stability of PROMETHEUS++ was tested by performing

simulations of three well known phenomena in plasma physics: the warm plasma

dispersion relation, the resonant electromagnetic ion-ion instability and the electro-

magnetic ion cyclotron beam anisotropy. The results of these benchmark tests can

be summarised as follows: first, in the simulations of quiet warm plasma the natural

modes of the plasma arising due to small thermal fluctuations of the plasma were

recovered; namely, the ion cyclotron and whistler waves, when the the propagation

vector of these waves is parallel to the background magnetic field; and the magne-

tosonic and cyclotron waves, when the propagation vector is perpendicular to the

background magnetic field. Second, in the simulation of the resonant electromag-

netic ion-ion instability we found good agreement between the predictions of the

51



linear theory and the simulation of this instability, specifically, the localisation in

frequency and wavenumber space of the most unstable mode of this instability is

in agreement with the linear theory. Finally, we simulated the electromagnetic ion

cyclotron beam anisotropy for which simulations results, as in the previous bench-

mark test, match well to the predictions of the linear theory. In all the simulations

we observed an energy conservation within the range of -0.4% to 2.3% of the initial

energy. These results suggest that PROMETHEUS++ is robust and can be used

with confidence to study the dynamics of energetic ions in fusion and space plasmas.

Future work for further developing PROMETHEUS++ includes the exten-

sion to three dimensions in physical space, and the inclusion of toroidal geometry

for performing more realistic simulations of magnetic confinement fusion plasmas.

We anticipate that the latter will require the development of new numerical schemes

for solving the electromagnetic fields and for the charge assignment and force inter-

polation scheme, as well as the inclusion of non-periodic boundary conditions.
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Chapter 3

Hybrid simulations of the MCI

in relation to ICE in D-T JET

plasmas

3.1 Introduction

Fusion power from magnetically confined plasmas will rely on self-sustained nuclear

burning, where the output power is greater than the power used to confine and heat

the plasma. This will require fusion-born ions produced primarily in the core plasma

to deliver their energy to the thermal plasma through collisional processes, while

remaining magnetically confined [Heidbrink and Sadler, 1994]. For this reason, it is

important to develop diagnostics for monitoring the confinement and evolution of

the fusion-born ions population in future deuterium-tritium (D-T) plasma experi-

ments in JET and ITER. Among the leading candidates for this role [McClements

et al., 2015] is ion cyclotron emission (ICE), which is a collective radiative insta-

bility driven by fusion-born ions, or by other energetic ion populations. ICE was

initially observed in pure deuterium plasmas in JET when Ohmic heating and hy-

drogen neutral-beam injection (NBI) were used to heat the plasma [Cottrell and

Dendy, 1988; Schild et al., 1989]. Subsequently, ICE was observed from D-T plas-

mas in the tokamak experiments JET and TFTR [Cottrell et al., 1993; Dendy et al.,

1995; Cauffman et al., 1995; McClements et al., 1999], where ion cyclotron heating

antennas in receiver mode and radio frequency probes were used to detect ICE, re-

spectively. In both cases, a local minority population of fusion-born alpha-particles,

super-Alfvénic in JET and sub-Alfvénic in TFTR, provided the free energy to drive

the emission. The measured ICE spectra showed strong peaks at consecutive ion
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cyclotron harmonics of alpha-particles, as evaluated at the outer mid-plane edge.

Furthermore, the ICE intensity in JET and TFTR showed linear scaling with the

measured neutron flux and with alpha-particle concentration [Cottrell et al., 1993;

Dendy et al., 1995; McClements et al., 1996]. In the first studies of ICE in JET,

a strong correlation between ICE and MHD activity was observed [Schild et al.,

1989; Cottrell et al., 1993], and ICE is used in the DIII-D tokamak to diagnose en-

ergetic ion loss due to MHD activity [Watson and Heidbrink, 2003; Heidbrink et al.,

2011]. This suggests that ICE might be exploited as a complementary diagnostic

for MHD activity, as well as for fusion-born alpha-particle dynamics, in future D-T

plasmas in JET and ITER [McClements et al., 2014, 2015]. Studies of ICE in JT-

60U [Ichimura et al., 2008; Sato et al., 2010] and ASDEX-Upgrade [D’Inca et al.,

2011; D’Inca, 2014] have extended the understanding of the dependence of ICE on

different plasma parameters and on NBI parameters.

Future exploitation of ICE as a diagnostic will rest on fully understand-

ing the underlying physics of the emission mechanism. The leading candidate is

the magnetoacoustic cyclotron instability [Belikov and Kolesnichenko, 1976] (MCI),

for which the analytical theory was developed and applied to scenarios relevant to

JET and TFTR soon after the experimental observations in these tokamaks [Dendy

et al., 1992, 1993, 1994b; Fülöp and Lisak, 1998]. The analytical theory of the MCI

approximates the velocity distribution function of the fusion-born alpha-particles

driving the instability as a drifting ring-like distribution. This reflects the natu-

rally occurring population inversion in the velocity distribution of centrally-born

alpha-particles at the outer mid-plane edge, which have undergone large excursions

from the core to the edge plasma in JET and TFTR [Cottrell et al., 1993; Dendy

et al., 1995]. Among the predictions of the analytical theory of the MCI in rela-

tion to ICE in JET and TFTR we can mention: the excitation of waves on the

fast Alfvén-ion Bernstein branch at sequential alpha-particle cyclotron harmonics;

strong linear growth rates of waves propagating almost perpendicular to the back-

ground magnetic field; and linear scaling of these growth rates with alpha-particle

concentration at low cyclotron harmonics. The success of linear theory, which by

construction only addresses the early stage of growth, in explaining observed ICE

signal intensities, remained a paradox which has been partly resolved by the recent

computational studies reported in Cook et al. [2013]. These studies were the first

fully self-consistent particle-in-cell (PIC) simulations of the MCI [Cook et al., 2013],

which validated the assumptions and predictions of linear theory, and showed good

agreement with the properties of ICE measurements in JET. The work of Cook

et al. [2013] suggested that the congruence between linear theory and the observed
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signal intensities may reflect the prompt self-disruption, in velocity space, of the

driving population by the waves which it excites. The full kinetics of both the elec-

tron population and the multiple ion populations was included in the PIC model

of Cook et al. [2013], and the inclusion of electron spatio-temporal scales imposed

computational constraints on run time.

In this chapter we report the results of numerical simulations of the MCI

using the hybrid approximation for the plasma (c.f. Sec. 1.2). This approximation

allows us to progress through the linear phase and far into the nonlinear phase of

the MCI, which in turn allow us to unveil novel nonlinear processes of the MCI that

produce a better match to observation of ICE in D-T JET plasmas. We report, in

particular, significantly improved agreement between simulated and observed ICE

spectra at low cyclotron harmonics, nonlinear re-energisation of the alpha-particles

by waves excited early on in the simulations by the alpha-particles, and linear scaling

of the MCI-generated electromagnetic field intensities with alpha-particle concen-

tration, in agreement with the experimental observations of ICE. In addition, we

find that linear growth rates inferred from hybrid simulations of the MCI at early

times, show square root scaling with alpha-particle concentration in the range of

frequencies 9Ωα ≤ ω ≤ 12Ωα, where Ωα is the alpha-particle cyclotron frequency.

The mode at ω = 7Ωα, which is marginally resolved in our hybrid simulations,

shows linear scaling with alpha-particle concentration. Finally, we perform simula-

tions of the MCI for conditions relevant to core D-T JET plasmas. We find that the

MCI only can operate under these plasma conditions, heating efficiently the back-

ground deuterons, if the velocity distribution of fusion-born alpha-particles departs

significantly from an isotropic velocity distribution.

3.2 Hybrid simulations of the MCI

We perform 1.5D numerical simulations of the MCI in the hybrid approximation,

taking the direction of variation along the x-axis to be perpendicular to the constant

background magnetic fieldB0 = B0ẑ. Following Cook et al. [2013], we initialise with

an isotropic, thermal distribution of deuterons with initial temperature 1 keV, and

a ring-like distribution of minority alpha-particles, fα(v‖, v⊥) = δ(v‖)δ(v⊥ − u⊥) at

3.5 MeV. Here u⊥ is the magnitude of the initial perpendicular velocity of the alpha-

particles, and the population is randomly uniformly distributed in initial gyro-angle.

This distribution function corresponds to a simplified version of the one used in the

analytical theory of the MCI in McClements et al. [1996]
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f =
1

2π3/2u⊥vr
exp

(
−
(
v‖ − vd

)2
v2
r

)
δ(v⊥ − u⊥), (3.1)

for the case where the ion distribution has zero parallel velocity, v‖ = 0, zero velocity

spread, vr = 0, and is centred on zero, vd = 0.

In order to compare the results of our hybrid simulations with the ICE mea-

surements, we set up values for the plasma parameters similar to those used in

pulse 26148 in the preliminary tritium experiment (PTE) in JET (c.f. Table I of

Cottrell et al. [1993]). The total number density in Eq. (1.15) and the electron

temperature are set to n = 1019 m−3 and Te = 1 keV, respectively. The strength

of the background magnetic field corresponds to the value at the outer midplane

in JET, B0 = 2.1 T. The ratio of the minority alpha-particle number density to

the deuteron number density, ξα = nα/nD, which determines the growth rate of the

excited waves in the linear theory of the MCI [Dendy et al., 1995], takes the value

ξα = 10−3 unless otherwise indicated. Our simulations do not take into account the

collisional slowing-down of the alpha-particles, nor replenishment by freshly born

particles. Thus we focus exclusively on the fast timescale self-consistent physics of

the MCI of a given energetic population, in both linear and nonlinear phases. As

we shall see, our simulations reproduce the observed properties of ICE, suggesting

that the relevant ion kinetic processes are captured in these simulations and in this

simplified spatial topology with spatially homogeneous plasma.

The large simulation domain consists of 8192 equal grid cells, each of length

equal to rD/
√

2, where rD = vTD/ΩD is the deuteron Larmor radius, v2
TD

=

kBTD/mD is the deuteron thermal velocity, and ΩD is the deuteron ion cyclotron

frequency. This enables us to resolve in detail the alpha-particle gyrodynamics

(rLα/rLD ≈ 41), while also providing adequate coverage of the deuteron gyromo-

tion. We obtain high resolution in wavenumber space due to the large number of

modes present in the simulation domain, which enables calculation of high resolu-

tion fast Fourier transforms. For each ion species, we use 200 super-particles per

grid cell, and the smoothing parameter is set to αs = 10−4.

In Fig. 3.1(c) we show the power spectra of the hybrid simulation for the

linear (black trace) and nonlinear (red trace) stages. These are calculated by in-

tegrating the frequency-wavenumber space over the positive wavenumber domain

k > 0. For the calculation encompassing the linear (nonlinear) stage we use simu-

lation data from the time interval t/τα = 1 to t/τα = 5 (t/τα = 1 to t/τα = 10).

Here τα is the alpha-particle gyroperiod. In the same figure are plotted for compar-

ison: in panel (b), linear growth rates calculated from analytical theory, Eq. (8) of
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Figure 3.1: Experimental, analytical and numerical spectra. (a) measured ICE intensity
from JET PTE pulse 26148 (Reproduced from Figure 1 of Dendy et al. [1995]). (b) analytical
linear growth rate for the MCI for alpha-particle concentration, log10(ξα) = −3, along with
the corresponding results from the hybrid simulations for the three values, log10(ξα) =
−4,−3.5,−3. (c) intensity of the parallel perturbed magnetic field δB‖ = Bz − B0 of the
hybrid simulation of the MCI with ξα = 10−3. The dashed black (solid red) line represents
the linear (nonlinear) stage of the instability.

McClements et al. [1996]; and in panel (a), the ICE intensity of pulse 26148 of the

PTE in JET, which was measured using an ion cyclotron resonance heating (ICRH)

antenna in receiver mode. The power spectrum of the simulation, and especially

that encompassing the nonlinear phase of the MCI (red trace in Fig. 3.1(c)) recov-

ers most of the observed features of the ICE signal Fig. 3.1(a). The intensity peaks

appear at the same positions on the frequency axis, with the most intense peaks
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occurring for ω/Ωα ≥ 8. The dashed black trace in Fig. 3.1(c) represents the power

spectrum of the linear stage of the MCI simulation, already showing several key

features of the ICE signal. In this respect our hybrid simulation confirms previous

analytical [Cauffman et al., 1995; McClements et al., 1996] and PIC computational

[Cook et al., 2013] studies. In addition to the theoretically-predicted growth rate

(Eq. (8) of McClements et al. [1996]), Fig. 3.1(b) also shows the growth rate ob-

tained from the early phase of hybrid simulations for three different values of ξα.

We note better agreement between these results for the harmonics ω/Ωα ≥ 7 than

for the lower excited harmonics in our simulations, down to ω = 5Ωα. Also, as

predicted by the linear theory, the growth rates increase with the concentration

of alpha-particles. The parameters used in the calculation of the analytical linear

growth rate [McClements et al., 1996] are: an angle of propagation θ = 88◦, and a

narrow spread of the parallel velocity of the minority alpha-particles, vr/u⊥ ≈ 0.06,

which approximate the set-up of our simulations. Further hybrid simulations of the

MCI for different propagation angles, 85◦ ≤ θ ≤ 90◦, follow the predictions of the

linear theory for the growth rates [McClements et al., 1996], decreasing as the prop-

agation angle decreases whilst keeping constant the concentration of alpha-particles

ξα.

Importantly, the fact that the hybrid model enables us to follow the MCI

deep into its nonlinear phase enables this treatment to capture additional aspects

of the observed ICE signal. Comparison of the two traces for the simulated MCI in

Fig. 3.1(c) with the measured ICE signal in Fig. 3.1(a) shows that only the solid red

trace, which encompasses the nonlinear phase, robustly captures the lower observed

cyclotron harmonic peaks one to three, which appear to become unstable due to

nonlinear interactions with modes excited in earlier times, as explained in the next

section.

As we mentioned before, plasma heating by fusion-born ions requires the

energetic alpha-particles to transfer their energy to the background electrons and

ions. In Fig. 3.2 we show the time evolution of the change in particle energy density

and the energy density of the excited electric and magnetic fields associated with

the MCI. At t/τα = 1, the instability starts to take over. The free energy of the

alpha-particles contributes to energising the background deuterons which oscillate

in electromagnetic fields excited by wave-particle cyclotron resonance of the alpha-

particles. This energy transfer to the deuterons peaks at t/τα ≈ 5, giving way to

the re-energisation of the alpha-particles which is discussed in Sec. 3.4.
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Figure 3.2: Time evolution of the change in particle energy density and energy density of
the excited field components. The red (cyan) line shows the change in the kinetic energy
density of the deuterons (alpha-particles) along with the energy density of the magnetic field
perturbation, δB‖ ≡ Bz(x, t)−B0, (green line) and the perpendicular electric field Ex (blue
line). For comparison we show the change in kinetic energy density of the alpha-particles
(orange dashed line) taken from a PIC simulation with the same parameters as our hybrid
simulation. The temporal axis has been scaled by a factor of 1/2 to account for the slower
growth rate observed in the PIC simulations, which might be due to the fact that, opposite
to our hybrid simulations, the PIC simulations include the full kinetic electron damping.

3.3 Electric and magnetic fields

We now turn to the time evolution of the electric and magnetic fields in the hybrid

simulation of the MCI. Panels (a) and (d) of Fig. 3.3 plot log10 of the spectral

density of the parallel perturbed magnetic field δB‖ = Bz(x, t) − B0 in frequency-

wavenumber space for the linear and nonlinear stages. The dashed lines in these

panels show ω/k = VA, the dispersion relation of the fast Alfvén wave. We see

that modes of the fast Alfvén wave are excited in the simulations at resonances

with consecutive ion cyclotron harmonics of the alpha-particles. Panels (b) and (e)

of Fig. 3.3 show a close-up of the most strongly excited modes for the linear and

nonlinear stages, respectively. Here the intersection of the vertical and horizontal

dashed lines indicates the maximum of the spectral density at ω/Ωα ≈ 11 and

kVA/Ωα ≈ 11.5. Panels (c) and (f) show the time evolution in wavenumber space of

the δB‖ field component. This shows that the most strongly excited modes are in
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the range 6 ≤ kVA/Ωα ≤ 13, so that the characteristic length scales of these modes

correspond to the initial gyroradius of the alpha-particles, rα = u⊥/Ωα.
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Figure 3.3: Frequency and wavenumber space for the linear (panels (a)–(c)) and nonlinear
stages (panels (d)–(f)) of the MCI. Panels (a) and (d): shading indicating the log10 of
the spectral density of the parallel perturbed magnetic field δB‖ in frequency-wavenumber
space. These plots show the excitation of the fast Alfvén wave with resonances at consecutive
harmonics of ion cyclotron frequency, ω = Ωα. The dashed line shows, ω/k = VA, where
VA = B0/

√
µ0nDmD is the Alfvén speed. The ellipse in (d) shows the excited modes due to

the alpha-particles’ re-energisation. Panels (b) and (e): close-up of the most strongly excited
modes in frequency-wavenumber space. The intersection of the vertical and horizontal
dashed lines in panel (e) points to the maximum of δB2

‖ in frequency-wavenumber space

at ω/Ωα ≈ 11 and kVA/Ωα ≈ 11.5. Panels (c) and (f): time evolution of the wavenumber
spectra of δB‖.

Figure 3.4 shows the contribution of each positive wavenumber (k > 0) to

the energy density of the fields. Panels (a) and (b) of Fig. 3.4 plot this for the linear

and nonlinear stages, respectively. For the calculation of the linear (nonlinear) stage

we used simulation data from the time interval t/τα = 1 to t/τα = 5 (t/τα = 1 to

t/τα = 10). We see spectra with consecutive intensity peaks in the range 6 ≤
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kVA/Ωα ≤ 13, for all the the non-zero field components in our simulations. By

comparing with panels (e) and (f) of Fig. 3.3, these intensity peaks can be identified

with the resonances of the fast Alfvén wave at consecutive ion cyclotron harmonics

of the alpha-particles. It is evident from Fig. 3.4 that δB‖ contains more energy

for the wavenumbers kVA/Ωα < 13 than the electric field component Ex. The inset

in Fig. 3.4(a) shows the energy density of δB‖ in the linear (orange) and nonlinear

(green) stages in linear scale. The main difference between the linear and nonlinear

stages is the higher energy of δB‖ in the range kVA/Ωα < 5, which is not predicted

by the linear theory of the MCI.
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Figure 3.4: Energy density of each non-zero field component as a function of positive
wavenumber (k > 0) in the linear (a) and nonlinear (b) stages. Strong localized peaks
in the range 6 ≤ kVA/Ωα ≤ 13 correspond to the resonances of the fast Alfvén wave at
consecutive ion cyclotron harmonics of the alpha-particles. The inset in panel (a) shows the
energy density of δB‖ in the linear (orange) and nonlinear (green) stages in the range of
wavenumbers kVA/Ωα < 5. Linear scale is used for the y-axis in this inset. The intensity
peaks about kVA/Ωα = 22 are important in the re-energisation process for alpha-particles
in the nonlinear stage (cf. Figs. 3.2 and 3.3(d)).

Let us now consider the interaction between the electric and magnetic fields

that is mediated by the plasma. First, we calculate the spatial cross-correlation, over
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an arbitrary separation ∆x, between the normalised components δB‖(x, t)/
√

2µ0

and
√
ε0/2Ex(x, t)

R(∆x, t) =
1

2

√
ε0
µ0

∫
δB‖(x+ ∆x, t)Ex(x, t)dx, (3.2)

where the integral is performed over the entire simulation domain. To construct the

most appropriate corresponding phase shift, we calculate the phase shift between

the field components

∆φ = k∗∆x, (3.3)

where k∗VA/Ωα ≈ 11.5 is the dominant wavenumber in our simulation. This enables

us to transform from R(∆x, t) to R(∆φ, t), which is plotted in Fig. 3.5. This shows

that in the early stages of our simulation there is not a well defined phase shift

between the electric and magnetic fields. However, as the simulation enters the

nonlinear stage, the coupling between the fields produces a phase shift about ∆φ ≈ π
for t > 5τα.
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Figure 3.5: Spatial cross-correlation R(∆φ, t) (cf. Eq. (3.2) and (3.3)) between the nor-
malised field components δB‖(x, t)/

√
2µ0 and

√
ε0/2Ex(x, t). The red (blue) colour indi-

cates maxima (minima) of R(∆φ, t), indicating strong (lack of) correlation for the relative
phase shift ∆φ. The vertical dashed lines show π and −π. The nonlinear interaction be-
tween the electric and magnetic fields produces a phase shift that remains almost constant
at ∆φ ∼ ±π for t > 5τα.
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Let us now examine whether there is nonlinear coupling between the well-

defined approximate normal modes at successive ion cyclotron harmonics that are

found in the present simulation. It is of particular interest, and exploits the hybrid

simulation approach, to compare any such coupling in the early and later stages of

the MCI. An appropriate technique is bispectral analysis [Kim et al., 1980; Holland

et al., 2002], which has been successfully applied to experimental measurements on

magnetically confined plasmas as, for example, in Moyer et al. [2001] and Yamada

et al. [2008]. For present purposes, this requires calculation of the non-normalised

self-bicoherence of the parallel perturbed magnetic field δB‖ in wavenumber space

b2(k1, k2) =| 〈δB̂∗‖(k1 + k2)δB̂‖(k1)δB̂‖(k2)〉 |2 , (3.4)

where δB̂‖(k) is the Fourier transform of δB‖(x) and δB̂∗‖(k) its complex conjugate.

Here the average 〈·〉 is taken over a small time window of width ∆t ∼ 0.2τα. We

show this calculation in Fig. 3.6, where the shading indicates the intensity of cou-

pling between different modes. The red colour indicates significant coupling between

two different modes. We see strong coupling in the linear (Fig. 3.6(a)) and nonlin-

ear (Fig. 3.6(b)) stages between modes about (VA/Ωα)(k1, k2) = (10, 10) with less

intense points about (VA/Ωα)(k1, k2) = (10, 0) for the linear stage. However, in the

nonlinear stage (cf. Fig. 3.6(b)) all the points around kVA/Ωα = 10 become equally

intense, reflecting a more intense coupling between the relevant modes. These re-

sults may be extrapolated to the frequency domain by using the dispersion relation

of panels (a) and (d) of Fig. 3.3.

3.4 Nonlinear stage of the MCI

Thus far, we have focused primarily on establishing congruence between our hybrid

simulations of the MCI and three standards of previous research: observations of ICE

[Heidbrink and Sadler, 1994; Cottrell and Dendy, 1988; Schild et al., 1989; Cottrell

et al., 1993], linear analysis of the MCI [Dendy et al., 1995; McClements et al., 1996,

1999; Dendy et al., 1994b] and large scale numerical simulations of the MCI [Cook

et al., 2013] using a PIC code which captures the full kinetics of ions and (unlike the

hybrid model) electrons. We now turn to the key aspect of nonlinear phenomenology

of the MCI, adumbrated in the preceding discussion of results, which can only be

captured by a hybrid model given computational resource constraints. We focus

first on the re-energisation of the alpha-particles visible in Fig. 3.2, commencing

at t/τα ≈ 5. In the time interval, 5 < t/τα < 7, the energy of the background

deuterons and the fields decreases gradually whilst the kinetic energy of the alpha-
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Figure 3.6: Non-normalized self-bicoherence of the parallel perturbed magnetic field δB‖
in wavenumber space, plotted using a log10 colour scale. Only the principal domain of the
self-bicoherence is shown. The red colour indicates significant coupling between different
modes at k1 and k2. Panels (a) and (b) show the non-normalised self-bicoherence of δB‖ in
the linear stage at t = 4τα and in the nonlinear stage at t = 8τα. The arrows in both panels
point to areas on the k1k2 plane which show strong coupling between different modes.

particle population reverses its previous decline. After this time, the background

deuterons’ energy remains approximately constant while the energy of the fields

continues to decrease, being transferred to the alpha-particles as kinetic energy.

As a first step towards understanding this re-energisation process, we look at

the velocity-position phase space of the alpha-particles, together with their velocity

probability density function. In the right panel of Fig. 3.7 we show the smoothed,

filled contours of the phase space of the alpha-particles at t/τα ≈ 9, calculated by

averaging over 16 windows of the phase space along the x-axis. The different colours

here represent the value of fα(x, v), where v =
√
v2
x + v2

y is the amplitude of the

perpendicular velocity of the alpha-particles. Here, we do not include the parallel

velocity vz, which remains constant in time for the chosen initial condition. We

compare fα(x, v) with the left panel of Fig. 3.7, which shows fα(v) at three different

times. In the linear stage, fα(v) seems to follow a biased diffusive process in velocity

space, leading up to the early time at t/τα ≈ 5. Then, as the instability enters the

nonlinear stage, a bump in fα(v) starts to build up at a velocity v/VA ≈ 1.5. Once

this bump of re-energised alpha-particles forms, we can identify three corresponding
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features in the phase space of Fig. 3.7, right panel: two phase space diffusion regions

around v/VA ≈ 1 and v/VA ≈ 1.5 separated by a zone which acts as a leaky transport

barrier, which produces the steep slope before the bump in fα(v).
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Figure 3.7: Re-energisation of the alpha-particle population during the nonlinear phase
of the MCI. Left panel: probability density function of the minority alphas, fα(v), as a

function of the magnitude of their perpendicular velocity v =
√
v2x + v2y, at three different

times in the nonlinear stage of the hybrid simulation. The energisation of the alpha-particles
is seen as the bump in fα(v), which builds up in the nonlinear stage around v/VA ≈ 1.5.
At this stage the particles reach velocities higher than the birth velocity u⊥/VA ≈ 1.2.
Right panel: filled contours representing the smoothed probability density function of the
minority alpha-particles as function of position and their velocity fα(x, v), at t/τα ≈ 9. The
temporal evolution of fα(v) and fα(x, v) suggests the existence of two phase space diffusive
regions, where the smallest diffusion region can be identified with the bump of fα(v) in the
left panel, and a leaky transport barrier which produces the steep slope before the bump in
fα(v).

Using the data from Fig. 3.2, we calculate the fast Fourier transform of

the change in the kinetic energy density of the alpha-particle population and the

electromagnetic energy density associated with δB‖. This calculation reveals three

intense peaks at the frequencies ω/Ωα = 20, 22 and 24, of which the peak at ω/Ωα =

22 is the most intense by far. These frequencies correspond to the modes highlighted

in Fig. 3.3(d) and to the peaks in Fig. 3.4 around kVA/Ωα = 22. These modes have a

phase velocity close to the Alfvén speed, which suggests that the mechanism driving

the re-energisation of the alpha-particles is related with the fast Alfvén wave.
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3.5 Scaling properties of the MCI

In this section, we address the scaling properties with alpha-particle concentration

of linear growth rates and intensity of the MCI in relation to D-T JET plasmas. In

the early JET D-T experiments, high power neutral beam injection (NBI) was used

to heat the plasma. By comparing plasmas where only deuterium NBI was used to

those where a mixture of deuterium and tritium NBI was used, a linear correlation

was identified between the measured ICE power and the measured fusion reactivity

over six decades of the neutron source rate (c.f. Fig. 3 of Dendy et al. [1995]).

Time resolved measurements during specific JET and TFTR D-T plasmas showed

linear scaling of ICE intensity with local edge alpha-particle concentration as the

time evolved (c.f. Fig. 4 of Dendy et al. [1995]). This established that the source of

ICE in those plasmas was the fusion-born alpha-particles resulting from D-T fusion

reactions. In this section we show that the hybrid simulations of the MCI can recover

the scaling properties of ICE with respect to the concentration of energetic ions ξα,

observed in JET and TFTR [Cottrell et al., 1993; McClements et al., 1996]. This

gives further support to the MCI as the mechanism underlying ICE.

We perform hybrid simulations of the MCI with seven different values of ξα,

ranging from ξα = 1 × 10−4 to ξα = 1 × 10−3, while keeping fixed all the other

plasma and simulation parameters specified in Sec. 3.2. The first result drawn from

these simulations is the excitation of perpendicular propagating fast Alfvén waves

at consecutive cyclotron harmonics of alpha-particles for all the values of ξα. This

is shown in Fig. 3.8(a) for the power spectra of the parallel perturbed magnetic field

δB‖ for ξα = 1× 10−4 (bottom black trace) and ξα = 1× 10−3 (top red trace), and

in Fig. 3.8(b) for the power spectra of the perpendicular electric field component,

E⊥ = Ex. In both cases the spectra encompass the linear and nonlinear stages of

the MCI. An important difference between these simulations is the saturation time

of the linear stage, being t ≈ 5τα for ξα = 1× 10−3 and t ≈ 15τα for ξα = 1× 10−4,

where τα = 2π/Ωα is the alpha-particle gyro-period. After this saturation time in

simulations, the linear stage gives way to the nonlinear effects which drive the lowest

cyclotron harmonics peaks. Subsequently the minority alpha-particle population is

re-energised [Carbajal et al., 2014].
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Figure 3.8: Log-normal plot of the MCI intensity: a) power density of the perturbed
magnetic field of two typical hybrid simulations of the MCI with ξα = 1× 10−3 (red trace)
and ξα = 1 × 10−4 (black trace). b) power density of the transverse component of the
electric field from the same simulations as panel a).

3.5.1 Noise levels in the hybrid simulations of the MCI

In plasma simulations using super-particles (Sec. 2.2.2) to describe the ion dynam-

ics the electromagnetic fields, and therefore the ions’ trajectories in phase space,

contain errors due to the use of a finite number of super-particles [Aydemir, 1994].

These errors or noise in the simulations might produce non-physical effects such

as artificial plasma heating, which in turn might drive or enhance instabilities in

the simulated plasma [Hockney and Eastwood, 1989; Birdsall and Langdon, 2004].

Also, it is well known that the use of different super-particles shapes (c.f. Fig. 7.6 of

Hockney and Eastwood [1989]) and different algorithms for advancing in time and

space kinetic particles and electromagnetic fields contribute differently to the level

of such noise (c.f. Fig. 7.7 of Hockney and Eastwood [1989]). The effect of noise on

the simulations of the MCI becomes particularly important when using low alpha-
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particle concentrations, where the amplitude of low-frequency (linearly unstable)

modes driven by the minority alpha-particles are just above the noise levels.

Estimations of the noise level in plasma simulations using particles [Aydemir,

1994; Bottino et al., 2007] show that it depends, amongst other factors, on the num-

ber of super-particles used in the simulation N , decreasing as 1/
√
N as we increase

N . Fig. 3.9 shows the power spectral density in frequency domain of the perturbed

magnetic field δB‖ (panel a)) and the transverse component of the electric field Ex

(panel b)) for three hybrid simulation of the MCI with log10(ξα) = −4 using three

different values for the number of particles-per-cell (ppc) used for both ion species

deuterons, and alpha-particles. In this figure the power spectrum of the electromag-

netic fields encompass the linear and nonlinear stage of the MCI. As it can be seen,

when few particles-per-cell are used in the simulation, that is, ppc = 20 (orange

trace), the amplitude of the unstable modes of the MCI at alpha-particle cyclotron

harmonics ω ≥ 8Ωα are marginally resolved, that is, their amplitude are just above

the broadband noise in δB‖ and Ex; while the modes at lower frequencies are not

well resolved due to the high level of noise. As we increase the number of particles-

per-cell to 200 (black trace) and 2000 (green trace), the noise levels are reduced

drastically and the amplitude of all the unstable modes at alpha-particle cyclotron

harmonics ω > 7Ωα are well above the noise levels, while the mode at ω = 7Ωα is

marginally resolved. The modes ω ≤ 6Ωα are not well resolved in Fig. 3.9; even

though these modes are marginally resolved in the frequency-wavenumber space,

they are hidden by the noise levels when averaging along k > 0 to calculate the

power spectrum of Fig. 3.9. This is shown in Fig. 3.10 for the numerical disper-

sion relation of δB‖ for the simulation with log10(ξα) = −4 and ppc = 2000, where

modes at alpha-particle cyclotron harmonics ω ≤ 5Ωα start to be visible around

wavenumbers with k = Ωα/VA (black arrows).

From our hybrid simulations of the MCI with large alpha-particle concentra-

tion log10(ξα) ∼ −3, we observe that during the linear stage of the MCI the energetic

alpha-particles transfer more energy to the electromagnetic fields at ω ≥ 8Ωα with

respect to those simulations with log10(ξα) ∼ −4. Recalling that these higher fre-

quency modes of the MCI drive unstable those at lower frequencies (ω < 4Ωα) during

the nonlinear stage of the instability through wave-wave interactions (c.f. Sec. 3.3),

it is expected that for simulations with log10(ξα) ∼ −4 these lower frequency modes

will be more difficult to detect above noise levels because they have less energy with

respect to the simulations with log10(ξα) ∼ −3; this is clearly visible in the top

panel of Fig. 3.8, where we plot the power spectrum of the perturbed magnetic field

δB‖ for the simulations with ξα = 10−3 (red trace) and ξα = 10−4 (black trace).
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To conclude, a comparison between simulations with ξα = 10−4 using ppc =

200 and ppc = 2000 shows convergent results for modes at alpha-particle cyclotron

harmonics ω > 7Ωα, see Fig. 3.9. Therefore, all the results presented in the following

sections about the scaling properties of the MCI at alpha-particle cyclotron frequen-

cies ω > 7Ωα are robust and well resolved by our simulations, while the results pre-

sented here for the mode at ω = 7Ωα must be taken with caution since this mode is

marginally resolved in these simulations. In the following we study the scaling prop-

erties of the MCI using hybrid simulations with ppc = 200 for both ion species given

that they provide a good trade-off between numerical resolution and computational

cost. Future work includes the use of more computationally intensive simulations

using a larger number of particles-per-cell and low-noise methods [Sydora, 1999] to

study the MCI driven by alpha-particle concentrations log10(ξα) ∼ −4.

10
−12

10
−10

10
−8

10
−6

 

 

M
C
I
In
te
n
si
ty

δ
B

2 ‖
[B

2 0
]

0 1 2 3 4 5 6 7 8 9 10 11 12
10

2

10
4

10
6

10
8

10
10

Frequency ω [Ωα]

 

 

M
C
I
In
te
n
si
ty

E
2 x
[V

2
m

−
2
]

ppc = 20
ppc = 200
ppc = 2000

ppc = 20
ppc = 200
ppc = 2000

a)

b)

Figure 3.9: Power spectral density of the perturbed electromagnetic fields for three hybrid
simulation of the MCI with log10(ξα) = −4 using three different values for the number of
particles-per-cell (ppc). Panel a): PSD of δB‖ for simulations using ppc = 20 (orange),
ppc = 200 (black) and ppc = 2000 (green). Panel b): same as panel a) for Ex. The noise
level in the electromagnetic fields decreases as the number of super-particles increases.
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Figure 3.10: Colour shading of the log10(δB2
‖) in frequency-wavenumber for the hybrid

simulation of the MCI with log10(ξα) = −4 and ppc = 2000. Modes in the range ω ≤ 6Ωα
(arrows) start to be visible, but they are hidden by the noise when averaging along k > 0
to calculate the power spectrum of Fig. 3.9.

3.5.2 Linear growth rates

Analytical calculations of the linear stability of the MCI show that the linear growth

rates of low-frequency unstable modes, propagating quasi-perpendicular to the back-

ground magnetic field, scale linearly with alpha-particle concentration for plasma

parameters corresponding to experiments in JET (c.f. Fig. 10 of Dendy et al. [1995])

and TFTR (c.f. Fig. 6 of McClements et al. [1996]).

This fact, on its discovery [Dendy et al., 1995; McClements et al., 1999],

offered an encouraging point of contact between the theory of the MCI and the

observations of ICE. However, there is no a priori reason to expect the characteristics

of a linear growth rate to be reflected in a saturated signal. The work of Cook

et al. [2013] and Carbajal et al. [2014], strongly suggests that the shared spectral

properties of the linear analytical growth rates and of the ICE spectra reflect the

very short timescale on which the MCI unfolds. Here we turn to the scaling of the
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linear growth rate of the MCI, inferred from our hybrid simulations at early times,

rather than from mathematical analysis, with energetic particle concentration ξα.

In particular, we obtain the linear growth rates of the excited modes in the hybrid

simulations of the MCI for the range of frequencies between ω = 7Ωα and ω =

12Ωα. A similar study for harmonics below this range of frequencies is not possible,

mainly because the linear instability for these lower modes is weak compared to

the nonlinear effects which rapidly take over and drive them. First, we Fourier

decompose δB‖ in wavenumber space and relate each harmonic ωn = nΩα to its

corresponding wavenumber kn through the numerical dispersion relation of Fig. 3.3.

We then sum the contribution of the modes within the range of wavenumbers [kn−
δk, kn+δk], which are related to [ωn−δω, ωn+δω], to obtain the time evolution of the

excited modes of the MCI, δB‖(kn± δk, t). The sum over the range of wavenumbers

[kn−δk, kn+δk] takes into account the finite energy exchange between the adjacent

excited modes of the MCI, thus enabling better estimates of the linear growth rates.

In all our calculations δkVA/Ωα ≈ 0.25. A least-squares linear fit is then applied to

the plot of log(δB‖) versus t, in an appropriate time interval to infer the effective

linear growth rate γn for each mode. This operation is repeated for each simulation

with different alpha-particle concentration ξα. We fit our results to the following

functional dependence of γn with ξα:

γn ∼ ξζα. (3.5)

Performing a least-squares linear fit to the log10− log10 plot of Eq. (3.5) we

can find the scaling exponent ζ. The results are shown in Fig. 3.11, where the error

bars show the confidence interval for each fit. Notice that we extract linear growth

rates of the MCI from hybrid simulations that evolve all modes in parallel as a

nonlinear ensemble. These growth rates therefore incorporate the consequences of

any coupling between modes, unlike the analytical treatment. Figure 3.11 shows

square root scaling of γn with ξα for modes in the range of frequencies ω = 9Ωα to

ω = 12Ωα, and linear scaling for the mode at ω = 7Ωα. The linear theory of the

MCI predicts the square root scaling of higher frequency modes in the presence of a

shell-like velocity distribution of energetic alpha-particles in D-T plasmas for modes

propagating perpendicular to B0 [Dendy et al., 1992], that is, modes with k‖ = 0.

According to our simulations, this result seems to apply to the MCI driven by a

ring-like distribution of minority alpha-particles (Eq. 3.1), too. Here k‖ refers to the

parallel component of the propagation vector k, which is zero in all our simulations

unless otherwise specified. In this case, the linear theory of the MCI assumes a cold

background deuteron plasma vTD/VA � 1, and that the fast Alfvén wave is only
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in resonance with the minority alpha-particle population, that is ω = kVA = lΩα.

Under this assumptions the scaling of the growth rates with ξα is showed to be (c.f.

Eq. 36 of Dendy et al. [1992]):

γl
Ωα

=
1√
2

ωα
ωD

VA
u⊥

Imag [χ0(zα)] ∝
√
ξα

√
mD

mα
. (3.6)

Here, Imag[x] is the imaginary part of x, zα = lu⊥/VA, VA is the Alfvén speed, l is

an integer, u⊥ is the initial velocity of the fusion-born alpha-particles of Eq. (3.1),

and mα and mD are the alpha-particle and deuteron mass, respectively. The full

expression of χ0(zα) is:

χ2
0(zα) = J2l −

izα
l

dJ2l

dzα
+

(
1− z2

α

l2

)
J2l +

zα
2l2

∫ 2zα

0
J2ldx. (3.7)

where Jl(zα) is the Bessel function of order l. For all our simulations vTD/VA ∼ 0.03,

where v2
TD

= kBTD/mD is the deuteron thermal velocity; this is consistent with

Dendy et al. [1992] on the assumption of a cold background plasma. We note that

square root scaling of γl with ξα is also predicted by the more general linear theory

of the MCI when ξα → 0 for the case with k‖ 6= 0 [Cottrell et al., 1993].
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Figure 3.11: Scaling with alpha-particle concentration ξα of the linear growth rates γ of
the MCI at successive cyclotron harmonics. The blue diamonds show the scaling exponents
ζ of Eq. (3.5) obtained from the hybrid simulations of the MCI. The growth rates in the
range ω = 9Ωα to ω = 12Ωα show square root scaling with ξα as predicted by Eq. (3.6),
that is, ζ = 0.5, while the mode at ω = 7Ωα shows linear scaling with ξα, that is, ζ = 1.

The fast Alfvén wave, which is a generalisation of the compressional Alfvén

wave, shows strong correlation between perturbations of the number density of the
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different ion species when interacting with them. This correlation allows us to

measure how much the fast Alfvén wave interacts with the background deuterons

and the minority alpha-particles in our hybrid simulations. We first define the

perturbation of the number density of species j, δnj as

nj(x, t) = n0j + δnj(x, t). (3.8)

Here nj is the evolving number density of species j, and n0j is its initial homogeneous

value. Figure 3.12 shows the power spectral density in wavenumber space of the

three variables δB‖/B0, δnα and δnD, all in the linear stage (panel a)), and in

the nonlinear stage (panel b)), for the hybrid simulation with ξα = 1 × 10−3. To

calculate the spectra of Fig. 3.12, we first Fourier decompose δB‖/B0, δnα and

δnD in wavenumber and frequency using data from the time interval t/τα ≤ 3 and

t/τα ≤ 10 for the calculation encompassing the linear and nonlinear stage of the

MCI, respectively; then, we integrate over the range of frequencies 0 ≤ ω/Ωα ≤ 14.

From these spectra it is evident that the fast Alfvén wave strongly interacts with

the minority alpha-particles during the linear stage of the MCI, but not with the

background deuterons. Specifically, δB‖ and δnα show the excitation of the same

modes for kVa/Ωα ≥ 8, whereas δnD shows a broadband spectrum across the full

range of wavenumbers. In contrast, during the nonlinear stage, the two ion species

show similar spectra in wavenumber space, indicating that both ion species are

interacting with the fast Alfvén wave. Other hybrid simulations with different ξα

show the same features.

These results demonstrate that the Alfvén wave interacts strongly with only

the minority alpha-particles during the linear stage, at frequencies and wavenumbers

corresponding to the unstable modes of the linear MCI in the range ω = 9Ωα to

ω = 12Ωα. There is no interaction visible at the other frequencies and wavenumbers

for either δnD or δnα.

3.5.3 Energy density

The energy density of the perturbations in the radially-outward propagating parallel

magnetic field, δB2
‖/2µ0, can be measured in some tokamak experiments that detect

ICE. This quantity shows linear scaling with alpha-particle concentration in D-T

plasmas in JET and TFTR, and is studied here using hybrid simulations of the

MCI. For each hybrid simulations with different alpha-particle concentration ξα,

we Fourier decompose δB‖ in frequency and wavenumber space; then, we integrate

δB2
‖(k, ω) over the positive wavenumber domain k > 0, and keep record of δB2

‖(ω) at
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Figure 3.12: Power spectral density (PSD) in wavenumber space of perturbed number
densities and magnetic field perturbations for the hybrid simulation with ξα = 1 × 10−3.
Panel a): Power spectra encompassing the linear stage of the MCI. From bottom to top:
perturbed parallel magnetic field δB‖(k)/B0 (black), deuteron number density perturbation
δnD(k) (red) and alpha-particle number density perturbation δnα(k) (cyan). The excited
modes at kVA/Ωα ≈ 8.5, 9.5, 10.5, 11.5 and 12.5 are the same for δB‖ and δnα but not for
δnD. These modes correspond to ω/Ωα = 8, 9 10, 11 and 12, in the frequency domain (c.f.
3.3). Panel b): same as panel a), but the spectra now include the nonlinear stage of the
MCI. Both ion species show similar spectra in wavenumber. Other hybrid simulations with
different ξα show the same features. A running window average has been used to smooth
every PSD trace.

each cyclotron harmonic ω = nΩα, where n = 7, . . . , 12. Next, we fit the perturbed

magnetic energy density to the following functional dependence on alpha-particle

concentration:

δB2
‖(ω)

2µ0
∼ ξηα, (3.9)

where µ0 is the magnetic permeability of vacuum. The left hand side of Eq. (3.9)

can be divided by the background magnetic field energy (B2
0/2µ0) in order to use

the normalised spectra of Fig. 3.8(a),
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δB2
‖(ω)

B2
0

∼ ξηα. (3.10)

The top panel of Fig. 3.13 shows the best fit values of the scaling exponents η in

Eq. (3.10) inferred from our simulations for each cyclotron harmonic ω = nΩα,

together with their confidence interval. Each exponent η is calculated using a least-

squares linear fit of the log10− log10 plot of the normalized magnetic field energy

of Eq. (3.10). The bottom six panels of Fig. 3.13 show the log10− log10 plots of

the normalized magnetic field energy of Eq. (3.10) for each of the spectral peaks

at ω = nΩα (red circles), along with the best linear fit (magenta trace) with its

confidence interval (dashed black lines). Here, n = 7, . . . , 12. For all six cyclotron

harmonics we see that the results are consistent with linear scaling (η = 1) of

the magnetic field energy density with alpha-particle concentration. Preliminary

results of hybrid simulations with ten times more particles-per-cell ppc = 2000, and

therefore with lower noise levels, show the same linear trend for spectral peaks in

the range Ωα ≤ ω ≤ 6Ωα.

3.6 The MCI in relation to D-T JET core plasmas

During the DTE1 campaign of JET in 1997, where different mixtures of D-T were

used in the NBI heating system, electron and ion heating driven by fusion-born

alpha-particles was studied in detail [Thomas et al., 2001; Sharapov et al., 2008]. In

these plasmas, instabilities enhanced by energetic alpha-particles such as toroidal

Alfvén eigenmodes (TAEs) were not present [Thomas et al., 1998], which made it

possible to study in detail the process of trapping and slowing down of alpha-particles

born within the core plasma, only in the presence of MHD instabilities. These studies

showed efficient electron heating due to fusion-born alpha-particles comparable to

JET plasmas where ion-cyclotron resonance heating (ICRH) was used. Furthermore,

the observed heating of the majority ions due to fusion-born alpha-particles was

three times that of the electrons. This surprisingly efficient heating of the majority

ions in the plasma was not observed when ICRH substituted alpha-particle heating.

Furthermore, ICE originating at the core plasma in ASDEX-Upgrade, has been

observed when parallel NBI is used [D’Inca, 2014]. The above mentioned pose the

important question: whether MCI-driven ICE might occur at the core of DTE1 and

future D-T JET plasmas, and to what extent this instability provides a channel for

energy transfer between the minority fusion-born alpha-particles and the majority

ions in these plasmas.

75



Frequency ω [Ωα]
7 8 9 10 11 12S

ca
li
n
g
ex
p
on

en
t
η

0

0.5

1

1.5

2

η = 1 Best fit

lo
g
10
(δ
B

2 ‖
/B

2 0
)

-9.5

-9

-8.5

-8 ω/Ωα = 7

η = 1.13 ± 0.24

lo
g
10
(δ
B

2 ‖
/B

2 0
)

-8.5

-8

-7.5

-7 ω/Ωα = 8

η = 1.11 ± 0.17

lo
g
10
(δ
B

2 ‖
/B

2 0
)

-8

-7.5

-7

ω/Ωα = 9

η = 0.99 ± 0.22

lo
g
10
(δ
B

2 ‖
/
B

2 0
)

-7.5

-7

-6.5

ω/Ωα = 10

η = 0.83 ± 0.14

lo
g
10
(δ
B

2 ‖
/B

2 0
)

-6.4

-5.9

-5.4 ω/Ωα = 11

η = 0.69 ± 0.12

log10(ξα)
-4 -3.8 -3.6 -3.4 -3.2 -3

lo
g
10
(δ
B

2 ‖
/
B

2 0
)

-6.75

-6.25

-5.75 ω/Ωα = 12

η = 0.96 ± 0.15

Figure 3.13: Scaling of the normalized perturbed magnetic field energy with alpha-particle
concentration ξα. Top panel: the circles show the values of the scaling exponent η for each
spectral peak of Fig. 3.8(a) obtained using a least-squares linear fit. The error bars show the
confidence interval of each fit. Bottom panels: least-squares linear fits for the log10− log10

plots of the normalized magnetic field energy δB2
‖/B

2
0 vs. ξα for the cyclotron harmonics

ω = nΩα, where n = 7, . . . , 12. The black dashed lines in each of these panels represent the
confidence interval of the linear fit (magenta).
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In this section, we aim to shed some light into this issue by performing hybrid

simulations of the MCI using plasma parameters similar to those of DTE1 JET core

plasmas [Thomas et al., 1998]. Additionally, we study the effect on the evolution of

the MCI of using two different velocity distributions for the minority alpha-particles

in our simulations. This will provide a first precedent for studying ICE originating

at the core plasma, if core ICE is detected in future D-T plasmas in JET and ITER.

We perform two hybrid simulations of the MCI with a background mag-

netic field B0 = 3.4 T, total number density and the electron temperature are

n = 1019 m−3 and Te = 10 keV, respectively, and minority alpha-particle con-

centration ξα = 10−3. Initially thermalised background deuterons, which are in

thermal equilibrium with the fluid electrons, and the minority alpha-particle pop-

ulation, are uniformly randomly distributed along the simulation domain. For the

first simulation, we use an isotropic spherical shell distribution in velocity space for

alpha-particles [Dendy et al., 1992], resembling the expected velocity distribution of

newly-born alpha-particles [Thomas et al., 2001]

fα(v) = δ (v − u0) , (3.11)

where u0 is the magnitude of the initial velocity of the alpha-particles corresponding

to the energy of 3.5 MeV at which alpha-particles are born in D-T fusion reactions.

For the second simulation, we use a ring-like distribution of alpha-particles, as de-

tailed in Sec. 3.2. This allows us to measure the effect of different velocity distribu-

tions of the alpha-particles on the evolution of the MCI [Dendy et al., 1992, 1993;

Cottrell et al., 1993]. For these simulations the simulation domain consists of 4096

equal grid cells, each of length equal to rD/
√

2, where rD = vTD/ΩD is the deuteron

Larmor radius, v2
TD

= kBTD/mD is the deuteron thermal velocity, and ΩD is the

deuteron ion cyclotron frequency. For each ion species, we use 400 super-particles

per grid cell, and the smoothing parameter is set to αs = 10−7.

Figure 3.14 shows the time evolution in ion energy density and electric and

magnetic field energy density. The effect of the two different velocity distributions

on ion heating through the MCI for JET core plasmas is evident in this figure;

intense ion heating driven by wave-particle interaction of the alpha-particles with the

unstable modes of the MCI only is observed when the minority alpha-particles have

a ring-like velocity distribution. For the case where the alpha-particles follow the

velocity distribution function of Eq. (3.11), the MCI is heavily damped. Importantly,

the energy gain of the background deuterons is 2000% larger in the simulation with

a ring-like velocity distribution in comparison to the simulation with a shell-like

velocity distribution.
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Figure 3.14: Time evolution of the change in particle energy density and field energy
density of two simulations of the MCI with different alpha-particle velocity distributions.
Left panel: hybrid simulation of the MCI with an isotropic spherical-shell-like velocity
distribution for alpha-particles (c.f. Eq. 3.11). The inset in this panel shows a zoom of this
panel for careful inspection. As can be seen, by the end of the simulation the MCI saturates
and gives way to its nonlinear stage, where re-energisation of alpha-particles occurs. Right
panel: hybrid simulation of the MCI with a ring-like velocity distribution for alpha-particles
(c.f. Sec. 3.2). In both panels the red (cyan) line shows the change in the kinetic energy
density of the deuterons (alpha-particles) along with the energy density of the magnetic
field perturbation, δB‖ ≡ Bz(x, t)−B0, (green line) and the perpendicular electric field Ex
(blue line).

Figure. 3.15 shows the power spectra in frequency and wavenumber space of

the parallel perturbed magnetic field δB‖ of the hybrid simulations of the MCI with

a shell-like (panels a) and b)) and a ring-like (panels c) and d)) velocity distribution

of energetic alpha-particles. As can be seen, unstable modes of the MCI in the

range of frequencies 10 ≤ ω/Ωα ≤ 12 only are exited in the hybrid simulation using

a ring-like velocity distribution of alpha-particles; that is, only when the velocity

distribution of the energetic alpha-particles departs considerably from an isotropic

velocity distribution, can the MCI occur under conditions of core D-T plasmas

in JET. This might be because there is considerable pitch-angle scattering when

the alpha-particles have a ring-like distribution function, whereas for a shell-like

distribution function pitch-angle scattering loses its efficacy due to the isotropic

distribution of alpha-particles in pitch-angle space.
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Figure 3.15: Power spectra in frequency and wavenumber space of δB‖ of the two hybrid
simulations of the MCI of Fig. 3.14. Panels a) and b) show the power spectra of the
hybrid simulation of the MCI using a spherical shell velocity distribution for alpha-particles.
Panels d) and d) show the power spectra of the hybrid simulation of the MCI using a ring-
like velocity distribution for alpha-particles. Consistent with Fig. 3.14, the MCI only is
excited when a ring-like distribution is used for the minority alpha-particle population. The
horizontal lines in each plot show cyclotron harmonics of the alpha-particles ω = nΩα.
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3.7 Discussion

In this chapter, we presented the results of hybrid simulations of the MCI that

deepen understanding of the links between the physics of this instability and the

observational features of ICE from energetic ion populations in tokamak plasmas.

Some of these features are known from the analytical linear theory of the MCI [Cauff-

man et al., 1995; McClements et al., 1996] and from recent fully kinetic particle-in-

cell (PIC) simulations [Cook et al., 2013]. The hybrid approximation for the plasma

enabled us for the first time to pursue simulations longer in time, and deep into

the nonlinear phase of the MCI. We have focused on comparison with the measured

ICE signal from D-T plasmas in JET [Cottrell et al., 1993; McClements et al., 1999;

Sharapov et al., 2008], which has long been interpreted in terms of the MCI [Dendy

et al., 1994a, 1995; McClements et al., 1996; Cook et al., 2013]. In this context,

the results presented here link well to prior work that used other approaches and

necessarily focused on earlier phases of the MCI, and, even more, show a number of

novel phenomena emerging in the nonlinear phase of the MCI.

Our hybrid simulations of the MCI broadly validate the predictions of the

linear theory [Dendy et al., 1995]. We observe the excitation of fast Alfvén waves at

consecutive ion cyclotron harmonics of the alpha-particles in the range 5 ≤ ω/Ωα ≤
12, which play a key role in the linear stage transferring energy from the alpha-

particles to the background deuterons. We also checked the predictions of analytical

theory for the magnitude of the growth rates of the unstable modes, as well as

their localization in the frequency domain and the magnitudes of their vector field

components.

Extending our simulations deep into the nonlinear phase of the MCI, we

recover substantial emission at the lowest spectral peaks, lying at the cyclotron

harmonics one to three. These are present in the observed ICE signal, but are not

predicted to be linearly unstable according to the analytical theory of the MCI.

They are not well resolved, if present at all, in PIC simulations that extend over

shorter time duration than the present hybrid results. It appears that these lowest

spectral peaks arise from nonlinear physics which is captured here for the first time.

Specifically, the amplitude of these modes is larger due to wave-wave interaction

between higher harmonics localized around kVA/Ωα ∼ 11 (cf. Fig. 3.6(b)). This is

also evident from Fig. 3.4, where a gain of energy density at small wavenumbers is

visible in panel (b).

Also, we have identified the novel and unexpected feature of re-energisation

of the alpha-particle minority at later times, as a consequence of wave-particle reso-
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nance with waves spontaneously excited by the alpha-particle population at earlier

times. In addition, we studied the plasma-mediated interaction between the mag-

netic field perturbations δB‖ and the perpendicular electric field component Ex,

which are excited in the linear stage of the MCI. As the simulation enters the non-

linear stage, we observe the self-modulation of the phase shift between the Ex and

δB‖, see for example Fig. 3.5.

We investigated the scaling of the linear growth rates of the MCI, as inferred

from the hybrid simulations at early times, with alpha-particle concentration. We

find that the linear growth rates of the modes excited at the cyclotron harmonics

ω = 9Ωα up to ω = 12Ωα show square root scaling with ξα, while the mode at

ω = 7Ωα exhibits linear scaling.

A particular focus has been on the scaling of the saturated magnetic field

energy density with alpha-particle concentration (Eq. (3.9)). The simulation results

show linear scaling with ξα for modes of the electromagnetic fields excited at consec-

utive cyclotron harmonics of the minority alpha-particles from the seventh harmonic

up to the twelfth harmonic. These results are in good agreement with observations

of ICE intensity in JET and TFTR.

Finally, motivated by observations of ICE originating from core plasmas in

the ASDEX-Upgrade tokamak, we performed hybrid simulations of the MCI driven

by a minority population of fusion-born alpha-particles for conditions similar to

core D-T plasmas in JET. We find that only when the alpha-particle velocity dis-

tribution departs significantly from an isotropic spherical-shell-like distribution in

velocity space, can the MCI efficiently operate in core D-T JET-like plasmas; thus,

representing an efficient channel for energy transfer between the energetic alpha-

particles and the background ions. This result represent the first precedent of a

numerical study of ICE in core plasmas in JET.
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Chapter 4

Hybrid simulations of

preferential ion heating due to

intermittent magnetic fields in

the solar wind

4.1 Introduction

Observations of the solar wind typically show the existence of preferential heating

of protons and alpha-particles along the local magnetic field. This preferential ion

heating is observed in the reconstructed velocity probability distribution functions

of protons and alpha-particles, which have long tails along the local magnetic field

[Hundhausen et al., 1967; Gurnett et al., 1979; Marsch et al., 1982a,b; Marsch, 2006].

The occurrence of this anisotropic heating of ions in the fast solar wind appears to be

independent of the heliocentric distance at which the solar wind velocity is measured.

Fluctuations in the fast solar wind magnetic field exhibit inverse power-law

regions in the frequency domain. At higher frequencies there is an inertial range of

fully developed turbulence ∼ f−5/3 [Marsch and Tu, 1990; Goldstein et al., 1995;

Bruno and Carbone, 2013], and at low frequencies a region ∼ 1/f whose origin is

coronal [Matthaeus and Goldstein, 1986; Bruno et al., 2009; Verdini et al., 2012].

The broadband spectra of coherent waves permeating the solar wind are Alfvénic in

nature [Belcher and Leverett, 1971; Belcher and Solodyna, 1975; Bruno et al., 1985;

De Pontieu et al., 2007; Bruno and Carbone, 2013].

There is evidence that the inertial range fluctuations incorporate intermittent

turbulence [Hnat et al., 2002; Bruno et al., 2007; Chapman and Hnat, 2007; Osman
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et al., 2011, 2012; Alexandrova et al., 2013; Wu et al., 2013; Osman et al., 2014]. In

addition, intermittency is also seen in fluctuations at lower frequencies in the 1/f

range [Hnat et al., 2003; Horbury et al., 2005; Nicol et al., 2009]. Here, we refer

to intermittency in the most general sense as the occurrence of occasional large-

amplitude fluctuations, or bursts, in the time series of the solar wind parameters. As

the fast solar wind plasma propagates away from the sun, the intermittent magnetic

field evolves, showing both temporal and spatial intermittency [Taylor, 1938; Veltri,

1999].

There has been extensive modelling and simulations of ion heating by fluc-

tuating fields in the solar wind. Ofman [2004] studied the heating of the solar wind

using a three-fluid model for the plasma. A broadband spectrum of low-frequency

Alfvén waves was used to drive the heating, with initial wave-phases that depended

on the latitude at which they were launched from the base of the solar corona. How-

ever, a multi-fluid model for the plasma cannot describe in detail the wave-particle

interactions, nor their effects on the velocity distributions of the different ion species

of the plasma. In Liewer et al. [2001]; Araneda et al. [2008, 2009]; Matteini et al.

[2010, 2011], and more recently Maneva et al. [2013], the heating of pure proton and

proton-helium plasmas due to parametric decay of a single Alfvén wave, or due to

broadband spectra of Alfvén waves, was examined using hybrid simulations of the

expanding solar wind plasma in one spatial dimension. In these hybrid simulations,

kinetic ion dynamics is resolved in detail. Valentini et al. [2008] and Valentini and

Veltri [2009], explored ion heating in solar wind plasmas driven by high-frequency

Alfvén waves using hybrid Vlasov-Maxwell simulations. However, alpha-particles

were not included in their simulations, which can significantly modify the plasma

dynamics despite their low abundance in the solar wind plasma [Maruca et al., 2012].

These studies showed the existence of mechanisms such as nonlinear ion trapping by

ion-acoustic waves, resonant interaction of ions with ion cyclotron Alfvén waves, and

ion trapping by parallel electric fields due to density or magnetic pressure gradients,

which can drive preferential ion heating. Other studies [Nariyuki et al., 2010, 2014]

have shown the occurrence of preferential ion heating driven by nonlinear Alfvén

wave packets in the expanding solar wind plasma in the absence of parametric insta-

bilities. More recently, in Perrone et al. [2013], the authors showed the occurrence

of preferential ion heating of protons and alpha-particles in their simulations of two-

dimensional plasma turbulence in the solar wind. Importantly, all these studies

provide mechanisms and configurations of solar wind plasmas that might underlie

the observed preferential ion heating in the solar wind, but intermittency is not

included in their models.
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In this chapter we present the first study of preferential ion heating in the

fast solar wind at 1 AU that explicitly includes intermittent electromagnetic fields

in a self-consistent way. We investigate the effect on preferential ion heating of

different levels of intermittency within 1/fγ broadband spectra of Alfvén waves.

We perform 1.5D hybrid simulations of the relaxation of intermittent broadband

spectra of Alfvén waves in a solar wind plasma comprised of protons and alpha-

particles. We identify gyrobunching and ion trapping by the electric field as the

mechanisms underlying the observed preferential ion heating, and determine the

effect of intermittency on the local ion temperature and on the ion temperature

anisotropy for protons and alpha-particles. We study the detailed time evolution

of the fluctuations of the ion velocity and magnetic field for different scenarios

with different levels of intermittency. We find that the level of intermittency of

the electromagnetic fields strongly affects the temporal and spatial dynamics of the

mechanisms underlying preferential ion heating, as well as temperature anisotropy

of both ion species.

4.2 Simulation set-up

We study the effect of different levels of intermittency and different spectral expo-

nents γ of 1/fγ broadband spectra of Alfvén waves on preferential ion heating in the

fast solar wind. We specify both the amplitude and phase spectra of these waves as

an initial condition; they are then left to freely relax in time. We test the sensitiv-

ity of simulation results to different values of the spectral exponent γ by choosing

γ = 0, 1, and 5/3. In all the hybrid simulations presented here, we use characteristic

values of the magnetic field strength, number density and electron temperature of

solar wind plasmas as measured at 1 AU [Bruno and Carbone, 2013].

Our simulations are carried out in slab geometry, with the direction of vari-

ation parallel to the background magnetic field. The background magnetic field is

B0 = B0x̂, with B0 = 6 nT. In order to compare our results to those of Maneva

et al. [2013], we consider a homogeneous plasma of thermalized majority protons and

a minority population of alpha-particles with equal temperatures Tp = Tα, where

the ion betas βi = v2
th,i/V

2
A, defined in terms of the thermal speed of each species

vth,i =
√

2kbTi/mi and the Alfvén speed VA = B0/
√
µ0nmp, are βα ≈ 0.02 and

βp ≈ 0.08, which correspond to a temperature of Tp = Tα = 2× 104 K. The electron

beta is βe = 2µ0neTe/B
2
0 ≈ 0.5 (Te ≈ 1.3 × 105 K). The alpha-particle concentra-

tion in all the simulations is nα/ne = 0.05, which corresponds to the characteristic

abundance of alpha-particles in the fast solar wind [Marsch et al., 1982a].
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The numerical parameters of the hybrid simulations are chosen so that they

properly resolve the ion gyromotion in space and time, together with the fastest

mode of the electromagnetic fields included in the hybrid approximation for the

plasma [Pritchett, 2000]. The simulation domain consists of 4096 grid cells, which

corresponds to length L = 1024dp, where dp is the ion inertial length. This set-

up offers a good trade-off between resolution and computational cost, given that

dp ≈ 3.6rp and rp = rα, with rp and rα the proton and alpha-particle gyro-radius,

respectively. For each ion species we use 400 super-particles per grid cell. For all

the simulations the smoothing parameter is set to αs = 5× 10−7.

4.2.1 Set-up of the intermittent electromagnetic fields

We include intermittency in the initial 1/fγ broadband spectrum of Alfvén waves

driving the ion heating in our simulations, by initially specifying a non-random

phase relationship between these waves. These waves initially satisfy the appropriate

dispersion relation of the plasma at tΩp = 0, and together contain the same total

field energy in all the simulations.

Clear evidence of broadband Alfvénic activity in the solar wind has been

observed in early [Belcher and Leverett, 1971; Belcher and Solodyna, 1975; Bruno

et al., 1985] and recent [De Pontieu et al., 2007; Bruno and Carbone, 2013] studies

of the solar wind, which show strong correlation between the solar wind velocity

and the local magnetic field. Outward-propagating Alfvén waves dominate [Belcher

and Leverett, 1971]. For this reason, we simplify our study of the solar wind by

only considering broadband spectra of transverse Alfvén waves as drivers of the

ion heating in the hybrid simulations. These waves, propagating parallel to the

background magnetic field, are chosen to belong to the lower branch (ω < Ωα) of

the dispersion relation of a proton-alpha-particle plasma [Sonnerup, 1967] in the

cold approximation:

k2 − ω2

c2
+

1

c2

∑
s=e,p,α

ω2
psω

ω − Ωs
= 0, (4.1)

where c is the speed of light, ω2
ps = ns(Zse)

2/ε0ms and Ωs = ZseB0/ms are the

plasma and cyclotron frequencies of species s, respectively. Here, e is the magnitude

of the electron charge, ε0 is the vacuum permittivity, and Zs and ms are the atomic

number and mass of ion species s (for the case of the electrons Ze = −1, and

Ωe = −eB0/me).

Following Maneva et al. [2013], the initial configuration of the perturbed

magnetic field δB(x) consists of N = 31 normal modes with wavenumbers and
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frequencies in the ranges kjdp ∈ [0.017, 0.542] and ωj/Ωp ∈ [0.015, 0.357], where

j = 1, . . . , N . Thus, the components of the perturbed magnetic field are

δBy(x) =
N∑
j=1

Bj cos(kjx+ ϑj), (4.2)

δBz(x) =

N∑
j=1

Bj sin(kjx+ ϑj), (4.3)

where Bj and ϑj are the amplitudes and initial wave-phases of the jth mode, re-

spectively. The relationship between the initial wave-phases of the different modes

determines the level of intermittency (burstiness) of the magnetic field. Each ϑj

occurs with uniform probability in the range [0, θ∗], where θ∗ is the spread in phase

angles of the ϑj . Smaller values of θ∗ result in more phase coherent waves, and

hence more bursty magnetic fields, along the simulation domain. Conversely the

limiting case θ∗ = 360◦ corresponds to the random-phase approximation for the

magnetic field perturbations. In this way, for a fixed power spectral density of

Alfvén waves, we can obtain different levels of intermittency. Figure 4.1 shows three

examples of magnetic fields with the same spectral density (1/f) but different levels

of intermittency (burstiness). Notice that in some regions of the simulation do-

main the amplitude of the magnetic field perturbations are of the same order as the

background magnetic field, which makes possible the existence of coupling between

compressional and shear Alfvén waves in our simulations.

The initial velocity distribution of protons and alpha-particles is specified

to self-consistently couple the ion dynamics with the spectrum of Alfvén waves

defined by Equations (4.2) and (4.3) [Sonnerup, 1967; Maneva et al., 2013]. This is

done by introducing the following drift velocities into the initial thermalised velocity

distributions of both ion species:

δusy(x) = −
N∑
j=1

ωj/kj
1− ωj/Ωs

Bj
B0

cos(kjx+ ϑj),

(4.4)

δusz(x) = −
N∑
j=1

ωj/kj
1− ωj/Ωs

Bj
B0

sin(kjx+ ϑj),

(4.5)
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Here δus is the perturbation of the velocity distribution function of either ion species,

protons or alpha-particles, s = p, α, with respect to the Maxwellian background. In

Equations (4.4) and (4.5), the wave frequencies ωj are calculated using the dispersion

relation of Equation (4.1) given the values of the wavenumbers kj .
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Figure 4.1: Initial condition for magnetic fields with the same power spectral density 1/f
and three different levels of intermittency (burstiness). Subset of simulation domain shown.
For simplicity, only the y component of δB(x) (c.f. Equation 4.2) is shown. Three different
values of θ∗ are used to specify the level of intermittency: θ∗ = 2◦, 90◦ and 360◦. The
case with θ∗ = 2◦ corresponds to the most intermittent magnetic field, whereas θ∗ = 360◦

corresponds to the random-phase approximation for the magnetic field perturbations. All
these magnetic fields contain the same total field energy. Notice that in some regions of the
simulation domain the amplitude of the magnetic field perturbations are of the same order
as the background magnetic field, which makes possible the existence of coupling between
compressional and shear Alfvén waves in our simulations.

In order to compare our results with those of Maneva et al. [2013], where

intermittency is not included, we chose the energy of the entire spectrum to be 6.25%

of the background magnetic field energy in all our simulations, that is, |δB|2/B2
0 =

0.0625. This corresponds to an effective amplitude of the integrated spectrum which

is 25% of the magnitude of the background magnetic field. We now present the

results of five hybrid simulations with different levels of intermittency.
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4.3 Simulation results

We perform simulations of a 1/fγ broadband spectrum of Alfvén waves relaxing in

a solar wind plasma using five different values of θ∗: 2◦, 90◦, 180◦, 270◦, and 360◦.

We first describe the mechanisms responsible for the ion heating in our simulations.

Then we examine the effect of these mechanisms on the local ion temperature,

explain the difficulties arising if we wish to define average ion temperatures in our

simulations, and discuss the implications for in situ observations of the intermittent

solar wind. Next we study the dependence of the parallel and perpendicular ion

temperature, and of temperature anisotropy, on intermittency. We also study the

time evolution of the energy of protons, alpha-particles and electromagnetic fields in

each case, in order to infer the effectiveness of the mechanisms driving the ion heating

in relation to the intermittency level of the initial magnetic field perturbations. We

then compare the results with observations of the solar wind. Finally, we study how

the time evolution of the fluctuations of the ion velocity and magnetic field depend

on the intermittency levels.

4.3.1 Mechanisms driving ion heating in the hybrid simulations

Reconstructed velocity distribution functions f(v‖, v⊥) for protons and alpha-particles

of the fast solar wind show the occurrence of preferential heating along the ambi-

ent magnetic field [Hundhausen et al., 1967; Marsch et al., 1982a,b; Marsch, 2006].

This heating can be seen in velocity space as an elongation of the core of f(v‖, v⊥)

of protons along the perpendicular direction, together with the formation of a small

beam of protons streaming approximately parallel to the ambient magnetic field with

speeds comparable to the local Alfvén speed VA = B0/
√
µ0nmp. In Figures 4.2 and

4.3 we show f(v‖, v⊥,2) for alpha-particles and protons, at three simulation times:

tΩp = 25.07, 629.07, and, 2000, for the cases with θ∗ = 2◦, for highly intermittent

Alfvén waves, θ∗ = 360◦, for random-phase Alfvén waves, and θ∗ = 180◦, for the

intermediate case. Here, the parallel and perpendicular components of the ion ve-

locity are defined with respect to the background magnetic field, that is, v‖ = vx,

v⊥,1 = vy and v⊥,2 = vz. In all the hybrid simulations we observed the occurrence

of preferential ion heating. However, the detailed features of f(v‖, v⊥,2) differ, and

have distinct time variation, for simulations that embody different levels of inter-

mittency, suggesting that the mechanisms underlying the ion heating act in different

ways [Valentini and Veltri, 2009; Matteini et al., 2010].

By looking at the time evolution of both the parallel velocity v‖(x, φ) as func-

tion of the ion gyro-angle φ = arctan (v⊥,2/v⊥,1) and the ion distribution function
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Figure 4.2: Dependence of ion velocity distribution functions on the level of intermittency.
Colour shading of log10

(
f(v‖, v⊥,2)

)
of alpha-particles for thee hybrid simulations at differ-

ent simulation times. The top panels show f(v‖, v⊥,2) of alpha-particles for the simulation
times, tΩp = 25.07, 629.07, and, 2000, for the hybrid simulation in the high-intermittent
case θ∗ = 2◦. Middle and bottom panels show the corresponding f(v‖, v⊥,2) for the hybrid
simulations with θ∗ = 180◦ and θ∗ = 360◦, respectively. The horizontal and vertical dashed
lines show v⊥,2 = 0 and v‖ = 0, respectively. At the final simulation time tΩp = 2000,
the alpha-particle f(v‖, v⊥,2) for the simulation with θ∗ = 360 shows a drift of its core
anti-parallel to B0. The core of f(v‖, v⊥,2) for the simulation with θ∗ = 2 shows elongation
along B0. We observe the occurrence of preferential ion heating of alpha-particles for all θ∗,
i.e. all levels of intermittency. However, the features of f(v‖, v⊥,2) in each case are different,
suggesting that the mechanisms underlying the ion heating act in different ways.

in the xv‖-plane f(x, v‖), it is possible to identify the mechanisms underlying pref-

erential ion heating in our simulations. Figure 4.4 shows v‖(x, φ) for alpha-particles

in the highly intermittent hybrid simulation with θ∗ = 2 at two times: the initial

condition tΩp = 0, in panel a); and at tΩp = 25, in panel b), when heating starts

to occur for this simulation. In this figure, dark red and blue colours indicate sig-
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Figure 4.3: Dependence of ion velocity distribution functions on the level of intermittency.
Colour shading of log10

(
f(v‖, v⊥,2)

)
of protons for thee hybrid simulations at different

simulation times. Same as in Fig. 4.2, but for protons. At the final simulation time,
tΩp = 2000, the core of the proton f(v‖, v⊥,2) shows a drift anti-parallel to B0 in all cases.
However, this is more evident for the simulation in the random phase limit θ∗ = 360. We
observe the occurrence of preferential ion heating of protons for all θ∗, i.e. all levels of
intermittency. However, the features of f(v‖, v⊥,2) in each case are different, suggesting
that the mechanisms underlying the ion heating act in different ways.

nificant bunching of ions in gyro-angle space; that is, populations of alpha-particles

that become phase coherent due to wave-particle interactions. Panel c) shows the

corresponding f(x, v‖) for the alpha-particles of panel b). We also plot the nor-

malized magnetic pressure PB(x) ∼ δB2(x) to show that the source of accelerated

alpha-particles at x ≈ 340dp and x ≈ 390dp in panel c) is a region of high magnetic

pressure (x ≈ 380dp − 390dp). These alpha-particles are accelerated to velocities

comparable to the Alfvén speed (|v‖| ∼ VA), and can be identified as the populations

of gyrobunched alpha-particles of panel b). This generic wave-particle interaction,
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previously identified as gyrobunching [Cook et al., 2011], is one of the mechanisms

driving ion heating in our simulations. Gyrobunching is also observed for protons,

and is present in all our simulations where very intense regions of magnetic pressure

occur.

In Figure 4.5 we show f(x, v‖) for the protons (left panels) and alpha-particles

(right panels) in three hybrid simulations with different levels of intermittency at the

simulation time tΩp = 25.07. In this figure we also show the normalized magnetic

pressure PB(x) in dark blue and the normalized total particle density n(x)/ne in

red. Gyrobunching generates perturbations in the ion number density n(x)/ne in our

simulations, which in turn generate intense parallel electric fields Ex(x) through the

last term of Eq. (1.20). In this situation, the dynamics of ions streaming along B0

is perturbed in different ways by Ex(x), depending on their kinetic energy: passing

through regions of intense electric field if they have sufficiently large kinetic energy,

or being trapped or deflected by Ex(x) if their kinetic energy is small compared to

the local electric potential energy. We can identify the regions where ion reflection

or ion trapping occur by calculating the electric potential ϕ(x) =
∫ x
x0
Ex(x′)dx′,

where x0 is assumed to be far away from any perturbation. From ϕ(x) we can

define a threshold value vcj(x) =
√

2eZjϕ(x)/mj for the ion parallel velocity v‖j

of species j, such that an ion initially streaming along B0 with | v‖j |< vc will

be deflected or trapped by Ex(x). However, ions with | v‖j |> vc will continue

streaming along B0 without being significantly perturbed by the parallel electric

field. In Figure 4.5 we show vc, for ions initially streaming parallel to B0, and

−vc, for ions initially streaming anti-parallel to B0. In panels a) and b) we see

that protons are deflected by the intense electric field around x ≈ 350dp, whereas

alpha-particles previously accelerated through gyrobunching (c.f. Figure 4.4) have

acquired enough kinetic energy to pass through the region of intense Ex(x) around

x ≈ 350dp. When intense parallel electric fields occur in two contiguous regions, an

ion trapping region forms. In panels c) to f) of Figure 4.5, we indicate with arrows

some regions where ion trapping occurs. For all the values of θ∗ considered, ion

trapping by the electric field is observed; this mechanism seems to be more effective

for Alfvén waves with initial random phases, e.g. panel e) of Figure 4.5.

Together, the quantities v‖(x, φ), f(x, v‖), PB(x), n(x) and vc(x), enable us

to identify gyrobunching and ion trapping by the electric field as the mechanisms

driving the preferential ion heating in our hybrid simulations of the solar wind.

How these mechanisms operate to heat the plasma can be summarized as follows.

At early times, protons and alpha-particles are accelerated along the background

magnetic field due to gyrobunching in the regions of high magnetic pressure along the
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Figure 4.4: Alpha-particle acceleration due to gyrobunching in the hybrid simulation where
θ∗ = 2◦. Panels a) and b) show the colour shading of the parallel velocity v‖(x, φ), where
φ = arctan (v⊥,2/v⊥,1) is the ion gyro-angle, for the initial condition tΩp = 0 and tΩp =
25.07, respectively. Dark red and blue colours indicate significant bunching of ions in gyro-
angle space. Panel c) shows f(x, v‖) for panel b). Alpha-particles accelerated to velocities
|v‖| ∼ VA around regions of high magnetic pressure (x ≈ 380dp), can be identified as
the alpha-particle populations bunched in gyro-angle space in panel b). Gyrobunching for
protons and alpha-particles is seen in all the simulations.

simulation domain, as shown in Figure 4.4. This acceleration produces significant

fluctuations in the plasma number density n(x), which at the same time generates
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Figure 4.5: Grey scale plot of the ion distribution function f(v‖, x) of protons (left column)
and alpha-particles (right column) at tΩp = 25.07. Darker areas in each panel represent
larger f(v‖, x). Along with f(v‖, x) we show the normalized magnetic pressure PB(x) ∼
B2(x) in dark blue, the normalized particle density n(x)/ne in red, and the critical ion
velocity ±vc in green. The magnetic pressure PB(x) is normalized to one. These quantities
allow us to identify gyrobunching and ion trapping by the electric field, notably in the
regions marked by arrows in panels c) to f), as the mechanisms which drive the ion heating
in all the simulations. Gyrobunching and ion trapping work together, accelerating protons
and alpha-particles in all the simulations shown, independent of the intermittency level of
the magnetic fields. However, the specific dynamics of these mechanisms do depend on the
levels of intermittency.

parallel electric fields Ex(x) that can trap ions. This process repeats during the

simulation, eventually providing the ions with enough kinetic energy so they can

escape the trapping regions and form the ion beams observed in Figs. 4.2 and 4.3.
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4.3.2 Ion energisation

Gyrobunching and ion trapping work together to accelerate protons and alpha-

particles along the background magnetic field in the hybrid simulations, regardless

of the level of intermittency of the broadband spectra of Alfvén waves driving the

ion heating. Different levels of intermittency of the magnetic field fluctuations pro-

duce spatially inhomogeneous heating along B0, which is different in each case.

Figure 4.6 shows the normalised local proton and alpha-particle parallel tempera-

tures Ts‖(x, t) = ms〈δv2
s‖〉/mpV

2
A at tΩp = 25.07, panels a) to c), and at the final

simulation time tΩp = 2000, panels d) to f). In order to calculate the local Ts‖(x, t),

we divide the entire simulation domain into M bins, and calculate the local temper-

ature of species s at each bin as the second statistical moment of the fluctuations

of the parallel ion velocity δvs‖ = vs‖(x)− 〈vs‖(x)〉, 〈δv2
s‖〉, where 〈〉 is an ensemble

average only over ions within each bin. For all our calculations of Ts‖(x, t) we use

M = 4096. As the burstiness of the magnetic field perturbations increases as we

vary θ∗ from 360◦ to 2◦, we can see from Figure 4.6 that the heating of both ion

species becomes more intense and localised. In panel a) of Figure 4.6, corresponding

to the most intermittent case in our simulations, intense localised ion heating can

also be seen in the region between x ≈ 330dp and x ≈ 400dp, while in the rest of the

simulation domain there are only a few other regions where ion heating occurs. In

contrast, in panel c) of the same figure, corresponding to the non-intermittent case

or random phase approximation for the magnetic perturbations, less intense and

more spatially homogeneous heating occurs. For the case of intense localised heat-

ing, it is not possible to meaningfully define simulation average heating rates and

total temperatures at early times, because the variations of the calculated total tem-

peratures are of the same order of magnitude as their mean values. In Karimabadi

et al. [2013] are found similar results of intense localised heating of electrons and

ions due to coherent structures in the form of current sheets in their 2D and 3D

kinetic simulations of collisionless dissipation of energy in decaying turbulence in

high-temperature plasmas.

By the end of the hybrid simulations, the ion temperature becomes spatially

homogeneous, and it is then possible to meaningfully define total temperatures. In

Table 4.1, we present a summary of the final parallel and perpendicular ion tem-

peratures of protons and alpha-particles for all the hybrid simulations with different

values of the power spectral exponent γ and levels of intermittency.

In Figure 4.7 we plot these results for the simulation with γ = 1. Panel a)

shows the parallel (Tp‖) and perpendicular (Tp⊥) proton temperatures at the final

simulation time (tΩp = 2000) as functions of θ∗. We see that Tp‖ decreases with
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Figure 4.6: Normalised local parallel ion temperature T‖ of protons and alpha-particles,
plotted as a function of position at early and late times, for three different levels of inter-
mittency. Panels a) to c) show the ion parallel temperatures at the early time tΩp = 25.07
from the hybrid simulations with θ∗ = 2◦, 180◦ and 360◦. Intense localised heating occurs
for the simulations with high levels of intermittency. Panels d) to f) show the corresponding
ion parallel temperatures at final simulation time tΩp = 2000; by this time, the heating
has become homogeneous, so that average ion temperatures can be defined. The averaged
proton and alpha-particle temperatures are calculated for each simulation along with their
standard deviations. Large deviations from the mean value of T‖ are visible at early times
in all the hybrid simulations. By the end of each simulation, the ion temperatures have
become more homogeneous in space.

increasing intermittency level. In contrast, Tp⊥ does not vary significantly when θ∗

is changed. Panel b) shows the corresponding case for alpha-particles. We see that

Tα‖ increases with increasing intermittency levels, whereas Tα⊥ decreases. These

trends are the same for different values of γ. These variations in the temperatures

arise from different levels of intermittency, and this changes the values of the tem-

perature anisotropy T⊥/T‖ for each ion species. This anisotropy is a measurable

quantity in the solar wind, which can be used to compare the effects of intermit-

tency on the preferential ion heating. In panels c) and d) of Figure 4.7, we show

the corresponding values of T⊥/T‖ for protons and alpha-particles. In these hybrid

simulations, the temperature anisotropy for protons Tp⊥/Tp‖ < 1 always, increasing

in value with increasing levels of intermittency. This is shown in Figure 4.7(c). The

behaviour of the alpha-particles is different; for the hybrid simulations using θ∗ = 2◦

we obtained Tα⊥/Tα‖ ≈ 1, independent of the value of the spectral exponent γ (inset

of Figure 4.7(b)). For larger values of θ∗ the temperature anisotropy takes values

larger than one for all the values of the spectral exponent γ, that is, Tα⊥/Tα‖ > 1.
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Table 4.1: Final parallel and perpendicular temperatures of protons and alpha-
particles for hybrid simulations in which ion heating is driven by broadband Alfvén
wave populations that have different intermittency levels θ∗ and spectral exponent
γ.

Spectral
θ∗ exponent γ Tp‖ Tp⊥ Tα‖ Tα⊥ Tp⊥/Tp‖ Tα⊥/Tα‖

(1/fγ) [mpV
2
A] [mpV

2
A] [mpV

2
A] [mpV

2
A]

2 0 0.090 0.063 0.325 0.325 0.700 1.000
2 1 0.076 0.062 0.270 0.258 0.816 0.956
2 5/3 0.075 0.063 0.267 0.260 0.840 0.974
90 1 0.079 0.063 0.236 0.301 0.798 1.275
180 0 0.098 0.061 0.282 0.371 0.622 1.316
180 1 0.086 0.062 0.223 0.308 0.721 1.381
180 5/3 0.082 0.061 0.213 0.308 0.744 1.446
270 1 0.086 0.061 0.230 0.359 0.709 1.561
360 0 0.097 0.061 0.305 0.414 0.629 1.357
360 1 0.090 0.060 0.234 0.317 0.667 1.354
360 5/3 0.082 0.062 0.198 0.302 0.756 1.525

This is shown in Figure 4.7(d). Observations of the fast solar wind at about 1 AU by

the Helios Solar Probes (c.f. Figure 6 of Marsch et al. [1982a]) and by Wind space-

craft (c.f. Figure 2 of Maruca et al. [2012]) show typical values of Tα⊥/Tα‖ ≈ 1; this

is only observed in our hybrid simulations for the cases where highly intermittent

magnetic field perturbations drive the ion heating. This strongly suggests that the

observed values of Tα⊥/Tα‖ in the fast solar wind at 1 AU reflect a significant degree

of intermittency in the waves driving the ion heating.

In Figure 4.8 we plot the time evolution of the change in energy density of

protons, alpha-particles and the magnetic field, for three simulations with γ = 1.

This gives an indication of how strong the wave-particle interactions are in each

case. The change in energy density for each ion species and the magnetic field is

defined as:

∆EB =

〈
B2(x, t)

2µ0

〉
x

−
〈
B2(x, 0)

2µ0

〉
x

, (4.6)

∆EKs =
1

L

[〈
1

2
msv

2
s(t)

〉
f

−
〈

1

2
msv

2
s(0)

〉
f

]
, (4.7)

Here µ0 is the vacuum permeability, L is the simulation domain length, and 〈〉x
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Figure 4.7: Final proton and alpha-particle temperature for different values of θ∗ and
γ. Panel a): final parallel (black) and perpendicular (red) proton temperature for hybrid
simulations with γ = 1. Panel b): same as panel a) for alpha-particles. Panel c): proton
temperature anisotropy. For protons, Tp⊥/Tp‖ < 1 is always observed in our simulations,
and this agrees with observations of the solar wind. Panel d): alpha-particle temperature
anisotropy. For alpha-particles, the trend seen in solar wind observations is Tα⊥/Tα‖ ≈ 1;
this is only observed for the hybrid simulation with θ∗ = 2◦, independent of the value of the
spectral exponent γ. The inset in this panel shows this.

and 〈〉f refer to averages along the simulation domain and over the ion distribution

functions, respectively.

All the simulations show the same qualitative trend: at early times, the

alpha-particles transfer some energy to the protons through wave-particle interac-

97



0 500 1000 1500 2000

-5

-4

-3

-2

-1

0

1

2

3

4

5

x 10
-13

E
n
er
g
y
d
en

si
ty

[J
/
m

3
]

 

 

Time t [Ωp]

θ
∗ = 2◦a)

0 500 1000 1500 2000

Time t [Ωp]

 

 

θ
∗ = 180◦b)

Intermittency

0 500 1000 1500 2000

Time t [Ωp]

 

 

θ
∗ = 360◦c)

∆EB ∆EKp ∆EKα

Figure 4.8: Time evolution of change in ion energy density and magnetic field energy
density for hybrid simulations, all with an initial 1/f broadband spectrum of Alfvén waves,
but with different levels of intermittency. From top to bottom: the change in proton energy
density ∆EKp (red), the change in alpha-particle energy density ∆EKα (cyan), and the
change in magnetic field energy density ∆EB (green). The horizontal dashed lines are plotted
only to assist comparison of EKp , ∆EKα and ∆EB across the different hybrid simulations.
All the simulations show the same qualitative trends. At early times, the alpha-particles
transfer some energy to the protons through wave-particle interactions. Thereafter there is
re-energization of the alpha-particles, while the protons continue to be energized, but at a
slower rate. ∆EKp saturates by the end of the simulation time. There is a regular decline
in magnetic field energy density.

tions. Then a re-energization of the alpha-particles occurs, while the protons are

still being energized, although at a slower rate than at early times. By the end of

the simulation that has initially random wave-phases (θ∗ = 360◦), ∆EKp saturates,

that is, the protons are not energized further. However, the alpha-particles con-

tinue to gain energy. In the other hybrid simulations, which have non-zero initial

intermittency, the saturation of ∆EKp is not observed. The energy density of the

electric field, which is of the order of magnitude of 10−21 J/m3, decreases over time

in all the hybrid simulations. Shown in Figure 4.8, all the simulations give rise to

a similar final energy density of alpha-particles. The case where the initial wave-

phases are random (θ∗ = 360◦) shows the biggest decrease in magnetic field energy,

together with the largest proton energy density at the end of the simulation. Con-

versely, the simulation with highly intermittent Alfvén waves (θ∗ = 2◦) shows the

smallest decrease in magnetic field energy and the smallest proton energy density

increase. This implies that, in the former case, the alpha-particles are energised by

extracting energy mostly from the magnetic field; whereas, in the latter case, the

alpha-particles extract energy from the magnetic field and protons. This is observed

consistently across simulations with different values of spectral exponent γ.
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Summarizing, we find that different levels of intermittency lead to different

temporal and spatial dynamics of the two mechanisms driving preferential ion heat-

ing in our simulations: specifically, gyrobunching and ion trapping by the electric

field. Also, the ion temperature anisotropy of protons and alpha-particles shows

a strong dependence on intermittency levels. We find that intermittency does not

allow a meaningful determination of average temperatures and heating rates at

early times in our simulations. The net effect of random-phase Alfvén waves in our

simulations is to provide a more efficient channel for energy transfer between ions

and electromagnetic fields through wave-particle interactions. There are two pos-

sible factors for this: first, the wave-particle interactions that energise ions unfold

faster for random-phase Alfvén waves than for highly intermittent Alfvén waves;

and second, for the same total field energy, the random-phase Alfvén waves fill the

simulation domain from early times, whereas the highly intermittent Alfvén wave

field generates isolated regions of heating.

4.3.3 Correlation between ion velocity and magnetic field fluctua-

tions

In this section we explore the role of intermittency in the time evolution of the

magnetic perturbations in the hybrid simulations. In situ observations of the solar

wind show that the waves permeating the solar wind are mostly of Alfvénic na-

ture [Belcher and Leverett, 1971; Belcher and Solodyna, 1975; Bruno et al., 1985;

Bruno and Carbone, 2013]. That is, the ion velocity fluctuations Ui and magnetic

field fluctuations δB are correlated, and satisfy Walen’s relation Ui = ±CAδB,

where CA ≈ (µ0nmp)
−1/2. Here the minus (plus) sign refers to pure Alfvénic waves

propagating parallel (anti-parallel) to the background magnetic field. Initially, the

fluctuations of the magnetic field and ion velocity in the hybrid simulations are

purely Alfvénic. Then, as the plasma evolves, there can be parametric decay of the

initial Alfvén waves [Araneda et al., 2008; Matteini et al., 2010, 2011], giving way

to the excitation of non-Alfvénic waves that interact with the ions in different ways.

We study this by calculating the time evolution of the spatial correlation of δBy and

Uiy, defined by

C(δBy, Uiy)(t) = C0

∫
L
δBy(x

′, t)Uiy(x
′, t)dx′ . (4.8)

Here, the integral is over the entire simulation domain L, and C0 is a constant that

normalizes the correlation values between -1 and 1.

Figure 4.9 shows C(δBy, Uiy) for the hybrid simulations that generated Fig-
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ure 4.8. For all cases C(δBy, Uiy) ≈ −1 at tΩp = 0, consistent with the initial

condition of pure Alfvén waves propagating parallel to B0. For the simulation with

initial random wave-phases (black), the magnetic and ion bulk velocity perturba-

tions become uncorrelated, C(δBy, Uiy) → 0. In general, this might happen for

two reasons [Bruno and Carbone, 2013]: i) the excitation of non-Alfvénic waves,

or ii) the excitation of backscattered Alfvén waves, that is, Alfvén waves propa-

gating anti-parallel to B0 with similar amplitude to those propagating parallel to

B0. In our hybrid simulation with initial random wave-phases C(δBy, Uiy)→ 0 due

to the excitation of backscattered left-handed Alfvén waves. This is confirmed by

decomposing the magnetic and ion bulk velocity fluctuations into their helicity com-

ponents [Winske and Omidi, 1993]; we observe Alfvén waves with opposite helicity

and similar amplitude. Conversely, in the simulation with initially highly intermit-

tent Alfvén waves (blue), these remain mostly Alfvénic during the simulation; that

is, C(δBy, Uiy) does not departs significantly from −1.
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Figure 4.9: Time evolution of the spatial correlation between the ion velocity and magnetic
field fluctuations in the hybrid simulations of the solar wind. Initially, C(δBy, Uiy) ≈ −1,
consistent with the initial condition of pure Alfvén waves propagating parallel toB0. For the
case where the initial wave-phases are random (black): θ∗ = 360◦ the broadband spectrum
of Alfvén waves decay into backscattered Alfvénic waves, that is, Alfvén waves propagating
anti-parallel to B0 with similar amplitude to those propagating parallel to B0, which reduce
the correlation C(δBy, Uiy)→ 0. In the case with highly intermittent Alfvén waves (blue):
θ∗ = 2◦ the plasma waves remain mostly Alfvénic throughout the simulation.

Summarizing, we find that the dynamics of the ion bulk velocity and magnetic

field fluctuations depend on intermittency levels of the electromagnetic fields. Large

amplitude backscattered Alfvén waves only are excited in the simulation with non-

intermittent Alfvén waves.
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4.3.4 Local intermittency measure of magnetic field fluctuations

In this section we study the dynamics of intermittency in our hybrid simulations of

preferential ion heating in the solar wind. Intermittency in the solar wind can be

studied using statistical methods such as structure functions (SF) [Hnat et al., 2007;

Kiyani et al., 2007; Leonardis et al., 2013] and probability distribution functions

(PDFs) [Hnat et al., 2002, 2003; Nicol et al., 2009; Wu et al., 2013; Subedi et al.,

2014] of the fluctuations of the solar wind parameters. These methods allow us to

characterise intermittency in the solar wind, provided that we have large data sets of

the solar wind parameters to obtain reliable estimates of these statistical quantities.

Here, we use the local intermittency measure (LIM) to study intermittency in

the magnetic field in our hybrid simulations. The LIM is based on wavelet analysis,

which allow us to identify intermittent (bursty) behavior of the magnetic field at

different spatial scales, and to follow in space and time intermittent structures of the

magnetic field. In our case, the LIM uses wavelet analysis to decompose the magnetic

field into contributions of both space and scale at different simulation times; for a

complete review of wavelet analysis see Torrence and Compo [1998]. The LIM,

contrary to SF and PDFs methods, can be used to study intermittency in scenarios

where no large data sets of the solar wind parameters exist. This method was first

introduced in Farge [1992] to study the dynamics of coherent (bursty) structures in

the solar wind, and to measure their contribution to the energy spectrum. More

recently, the LIM has been used in Dinkelaker and MacKinnon [2013a,b] to study

cascade and reverse-cascade (avalanche) processes in solar flares.

To calculate the LIM of the magnetic field in our simulations, we first perform

a wavelet transformation of either magnetic field component By, or Bz along the

simulation domain (the x-axis in our simulations). Here, we only show the results

for By, given that the LIM of Bz shows the same features. Following Farge [1992]

and Dinkelaker and MacKinnon [2013a], we use the 4th-order Paul wavelet function

in our definition of the LIM. We define the LIM at position x and spatial scale l for

a given simulation time t as:

LIM(x, l, t) =
|ŵ(x, l, t)|2
〈|ŵ(x, l, t)|2〉x

. (4.9)

Here, the average 〈〉x is over all the simulation domain, and ŵ(x, l, t) is the Paul

wavelet coefficient of By at position x and spatial scale l given by:

ŵ(x, l, t) =

∫
L
By(x

′, t)Ψ∗m

(
x′ − x
l

)
dx′, (4.10)

101



where the integral is calculated over the entire simulation domain L, and Ψ∗m(x) is

the complex conjugate of the Paul wavelet function of order m defined as:

Ψm(x) = Γ(m+ 1)

(√
−1
)m(

1−
√
−1x

)m+1 . (4.11)

Here, LIM(x, l) = 1 for all x and l means that there is no intermittent behavior

of the magnetic field; that is, the magnetic field energy of By is homogeneously

distributed along all the simulation domain for all spatial scales l. On the contrary,

LIM(x, l) = 10 means that at position x and spatial scale l the magnetic field

energy of By is 10 times larger than its mean value along the simulation domain.

Following Dinkelaker and MacKinnon [2013a], we use LIM2 as an estimate of

the kurtosis of the fluctuations of By. As shown in Bruno et al. [1999], the threshold

value LIM2 > 3, indicates large fluctuations of the magnetic field that yield to

intermittent behavior. Figure 4.10 show LIM2 of the magnetic field component By

for the hybrid simulations with θ∗ = 2◦, 180◦ and 360◦. We only show the region

180dp ≤ x ≤ 540dp of the simulation domain; we observe similar behavior in the

rest of the simulation domain. In this figure blue (red) colour indicates small (large)

intermittent structures of the magnetic field at position x and spatial scale l. Only

values of LIM2 > 3 are shown in colours.

As is seen in Fig. 4.10, the LIM2 shows different intermittent behavior of By

depending on the value of θ∗. At early times, we observe intermittent structures

with LIM2 ≥ 40 for all l at x ≈ 350dp in the simulation with θ∗ = 2◦. At later times,

intermittent structures with LIM2 < 15 develop along all the simulation domain at

scales l ≤ 400dp. By the end of the simulation more intermittent structures with

LIM2 < 15 develop at larger scales 400dp < l < 700dp. In the case of initially

random phase Alfvén waves θ∗ = 360, the LIM shows the existence of less intense

and more homogeneously distributed intermittent structures at early times. Also,

we observe intermittent structures with LIM2 ≥ 40 only for l ≥ 600dp at x ≈ 350dp,

and less intense intermittent structures with LIM2 < 15 in some other regions of

the simulation domain for l < 600dp. At later times, intermittent structures with

LIM2 < 15 develop at scales l ≤ 200dp; at the same time, fewer but more intense

intermittent structures with LIM2 > 15 develop at scales 200dp < l < 800dp. By

the end of the simulation we observe intermittent structures mainly with LIM2 < 15

along the simulation domain at scales l < 600dp, and few intermittent structures

with LIM2 < 5 at larger spatial scales l > 600dp.

We observe good correlation between local parallel ion heating (c.f. Fig. 4.6)

and intermittent structures of the magnetic field with LIM2 ≥ 15 at scales l ≥ 200dp.
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We also observe good correlation between these intermittent structures and the

regions in the simulation domain where the ions are accelerated by gyrobunching

and ion trapping by the electric field (c.f. Fig. 4.5).

Summarising, different values of θ∗ lead to different temporal and spatial

dynamics of intermittent structures of the magnetic field in our simulations. Fur-

thermore, we find good correlation between localised intense intermittent structures

of the magnetic field and the occurrence of ion heating along the background mag-

netic field.
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4.4 Discussion

In this chapter we presented the results of the first study of preferential ion heat-

ing driven by 1/fγ broadband spectra of Alfvén waves that have different levels of

intermittency for a given value of the spectral exponent γ. Intermittency is incor-

porated in our model through non-random phase relationships between the modes

which together comprise an initial 1/fγ spectrum of Alfvén waves. Our hybrid

simulations resolve the full kinetic dynamics of ions, allowing us to study in detail

the effects of intermittency on the mechanisms that might be responsible for the

observed preferential ion heating in the fast solar wind.

We find that:

• Gyrobunching and ion trapping by the electric field are the two mechanisms

underlying preferential ion heating in our simulations (Figures 4.4 and 4.5).

• Different levels of intermittency for a given broadband spectrum of Alfvén

waves lead to different temporal and spatial dynamics of the mechanisms un-

derlying preferential ion heating (Figures 4.2 and 4.3).

• The proton and alpha-particle temperature anisotropy T⊥/T‖ shows strong

dependence on the level of intermittency of the electromagnetic fields. We find

Tp⊥/Tp‖ < 1 in all our simulations, increasing in value as the intermittency

level increases; and Tα⊥/Tα‖ > 1 for all the values of θ∗ except for the most

intermittent case θ∗ = 2◦. This result, Tα⊥/Tα‖ ≈ 1, is consistent with what

is typically seen in observations [Marsch et al., 1982a,b; Maruca et al., 2012;

Maruca, 2012].

• The net effect of random-phase, hence non-intermittent, Alfvén waves in our

simulations is to provide a more efficient channel for energy transfer between

ions and electromagnetic fields through wave-particle interactions. This may

result from the fast time scales at which the wave-particle interactions that

energise ions unfold; and from how the random-phase Alfvén waves fill the

simulation domain at early times. On the other hand, highly intermittent

Alfvén waves generate isolated regions of heating, and this seems to favour

energy transfer from protons to alpha-particles (Figure 4.8).

• The dynamics of the velocity and magnetic field fluctuations depend on the

initial level of intermittency of the broadband spectrum of Alfvén waves driv-

ing the heating. Large amplitude backscattered Alfvén waves only are excited

in the simulation with non-intermittent Alfvén waves.
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• Intermittent Alfvén waves produce strong localised heating (Figure 4.6), and

in consequence we cannot meaningfully define average heating rates and total

temperatures at early times in our simulations. This suggests that in the inter-

mittent solar wind similar localised heating might occur, making it difficult to

obtain good estimates of mean ion temperatures and ion heating rates, which

later are used in theoretical and numerical modelling of the solar wind.

• Our results do not in general show any trend with different spectral exponents

γ, consistent with Maneva et al. [2013]. The only clear trend, as expected, re-

lates to the energy transfer between the magnetic field and the alpha-particles,

which is found to be larger (smaller) for γ = 0 (γ = 5/3). This follows from

the fact that for γ = 0 (γ = 5/3) there is more (less) energy available at modes

close to ion cyclotron resonance, that is, ω ∼ Ωα.

• The spatial and temporal dynamics of intermittent structures of the magnetic

field strongly depend on the initial level of intermittency of the magnetic field.

Furthermore, we find good correlation between localised intense intermittent

structures of the magnetic field and the occurrence of ion heating along the

background magnetic field (Figs. 4.6 and 4.10).

There is good agreement between our results and Maneva et al. [2013] for the

case where the broadband spectrum of Alfvén waves is random-phase. They found

that if solar wind expansion is included in the simulations, the value of Tα⊥/Tα‖

decreases. This suggests that simulations that include both intermittency and solar

wind expansion, might lead to values of Tα⊥/Tα‖ closer to their typical observed

values.
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Chapter 5

Conclusions

In this thesis we studied in detail the dynamics of energetic ions in scenarios rele-

vant to magnetic confinement fusion (MCF) plasmas and solar wind plasmas. An

adequate level of description for the plasma for this purpose was the hybrid ap-

proximation for the plasma, which treats ions as kinetic particles and electrons as

a charge-neutralising massless fluid. Our simulations of MCF plasmas effectively

reproduced the observations of ion cyclotron emission (ICE) in JET, a radiative

instability driven by fusion-born alpha-particles in deuterium-tritium plasmas, and

provided fresh insights into the underlying physics of this instability in its linear

and nonlinear stage. This gives further support to ICE to being used as a non-

perturbative diagnostic of fusion-born alpha-particles in future thermonuclear fusion

reactors. Similarly, we took a step forward in the study of preferential ion heating

in solar wind, observed as the formation of ion beams along the local magnetic field

of the solar wind, by performing, for the first time, simulations of preferential ion

heating driven by broadband spectra of Alfvén waves including intermittency in a

self-consistent way. Our results showed that intermittency can significantly modify

the mechanisms underlying preferential heating in solar wind.

In Chapter 1, the most frequently used levels of description for the plasma

for studying MCF plasmas and solar wind plasmas were presented, with special

emphasis on the hybrid approximation for the plasma. Later, perturbative and

non-perturbative instabilities in MCF plasmas, which are used to diagnose some

plasma parameters, were discussed. In this context, we introduced ICE as observed

in deuterium-tritium fusion plasmas, together with the magnetoacoustic cyclotron

instability (MCI), the leading instability underlying ICE in JET and TFTR. In

this chapter we also presented a brief but complete description of the solar wind

through remote and in situ observations of the solar wind made during the last four
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decades. We highlighted three features of the solar wind, namely, power laws of the

solar wind fluctuations, intermittency, and preferential ion heating in the solar wind.

These solar wind observations are put together in our simulations of preferential ion

heating driven by broadband spectra of intermittent Alfvén waves in Chapter 4.

In Chapter 2 we introduced PROMETHEUS++, a new code that uses the

hybrid approximation for the plasma to study MCF plasmas and solar wind plas-

mas. In this chapter the programming paradigms and numerical schemes used in

PROMETHEUS++ were explained in detail. Three well known problems in plasma

physics were used to benchmark the code: the warm plasma dispersion relation, the

resonant electromagnetic ion-ion instability, and the electromagnetic ion cyclotron

beam anisotropy. The results of these tests showed that PROMETHEUS++ is ro-

bust with good energy conservation, and allows us to perform plasma simulations

with good resolution and accuracy over a wide range of plasma configurations.

5.1 Results on the hybrid simulations of the MCI in

relation to ICE in D-T JET plasmas

In Chapter 3, the ion cyclotron emission (ICE) was studied through hybrid simula-

tions of the magnetoacoustic cyclotron instability (MCI) in the context of deuterium-

tritium (D-T) plasmas in JET [Cottrell et al., 1993; McClements et al., 1999]. The

hybrid approximation for the plasma enabled us to pursue simulations of the MCI

longer in time and deep into the nonlinear phase of the MCI with respect to pre-

vious fully kinetic simulations of the MCI [Cook et al., 2013]. Through our hybrid

simulations of the MCI, we recovered some features of the measured ICE in JET,

and confirmed some predictions of the linear theory of the MCI [Dendy et al., 1995],

namely, the excitation of fast Alfvén waves at simultaneous cyclotron harmonics of

the alpha-particles in the range 5Ωα ≤ ω ≤ 12Ωα, in the linear stage of the MCI

(c.f. Fig. 3.1). Importantly, by going deep into the nonlinear stage of the MCI we

recovered the lower spectral peaks in the range of frequencies ω = Ωα to ω = 3Ωα,

which are not predicted to be linearly unstable according to the analytical theory of

the MCI, but are present in the measured ICE intensity in JET. These lower spec-

tral peaks are driven by nonlinear interactions between higher harmonics localized

around ω = 11Ωα (c.f. Figs. 3.3 and 3.6). Also in the nonlinear stage of the MCI, we

observed re-energisation of the minority alpha-particle population driven by waves

excited early on in the simulations by the alpha-particles. Furthermore, a correla-

tion analysis between the parallel magnetic field δB‖ and the perpendicular electric

field Ex components revealed that self-modulation of the phase shift between these
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components of the electromagnetic fields occurs as the hybrid simulations enter the

nonlinear stage of the MCI (c.f. Fig. 3.5).

We studied the scaling properties of the MCI with alpha-particle concentra-

tion, yielding a good match to the scaling of ICE intensity that is measured in JET

and TFTR. First, the scaling of the linear growth rates of the MCI, as inferred

from the hybrid simulations at early times, with alpha-particle concentration was

investigated (c.f. Fig. 3.11). We found that the linear growth rates of the modes

excited at the cyclotron harmonics from ω = 9Ωα up to ω = 12Ωα show square

root scaling with ξα, while the mode at ω = 7Ωα exhibits linear scaling. Next,

the scaling of the magnetic field energy density with alpha-particle concentration

was studied in detail. The simulation results showed linear scaling with ξα for the

modes of the electromagnetic fields excited at consecutive cyclotron harmonics of

the minority alpha-particles from the seventh harmonic up to the twelfth harmonic.

These results are in clear agreement with observations of ICE intensity in JET and

TFTR.

Finally, we performed the first hybrid simulations of the MCI for conditions

relevant to core D-T plasmas in JET. We found that the MCI can efficiently operate

in core D-T JET-like plasmas only when the alpha-particle velocity distribution

significantly departs from an isotropic spherical-shell-like distribution in velocity

space. These simulations represent the first precedent of a numerical study of ICE

in JET core plasmas.

We infer that it is very probable that the plasma physics process underlying

ICE is the MCI. This was strongly suggested by the original analysis of JET and

TFTR D-T plasma observations of ICE, in terms of the linear analytical theory of the

MCI, and appears to be confirmed by the first principles large scale numerical simu-

lations using PIC [Cook et al., 2013] and, here, hybrid codes. This study strengthens

our understanding of the emission mechanism and provides further support to ICE

for being exploited as a diagnostic of confined and lost fusion alpha-particles in fu-

ture D-T plasmas in JET and ITER, as has been proposed [Dendy and McClements,

2015; McClements et al., 2015].

5.1.1 Limitations and future work

Our study of ICE through hybrid simulations of the MCI is limited by the current

capabilities of PROMETHEUS++. Future work will include the extension of this

study to the more computationally intensive full three-dimensional case, so as to

incorporate realistic tokamak spatial and magnetic field geometry. This will allow us

to study in detail the relationships between parallel and perpendicular propagating
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electromagnetic waves excited by the MCI. Also, new settings of our simulations

including sources and replenishment of energetic alpha-particles are desirable.

5.2 Results on hybrid simulations of preferential ion

heating due to intermittent magnetic fields in the

solar wind

In Chapter 4 we carried out the first study of preferential ion heating driven by 1/fγ

broadband spectra of Alfvén waves with different levels of intermittency, which were

incorporated through non-random phase relationships between the modes compris-

ing the broadband spectra of Alfvén waves. All the hybrid simulations had the

same initial electromagnetic energy related to the broadband spectrum of intermit-

tent Alfvén waves, and the same initial condition for thermal protons and alpha-

particles. Therefore, the only variable in our simulations was the intermittency level

of the electromagnetic fields, as explained in Sec. 4.2.1. The plasma parameters used

in our simulations were chosen to be those of the fast solar wind as measured at 1

AU.

First, we studied the mechanisms underlying preferential ion heating in our

hybrid simulations. We found that different levels of intermittency for a given

broadband spectrum of Alfvén waves lead to different temporal and spatial dynam-

ics of the mechanisms underlying preferential ion heating, namely, gyrobunching

and ion trapping by the electric field. (Figs. 4.2 to 4.5). These mechanisms ini-

tially produced strong localised heating of protons and alpha-particles (Figure 4.6),

and consequently we could not meaningfully define average heating rates and to-

tal temperatures at early times in our simulations. Should this strong localised

heating occur in the intermittent solar wind, this would make it difficult to obtain

good estimates of mean ion temperatures and ion heating rates. By the end of the

simulation, however, the protons and alpha-particles temperature became spatially

homogeneous; then we could meaningfully define total temperatures in order to

study the temperature anisotropy T⊥/T‖ in our simulations. We found that T⊥/T‖

shows strong dependence on the level of intermittency of the electromagnetic fields

(c.f. Fig. 4.7). Tp⊥/Tp‖ < 1 is found in all our simulations, consistent with observa-

tions [Marsch et al., 1982b; Maruca et al., 2012; Maruca, 2012] and previous studies

[Maneva et al., 2013] of preferential ion heating in solar wind. Only when highly

intermittent Alfvén waves were used, we observed Tα⊥/Tα‖ ≈ 1, which is consistent

with observations of the fast solar wind at 1 AU [Marsch et al., 1982a; Maruca, 2012].
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All the other simulations with less intermittent Alfvén waves exhibited Tα⊥/Tα‖ > 1.

Next, we studied the energy transfer between ions and electromagnetic fields.

We observed that this was strongly affected by the different levels of intermittency.

The net effect of random-phase, hence non-intermittent, Alfvén waves in our sim-

ulations was to provide a more efficient channel for energy transfer between ions

and electromagnetic fields through wave-particle interactions; whereas highly in-

termittent Alfvén waves favoured energy transfer from protons to alpha-particles

(Figure 4.8).

Then, we moved to the study of the dynamics of the velocity and magnetic

field fluctuations. This showed that the dynamics of these fluctuations depend on the

initial level of intermittency of the broadband spectrum of Alfvén waves driving the

heating. Large amplitude backscattered Alfvén waves, that is, Alfvén waves propa-

gating anti-parallel to the background magnetic field with opposite helicity and sim-

ilar amplitude to those propagating parallel to the background magnetic field, were

observed to be excited only for the simulation with initial non-intermittent Alfvén

waves. Conversely, in the simulation with initially highly intermittent Alfvén waves

neither backscattered Alfvén waves nor non-Alfvénic waves were excited during the

simulation.

Finally, we studied the evolution of intermittency in our hybrid simulations

of preferential ion heating in the solar wind using the local intermittency measure

(LIM). The spatial and temporal dynamics of intermittent structures of the mag-

netic field showed strong dependence on the initial level of intermittency of the

magnetic field. Furthermore, we found a correlation between localised intense inter-

mittent structures of the magnetic field and the occurrence of ion heating along the

background magnetic field (Figs. 4.6 and 4.10).

Importantly, our results did not show any trend with different spectral ex-

ponents γ, consistent with previous studies that used different spectral exponents γ

for the broadband spectrum of waves driving the ion heating [Maneva et al., 2013].

5.2.1 Limitations and future work

The present study represents the first attempt to investigate the role of intermit-

tency in the heating of the solar wind. We have not attempted to capture specific

intermittency properties of the observed solar wind. Future work might include the

use of more realistic models of intermittency to generate the broadband spectra of

Alfvén waves to drive the heating [Subedi et al., 2014].
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1.1 Schematic representation of a Tokamak. The very hot plasma (purple) is

confined by the twisted magnetic field (yellow) resulting from combining

the toroidal and poloidal magnetic fields, which are generated by external

coils and the internal plasma current (red arrow), which in turn is gener-

ated through transformer action by the inner poloidal magnetic field coils.

Source: Public relations department, Max Planck Institute for Plasma Physics. 11

1.2 Examples of spectrograms of the magnetic field in JET and MAST. Panel

a): Spectrogram of the magnetic field in JET discharge #40329 showing

(perturbative) ICRH-driven TAEs. Panel b): Spectrogram of the magnetic

field in MAST discharge #27177 showing (non-perturbative) chirping Alfvén

modes driven by NBI energetic ions. Reproduced from Sharapov et al. [2013]. 13

1.3 First detections of ICE in pure deuterium plasmas in JET. Panel a): ICE

power spectrum before (dashed line) and during (solid line) hydrogen NBI

injection into a pure deuterium limiter plasma in JET. Panel b): ICE power

spectrum from three Ohmical pure deuterium limiter plasmas in JET. Re-

produced from Cottrell and Dendy [1988]. . . . . . . . . . . . . . . . . . 15

1.4 Scaling of the measured ICE intensity in JET PICE with neutron flux and

alpha-particle concentration. Panel a): correlation between the ICE inten-

sity PICE and the measured neutron flux in pure deuterium plasmas and

D-T plasmas in JET. Linear scaling of PICE with the measured neutron flux

is observed in all cases. Panel b): time evolution of the neutron flux (dashed

line), PICE (squares), and the calculated population of alpha-particles at

the outer edge plasma (solid line) in a D-T plasma in JET. Reproduced

from Dendy et al. [1995]. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Poloidal projection of a typical orbit of an alpha-particle born at the core

plasma and undergoing drift excursions to the outer edge plasma in JET.

Reproduced from Dendy et al. [1995]. . . . . . . . . . . . . . . . . . . . 17
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1.6 Composite image of the sun showing polar plots of solar wind speed as a

function of the latitude as measured by Ulysses spacecraft at solar minimum

(left), and at solar maximum (right). The vertical and horizontal axis in

the top panels are solar wind speed in km s−1. At solar minimum (left),

solar wind speed has a clear dependence with latitude; whereas at solar

maximum (right), the slow solar wind dominates, with sources of fast so-

lar wind scattered over the whole solar corona. Bottom panel: number of

sunspots or coronal holes as a function of time; the 11-year solar cycle is

clearly observed. Reproduced from McComas et al. [2003]. . . . . . . . . 20

1.7 Solar-wind plasma parameters as measured by Helios 2 spacecraft around

the day 75 of its first mission to the Sun when the spacecraft was ∼ 0.5

AU away from the Sun. Panels from top to bottom: solar wind speed,

proton number density, proton temperature, magnetic field strength, az-

imuthal angle, and elevation angle. Slow wind on the left-hand side of the

plot, fast wind on the right hand side, and the fast-slow solar wind interface

in between, can be clearly seen. Reproduced from Bruno and Carbone [2013]. 21

1.8 Time evolution of solar polar components (RTN) of the magnetic field and

solar wind velocity as measured by Mariner 5 spacecraft. The top six curves

show the magnetic field (horizontal and vertical lines) and solar wind veloc-

ity (diagonal lines) components. The two bottom lines show the magnetic

field strength B and proton number density N . Strong correlation between

the magnetic field and solar-wind velocity is observed, which indicates that

solar wind is mainly permeated by outward-propagating Alfvén waves. Re-

produced from Belcher and Solodyna [1975]. . . . . . . . . . . . . . . . . 22

1.9 Power spectral density of the fluctuations of solar-wind magnetic field in the

ecliptic plane at several heliocentric distances. Left panel: power spectral

density of the fast solar-wind magnetic field fluctuations observed by Helios

2 between 0.3 and 1 AU during its first mission to the Sun in 1976, and

by Ulysses between 1.4 AU in August of 2007 and 4.8 AU by the end of

1997. The break frequency separating the 1/f and ∼ f−5/3 regions of the

power spectra shows a dependence with heliocentric distance R as ∼ R−1.5.

Right panel: corresponding power spectra of the slow solar-wind magnetic

field fluctuations. In contrast to the case for the fast solar wind, the slow

solar wind spectra only show an inertial range ∼ f−5/3, independent of the

heliocentric distance. Reproduced from Bruno and Carbone [2013]. . . . . 24
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1.10 Scaling exponents of the structure functions of the magnetic field and solar

wind velocity components as measured by Wind spacecraft in 1995. The

solid lines show the theoretical predictions for fully developed fluid turbu-

lence (K41), and magnetically-dominated fully developed turbulence (IK).

Clear departures of ζ(p) from theoretical predictions can be seen, which in-

dicates the presence of intermittency in solar wind. Reproduced from Salem

et al. [2009]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.11 Probability distribution function of the magnetic field increments δB(t, τ) of

the fast (left) and slow (right) solar wind as observed by Helios 2 spacecraft

in 1976. Significant departures of a Gaussian distribution are observed at

time scales τ < 23.04 hr. Reproduced from Sorriso-Valvo et al. [2001]. . . . 27

1.12 Reconstructed velocity probability distribution function of protons as mea-

sured by Helios 2 spacecraft for several solar wind speeds and heliocentric

distances. The dashed lines indicate the direction of the local magnetic field.

Reproduced from Marsch et al. [1982b]. . . . . . . . . . . . . . . . . . . 28

1.13 Reconstructed velocity probability distribution function of alpha-particles

as measured by Helios 2 spacecraft for several solar wind speeds and he-

liocentric distances. The dashed lines indicate the direction of the local

magnetic field. Reproduced from Marsch et al. [1982a]. . . . . . . . . . . 29

1.14 Probability distribution function of T⊥/T‖ as measured by the Wind space-

craft at ∼ 1 AU for protons (left) and alpha-particles (right) as function

of the parallel ion beta βi = 2µ0nikBT‖/B
2
0 . Dark tones of blue and red

indicate more frequent observations of the temperature anisotropy Ti⊥/Ti‖

for a given βi. Reproduced from Maruca [2012]. . . . . . . . . . . . . . . 30

2.1 Modules of PROMETHEUS++. The modules mpi main, types and struc-

tures together with the main function are the core of the code, the rest

of the modules communicate amongst themselves by passing standardized

data structures through the main function. The modules that contain the

numerical solvers for the ions and electromagnetic fields, as well as the in-

put/output functions of the code are shown in orange. Optional modules

that can be unplugged or modified for specific purposes are shown in blue. 33

2.2 Simulation process of PROMETHEUS++. The whole simulation process

consist of two stages: an initialisation stage, in orange, followed by the

simulation stage, in blue. Any additional initialisation (in red) is done

before the normalisation of the simulation variables. . . . . . . . . . . . . 34
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2.3 Hybrid parallel programming method. We use a geometry decomposition

paradigm to divide the entire simulation domain into sub-domains which

communicate with each other through OpenMPI. Additionally, within each

sub-domain we use shared memory parallel programming (OpenMP). . . . 35

2.4 One grid cell of a cuboidal staggered grid used for solving the electric and

magnetic fields in physical space. A one-dimensional version of this grid is

used in PROMETHEUS++. The components of the magnetic field (shown

as H in this figure) are located at the centre of the faces of each grid cell

(blue dots and vectors). Similarly, the components of the electric field are

located at the middle of the edges of each grid cell (red dots and vectors). 37

2.5 Super-particle shape in physical space given by the TSC assignment func-

tion. Figure reproduced from Hockney and Eastwood [1989]. The fraction of

each super-particle variable (e.g. charge and ion velocity) that corresponds

to a given grid point p (marked with crosses) is given by the value of the

TSC assignment function shape W at that point (c.f. Eq. (2.4)). . . . . . 38

2.6 Time-centered finite differences approximation leapfrog method to advance

ions and fields in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Cycle of a time iteration of PROMETHEUS++. First, ion velocities are

advanced in time, followed by their positions (c.f. Eq. (2.9) and (2.10)).

Then, the magnetic field is advanced using a 4th order Runge-Kutta scheme

(c.f. Eq. (2.13) to (2.17)). Finally, the electric field is advanced in time using

a 4th order Bashford-Adams extrapolation for the ions’ bulk velocity (c.f.

Eq. (2.11) and (2.12)). . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Dispersion relation of a warm electron-proton plasma. Panel a): power spec-

tral density of the electric field component Ey for the hybrid simulation with

k ⊥ B0. We identify the excited electromagnetic waves as the magnetosonic

and cyclotron waves up to the sixth proton cyclotron harmonic. Panel b):

same as panel a) for the simulation with k ‖ B0. In this case, we identify

the excited electromagnetic waves as the whistler wave and ion cyclotron

wave. The dashed lines in both panels show the analytic dispersion relation

of a cold electron-proton plasma with the same plasma parameters used in

the simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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2.9 Comparison between theory and simulation results. Top panel: Figure re-

produced from Winske and Omidi [1993]. Linear growth rates of unstable

modes of the resonant electromagnetic ion-ion instability (REIII). The solid

and dotted trace show the real frequencies ωr and linear growth rates γ of

the REIII as function of the wavenumber k, respectively. The value of the

plasma parameters used for this plot are the same as the ones used in the

hybrid simulation of the REIII. Bottom panel: shading indicates the log10

of the power spectral density in wavenumber space of the perturbations of

the magnetic field component Bz as function of time. We observe the ex-

citation of a broadband spectrum of electromagnetic waves in the range of

wavenumbers 0.05 ≤ kc/ωi ≤ 0.15 with peak value at kc/ωi = 0.11 ± 0.01

(vertical dashed line), in good agreement with the predictions of the lin-

ear theory (top panel). Around tΩi = 35 the nonlinear stage of the REIII

takes over, at this stage modes with large amplitudes and with wavenumbers

kc/ωi > 0.15 are excited. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.10 Calculation of the linear growth rate of the most unstable mode in the

hybrid simulations of the REIII. Panel a): linear fit of log10 (δB2
m/B

2
0) vs

t. The solid (dashed) line shows the numerical data (linear fit). We find

γ/Ωi = 0.159 ± 0.001 for this mode, which is in good agreement with the

linear theory. Panel b): normalised energy density of the most unstable

mode in the simulation. We estimate an oscillation frequency of ωr ≈ 0.21

for this mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.11 Comparison between theory and simulation results. Top panel: Figure re-

produced from Winske and Omidi [1993]. Linear growth rates of unsta-

ble modes of the electromagnetic ion cyclotron beam anisotropy instability

(EICBAI). The solid and dotted lines show the real frequencies ωr and

linear growth rates γ of the EICBAI as a function of the wavenumber k,

respectively. The values of the plasma parameters used for this plot are

the same as the ones used in the hybrid simulation of the EICBAI. Bottom

panel: shading indicates log10 of the power spectral density in wavenumber

space of the perturbations of the magnetic field component Bz as function

of time. We observe the excitation of a broadband spectrum of electromag-

netic waves in the range of wavenumbers 0.1 ≤ kc/ωi ≤ 0.6 with peak value

at kc/ωi = 0.36± 0.03 (vertical dashed line), consistent with predictions of

the linear theory (top panel). . . . . . . . . . . . . . . . . . . . . . . . . 50
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2.12 Calculation of the linear growth rate of the most unstable mode in the

hybrid simulations of the EICBAI. Panel a): linear fit of log10 (δB2
m/B

2
0) vs

t. The solid (dashed) line shows the numerical data (linear fit). We find

γ/Ωi = 0.19 ± 0.01 for this mode. Panel b): normalised energy density of

the most unstable mode in the simulation. . . . . . . . . . . . . . . . . . 51

3.1 Experimental, analytical and numerical spectra. (a) measured ICE intensity

from JET PTE pulse 26148 (Reproduced from Figure 1 of Dendy et al.

[1995]). (b) analytical linear growth rate for the MCI for alpha-particle

concentration, log10(ξα) = −3, along with the corresponding results from

the hybrid simulations for the three values, log10(ξα) = −4,−3.5,−3. (c)

intensity of the parallel perturbed magnetic field δB‖ = Bz − B0 of the

hybrid simulation of the MCI with ξα = 10−3. The dashed black (solid red)

line represents the linear (nonlinear) stage of the instability. . . . . . . . 57

3.2 Time evolution of the change in particle energy density and energy density

of the excited field components. The red (cyan) line shows the change in the

kinetic energy density of the deuterons (alpha-particles) along with the en-

ergy density of the magnetic field perturbation, δB‖ ≡ Bz(x, t)−B0, (green

line) and the perpendicular electric field Ex (blue line). For comparison

we show the change in kinetic energy density of the alpha-particles (orange

dashed line) taken from a PIC simulation with the same parameters as our

hybrid simulation. The temporal axis has been scaled by a factor of 1/2 to

account for the slower growth rate observed in the PIC simulations, which

might be due to the fact that, opposite to our hybrid simulations, the PIC

simulations include the full kinetic electron damping. . . . . . . . . . . . 59
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3.3 Frequency and wavenumber space for the linear (panels (a)–(c)) and non-

linear stages (panels (d)–(f)) of the MCI. Panels (a) and (d): shading indi-

cating the log10 of the spectral density of the parallel perturbed magnetic

field δB‖ in frequency-wavenumber space. These plots show the excitation

of the fast Alfvén wave with resonances at consecutive harmonics of ion cy-

clotron frequency, ω = Ωα. The dashed line shows, ω/k = VA, where VA =

B0/
√
µ0nDmD is the Alfvén speed. The ellipse in (d) shows the excited

modes due to the alpha-particles’ re-energisation. Panels (b) and (e): close-

up of the most strongly excited modes in frequency-wavenumber space. The

intersection of the vertical and horizontal dashed lines in panel (e) points

to the maximum of δB2
‖ in frequency-wavenumber space at ω/Ωα ≈ 11 and

kVA/Ωα ≈ 11.5. Panels (c) and (f): time evolution of the wavenumber

spectra of δB‖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Energy density of each non-zero field component as a function of positive

wavenumber (k > 0) in the linear (a) and nonlinear (b) stages. Strong

localized peaks in the range 6 ≤ kVA/Ωα ≤ 13 correspond to the resonances

of the fast Alfvén wave at consecutive ion cyclotron harmonics of the alpha-

particles. The inset in panel (a) shows the energy density of δB‖ in the

linear (orange) and nonlinear (green) stages in the range of wavenumbers

kVA/Ωα < 5. Linear scale is used for the y-axis in this inset. The intensity

peaks about kVA/Ωα = 22 are important in the re-energisation process for

alpha-particles in the nonlinear stage (cf. Figs. 3.2 and 3.3(d)). . . . . . . 61

3.5 Spatial cross-correlation R(∆φ, t) (cf. Eq. (3.2) and (3.3)) between the

normalised field components δB‖(x, t)/
√

2µ0 and
√
ε0/2Ex(x, t). The red

(blue) colour indicates maxima (minima) of R(∆φ, t), indicating strong (lack

of) correlation for the relative phase shift ∆φ. The vertical dashed lines show

π and −π. The nonlinear interaction between the electric and magnetic

fields produces a phase shift that remains almost constant at ∆φ ∼ ±π for

t > 5τα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Non-normalized self-bicoherence of the parallel perturbed magnetic field δB‖

in wavenumber space, plotted using a log10 colour scale. Only the principal

domain of the self-bicoherence is shown. The red colour indicates significant

coupling between different modes at k1 and k2. Panels (a) and (b) show the

non-normalised self-bicoherence of δB‖ in the linear stage at t = 4τα and in

the nonlinear stage at t = 8τα. The arrows in both panels point to areas on

the k1k2 plane which show strong coupling between different modes. . . . . 64
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3.7 Re-energisation of the alpha-particle population during the nonlinear phase

of the MCI. Left panel: probability density function of the minority al-

phas, fα(v), as a function of the magnitude of their perpendicular veloc-

ity v =
√
v2x + v2y, at three different times in the nonlinear stage of the

hybrid simulation. The energisation of the alpha-particles is seen as the

bump in fα(v), which builds up in the nonlinear stage around v/VA ≈ 1.5.

At this stage the particles reach velocities higher than the birth velocity

u⊥/VA ≈ 1.2. Right panel: filled contours representing the smoothed prob-

ability density function of the minority alpha-particles as function of po-

sition and their velocity fα(x, v), at t/τα ≈ 9. The temporal evolution of

fα(v) and fα(x, v) suggests the existence of two phase space diffusive re-

gions, where the smallest diffusion region can be identified with the bump

of fα(v) in the left panel, and a leaky transport barrier which produces the

steep slope before the bump in fα(v). . . . . . . . . . . . . . . . . . . . 65

3.8 Log-normal plot of the MCI intensity: a) power density of the perturbed

magnetic field of two typical hybrid simulations of the MCI with ξα =

1 × 10−3 (red trace) and ξα = 1 × 10−4 (black trace). b) power density of

the transverse component of the electric field from the same simulations as

panel a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9 Power spectral density of the perturbed electromagnetic fields for three hy-

brid simulation of the MCI with log10(ξα) = −4 using three different values

for the number of particles-per-cell (ppc). Panel a): PSD of δB‖ for simula-

tions using ppc = 20 (orange), ppc = 200 (black) and ppc = 2000 (green).

Panel b): same as panel a) for Ex. The noise level in the electromagnetic

fields decreases as the number of super-particles increases. . . . . . . . . . 69

3.10 Colour shading of the log10(δB2
‖) in frequency-wavenumber for the hybrid

simulation of the MCI with log10(ξα) = −4 and ppc = 2000. Modes in the

range ω ≤ 6Ωα (arrows) start to be visible, but they are hidden by the noise

when averaging along k > 0 to calculate the power spectrum of Fig. 3.9. . . 70

3.11 Scaling with alpha-particle concentration ξα of the linear growth rates γ of

the MCI at successive cyclotron harmonics. The blue diamonds show the

scaling exponents ζ of Eq. (3.5) obtained from the hybrid simulations of the

MCI. The growth rates in the range ω = 9Ωα to ω = 12Ωα show square root

scaling with ξα as predicted by Eq. (3.6), that is, ζ = 0.5, while the mode

at ω = 7Ωα shows linear scaling with ξα, that is, ζ = 1. . . . . . . . . . . 72
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3.12 Power spectral density (PSD) in wavenumber space of perturbed number

densities and magnetic field perturbations for the hybrid simulation with

ξα = 1 × 10−3. Panel a): Power spectra encompassing the linear stage of

the MCI. From bottom to top: perturbed parallel magnetic field δB‖(k)/B0

(black), deuteron number density perturbation δnD(k) (red) and alpha-

particle number density perturbation δnα(k) (cyan). The excited modes at

kVA/Ωα ≈ 8.5, 9.5, 10.5, 11.5 and 12.5 are the same for δB‖ and δnα but

not for δnD. These modes correspond to ω/Ωα = 8, 9 10, 11 and 12, in the

frequency domain (c.f. 3.3). Panel b): same as panel a), but the spectra

now include the nonlinear stage of the MCI. Both ion species show similar

spectra in wavenumber. Other hybrid simulations with different ξα show the

same features. A running window average has been used to smooth every

PSD trace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.13 Scaling of the normalized perturbed magnetic field energy with alpha-particle

concentration ξα. Top panel: the circles show the values of the scaling ex-

ponent η for each spectral peak of Fig. 3.8(a) obtained using a least-squares

linear fit. The error bars show the confidence interval of each fit. Bottom

panels: least-squares linear fits for the log10− log10 plots of the normalized

magnetic field energy δB2
‖/B

2
0 vs. ξα for the cyclotron harmonics ω = nΩα,

where n = 7, . . . , 12. The black dashed lines in each of these panels represent

the confidence interval of the linear fit (magenta). . . . . . . . . . . . . . 76

3.14 Time evolution of the change in particle energy density and field energy

density of two simulations of the MCI with different alpha-particle velocity

distributions. Left panel: hybrid simulation of the MCI with an isotropic

spherical-shell-like velocity distribution for alpha-particles (c.f. Eq. 3.11).

The inset in this panel shows a zoom of this panel for careful inspection. As

can be seen, by the end of the simulation the MCI saturates and gives way

to its nonlinear stage, where re-energisation of alpha-particles occurs. Right

panel: hybrid simulation of the MCI with a ring-like velocity distribution

for alpha-particles (c.f. Sec. 3.2). In both panels the red (cyan) line shows

the change in the kinetic energy density of the deuterons (alpha-particles)

along with the energy density of the magnetic field perturbation, δB‖ ≡
Bz(x, t)−B0, (green line) and the perpendicular electric field Ex (blue line). 78
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3.15 Power spectra in frequency and wavenumber space of δB‖ of the two hybrid

simulations of the MCI of Fig. 3.14. Panels a) and b) show the power

spectra of the hybrid simulation of the MCI using a spherical shell velocity

distribution for alpha-particles. Panels d) and d) show the power spectra of

the hybrid simulation of the MCI using a ring-like velocity distribution for

alpha-particles. Consistent with Fig. 3.14, the MCI only is excited when a

ring-like distribution is used for the minority alpha-particle population. The

horizontal lines in each plot show cyclotron harmonics of the alpha-particles

ω = nΩα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Initial condition for magnetic fields with the same power spectral density 1/f

and three different levels of intermittency (burstiness). Subset of simulation

domain shown. For simplicity, only the y component of δB(x) (c.f. Equation

4.2) is shown. Three different values of θ∗ are used to specify the level of

intermittency: θ∗ = 2◦, 90◦ and 360◦. The case with θ∗ = 2◦ corresponds

to the most intermittent magnetic field, whereas θ∗ = 360◦ corresponds to

the random-phase approximation for the magnetic field perturbations. All

these magnetic fields contain the same total field energy. Notice that in

some regions of the simulation domain the amplitude of the magnetic field

perturbations are of the same order as the background magnetic field, which

makes possible the existence of coupling between compressional and shear

Alfvén waves in our simulations. . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Dependence of ion velocity distribution functions on the level of intermit-

tency. Colour shading of log10

(
f(v‖, v⊥,2)

)
of alpha-particles for thee hybrid

simulations at different simulation times. The top panels show f(v‖, v⊥,2)

of alpha-particles for the simulation times, tΩp = 25.07, 629.07, and, 2000,

for the hybrid simulation in the high-intermittent case θ∗ = 2◦. Middle

and bottom panels show the corresponding f(v‖, v⊥,2) for the hybrid sim-

ulations with θ∗ = 180◦ and θ∗ = 360◦, respectively. The horizontal and

vertical dashed lines show v⊥,2 = 0 and v‖ = 0, respectively. At the final

simulation time tΩp = 2000, the alpha-particle f(v‖, v⊥,2) for the simula-

tion with θ∗ = 360 shows a drift of its core anti-parallel to B0. The core of

f(v‖, v⊥,2) for the simulation with θ∗ = 2 shows elongation along B0. We

observe the occurrence of preferential ion heating of alpha-particles for all

θ∗, i.e. all levels of intermittency. However, the features of f(v‖, v⊥,2) in

each case are different, suggesting that the mechanisms underlying the ion

heating act in different ways. . . . . . . . . . . . . . . . . . . . . . . . . 89
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4.3 Dependence of ion velocity distribution functions on the level of intermit-

tency. Colour shading of log10

(
f(v‖, v⊥,2)

)
of protons for thee hybrid sim-

ulations at different simulation times. Same as in Fig. 4.2, but for protons.

At the final simulation time, tΩp = 2000, the core of the proton f(v‖, v⊥,2)

shows a drift anti-parallel to B0 in all cases. However, this is more evident

for the simulation in the random phase limit θ∗ = 360. We observe the

occurrence of preferential ion heating of protons for all θ∗, i.e. all levels of

intermittency. However, the features of f(v‖, v⊥,2) in each case are different,

suggesting that the mechanisms underlying the ion heating act in different

ways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Alpha-particle acceleration due to gyrobunching in the hybrid simulation

where θ∗ = 2◦. Panels a) and b) show the colour shading of the parallel

velocity v‖(x, φ), where φ = arctan (v⊥,2/v⊥,1) is the ion gyro-angle, for

the initial condition tΩp = 0 and tΩp = 25.07, respectively. Dark red

and blue colours indicate significant bunching of ions in gyro-angle space.

Panel c) shows f(x, v‖) for panel b). Alpha-particles accelerated to velocities

|v‖| ∼ VA around regions of high magnetic pressure (x ≈ 380dp), can be

identified as the alpha-particle populations bunched in gyro-angle space in

panel b). Gyrobunching for protons and alpha-particles is seen in all the

simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Grey scale plot of the ion distribution function f(v‖, x) of protons (left

column) and alpha-particles (right column) at tΩp = 25.07. Darker areas

in each panel represent larger f(v‖, x). Along with f(v‖, x) we show the

normalized magnetic pressure PB(x) ∼ B2(x) in dark blue, the normalized

particle density n(x)/ne in red, and the critical ion velocity ±vc in green.

The magnetic pressure PB(x) is normalized to one. These quantities allow

us to identify gyrobunching and ion trapping by the electric field, notably

in the regions marked by arrows in panels c) to f), as the mechanisms

which drive the ion heating in all the simulations. Gyrobunching and ion

trapping work together, accelerating protons and alpha-particles in all the

simulations shown, independent of the intermittency level of the magnetic

fields. However, the specific dynamics of these mechanisms do depend on

the levels of intermittency. . . . . . . . . . . . . . . . . . . . . . . . . . 93
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4.6 Normalised local parallel ion temperature T‖ of protons and alpha-particles,

plotted as a function of position at early and late times, for three different

levels of intermittency. Panels a) to c) show the ion parallel temperatures at

the early time tΩp = 25.07 from the hybrid simulations with θ∗ = 2◦, 180◦

and 360◦. Intense localised heating occurs for the simulations with high

levels of intermittency. Panels d) to f) show the corresponding ion parallel

temperatures at final simulation time tΩp = 2000; by this time, the heating

has become homogeneous, so that average ion temperatures can be defined.

The averaged proton and alpha-particle temperatures are calculated for each

simulation along with their standard deviations. Large deviations from the

mean value of T‖ are visible at early times in all the hybrid simulations.

By the end of each simulation, the ion temperatures have become more

homogeneous in space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Final proton and alpha-particle temperature for different values of θ∗ and γ.

Panel a): final parallel (black) and perpendicular (red) proton temperature

for hybrid simulations with γ = 1. Panel b): same as panel a) for alpha-

particles. Panel c): proton temperature anisotropy. For protons, Tp⊥/Tp‖ <

1 is always observed in our simulations, and this agrees with observations

of the solar wind. Panel d): alpha-particle temperature anisotropy. For

alpha-particles, the trend seen in solar wind observations is Tα⊥/Tα‖ ≈ 1;

this is only observed for the hybrid simulation with θ∗ = 2◦, independent of

the value of the spectral exponent γ. The inset in this panel shows this. . . 97

4.8 Time evolution of change in ion energy density and magnetic field energy

density for hybrid simulations, all with an initial 1/f broadband spectrum

of Alfvén waves, but with different levels of intermittency. From top to

bottom: the change in proton energy density ∆EKp (red), the change in

alpha-particle energy density ∆EKα (cyan), and the change in magnetic

field energy density ∆EB (green). The horizontal dashed lines are plotted

only to assist comparison of EKp , ∆EKα and ∆EB across the different hy-

brid simulations. All the simulations show the same qualitative trends. At

early times, the alpha-particles transfer some energy to the protons through

wave-particle interactions. Thereafter there is re-energization of the alpha-

particles, while the protons continue to be energized, but at a slower rate.

∆EKp saturates by the end of the simulation time. There is a regular decline

in magnetic field energy density. . . . . . . . . . . . . . . . . . . . . . . 98
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4.9 Time evolution of the spatial correlation between the ion velocity and mag-

netic field fluctuations in the hybrid simulations of the solar wind. Initially,

C(δBy, Uiy) ≈ −1, consistent with the initial condition of pure Alfvén waves

propagating parallel to B0. For the case where the initial wave-phases are

random (black): θ∗ = 360◦ the broadband spectrum of Alfvén waves de-

cay into backscattered Alfvénic waves, that is, Alfvén waves propagating

anti-parallel to B0 with similar amplitude to those propagating parallel to

B0, which reduce the correlation C(δBy, Uiy)→ 0. In the case with highly

intermittent Alfvén waves (blue): θ∗ = 2◦ the plasma waves remain mostly

Alfvénic throughout the simulation. . . . . . . . . . . . . . . . . . . . . 100

4.10 Local intermittency measure of the magnetic field component By for three

hybrid simulations with different levels of intermittency. Panels from top

to bottom: the top panels show LIM2(x, l) of By for the simulation with

θ∗ = 2◦ at the simulation times tΩp = 0, 25.07, 629.07 and 2000. The

middle and bottom panels show the corresponding LIM2(x, l) of By for the

simulations with θ∗ = 180◦ and 360◦, respectively. The spatial and temporal

dynamics of intermittent structures of the magnetic field component By are

different in each case. The LIM of Bz shows the same features. . . . . . . 104
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Study on Solar Wind Turbulence During the Venus-Express, ACE and Ulysses

Alignment of August 2007. Earth, Moon, and Planets, 104(1-4):101–104, Dec

2009. ISSN 0167-9295. 23, 82

O. Buneman. TRISTAN: The 3-D electromagnetic particle code. In H. Matsumoto

and Y Omura, editors, Computer Space Plasma Physics: Simulations and Soft-

ware, pages 67–84. Terra, Tokyo, 1993. 36

L. F. Burlaga. Intermittent turbulence in the solar wind. Journal of Geophysical

Research, 96(A4):5847–5851, 1991. 25

L. Carbajal, S. C. Chapman, R. O. Dendy, J. W. S. Cook, and B. Reman.

PROMETHEUS++ code, 2013.

www2.warwick.ac.uk/fac/sci/physics/research/cfsa/people/\carbajal_

gomez/plasma_modelling. 31

127

www2.warwick.ac.uk/fac/sci/physics/research/cfsa/people/\ carbajal_gomez/plasma_modelling
www2.warwick.ac.uk/fac/sci/physics/research/cfsa/people/\ carbajal_gomez/plasma_modelling


L. Carbajal, R. O. Dendy, S. C. Chapman, and J. W. S. Cook. Linear and nonlinear

physics of the magnetoacoustic cyclotron instability of fusion-born ions in relation

to ion cyclotron emission. Physics of Plasmas, 21(1):012106, 2014. 8, 66, 70

S. Cauffman, R. Majeski, K. G. McClements, and R. O. Dendy. Alfvenic behaviour

of alpha particle driven ion cyclotron emission in TFTR. Nuclear Fusion, 35(12):

1597, 1995. 15, 53, 58, 80

B. Chapman, G. Jost, and R. van der Pas. Using OpenMP: Portable Shared Memory

Parallel Programming. Scientific and engineering computation. MIT Press, 2008.

ISBN 9780262033770. 33

S. C. Chapman and B. Hnat. Quantifying scaling in the velocity field of the

anisotropic turbulent solar wind. Geophysical Research Letters, 34:L17103, 2007.

24, 82

S. E. Clark, D. Winske, D. B. Schaeffer, E. T. Everson, a. S. Bondarenko, C. G. Con-

stantin, and C. Niemann. Hybrid simulation of shock formation for super-Alfvenic

expansion of laser ablated debris through an ambient, magnetized plasma. Physics

of Plasmas, 20:082129, 2013a. 8

S. E. Clark, D. Winske, D. B. Schaeffer, E. T. Everson, A. S. Bondarenko, C. G. Con-

stantin, and C. Niemann. Hybrid simulation of shock formation for super-Alfvénic
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