
  

 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap  

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

http://go.warwick.ac.uk/wrap/73864 

 

 

 

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to 
cite it. Our policy information is available from the repository home page.  

 
 

 

 

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/73864


ACCESSIBILITY AND SINGULAR 

FOLIATIONS 

by 

Peter Stefan 

Thesis submitted for the 

degree of Doctor of Philosophy 

at the University of Warwick, 

December 1973 



ABSTRACT 

In Part One we study the partition of a finite-dimensional 

manifold M into the accessible sets of an arbitrary system A of 

isotopy families of local diffeomorphisms of M and, in particular, 

into the accessible sets of an arbitrary system of differentiable 

vectorfields on M. 

In Part Two we generalize the methods of Part One to study 

the integrability of singular distributions on infinite-dimensional 

manifolds. 

In Part Three we return to finite-dimensional manifolds and 

use the results of Part One to study in detail the contrasting 

properties of integrability and,irreducibility of systems of 

vectorfields on M. 
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PREFACE 

1. RESULTS. The contents of this thesis is divided into three 

parts. Part One is (except in the Introduction) identical to a 

paper which will appear in the Proceedings of the London Mathematical 

Society. Part Two generalizes the results of Part One to infinite-

dimensional (Banach) manifolds and Part Three consists of two 

shorter papers which could be considered as applications of the 

results of Part One. 

The main result of Part One is to show that the accessible 

sets of an arbitrary collection A of 'arrows' (= isotopy families 

of local diffeomorphisms) on a manifold M possess a differentiable 

structure which makes them into connected immersed submanifolds 

of M. We also show that this differentiable structure is unique 

and that, more generally, every differentiable function N ~ M 

which factors set-theoretically through an accessible set L of A 

factors differentiably through L. Moreover, a similar result 

holds if we replace N by a locally connected topological space 

and substitute 'continuous' for 'differentiable'. In short, the 

accessible sets of A are almost as well-behaved as embedded 

submanifolds. 

As for the 'differentiability transversally to the accessible 

sets' we show that the latter fit together to form a foliation with 

singularities (a regular foliation if they happen to be all of the 

same dimension). For example, the partition of the plane into 

the graphs of the functions y3 = (x-c)3 does not represent the 

collection of accessible sets of any set A of arrows on R2. 
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There is a simple description of the tangent spaces of the 

accessible sets of A which allows us to compute their dimension 

and to give a necessary and sufficient condition (homogeneity) 

that A be integrable (that is, that it span the tangent spaces 

of its accessible sets). This condition is later shown to imply 

the 'classical' integrability conditions such as the Frobenius 

theorem and Nagano's results on integrability of (possibly singular) 

real-analytic distributions [7]. 

In Theorem 2 we show that, if ~ is an arbitrary equivalence 

relation on M, then there exists the greatest foliation with 

singularities whose leaves are inscribed in the equivalence 

classes of ~. If ~ is a local diffeomorphism of M such that 

x ~ y implies ~(x) ~(y), then ~ is a local diffeomorphism for 

the differentiable structure defined by this foliation. The 

collection of --preserving vectorfields on M is closed under 

formation of the Lie bracket (§5). 

In Theorem 3 we show that every subgroup G of Diff M defines 

a foliation with singularities whose leaves are the orbits of the 

isotopy component Go of idM in G. The orbits of G are unions of 

G -orbits of constant dimension. In Theorems 4 and 5 we state o 

a similar result for groupoids of germs of local diffeomorphisms 

and for arbitrary collections of differentiable vectorfields. 

In Theorem 6 we re-formulate our integrability condition in 

terms of Lie brackets. We also show how it implies various other 

integrability conditions and give some examples illustrating their 

relationship. 



- v -

In §6 of Part One we introduce the concept of 'multiarrows'. 

This is a convenient gadget for replacing Lie brackets (infinites-

imal commutators) by 'finite' commutators. It is used here to 

give a direct proof of the so-called Chow's theorem. 

In Part Two we define the differentiability of (possibly sing­

ular) distributions on infinite-dimensional (Banach) manifolds and 

show that it can be described in terms of vector-va1ued one-forms. 

The main result (Theorem 1) states that a weakly differentiable, 

possibly singular, distribution i~ integrable if and only if it 

is homogeneous. We give some other necessary and sufficient 

conditions of integrability and show that an integrable distribution 

B defines a unique differentiable structure a on M such that (M,a) 

is an integral submnifo1d of B. Further, a is a foliation with 

singularities and the connected components of a are the accessible 

sets of B. 

In §8 of Part Two we use Lie derivatives to give some necessary 

and sufficient conditions that a vectorfie1d X respects a 

distribution B and hence deduce the corresponding conditions of 

homogeneity. We also show how these conditions imply the standard 

Frobenius theorem and prove that a real-analytic (possibly singular) 

distribution is integrable if and only if it is invo1utive and 

locally everywhere defined. 

In the last section of Part Two we introduce the concepts of 

a neat leaf of a distribution and a neat submanifo1d of M and 

discuss a related unsolved problem. 
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In Part Three,§l, we return to the integrability of a system 

of vectorfields on a finite dimensional manifold and answer in 

full some of the problems which were left open in Part One. In 

particular, we show that, contrary to the claims in [6], [10] and 

[11], the condition that a set S of vectorfields be 'locally of 

finite type' is not sufficient for its integrability. We give 

some related necessary and sufficient conditions of integrability 
~ 

for the C case and show that they are not sufficient in the 

real-analytic case. 

Finally, in §2 of Part Three we prove that the set of irreducible 

pai~s of Ck-vectorfields on M is Ck-generic for every k ~ 1. (A 

pair S = {X,Y} of vectorfields on M is irreducible if the accessible 

sets of S coincide with the connected components of M; the result 

has been known for k ~ 2n [19]). 

2. CONTEXT. Although the motif of this thesis goes back to 

Caratheodory's work on Thermodynamics (cf. Math. Annalen ~, 1909) 

the main reference is undoubtedly the 1939 paper of Wei-Liang Chow 

[2]. Chow's results can be summarized in our notation as follows. 

Let S be a system of Cl vectorfields on a manifold M and assume 

(1) dimS(y) = const for YEn, 

where n is a neighbourhood of a point x in M(cf. Part One, §4.3). 

Then the accessible sets of S define a regular foliation on a 

(possibly smaller) neighbourhood n' of x, which is tangent to the 

distribution (S(y) : YEn'). The regularity condition (1) is 
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of course a major restriction on the class of the admissible 

systems of vectorfields, whereas the results of Part One are valid 

for an arbitrary system S (and, more generally, for an arbitrary 

collection of 'arrows' on M). 

As far as I know, the first proof of a 'Frobenius theorem' 

for singular (but real-analytic) distributions was published by 

Tadashi Nagano in 1966 [7]. I have also benefited a great deal 

from reading the papers [5] and [21] of Robert Hermann and from 

Claude Lobry's 1970 paper [6]. 

A preliminary version of Part One appeared as [11]. It has 

since transpired that some of the results (notably much of §5 and, 

to a lesser extent, the assertion of Theorem 5) partially 

overlap with the recent work of H~ctor J. Sussmann [9], [10]. 
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INTROnUCfIoN 

In §§l-3 we prove a general theorem on accessible sets of 

collections of 'arrows' on the Cq-manifo1d M, where 1 ~ q ~ w. 

In §4 we apply this result to the following situations: 

(1) the partition of Minto G-orbits, where G is an arbitrary 

subgroup of niH (M); 

(2) a similar situation, in which G is replaced by an arbitrary 

groupoid r of germs of local diffeomorphisms of M; and 

(3) the partition of M into the accessible sets of an arbitrary 

collection of vectorfie1ds on M. 

In §5 we study the tangent spaces of accessible sets and obtain 

various generalizations of the Frobenius theorem. Finally in §6 

we introduce the concept of a multiarrow and give a direct proof 

of the so-called Chow's theorem. 



- 2 -

§l. ACCESSIBLE SETS FORM A FOLIATION WITH SINGULARITIES 

Let M be a finite-dimensional paracompact Cq-manifold, 1 S q s w. 

The word 'differentiable' always refers to this fixed class Cq • A 

subset L of M is said to be a k-leaf of M if there exists a differ-

entiable structure a on L such that (i) (L,a) is a connected 

k-dimensional immersed submanifold of M and (ii) if N is an 

arbitrary locally connected topological space and f : N + M is a 

continuous function such that f (N) c L, then f : N + (L,a) is 

continuous. 

It follows from the properties of immersions that if f : N + M 

is a differentiable mapping of manifolds such that feN) c L, then 

f : N + (L,a) is also differentiable. In particular, a is the 

unique differentiable structure on L which makes L into an immersed 

k-dimensional submanifold of M. Since M is paracompact, every 

connected immersed submanifold of M is separable, and soL does not 
-----

admit a differentiable structure of a connected immersed submanifold 

of M of a dimension other than k. 

Every embedded connected submanifold of M is a leaf, and so 

is the flow-line of the irrational flow if M is the two-torus. 

We say that! is a Cq-foliation of M with singularities if ! 

~s a partition of Minto Cq-leaves of M, such that, for every x EM, 

there exists a local Cq-chart ~ of M with the following properties: 

(a) The domain of ~ is of the form U x W, where U is an open 

neighbourhOOd of 0 in Rk, W is an open neighbourhood of 

o in Rn- k and k is the dimension of the leaf through x. 
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(b) 1/1(0,0) - x. 

(c) If L is a leaf of !, then L n ",(U x W) • ",(U x t), where 

1 • {we W I/I(O,w) E L}. 

Let d(x,!) denote the dimension of the leaf of ! which contains 

the point x. It follows immediately from the above definition 

that the function x ~ d(x,!) is semi-continuous below. We write 

(M,!) for the Cq-manifold with the same underlying set as M and 

with the Cq-structure of the disjoint sum of the leaves of F; in -
general, this is a disconnected manifold whose components are not 

necessarily all of the same dimension. 

By a local diffeomorphism of M we mean a diffeomorphism of 

one open subset of M onto another. We say that a differentiable 

function a : R xM ~ M is an ~ if its domain is an open subset 

of R x M and if it satisfies the following two conditions: (i) 

for every t € R, at. aCt ,-) is a local diffeomorphism of M 

(possibly with the empty domain) and (ii) if (t,x) belongs to the 

domain of a, then So does (s,x) for every s between 0 and t and 

a(O,x) • x. We write ~(t,x) for the tangent vector at t of the 

curve a(-,x), and (at)*(x) for the differential at x of the 

function at M -+ M. If Y • a(t,x), then ~(t,x) e TyM and 

(at)*(x) is a linear mapping T M ~ T M. 
x Y 

An example of an arrow is the flow of a differentiable 

vectorfie1d (§4.3). In general, an arrow a does not necessarily 

satisfy the condition a t+s _ at 0 as. 
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Let A be a collection of arrows on M. We write 8A for the 

set of all local diffeomorphisms ~ of M such that ~ • at for some 

a E A and t E R, and let 'A denote the set which consists of the 

identity mapping of M and all the local diffeomorphisms of the form 

h 0 h 0 ••• 0 ~ , where p is an arbitrary positive integer and ~. 
p 1 

or ~.-l belongs to 8A for 1 ~ i ~ p. 
1 

We write y .. x mod A if 

y co: ~ (x) for some ~ E 'A. This is clearly an equivalence relation 

on M; its equivalence classes are termed the accessible sets of 

A. 

Given x E M, we consider two vector subspaces, A(x) and A(x), 

of the tangent space T H, spanned respectively by the sets x 

{~(t ,y) : a E A, a(t ,y) - xl and U*(y).w : ~ E 'A, Hy) - x, WE A(y)}. 

If ~ E 'A and ~(x) - y, then clearly ~*(x).A(x) • A(y). 

x = y mod A, then dim A(x) - dim A(y) • 

Thus,if 

THEOREM 1. Let ! be the partition of M into the accessible 

sets of A. Then E is a foliation with singularities and, for 

In particular, every accessible set of A is a leaf of M and thus 

admits a unique differentiable structure of a connected immersed 

submanifold of M. 

Let ~ be an equivalence relation on M. We say that a local 

diffeomorphism ~ preserves ~ if f(X) ~ x whenever x belongs to the 

domain of ~. We say that ~ respects - if f(x) - ~(y) whenever 

x - y and both x and y belong to the domain of ~. An arrow a 

preserves (or respects) ~ if so does the local diffeomorphism at 

for every t E R. 
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THEOREM 2. Let ~ be an equivalence relation on M and let A 

be the collection of all the arrows on M which preserve~. If 

~ E: Loc Diff M and ~ respects ~, then ~ E: Loc Diff (M,!) , where 

! - !(A) is the partition of M into the accessible sets of A. 

~." §2 HOMOGENEOUS AND SYMMETRIC ENVELOPES 

A collection A of arrows on M is said to be homogeneous if 

A(x) 0::: A(x) for every x E M, that is if ~* (x) . A(x) c A(y) whenever 

-1 
or ~ belongs to eA and ~(x) = y; A is symmetric if ~ E: eA 

implies that ~-1 is a composition of finitely many members of eA. 

We write Ao(x) for the vector subspace of TxM spanned by the 

set {a(O,x) : a E: A, (O,x) E: domain(a)}. 

PROPOSITION 2.1. If A is a collection of arrows on M, then 

there exists a symmetric homogeneous collection of arrows B such 

that the accessible sets of A and B are the same and A(x) = B(x) - B (x) o 

for every x E: M 

LEMMA 2.2. Let A# be the ~ollection of all arrows which can 

be written as at +s 
0 <a s) -lor as- t 

0 (as) -1 for some a E: A and s E: R. 

Then 

(a) IIlA# ... lilA; 

(b) A# is symmetric; 

(c) A: (x) 
# = A (x) = A(x) for every x E: M; 

(d) the accessible sets of A' and A are the same; and 

(e) if A is homogeneous, then ·l so ~s • 
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PROOF. Note that the assertion (d) follows at once from (a) 

and that (e) follows from (a) and (c). t t+s s -1 Let b = a 0 (a) and 

If x lies in the domain of bt , then it lies 

in the domain of b
T 

for every T between 0 and t, and so b (and 

similarly c) is indeed an arrow. Taking s = 0 (t - s) we get 

t t s s -1 # -1· # 
b = a (c = (a) ) and so SAc SA c iliA and (SA) c SA , proving 

the assertions (a) and (b). Finally the equations 

and 

, , s -1 
b(t,x) • a(t+s, (a) .x), 

• • s -1 c(t,x) • -a(l-t, (a) .x) 

'( s) a'(s,x) b O,a.x =< 

show that # # ) A (x) c A(x) c A (x), which proves the assertion (c • o 

LEMMA 2.3. Let A* be the collection of all the arrows a on M 

such that: 

(i) the domain of a is of the form J x V, where J is an open 

interval in R and V is an open subset of M. 

(ii) 
# there exists b € A and ~ € iliA such that, for every t 

in J and x in V, 

t -1 a (t ,x) .. ~ 0 b 0 tjl • x • 

Then 

(a) every tjl € lliA* is a restriction of some 10~1 diffeomorphism 

in '¥A; 

(b) the accessible sets of A* and A are the same; 

(c) A*(x)· A(x) for every x € M; and 

(d) A* is a homogeneous set of arrows. 
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PROOF. Note that the assertion (d) follows at once from (a) 

and (c). Since (a) t (b) and the inclusion Air (x) c A(x) are obvious, 

it remains to show that A(x) c Air (x). Let w E A(y), 4> E \fA and 

4>(y) = x. By Lemma 2.2c w = b(O,y) for some b E A#. There exists 

t t -1 I I 6 > 0 such that a = 4>b 4> is defined for t < 6 on a sufficiently 

small neighbourhood of x. Hence 4>*(Y).w = ~(O,x) E A*(x) , Q.E.D. 

Proposition 2.1 is now proved by taking B = (A*)#. 

§3. THE PROOF OF THEOREMS 1 AND 2 

LEMMA 3.1 Let L be a subset of M. For every x E L, let 

L(x) be a vector subspace of T M. 
x 

ASSume that dim L(x) = k for 

every x ELand that, for every x E L, there exists a local chart 

W of M such that 

(a) the domain of W is U x W, where U and Ware open neighbourhoods 

of the origin in Rk and Rn- k respectively; 

(b) IjJ (0,0) • x; 

(e) L n W(U x W) = W(U x 1), where R. .. {s E W W(O,s) E L}; and 

(d) D.IjJ(t,s) E L(Ht,s» for 1 ~ i~k and all (t,s) E W-l(L). 
1 

Then there exists a differentiable structure a on L with the following 

properties: 
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(L,a) is an immersed submanifold of M and T (L,a) - L(x) . x 

for every x E L; 

(ii) If f : N + M is a differentiable mapping of manifolds 

such that feN) eLand f*(~) .T~N c L(f(t» for every 

tEN, then f : N + (L,a) is differentiable. 

(iii) Every connected component of (L,a) i. a leaf of M. 

REMARKS. (1) It follows from (ii) that a is the unique 

differentiable structure on L which satisfies the condition (i). 

(2) Apart from (iii), the assertions of this lemma do ~ depend 

on the paracompactness of M. 

The proof of Lemma 3.1 consists in piecing together some *) of the 

arguments in [1] and we give it here merely for the sake of 

completeness. 

PROOF • A function 1jJ : U x W + M is said to be a privileged 

.£h!.!! of M if it is a local chart of M and if it satisfies .the 

conditions (a), (c) and (d) above. 

(A) Let 1jJ : U x W + M be a privileged chart of M and let 

f : N ~ M be a differentiable mapping of a connected manifold N 

into M such that f(N)cLn1/l(UxW) and, for every ~ENJ f*(t).T~NCL(f(E;». 

Then there exists a constant WE W such that feN) c ljI(U x {w}). 

*) 
See pp. 91-95; it ~s assumed there that L - M, and the assertion (ii) 

is not formulated. 
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To prove this, let p : Rk x Rn .. k .. Rn- k be the proj ection on 

the second coordinate and let g • p 0 lP- 1 • As golj/.(t,s). s, 

we have Di (g ° lP) (t,s) • g*(1P<t,s» .DilP(tts) • 0 for 1 $ is; k. 

If wet,s) EL, then D1w(tt s ), D2lP(t,s) •••• ,Dkw(t,s) span L(lP(t,s», 

which proves that g* (x) • L (x) • 0 for every x E L n lP (U x W) • Hence 

(g ° f)*(~) • 0 for every E; E N. As N is connected, go f is constant 

on N, Q.E.D. 

(B) Let f be the collection of all the functions of the form 

lj/w • lj/(-,w) : Uw .. L, where lP is some privileged chart of M with 

Let f : N .. M be a 

differentiable mapping of a manifold N into M such that f (N) c L 

and t for evtary E; ( N, f*(E;).TE;N cL(f(C». If lP E '1', then w 

G • f- 1 (lPw(U
lP
» is an open subset of Nt and (lPw)-lo f : G .. Rk ts 

a differentiable function. 

Indeed, it follows immediately from (A) that G is the union 

of some of the connected components of the open set f-1(lP(U
lP 

x W
lP
», 

and it is obvious that (lP )-1 0 f - lP- 1 
0 fl. w G 

(C) '¥ is an atlas of a differentiable structure a on L which 

satisfies the assertions (i) and (ii). 

For it follows immediately from (B) that the charts of '¥ 

are mutually compatible; as their ranges cover the whole of L, 

'¥ is an atlas of a differentiable structure at which obviously 

satisfies the assertion (i). The assertion (ii) follows from 

(B) • 
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(D) By paracompactness of M, every connected component L of 
o 

(Lta) i •• eparable in the topology T(a) of the differentiable structure 

o. Let 1jI U )( W + M be a privileged chart of M and let 

t • {s £ W ljI(O,s) E L }. 
o 0 

Since {ljI(U,s) s (1 } is a collection o 

of mutually disjoint T (0) -open subsets of L , ljI({O})( 1 ) is an 
o 0 

isolated subset of L • o Hence 10 is countable and, therefore, 

completely disconnected subset of W. It follows th4lt Ux {O} is 

a connected component of U)( 1 in the product topology of U)( W, 
o 

and 80 l/I(U)( {O}) is a cQnnected componen t of 1jI (U)( 1 ) • ljI(U)( W) n L 
o 0 

in the induced topqlogy T(L ,M). 
o Since U can be taken arbitrarily 

sm$llt we have Pfoved that every point of L haa a fundamental o ; 

s),stem of or (~)-neiihbourhood8 that are T (Lo·,M)-eonnected componentl 

of t(L ,M)-neighbourhoods. 
C> .. 

It follows trivially from the definitions and the above 

assertion that L is a leaf of M, which concludes the proof of the o 

lemma. 

PROOF OF THEOREM 1. By Proposition 2.1, we may assume that A 

is homogeneous and that A(x) = A (x) for every x E M. 
o 

Let L be an accessible set of A and let x E L. Choose 

a. E A, 1 S; i S; k, such that ~. (O,x) form a basis of A(x) and let 
1 1 

_ tl 0 t2 0 tk( ) . ~(tl' t2, ... ,tk ,y) - al a2 ... o~ y. Then ~ 1S a 
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differentiable function Rk x M + M and we may 88Sl1me that the domain 

of ~ is of the form U x V, where U is an open neilhbourhood of the 

orilin in Rk and V is a neilhbourhood of x in M. It is obvioUi 

that 

(i) for every t E U and y E V, t(t ,y) • y (mod A) and t(O,y) • y; 

(ii) • D. t(O,x) • a. (O,x) for lsi S k. 
1 1 

We claim that 

(iii) for every t E U, Y E V and i between land k, 

D.t(t,y) E A(t(t,y». 
1 

the result follows from the hOlllOleneity of A. 

Let now n - dim M and let Q be an (n·k)-dimensional submanifold 

of M such that x E Q and T M - T Q + A(x). x x Let f : W + Q be a local 

chart for Q such that f (0) • x and f (W) c V and let 1/1 

be defined by 1/I(t,s) • t{t,f(s». Since the rank of 1/1 at (0,0) 

is n, 1/1 is a local chart of M for sufficiently small U and W. 

It is easy to check that 1/1 satisfies the conditions of Lemma 3.1 

with L(y) • A(y) and that the condition (e) remains valid if L is 

replaced by an arbitrarx accessible set of A. 

Let 0 be the differentiable structure on L whose existence 

is asserted in Lemma 3.1 It remins to show that (L,o) is a 

connected immersed submanifold of M. Let u(t) • a(t,x), where 

a E A and x E L. Then u : R + M is differentiable, the ranle of 

u is contained in L and ~(t) E A(u(t» for every t in the domain 
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of u. By Lemma 3.1 (ii), the 'arrow-path' u : R + (L,a) is 

differentiable and it remains to note that any two points of 

L can be joined by a succession of such arrow-paths (traced 

forwards or backwards). 

LEMMA 3.2. Let - be an arbitrary equivalence relation on 

M and let A be the set of all arrows which preserve -. Then 

A is symmetric and homogeneous and A(x) • Ao(x) for every x in 

M. 

PROOF. 
# It is clear that A c A and A* c A. (See Lemmas 

2.2 and 2.3.) 

PP-OOF OF THEOREM 2. Consider + € Loc Diff (M) such that 

, respects -. Let x ( domain (+). Let L be the accessible set 

of A through x and let L' be the accessible set of A through ,(x). 

Let k • dim L and let a1 ,a2' ••• '~ be members of A such that 

~l'(O,x) form a basis of A(x). If b~ • +a~.-l, then b. ( A, 
111 

lSi:Sk. If y. f(t1't2 •••• 'tk)'. a~loa~20 ••• oa~k<x) and 

are sufficiently small, then +(y) • bfi 0 bf2 0 ••• 0 b:k<+(x» 

1 t·1 1 

and 

so +(y) £ L'. Since the rank of f : ak 
+ L is k, we have proved 

that there exist. a neighbourhood U of x in L .uch that 

HU) c L'. Since + : U + M it differentiable and L I is • leaf 

of H, it follows that. : U + L' is differentiable, Q.E.D. 
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§4 COROLLARIES OF THEOREMS 1 AND 2 

4.1 Let G be a subaroup of Diff(M). Two ela .. nts g and h of 

G are said to be G-isotopic if there exist. a differentiable mapping 

R)( M + M such that at ( G for evary t .: R, at • , for t s 0 a 

and at • h for t ~ 1. Thi, is an equivalence relation and the 

component G of the identity 'is a normal lubaroup of G. o 

THEOREM 3. (a) Let!·! (Go) be the partition of M into Go-orbits. 

Then! is a foliation with sinaularitiel. 

(b) G c Diff(Mtl) and every G-orbit consists of G··orbits 
o 

of constant dimension. 

(c) If GIGo is countable t then every G-orbit ad~ts a unique 

structure of a separable i.aersed submanifold of M. 

PROOF. Let A be the set of all differentiable mappings 

R)(M'" M such that at ( G for every t ( R and at • i~ for t S O. 

Then A is a symmetric set of arrows and the accessible sets of A 

are the orbits of G . 
o 

The assertion (b) follows at once from 

Theorem 2 if we take - to be the equivalence relation 

defined by the action of G and use the fact that G is normal. 
o 0 

The assertion (c) follows easily from (b) and the fact that every 

G -orbit is a leaf of M. 
o 

4.2 If ~ ( Loc Diff (M) and x belon,s to the domain of 't let 

y(x,~) denote the germ of ~ at x. Let e(x) • y(xti~) and let 

6 • A(M) be the groupoid of all germs of local diffeomorphisms of 

M. Let a : A ... M and w : A ... M be the projections onto the initial 

and final points respectivelYt so that a(y(xt~» • x and 
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Let r be a sub groupoid of 6. We say that g £ r and h £ r 

are r-isotopic if a(g) • a(h) and if there exists an open 

neighbourhood U of a(g) and a differentiable mapping a : R xU + M 

such that (i) y(a(g),a
t
) £ r for every t £ R, (ii) y(a(g),at ) _ g 

for t ~ 0 and (iii) y(a(g) ,at) .. h for t ~ 1. Let r {g £ r 
o 

is r-isotopic to e(a(g»}. Then ro is a subgroupoid of rand g 

and hare r-isotopic if and only if r g .. r h. 
o 0 

THEOREM 4. The assertions of Theorem 3 remain valid if we 

replace G by r, Go by r 0 and G c niff (M"V by r c Loc niff (M,!), 

-where ~ £ r if and only if y(x,~) £ r for every x in the domain of 

4.3 If X is a differentiable vectorfie1d on M, expX denotes the 

~ of X, so that t + exp X • (t ,x) is the integral curve of X 

passing through x at t .. O. If S is a set of vectorfie1ds on M 

g 

we put exp S = {exp X: XES}. It is clear that exp S is a symmetric 

set of arrows; the accessible sets of S are, by definition, the 

accessible sets of exp S. 

We write 6S, '¥S, S (x) and S (x) instead of 6exp S, '¥exp S, 

(exp S) (x) and (exp S) (x), so that S (x) is the vector subspace 

of T M spanned by {X(x) : XES}, and Sex) is spanned by all the x 

vectors of the form ~*(y).X(y), where ~ E '¥S, ~(y) = x and XES. 
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THEOREM 5. Let E = !(S) be a partition of M into the 

accessible sets of S. Then E is a foliation with singularities*) 

and T (M,F) = S(x) for every x in M. x "" 

COROLLARY. T (M,F) = S(x) for every x € M if and only if x "" 

exp S is a homogeneous set of arrows, that is if and only if 

(exp xt) *(x) .S(x) c S(y) whenever X € Sand expX(t,x) - y. 

§5. LIE BRACKETS AND SUFFICIENT CONDITIONS OF HOMOGENEITY 

LEMMA 5.1. Assume that E is a partition of M into immersed 

submanifolds and let S be the collection of all vectorfields on 

M that leave! invariant. Then 

(a) X € S if and only if X(x) € T (M,F) for every x € M; 
x "" 

(b) If X and Y belong to S, then [X,Y](x) € Tx(M,!) for every 

X E M; and so 

(c) if q = m or w, then S is closed under formation of the Lie 

bracket. 

*) See also [10], where it is proved that the accessible sets of 

S are immersed submanifolds of M (but not that they fit together 

to form a foliation with singularities). The 'D-invariance' in 

[10] is equiITalent to our 'holOOgeneity'. 
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PROOF. The assertion (a) depends on the existence and uniqueness 

theorem for ordinary differential equations (see [8], Lemma 2.4) 

and (b) follows from the fact that (M,!) is an immersed submanifold 

of M (see [4], (17.14.3.5». 

COROLLARY 5. 1. Let ~ be an arbitrary equivalence relation 

on M and let S be the set of all vectorfields on M that leave 

the equivalence classes of ~ invariant. If q = 00 or w, then 

S is closed under formation of the Lie bracket. 

PROOF. If A is the collection of all the arrows on M that 

preserve ~ and! = ! (A), then clearly exp SeA and X e: S if and 

only if X leaves E invariant. 
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THEOREM 6. Let q 2: 2 and let S be a set of Cl-vectorfields 

on M. The following assertions ar. equivalent: 

(i) exp S is homogeneous. 

(U) Given XES and x EM, there exists e: > 0, a finite set 

. *) {XI,X2,""X } c S and cont~nuous functions p A.. ; ] -e: , e: [ ~ R 
~J 

(l ~ i, j ~ p) such that (a) the vectors Xl (x), X2(X), ••. ,X (x) span 
p 

Sex) , (b) for every t E ]-e:,e:[ and j between 1 and p 

[X,X.](u(t» = ! A •• (t)X.(u{t», 
J i-l ~J ~ 

where u(t) II: exp X • (t ,x) and (c) X.(u{t» span S(u(t». 
~ 

PROOF. The implication (i) ~ (U) follows easily from Theorem 

5 and Lemma 5.1. Assume (ii), and let t{t) • (expXt)*(x). 

If Y - u{t), we must show that t(t).S(x) = S{y). By a compactness 

argument, it is sufficient to prove this for It I < e:. Put 

V. (t) - t(t)-l.x. (u(t». 
J J 

for example, the formula (17.14.3.2) of [4]) 

~.(t) • t(t)~l.[X,X.](u(t» = t(t)-l f A .. (t)X.(u(t» = f A .. (t)Vi{t). 
j J . 1 ~J ~ . 1 ~J 

~. ~-

Let H : T M ~ R be a linear functional and let h. (t) = <' H, V. (t) > and x ~ ~ 

h(t) <= (hI (t) ,hz (t), •.. ,h (t» E RP • 
P 

Then h(t) ~ A(t)h(t), where 

A{t) is the p x p matrix with entries A ... 
~J 

Thus h(t) = 0 if and 

only if h(O) = 0, and it follows that the vectors Vl(t),V2(t), ... ,Vp(t) 

span the same subspace of TxM as the vectors Vl(0),V2(0), •.• ,Vp (0). 

Since V~(O) ~ X.(x) span Sex) and V.(t) = t(t)-l.V.(u(t» span ... ~ ~ ~ 

*) It ~s sufficient to assume that A .. are Lebesgue integrable. 
~J 
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Let RX denote the ring of germs at x of real-valued Cq-functiona 

and let SX denote the module over RX generated by the vectorfields 

in S. Following Lobry [6], we say that S is locally of finite tYpe 

if, for every x € M, there exists a finite set Fe S such that 

(i) F(x) • Sex) and (H) [S,F]x c FX. Consider the following conditions 

on S (where we assume for simplicity that q = 00 or w): 

(H) exp S is a homogeneous set of arrows; 

(1) S is locally of finite type; 

(2) S is closed under formation of the Lie bracket and, 

for every x € M, SX is a finitely generated module over 

RX' , 

(3) S is closed under formation of the Lie bracket and 

dim S (x) is locally constant on Mj 

(4) S is closed under formation of the Lie bracket, q = w, and 

the vectorfie1ds in S are defined ever~~ere on M. 

(5) dim S (x) :s 1 for every x € M. 

(6) S is closed under formation of the Lie bracket. 

(7) S is locally of finite type and q r w. 
~ 

Here S is the set 

of all COO vectorfields X such that X(y) € S(y) for ever 

Y € domain X. 

PROPOSITION 5.2. The conditions (3), (4), (5) and (7) imply (H). 

The assertions (5)~(H) and (3)~(H) are easily deduced from 

Theorem 6 and are left to the reader. The p~oof of (4)~(H) is given 
I 
I 

in Naganots paper [7]; a simpler proof (of a slightly stronger result) using 

Theorem 6 is given in [12]. 

author is given in [12]. 

The only proof of (7)~(H) known to the 



It is claimed in [6] (and also in [10] and [11]) that (l)=}(H), 

but this assertion is false [12]. 

REMARKS. (a) The examples below show that (6)~(H), (H)~(l) 

and «5) and (6»=/9(2). 

(b) Note that (3)==>(H) in combination with Theorem 5 gives 

the classical Frobenius theorem and (4)~(H) together with Theorem 5 

give Nagano's theorem on integrability of real-analytic distributions 

with singularities [7]. Thus Theorems 5 and 6 and Proposition 5.2 

taken together can be regarded as a generalization of the Frobenius 

theorem. 

COROLLARY 5.2. Let q = ~ and let [S] denote the smallest set of 

vectorfields on M which contains S and is closed under formation of 

the Lie bracket. 

for every x € L. 

for every x € L. 

Let L be an accessible set of S, Then [S](x) c T L x 

If dim[S] (x) is constant on L, then [S](x) = TxL 

PROOF. The first part follows at once from Lemma 5.1. 

Let dim[S](x) be constant on L. Without loss of generality, we 

may assume that L = M. Since S c [S], L is an accessible set of 

[S]. By Proposition 5.2, [S]I L is homogeneous, and so the assertion 

follows from the Corollary of Theorem 5. 
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EXAMPLE 5. 3. Let ~ : R ~ R be defined by ~(x) ~ a for x s a 
-l/x 3 

and ~(x) - e for x > O. Let M • R and let S ~ {X,Y}, where 

a a a a x m ax and Y - ax + ~(x-l) ay + ~(-l-x) az' It is easy to check 

that L • R3 and that dim [Sl(x,y,z) = dim S(x,y,z) ~ 1 if 

-1 s x s 1 and 2 otherwise. In particular, exp[S] is ~ homogeneous. 

EXAMPLE 5.4. Let M = R2 and let S consist of the vectorfield 

a xo ax and all the vectorfields of the form ~(y)e ay' where ~ : R + R 

is a differentiable function such that ~(x) • P(1/x).exp{-1/x2) 

for some real polynomial P and all x ~ O. If E is the partition 

of R2 into the accessible sets of S, then clearly E - {upper half-plane, 

x-axis, lower half-plane} and Sex) D T (R2,F) for every x € R2. By the x ~ 

Corolla~ of Theorem 5, exp S is homogeneous. We claim that S is not 

locally of finite type. 

Indeed, assume that F = {Xl,X2,""X } satisfies the assumptions p 

(i) and (ii) of Lobry's condition at the origin of R2. It follows 

o 0 
from (i) that ~ € {Xl ,X2,""X }, say ~ = Xl' 

aX p ax 

x 0 Let X. (x,y) = ~.(y)e ~. 
1 1 oy 

X 0 
2:5 is p, and let X(x,y) = <p(y)e ay € S. By (ii), 

x 0 0 x 0 
~{y)e oy = [ax' ~(y)e ayl = 

for x and y sufficiently near the origin. Comparing the coefficients 

at :y and setting x = 0, we see that $(Y) = I a.{y)~.{y). There 
a i:::a2 1 1 

exists an integer k > a such that, for 2sisp, ~.(Y).l.exp(l/y2) 
1 

is continuous at y = 0, and so ~(y).yk.exp(1/y2) is also continuous. 

Setting ~(y) ~ (1/y)k+l. exp (_1/y2) for y ~ 0, we arrive at a 

contradiction. 
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EXAMPLE 5.5. Let M - R and let S be the set of all vectorfields 

a 
of the form ~(x)ax' where ~ is as in Example 5.4. Then S satisfies 

the conditions (5) and (6) of Proposition 5.2, but the condition (2) 

breaks down at the origin. 

§ 6. MULTIARROWS. A DIRECf PROOF OF CHOW'S THEOREM 

6.1. Throughout this section, we assume that q = ~ or wand let [5] 

denote the smallest set of vectorfields on M which contains Sand 

is closed under formation of the Lie bracket. The fo 11 owing 

theorem follows from the results of Chow [2] and is usually referred 

to under his name ([5], [~], [8]). 

THEOREM (Chow). Let L be an accessible set of 5 and let 

X E L. If dim[S] (x) = dim M, then L is an open sUbset of M. 

PROOF. This follows immediately from Theorem 5 and Lemma 

5.1. 

In this section we given an alternative proof of Chow's theorem. 

which is based on the concept of a multiarrow (see 6.3). 

6.2. Let f : Rk ~ Rn be a smooth function defined in a neighbourhood 

f h .. f Rk o t e or~g~n 0 • Let x E Rn and assume that f (t) = x whenever 

at least one component of t - (tl't2 •..•• tk) is zero. Clearly. 

DYl D~2 .•• D:k f(O,O, ••. ,O) = ° whenever some Pi ~ 0. In 

particular, 
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(a) 

where D • DID2 ••• Dk' w(~) is a symmetric (k+1)-linear mapping 

(Rk)k+1 + Rn which depends differentiab1y on t, and t(k+1) • 

"" k+l • (t,t, ... ,t) £ (R) ([3], (8.14.3), (8.12.7». If 

, : an~ Rm is a smooth function defined in a neighbourhood of 

x, it is easily checked that 

(b) D(cp 0 f) (0) • cp* (x) • Of (0) • 

In particular, Df(O) is a well-defined vector in T M if Rn above 
x 

is replaced by a smooth manifold M. 

Note also that (t2,t3""'~) + Dlf(0,t2,t3, ••• ,tk) is a 

smooth function from Rk- 1 into the vector space T M and that 
x 

Df(O) is its (k_l)st mixed partial derivative. As 

Dlf(0,t2,t3, ••. ,tk ) ~ 0 whenever one of the components of (t2,t3, ••• t k) 

is zero, the above arguments show that 

D1f(0,t2,t3'''' ,tk) ... t2 t 3 ... t kDf (0) + ;:;(t).t(k), 

-where t • (t2, t 3 , • .. ,tk) . 

D1f(0,t) II: t2t3" .tka(t), 

where aCt) + Df(O) as t + o. 

6.3 A slOOoth function a : Rk x M + M is a mu1tiarrow of order k if 

(a) a is defined on an open neighbourhood of 0 x M; 

(b) for every t in Rk, at - a(t,-) is a diffeomorphism 

of an open subset of M onto an open subset of M; 

(c) a(t,x) = x whenever (t,x) belongs to the domain of 

a and at least one component of t • (tl ,t2"" ,tk) 

is zero. 



... 23 ... 

If a(t,x) .. y, lsisk, we write D.a(t,x) E: T M for the partial 
1. y 

derivative of the function a("',x) : ak 
+ M and a*(t,x) : T M + T M 

x y 

for the differential of at - a(t,-) : M + M. It follows from (6.2) 

that Da(O,x) • DID2 •.• Dka(O,o, .•• ,o,x) is a well"'defined element 

... k"'l 
of TxM and that, for t = (t2,t3, ••• ,tk) E R , t2t3 ••• tk ~ 0, 

(d) Dla(O,t,x) D t2t3" .tkX(t,x), lim X(t,x) • Da(O,x). 
t+O 

We write ~ for the set of all k-mul tiarrows on M and put 

A-U ~. If a E A, Da denotes the smooth vectorfield 
k-l 

M + TM : x-+ Da(O,x). The bracket of a E: ~ and b E: A1 is 

k+l-multiarrow [a,b] defined by 

(e) 

LEMMA 6 .3. 

D[a,b] - [Da,Db]. 

PROOF. t "'1 _ (bs)-l(x). Let f(t,x) • ~) (x) and g(a,x) 

X E M and the local coordinates, we assume that M • an. Let 

~(t,s) • [a,b](t,s,x) = g(s,f(t,b(8,a(t,x»», 80 that 

D[a,b](x) = Dt~s~(O,O). 

By (6.2.(b», 

If 1/1 (t) 

D ~(t,O) • D g(O,f(t,a(t,x» + 
8 8 

+ g*(O,f(t,a(t,x».f*(t,a(t,x».D8b(0,a(t,x» = 

'" D g(O,x) + f*(t,a(t,x».Db(a(t,x». 
s 

f*(t,a(t,x» and t = (t2, ••. ,tk), then 

D11/l(O,t) - Dlf*(O,t,x) + f**(O,t,x).Dla(O,t,x) 

'" D1f*(O,t,x) 

the 

Fixing 
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because f*(O,t,x) ~ id and so f**(O,t,x) • 0. Hence ~(O) • Df*(O,x) 

and 

DtDS+(O,O) • (Df)*(O,x).Db(x) + f*(O,x)(Db)*(x).Da(x) • 

• (Db)*(x).Da(x) + (Df)*(O,x).Db(x). 

Differentiating the equation f(t,a(t,x» • x, we immediately see 

that Df(O,x) • -Da(x) , and so (cf. [4J, 17.14.3.2) 

DtDs+(O,O) • (Db)*(x).Da(x) • (Da)*(x)Db(x) 

• [Da,Db ](x), 

Q. E. D. 

6.4 Let - be an equivalence relation on H. We lay that a 

multiarrow a preserves - if a(t,x) - x for all (t,x) in the domain 

-of a. Let A denote the set of all the multiarrowl on M which 

preserve -. 

- -LEMMA 6.4.1. Let V • DA be the collection of all the 

vectorfields of the form Da, a £ I.'. Then V is closed under 

formation of the Lie bracket. 

PROOF. This follows at once from Lemma 6.3 

LEMMA 6.4.2. If dimV(x) • d, then there exi.ts an immer.ion 

Rd + H such that 

(a) ~ is defined on a neilhbourhood of 0 £ Rd and ~(O) • x. 

(b) ~(t) - x for every t in the domain ,. 

PROOF. 

are linearly independent. It follows from (6.3.(d» that there 
k'-l 

exilt ~i £ R 1 such that the vector. Dlai(O'~i'X) are al.o linearly 

independent. Consider the arrowl bi defined by b~ • ai(t,Ai ,-) 
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It it clear that 

~ .atisfies the condition. <a> and <b) of the 1 .... and that 

D.~(O) • Dla.(O,A.,x), 80 that, re.trict. to an imaar.ion on a 
1 1 1 

sufficiently small neighbourhood of the origin. 

PROOF OF CHOW'S THEOREM. Let - be the relation 

x·y(mod expS). It is clear that S cl and .0, by LelllD8 6.4.1, 

[S) c v. Hence dimV(x) - dim M and Lemma 6.4.2 implie8 that there 

i. an open set U in M 8uch that x ( U c L. If y ( L, then 

y • • (x) for some ~ E "S. Let W be a neighbourhood of x contained 

in Un (domain(~». Then y E ~(W) c L, which proves the assertion of 

the Theorem. 



PART TWO 

Integrability of singular distributions on 

infinite-dimensional manifolds 
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INTRODUCTION 

Let M be a Cq Banach manifold, where 2 ~ q ~ w. To simplify 

the notation, we assume that M is modelled on a single Banach 

space E. The word differentiable refers to a fixed class Cr , 

where 1 ~ r ~ q - 1 and we take co = co - 1 and w = w - 1. 

A distribution B on M is a family (Bx : x € M), where each Bx 

is a topological direct summand of the tangent space T M. B is 
x 

regular if it defines a differentiable subbund1e of the tangent 

bundle TM, otherwise B is singular. If B is singular, then B 
x 

need not be isomorphic to B even if x and y lie in the same y 

connected component of M. 

By an immersion we always mean a split immersion, so that a 

differentiable function f : N ~ M is an immersion if and only if, 

for every x in N, the differential f*(x) is an isomorphism of T N x 

onto a topological direct summand of Tf(x)M. 

An immersed submanifold of M is a subset L of M together with 

a differentiable structure a on L such that the inclusion mapping 

of L into M is an immersion. We identify the tangent space Tx(L,a) 

at x € L with the corresponding subspace of T M. x 
L is an 

integral manifold of the distribution B if Tx(L,a) - Bx for every 

X€ L. 

We say that B is an integrable distribution if there exists 

a differentiable structure a on M such that (M,a) is an integral 

manifold of B. 

(0.1) 

(0.2) 

(0.3) 
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In §§4 and 5 we define the differentiability of (possibly 

singular) distributions and show that it can bendescribed in terms 

of vector-valued one-forms on M. 

Our main results are collected in §7, where we show that a 

differentiable (possibly singular) distribution is integrable if 

and only if it is homogeneous (0.6) and give some other necessary 

and sufficient conditions of integrability. We also prove that 

the differentiable structure a which makes M into an integral 

manifold of B is unique, that every integral manifold of B is an 

open submanifold of (H,o) and that a is a foliCith\?n with singularities 

as defined in §2. 

A differentiable vectorfield X, defined on an open subset 

of M, is said to lie in B of X(x) € B for every x in the domain 
x 

of X. We say that a vectorfield X (which does ~ necessarily 

lie in B) res2ects Bif 

(Xt )* (x).B = B x y 

whenever t X .x = y. B is said to be homo&eneous if every vector-

field in B respects B. 

In §8 we give some necessary and sufficient conditions that 

X respect B, formulated in terms of Lie brackets, and deduce the 

corresponding conditions for the homogeneity (and so integrability) 

of B, which generalise Theorem 6 of Part One. In particular, we 

recover the standard Frobenius theorem (SFT) on the integrability 

of regular distributions, as stated, for example, in [13] or [16]. 

(0.4) 

(0.5) 

(0.6) 
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We also prove that a real analytic (possibly singular) distribution 

is integrable if and only if it is involutive and locally everywhere 

defined. 

Finally, in §9, we introduce the concept of a neat leaf and 

discuss a related unsolved problem. 

Just as is the case with SFT, the proofs of our results are 

fairly simple and have a 'coordinate free', rather than a true 

'functional-analytic' flavour. I hope that they will pave the 

way for some future 'hard' theorems. 
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§ 1. TOPOLOGICAL DIRECT SUMMANDS 

1.1 Given two topological vector spaces E and F (over R), L(E,F) 

denotes the vector space of all continuous linear mappings E ~ F. 

If E and Fare normed (or normab1e), we shall always think of L(E,F) 

as a normed (normable) space with the usual 'sup over the unit ball 

of E' norm (or the corresponding topology). LIS(E,F) denotes the 

subspace of L(E,F) consisting of the top1inear isomorphisms, and 

we write End(E) and GL(E) instead of L(E,E) and LIS(E,E). 

Recall that a vector subspace F of a Hausdorff topological 

vector space E is a direct summand of E if it satisfies one of the 

following equivalent conditions: 

(1) there exists a topological vector space G and a top linear 

isomorphism a : E ~ F x G such that 

id = po a 0 i 
F ' 

where i : F ~ E is the inclusion and p : F x G ~ F is the coordinate 

projection; 

(2) there exists a subspace G of E such that the mapping F x G ~ E: 

(x,y) ~ x + y is a top linear isomorphism; 

(3) there exists a continuous linear projection P € End(E) such 

that F • Ker P; 

(4) there exists a continuous linear projection Q € End(E) 

such that F .. 1m Q. 
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It is easy to check that a closed, finite cOdimensiona1 subspace 

of E is always a direct summand. 

If E is locally convex, then, by the Hahn-Banach theorem, every 

finite-dimensional subspace of E is a direct summand. 

If E is a Fr'chet space, then, by the closed graph theorem, F 

is a direct summand of E if and only if 

(5) F is closed and there exists a closed subspace G of E 

such that F n G = 0 and F + G = E. 

1.2 Let GL(EIF) denote the subset of GL(E) consisting of those 

top1inear automorphisms of E which map F into itself, and let 

GL (ElF) consist of those members of GL(EIF) that restrict to an 
o 

automorphism of F. 

PROPOSITION 1.2. Let E be a Banach space and let F be a 

direct summand of E. Then GLo(EIF) is open and closed in GL(EIF). 

If F is finite dimensional or finite codimensiona1, then GLo(EIF) 

coincides with GL(EIF). 

PROOF. Let Fl = F and let F2 be some topological complement 

of F. Let i k be the inclusion mapping Fk + E and let Pi denote 

the projection of E onto Fi along F2, and P2 the complementary 

projection of E onto F2- An operator a in End(E) is represented 

by a matrix 
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where ~1 = Pkai1 belongs to L(F 1,Fk)· It is clear that GLo(EIF) 

is open in GL(EIF), being an inverse image of the open subset 

GL(F) of End(F) under the continuous mapping a ~ all' We prove 

that GL (ElF) is closed in GL(EIF) by showing that it is the inverse 
o 

image of zero under the mapping 

To check this, let 

and 

From ab = ba = idE we obtain 
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If b21 - 0, then allb ll - bllall ... idF1 , and a belongs to 

GLo(EIF). If a € GLo(EIF), then all is surjective, and so 

b21all ... ° implies b21 ~ 0. 

If Fl is finite co-dimensional, then F2 is finite-dimensional 

and a22b22 = id implies that a22 is injective. F2 

we again obtain b21 = ° and so a € GL (ElF). o 

§2. BOXES, SLICES AND FOLIATIONS 

If E is a normed space, we put EE • {x € E : Ilxl < El, so that 

El is the open unit ball of E. A Cr box of the manifold M is a 

triple ($,U,W), where U and Ware Banach spaces and $ is a Cr 

diffeomorphism of Ul x WI onto an open subset of M. By a slice 

of ($,U,W) we mean any of the mappings 

$(-,w) : Ul ~ M, w € WI. 

A differentiable structure ° on the underlying set of M is 

a Cr foliation of M if, given x € M, there exists a C
r 

box 

($,U,W) of M such that 

(1) $(0,0)'" x; 

(2) $(-,0) Ul ~ M is a chart of 0; and 

(3) every slice of ($,U,W) is a differentiable function of 

Ul into (M,o). 
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(Here and below, (M,o) denotes the underlying set of M equipped 

with the differentiable structure 0.) A foliation 0 is regular 

if, given x in M, there exists a C
r 

box (~,U,W) of M such that 

1jI(O,O) = x and 

(4) every slice of ($,U,W) is a chart of o. 

A foliation 0 which fails to be regular is said to be singular. 

More generally, let ($,U,W) be a differentiable box of M and 

let N be an arbitrary immersed submanifold of M. We say that 

(~,U,W) cuts N in open slices if 

(a) N = ~(_,w)-l(N) is an open subset of U for every w E W 
W 

and 

(b) $(-,w) : N ~ N is differentiable for every w E W1 • w 

We say that the box ($,U,W) is parallel to N if the tangent spaces 

to the slices are contained in the tangent spaces of N at every 

point of intersection, that is if 

whenever $(u,w) E N. 

PROPOSITION 2.1. A box of M cuts an immersed submanifold N 

of M in open slices if and only if it is parallel to it. 

PROOF. Assume that ($,U,W) is parallel to N and let H be 

a neighbourhood of h It is sufficient to show 

that ~ (~+ u ,;) E H for u in some neighbourhood UE of the origin 

in U, for this implies that N- is an open subset of U and that 
w 



N- ~ N is continuous. w 
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The differentiability of this 

function then follows from the fact that W(-,;) : U1 ~ M is 

differentiable and N is an immersed submanifo1d of M. 

Taking a suitable local chart, we may identify a neighbourhood 

of h in M with an open subset n of E and assume that h is the 

origin of E and that H is the open unit ball FI of some direct 

summand F of E. 

We may also assume that (u,;) is the origin of U x W and that 

w(u,w) e: n for all (u,w) in UI x WI. Let 

a .,. DW(O,O) E LIS(U x W,E). 

Since (W,U,W) is parallel to N, we have 

(1) DIW(u,w).U c F whenever W(u,w) E H, and in particular 

where jw is the inclusion W ~ U x W : w ~ (O,w) and PW 1.S the 

coordinate projection. 

Let now C be a complement of F in E, PC E End(E) the projection 

onto C along F and PF E End(E) the complementary projection onto 

F. Put 

and 

nF = pwa-IpFajw E End(W). 

Using (2), it is easily checked that 
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Hence wG and wF are complementary projections and W is the direct 

sum of 

v - wFW and Z ... wGW. 

Moreover, it is easy to show that 

(3) 

where jz is the inclusion Z -+ U x W: z -+ (O,z) and PG is now 

considered as a map E -+ G. 

Let now 

e UxVxZ-+G 

be defined by 

e(u,v,z) E PG~(u,v+z). 

Then 

(4) e(u,v,z) - 0 if and only if ~(u,v+z) € H, and so, by (1), 

(5) e(u,v,z) - 0 implies Dle(u,v,z) - o. 

Since 

(6) D3e(O,O,0) - b € LIS(Z,G) , if follows from the implicit/ 

function theorem ([3], 10.2.1) that there exists E > 0, ~ > 0, and 

a differentiable function 

~ : UE x VE -+ Z~ 

such that, for every (u,v,z) in UExVExZ~, 

(7) D3e(U,V,z) € LIS(Z,G) 

and 

(8) e(u,v,z) - 0 if and only if z • ~(u,v). 

Thus e(u,v,~(u,v» - 0 for all (u,v) in UE x VE• Differentiat ing 

by u, we obtain 
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and so, by (5), (7) and (8), 

D1Hu,v) ° 
for every (u,v) in Ue: x Ve:. Hence 

Hu,v) = <j>{o,v) , 

and it follows from (8) and (4) that 

1/J(u,v+~(O,v» E H 

for every (u,v) in Ue: xVe:. Since ~(O,O) = 0, we have 

1/J(u,O) E H 

e: for every u in V , Q.E.D. 

REMARKS. 1) A shorter proof, based on the existence theorem 

for ordinary differential equations, can be given if 1/J and N are 

at least of the order C2 , or if N is finite-dimensional. If 1/J 

or N are of order Ci , then the right-hand sides of the corresponding 

differential equations are generally only continuous, and if N 

is infinite-dimensional, then the existence theorem no longer applies. 

2) A cautionary example against relaxing the 

assumptions of Proposition 2.1 is given by M = R2, N = RxO, and 

1/J(u,w) = (u,(u-w)3) (see Eig. 1). 



- 37 -

Figure 1 

§3. C1 SUBMANIFOLDS AND FLOWS 

PROPOSITION 3.1. Let N be a C1 immersed submanifold of M 

and let X be a C1 vectorfield on M such that X(x) E T N for every x 

x in N. Let 

6. - {(t,x) E ~xN xt.x E Nand XS.X E N for all s between 

o and t} . 

Then 6. is open in R x N and the func don 

t 
6. ~ N : (t,x) ~ X .x 

is differentiable. 
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REMARK. We cannot use the usual existence, uniqueness and 

'dependence on initial conditions' theorems because the 'restriction' 

of X to N is generally only a CO vectorfie1d. The proof is similar 

to the proof of Proposition 2.1 and is given here only for the 

sake of completeness. 

LEMMA 3.2. Assume that a C1 function ~ R x M ... M satisfies 

the following properties: 

(i) the domain of ~ is an open neighbourhood of 0 x M and 

~(O,x) • x for every x € M; 

(ii) Dl~(t,x) € TyN whenever ~(t,x) = y € N. 

If x € N, then there exists a neighbourhood H of x in N and £ > 0 

such that 

(a) Ht ,y) € N for every (t ,y) € R£ x H and 

(b) ~: R£ x H ... N is differentiable. 

PROOF. Using a suitable chart to identify a neighbourhood 

of x in M with an open subset n of E, we may assume that x is the 

origin of E and that there exist two complementary closed subspaces 

, and G of E such that n - Fl + Gl and Fl is a neighbourhood of 

x in N. 

Let PF be the projection of E onto F along G and let PG be 

the complementarY projection of E onto G. Since ~(t,y) € Fl implies 

Ht ,y) • PFHt,y) and PF 0 ~ is a differentiable function into F, 

it is sufficien to find £ > 0 such that ~(t,y) € Fl for every 
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If h : RxFxG is defined by h(t,t,n) - PGHt,t+n), then, by (ii), 

(1) D1h(t,t,n) - ° whenever h(t,t,n)" 0. 

Since 

(2) D3h (0,t,n)" PG 0 D2HO,t+n) 0 iG .. PG 0 iG .. idG' (where iG 

is the inclusion G ~ E : n ~ (O,n» and since h(O,O,O) • 0, the 

inverse function theorem implies the existence of E > 0, 0 > ° and 

a C1 function e RE x FE ~ GO such that, for all (t,t,1\) £ RE x FE x GO, 

(3) D3h(t,t,n) £ GL(G) and 

(4) h(t,t,n)" ° is equivalent to n = e(t,t). 

Differentiating by t the equation h(t,t,e(t,t» • 0, and using 

(1) and (3), we deduce that 

£ £ and so, for (t,t) £ R x F , 

e (t, t) = e (0, t) • 

Hence e(t,t) .. PG~(O,t+e(t,t» = h(O,t,e(t,t» .. h(O,t,e(O,t» • 0, 

and therefore 

h(t,t,O) .. h(t,t,e(t,t» .. 0, 

which proves that Ht,t) £ F for every (t,t) £ R£ x FE, Q.E.D. 

PROOF OF PRoPOSITION 3.1. Let (t,x) £ ~ and assume, for example, 

that t ~ 0. Assume that ~ £ [O,t] has the following property: 

(5) there exists a neighbourhood H of x in Nand E > 0 such that 

.([~-£,~+£] XH) eN and ~ : [~-£,~+£] xH~N is differentiable. 

Using Lemma 3.2 and the equation ~(~+s,y) • ~(o,~(~+s-o,y», it is 

easy to show that the set I of those ~ £ [O,t] which satisfy (5) 
o 

is open and closed in I .. [O,t] and contains 0. Hence I • I, Q.E.D. o 
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§4. liIFFERENTIABLE DISTRIBUTIONS 

We say that the distribution B is differentiable at a point M x E , 

if there exists a differentiable section f of the bundle LIS(T M,TM) , 
x 

defined on a neighbourhood n of x, such that f (x) B - B and f (y) B c B 
x x x y 

for every y in n. We call such a section a ~ of B at x and we 

usually assume that f(x) = idT M' 
x 

A stem f can also be described as a vector-bundle isomorphism 

OxTM-+TM x 0 

which is the identity on {x} x TxM and maps n x Bx into Bin' The 

stem f is said to be regular if f(Y)B = B for every YEn. x y 

Loca11y*), f is represented by a differentiable function 

o -+ GL (E) • 

There is a weaker definition of differentiability, where we 

only ask for the function 

Ox T M -+ TM ; (y,v) -+ £(y).v 
x 

to be differentiable (implying that f is Cr - 1). Such f is called 

a weak stem of Band B is then said to be weakly differentiable 

at x. 

(4.1) The distribution B is differentiable (or weakly differentiable) 

it is differentiable (weakly differentiable) at every x in M. B is 

regular (0.1) if and only if it has a regular differentiable stem at 

every x E M. 

*) This word always signals that we are using some local chart to 

identify a neighbourhood of 4 poin~ in M with an open subset of E, 

tangent spaces with E, vectorfie1ds with their principal parts, ••• 
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If Bx is finite dimensional, then B is differentiable at x 

if and only if there exist differentiable vectorfields Xl,X2""'~ 

in B whose values at x form a basis of B . x 

To see this, assume that TM In = n x E, and put, 

where i. : E ~ R are continuous linear functionals such that 
1 

t. (X. (x» = 6 ... 
1 J 1J 

It is then sufficient to put 

f(y) = idE + g(y) - g(x) 

and to note that f(y) € GL(E) for y sufficiently near to x. 

If codimBx <~, then, as we show in the next section, the 

differentiability of B at x can be described in terms of finitely 

many real-valued differentiable one-forms. 

§5. DIFFERENTIABILITY AND VECTOR-VALUED ONE-FORMS 

We recall that, given a Banach space F, an F-valued one-form 

on M is a differentiable section of the vector bundle 

L(TM,F) = I J L(TxM,F). Locally, such a form is represented by 
~ 

a Cr-mappinS Q ~ L(E,F) (cf. [13], 8.3.1). 
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PROPOS IT ION' 5. 1 • A distribution B is differentiable at x 

if and only if there exists a Banach space F and F-valued differentiable 

one-form w, defined on a neighbourhood n of x, such that 

(a) 

(b) 

w(x) : T M + F is surjective and Kerw(x) 
x 

for every y in n, Ker w(y) c B • 
Y 

B . and x' 

PROOF. We may assume that TMln = n x E. Let G be a complement 

of B in E, and let j : G + E be the inclusion mapping. x By the 

closed graph theorem, w(x) 0 j E LIS(G,F), and, taking n sufficiently 

small, we may assume that w(y) oj E LIS(G,F) for every YEn. Let 

y(y) = j 0 (w(y) oj)-l : F + E 

and put 

p(y) = y(y)w (y) : E + E. 

Since w(y)y(y) = i~, we have w(y)p(y) = w(y) and p2(y) 

fey) = idE + p(x) - p(y). 

p(y) • 

Taking n smaller if necessary, we may assume that fey) E GL(E) for 

every y in n. If g E G, then p(x)g = g and 

w(y)f(y)g = 2w(y)g - w(y)p(y)g = w(y)g. 

If b E B , then p(x)b = 0 and x 

w(y)f(y)b = w(y)b - w(y)p(y)b = O. 

Hence 

w(y)f(y)(b+g) = w(y)g = 0 if and only if g = 0, 

and therefore 

f(y)Bx = Kerw(y) c By' 

so that f is a differentiable stem*) of B. 

*) Note that f is regular if Kerw(y) = B for every y in n. 
y 

Put 
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Convers1y, given a stem f of B at x, it is sufficient to put 

F .. p(TxM) and oo(y) .. po (f(y»-I, 

where p € End(T M) is a projection and B .. Kerp. x x 

COROLLARY 5.1. Suppose that codim B .. k < .... 
x Then B is 

differentiable at x if and only if there exist differentiable real-

valued one-forms ool,002''''t~ on a neighbourhood 0 of x such that 

(a) ool(X),oo2(X), ••• , k(x) is a basis of the annihilator 

BO of B in T*M; and, x x x 

(b) for every y € n, B; is contained in the span of 

ool(y),oo2(y), ••• ,ook (y)· 

PROOF. 

§6. HOMOGENEOUS STEMS AND LOCAL INTEGRABILITY 

Throughout this section we assume that f is a weak stem (§4) 

of the distribution B at a point x € M. We say that f is 

homogeneous if the vectorfields 

y-+-f(y).v, V € B 
x 

respect the distribution B (see Introduction, (0.5». 

A differentiable box (~, U,W) is said to be parallel to B if 

Dl~(U,W).Uc B~(u.w) 

for every (u,w) € Ul x WI. Recall (§2) that a slice of (~,U,W) is 
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any of the functions 

1/1 (-,w) 

By abuse of language, the set 1/I(U1,w), together with its 

differentiable structure of an embedded submanifo1d of M, is 

also called a slice of 1/1. 

PROPOSITION 6.1. Let f be a homogeneous weak stem of B 

at the point x. There exists a differentiable box (1/I,U,W) of M 

such that 

(1) 1/1(0,0) = x; 

(2) (1/I,U,W) is parallel to B; 

(3) the slice 1/I(U1,0) of 1/1 is an integral manifold of B; and 

(4) every point of 1/I(U1,0) can be reached from x along an 

integral curve of a vectorfie1d in B. 

COROLLARY 6. 1. Let N be an integral manifold of B. Then 

(5) (1/I,U,W) cuts N in open slices and 

(6) if Z = 1/I(U1,0), then Z n N is an open subset of both x x 

Zx and N and inherits the same differentiable structure from Zx 

and N. 

PROOF OF THE COROLLARY. The assertion (5) follows from (2) 

above and from Proposition 2.1. The assertion (6) follows at once 

from (5), (3), and the inverse function theorem. 
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PROOF OF PROPOSITION 6.1. We may assume that the domain n 

is an open subset of E and that 

f : n ~ GL(E), 

where the function 

(y,v) ~ f(y).v 

is differentiable. Let 

~(t,y,u) 

be the value at t of the maximal solution of the equations 

(6.1.1) € = f(~)u, ~(O) = y. 

Then 

(A) dom~ is an open neighbourhood of (O,x,O) in Rx n x E; 

(B) ~: dom~ ~ n is differentiable; 

(C) if ~(t,y,u) € do~ and s lOis a real number, then 

(t/s,y,su) € dom~ and ~(t/s,y,su) = ~(t,y,u). 

Here (A) and (B) are deduced easily from, say [3], (10.7.4) 

and (C) follows from the uniqueness theorem because net) = ~(t/s,y,su) 

is a solution of (6.1.1). 

(D) D3~(t,y,u)B c B , x z z = ~(t,y,u). 

To prove this, fix u € Bx and y € n and put Yt = ~(t,y,u), 

at - D3~(t,y,u) and Yt = D2~(t,y,u). 

be def ined by 

Let the function g : n ~E 

g(y) = fey) .u. 

Then at € End (E) , Y
t 

€ GL(E) and (cL [3], {10.7.3.l), (10.8.4.1» 



- 46 -

. 
Yt = g(y), Yo = y ; . 

(6.l.D.1) Yt = Dg(Ytht' Y = 
0 idE 

a = Dg(Yt)at + f(Yt)' a = o. t 0 

Hence 
t 

(6.l.D.2) at = Yt 10 (ys )-1f(ys)ds • 

By homogeneity of f, the vectorfie1d f(-).u respects B and we have 

(y )-1B = B 
s y s Y 

(cf. Introduction, (0.5» and so 

(y )-1f(y)B c B • 
s s x y 

Hence 

It (y )-1f (y )ds 
o s s 

maps Bx into By' and at maps Bx into Yt By Using the homogeneity 

of f once more, we have 

which proves CD). 

Note also that u = 0 implies Yt = Yo = y, Yt = Yo = i~, and 

therefore 

or 

D3~(t,y,0) = tf(y) 

It follows from (A) and (C) that there exists E > 0 such that 

~(l,y,u) is defined for \lx-yll < E and Ilull < E. Since 

D3~(1,x,0) = f(x) = i~, 

we may assume that 

D3~(1,x,u) E GL(E) for Ilul < E. 
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We claim that, for u I: B and Ilull < E, x 

(F) D3~(1,x,u).Bx = Bz ' where z = ~(l,x,u). 

To prove (F), put zu = ~(l,x,u), au = D3~(1,x,u) and 

6 = D2~(l,x,U). 
u 

The homogeneity of f implies that 

6 B B for u I: B • u x z x 
u 

Now, by (D), u I: Bx implies that 

aBc B u x z 
u 

and so 

or (cL §1.2) 

6(u) = (6 )-la I: GL(EIB ) u u x 

Since BE = {Ul: B : lIu~ < d is connected, 6 : BE ... GL(EIB ) is x x x x 

continuous, and 6(0) = (oo)-leo = idE I: GLo(EIBx)' it follows from 

Proposition 1.2 that 

6(u) I: GL (EIB ) o x 

Hence 6(u)B = B and so 
x x 

a B = ° 6(u)B = 0 B = B u x u x u x z 

for u I: BE which proves the assertion (F.). x' 

u 

(G) Taking s - t in (C) we see that, for u I: B , x 

;(l,x,tu) = ~(t,x,u) 

is an integral curve of a differentiable vectorfield in B. 
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Let now Q be a submanifo1d of Q such that x € Q and T Q is 
x 

a complement of B in E, and let x 

HO) • x 

be a diffeomorphism of the unit ball WI of a Banach space W onto 

a neighbourhood of x in Q. Let U = Bx and let III from U x W into 

M be defined by 

III(u,w) = ~(l,$(w),u). 

Since D2t(1,x,0) = idE • D3t(1,x,0) (see (F», it follows from 

the closed graph theorem that 

DIII(O,O) € LIS(U x W,E) 

E E and we may assume that III is a diffeomorphism of U x W onto an 

open subset of Q. Multiplying the norms of U and W by l/E, we 

turn UE and WE into U1 and WI and (III,U,W) into a differentiable 

box of M. The assertions (2), (3) and (4) of Proposition 6.1 

follow now from (D), (F) and (G). 

§7. INTEGRABLE DISTRIBUTIONS 

Recall that a distribution B on M is homogeneous if every 

differentiable vectorfie1d in B respects B (see Introduction, (0.6) 

and (0.7» and that B is said to be integrable if there exists a 

differentiable structure a on M such that ~,a) is an integral manifold 

of B. 
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THEOREM 1. Let B be a weakly differentiable distribution on 

M. 

(a) The following conditions are equivalent: 

(1) B is integrable. 

(2) For every x in M, there exists an integral manifold of 

B containing x. 

(3) B is homogeneous. 

(4) For every x in M, there exists a homogeneous weak stem 

of B at x. 

(b) If B is integrable, then there exists a unique differentiable 

structure a on M such that (M,a) is an integral manifold of B. 

Furthermore, 

(5) Every integral manifold of B is an open submanifo1d of 

(M,a). 

(6) a is a foliation of M in the sense of §2. 

(7) Two points of M belong to the same connected component 

of (M,a) if and only if they can be joined by finitely 

many integral curves of differentiable vectorfie1ds in 

B. 

PROOi OF THEOREM 1. To show that (2) '=* (3), let X be a 

differentiable vectorfie1d in B, let x £ domain of X and let Z 

be an integral manifold of B through the point x. By Proposition 

3.1, there exists a neighbourhood H1 of x in Z and £1 > 0 such 

that xt.y £ Z for It I < £ and y £ H1 and (t,y) -+ xt.y R x Z -+ Z 
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is differentiable. Choose £ > 0 and a neighbourhood H of x such 

that xt.y E H1 for It I < £ and y E H, H c H1 and £ s £1. 

-t t t -t Differentiating the equations X (X .y) = y = X (X .y) with 

re.pect to y E Z we prove that, for It I < £, (Xt)*(x) is an 

isomorpbism of T Z = B onto T Z x x y 

from Lemma 1.1, Part Three. 

B • 
Y 

The result now follows 

Let us now assume that B satisfies (4). For every x E M, 

let Zx be the integral manifold of B described in Corollary 

6.1. By (6.1.6), the differentiable structures of Z and 
x 

Z coincide on Z n Z and hence define a differentiable structure y x y 

a on M such that each Z is an open submanifo1d of (M,a) ([13], 5.2.4). 
x 

It is clear that (M,a) is an integral manifold of B and so (4) ~ (1) . 

Furthermore, it follows from (6.1.6) that every integral manifold 

of B is an open submanifo1d of a. Hence (4) ~ (5) • In particular, 

a is the unique differentiable structure which makes M into an 

integral manifold of B. 

The assertion (6) now follows at once from (6.1.2), (6.1.3) 

and Proposition 2.1, where we take N = (M,a). 

Finally let ~ be the equivalence relation 'x and y can be joined 

by finitely many integral curves of differentiable vectorfie1ds 

in B'. By Proposition 3.1, the integral curves of vectorfields 

in B are continuous as functions R ~ (M,a) , and so the equivalence 

classes of ~ are connected. On the other hand, (6.1.4) shows that each 

equivalence class of ~ is open in (M,a) , which proves the assertion 

(7) • 
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§8. THE USE OF LIE BRACKETS 

8.1. NOTATION. If X and Yare differentiable vectorfields on 

t M and xt m X .x, then locally, 

[X,Y] (xt ) = DY(xt)X(xt ) - DX(xt)Y(xt) = :t Y (xt ) - DX(xt)Y(x
t
). 

This leads to the following definitions. 

(8.1.1) A vectorfield over a curve 0 : I ~ M (where I is an 

interval in R) is a curve Y : I ~ TM such that yet) E To(t)M for 

all t E 1. 

(8.1.2) If o(t) = xt = xt.x for some differentiable vectorfield 

X on an open subset of M, and if Y' is a differentiable vectorfield 

over 0, we define the vectorfield [X,~over 0 by the local 

coordinate formula 

d [X,Y] (t) = dt Y (t) - DX(xt)Y (t). 

(To show that this formula behaves well under C2 changes of coordinates, 

let t be a C2 local diffeomorphism of E and let 

Then 

DX(x).v = D2~(~-1(x».(D~-1(x).v).X(~-1(x» + 

+ D~(~-l(x».DX(~-l(x».D~-l(x).v, 

and it is easily checked that 

ddt Y (t) - DX(Hxt ». yet) 
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(8.1.3) Let F be a Banach space and let 

f : I -+ L (F ,TM) 

be a Cl curve in the vector-bundle L (F ,TM) such that f (t) L (F I 

€ ,Ta (t)M) 
t where aCt) = xt = X .x as above. If v € F, we write 

(8.1.3.1) v : I -+ TM : t -+ f(t).v for the corresponding vectorfield 

over a. The Lie derivative of f with respect to X is the curve 

LXf : I -+ L(F,TM) 

(which again covers a), defined by the formula 

(8.1.3.2) 

(8.1.3.3) 

~f(t;) 

~f(t) 

F -+ Tcr(t)M : ~ -+ [X,v](t), or, locally, 

= f (t) - DX(xt ) 0 f (t). 

8.2 A CONDITION OF RESPECTABILITY. The next theorem is a 

straight generalization of Theorem 6 in Part One. 

THEOREM 2. Let X be a Cl vectorfield on an open subset of M, 

Let B be an arbitrary 

(not necessarily differentiable) distribution on M. Assume that 

there exist £ > 0, a Banach space F, a differentiable function 

f! : R £ -+ L (F , TM) 

and a continuous function 

such that 

(8.2.1) 

(8.2.2) 

(8.2.3) 

A RE -+ End (F) , 

£ 
f covers the integral curve t -+ xt ; amd, for all t € R , 

f(t)F = B and x
t 

Lxf(t) = f(t)A(t). 



- 53 -

e: 
Then, for all t € R , 

(8.2.4) YtB = B • x x
t 

COROLLARY 2. If the assumptions of Theorem 2 are satisfied 

at every x € domain X, then X respects the distribution B (Lemma 

1.1, Part Three). 

In particular, a weakly differentiable distribution B on M 

is integrable if (and, as we shall see in the next section, only 

if) the assumptions of Theorem 2 are satisfied for every differentiable 

vectorfie1d X in B and every x € domain X. 

REMARK. It will be seen from the proof of Theorem 2 that 

its assertion is valid even if the vector spaces in the distribution 

B are not direct summands of the tangent spaces. 

however,that they are closed. 

PROOF OF THEOREM 2. Le t 

at = (yt)-lf(t) 

Locally, 

F -+ T M. x 

We have to assume, 

~ = -Y -ly Y -If(t) + yt-lf(t) = (yt)-l(f(t) - DX(xt)f(t» 
t t t t 

and so (8.1.3.3) 

~t = (yt)-lLxf(t) = (yt)-lf(t)A(t) = at 0 A(t). 

Let now h € (T M)* and let 
x 

Then 



- 54 -

and, by the uniqueness theorem, ht cOif and only if ho - o. 

This means that h vanishes on Bx = ao F if and only if it vanishes 

on atF = (yt)-lf(t)F = (yt)-lBx ' and so, by the Hahn-Banach 
t 

theorem, 

Q.E.D. 

8.3. COVARIANT STEMS. Let X be a C1 vectorfield on an open 

subset of M and let x E domain X and xt = xt. x. If B is a 

distribution on M, we define an X-covariant B-stem at x as a 

c1 function 

f : R€ ~ LIS (T M,TM) 
x 

which covers the integral curve t ~ xt and satisfies the following 

conditions: 

(8.3.1) f(O) € 
i~ M' and, for all t E R , 

x 
(8.3.2) 

(8.3.3) 

f(t)B = B arid x x
t 

LXf(t)B c B , x x
t 

or equivalently, 

(8.3.3.a) [X,;](t) E B for all v E B , 
_xt x 

where the vectorfield v over t is defined by (8.1.3.1) 

Let now 

i : B ~ T M and p : T M ~ B x x x x 

be the inclusion mapping and the projection along some complement 

of B in T M. Let x x 

A(t) = f(t)-lL f(t) E End(T M) 
X x 
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f RE ~ L(B ,TM) 
x 

A R ~ End(B ) 
x 

be defined by f(t) = f(t) 0 i and A(t) = po A(t) 0 i. As these 

functions obviously satisfy the conditions of Theorem 2, we 

have proved the following lemma. 

LEMMA 8.3. Let Yt = (Xt)*(x) and assume that there exists 

and X-covariant B-stem at x defined for It I < E. Then, for 

THEOREM 3. Let X be a C1 vectorfield defined on an open 

subset of M and let B be an arbitrary (not necessarily differentiable) 

distribution on M. Then X respects B if and only if, for every 

x in the domain of X, there exists an X-covariant B-stemat x. 

PROOF. If X-covariant B-stems exist, then the assertion 

follows at once from Lemma 8.3 and from Lemma 1.1 in Part Three. 

Conversly, if X respects B and x belongs to the domain of X, we 

put 

Locally, 

LXf(t) = Yt - DX(Xt)Yt = 0 

and so f obviously satisfies the conditions (8.3.1) - (8.3.3), Q.E.D. 
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COROLLARY 3. A weakly differentiable distribution B is 

integrable if and only if, for every differentiable vectorfie1d 

X in B, and for every x € domain X, there exists an X-covariant 

B-stem at x. 

This follows at once from Theorems 1 and 2. 

8.4. THE STANDARD FROBENIUS THEOREM. Recall that a distribution 

B is said to be invo1utive if the Lie bracket of any two differentiable 

vectorfie1ds in B lies in B. The following proposition follows 

at once from ([4], 17.14.3.5). 

PROPOSITION 8.4. Every integrable distribution is invo1utive. 

We can now state the 'standard' Frobenius theorem. 

THEOREM 4 (Frobenius). A regular distribution B is 

integrable if and only if it is invo1utive. 

PROOF. Let X be a vectorfie1d in B, x a point in the domain 

t of X and xt = X .x. Let n be a neighbourhood of x in M and let 

: n ~ LIS(T M,TM) r the point x. f be a regular C stem of B at x 

By regularity f (y)B = B for every y in U and so, if B is , x y 

invo1utive, t -.. f(xt ) is an X-covariant B-stem at x, and the 

integrability of B follows at once from Corollary 3. 
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REMARKS. 1) Note that the stem f ~n the proof above has 

to be differentiable (rather than weakly differentiable, cf. the 

definition of the regular distribution in (4.1». 

2) There exist invo1utive non-integrable C~ 

distributions on R2 (cf. Example 8.5.2). Hence, the regularity 

of B in Theorem 4 is, in general, essential. We shall see below 

that the situation is simpler in the real-analytic case. 

8.5. REAL ANALYTIC DISTRIBUfIONS. The basic facts about 

real analytic functions on Banach spaces and real analytic manifolds 

are collected in [13], §§3 and 5. We need the result that the 

integral curves of real analytic vectorfields are real analytic 

functions of time ([13], 9.1.8). 

If B = (B : x E: M) is a distribution on M and T is a subset x 

of M, we say that BIT is spanned by a set S of vectorfields on 

M if By = span{X(y) X E: S} for every y E: T. 

We write CW (B,T) for the set of real analytic vectorfields 

in B whose domain includes T, and we say that B is locally every-

where defined if, for every vectorfield X in B, and every 

x E: domain X, there exists £ > 0 such that 

t where xt = X .x. Note that the word 'locally' refers here to 

a small portion of an integral curve, rather than to a neighbourhood 

of x in M (cf. Example 8.5.1). 
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The next theorem feneralizes a result of Nagano [7] . 

THEOREM 5. A real analytic distribution is integrable if 

and only if it is involutive and locally everywhere defined. 

PROOF. Let B be an involutive, locally everywhere defined 

real analytic distribution on M, X a real analytic vectorfield in 

B, x € domain X, xt = xt.x and Y
t 

= (Xt)*(x). 

Let n be a neighbourhood of x and let 

be a real analytic stem of B at x. If B is the distribution on 

n given by 

By = f(y)Bx ' 

then, clearly, t ~ f(xt ) is an X-covariant B-stem at x, and so, 

by Lemma 8.3, there exists £ > 0 s.t. 

(8.5.0) for I t I < £. 

Let now v € B 
x

t 

Then v = Y(x
t

) for some real analytic vectorfield 

Y in B. Since B is locally everywhere defined, we may assume that 

X € domain Y for all s, lsi < £. 
S 

Writing Y(s) instead of Y(xs )' 

we put 

v(s) = (y )-ly(s) € T M. s x 

A simple computation of the usual kind shows that 

v(s) = (y )-l[X,y](s) = (y )-l(adX.Y)(s). 
s s 
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Hence,by induction, 

d
n 

-v (s) '" (ys)-l «adX)n. Y) (s), 
dsn 

and in particular, as B is involutive, 

d
n 

-v (0) = «adX)n .Y) (x) € B 
d~ x 

Let now h be an arbitrary linear functional in (T M)* and let 
x 

H(s) = h.v(s). 

Then H is a real analytic function of s; if h vanishes at B , 
x 

then all the derivatives of H vanish at s = 0 and so H(s) = O. 

Hence, by the Hahn-Banach theorem, 

vet) = (y )-ly(x ) € B , 
t t x 

and so (Yt)-lB C B , or Bey B. Combining this with 
xt x xt t x 

(8.5.0), we see that 

Y B = B for It I < E t x x
t 

and the result now follows from Theorem 1 and from Lemma 1.1 in 

Part Three. 

EXAMPLE 8. 5 • 1. Let M = R and let B be the real analytic 

distribution on R spanned by the vectorfields Xl and X2, where 

Xl = 0 and X2 is defined on by X2 (x) = (l/x).a/ax. Then 

B is clearly integrable, and the origin of R has ~ neighbourhood 

Q such that 
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EXAMPLE 8.5.2. Let M • R2 and let B be the real analytic 

distribution on R2 spanned by the vectorfields Xl and X2, where 

Xl = aJar. and X2 is defined for r. > 0 by X2(r.,n) == (l/f.)a/an. 

(See Fig. 2) 

--'-' ... ; .. __ .-. __ .. __ ._._-----_._ .. -._-- .---~ 
"-•.••• _,,.,,_ •. - .-.---------.-. -- i 

-.~ .... ----~---.---.~---.- ---- -------..i • -~:~~--:==-=~:-~ 
.---. ... ".,,--------; 

."-" ....... ,, ..... --_._--.-.- " .. _"­
""--.. --._"------,, ""'--"- -" '-'-'-

Figure 2 

If x E (n-axis) and X is a real analytic vectorfield in B 

defined on a connected neighbourhood of x, then 

a a 
X = <Xa[ + ean 

where e is a real analytic function vanishing for f. < o. 

e = 0, and it is easily seen that B is an example of a 

non-integrable involutive real analytic distribution on R2. 

Hence 
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§9. NEAT LEAVES 

Throughout this section, B is an integrable C1 distribution 

on the C2 manifold M and a is the C1 structure which makes (M,a) 

into an integral manifold of B (§7). Unless otherwise stated, 

the words 'differentiable', 'diffeomorphism' etc. refer to the 

class C1 • 

9.1 LOCAL AUTOMORPHISMS. By a local automorphism of B we 

understand a bijection of an open subset of M onto another open 

subset of M which is a local diffeomorphism for both M and (M,a). 

The set of local automorphisms of B is denoted by Loc Aut B. 

LEMMA 9. 1. 1. A local diffeomorphisms ~ of M belongs to 

Loc Aut (B) if and only if 

(9.1. a) 

PROOF. 

~*(x)B = B whenever ~(x) = y. x y 

Assume that ~ satisfies (9.1.a). It is clearly 

sufficient to show that ~ is differentiable relatively to a. 

If x belongs to the domain of ~ and Z is an integral manifold of 

B which contains x and is contained in the domain of ~, then ~(Z), 

with the differentiable structure defined by the bijection 

~I : Z ~ ~(Z), is an immersed submanifo1d of M passing through 

y = Hx). The result now follows from Theorem 1 (5). 
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Let 9B denote the set of all the local diffeomorphisms ~ of 

t 
M such that ~ : x ~ X .x for some differentiable vectorfield X in 

B and some t E R, and let ~B denote the set which consists of i~ 

and all the finite compositions of members of 9B. 

LEMMA 9.1.2. ~B is contained in Loc Aut B and closed under 

the operations of restricting the domain, composition, and taking 

an inverse. Two points x and y in M belong to the same connected 

component of (M,o) if and only if y = ~(x) for some ~ € ~B. 

This follows at once from Theorem 1 «3) and (7» and from 

Lemma 9. 1. 1. 

We define the normaliser N~B of ~B as the set of all local 

automorphisms ~ € Loc Aut B such that 

(9.1.b) 

These inclusions are to be understood as follows: If 1jI E n and 

both the domain and the range of $ are included in the domain of ~, 

then ~$~-l is in ~B; if both the domain and the range of $ are 

in the range of ~, then ~-l$~ is in ~B (Fig. 3). 

Figure 3 
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LEMMA 9.1. 3. 

'¥B u (Loc Aut B n Dif f2M) c N'¥B. 

PROOF. It is clear that '¥B c N'¥B. If ~ € Loc Aut B n Diff 2M 

and X is a C1 vectorfield in B, then ~ 0 xt 0 ~-l t Y , where 

Hence ~9B~-l c '¥B and it is 

easily deduced that ~'¥B~-l c '¥B (there are no problems with the 

domains because domain ~ = range ~ = M). 

LEMMA 9.1.4. Let ~ be the equivalence relation given by the 

partition of M into the connected components of (M,a). If 

$ € N'¥B, then cp respects ..... (i.e. x ..... y and x and y € domain$ implies 

$Cx) = Hy». 

PROOF. Let cp € N'¥B and let x and y lie in domain ~ • If 

x ..... y, then x = lji(y) for some 1jI € '¥B. We may assume that the 

domain and range of 1jI are contained in the domain of $, so that 

$1jI$-I(cp(y», which proves that $(x) ..... $(Y). 

9.2. NEAT LEAVES. A leaf is a connected component of (M,a). 

A Cl box (1jI,U,W) of M is admissible if 1jI(-,w) : Ul ~ (M,a) is 

differentiable for every w € WI and if the slice 1jI(-,O) : Ul ~ (M,a) 

is a local chart. An admissible box is neat if 1jI(-,w) is a 

local chart for (M,a) whenever 1jI(O,w) belongs to the same leaf 

as 1jI(O,O) (Fig. 4, p. 68). 

A point x € M LS neat if there exists a neat box (1jI,U,W) such 

that 1jI(O,O) = x. 
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LEMMA 9.2.1. a) If cp € LocAutB and (1jI,U,W) is an admissible 

box such that 1jI(U l xWl) c domcp, then (cpo1jl,U,W) is an admissible 

box. 

b) If, in addition, cp € N~B and (1jI,U,W) is 

neat, then (cp 0 1jI,U,W) is neat. 

This follows at once from the definitions and Lemma 9.1.4. 

If now x and y belong to the same leaf, then x = cp(y) for some 

cp € 'i'B. since 'VB c N'i'B, we have the following result. 

COROLLARY 9. 2 • 1 • If a leaf L of (M,a) contains a neat point, 

then every point of L is neat. 

Such leaves will be referred to as neat leaves. 

LEMMA 9.2.2. a) Every finite dimensional or finite 

codimensional leaf is neat. 

b) If B is a regular distribution, then every 

leaf of (M,a) is neat. 

To prove b), set 

where f is some regular stem of B at x = 1jI(0,0) and we assume that 

Then IS (u,w) € GL(E Iu x 0), E = U x W, and 

so, by Proposition 1.2, IS (u,w) € GL (E Iu x 0) for every (u,w) € Ul x Wl. 
o 

Hence D11jl(U,w).U = f(1jI(u,w»1jI*(0,0)o(u,w).(uxO) = f(1jI(u,w»1jI*(0,0){U x O) = 

= f(1jI(u,w»B = B~,( )' 
X 'f' u,w 

(This argument shows that every admissible 

box of a regular distribution is neat.) 
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9.3. NEAT SUBMANIFOLDS. An immersed submanifo1d L of M is neat 

if, for every x € L, there exists a C1 box (W,U,W) of M such that 

(i) w(O,O) = x; 

(ii) Lnw(U1 xWl) = ljI(U l x R-), where R- = {w € W1 ljI(O,w) € L}; 

and 

(iii) for every w € R-, ljI(-,w) U1 ~ L is a local chart for L. 

For example, the union of all the leaves of (M,a) of a given 

finite dimension (or codimension) is a neat submanifo1d of M, and 

so is (M,a) if B is a regular distribution, or any single neat 

leaf of (M,a) in general. 

A C1 box (ljI, U,W) which satisfies the conditions (ii) and(iii) 

above is called a neat box for L. 

PROPOSITION 9.3.1. Let L be a neat submanifo1d of M and let 

1jJ N ~ M be a continuous mapping such that ljI(N) c L. 

(a) If 1jJ : N ~ M is a differentiable mapping between 

manifolds and if, for every ~ € N, W* (OT~N c TljI (0 L, 

then ljI N ~ L is differentiable. 

(b) If W N ~ M is a differentiable mapping between 

manifolds and L is separable, then 1jJ : N ~ L is 

differentaib1e. 

(c) More generally, if N is a locally connected topological 

space and L is separab1e,then 1jJ : N ~ L is continuous. 

The proof follows the same lines as the proof of Lemma 3.1 in 

Part One and is therefore omitted. Note that the assertion (b) 

follows from (c). 
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The next proposition is probably a special case of a more general 

result. 

PROPOSITION 9.3.2. Let L be a connected neat submanifo1d 

of M. If M is paracompact and modelled on a separable Banach space 

E, then L is separab1e*). 

LEMMA 9.3.3. (See [1], Ch. 111, §9, Lemma 1.) If a topological 

space T admits a locally countable covering by open separable subsets, 

then each connected component of T is separable. 

PROOF OF PROPOSITION 9.3.2. Since M is paracompact and locally 

separable, each connected component of M is separable by Lemma 9.3.3. 

Hence, there exist a countable family of boxes ($ ,U ,W ) for L n n n 

such that L cUHn' where Hn = $ (U I WI). n n' n Let Snw = $n(U~,w) be 

a slice of Hn' It is easily checked that, if w € t 
n 

= {w € WI : $ (O,w) € L}, then each connected component of the 
n n 

open subset S n H of S is contained in a slice of ~ • nw m nw m Since 

S 1S separable, we see that S meets S - for at most countab1y nw nw row 

many w € t . 
m 

Hence the family (S : n € N, w € t ) is a locally nw n 

countable cover of L and the assertion follows from Lemma 9.3.3. 

9.4. AN UNSOLVED PROBLEM. A leaf of (M,a) is wild if it contains 

no neat points. 

*) by 'separable' we mean: with a countable basis of open sets. 
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QUESTION 9.4.1. Do wild leaves exist? More precisely: does 

there exist an integrable C1 distribution B on a (separable) C2 

manifold M such that the corresponding foliation of M has a wild 

leaf? 

The author made several attempts to construct such a foliation , 

but failed. The examples below illustrate the difficulties encountered. 

LEMMA 9.4.2. Let H be a separable Hilbert space and let 

(A,) Z be a doubly infinite sequence of members of GL(H). n n€ 
"" . exists a C funct~on y : R ~ GL(H) such that 

(i) f (n) = A for all n € Z; and n 

There 

(ii) f is 1 1 constant on each of the intervals [n - 3' n + 3)' 

PROOF. Since GL(H) is contractible [15), there exists a 

continuous path [0,1] ~ GL(H) joining any two elements. Since 

GL(H) is an open subset of the Banach space End (H) , this path can 

be replaced by a broken straight line with finitely many segments. 

The corners can be smoothed off in the 2 dimensional space spanned 

by the two adjacent edges. Property (ii) follows on re-parametrization. 

E'rom now on, H = R,2 (Z) is the space of all doubly infinite 

real sequences (Xu):"" such that LX~ < "", F is the closed 

subspace of H given by the equations xn 0 for n ~ 1, and S is 

the right shift on H: 

We note that S 

(Sx) = x l' n n-

H ~ H is an isometric isomorphism. 
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EXAMPLE 9.4.2. We take 

L = <f>(Rx F), 

where 

<p : R x F ~ N x H : (x, v) ~ (e (x) ,y (x) • v) , 

N is a manifold, e : R ~ N is an immersion and y : R ~ GL(H) is 

a differentiable function. It is easily checked that <p is an 

immersion, so that L is an irmnersed submanifold of N x H. 

(9.4.2.a) Chose N 

for j s t ~ ~ and e 

e(~) L c:;'t/:?, 
...... 

R2, yet) = idH for - ~ S t S 1, yet) = s 

R + R2 as in Fig. 4. 

~ 

t;-:>.'II3 

t 
1:= -'/3 t"= 13 ~ 

'" 

Q.. 

Figure 4 

It is easily checked that <p is then an embedding and that L is a 

leaf of the distribution B given by B = T L for x € Land x x 

B = T M = T (R2 x H) for x t L. 
x x x 

~ 



- 69 -

An admissible box with the range Q x H, where Q is the square 

indicated in Fig. 4 is obtained from the identity mapping of 

R2 x H, with (~-axis) x F for the first coordinate and (n-axis) x FJ. 

for the second coordinate. It is clear that this box is not 

neat and that it restricts to a neat box on a neighbourhood of 

$(0,0) • 

(9.4.2.b) Take N = R2, y(t) = i~ for t ~ 0, y(n) Sn for > 1 n - , 

1 1 
and y(t) constant on each of the intervals [n - 3' n + 3]' Let 

e : R ~ R2 be as in Figure 5. 

> 

(c: 0) ~ 
, 
t 
i 
~ , 
I 
I 
I 

(t= -I) A + t= I 

I 
,~ 

Figure 5 
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Using the identity of R2 x H, we can define an admissible box at 

A • ,(-1,0) which does not restrict to a neat box for L. Note, 

however, that L is not a leaf of a foliation with singularities. 

(C is a neat point and if L were a leaf of a foliation this would 

imply that every point of L is neat (Corollary 9.2.1). There 

are no admissible charts at B.) 

(9.4.2.c) The attempts to use N = two-torus, e R + N an integral 

curve of a fixed irrational flow, and a suitable y : R + GL(H) 

failed for the following reasons: 1) the differentiability of 

the distribution B demands that every x E N x H has a neighbourhood 

n such that B is 'larger' than B for YEn; 2) Proposition 1.2. y x 

EXAMPLE 9.4.3. Let H 
o 

on H be defined by taking B x 

00 

=Us~ 
n=l 

= SnF for 

and let the distribution B 

x E SnF\Sn-1F and Bx = 0 

if x = 0 or if x E H\H . 
o ( .. Sn+2F ~ Sn+2F/ SnF -_- R2 The proJectl.on ~ 

takes B into the distribution B illustrated in Fig. 6.) 

,,,,WI 0 
____________ ~(~U~~~I _____________ oJ 

\ 

\ 

Figure 6 
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It is clear that B is integrable. Note, however, that B is not 

differentiable. (Ho is a dense subset of H of the first category, 

so we are in a similar difficulty as with the flow-line of the 

irrational flow on the torus in (9.4.2.c).) 

We now construct an integrable distribution on T x H, where 

T is the circle. Consider [0,1] x H as a subspace of R x H and 

let 
... 
B(t,x) = V(t,x) + YtB(yt-1x), 

co 
where Y : [0,1] ~ GL(H) is a C function such that Yt = idH for 

0::; t ::;~, y(t) = S for ~ ::; t ::; 1, and V(t,x) is the one-dimensional 

subspace of R x H spanned by the vector (1, Y (t)x) (Fig. 7) 

A, 4u A-I 4-L (..1 A-l. A.., A:J A, 

j) l 

Figure 7 

Note that B(t,x) = RxB for ° ::;. t ::; ! and for ~ ::; t ::; 1, so that 
x 3 e 

A2. 

... ~ 

B defines an integrable distribution B on T x H. If t is the point 

of T obtained by identifying the endpoints of the interval [0,1], 

then, clearly, {t}x (Ho\{O}) is contained in a single wild leaf of 

B. 

f-IxO 



PART THREE 

Integrability and irreducibility of systems 

of vectorfields 
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§l. ON INTEGRABILITY OF SYSTEMS OF VECTORFIELDS 

1.1 GENERALITIES. Let S be a set of smooth vectorfields on a 

paracompact finite-dimensional manifold M. (For simplicity, we 

assume that M and the vectorfie1ds in S are of the class C~ or CW.) 

Recall that the accessible sets of S (or orbits in the terminology 

of [10]) are the equivalence classes of the relation IX and y can 

be joined by finitely many (unoriented) pieces of integral curves 

of vectorfields in SI. It is proved in Part One and in [10] that 

the accessible sets of S are immersed submanifolds of M. 

S is said to be homogeneous if every vectorfield in S respects 

the distribution B(S) = (S(x) : x E: M), where Sex) is the vector 

subspace of T M spanned by the values at x of the vectorfields in 
x 

s. 

THEOREM 1. The following conditions are equivalent. 

(a) For every x E: M, there exists an integral manifold of 

B(S) which contains the point x. 

(b) S is homogeneous. 

(c) S spans the tangent spaces of its accessible sets. 

We say that S is integrable if it satisfies either of the 

conditions in Theorem 1. The non-trivial step in the proof of 

Theorem 1 is the proof of (b) ~ (c), given in Part One and in 

[10]. The assertion (a)~(b) follows from Theorem 1 in Part 

Two. If the integral manifolds in question are at least of the 

class C2, then (a)~(b) can be deduced from the existence and 

uniqueness theorem for ordinary differential equations and the 

following lenuna. 
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LEMMA 1.1. A vectorfield X on M respects a distribution B 

.d only if, for every x in the domain of X, there exists 

I such that 

(Xt)*(x).Bx = By 

iver I t I < £ and xt. x = y. 

PROOF. 
t t 

Let xt = X .x, Yt = (X )*(x) and Yts 

: be the domain of the integral curve t -+ xt and 

I = {t€I:y B = B } . 
0 t x xt 

let 

Yt +s = YtsYs ' I is easily shown to be both open and closed 
0 

REMARKS. 1) If, for every x € domain X, 

,a) t t X .x = y ·~(X )*(x).Bx C By' 

X respects B. This follows at once from (I.I.a) since 

= x and (X-t)*(y) is the inverse of (Xt)*(y). 

2) Consider the following property of X: 

,b) For every x € domain X, there exists e: > 0 such 

that It I < e: and xt.x = y implies (Xt)*(x).BxcBy ' 

lext example shows that (I.I.b) does ~ imply that X respects 

iistribution B. 

EXAMPLE 1. Let M = R2 and let B be the distribution spanned 

le vectorfields a/a~ and ~.a/an (cf. Fig. 1). 
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.~. -'-~---"- .--.~---- ----

Figure 1. 

K be an arbitrary vectorfield such that X(x) € B for every 
x 

domain X. It is easily checked that X satisfies the 

ition (l.l.b) at every x € R2. (If x € n-axis and X(x) ; 0 

this follows from (Xt)*(x).X(x) = 
t X(y) € By' where y = X .x.) 

no vectorfield which moves a point x on the n-axis onto 

n-axis can respect B since then dim(Xt)*(x).B = dimB = 1 x x 

dimBy = 2. 

CONDITION L FOR S. Recall [6] that S is locally of finite 

at x (Lx) if there exist finitely many vectorfields Xl,X2,"·'Xp 

) such that 

l) 

Z) 

The vectors X.(x) (i = l, ••• ,p) span sex); 
1. 

For every Y € S, there exists a neighbourhood n of x 

and the continuous real-valued function A •• defined on 
1.J 

n such that 

A •• (y)X. (y) 
1.J J 

for every y € n. 
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is said to be locally of finite type (L) if it is locally of 

inite type at every x in M. 

It is claimed in [6] *)that every set S of smooth 

,ectorfie1ds which is locally of finite type is homogeneous, 

:herefore integrable. However, the proofs given show only 

:hat the vectorfields in S satsify (l.l.b) (with B = S(x». 
x 

:he next example shows that, in fact, L for S does ~ imply 

:hat S is in tegrab 1e. 

and 

EXAMPLE 2. Let M = R2 and let S be the set of all vectorfie1ds 

)f the form 

a/a~ + ~(~,n).a/an , 

~here ~ is an arbitrary function such that ~(O,O) = 0 and a~/a~ = 0 

in some neighbourhood of the origin depending on ~. 

If x ; 0, then there exists a neighbourhood n of x and a 

vectorfie1d Xl in S such that Xl = a/an on n. Taking X2 = a/a~ £ S, 

it is easy to see that S satisfies the condition (Lx) 

and the same n for every Y in S. If, on the other hand, x is the 

origin, we may take {XI,X2,""Xp } {a/a~}, as 

[a/a~ + ~.a/an, a/a~] = -a~/a~.a/an = 0 

in a sufficiently small neighbourhood of O. This shows that S is 

locally of finite type, and it is clear that S is not integrable. 

*) And repeated in [10],[11] and several other places. 
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REMARK. We say that S is invo1utive if [X,Y] E S whenever 

and Yare in S. Lobry [6] proves that an invo1utive set of 

!a1-ana1ytic vectorfie1ds on a real-analytic manifold M is 

)ca11y of finite type. He then comes to the (false) conclusion 

~at every involutive set of real-analytic vectorfields is 

~tegrab1e (cf. Part Two, Theorem 5 and Example 8.5.2.). 

~ 

.3. CONDITION L for S. 
~ 

Let S denote the set of all smooth 

ectorfields X on M such that X(x) E Sex) for every x in the 

omain of X. We observe that if S is defined as in Example 2, 

-hen S is not locally of finite type. It is therefore natural 

.0 ask the following question. 

QUESTION 1. 3. Assume that S is locally of finite type. Does 

Lt follow that S is integrable? 

Example 8.5.2 in Part Two shows that the answer is NO in the 

real-analytic case (unless the vectorfie1ds in S be locally 

everywhere defined). On the other hand, Theorem 2 below shows 
00 

the answer is YES in the C case. The example in (1.5) shows that 

this is only a sufficient condition: S may be integrable even if 

S is not locally of finite type. 

1.4. CONDITION K. Let x E M. We say that S satisfies the condition 

(Kx) if there exist finitely many vectorfie1ds Xl,X2,""Xp in S, 

*) . 
defined on a neighbourhood n of x, and continuous funct~ons 

A.' k : n ~ R such that 
~J 

*) It is sufficient to assume that A"
k 

are bounded measurable. 
~J 
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(Kl) Xi(x) span Sex) and, for every y € n, 

[X. ,X. ](y) = I A. 'k(y)JC. (y), 1 ~ i, j ~ p; 
1 J k-l 1J -K 

(K2) for every X in S, such that x E domain X, there 

exists e > ° and continuous function A .• 
1J [-e,e] -+ R 

such that, for every t E [-t,e], and every i, 1 ~ i ~ p, 

[X,X1·] (x
t
) = r A .. (t)X.(xt ), 

i=l 1J J 
t where xt = X .x. 

It is clear that (Lx) ~ (Kx). We say that S satisfies 

:ondition K, if it satisfies the condition (Kx) for every x € M. 

THEOREM 2. 
~ . ~ 

Let S be a set of C vectorf1elds on a C manifold 

i let S be defined as in 1. 3. Then S is integrable if and 

if S satisfies the condition K. 

-In particular, S is integrable if S is locally of finite type. 

LEMMA 1.4.1. Assume that S satisfies the condition (KX) and 

limS(x) = d. Then there exists a box ($,U,W) of M such that 

(a) $(0,0) = x and dimU = d; 

(b) $*(u,w).(UxO) c S($(u,w» for every (u,w) in the domain 

of $. 

(c) If Y is an arbitrary vectorfield in S such that x € domain Y 

and if oCt) = yt.x, then there exists e > ° such that 

aCt) E $(U,O) for It I < e. 
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PROOF. Assume that the vectorfields Xl""'X satsify the 
p 

condition (Kl) and (K2) on a neighbourhood n of x, and let 

S* = {Xlln,···xpl n}· It follows at once from Theorem 6, Part One, 

that s* is homogeneous (and hence integrable) on n. Since S*(x) a S(x) 

and S*(y) C S(y) for every y in n, there exists a box (1/I,U;'W) of M 

which satisfies the conditions (a) and (b) (see Theorem 5 and its 

Corollary in Part One). Moreover, we may assume that 1/I(U,0) is 

a neighbourhood of x in L*, where L* is the accessible set of S* 

through the point x. 

Let now o(t) = yt.x for some vectorfie1d Y in S such that 

X E domain Y and let yt = (yt)*(x). By Theorem 2, Part Two 

(or by the proof of Theorem 6, Part One), (K2) implies that, for 

Hence, for It I ~ e, 

(1) 

(2) 

dimS*(o(t» = dimS*(x) = k and 

• t 
o(t) = Y(o(t» =y Y(x) E S*(o(t». 

Let L be the union of the k-dimensiona1 accessible sets of S*. 

Then L is a neat submanifold of n (Part Two, §9.3) and the tangent 

spaces of L are spanned by S* because s* is homogeneous. By (1), 

o(t) E L for It I ~ e and so, by (2) and Proposition 9.3.1, Part 

Two 

o : ] -g ,g [ -+ L 

is differentiable. Since L* is the connected component of x in L, 

o(t) E L* for It I < e, whence follows the assertion (c) of our lemma. 
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LEMMA 1. 4.2. If S satisfies the condition K, then dimS (x) 

remains constant along the integral curves of vectorfields in S. 

PROOF. Let 0 (t) = xt. x for some X in S and some x E domain X. 

Let tl < t2 and assume that dimS(o(tl» < dimS(o(t2»' Let 

dimS(o(t» = t} is relatively open in I. Let J be a connected 

component of I nad let t be the left-hand end-point of J. It 
0 0 

is easily seen that t 
0 

t I • 
0 

Without loss of generality, we 

assume that t 
0 

= 0, so that, for some E > 0 and all t, o < t < E, 

dimS (x) = k < t = dimS(o(t». 

Let now (IjJ,U,W) satisfy the conditions of Lemma 1.4.1 with S 

in the place of S, and let Z = IjJ(U 1 ,0). Using IjJ to identify a 

n neighbourhood of x in M with an open subset Q of R , we may assume 

that 

(1) x is the origin in Rn; 

(2) Z is the open unit ball in a k-dimensional subspace E 

..... 
(3) every vectorfield Y : n ~ E belongs to S; 

(4) If Y is a vectorfield in S and x E domain Y, then there 

exists 6 > 0 such that, for It I < 6, 

t Y .x E E. 

Let P be the orthogonal projection of Rn onto E and let 

Q- id - P be the proj ection onto E.l. If Y : n ~ Rn is an arbitrary 
..... ..... 

vectorfield, then PY E S by (3). If YES, then QY = Y - PY E S . 

Using this, the fact that dimS (0 (t» = t > dim E for 0 < t < e;, 

and suitable 'bump functions', it is easy to construct a vectorfield 
..... 

Y in S such that 
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(5) Y(y) ~ E for all yEn and, 

(6) for every 6 > 0, there exists t such that 0 < t < 6 

and Y(o(t» ;. o. 

Let now u(t) = (PX + Y) t .x. By (4), there exists 6 > 0 such 

(7) u(t) E E and o(t) E E for It I < 6. 

= PX(u(t» + Y(u(t» E E and so 

(8) Y(u(t» = 0 and 

(9) ~(t) = PX(u(t» for It I < 6. 

Hence ~(t) = 

Since a(t) = X(o(t» E E, we have X(o(t» = PX(o(t» and 

(10) a(t) = PX(o(t» for It I < 6. 

By (9) and (10), o(t) = u(t) for It I < 6 and so, by (8), Y(o(t» = 0 

for It I < 6, in contradiction with (6). 

-PROOF OF THEOREM 2. Assume that S satisfies the condition K. 

Let Xbe a vectorfield in S, x E domainX, o(t) = xt.x, and 

It follows easily from (K2) and from Theorem 6, 

Part One, that there exists E > 0 such that, for It I < E, 

ytS(x) c S(o(t». 

Hence, by Lemma 1.4.2,ytS(x) = S(a(t» for It I < E. By Lemma 1. 1, 

X respects the distribution (S (x) ; X E M), which proves that S is 

homogeneous and, therefore, integrable. 
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Conversely, assume that S is integrable and let L be the 

ssible set of S through the point x. By the Corollary of 

,rem 5, Part One, there exists a coordinate system 

tL,·.·,tn ) on a neighbourhood ~ of x in M such that the 
~ 

:orfields X. = alat. 
1 1 

belong to S for 1 ~ i ~ k and span T L 
Y 

Y € nL, where ~ is some neighbourhood of x in L. If X 

1 vectorfield in S and x € domain X, then there exists 

o such that xt = xt.x € ~ for It I < E. Hence, for any 

torfield X in S defined on a neighbourhood of x, It I < E 

lies 

X(Xt ) = r A.(t)X.(xt ) 
i=l 1 1 

h some differentiable function; A. : ]-E ,E [ -+ R. 
1 

Since S is 

egrable, S is involutive and (*) applies in particular to 

torfields [X,Xj ], l;s;j ~p,-which proves that {Xl,XL'''''~} 

.isfy the condition (K2) • 

• m [X.,X.] = 0 (1 ;S; i, j ~ p) . 
1 J 

The condition (Kl) follows at once 

AN EXAMPLE. In Part One, Example 5.4, we have shown that 

integrable system of vectorfields need not be locally of 

lite type. We shall now show that the integrability of S does 

t imply that S (as defined in 1.3) is locally of finite type. 

co 
Let ~ : R -+ R be the C 

-lIt 
function defined by ~(t) = e 

r t > 0 and ~(~) = 0 for t ;S; o. Let the vectorfield XL on 

be defined by 

~ co 
Let S be the set of all C 

ctorfields in the distribution (S(x) : X € R2) (Fig. 2). 
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Figure 2. 

To prove that S is not locally of finite type, we argue by 

-
contradiction and assume that the vectorfie1ds Yl,""Y in S p 

satisfy the conditions (L.1) and (L.2) at the origin, with S in 

the place of S. Let 

We may assume that the C~ 

function al is > 0 on a neighbourhood of the origin and introduce 

a local diffeomorphism 

1/1 : (R2,0) ~ (R2,0) : (F;1,F;2) ~ YIF;1.(0,F;2)' 

Since 1/1 maps the upper half-plane (F;2 > 0), F;l-axis and lower half-plane 

into themselves and since the conditions (L.1) and (L.2) are invariant 

~ under C changes of coordinates, we may assume Yl = a/aF;l' 
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00 

Let e : R + R be an arbitrary C function such that e(~) = 0 

for ~ ~ 0 and let the vectorfie1d X on R2 be defined by 

Then X € S, [Yl,X] = X and so (L.2) implies that 

e~le(~2) = ! AJ'(~1'~2)S'(~1'~2) 
j=l J 

for all ~1 and ~2 in a sufficiently small neighbourhood of the 

origin (depending on the function 6). But this is absurd, since, 

on setting ~1 = 0, it contradicts the following lemma. 

LE~.A 5.3. Let A be the ring of germs at the origin of 

the continuous function R + R. Let B be the subring of A 
00 

generated by the C functions e R + R such that e(~) = 0 for 

~ < O. Then B is not contained in any ideal of A generated by 

finitely many members of B. 

PROOF No.1. 
00 • 

Let S be the collection of all C vectorf1e1ds 

on R2 such that S(~l '~2) = 0 for ~1 ~ 0 (cf. Example 8.5.2, Part 

Two) . Then S = S. If B were contained in some ideal of A 

generated by finitely many members of B, then S would be locally 

of finite type and therefore, by Theorem 2, integrable, which is 

absurd. 
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PROOF No.2. Let B* be the set of all the C~ function 

e : R + R such that a(t) = 0 for t ~ O. If B is contained in 

some ideal of A which is generated by finitely many members of 

B, then there exists functions 61,62,' •• ,6 in B* such that, given 
p 

any a € B*, there exist E > 0 and continuous functions AbA2," . ,A 
P 

such that, for It I < E, 

In particular, 

such that, for 

a(t) = Y. A.(t)6.(t). 
i=l 1. l. 

there exists E > 0 and continuous functions A •. 
1.J 

I t I < E, 

a1..(t) = ! A .. (t)6.(t). 
i=l 1.J J 

As this is a homogeneous system of linear differential equations 

and as 6.(0) = 0 for l~i~p, we have 6.(t) = 0 for all t, 
1. 1. 

I tiS £ and all i, 1 s i ~ p, which is absurd. 
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§2. ALMOST ALL PAIRS OF VECTORFIELDS ARE IRREDUCIBLE 

,1 INTRODUCTION. A set S of vectorfields on M is irreducible if the 

ccessible sets of S coincide with the connected components of M. By 

heorem 5, Part One, this is equivalent to saying that S(x) 

very x in M. 

T M for x 

In [18], Lobry probed that the set of irreducible pairs of Ck 

rectorfields on a COO manifold M is Ck-generic for k ~ n2 + n. Later 

:19], he improved this to k ~ 2n. We shall show*) in this section 

:hat the set of irreducible pairs of Ck vectorfields on a ck+l 

'f 1d' Ck . f nan1 0 1S -gener1c or all k ~ 1. 

Lobry's proof can be roughly described as follows. Consider 

a differentiable function 

p :AxM-+Q, 

where A is the space of pairs of vectorfields and Q is a manifold, 

and a stratified subset W of Q such that 

p-l(W) = ~ ~a is irreducible, 
a 

where p = p(a,-) : M -+ Q. 
a 

If now p is transversal to Wand 

codim W > dim M, Thom's transversality theorem implies that almost 

every pair a is irreducible. 

Our proof follows a similar pattern, with the difference that 

the results of Part One allow us to take a simpler p, Q and W. We 

also go through the details of the transversality argument, so that 

our proof is more self-contained than Lobry's (and, in particular, 

independent of [20]). 

*) Hector Sussmann tells me that he has recently obtained some similar 

. "-- T ~n not know his methods, but he will no doubt publish his 
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For the sake of simplicity, we assume that k is finite and that 

M is a compact manifold. A similar, but a little more involved, 

proof shows that the assertion of Theorem 2.6 holds for any separable 

. . k+1 . 
finite-dl.mensl.ona1 C manl.fo1d M and for 1 ::;; k::;; 00, with the Whitney 

Ck topology on the space of Ck vectorfields on M. 

2.2. A TRANSVERSALITY THEOREM. Recall that by an immersion we 

always mean a split immersion. By a submanifo1d of a differentiable 

manifold Q we mean an immersed submanifo1d such that the inclusion 

mapping is an embedding. A subset W of Q is of codimension ~ c 

if it is contained in a countable union of submanifo1ds of 

codimens ion ~ c: 

(2.2.a) W c ~Jwn' Wn a submanifo1d of Q, codim Wn ~ c, n = 1,2, ••. 
n 

The next result is stated in such generality as we need in what 

follows; the proof is adapted from [17], §§18 and 19. 

PROPOS IT ION 2.2. Let A, M and Q be Cr manifolds and let 

a : A x M -+- Q and e : A x M -+- Q 

be C
r functions. Let W be a subset of Q of codimension ~ c and 

put 

A = {a E A : a-1W n e-1w is of codimension ~ C}, 
--W a a 

where a = a(a,-) and e = e(a,-) 
a a 

M -+- Q. Assume that 

(1) M has finite dimension d; 

(2) A and M are second countable; 

(3) r > max(O,d-c); 

(4) for every (a,x) E Ax M, at least one of the derivatives 
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a*(a,x) TAxTM-+T Q 
a x a(a,x) 

(3* (a,x) TAxTM-+To Q 
a x I-'(a,x) 

split surjective. 

Then Aw is a residual*) subset of A. 

COROLLARY 2.2. If c ~ d + l, we can take r = 1 and 

PROOF OF PROPOSITION 2.2. Let Wn satisfy the condition (2.2.a) 

.d put 

L = W x Q R = Q x Wand Z = W2 = L n R . n n' n n n n n n 

~t f = (a,(3) A x M -+ Q x Q and let 

00 

A = {a E A : codim f-1(Z ) ~ c}. nan 

!:l An cAw' it is sufficient to show that each An is residual. 

rom now on, n is assumed to be fixed. 

Since A x M is second cotmtable, the hypothesis (4) implies that 

00 

nere exist a countable open cover (R) 1 of Ax M such that, for 
m m= 

very m, at least one of the functions 

aiR or (3IR m m 

s a submersion and therefore fiR is tranversal to at least one 
m 

f the manifolds L and R • Let II = C1(L ) P = C 1 (R ) and let 
n n n ' n 

_{ An Hm if fiR is transversal to L 
m n 

~- PnR if fiR is not transversal to L . 
m m n 

~) 
We say that a set is residual if it contains a countable intersection 

)f open dense sets. 
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Then ~ is a submanifold of Ax M of codimension q ~ c. Let 

P : A x M -+ A be the coordinate projection and let Pm = p I~. 

By ([17], Lemma 19.3), Pm : ~ -+ A is a Fredholm map of constant 

index d - q S d - c < r. Since ~ is embedded in A x M, it is 

second countable and so, by Smale's density theorem ([17], §16) the 

set B of regular values of p is residual. m m 

then the mapping 

e :M-+AxM:x-+(a,x) 
a 

If now a E B , m 

is transversal to ~ and so e;l(~) is a submanifold of M of 
00 

codimension q ~ c. Since rl(Z ) c U ~ and f = foe, we 
00 n m=l 00 a a 

have f- 1 (Z ) c U e-1 (0 ) and thus A ::l n B , Q.E.D. 
a n m=l a 'm n m=l m 

2.3. A TRANSVERSALITY LEMMA. We need the following result. 

LEMMA 2.3. Let E be a separable Banach space, M a compact 

n-dimensional C1 manifold and Q a finite dimensional ck 
vector 

bundle over M, where k = 0 or 1. Let W be a closed subset of Q; 

if k = 1, assume that codimW ~ n + 1. Let 

p : E2 x M -+ Q 

b k . d e a C mapp1ng an 

E~= {(a,b) E E2: p;~wnPb~W 4l}, 

where Pab = p(a,b,-) : M -+ Q. Assume that: 
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(1) 
, 

for every a € E, a : M x E -+- Q (x,b) -+- p(a,b,x) is a 

vector-bundle morphism; 

(2) there exists an open dense subset A of E2 such that, for 

every (a,b,x) € AXM, at least one of the linear functions 

a! : E -+- ~ and b! : E -+- ~ is surjective. 

Then E~ is an open subset of E2. If k = 1, then E~ is open dense. 

PROOF. The openness of E~ follws at once from the fact that 

W is closed and the function E2 -+- CO (M,Q2) : (a,b) -+- (Pab'P
ba

) is 

continuous for the compact-open topology on CO (M,Q2). The fact 

that, for k = 1, E~ is residual follows at once from Proposition 2.2 

on setting a = plAxM, f3(a,b,x) = a(b,a,x) and observing that, 

locally, the derivative of a at (a,b,x) is given by the matrix 

( * 
It 

* ) a x 

0 0 i~ 

where the columns represent the partial derivatives of a with 

respect to the first, second and third coordinates, the top row 

corresponds to the 'fibre coordinate' of Q and the bottom row 

to the 'base' coordinate. 

2.4. A STRATIFIED SET. The following result is elementary and 

the proof is given here only for the sake of completeness. 

LEMMA 2.4. Let T be an n-dimensional CI vector-bundle over 
p 

a manifold M and let Q = ~ T be the Whitney sum of p copies of T, 

p ~ n. For each x € M, let Wx be the subset of Qx = T~ consisting 

of those p-tuples (vI ,v2 , .•• ,vp) € Qx which do ~ contain a basis 

of T, and let 
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w = ~J w • 
xe:M x 

Then W is a closed subset of Q of codimension p - n + 1. More 

precisely, there exists a finite sequence (V.) of submanifolds of 
1. 

M such that 

n-l 

,t 

W = U V. , 
i=l 1. 

t· L (~), and there are exactly (~) Vi's of codimension 
k-O 

(p-k) (n-k) for each k, 0 S k S n - 1. 

PROOF. It is clear that, locally, W is a product of an 

open subset of M with Wand so it is sufficient to prove the 
x 

lemma if M is a point and T is a single n-dimensional vector 

space. 

Let now a be a subset of {1,2, ..• ,p} and let V be the set of a 

all p-tuples (vl,V2, ••• ,v ) in TP such that the vectors {v. p 1. 

form a basis of the vector space spanned by {vl,V2, ••• ,v }. 
p 

is clear that 

W = UVa 
Os\a\Sn-l 

i e: a} 

It 

and so it is sufficient to show that each V is a submanifold of a 

TP of codimension (p-\a\)(n-\a\). 

To see this, assume that a = {1,2, ••• ,k} and let A be the 

set of all linearly independent k-tuples (k-frames) in Tk. Then 

A is an open subset of Tk and V is the kernel of the vector-bundle 
a 

morphism 
p-k k+l 

e A x TP- k 
-+ A x (? l\.. T, 
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where, for each a = (al ,a2,'" ,~) € A, we put a = al" a2" ••• " ~ 

and 

The result now follws at once from the fact that rankS 
a 

for every a € A. 

(p-k) (n-k) 

2.5. DIFFERENTIABILITY • From now on, M is an n-dimensional 

k+l. " . compact C man1fold and k 1S a f1n1te integer ~l. Let E = rk 

k be the vector space of C vectorfields on M together with its 

Fixing a Finsler structure on the k-jet bundle 

of sections of TM and taking the corresponding sup-norm we make 

E into a separable Banach space ([17], Theorem 12.2). 

LEMMA 2.5. The mapping 

~ : ExExMxR ~ TM, 

(X,Y,x,t) ~ «Xt)*(x»-l.Y(Xt.x) 

is of the class Ck- l • 

PROOF. Let v € T M and let x 
t u(t) = u(t,X,v) = (X )*(x).v • 

Then u is the integral curve of the differential equation 

(1) ~(t) = ~(u(t),X), u(O) = v 

on TM, where the parametrized vectorfield 

~ : TM x E ~ T (TM) 

is defined by the equation ~(u,X) = wTX(u) and w : T2M + T2Mis the 

involution which 'interchanges the second and third coordinates' 

(cf. [17], p. 17). 



- 92 -

Locally, the equation (1) is given by the system of 2n equations 

x = X(x) , 

u = DX(x).u. 

Since 

where 0 = id x T, ~ is of the class ck- l ([17], Theorem 12.3). By 

the theorem on dependence of the solutions of differential equations 

on initial conditions and parameters [3], 

u : RXEXTM -+ TM 

(t,X,v) -+ u(t,X,v) 

is of the class ck- l . Similarly, we have Ck-functions 

A : ExRXM -+ M : (X,t,x) -+ xt.x 

and 

(Y, X, t ,x) t 
- ----? Y(X .x), 

and so it is sufficient to note that 

~(X,Y,x,t) = u(-t,X,~(Y,X,t». 

2.6. RESULT. We are now in a position to prove the following theorem. 

THEOREM 2. 6. 
k+l Let 1:$ k < 00 and let M be a compact C manifold. 

Let E be the Banach space of ck vectorfields on M and let P c E2 

be the set of all irreducible pairs of Ck vectorfields on M. Then 

P contains an open dense subset of E2. 
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2n 
PROOF. Let T TM, Q = EeT be the Whitney sum of 2n copies 

of T and 

w = U Wx ' 
x€M 

where Wx consists of those 2n-tuples (Vl,V2,"'V
2n

) € Q
x 

= T;n 

which do not contain a basis of T • 
x By Lemma 2.4, W is a closed 

subset of Q of codimension n + 1. 

Let ~ be the mapping in Lemma 2.5, 

~ : E2 xMx R ~ T : (X,Y,x,t) + «Xt)*(x»-l.Y(Xt.x), 

and let 

~k = H-,-,-,k) 
k-l . The range of the C mapp1ng 

2n 
1jJ = (~o,h""'~2n-l) E2xM~nT T

2n 

is contained in the Ck- l submanifold Q of T2n and so 1jJ defines a 

k-l . C mapp1ng P such that the diagram 

E2 xM~T2n 

P "\ I inclusion 

Q 

commutes. It is easily seen that, for every X € E, 

# X : MxE ~ Q : (x,Y) ~ p(X,Y,x) 

is a vector-bundle morphism. Let now X € E and x € M be fixed and 

let 

(1) 

Then 

If X(x) ~ 0, then the points X,Xl, ••• ,x2n_l are mutually distinct 

It Q' . . and so X : E + 1S surJect1ve. x x 
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Let A c E2 be the set of pairs (X,Y) such that, for every 

x € M, at least one of the vectors X(x) , Y(x) is non-zero. A 

simple transversality argument applied to the evaluation map 
2 

E2 x M -?- lD T 

shows that A is an open dense subset of E2. 

for every x E M, at least one of the functions 

l: E-?-Q 
x x' 

is surj ective. We claim that 

# 
Y:E-?-Q 

x x 

If (X,Y) € A then, 

is an open dense subset of E • For k ~ 2 this follows at once 

from Lenuna 2.3. If k = 1, then Lemma 2.3 implies that EW is 

open; the density of EW follows from the result for k = 2 and from 

the fact that the space r 2 of C2 vectorfields on M is dense in 

E (Note that we may assume without loss of generality that 

M is a C~ manifold; cf. [15], p. 15.) 

If S = {X,y} and (X,Y) € EW' then, for every x € M, the 

collection of vectors 

Y(x), YIY(Xl)' ••• 'Y2n-1Y(x2n-l)' 

X(x), OlX(Yl), ••• ,o2n-lX(Y2n-l) 

(where x
t 

and Y
t 

are as in (1), Yt = yt.x and 0t = «yt)*(x»-l) 

contains a basis of T M. x 
Hence S(x) = T M for every x € M and, 

x 

by Theorem 5 of Part One, (X,Y) is an irreducible pair of vectorfields. 
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