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ABSTRACT

study the partition of a finite-dimensional
accessible sets of an arbitrary system A of
local diffeomorphisms of M and, in particular,

sets of an arbitrary system of differentiable

generalize the methods of Part One to study

the integrability of singular distributions on infinite-dimensional

manifolds.

In Part Three we return to finite-dimensional manifolds and

use the results of Part One to study in detail the contrasting

properties of integrability an@firfeduéibility of systems of

vectorfields on M.
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PREFACE

1. RESULTS. The contents of this thesis is divided into three
parts. Part One is (except in the Introduction) identical to a
paper which will appear in the Proceédings of the London Mathematical
Society. Part Two generalizes the results of Part One to infinite-
dimensional (Banach) manifolds and Part Three consists of two

shorter papers which could be considered as applications of the

results of Part One.

The main result of Part One is to show that the accessible
sets of an arbitrary collection A of ‘arrows' (= isotopy families
of local diffeomorphisms) on a manifold M possess a differentiable
structure which makes them into connected immersed submanifolds
of M. We also show that this differentiable structure is unique
and that, more genmerally, every differentiable function N + M
which factors set-theoretically through an accessible set L of A

factors differentiably through L. Moreover, a similar result

holds if we replace N by a locally connected topological space
and substitute 'continuous' for ‘'differentiable'. 1In short, the
accessible sets of A are almost as well-behaved as embedded

submanifolds.

As for the 'differentiability transversally to the accessible

sets' we show that the latter fit together to form a foliatiom with

singularities (a regular foliation if they happen to be all of the

same dimension). For example, the partition of the plane into
the graphs of the functions y3 = (x-c)3 does not represent the

collection of accessible sets of any set A of arrows on RZ.
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There is a simple description of the tangent spaces of the
accessible sets of A which allows us to compute their dimension
and to give a necessary and sufficient condition (homogeneity)
that A be integrable (that is, that it span the tangent spaces
of its accessible sets). This condition is later shown to imply
the "classical' integrability conditions such as the Frobenius
theorem and Nagano's results on integrability of (possibly singular)

real-analytic distributions [7].

In Theorem 2 we show that, if ~ is an arbitrary equivalence
relation en M, then there exists the greatest foliation with
singularities whose leaves are inscribed in the equivalence
classes of ~. If ¢ is a local diffeomorphism of M such that
x ~ y implies ¢(x) ~ ¢(y), then ¢ is a local diffeomorphism for
the differentiable structure defined by this foliation. The
collection of ~-preserving vectorfields on M is closed under

formation of the Lie bracket (§5).

In Theorem 3 we show that every subgroup G of Diff M definmes
a foliation with singularities whose leaves are the orbits of the
isotopy component Go of idM in G. The orbits of G are unions of
Go—orbits of constant dimension. In Theorems 4 and 5 we state
a similar result for groupoids of germs of local diffeomorphisms

and for arbitrary collections of differentiable vectorfields.

In Theorem 6 we re-formulate our integrability condition in
terms of Lie brackets. We also show how it implies various other
integrability conditions and give some examples illustrating their

relationship.
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In §6 of Part One we introduce the concept of 'multiarrows'.
This is a convenient gadget for replacing Lie brackets (infinites-
imal commutators) by 'finite' commutators. It is used here to

give a direct proof of the so-called Chow's theorem.

In Part Two we define the differentiability of (possibly sing-
ular) distributions on infinite—-dimensional (Banach) manifolds and
show that it can be described in terms of vector-valued one-forms.
The main result (Theorem 1) states that a weakly differentiable,
possibly singular, distribution is integrable if and only if it
is homogeneous. We give some other necessary and sufficient
conditions of integrability and show that an integrable distribution
B defines a unique differentiable structure o on M such that (M,o0)
is an integral submnifold of B. Further, ¢ is a foliation with
singularities and the connected components of 0 are the accessible

sets of B.

In 58 of Part Two we use Lie derivatives to give some necessary
and sufficient conditions that a vectorfield X respects a
distribution B and hence deduce the corresponding conditions of
homogeneit?. We also show how these conditions imply the standard
Frobenius theorem and prove that a real-analytic (possibly singular)
distribution is integrable if and only if it is involutive and

locally everywhere defined.

In the last section of Part Two we introduce the concepts of
a neat leaf of a distribution and a neat submanifold of M and

discuss a related unsolved problem.
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In Part Three, §1, we return to the integrability of a system
of vectorfields on a finite dimensional manifold and answer in
full some of the problems which were left open in Part One. In
particular, we show that, contrary to the claims in f6], [10] and
[11], the condition that a set S of vectorfields be 'locally of
finite type' is not sufficient for its integrability. We give
some related necessary and sufficient conditions of integrability
for the C case and show that they are not sufficient in the

real-analytic case.

Finally, in §2 of Part Three we prove that the set of irreducible
pairs of Ck—vectorfields on M is Ck—generic for every k 2 1. (A
pair S = {X,Y} of vectorfields on M is irreducible if the accessible
sets of S coincide with the connected components of M; the result

has been known for k = 2n [19]).

2. CONTEXT. Although the motif of this thesis goes back to
Caratheodory's work on Thermodynamics (cf. Math. Annalen 67, 1909)
the main reference is undoubtedly the 1939 paper of Wei-Liang Chow
[27. Chow's results can be summarized in our notation as follows.
Let S be a system of C! vectorfields on a manifold M and assume
that

1) dimS(y) = const for y € Q,

where Q is a neighbourhood of a point x in M(cf. Part One, §4.3).
Then the accessible sets of S define a regular foliation on a
(possibly smaller) neighbourhood Q' of x, which is tangent to the

distribution (§(y) ty e Q") The regularity condition (1) is
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of course a major restriction on the class of the admissible
systems of vectorfields, whereas the results of Part One are valid
for an arbitrary system S (and, more generally, for an arbitrary

collection of 'arrows' on M).

As far as I know, the first proof of a 'Frobenius theorem'
for singular (but real-analytic) distributions was published by
Tadashi Nagano in 1966 [7]. I have also benefited a great deal
from reading the papers [5] and [21] of Robert Hermann and from

Claude Lobry's 1970 paper [6].

A preliminary version of Part One appeared as [l1]. It has
since transpired that some of the results (notably much of §5 and,
to a lesser extent, the assertion of Theorem 5) partially

overlap with the recent work of Héctor J. Sussmann [9], [10].
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PART ONE

Accessible Sets, Orbits, and Foliations

with Singularities



INTRODUCTION

In §6§1-3 we prove a general theorem on accessible sets of
collections of 'arrows' on the CY-manifold M, where 1<qsuw.
In §4 we apply this result to the following situations:
(1) the partition of M into G-orbits, where G is an arbitrary
subgroup of Diff (M);
(2) a similar situation, in which G is replaced by an arbitrary
groupoid T of germs of local diffeomorphisms of M; and
(3) the partition of M into the accessible sets of an arbitrary

collection of vectorfields on M.

In §5 we study the tangent spaces of accessible sets and obtain
various generalizations of the Frobenius theorem. Finally in §6
we introduce the concept of a multiarrow and give a direct proof

of the so-called Chow's theorem.



§1. ACCESSIBLE SETS FORM A FOLIATION WITH SINGULARITIES

Let M be a finite-dimensional paracompact Cq-manifold, l1<qsuw.
The word 'differentiable' always refers to this fixed class cI. A
subset L of M is said to be a k-leaf of M if there exists a differ-
entiable structure o on L such that (i) (L,0) is a connected
k~dimensional immersed submanifold of M and (ii) if N is an
arbitrary locally connected topological space and f : N + M is a
continuous function such that £(N) < L, then f : N -+ (L,0) is

continuous.

It follows from the properties of immersions that if f ; N+ M
is a differentiable mapping of manifolds such that f(N) < L, then
f : N~ (L,G)lis also differentiable, In particular, ¢ is the
unique differentiable structure on L which makes L into an immersed
k-dimensional submanifold of M. Since M is paracompact, every

connected immersed submanifold of M is separable, and so L does not

admit a differentiable structure of a connected immersed submanifold

of M of a dimension other than k.
Every embedded connected submanifold of M is a leaf, and so

is the flow-line of the irrational flow if M is the ;wo—torus.

We say that F is a c%-foliation of M with singularities if F

is a partition of M into c9-leaves of M, such that, for every xe¢M,

there exists a local Cl-chart y of M with the following properties:

(a) The domain of y is of the form UxW, where U is an open

neighbourhood of O in Rk, W is an open neighbourhood of

n-k

0 in R and k is the dimension of the leaf through x.



(b) ¢(0,0) = x.

(¢) If L is a leaf of F, then L n y(UxW) = y(Ux 2), where

2 = {weW : y(O,w) €L},

lLet d(x,F) denote the dimension of the leaf of F which contains
the point x, It follows immediately from the above definitiomn
that the function x + d(x,F) is semi-continuous below. We write
M,E) for the cl-manifold with the same underlying set as M and
with the Cl-structure of the disjoint sum of the leaves of F; in
general, this is a disconnected manifold whose components are not

necesgarily all of the same dimension.

By a local diffeomorphism of M we mean a diffeomorphism of

one open subset of M onto another. We say that a differentiable
function a : RxM + M is an arrow if its domain is an open subset
of RxM and if it satisfies the following two conditions: (i)
for every teR, at - a(t,~) is a local diffeomorphism of M
(possibly with the empty domain) and (ii) if (t,x) belongs to the
domain of a, then so does (s,x) for every s between O and t and
a(0,x) = x. We write é(t,x) for the tangent vector at t of the
curve a(-,x), and (at)*(x) for the differential at x of the

t

function a~ : M > M, If y = a(t,x), then a(t,x) € TyM and

(at)*(x) is a linear mapping TxM - TyM.

An example of an arrow is the flow of a differentiable

vectorfield (84.3). In general, an arrow a does not necessarily

. . +
satisfy the condition atts o ato a®.



Let A be a collection of arrows on M, We write 6A for the
set of all local diffeomorphisms ¢ of M such that ¢ = at for some
a€ Aand t € R, and let YA denote the set which consists of the
identity mapping of M and all the local diffeomorphisms of the form
d1°02° ... o ¢p, where p is an arbitrary positive integer and ¢i
or ¢i-1 belongs to 6A for 1Sis<sp. We writey = x mod A if
y = ¢(x) for some ¢ € YA. This is clearly an equivalence relation

on M; its equivalence classes are termed the accessible sets of

A,

Given x € M, we consider two vector subspaces, A(x) and A(x),
of the tangent space TxM, spanned respectively by the sets
{a(t,y) : a € A, a(t,y) = x} and {¢*(y).w : ¢ e YA, ¢(y) = x, we A(y)}.
If ¢ € YA and ¢(x) = y, then clearly ¢*(x).A(x) = A(y). Thus, if

x = ymod A, then dimA(x) = dimA(y).

THEOREM 1. Let F be the partition of M into the accessible
sets of A. Then F is a foliation with singularities and, for

every x € M, Tx(M,E) = A(x).

In particular, every accessible set of A is a leaf of M and thus
admits a unique differentiable structure of a connected immersed

submanifold of M,

Let ~ be an equivalence relation on M. We say that a local
diffeomorphism ¢ preserves ~ if ¢(x) ~ x whenever x belongs to the
domain of ¢. We say that ¢ respects ~ if ¢(x) ~ ¢(y) whenever
x ~ y and both x and y belong to the domain of ¢. An arrow a
preserves (or respects) ~ if so does the local diffeomorphism at

for every t € R.



THEOREM 2, Let ~ be an equivalence relation on M and let A
be the collection of all the arrows on M which preserve ~. If
¢ € LocDiffM and ¢ respects ~, then ¢ € Loc Diff (M,F), where

F = F(A) is the partition of M into the accessible sets of A.

§2 'HOMOGENEQUS AND SYMMETRIC ENVELOPES

A collection A of arrows on M is said to be homogeneous if
A(x) = A(x) for every x € M, that is if ¢*(x).A(x) c A(y) whenever
¢ or ¢_1 belongs to 6A and ¢(x) = y; A is symmetric if ¢ ¢ 6A

implies that ¢—1 is a composition of finitely many members of 6A.

We write Ab(x) for the vector subspace of TxM spanned by the

set {a(0,x) : a € A, (0,x) € domain(a)}.

PROPOSITION 2.1. If A is a collection of arrows on M, then
there exists a symmetric homogeneous collection of arrows B such
that the accessible sets of A and B are the same and A(x) = B(x) = Bo(x)

for every x e M

LEMMA 2.2. Let A# be the gollection of all arrows which can
be written as at+s o(as)-l or as_t °(as)“1 for some a € A and 8 € R.
Then

#

(a) YA = VA;

(b) a* is symmetric;

(c) A:(x) = A#(x) = A(x) for every x e M;

#

(d) the accessible sets of A" and A are the same; and

(e) 1if A is homogeneous, then so is A#.



PROOF.  Note that the assertion (d) follows at once from (a)
and that (e) follows from (a) and (c). Let bt = at+8° (as)'-1 and
et = 2%t (as)—l. If x lies in the domain of bt, then it lies
in the domain of b' for every t between O and t, and so b (and
similarly c) is indeed an arrow. Taking s = 0 (t = g) we get

t

A s s, -1 # - '
b a” (c” = (a) ") and so 8AcBA" ¢ YA and (04) 1c eA#, proving

the assertions (a) and (b). Finally the equations

B(t,x) = a(t+s, (a%) 7 1.x),
c(t,x) = -a(s-t, (a®) l.x)
and

(O,as.x) = é(s,x)

£ - %

show that A#(x)c:A(x)C:A (x), which proves the assertion (c).

(o]

LEMMA 2.3, Let A* be the collection of all the arrows a on M
such that:
(i) the domain of a is of the form J xV, where J is an open
interval in R and V is an open subset of M.
(ii) there exists b € A# and ¢ € YA such that, for every t
in J and x in V,
a(t,x) = ¢°bt°¢—1 X
Then
(a) ‘every ¢ € YA* is a restriction of some 1ogﬁ1 diffeomorphism
in YA; :
(b) the accessible sets of A* and A are the same;

(c) A*(x) = A(x) for every x € M; and

(d) A* is a homogeneous set of arrows.



PROOF. Note that the assertion (d) follows at once from (a)
and (c). Since (a), (b) and the inclusion A¥(x) c A(x) are obvious,
it remains to show that K(x)c:A*(x). Let w € A(y), ¢ ¢ YA and
§(y) = x, By Lemma 2.2¢ W = S(O,y) for some b € Aﬁ. There exists
§ > 0 such that a® = ¢bt¢—1 is defined for |t| <& on a sufficiently

small neighbourhood of x. Hence ¢*(y).w = a(0,x) € A*(x), Q.E.D.

Proposition 2.1 is now proved by taking B = (A*)#.

§3. THE PROOF OF THEOREMS 1 AND 2

LEMMA 3,1 Let L be a subset of M, For every xe L, let
L(x) be a vector subspace of TxM. Assume that dimL(x) = k for
every xe L and that, for every xe¢ L, there exists a local chart

Y of M such that

(a) the domain of y is Ux W, where U and W are open neighbourhoods

of the origin in Rk and Rp_k respectively;
(b) v(0,0) = x;
() L n y(UxW) = y(Uxg), where £ = {seW : y(0,s) ¢ L}; and

(d) Dw(t,s) e L(¥(t,s)) for 1sisk and all (t,s) ey (L),
Then there exists a differentiable structure ¢ on L with the following

properties:



(i) (L,0) is an immersed submanifold of M and Tx(L,a) = L(x)

for every xeL;

(ii) If f : N+ M is a differentiable mapping of manifoids
such that £f(N) c L and f*(&).TENcL(f(E)) for every

EeN, then £f : N » (L,0) is differentiable.
(iii) Every connected component of (L,0) is a leaf of M.

REMARKS. (1) It follows from (ii) that o is the unique
. differentiable structure on L which satisfies the condition (i).
(2) Apart from (iii)', the assertions of this lemma do not depend

on the paracompactness of M.

*) of th
e

The proof of Lemma 3.1 consists in piecing together some
arguments in [1] and we give it here merely for the sake of

completeness.

PROOF. A function ¢ : UxW » M is said to be a privileged
chart of M if it is a local chart of M and if it satisfies the

conditions (a), (c) and (d) above.

(A) Let ¢y : UxW > M be a privileged chart of M and let
f : N> Mbe a differentiable mapping of a connected manifold N
into M such that £(N) cLn y(UxW) and, for every £eN, f*(E).TENCL(f(E;)).

Then there exists a constant we W such that £(N) c ¢(Ux {w}).

* . . ..
) See pp. 91-95; it is assumed there that L = M, and the assertion (ii)

is not formulated.



To prove this, let p : kaRn-k

+ Rn'-k be the projection om
the secand coordinate and let g = poy~l. As goy.(t,s) = g,

we have Di(s oy)(t,s) = g*(np(t,s)).Diw(t,s) =0 for 1<icgk,

1f y(t,s) e L, then Dyy(t,s), Dzw(t,s)....,Dkw(t,s) span L(y(t,s)),
which proves that g*(x).L(x) = O for every xe Lny(UxW). Hence

(go£)*(E) = O for every EeN. As N is connected, g f is constant

on N, Q.E.D.

(B) Let Y be the collection of all the functions of the form
U v(=,w) : UlP + L, where § is some privileged chart of M with
the domain U\p xww, weww, and y(O,w)eL. Letf : N> Mbe a
differentiable mapping of a menifold N into M such that f(N) cL
and, for every £eN, f*(E).TENcL(f(E)). If wwe ¥, then
G = f'l(ww(Uw)) is an open subset of N, and (daw)"1 of : G~ R is

a differentiable functiom.

Indeed, it follows immediately from (A) that G is the union
of some of the connected components of the open set f"l(:p(Uw xww)),

and it i obvious that (¥ )7lof = y7lof]..

(C¢) VY is an atlas of a differentiable structure ¢ on L which

satisfies the assertions (i) and (ii).

For it follows immediately from (B) that the charts of V¥
are mutually compatible; as their ranges cover the whole of L,
¥ is an atlas of a differentiable structure o, which obviously
satisfies the assertion (i). The assertion (ii) follows from

(B).
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(D) By paracompactness of M, every connected component L° of
(L,0) is separable in the topology 71(0) of the differentiable structure
o, Let ¢ : UxW + M be a privileged chart of M and let
L - {seW : y(0,s) ¢ Lo}. Since {¥(U,s) : se 20} is a collection
of mutually disjoint 1(0)-open subsets of Lo’ w({0} x go) is an
isolated subset of L . Hence 1 is countable and, therefore,
completely disconnected subset of W. It follows that Ux {0} is
a connected component of U><lo in the product topology of UxW,
and so Y(Ux {0}) is a connected component of (U x 20) = Y(UxW)n L,

in the induced topology T(LO,M). Since U can be taken arbitrarily

small, we have proved that every point of L has a fundamental

system of r(a)— eighbourhoods that are t(L ,M)-connected components
of 1(L ,szngighbourhoods.

It follows trivially from the definitions and the above

assertion that Lo is a leaf of M, which concludes the proof of the

lemma.

PROOF OF THEOREM 1., By Proposition 2.1, we may assume that A

is homogeneous and that A(x) = Ao(x) for every x € M.

Let L be an accessible set of A and let x € L. Choose

a; ¢ A, 1<i<k, such that éi(o,x) form a basis of A(x) and let

t .
o(t,, tz,...,tk,y) = a?1° as2o ... oakk(y). Then ¢ is a
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. . k
differentiable function R x M + M and we may assume that the domain
of ¢ is of the form Ux V, where U is an open neighbourhood of the
origin in R? and V is a neighbourhood of x in M, It is obvious

that
(i) for every teUand yeV, &(t,y) =y (md A) and ¢(0,y) = y;
(ii) D,6(0,%) = Ai(o,x) for 1sisk. We claim that

(iii) for every teU, yeV and i between 1 and k,

DiO(t,y) e A(%(t,y)).

To prove (iii) note that, for example D,d(t,y) = (afl)*(z).ig(tz,w)
where a,(tp,,w) = z and a;(t;,z) = &(t,y). Since iz(tz,w) € A(z),

the result follows from the homogeneity of A.

Let now n = dim M and let Q be an (n-k)-dimensional submanifopld
of M such that xeQ and TxM = TxQ + A(x). Let £ : W-> Q be a local
chart for Q such that £(0) = x and £(W) c Vand lety : UxW -+ M
be defined by y(t,s) = &(t,f(s)). Since the rank of y at (0,0)
is n, ¢y is a local chart of M fog sufficiently small U and W.

It is easy to check that | satisfies the conditions of Lemma 3.1
with L(y) = A(y) and that the condition (¢) remains valid if L is

replaced by an arbitrary accessible set of A.

Let ¢ be the differentiable structure on L whose existence
is asserted in Lemma 3,1 It remins to show that (L,0) is a
connected immersed submanifcld of M. Let u(t) = a(t,x), where
acA and xeL. Then u : R+ M ig differentiable, the range of

u is contained in L and u(t) € A(u(t)) for every t in the domain
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of u. By Lemma 3.1 (ii), the 'arrow-path' u : R > (L,0) is
differentiable and it remains to note that any two points of
L can be joined by a succession of such arrow-paths (traced

forwards or backwards).

LEMMA 3.2. Let ~ be an arbitrary equivalence relation on
M and let A be the set of all arrows which preserve ~. Then
A is symmetric and homogeneous and A(x) = Ao(x) for every x in

M.

PROOF. It is clear that A" c A and A* < A, (See Lemmas

2.2 and 2.3,)

PROOF OF THEOREM 2. Consider ¢ € Loc Diff (M) such that
¢ respects ~. Let x ¢ domain (¢). Let L be the accessible set
of A through x and let L' be the accessible set of A through ¢(x).
Let k = dimL and let 8158250058 be members of A such that
éi(O,x) form a basis of A(x). 1f b; - O&EO-l. then bi € A,
1sisk., Ifys= f(tl,cz,....:k)'- allal2.o ... °a:k(x) and |t |
are sufficiently small, then ¢(y) = bSlob520 ... b:“(o»(x)) and
so ¢(y) e L', Since the rank of f : Rk + L is k, we have proved
that there exists a neighbourhood U of x in L such that
$(U) c L', Since ¢ : U + M is differentiable and L' is a leaf

of M, it follows that ¢ : U +~ L' is differentiable, Q.E.D.
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§4 COROLLARIES OF THEOREMS 1 AND 2

4.1 Let G be a subgroup of Diff(M). Two elements g and h of
G are said to be G-isotopic if there exists a differentiable mapping
a : RxM + M such that ltecforevcryten, nt-gfortso
and a®t = h for t 2 1. This is an equivalence relation and the

component G of the identity is a normal subgroup of G.

THEOREM 3. (a) Let F = F (Go) be the partition of M into Go-orbits.

Then F is a foliation with singularities.

(b) G c Diff(M,F) and every G-orbit consists of Gd-orbits

of constant dimension.

(¢) 1If G/Go is countable, then every G-orbit admits a unique

structure of a separable immersed submanifold of M.

PROOF. Let A be the set of all differentiable mappings
RxM + M such that a* ¢ G for every t ¢ R and at - idM for t < 0.
Then A is a symmetric set of arrows and the accessible sets of A
are the orbits of Go. The assertion (b) follows at once from
Theorem ) if we take ~ to be the equivalence relation
defined by the action of Go and use the fact that G° is normal.
The assertion (c) follows easily from (b) and the fact that every

Go-orbit is a leaf of M.

4.2 If ¢ € Loc Diff (M) and x belongs to the domain of ¢, let
vY(x,4) denote the germ of ¢ at x. Let e(x) = Y(x,idM) and let

4 = A(M) be the groupoid of all germs of local diffeomorphisms of

M. Leta :A~+Mand w : A > Mbe the projections onto the initial

and final points respectively, so that a(y(x,¢)) = x and
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Let I' be a subgroupoid of A. We 8ay that g € I and h ¢

are I'-isotopic if a(g) = a(h) and if there exists an open
neighbourhood U of a(g) and a differentiable mapping a : Rxy » M
such that (i) vy(a(g),a%) ¢ T for every t € R, (ii) v(a(g),a%) = ¢
for t £ 0 and (iii) Y(a(g),at) =h fort > 1. Let Fo ={gel : g
is T-isotopic to e(a(g))}. Then I, is a subgroupoid of T and g

and h are T'~isotopic if and only if I‘og = I‘oh.

THEOREM 4. The assertions of Theorem 3 remain valid if we
replace G by T, G_ by I and GcDiff(M,F) by T c Loc Diff (M,F),
where ¢ ¢ T if and only if y(x,¢) € I for every x in the domain of

6.

4.3 If X is a differentiable vectorfield on M, exp X denotes the
flow of X, so that t + expX.(t,x) is the integral curve of X
passing through x at t = O. If S is a set of vectorfields on M

we put expS= {expX: X ¢ S}. It is clear that exp$S is a symmetric

set of arrows; the accessible sets of S are, by definition, the

accessible sets of expS.

We write 8S, ¥S, S(x) and S(x) instead of 6expS, YexpS$S,
(exp S) (x) and (exp 5) (x), so that S(x) is the vector subspace
of TxM spanned by {X(x) : X € S}, and S(x) is spanned by all the

vectors of the form ¢*(y).X(y), where ¢ € ¥S, ¢(y) = x and X € S.
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THEOREM 5. Let F = F(S) be a partition of M into the
accessible sets of S. Then F is a foliation with singularities*)

and Tx(M,E) = §(x) for every x in M.

COROLLARY. TX(M,E) = S(x) for every X ¢ M if and only if
expS is a homogeneous set of arrows, that is if and only if

(exp Xt) *(x).S(x) < S(y) whenever X € S and expX(t,x) = y.

§5. LIE BRACKETS AND SUFFICIENT CONDITIONS OF HOMOGENEITY

LEMMA 5.1. Assume that F is a partition of M into immersed
submanifolds and let S be the collection of all vectorfields on
M that leave F invariant. Then

(a) X e S if and only if X(x) € Tx(M,g) for every x € M;

(b) If X and Y belong to S, then [X,Y](x) ¢ TX(M,E) for every

X ¢ M; and so

(¢) if q = » or w, then S is closed under formation of the Lie

bracket.

* k3
) See also [10], where it is proved that the accessible sets of
S are immersed submanifolds of M (but not that they fit together

to form a foliation with singularities). The 'D-invariance' in

[10] is equivalent to our 'homogeneity'.
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PROOF. The assertion (a) depends on the existence and uniqueness
theorem for ordinary differential equations (see [8], Lemma 2.4)
and (b) follows from the fact that (M,F) is an immersed submanifold

of M (see [4], (17.14.3.5)).

COROLLARY 5.1, Let ~ be an arbitrary equivalence relation
on M and let S be the set of all vectorfields on M that leave
the equivalence classes of ~ invariant. If q = » or w, then

S is closed under formation of the Lie bracket.

PROOF. If A is the collection of all the arrows on M that
preserve ~ and F = F(A), then clearly expSc A and X € S if and

only if X leaves F invariant.

~
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THEOREM 6. Let q 2 2 and let S be a set of Cl-vectorfields

on M, The following assertions are equivalent:
(i) exp$S is homogeneous.

(ii) Given Xe S and xe M, there exists ¢ > 0, a finite set
*
{xl,xz,...,xp} < § and continuous ) functions Aij i J-e,e[ > R
(1<1i, j <p) such that (a) the vectors X;(x), Xz(x),...,xp(x) span

S(x) , (b) for every t € ]-e,e[ and j between 1 and p

[X,Xj](U(t)) = E Aij (0)X; (u(t)),

i=1

where u(t) = exp X .(t,x) and (c) Xi(u(t)) span S(u(t)).

PROQOF. The implication (i)=3 (ii) follows easily from Theorem
5 and Lemma 5.1. Assume (ii), and let ¢(t) = (expxt)*(x).
If y = u(t), we must show that ¢(t).S(x) = S(y). By a compactness
argument, it is sufficient to prove this for |t| < e. Put

vj(t)-¢(c)'1.xj(u(c)). Then vj(c) e T.M and (using,

for example, the formula (17.14.3.2) of [4])

(AOR ¢kt);1;tx,xj](u(c)) = o(t)7! E A5 (% (u(e)) = ? SROIAOR

i=l i=1

Let H : T M > R be a linear functional and let h, (t) =<'H,Vi(t)> and
LORNCRORTORIN NOME R,  Then h(t) = A(t)h(t), where

A(t) is the p x p matrix with entries Aij' Thus h(t) = 0 if and

only if h(0) = O, and it follows that the vectors Vl(t),VZ(t),...,Vp(t)

span the same subspace of TxM as the vectors V;(0),V,(0),... ,Vp ).

Since Vi(O) = Xi(x) span S(x) and Vi(t) = 0(t)'1.Vi(u(t)) span

*) It is sufficient to assume that )‘ij are Lebesgue integrable.
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o(t)"1.5(y), we have S(x) =¢(t)"1.8(y), Q.E.D.

Let R* denote the ring of germs at x of real-valued Cq-functions
and let S* denote the module over R* generated by the vectorfields

in §. Following Lobry [6], we say that S is locally of finite type

if, for every x €M, there exists a finite set Fc S such that
(1) F(x) = S(x) and (ii) [S,F]x c FX, Consider the following conditions
on S (where we assume for simplicity that q = » or w):
(H) expS is a homogeneous set of arrows;
(1) S is locally of finite type;
(2) S is closed under formation of the Lie bracket and,
for every xeM, s* is a finitely generated module over
Rx;
(3) S is closed under formation of the Lie bracket and
dimS(%X) is locally constant on M;
(4) S is closed under formation of the Lie bracket, q = w, and
the vectorfields in S are defined evervwhere on M,
(5) dimS(x) <1 for every x e M,
(6) S is closed under formation of the Lie bracket.
(7) % is locally of finite type and q # w. Here S is the set
of all C” vectorfields X such that X(y) e S(y) for ever

Y ¢ domain X,
PROPOSITION 5.2, The conditions (3), (4), (5) and (7) imply (H).

The assertions (5)=> (H) and (3)=>(H) are easily deduced from
Theorem 6 and are left to the reader. The proof of (4)=>(H) is given
in Nagano's paper [7]; a simpler proof (of a slightly stronger result) using
i

Theorem 6 is given in [12]. The only proof of; (7)=x (H) known to the

author is given in [12].
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It is claimed in [6] (and also in [10] and [11]) that 1) =),

but this assertion is false [12].

REMARKS . (a) The examples below show that (6)7L>(H), (H)fé?(l)

and ((5) and (6))7€>(2)-

(b) Note that (3)=>(H) in combination with Theorem 5 gives
the classical Frobenius theorem and (4)=>(H) together with Theorem 5
give Nagano's theorem on integrability of real-analytic distributions
with singularities [7]. Thus Theorems 5 and 6 and Proposition 5.2
taken together can be regarded as a generalization of the Frobenius

theorem.

COROLLARY 5.2. Let q = » and let [S] denote the smallest set of
vectorfields on M which contains S and is closed under formation of
the Lie bracket. Let L be an accessible set of S, Then [§](x) = T L
for every x € L. If dim[S](x) is constant on L, then [S](x) = T.L

for every x ¢ L.

PROOF. The first part follows at once from Lemma 5.1.
Let dim[S](x) be constant on L. Without loss of generality, we
may assume that L = M, Since S ¢ [S], L is an accessible set of
[S]. By Proposition 5.2, [S]|L is homogeneous, and so the assertion

follows from the Corollary of Theorem 5.
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EXAMPLE 5. 3. Let ¢ : R> R be defined by ¢(x) = 0 for x < 0

1/x for x > O. Let M = R3 and let § = {X,Y}, where

and ¢(x) = e
X = 2 and Y = =+ ¢ (x-1) 2 + ¢(-1-x) 2 It is easy to check

Ix ax 3y 9z ° y to chec
that L = R3 and that dim [S](x,y,z) = dim S(x,y,z) =1 if

-1sx<1 and 2 otherwise. In particular, exp[S] is not homogeneous.

EXAMPLE 5.4. Let M = RZ and let S consist of the vectorfield
g& and all the vectorfields of the form ¢(y)ex§%3 where ¢ : R > R
is a differentiable function such that ¢(x) = P(1/x).exp(-1/x2)
for some real polynomial P and all x # O. If F is the partition
of R? into the accessible sets of S, then clearly F = {upper half-plane,
x-axis, lower half-plane} and S(x) = Tx(Rz,E) for every x ¢ R2. By the

Corollary of Theorem 5, exp S is homogeneous. We claim that S is not

locally of finite type.

Indeed, assume that F = {Xl,Xz,...,Xp} satisfies the assumptions
(i) and (ii) of Lobry's condition at the origin of R?. It follows
. ) 3 x 0
from (1) that 5 € {XI,XZ,...,XP}, say 37 = X;. Let Xi(x,y) = ¢i(y)e 3y

2<is<p, and let X(x,y) = ¢(y)ex-a%e S. By (ii),

be* = [k ™ ] = [XLX] = A GoY)gy ¢ izzki(x,ywi(y)ex =
for x and y sufficiently near the origin. Comparing the coefficients
at g% and setting x = 0, we see that ¢(y) = izzai(y)cbi(y). There
exists an integer k > O such that, for 2<isp, ¢i(y).yk.exp(1/y2)

is continuous at y = 0, and so ¢(y).yk.exp(1/y2) is also continuous.

Setting ¢(y) = (1/y)k+1.exp(-1/y2) for y # 0, we arrive at a

contradiction.
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EXAMPLE 5.5. Let M = R and let S be the set of all vectorfields
of the form ¢(x)€§5 where ¢ is as in Example 5.4. Then S satisfies
the conditions (5) and (6) of Proposition 5.2, but the condition (2)

breaks down at the origin.

§6. MULTIARROWS. A DIRECT PROOF OF CHOW'S THEOREM

6.1. Throﬁghout this section, we assume that q = » or y and let [S]
denote the smallest set of vectorfields on M which contains § and

is closed under formation of the Lie bracket. The following
theorem follows from the results of Chow [2] and is usually referred

to under his name ([5], [b], [8]).

THEOREM (Chow). Let L be an accessible set of S and let

xel. If dim{S](x) = dim M, then L is an open subset of M,

PROOF. This follows immediately from Theorem 5 and Lemma

In this section we given an alternative proof of Chow's theorem,

which is based on the concept of a multiarrow (see 6.3).

6.2, Let £ : Rk + R® be a smooth function defined in a neighbourhood
of the origin of Rk. Let x € R® and assume that f(t) = x whenever
at least one component of t = (tl,tz,...,tk) is zero. Clearly,

p§! pb2 ... Dik £(0,0,...,0) = O whenever some p, = 0. In

particular,
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(a) £(t) = x + tytp...t, DE(O) + NOR Skt

where D = DiDy.s
k+l

y, w(t) is a symmetric (k+l)-linear mapping
(ke1) _

Dk
+ R which depends differentiably on t, and t

= (t,t,...,t) ¢ RO ([3], B.14. 3), (8.12.7)). 1If

(R

o 3 R"—> R™ is a smooth function defined in a neighb;urhood of
X, it is easily checked that

(b) D(¢ © £)(0) = ¢*(x).D£(0).

In particular, Df(0) is a well-defined vector in TxM if R" above

is replaced by a smooth manifold M.

Note also that (t2,t3,...,tk) > le(O,tz,ta,...,tk) is a
smooth function from RF-I into the vector space TxM and that
DE(0) is its (k—l)Stvmixed partial derivative. As
le(o,tz,t3,...,tk) = 0 whenever one of the components of (tz,t3,...tk)
is zero, the above arguments show that

D1£(0,tz,t3,. .05t ) = tzts...tkﬁf(o) + 5.t ®,
where t = (tz,t3,...,tk). Hence (at least if tptj...t, #0),
D1£(0,t) = tyt3...t a(t),

where a(t) + Df(0) as t + O.

6.3 A smooth function a : Rk><M + Mis a Egltiarrow of order k if

(a) a is defined on an open neighbourhood of 0xM;

(b) for every t in Rk, at = a(t,-) is a diffeomorphism

of an open subset of M onto an open subset of M;

(c¢) a(t,x) = x whenever (t,x) belongs to the domain of
a and at least one component of t = (tl,tz,...,tk)

is zero.



1f a(t,x) =y, 1<i<k, we write Dia(t,x) € TyM for the partial
derivative of the function a(~,x) : Rk + M and a*(t,x) : TxM + T M
for the differential of a® = a(t,-) : M+ M, It follows from (6.2)
that Da(0,x) = D1D2...Dka(0,0,...,0,x) is a well-defined element
of T M and that, for t = (tp,t3,...,t,) € o tatg...t, # 0,

(d) D1a(0,t,x) = t2t3...th(E,x), lim X(t,x) = Da(0,x).
0

We write Ak for the set of all k~multiarrows on M and put
A -‘\j/ Ak' If a € A, Da denotes the smooth vectorfield
M~ :;1: x - Da(0,x). The bracket of a ¢ Ak and b € Ay is the
k+f-multiarrow [a,b] defined by

(e) [2,b] (t,8,x) = (b%5)"1o (a%)"1 o (b%) o (a%).(x)

LEMMA 6 , 3.

D{a,b] = [Da,Db].

PROOF. Let £(t,x) = @) 1(x) and g(s,x) = (°)71(x). Fixing
xe€M and the local coordinates, we assume that M = R°. Let
¢(t,s) = [a,b](t,s,x) = g(s,f(t,b(s,a(t,x)))), so that
D[a,b] (x) =D.5_4(0,0).
By (6.2.(b)),
D ¢(t,0) = D _g(0,f(t,a(t,x)) +
+ g*(O,f(t,a(t,x)).f*(t,a(t,x)).ﬁsb(o,a(t,x)) =
= D_g(0,%) + £*(t,a(t,x)).Db(alt,n).

If y(t) = £*(t,a(t,%)) and t = (tz,...,t,), then

D1¢(0,t) = D £%(0,E,x) + £%*(0,t,x).D1a(0,t,x)

= D, £*(0,t,x)
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because f*(0,t,x) 2 id and so £**(0,t,x) = 0. Hence Dy(0) = Df*(0,x)
and ,
D,D,#(0,0) = (DEY)*(0,x).Db(x) + £%(0,x) (Db)*(x).Da(x) =
= (Db)*(x).Da(x) + (D£)*(0,x).Db(x).
Differentiating the equation f(t,a(t,x)) = x, we immediately see
that Df(0,x) = -Da(x), and so (cf. [4), 17.14.3.2)
DD ¢(0,0) = (Db)*(x).Da(x) - (Ba)*(x)Db(x)
= (Da,Db](x),

Q.E.D.

6.4 Let ~ be an equivalence relation on M. We say that a
multiarrow apreserves ~ if a(t,x) ~ x for all (t,x) in the domain
of a. Let A denote the set of all the multiarrows on M which

preserve ~.

LEMMA 6.4.1. Let V = DA be the collection of all the
vectorfields of the form Da, a € A. Then V is closed under

formation of the Lie bracket.
PROOF. This follows at once from Lemma 6.3

LEMMA 6.4.2. If didﬁ(x) = d, then there exists an immersion

v o Rd + M such that

(a) ¢ is defined on a neighbourhood of O € Rd and ¢(0) = x.

(b) w(t) ~ x for every t in the domain y.

PROOF.  Choose a; ¢ A so that the vectors Daj(x), ﬁaz(x),...,ﬁad(x)
are linearly independent. It follows from (6.3.(d)) that there

se] .
exist Ai € R '~ such that the vectors Dlai(o,xi,x) are also linearly

independent. Consider the arrows bi defined by b; - ai(t,ki.')
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. t t
and let W(tl.tz,..-.td) = byl °b§2 ° e °bdd.(x). It is clear that

V satisfies the conditions (a) and (b) of the lemma and that
Diw(o) = Dlai(o,xi,x), 80 that ¢ restricts to an immersion on a

sufficiently small neighbourhood of the origin.

PROOF OF CHOW'S THEOREM, Let ~ be the relation
x=y(mod expS). It is clear that S ¢ ¥ and so, by Lemma 6.4.1,
[S] €« ¥. Hence dimV(x) = dim M and Lemma 6,4.2 implies that there
is an open set U in M such that x e Uc L. If y ¢ L, then
y = ¢(x) for some ¢ ¢ ¥S. Let W be a neighbourhood of x contained

in Un (domain(¢)). Then y ¢ ¢(W) « L, which proves the assertion of

the Theorem.



PART TWO

Integrability of singular distributions on

infinite-dimensional manifolds
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INTRODUCTION
Let M be a €Y Banach manifold, where 2 < q<uw. To simplify

the notation, we assume that M is modelled on a single Banach

space E.  The word differentiable refers to a fixed class CT,

where 1sr<q-1 and we take * = ® = 1 and w = w - 1.

A distribution B on M is a family (Bx : xe M), where each B

is a topological direct summand of the tangent space TxM. B is
regular if it defines a differentiable subbundle of the tangent (0.1)

bundle TM, otherwise B is singular. If B is singular, then Bx
need not be isomorphic to By even if x and y lie in the same

connected component of M.

By an immersion we always mean a split immersion, so that a
differentiable function £ : N -~ M is an immersion if and only if,
for every x in N, the differential f*(x) is an isomorphism of TxN

onto a topological direct summand of Tf(x)M'

An immersed submanifold of M is a subset L of M together with

a differentiable structure ¢ on L such that the inclusion mapping
of L into M is an immersion. We identify the tangent space TX(L,o)

at xe L with the corresponding subspace of TxM’ L is an

integral manifold of the distribution B if T_(L,0) = B  for every (0.2)
x€ L,
We say that B is an integrable distribution if there exists (0.3)

a differentiable structure ¢ on M such that (M,0) is an integral

manifold of B.
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In §84 and 5 we define the differentiability of (possibly
singular) distributions and show that it can berdescribed in terms

of vector—valued one-forms on M,

Our main results are collected in §7, where we show that a
differentiable (possibly singular) distribution is integrable if
and only if it is homogeneous (0.6) and give some other necessary
and sufficient conditions of integrability. We also prove that
the differentiable structure ¢ which makes M into an integral

manifold of B is unique, that every integral manifold of B is an

as defined in §2.

A differentiable vectorfield X, defined on an open subset
of M, is said to lie in B of X(x) ¢ Bx for every x in the domain
of X. We say that a vectorfield X (which does not necessarily
lie in B) respects B if

x5*(x) .3 = B,

whenever X .x = y. B is said to be homogeneous if every vector-

field in B respects B.

In §8 we give some necessary and sufficient conditions that

X respect B, formulated in terms of Lie brackets, and deduce the

corresponding conditions for the homogeneity (and so integrability)

of B, which generalise Theorem 6 of Part One. In particular, we

recover the standard Frobenius theorem (SFT) on the integrability

of regular distributions, as stated, for example, in [13] or [16].

(0.4)

(0.5)

(0.6)
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We also prove that a real analytic (possibly singular) distribution
is integrable if and only if it is involutive and locally everywhere

defined.

Finally, in §9, we introduce the concept of a neat leaf and

discuss a related unsolved problem.

Just as is the case with SFT, the proofs of our results are
fairly simple and have a 'coordinate free', rather than a true
'functional-analytic' flavour. I hope that they will pave the

way for some future 'hard' theorems.
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§1. TOPOLOGICAL DIRECT SUMMANDS

1.1 Given two topological vector spaces E and F (over R), L(E,F)
denotes the vector space of all continuous linear mappings E + F.

If E and F are normed (or normable), we shall always think of L(E,F)
as a normed (normable) space with the usual 'sup over the unit ball
of E' norm (or the corresponding topology). LIS(E,F) denotes the
subspace of L(E,F) consisting of the toplinear isomorphisms, and

we write End(E) and GL(E) instead of L(E,E) and LIS(E,E).

Recall that a vector subspace F of a Hausdorff topological

vector space E is a direct summand of E if it satisfies one of the

following equivalent conditions:

(1) there exists a topological vector space G and a toplinear
isomorphism o : E »+ F x G such that
idF =poaci,
where i : F - E is the inclusion and p : FxG + F is the coordinate

projection;

(2) there exists a subspace G of E such that the mapping FxG » E:

(x,y) - x+y is a toplinear isomorphism;

(3) there exists a continuous linear projection P e End(E) such

that F = Ker P;

(4) there exists a continuous linear projection Q € End(E)

such that F = ImQ.
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It is easy to check that a closed, finite codimensional subspace

of E is always a direct summand.

If E is locally convex, then, by the Hahn-Banach theorem, every

finite-dimensional subspace of E is a direct summand.

If E is a Fréchet space, then, by the closed graph theorem, F

is a direct summand of E if and only if

(5) F is closed and there exists a closed subspace G of E

such that FnG = 0 and F+G = E.

1.2 Let GL(E|F) denote the subset of GL(E) consisting of those
toplinear automorphisms of E which map F into itself, and let
GLO(EIF) consist of those members of GL(E|F) that restrict to an

automorphism of F.

PROPOSITION 1.2. Let E be a Banach space and let F be a
direct summand of E. Then GLO(EIF) is open and closed in GL(E|F).
If F is finite dimensional or finite codimensional, then GLO(ElF)

coincides with GL(ElF).

PROOF . Let F; = F and let F, be some topological complement
of F. Let ik be the inclusion mapping F > E and let p; denote
the projection of E onto F; along F2, and p2 the complementary

projection of E onto Fj. An operator a in End(E) is represented

by a matrix
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a1 ai2

azi azz
where a, o = p,ai, belongs to L(Fg’Fk)’ It is clear that GLO(EIF)
is open in GL(E|F), being an inverse image of the open subset
GL(F) of End(F) under the continuous mapping a -~ aj;. We prove

that GLO(ElF) is closed in GL(E|F) by showing that it is the inverse

image of zero under the mapping

GL(E|F) » L(F;,Fp) : a>pyo(a)leiy .

To check this, let

, 2] a2
a = e GL(E|F)
0 azso
and
b1, bi2
a”l =p = .
b2y bo2

From ab = ba = idE we obtain

aj1by) +aysb2y ajjbyz +ajzb22 bjyja;y biiajys +bioaz:
= =
agobay azobyy bjyajy bpiajz +bzoaz
1d,, 0
Fy
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If b3y = O, then aj;;b;; = bjja;; = idFl, and a belongs to
GLO(ElF). If a ¢ GLO(ElF), then a;; is surjective, and so

bzi811 = O implies by; = O.

If Fy is finite co-dimensional, then F, is finite~dimensional
and azsbjzy = isz implies that a,, is injective. Since azzbyy = 0,

we again obtain by; = O and so0 a € GLO(ElF).

§2. BOXES, SLICES AND FOLIATIONS

If E is a normed space, we put Ef = {x € E : “xl < e}, so that
E! is the open unit ball of E. A ct box of the manifold M is a
triple (y,U,W), where U and W are Banach spaces and ¢ is a ct
diffeomorphism of U! x W! onto an open subset of M. By a slice
of (¢,U,W) we mean any of the mappings

V(-,w) : Ul » M, we W,

A differentiable structure ¢ on the underlying set of M is
a €T foliation of M if, given x ¢ M, there exists a ¢’ box

(y,U,W) of M such that

(1) v(0,0) = x;
(2) v(-,0) : U} » Mis a chart of o; and
(3) every slice of (y,U,W) is a differentiable function of

Ul into (M,0).
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(Here and below, (M,0) denotes the underlying set of M equipped
with the differentiable structure o.) A foliation o is regular
if, given x in M, there exists a C* box (¥,U,W) of M such that
¥(0,0) = x and

(4) every slice of (y,U,W) is a chart of o.

A foliation o which fails to be regular is said to be singular.

More generally, let (y,U,W) be a differentiable box of M and
let N be an arbitrary immersed submanifold of M. We say that

(V,U,W) cuts N in open slices if

(a) Nw = y(-,w)"IN) is an open subset of U for every w € W ;
and
) Y(-,w) : Nw + N is differentiable for every w e W!.
We say that the box (y,U,W) is parallel to N if the tangent spaces
to the slices are contained in the tangent spaces of N at every
point of intersection, that is if
Dy (u,w).UcT

v(u,wY

whenever yY(u,w) € N.

PROPOSITION 2.1. A box of M cuts an immersed submanifold N

of M in open slices if and only if it is parallel to it.

PROOF.  Assume that (y,U,W) is parallel to N and let H be
a neighbourhood of h = y(u,w) in N. It is sufficient to show
that y(u+u,w) € H for u in some neighbourhood U® of the origin

in U, for this implies that N- is an open subset of U and that
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w(-,a) : NG -+ N is continuous. The differentiability of this
function then follows from the fact that y(-,w) : U! + M is

differentiable and N is an immersed submanifold of M.

Taking a suitable local chart, we may identify a neighbourhood
of h in M with an open subset ) of E and assume that h is the
origin of E and that H is the open unit ball F! of some direct

summand F of E.

We may also assume that (G,G) is the origin of UxW and that
y(u,w) € @ for all (u,w) in Ul xWl., Let
a = BY(0,0) € LIS(UXW,E).
Since (y,U,W) is parallel to N, we have
(1) Dyy(u,w).U c F whenever y(u,w) € H, and in particular
(2) a = ajyPy
where jw is the inclusion W > UxW : w > (O,w) and Py is the

coordinate projection.

Let now G be a complement of F in E, p; € End(E) the projection
onto G along F and Pp € End(E) the complementary projection onto
F. Put

= -1 1
c = Pyd Pgaly € End (W)

and

m a’lpFajw € End(W).

F Py
Using (2), it is easily checked that

2= = =..
TG Tgs T e and “G.’“F 1dw
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Hence T, and 7, are complementary projections and W is the direct
sum of
V= an and Z = WGW.
Moreover, it is easy to show that
(3) b = pGajZ e LIS(z,G),

where jZ is the inclusion Z +» UxW: z + (0,2z) and Pg is now

considered as a map E -+ G,

Let now
0 : UxVxZ > G
be defined by
8(u,v,z) = pg¥(u,v+z).

Then

(4) 6(u,v,z) = O if and only if y(u,v+z) ¢ H, and so, by (1),

(5) 6(u,v,2z) = O implies D,6(u,v,z) = O.
Since

(6) D30(0,0,0) = b ¢ LIS(Z,G), if follows from the implicit,
function theorem ([3}, 10.2.1) that there exists ¢ > 0, § > 0, and
a differentiable function

¢ : USxvE > 28

such that, fof every (u,v,z) in UE xvE x Zé,
(7) D36(u,v,z) € LIS(Z,G)
and
(8) 9(u,v,z) = 0 if and only if z = ¢(u,v).

Thus 6(u,v,$(u,v)) = O for all (u,v) in USxVE. Differentiating

by u, we obtain
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D16(u,v,¢(u,v)) + D38(u,v,$(u,v)).Dy¢(u,v) =0
and so, by (5), (7) and (8),
Dy¢(u,v) =0
for every {(u,v) in U8 x v®.  Hence
¢(u,v) = ¢(0,v),
and it follows from (8) and (4) that
Y(u,v+¢(0,v)) e H
for every (u,v) in US xV®. Since ¢(0,0) = 0, we have
P(u,0) € H

for every u in Ve, Q.E.D.

REMARKS. 1) A shorter proof, based on the existence theorem
for ordinary differential equations, can be given if § and N are
at least of the order C2, or if N is finite-dimensional. If ¥
or N are of order C!, then the right-hand sides of the corresponding
differentiél equations are generally only continuous, and if N

is infinite-dimensional, then the existence theorem no longer applies.

2) A cautionary example against relaxing the
assumptions of Proposition 2.1 is given by M = R?, N = Rx 0, and

V(u,w) = (u,(u-w)3) (see Fig. 1).
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Figure 1

§3. Cl! SUBMANIFOLDS AND FLOWS

PROPOSITION 3.1. Let N be a C! immersed submanifold of M
and let X be a C! vectorfield on M such that X(x) € TxN for every
x in N. Let

A= {(t,x) e RxN : X%.x € N and X°.x € N for all s between
O and t} .
Then A is open in RXN and the function
A->N: (t,x) > Xt.x

is differentiable.
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REMARK. We cannot use the usual existence, uniqueness and
'dependence on initial conditions' theorems because the 'restriction'
of X to N is generally only a c® vectorfield. The proof dis similar
to the proof of Proposition 2.1 and is given here only for the

sake of completeness.

LEMMA 3.2. Assume that a Cl function ¢ : RxM > M satisfies
the following properties:

(i) the domain of ¢ is an open neighbourhood of 0 xM and

$(0,x) = x for every x € M;

(ii) Dy¢(t,x) € TyN whenever ¢(t,x) =y € N.
If x € N, then there exists a neighbourhood H of x in N and € > 0
such that

(a) ¢(t,y) € N for every (t,y) ¢ R® x H and

(b) ¢ : R xH + N is differentiable.

PROOF. Using a suitable chart to identify a neighbourhood
of x in M with an open subset Q of E, we may assume that x is the
origin of E and that there exist two complementary closed subspaces
¥ and G of E such that § = F! + G! and F! is a neighbourhood of

X in N.

Let Py be the projection of E onto F along G and let p, be
the complementar§ projection of E onto G. Since ¢(t,y) € F! implies
¢(t,y) = PF¢(t,Y) and Pp ¢ is a differentiable function into F,
it is sufficien to find € > O such that ¢(t,y) € F! for every

(t,y) e R® xFE,
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If h : RxFxG is defined by h(t,E,n) = Pg#(t,E+n), then, by (ii),
(1) Dyh(t,E,n) = O whenever h(t,E,n) = 0.

Since

(2)  D3h(0,E,n) = py° D24(0,E+n) © ig = Pgoig = idG, (where i,
is the inclusion G+ E : n > (O,n)) and since h(0,0,0) = O, the
inverse function theorem implies the existence of ¢ > 0, § > 0 and

a ¢! function 0 : RE x F€ » G6 such that, for all (t,£,n) ¢ RexFex(;G,

(3) D3h(t,E£,n) e GL(G) and

(4) h(t,E,n) = 0 is equivalent to n = 8(t,£).

Differentiating by t the equation h(t,£,8(t,E)) = O, and using

(1) and (3), we deduce that
D8 (t,E) = 0
and so, for (t,E) € R€><Fe,
8(t,g) = 6(0,E).
Hence 6(t,f) = pg(0,E+8(t,E)) = h(0,£,6(t,E)) = h(0,£,6(0,€)) = O,
and therefore
h(t,£,0) = h(t,£,6(t,§)) = O,

vhich proves that ¢(t,£) ¢ F for every (t,£) ¢ Re)<F£, Q.E.D.

PROOF OF PROPOSITION 3.1. Let (t,x) € A and assume, for example,
that t 2 0. Assume that t ¢ [0,t] has the following property:
(5) there exists a neighbourhood H of x in N and ¢ > O such that
¢([t-e,1+e] *H)cN and ¢ : [r-e,T+e] xH~+N is differentiable.
Using Lemma 3.2 and the equation ¢(t+s,y) = ¢(8,4(r+8-8,y)), it is
easy to show that the set Io of those T € [0,t] which satisfy (5)

is open and closed in I = [0,t] and contains O. Hence I =1, Q.E.D.
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§4. DIFFERENTIABLE DISTRIBUTIONS

We say that the distribution B is differentiable at a point x e M,

if there exists a differentiable section f of the bundle LIS(T M,TM)
X ]
defined on a neighbourhood f of x, such that £(x)B_ = B_ and f(y)B_cB
X x X 'y
for every y in {. We call such a section a stem of B at x and we

usually assume that f(x) = idT M
X

A stem f can also be described as a vector-bundle isomorphism
QxT M~> ™

X Q
which is the identity on {x} x T M and maps 2% B_ into BIQ. The

stem £ is said to be regular if f(y)Bx = By for every y € Q.

Locally*), f is represented by a differentiable function
 + GL(E).
There is a weaker definition of differentiability, where we
only ask for the function
2 x TxM - T™ : (y,v) > f(y).v
to be differentiable (implying that f is Cr—l). Such f is called

a weak stem of B and B is then said to be weakly differentiable

at x.

(4.1) The distribution B is differentiable (or weakly differentiable)

it is differentiable (weakly differentiable) at every x in M. B is

regular (0.1) if and only if it has a regular differentiable stem at

every x € M,

*
) This word always signals that we are using some local chart to
identify a neighbourhood of & peintg in M with an open subset of E,

tangent spaces with E, vectorfields with their principal parts,...
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If B is finite dimensional, then B is differentiable at x
if and only if there exist differentiable vectorfields xl,xz,...,xk

in B whose values at x form a basis of Bx'

To see this, assume that TMIQ = QxE, and put,

g(y).v = £1(v)X1(y)-+22(V)X2(y)-+...-rlk(v)xk(y),
where zi : E > R are continuous linear functionals such that
Zi(xj(x)) = Gij' It is then sufficient to put

£(y) = idp + g(y) - g(x)

and to note that £(y) e GL(E) for y sufficiently near to x.

If codimB < =, then, as we show in the next section, the
differentiability of B at x can be described in terms of finitely

many real-valued differentiable one-forms.

§5. DIFFERENTIABILITY AND VECTOR-VALUED ONE-FORMS

We recall that, given a Banach space F, an F-valued one-form
on M is a differentiable section of the vector bundle
L(IM,F) = k‘J L(TxM,F). Locally, such a form is represented by

X€
a C"-mapping R » L(E,F) (cf. [13], 8.3.1).
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PROPOSITION 5.1. A distribution B is differentiable at x
if and only if there exists a Banach space F and F~valued differentiable

one-form w, defined on a neighbourhood 9 of x, such that

(a) w(x) : TxM + F is surjective and Kerw(x) = Bx; and

(b) for every y in @, Kerw(y)c By.

PROOF. We may assume that 'I’MlQ = QxE. Let G be a complement
of B, in E, and let j : G > E be the inclusion mapping. By the
closed graph theorem, w(x) ° j e LIS(G,F), and, taking @ sufficiently
small, we may assume that w(y) cj e LIS(G,F) for every y ¢ Q. Let

Y(y) =je(wy)ej)l : F>E

and put

p(y) =v(y)w (y) : E > E.
Since w(y)v(y) = idp, we have w(y)p(y) = u(y) and p?(y) = p(y). Put

£(y) = id; + p(x) - p(¥).
Taking Q smaller if necessary, we may assume that f(y) € GL(E) for
every y in Q. If g € G, then p(x)g = g and

w(E(y)g = 20(y)g - w(y)p(yle = w(y)g.
If b e Bx, then p(x)b = 0 and
w()E()b = w(y)b - w(y)p(y)b = 0.
Hence
w(y)£(y) (b+g) = w(y)g = O if and only if g = O,

and therefore

f(y)Bx = Kerw(y) < By,
so that £ is a differentiable stem*) of B.

* . .
) Note that f is regular if Kerw(y) = By for every y in Q.
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Conversly, given a stem £ of B at x, it is sufficient to put
F = p(TM) and w(y) = pe (£(y))72,

where p € End(TxM) is a projection and B_ = Kerp.

COROLLARY 5.1. Suppose that codime =k < o, Then B is
differentiable at x if and only if there exist differentiable real-
valued one-forms Wl sW2yse e,y ON a neighbourhood © of x such that

(a) w1 (x),w2(x)yee., k(x) is a basis of the annihilator

B° of B_ in T#*M; and,
x X X
(b) for every y € Q, B; is contained in the span of

wl(y),wz(y),-.~,wk(y)-

PROOF. Take F = Rk and w = (wl,wz,...,wk).

§6. HOMOGENEOUS STEMS AND LOCAL INTEGRABILITY

Throughout this section we assume that f is a weak stem (§4)
of the distribution B at a point x ¢ M. We say that f is
homogeneous if the vectorfields

y > f(y).v, ve Bx

respect the distribution B (see Introductiom, (0.5)).

A differentiable box (¢, U,W) is said to be parallel to B if

Dy¢(u,w).Uc Bw (u,w)

for every (u,w) € Ul xWl. Recall (52) that a slice of (y,U,W) is
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any of the functions

p(=,w) : Ul > M, w e Wl

By abuse of language, the set v(Ul,w), together with its
differentiable structure of an embedded submanifold of M, is

also called a slice of V.

PROPOSITION 6.1. Let f be a homogeneous weak stem of B
at the point x. There exists a differentiable box (y,U,W) of M
such that
(1) v(0,0) = x;
(2) (y,U,W) is parallel to B;
(3) the sliée Y(Ul,0) of ¥ is an integral manifold of B; and
(4) every point of Y(Ul,0) can be reached from x along an

integral curve of a vectorfield in B.

COROLLARY 6.1. Let N be an integral manifold of B. Then

(5) (Y,U,W) cuts N in open slices and

(6) 1if Zx =‘¢(U1,0), then Zx n N is an open subset of both
Zx and N and inherits the same differentiable structure from z,

and N.

PROOF OF THE COROLLARY. The assertion (5) follows from (2)
above and from Proposition 2.1. The assertion (6) follows at once

from (5), (3), and the inverse function theorem.
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PROOF OF PROPOSITION 6.1. We may assume that the domain Q

is an open subset of E and that
f : Q> GL(E),
where the function
QxE > E : (y,v) > £(y).v
is differentiable. Let
£(t,y,u)

be the value at t of the maximal solution of the equations
(6.1.1) €= £(g)u, £(0) =y.
Then

(A) domf is an open neighbourhood of (0,x,0) in Rx QxE;

(B) & : domf - Q is differentiable;

(C) 1if g(t,y,u) € domf and s # O is a real number, then

(t/s,y,su) € domg and E(t/s,y,su) = £(t,y,u).

Here (A) and (B) are deduced easily from, say [3], (10.7.4)
and (C) follows from the uniqueness theorem because n(t) = £(t/s,y,su)
is a solution of (6.1.1).

(D) D3£(t,y,u)Bx c Bz, z = E(t,y,u).

To prove this, fix u ¢ B_and y € @ and put y,_ = E(t,y,u),
a, = D3E(t,y,u) and vy = D2E(t,y,u). Let the function g : @ > E
be defined by

g(y) = £(y).u.

Then a, € End(E), Y, € GL(E) and (cf. [3], (10.7.3.1), (10.8.4.1))
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Ve = 80, v, =7 ;
(6.1.D.1) Ye = D8I )Y, Y, = idg ;
&t = Dg(yt)at + 1@y, a = 0.
Hence t
(6.1.D.2) & =Y, JO(YS)_lf(ys)ds .

By homogeneity of f, the vectorfield f(-).u respects B and we have

-1 -
(Ys) By B

s y

(cf. Introduction, (0.5)) and so

() THE(y,)B, < B

Hence
t
f (r) Ty )ds

0
maps Bx into By, and at maps Bx into Ye By. Using the homogeneity

of £ once more, we have

ath c YtBy = Byt = Bz,

which proves (p).

Note also that u = O implies Ve =V = Vs Yo =Y, = idE, and

o
therefore
t
o = ! f(y)ds = tf(y),
t Jo
or
(E) D3E(t,y,0) = tf(y)

It follows from (A) and (C) that there exists € > O such that
E(l,y,u) is defined for ||x-y| < € and [lu] < e. Since
Dye (1,%,0) = £(x) = idg,
we may assume that

D3E(1l,x,u) € GL(E) for “u| < €.
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We claim that, for u € Bx and [u] < €,

F) D3£(1,x,u).Bx = Bz, where z = E(1,x,u).

To prove (), put z = E(1,x,u), B = D3E(l,x,u) and
Gu = Dpt(1l,x,u). The homogeneity of f implies that
Gqu = Bzu for u e Bx'

Now, by (D), u € Bx implies that

Bqu < B,
u
and so
-1
(Gu) Bqu < By
or (cf. §81.2)
= -1
8u) = (8718 ¢ GL(E|Bx)
Since Bi = {ueB : lluf < €} is connected, 6 : B; -> GL(EIBX) is

continuous, and 6(0) = (60)'16o = idE € GLO(EIBX), it follows from
Proposition 1.2 that
8(u) € GL_(E|B))
e —
for every u ¢ Bx' Hence e(u)Bx = Bx and so

Bqu = sue (u)Bx = Gqu = Bzu

for u ¢ Bi, which proves the assertion (F).

(6) Taking s = t in (C) we see that, for u € Bx,
£(1,x,tu) = E(t,Xx,u)

is an integral curve of a differentiable vectorfield in B.
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Let now Q be a submanifold of Q sﬁch that x € Q and TxQ is

a complement of B in E, and let

¢ : Wl >Q, ¢(0) =x
be a diffeomorphism of the unit ball W! of a Banach space W onto
a neighbourhoéd of xin Q. Let U = B, and let ¢ from UxW into
M be defined by

V(u,w) = E(1,4(w),u).
Since D2£(1,x,0) = idE = D3£(1,x,0) (see (F)), it follows from
the closed graph theorem that

DY(0,0) € LIS(U xW,E)
and we may assume that ¢ is a diffeomorphism of U® x W€ onto an
open subset of Q. Multiplying the norms of U and W by 1l/e, we
turn U and W® into U! and W! and (y,U,W) into a differentiable
box of M. The assertions (2), (3) and (4) of Proposition 6.1

follow now from (p), (F) and (G).

§7. INTEGRABLE DISTRIBUTIONS

Recall that a distribution B on M is homogeneous if every
differentiable vectorfield in B respects B (see Introduction, (0.6)
and (0.7)) and that B is said to be integrable if there exists a
differentiable structure ¢ on M such that (M,0) is an integral mamnifold

of B.
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THEOREM 1. Let B be a weakly differentiable distribution on

M.

(a) The
(1)
)
3
4)

following conditions are equivalent:

B is integrable.

For every x in M, there exists an integral manifold of
B containing x.

B is homogeneous.

For every x in M, there exists a homogeneous weak stem

of B at x.

(b) If B is integrable, then there exists a unique differentiable

structure ¢ on M such that (M,0) is an integral manifold of B.

Furthérmore,

(5)

(6)
)

Every integral manifold of B is an open submanifold of
M,0).

0 is a foliation of M in the sense of §2.

Two points of M belong to the same connected component
of (M,Q) if and only if they can be joined by finitely
many integral curves of differentiable vectorfields in

B‘

PROOF OF THEOREM 1. To show that (2)=> (3), let X be a

differentiable vectorfield in B, let x ¢ domain of X and let Z

be an integral manifold of B through the point x. By Proposition

3.1, there exists a neighbourhood H; of x in Z and €; > 0 such

t
that Xt.y € Z for |t] < € and y € H! and (t,y) » X°.y : RxZ > z
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is differentiable. Choose € > O and a neighbourhood H of x such
that Xt.y € Hy for Itl <eandy € H, H<c H and € < ¢;.
pifferentiating the equations X—t(xt.y) =y = xt(x-t,y) with
respect to y € Z we prove that, for |t| < e, (X*)*(x) is an
isomorphism of T Z = B_ onto TyZ = By' The result now follows

from Lemma 1.1, Part Three.

Let us now assume that B satisfies (4). For every x ¢ M,
let Zx be the integral manifold of B described in Corollary
6.1. By (6.1.6), the differentiable structures of Zx and
Zy coincide on Zx n Zy and hence define a differentiable structure
o on M such that each z, is an open submanifold of (M,o0) ([13], 5.2.4).
It is clear that (M,0) is an integral manifold of B and so (4)= (1).
Furthermore, it follows from (6.1.6) that every integral manifold
of B is an open submanifold of o. Hence (4)=> (5). In particular,
o is the unique differentiable structure which makes M into an

integral manifold of B.

The assertion (6) now follows at once from (6.1.2), (6.1.3)

and Proposition 2.1, where we take N = (M,0).

Finally let r be the equivalence relation 'x and y can be joined
by finitely many integral curves of differentiable vectorfields
in B'. By Proposition 3.1, the integral curves of vectorfields
in B are continuous as functions R + (M,g), and so the equivalence
classes of [ are connected. On the other hand, (6.1.4) shows that each
equivalence class of ¢ is open in (M,0), which proves the assertion

(7) .
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§8. THE USE OF LIE BRACKETS

8.1. NOTATION. If X and Y are differentiable vectorfields on
M and x = Xt.x, then locally,
- - =4 -
[X,Y] (xt) = DY (xt)x(xt) DX(xt)Y(xt) e Y (xt) Dx(xt)Y(xt) .

This leads to the following definitioms.

(8.1.1) A vectorfield over a curve ¢ : I + M (where I is an

interval in R) is a curve Y : I » TM such that Y(t) € To M for

(t)
all t € I.

(8.1.2) If o(t) = X, = Xt.x for some differentiable vectorfield
X on an open subset of M, and if Y is a differentiable vectorfield
over 0, we define the vectorfield [X,Y] over o by the local
coordinate formula
[X,Y](t) = -a‘it-Y (t) - DX(x )Y ().

(To show that this formula behaves well under c? changes of coordinates,
let ¢ be a C%2 local diffeomorphism of E and let

T(e) = Do(x).¥(t), X(x) = D471 (x)) XTI ().
Then

DX(x).v = D24 (671 (x)). (D6~ (x).v) .X(671 (x)) +
+ Do (671 (x)) .DX(¢71 (%)) . D$71 (x) v,

and it is easily checked that

%? (t) - DX(ox,)).F(t) = Do) .[X,¥] (®))
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(8.1.3) Let F be a Banach space and let
£: 1~ LE,T™)
be a C! curve in the vector-bundle L(F,TM) such that £(t) e L(F,1/, M)
*“a(t)

where o(t) = X, = Xt.x as above. If v e F, we write
(8.1.3.1) V:iI+>TM: t~ f(t).v for the corresponding vectorfield
over 6. The Lie derivative of f with respect to X is the curve

fo : I > L(F,TM)
(which again covers o), defined by the formula

(8.1.3.2) L,f(t) : F > o)t V> [X,v](t), or, locally,

(8.1.3.3) fo(t) = é(t) - DX(xt) o f(t).

8.2 A CONDITION OF RESPECTABILITY. The next theorem is a

straight generalization of Theorem 6 in Part One.

THEOREM 2. Let X be a C! vectorfield on an open subset of M,

X € domain X, x_ = Xt.x, and Ye = (Xt)*(x). Let B be an arbitrary

t
(not necessarily differentiable) distribution on M. Assume that
there exist € > O, a Banach space F, a differentiable function

f : R® > L(F,T™)
and a continuous function

A : R® > End(F),
such that

€
(8.2.1) f covers the integral curve t - X, 3 amd, for all t ¢ R,

(8.2.2) f£(t)F = Bx and
t
(8.2.3) fo(t) = f(e)A(L).
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Then, for all t € Re,

(8.2.4) Y. B, = Bx .

COROLLARY 2. If the assumptions of Theorem 2 are satisfied
at every x € domain X, then X respects the distribution B (Lemma

1.1, Part Three).

In particular, a weakly differentiable distribution B on M
is integrable if (and, as we shall see in the next section, only
if) the assumptions of Theorem 2 are satisfied for every differentiable

vectorfield X in B and every x € domain X.

REMARK. It will be seen from the proof of Theorem 2 that
its assertion is valid even if the vector spaces in the distribution
B are not direct summands of the tangent spaces. We have to assume,

however, that they are closed.

PROOF OF THEOREM 2. Let
= -1 .
a, = (yt) f(t) : F » TxM‘
Locally,

6, = -
t Yt:

and so (8.1.3.3)

Tl THECE) ¢y M) = () THECR) - DR(x)E(E))

. = - = -1 = o
a, = (V) TILE(E) = (YO THE(E)A(E) = ap o A(E).
Let now h € (TxM)* and let

ht = hat

(a.)*h

Then

h, = h, A(t)

t - P A (t)h,,
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and, by the uniqueness theorem, ht =0 if and only if h = O,
o
This means that h vanishes on Bx =a F if and only if it vanishes
on aF = (Yt)-lf(t)F = (Yt)—le » and so, by the Hahn-Banach
t
theorem,
- -1

Q.E.D.

8.3. COVARIANT STEMS. Let X be a C! vectorfield on an open

subset of M and let x ¢ domain X and X, = Xt.x. If B is a

distribution on M, we define an X-covariant B—-stem at x as a

¢! function
£ : R® > LIS (T M,TM)

which covers the integral curve t + x_ and satisfies the following

t

conditions:

(8.3.1) £(0) = idy ,, and, for all t e R®,
X

(8.3.2) £(t)B_=B_ and

t
(8.3.3) fo(t)Bx < th,
or equivalently,
(8.3.3.a) [X,v](t) ¢ B, for all v eB_,
X x
where the vectorfield v over t is defined by (8.1.3.1)

Let now
i Bx - TxM and p : TxM > Bx
be the inclusion mapping and the projection along some complement

of B in T M. Let
X X

A(E) = f(t)'lef(t) € End(TxM)
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and let

+hi

€
: R* > L(B_,TM)
and

A:R - End(Bx)
be defined by £(t) = £(t) o i and A(t) = poA(t) s i. As these
functions obviously satisfy the conditions of Theorem 2, we

have proved the following lemma.

t
LEMMA 8.3. Let Yt = (X7 )*(x) and assume that there exists
and X-covariant B-stem at x defined for |t| < €. Then, for

|tl < €y

THEOREM 3. Let X be a C! vectorfield defined on an open
subset of M and let B be an arbitrary (not necessarily differentiable)
distribution on M. Then X respects B if and only if, for every

x in the domain of X, there exists an X-covariant B-stem at x.

PROOF . If X-covariant B-stems exist, then the assertion
follows at once from Lemma 8.3 and from Lemma 1.1 in Part Three.
Conversly, if X respects B and x belongs to the domain of X, we
put

£(e) = v, = (x)*(x) € LIS(T M, TxtM).

Locally,

- DX(xt)yt =0

fo(t) =Y,

and so f obviously satisfies the conditions (8.3.1) - (8.3.3), Q.E.D.
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COROLLARY 3. A weakly differentiable distribution B is
integrable if and only if, for every differentiable vectorfield
X in B, and for every x ¢ domain X, there exists an X-covariant

B-stem at X.

This follows at once from Theorems 1 and 2.

8.4. THE STANDARD FROBENIUS THEOREM. Recall that a distribution
B is said to be involutive if the Lie bracket of any two differentiable
vectorfields in B lies in B. The following proposition follows

at once from ([4], 17.14.3.5).
PROPOSITION 8.4. Every integrable distribution is involutive.
We can now state the 'standard' Frobenius theorem.

THEOREM 4 (Frobenius). A regular distribution B is

integrable if and only if it is involutive.

PROOF. Let X be a vectorfield in B, x a point in the domain
of X and x = Xt.x. Let 2 be a neighbourhood of x in M and let
f : Q> LIS(T M,TM) be a regular c’ stem of B at the point x.
By regularity , f(y)Bx = By for every y in U and so, if B is
involutive, t > f(xt) is an X-covariant B-stem at x, and the

integrability of B follows at once from Corollary 3.
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REMARKS. 1) Note that the stem f in the proof above has
to be differentiable (rather than weakly differentiable, cf. the

definition of the regular distribution in (4.1)).

2) There exist involutive non-integrable C
distributions on R? (cf. Example 8.5.2). Hence, the regularity
of B in Theorem 4 is, in general, essential. We shall see below

that the situation is simpler in the real-analytic case.

8.5. REAL ANALYTIC DISTRIBUTIONS. The basic facts about

real analytic functions on Banach spaces and real analytic manifolds
are collected in [13], §53 and 5. We need the result that the
integral curves of real analytic vectorfields are real analytic

functions of time ([13], 9.1.8).

If B = (Bx : xeM) is a distribution on M and T is a subset
of M, we say that B|T is spanned by a set S of vectorfields on

M if By = span{X(y) : XeS} for every y € T.

We write C” (B,T) for the set of real analytic vectorfields

in B whose domain includes T, and we say that B is locally every-

where defined if, for every vectorfield X in B, and every

X ¢ domain X, there exists € > O such that
Bl{xt : |t] < €} is spanned by Cw(B,{xt s e| < eh),
where X, = Xt x. Note that the word 'locally' refers here to
a small portion of an integral curve, rather than to a neighbourhood

of x in M (cf. Example 8.5.1).
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The next theorem generalizes a result of Nagano (71.

THEOREM 5. A real analytic distribution is integrable if

and only if it is involutive and locally everywhere defined.

PROOF. Let B be an involutive, locally everywhere defined
real analytic distribution on M, X a real analytic vectorfield in

B, x € domain X, x_ = Xt.x and Y, = (Xt)*(x),

t

Let Q be a neighbourhood of x and let
£ : Q> L(TM,TH)
be a real analytic stem of B at x. If B is the distribution on
Q given by
B, = £(NB,,
then, clearly, t - f(xt) is an X-covariant B-stem at x, and so,
by Lemma 8.3, there exists ¢ > O s.t.

~

(8.5.0) Y B, = th c th for |t| < e.

Let now v ¢ Bx . Then v = Y(xt) for some real analytic vectorfield
Y in B. Sincz B is locally everywhere defined, we may assume that
x, € domain Y for all s, |s| < e. Writing Y(s) instead of Y(x,),
we put

v(s) = (ys)'lY(s) € TxM'

A simple computation of the usual kind shows that

v(s) = (y)TMKYIG) = (v)7H(adK.D)(8)
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Hence, by induction,

n

i—ﬁv () = (v)) 1 ((ad®)™. 1) (s),

and in particular, as B is involutive,

n

d _ n
;;Ewr(O) = ((adX) ".Y) (x) € B_

let now h be an arbitrary linear functional in (TxM)* and let

H(s) = h.v(s).
Then H 1s a real analytic function of s; if h vanishes at Bx’
then all the derivatives of H vanish at s = 0 and so H(s) = O.
Hence, by the Hahn-Banach theorem,
v(t) = (v )1(x) € B,
and so (Yt)'lBx c Bx’ or Bx < Yth- Combining this with

t t
(8.5.0), we see that

Y.B, = th for |t] <e

and the result now follows from Theorem 1 and from Lemma 1.1 in

Part Three.

EXAMPLE 8.5.1. Let M = R and let B be the real analytic
distribution on R spanned by the vectorfields X; and X,, where
Xy = 0 and X, is defined on R by X,(x) = (1/x).3/9x. Then
B is clearly integrable, and the origin of R has no neighbourhood
£ such that

BlQ is spanned by c“(8,90).
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EXAMPLE 8.5.2. Let M = R? and let B be the real analytic
distribution on R? spanned by the vectorfields X) and X,, where

X) = 9/3% and Xp is defined for £ > O by X2(E,n) = (1/£)3/an.

(See Fig. 2)

Figure 2

If x ¢ (n—axis) and X is a real analytic vectorfield in B
defined on a connected neighbourhood of x, then
) 9
X =ogg* B
where B is a real analytic function vanishing for £ < 0. Hence
B =0, and it is easily seen that B is an example of a

non-integrable involutive real analytic distribution on R2.
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§9. NEAT LEAVES

Throughout this section, B is an integrable C! distribution
on the C?2 manifold M and ¢ is the C! structure which makes (M,o)
jinto an integral manifold of B (§7). Unless otherwise stated,
the words 'differentiable', 'diffeomorphism' etc. refer to the

class Cl.

9.1 LOCAL AUTOMORPHISMS. By a local automorphism of B we

understand a bijection of an open subset of M onto another open
subset of M which is a local diffeomorphism for both M and (M,0).

The set of local automorphisms of B is denoted by Loc Aut B.

LEMMA 9.1.1. A local diffeomorphisms ¢ of M belongs to
Loc Aut (B) if and only if

(9.1.a) <|>*'(x)Bx = By whenever ¢(x) = y.

PROOF. Assume that ¢ satisfies (9.1.a). It is clearly
sufficient to show that ¢ is differentiable relatively to 0.
If x belongs to the domain of ¢ and Z is an integral manifold of
B which contains x and is contained in the domain of ¢, then ¢(2),
with the differentiable structure defined by the bijection
¢l :Z > ¢(Z), is an immersed submanifold of M passing through

y = ¢(x). The result now follows from Theorem 1 (5).
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Let 6B denote the set of all the local diffeomorphisms ¢ of
M such that ¢ : x » Xt.x for some differentiable vectorfield X in
B and some t € R, and let YB denote the set which consists of idM

and all the finite compositions of members of 6B.

1EMMA 9.1.2, ¥B is contained in Loc Aut B and closed under
the operations of restricting the domain, composition, and taking
an inverse. Two points x and y in M belong to the same connected

component of (M,0) if and only if y = ¢(x) for some ¢ e VB.

This follows at once from Theorem 1 ((3) and (7)) and from

Lemma 9.1.1.

We define the normaliser NYB of YB as the set of all local
automorphisms ¢ € Loc Aut B such that
(9.1.b) ¢¥B¢~! c YB and ¢~lyB¢ c V¥B.
These inclusions are to be understood as follows: If y € YB and
both the domain and the range of ¢ are included in the domain of ¢,
then ¢y¢~! is in ¥B; if both the domain and the range of ¢ are

in the range of ¢, then ¢o~lye is in ¥B (Fig. 3).

Figure 3
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LEMMA 9.1.3.
YB U (Loc Aut B n Diff2M) c N¥B.
PROOF. It is clear that ¥YB c N¥B. If ¢ ¢ Loc Aut B n Diff2M
and X is a C! vectorfield in B, then ¢ o xto ¢~ = Yt, where
Y(E) = ¢*(671(E)).X(671(E)) € By. Hence ¢6B$™! c VB and it is
easily deduced that ¢WB¢’1 c ¥YB (there are no problems with the

domains because domain ¢ = range ¢ = M).

LEMMA 9.1.4. Let ~ be the equivalence relation given by the
partition of M into the connected components of (M,c). If
¢ € N¥B, then ¢ respects ~ (i.e. x~y and x and y € domain¢ implies

¢o(x) = ¢(M)).

PROOF . Let ¢ € NYB and let x and y lie in domain ¢ . If
x~y, then x = y(y) for some P ¢ ¥B. We may assume that the
domain and range of Y are contained in the domain of ¢, so that

ov™! € ¥B and ¢(x) = ¢vo~1(¢(y)), which proves that ¢(x) ~ ¢(y).

9.2. NEAT LEAVES. A leaf is a connected component of (M,0).

A ¢! box (y,U,W) of M is admissible if y(-,w) : U} > (M,0) is
differentiable for every w ¢ W! and if the slice y(-,0) : vl > M,0)
is a local chart. An admissible box is neat if y(-,w) is a

local chart for (M,0) whenever y(O,w) belongs to the same leaf

as y(0,0) (Fig. 4, p.68)-

A point x € M is neat if there exists a neat box (V,U,W) such

that ¢(0,0) = x.
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LEMMA 9.2.1. a) If ¢ € LocAutB and (¥,U,W) is an admissible
box such that y(U! xW!) c dom¢, then (¢° y,U,W) is an admissible

box.

b) If, in addition, ¢ ¢ NYB and (y,U,W) is

neat, then (¢ ° ¢,U,W) is neat.
This follows at once from the definitions and Lemma 9.1.4.

If now x and y belong to the same leaf, then x = ¢(y) for some

¢ € YB. Since YB c N¥B, we have the following result.

COROLLARY 9.2.1. If a leaf L of (M,0) contains a neat point,

then every point of L is neat.

Such leaves will be referred to as neat leaves.

LEMMA 9.2.2, a) Every finite dimensional or finite

codimensional leaf is neat.

b) 1If B is a regular distribution, then every

leaf of (M,0) is neat.

To prove b), set
§(u,w) = y*(0,0) 7171 (Y (u,w))y* (u,w),
vhere £ is some regular stem of B at x = y(0,0) and we assume that
v(U! xW!) c domainf. Then 6(u,w) € GL(E|UxO0), E = UxW, and
so, by Proposition 1.2, &8(u,w) € GLO(E|U><O) for every (u,w) € Ul xWl.
Hence Dy (u,w).U = £(y(u,w))y*(0,0)6(u,w).(Ux0) = £ (y(u,w))p*(0,0) (Ux0) =

= f(w(u,w))Bx = (This argument shows that gggzz_admiSSible

ETORDY

box of a regular distribution is neat.)
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9.3. NEAT SUBMANIFOLDS. An immersed submanifold L of M is neat
if, for every x € L, there exists a C! box (¥,U,W) of M such that
(i) ¥(0,0) = x;
(i1) Loyl xwl) = y(Ulx2), where 2 = {w e W' : y(0,u) ¢ L};
and

(iii) for every w € &, Y(-,w) : Ul > L is a local chart for L.

For example, the union of all the leaves of (M,0) of a given
finite dimension (or codimension) is a neat submanifold of M, and
so is (M,0) if B is a regular distribution, or any single neat

leaf of (M,0) in general.

A ¢! box (¥, U,W) which satisfies the conditions (ii) and(iii)

above is called a neat box for L.

PROPOSITION 9.3.1. Let L be a neat submanifold of M and let
¥ ¢: N> M be a continuous mapping such that y(N) < L.

(a) If y : N+ M is a differentiable mapping between
manifolds and if, for every £ ¢ N, w*(E)TEN c TME)L,
then ¢ : N > L is differentiable.

(b) If ¢y : N> M is a differentiable mapping between
manifolds and L is separable, them ¢ : N > L is
differentaible,

(c) More generally, if N is a locally connected topological
space and L is separable,then ¥ : N - L is continuous.

The proof follows the same lines as the proof of Lemma 3.1 in

Part One and is therefore omitted. Note that the assertion (b)

follows from (c).
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The next proposition is probably a special case of a more general

result.

PROPOSITION 9.3.2. Let L be a connected neat submanifold
of M. If M is paracompact and modelled on a Separable Banach space

*)

E, then L is separable 7.

LEMMA 9.3.3. (See [1], Ch. 111, §9, Lemma 1.) If a topological
space T admits a locally countable covering by open separable subsets,

then each connected component of T is separable.

PROOF OF PROPOSITION 9.3.2. Since M is paracompact and locally
separable, each connected component of M is separable by Lemma 9.3.3.
Hence, there exist a countable family of bozxes (wn,Un,Wn) for L

such that L C\Jﬂn, where Hn = y_(ui,uly. Let Snw = ¢n(U;’W) be

n' ' n’n

a slice of H. It is easily checked that, if w ¢ L =

= {w e W% : wn(O,w) € L}, then each connected component of the

open subset S n H of S is contained in a slice of y . Since
nw m nw m

S is separable, we see that S meets S - for at most countably

nw nw o™

many w € £ . Hence the family (Snw tnelN, we ln) is a locally

countable cover of L and the assertion follows from Lemma 9.3.3.

9.4. AN UNSOLVED PROBLEM. A leaf of (M,0) is wild if it contains

no neat points.,

*)

by 'separable' we mean: with a countable basis of open sets.
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QUESTION 9.4.1. Do wild leaves exist? More precisely: does
there exist an integrable C! distribution B on a (separable) ¢2?
manifold M such that the corresponding foliation of M has a wild

leaf?

The author made several attempts to comstruct such a foliation,

but failed. The examples below illustrate the difficulties encountered.

LEMMA 9.4.2. Let H be a separable Hilbert space and let

(a.)

o nez be a doubly infinite sequence of members of GL(H). There

exists a C function Y : R > GL(H) such that
(1) £f(m) = A.n for all n € Z; and

(ii) £ is constant on each of the intervals [n - %3 n + %ﬂ.

PROOF . Since GL(H) is contractible [15], there exists a
continuous path [0,1] + GL(H) joining any two elements. Since
GL(H) is an open subset of the Banach space End(H), this path can
be replaced by a broken straight line with finitely many segments.
The corners can be smoothed off in the 2 dimensional space spanned

by the two adjacent edges. Property (ii) follows on re-parametrization.

From now on, H = 2,(Z) is the space of all doubly infinite
real sequences ('xn)°° such that £x? < «», F is the closed
-0 n
subspace of H given by the equations X = 0 forn =2 1, and S is
the right shift on H:
(Sx)n =X g

We note that S : H > H is an isometric isomorphism.
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EXAMPLE 9.4.2, We take

L = $(RXF),

where

¢ : RxF > NxH : (x,v) > (8(x),y(x).v),

N is a manifold, 6 : R > N is an immersion and v : R + GL(H) is

a differentiable function. It is easily checked that ¢ is an

immersion, so that L is an immersed submanifold of N x H.

(9.4.2.8) Chose N = R?, y(t) = id, for - % t< %’ v(t) =8
for % Sts< % and ® : R > R? as in Fig. 4.
1
Q&) £=4/3 £=2/3
<
t=-1/3 t= {3
—_ ’
&
Figure 4

It is easily checked that ¢ is then an embedding and that L is a
leaf of the distribution B given by B = T.L for x € L and

= = 2
Bx TxM Tx(R xH) for x ¢ L.
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An admissible box with the range Qx H, where Q is the square
indicated in Fig. 4 is obtained from the identity mapping of
R? xH, with (£-axis) xF for the first coordinate and (n—axis)xFl
for the second coordinate. It is clear that this box is not

neat and that it restricts to a neat box on a neighbourhood of

¢(0,0).

(9.4.2.b) Take N = R?, y(t) = id, for t < 0, y(n) = s" for n > 1,

and y(t) constant on each of the intervals [n - %, n + %]. Let

6 : R > R% be as in Figure 5.

& ()
,f——%>“‘\\\\\*\c (= 1A

(¢=0) B ;

- § A

i
(t=-1) A4 e
ARV

@_

|

Figure 5
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Using the identity of R? xH, we can define an admissible box at

A = ¢(-1,0) which does not restrict to a neat box for L. Note,
however, that L is not a leaf of a foliation with singularities.
(C is a neat point and if L were a leaf of a foliation this would
imply that every point of L is neat (Corollary 9.2.1). There

are no admissible charts at B.)

(9.4.2.c) The attempts to use N = two-torus, 6 : R -~ N an integral
curve of a fixed irrational flow, and a suitable y : R - GL(H)
failed for the following reasons: 1) the differentiability of

the distribution B demands that every x € NxH has a neighbourhood

2 such that By is 'larger' than Bx for y € Q; 2) Proposition 1.2.

-]

S™F and let the distribution B

EXAMPLE 9.4.3. Let Ho

n=1
on H be defined by taking B = S°F for x ¢ S"F\s" 'F and B_ =0
if x = 0 or if x ¢ H\H_.  (The projection s™*2p 5 gM*2p sTf = R2

takes B into the distribution B illustrated in Fig. 6.)

RV
aawm 0
P Aamn |
Am | Olj ~
N
AAM L

Figure 6
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It is clear that B is integrable., Note, however, that B is not
differentiable. (Ho is a dense subset of H of the first category,
go we are in a similar difficulty as with the flow-line of the

irrational flow on the torus in (9.4.2.c).)

We now construct an integrable distribution on T x H, where
T is the circle. Consider [0,1] XH as a subspace of RxH and
let
B(t,x) = V(t,x) + Y By, 7%,
vhere v : [0,1] > GL(H) is a c” function such that Ye = idH for
OSt:S%3 y(t) = S for 2 <£t=<1, and V(t,x) is the one-dimensional

3
subspace of RxH spanned by the vector (1,§(t)x) (Fig. 7)

An= SO
Figure 7

and for % <t £ 1, so that

Wi

Note thét i(t,x) = RXBx for 0 < t <

~ "

B defines an integrable distribution B on T xH. If % is the point
of T obtained by identifying the endpoints of the interval [0,1],
then, clearly, {2} x (H \{0}) is contained in a single wild leaf of

~

B.

A A, A, Ao Ao o 0 Ay Aq As AI Ay
] J M | Hx O
/ \ "
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PART THREE

Integrability and irreducibility of systems

of vectorfields
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§1. ON INTEGRABILITY OF SYSTEMS OF VECTORFIELDS
1.1 GENERALITIES. [Let 8 be a set of smooth vectorfields on a
paracompact finite-dimensional manifold M. (For simplicity, we
assume that M and the vectorfields in S are of the class C  or Cw.)

Recall that the accessible sets of S (or orbits in the terminology

of [10]) are the equivalence classes of the relation 'x and ¥y can
be joined by finitely many (unoriented) pieces of integral curves
of vectorfields in S'. It is proved in Part One and in [10] that

the accessible sets of S are immersed submanifolds of M.

S is said to be homogeneous if every vectorfield in S respects
the distribution B(S) = (S(x) : x €M), where S(x) is the vector
subspace of TxM spanned by the values at x of the vectorfields in

S.

THEOREM 1. The following conditions are equivalent.

(a) For every xeM, there exists an integral manifold of
B(S) which contains the point x.

(b) S is ﬁomogeneous.

(c) S spans the tangent spaces of its accessible sets.

We say that S is integrable if it satisfies either of the
conditions in Theorem 1. The non-trivial step in the proof of
Theorem 1 1is ;he proof of (b) =»(c), given in Part One and in
[10]. The assertion (a)=>(b) follows from Theorem 1 in Part
Two. If the integral manifolds in question are at least of the
class C2, then (a) =»(b) can be deduced from the existence and
uniqueness theorem for ordinary differential equations and the

following lemma.
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LEMMA 1.1. A vectorfield X on M respects a distribution B
d only if, for every x in the domain of X, there exists
)l such that
(x%)*(x).B_ = B
B y
wer |t| < e and xt.x = y.

= xt t t
PROOF . Let X, = X .x, Y, = (X7)*(x) and Yts = (X )*(xs).
. be the domain of the integral curve t - X, and let

I - {ter1: Y.B, = Bxg .

LY =Y_Y I 1is easily shown to be both open and closed

REMARKS . 1) If, for every x € domain X,

a) Xt.x =y ‘%(Xt)*(x).Bx c B

»
|

y
X respects B. This follows at once from (l.1.a) since

= X and (X_t)*(y) is the inverse of (Xt)*(y).

2) Consider the following property of X:
b) For every x € domain X, there exists € > O such
that |t| < ¢ and Xt.x = y implies (Xt)*(x).BXCZBy.
1lext example shows that (1.1.b) does not imply that X respects

fistribution B.

EXAMPLE 1. Let M = R2 and let B be the distribution spanned

1e vectorfields 5/9f and £.3/0n (cf. Fig. 1).



Figure 1.

X be an arbitrary vectorfield such that X(x) € Bx for every
domain X. It is easily checked that X satisfies the

ition (1.1.b) at every x € RZ, (If x € n-axis and X(x) # O
this follows from (Xt)*(x).x(x) = X(y) € By’ where y = Xt.x.)
no vectorfield which moves a point x on the n-axis onto

n-axis can respect B since then dim(Xt)*(x).Bx = dimB_ =1

dimB_ = 2.
y

CONDITION L FOR S. Recall [6] that S is locally of finite

: at x (Lx) if there exist finitely many vectorfields Xl,Xz,...,Xp
5 such that
1)  The vectors X,(x) (i = 1,...,p) span S(x);
2) For every Y € S, there exists a neighbourhood @ of x

and the continuous real-valued function Aij defined on

fi such that

[Y,x,1» = § A ()X ()

i=1
for every y € Q.
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- is said to be locally of finite type (L) if it is locally of

inite type at every x in M,

It is claimed in [6] *)that every set S of smooth
rectorfields which is locally of finite type is homogeneous, and
‘herefore integrable. However, the proofs given show only

:hat the vectorfields in S satsify (1.1.b) (with B = S(x)).

‘he next example shows that, in fact, L for S does not imply

:hat § is integrable.

EXAMPLE 2. Let M = R? and let S be the set of all vectorfields
>f the form
3/3& + ¢(E,n).3/3m ,
vhere ¢ is an arbitrary function such that ¢(0,0) = O and 3¢/3E = O

in some neighbourhood of the origin depending on ¢.

If x # O, then there exists a neighbourhood Q of x and a
vectorfield X; in S such that X; = 3/3n on Q. Taking Xp = 9/3f € S,
it is easy to see that S satisfies the condition (Lx) with X;,X;
and the same Q for every Y in S. If, on the other hand, x is the
origin, we may take {Xl,XZ,...,Xp} = {3/3¢}, as

[0/3E + ¢.8/9n, 3/3E] = -8¢/3E.3/3n = 0
in a sufficiently small neighbourhood of O. This shows that § is

locally of finite type, and it is clear that S is not integrable.

*
) And repeated in [10],[11] and several other places.
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REMARK. We say that S is involutive if [X,Y] € S whenever
and Y are in S. Lobry [6] proves that an involutive set of
:al-analytic vectorfields on a real-analytic manifold M is
>cally of finite type. He then comes to the (false) conclusion
nat every involutive set of real-analytic vectorfields is

ategrable (cf. Part Two, Theorem 5 and Example 8.5.2.).

.3. CONDITION L for S. Let S denote the set of all smooth
ectorfields X on M such that X(x) ¢ S(x) for every x in the
omain of X. We observe that if S is defined as in Example 2,
hen S is not locally of finite type. It is therefore natural

.0 ask the following question.

QUESTION 1.3. Assume that S is locally of finite type. Does

it follow that S is integrable?

Example 8.5.2 in Part Two shows that the answer is NO in the

real-analytic case (unless the vectorfields in S be locally

everywhere defined). On the other hand, Theorem 2 below shows

the answer is YES in the C case. The example in (1.5) shows that

this is only a sufficient condition: S may be integrable even if

§ is not locally of finite type.

1l.4. CONDITION K. let x € M. We say that S satisfies the condition

(Kx) if there exist finitely many vectorfields XI,XZ,...,XP in S,
. * .
defined on a neighbourhood Q@ of x, and continuous ) functions

Aijk : ©§ > R such that

* .
) It is sufficient to assume that Aijk are bounded measurable.
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(K1) X;(x) span S(x) and, for every y ¢ q,
[Xi,Xj](y) = kzl?\ijk(y)xk(y), 1<i, j<p;

(K2) for every X in S, such that x e domain X, there
exists € > O and continuous function Aij : [-e,e] + R

such that, for every t € [-e,e], and every i, 1<is<p,

[x!xi] (xt) = igl)‘ij (t)xj (xt) E]

where xt = Xt.x.

It is clear that (Lx) =< (Kx). We say that S satisfies

ondition K, if it satisfies the condition (Kx) for every x € M.

THEOREM 2. Let S be a set of C vectorfields on a C manifold
] let S be defined as in 1.3. Then S is integrable if and

if S satisfies the condition K.
In particular, S is integrable if S is locally of finite type.

LEMMA 1.4.1. Assume that S satisfies the condition (KX) and
1imS(x) = d. Then there exists a box (y,U,W) of M such that
(a) ¢(0,0) = x and dimU = d;
() Y*(u,w).(Ux0) ¢ S(Y(u,w)) for every (u,w) in the domain
of V.
(c) 1If f is an arbitrary vectorfield in S such that x ¢ domain Y
and if o(t) = Yt.x, then there exists € > 0O such that

a(t) € v(U,0) for |t| < €.
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PROOF.  Assume that the vectorfields xl,...,xp satsify the
condition (K1) and (K2) on a neighbourhood Q of x, and let
S* = {XIIQ""XP|Q}’ It follows at once from Theorem 6, Part One,
that S* is homogeneous (and hence integrable) on Q. Since S*(x) = S (x)
and S*(y) < S(y) for every y in @, there exists a box (Y,U,W) of M
which satisfies the conditions (a) and (b) (see Theorem 5 and its
Corollary in Part One). Moreover, we may assume that y(U,0) is
a neighbourhood of x in L*, where L* is the accessible set of S$*

through the point x.

Let now o(t) = Yt.x for some vectorfield Y in S such that
x € domainY and let Yt = (Yt)*(x). By Theorem 2, Part Two
{(or by the proof of Theorem 6, Part One), (K2) implies that, for
le| < e.

YEs%(x) = 5*(a(t)).

Hence, for Itl < g,

(1) dimS*(o(t)) = dimS*(x) = k and

(2) o(t) = Y(a(r)) =y"Y(x) € §%(a(t)).
Let L be the union of the k-dimensional accessible sets of S*.
Then L is a neat submanifold of § (Part Two, §9.3) and the tangent
spaces of L are spanned by S* because S* is homogeneous. By (1),
o(t) € L for |t] < ¢ and so, by (2) and Proposition 9.3.1, Part
Two

o : ]e,e{ > L

is differentiable. Since L* is the connected component of x in L,

o(t) € L* for |t| < e, whence follows the assertion (c) of our lemma.
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LEMMA 1.4.2. If S satisfies the condition K, then dimS (x)

remains constant along the integral curves of vectorfields in S.

PROOF. Let o(t) = Xt.x for some X in S and some x ¢ domain X.
Let t) < tz and assume that dimS(o(t;)) < dimS(o(ty)). Let
% = max{dimS(o(t)) : t; <t < t;}. The set I, = {t € [t1,t2]
dimS(o(t)) = L} is relatively open in I. Let J be a connected
component of Io nad let t, be the left-hand end-point of J. It
is easily seen that t, ¢ I Without loss of generality, we
assume that tO = 0, so that, for some ¢ > 0 and all t, 0 < t < ¢,

dimS(x) = k < £ = dimS(o(t)).

Let now (y,U,W) satisfy the conditions of Lemma 1.4.1 with s
in the place of S, and let Z = y(Ul,0). Using y to identify a
neighbourhood of x in M with an open subset O of R®, we may assume
that
(1) x is the origin in RY;
(2) Z is the open unit ball in a k-dimensional subspace E
of Rp;
(3) every vectorfield Y : @ -+ E belongs to E;
(4) If Y is a vectorfield in S and x € domainY, then there
exists 8§ > 0 such that, for |t| < §,
Yt.x € E.
Let P be the orthogonal projection of R™ onto E and let

Q = id -P be the projection onto gt. If Y : Q> R® is an arbitrary

Y-PY € S.

vectorfield, then PY ¢ § by (3). 1If Y ¢ S, then QY
Using this, the fact that dimS(o(t)) = £ > dimE for 0 < t < g,
and suitable 'bump functions', it is easy to construct a vectorfield

Y in S such that
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(5) Y(y) L E for all y € Q and,

(6) for every § > O, there exists t such that O<¢t < §

and Y(o(t)) # O.

Let now u(t) = (PX-+Y)t.x. By (4), there exists 6§ > 0 such

that

(7) u(t) € E and o(t) € E for |t| < 8. Hence u(t) =
= PX(u(t)) + Y(u(t)) € E and so
(8) Y(u(t)) = 0 and
(9) u(t) = PX(u(t)) for |t| < 6.
Since o(t) = X(o(t)) € E, we have X(o(t)) = PX(o(t)) and
(10) o(t) = PX(o(t)) for |t] < 6.
By (9) and (10), o(t) = u(t) for |t| < § and so, by (8), Y(s(t)) =0

for |t| < &, in contradiction with (6).

~

PROOF OF THEOREM 2. Assume that S satisfies the condition K.
Let X be a vectorfield in S, x ¢ domainX, o(t) = Xt.x, and
Yt = (Xt)*(x). It follows easily from (K2) and from Theorem 6,
Part One, that there exists € > O such that, for |t| < e,
v¥s(x) < s(o(t)).
Hence, by Lemma 1.4.2,ytS(x) = S(o(t)) for |tl < E. By Lemma 1.1,
X respects the distribution (S(x) : x €M), which proves that S is

homogeneous .and, therefore, integrable.
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Conversely, assume that S is integrable and let L be the
ssible set of S through the point x. By the Corollary of
rem 5, Part One, there exists a coordinate system
52,...,£n) on a neighbourhood QM of x in M such that the
.orfields Xi = 3/85i belong to S for 1<i<k and span TyL
y e Qs where QL is some neighbourhood of x in L. If X
1 vectorfield in S and x € domain X, then there exists

0 such that x, = X'.x ¢ Q for |t| < €. Hence, for any

t

corfield X in S defined on a neighbourhood of x, |t] < ¢

lies

X(xt) = igl Ai(t)xi(xt)

h some differentiable functiom;Ai : ]-e,e[ + R. - Since S is
egrable, S is involutive and (%) applies in particular to
torfields [X,Xj], 1<j <p,-which proves that {X;,X;,...,X}

isfy the condition. (K2). The condition (K1) follows at once

‘m [Xi’xj] =0 (1<i,j<p).

) AN EXAMPLE. In Part One, Example 5.4, we have shown that
integrable system of vectorfields need not be locally of

1ite type. We shall now show that the integrability of S does
t imply that S (as defined in 1.3) is locally of finite type.

0o N -1/
Let ¢ : R> R be the C function defined by ¢(E) = e ¢

rf>0and ¢(£) = O for £ < 0. Let the vectorfield X; on

be defined by

X2 (E1,E2) = ¢(E2).3/3¢2,

~ o
d let X; = 3/3¢; and S = {X;,X;}. Let S be the set of all C

ctorfields in the distribution (S(x) : X ¢ R?) (Fig. 2).
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A

Figure 2,

To prove that S is not locally of finite type, we argue by
contradiction and assume that the vectorfields Yl,...,Yp in S
satisfy the conditions (L.1) and (L.2) at the origin, with S in
the place of S. Let

Y, = ai.a/agl + Bi.a/agz,
where Bi(gl,gz) =0 for £2 < 0, We may assume that the C
function o) is > O on a neighbourhood of the origin and introduce
a local diffeomorphism
Vi (R,0) » (R2,0) & (E1,E2) » 171 (0,62).

Since ¢y maps the upper half-plane (g2 > 0), gy-axis and lower half-plane

into themselves and since the conditions (L.1) and (L.2) are invariant

L 3
under C changes of coordinates, we may assume Yy = 3/3&1.
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Let ® : R+ R be an arbitrary C” function such that 8(§) =0

for £ < 0 and let the vectorfield X on R?Z be defined by
£y )
X = . o .
G
Then X € S, {Y1,X] = X and so (L.2) implies that

Floer) = T A (E1.E206, (E1,E0)
121 J ]
J
for all £; and £ in a sufficiently small neighbourhood of the

origin (depending on the function 6). But this is absurd, since,

on setting £ = O, it contradicts the following lemma.

LEMMA 5. 3. Let A be the ring of germs at the origin of
the continuous function R -+ R. Let B be the subring of A
generated by the C" functions 8 : R + R such that 6(f) = O for
£ < O, Then B is not contained in any ideal of A generated by

finitely many members of B.

PROOF No. 1. Let S be the collection of all ¢~ vectorfields

X a.3/3E; + 8.3/352

on R? such that B(E1,E2) 0 for £ <0 (cf. Example 8.5.2, Part
Two). Then § = S. If B were contained in some ideal of A
generated by finitely many members of B, then $ would be locally

of finite type and therefore, by Theorem 2, integrable, which 1is

absurd.
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PROOF No. 2. Let B* be the set of all the C* function
9 : R+ R such that e(t) =0 for t < 0, If B is contained in
some ideal of A which is generated by finitely many members of
B, then there exists functions 61,82,...,Bp in B* such that, given
any 0 € B*, there exist ¢ > O and continuous functions ApAp,...,\

P
such that, for |t| <€,

8(t) = § ki(t)si(t)-

i=1

In particular, there exists € > O and continuous functions )‘ij

such that, for |t| < g,

By = ) A5 ()8, (0).

i=1

As this is a homogeneous system of linear differential equations
and as Bi(O) = 0 for 1<i<p, we have Bi(t) = 0 for all t,

|t| <€ and all i, 1<1i<p, which is absurd.
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§2, ALMOST ALL PAIRS OF VECTORFIELDS ARE IRREDUCIBLE

.1 INTRODUCTION. A set S of vectorfields on M is irreducible if the

ccessible sets of S coincide with the connected components of M. By

heorem 5, Part One, this is equivalent to saying that S(x) = T M for
x

very X in M,

In [18], Lobry probed that the set of irreducible pairs of &
rectorfields on a C manifold M is Ck—generic for k 2 n2 + n. Later
. . . *) . . .
'19], he improved this to k = 2n. We shall show ) in this section
k+1

chat the set of irreducible pairs of Ck vectorfields on a C

nanifold is Ck-generic for all k=21,

Lobry's proof can be roughly described as follows. Consider
a differentiable function
p : AxM > Q,
where A is the space of pairs of vectorfields and Q is a manifold,
and a stratified subset W of Q such that
pzl(W) = ¢ =»a is irreducible,
where P, = p(a,-) : M- Q. If now p is transversal to W and

codimW > dimM, Thom's transversality theorem implies that almost

every pair a is irreducible.

Our proof follows a similar pattern, with the difference that
the results of Part One allow us to take a simpler p, Q and W. We
also go through the details of the transversality argument, so that

our proof is more self-contained than Lobry's (and, in particular,

independent of [20]).

* - . -
) Héctor Sussmann tells me that he has recently obtained some similar

. T Ao not know his methods, but he will no doubt publish his
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For the sake of simplicity, we assume that k is finite and that
M is a compact manifold. A similar, but a little more involved,
proof shows that the assertion of Theorem 2.6 holds for any separable
finite-dimensional Ck+1 manifold M and for 1 <k <w, with the Whi tney

Ck topology on the space of Ck vectorfields on M.

2.2. A TRANSVERSALITY THEOREM. Recall that by an immersion we
always mean a split immersionm. By a submanifold of a differentiable
manifold Q we mean an immersed submanifold such that the inclusion
mapping is an embedding. A subset W of Q is of codimension = ¢

if it is contained in a countable union of submanifolds of
codimension 2= c:

(2.2.3) Wc \//wn, W a submanifold of Q, codim W_2 ¢, n = 1,2,...
n

The next result is stated in such generality as we need in what

follows; the proof is adapted from [17], §§18 and 19.

PROPOSITION 2.2. Let A, M and Q be C' manifolds and let
o : AxM>Qand B8 : AxM~+Q
be C* functions. Let W be a subset of Q of codimension 2 c and
put
A, = {aeA: a;IWr\BZIW is of codimension 2 c},

where o, = a(a,-) and Ba = g(a,~) : M~»> Q. Assume that

(1) M has finite dimension d;

(2) A and M are second countable;

(3) r > max(0,d-c);

(4) for every (a,x) € AxM, at least one of the derivatives
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a*(a,x) : T AXT M
%) a X -*Ta(a,x)Q

B*(a,x) : Tan TxM > TB(a,x)Q

split surjective.
. . *)
Then Aw 1s a residual subset of A.

COROLLARY 2.2. If ¢ 2d+1, we can take r = 1 and

- R | “ly -
Aw {aeA.aaWnBaw ¢}.
PROOF OF PROPOSITION 2,2, Let Wn satisfy the condition (2.2.a)

d put

= = = 2 =
Ln WnXQ, Rn wan and Zn Wn Lnan'

it £f = (0,B8) : AXM > QxQ and let
An = {a € A : codim f;l(Zn) > cl.

-}

H q An c AW’ it is sufficient to show that each An is residual.
a=

rom now on, n is assumed to be fixed.

Since AxM is second countable, the hypothesis (4) implies that

here exist a countable open cover (Hm):;=1 of AxM such that, for

very m, at least one of the functions
o|R_ or B|H_
s a submersion and therefore f[Hm is tranversal to at least one

i = £-1 = §£-1
f the manifolds Ln and Rn‘ Let A =¢£ (Ln)’ P=f (Rn) and let

‘AnH_if f|H_is transversal to L
.o m m n

Qm tPnH if f|H is not transversal to L .
m m n

: - - 3
) We say that a set is residual if it contains a countable intersection

»f open dense sets.
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Then Q is a submanifold of AxM of codimension q = ¢. Let

plQ,.

By ([17], Lemma 19.3), Py ¢ Qm + A is a Fredholm map of constant

p : AxM »> A be the coordinate projection and let p
m

index d-q < d-¢ < r. Since Qm is embedded in AxM, it is
second countable and so, by Smale's density theorem ({17], §16) the
set B_ of regular values of p_ is residual. If now a ¢ B

m m m’
then the mapping

ea : M> AxM : x > (a,x)

. -.1 . .
is transversal to Qm and so ea (Qm) is a submanifold of M of

codimension q = ¢.  Since f"l(zn) c / Q, and £ =feo8_, we

o m=] o«
have £71(2,) cgegl(qm) and thus A_ > QB‘“’ Q.E.D.

2.3. A TRANSVERSALITY LEMMA. We need the following result.

LEMMA 2.3. Let E be a separable Banach space, M a compact
n-dimensional C! manifold and Q a finite dimensional c* vector
bundle over M, where k = O or 1. Let W be a closed subset of Q;
if k=1, assume that codimW > n+1l. Let

p : E2xM > Q
k .
be a C" mapping and

b
where Pab = p(a,b,=) : M > Q. Assume that:

E‘% = {(a,b) € EZ : p;IWnpg}iW = ¢},
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(1) for every a ¢ E, a# * MXE » Q : (x,b) > p(a,b,x) is a
vector-bundle morphism;

(2) there exists an open dense subset A of E2 such that, for
every (a,b,x) € AxM, at least one of the linear functions

ai i E - Q, and bi : E > Q, is surjective.

Then E% is an open subset of E2. If k=1, then Eé is open dense.

PROOF . The openness of Ea follws at once from the fact that
W is closed and the function E2 + c°(M,Q%) : (a,b) - (0 Pp,) is
continuous for the compact-open topology on CO(M,QZ). The fact
that, for k=1, Eé is residual follows at once from Proposition 2.2
on setting o = p|A><M, B(a,b,x) = a(b,a,x) and observing that,

locally, the derivative of o at (a,b,x) is given by the matrix

. a# *
(o 0 idM>

where the columns represent the partial derivatives of o with
respect to the first, second and third coordinates, the top row
corresponds to the 'fibre coordinate' of Q and the bottom row

to the 'base' coordinate.

2.4. A STRATIFIED SET. The following result is elementary and

the proof is given here only for the sake of completeness.

LEMMA 2.4. Let T be an n-dimensional Cl! vector-bundle over
P .
a manifold M and let Q = QE; T be the Whitney sum of p copies of T,
P 2 n. For each x ¢ M, let W_ be the subset of Qx = Ti consisting
x
of those p-tuples (Vl,Vé,...,vp) e Q which do not contain a basis

of T, and let
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w=\wa.

XeM

Then W is a closed subset of Q of codimension p-n+1. More
precisely, there exists a finite sequence (Vi) of submanifolds of

M such that

1

T
W=\JVi s
n-1 . i=1
T= ) (k)’ and there are exactly (i) V.'s of codimension
k=0 t
(p~k) (n-k) for each k, 0 S k < n-1.
PROOF . It is clear that, locally, W is a product of an
open subset of M with Wx and so it is sufficient to prove the

lemma if M is a point and T is a single n-dimensional vector

space.

Let now o be a subset of {1,2,...,p} and let V, be the set of
all p-tuples (vl,vz,...,vp) in TP such that the vectors {vi s 1eal
form a basis of the vector space spanned by {vl,vz,...,vp}. It
is clear that

w=Uv
o
0<|a|sn-1
and so it is sufficient to show that each Va is a submanifold of

TP of codimension (p-|a|)(n-la|).

To see this, assume that o = {1,2,...,k} and let A be the
. k
set of all linearly independent k-tuples (k-frames) in T . Then
A is an open subset of Tk and Va is the kernmel of the vector-bundle

morphism
_ p-k kil
8 : AxTP X » Ax (D T,
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where, for each a = (al,az,...,ak) € A, we put a = ajhayA... na

and
ea(vk+1'vk+2""vp) = (aAvk+1,aAvk+2,...,;Avp).

The result now follws at once from the fact that ranke = (p~k) (n-k)
a

for every a € A,

2.5. DIFFERENTIABILITY. From now on, M is an n—-dimensional
k+1 . . .. . k

compact C manifold and k is a finite integer 21. Let E =T

be the vector space of Ck vectorfields on M together with its

Ck—topology. Fixing a Finsler structure on the k-jet bundle

of sections of TM and taking the corresponding sup-—norm we make

E into a separable Banach space ([17], Theorem 12.2).

LEMMA 2.5. The mapping
¢ : ExExMxR -+ TM,
- t
(X,Y,x,t) > (X)*)"1.YEx".x)

is of the class Ck_l.

PROOF. Let v € TxM and let
u(t) = ult,X,v) = @H*x).v .

Then u is the integral curve of the differential equation
(1) a(t) = £(u(),X), u(0) =v
on TM, where the parametrized vectorfield

£ : TMxE » T(TM)
is defined by the equation £(u,X) = wTX(u) and w : T2M ~ T2M is the
involution which 'interchanges the second and third coordinates'

(cf. [17], p. 17).
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Locally, the equation (1) is given by the system of 2n equations

X = X(x) s

u = DX(x).u .
Since

£ 2 mMxTE & mvx TRl &Y 2y § g2y
where § = idxT, € is of the class C* ' ([17], Theorem 12.3). By
the theorem on dependence of the solutions of differential equations
on initial conditions and parameters [3],

u : RXExTM > TM
(t,X,v) + u(t,X,v)

is of the class Ck—l. Similarly, we have Ck-funCtions

A i EXRM > M : (X,t,x) -~ X .x
and

B Ex(ExXRxM) iqf;‘ ExM & M,

(Y, X,t,x) — — -——> Y(X%.%),

and so it is sufficient to note that

¢(X’Y’x’t) = u(_t’x,u(Y’X’t))°
2.6, RESULT. We are now in a position to prove the following theorem.

THEOREM 2.6. Let 1<k<= and let M be a compact Ck+1 manifold.
Let E be the Banach space of Ck vectorfields on M and let P c E?
be the set of all irreducible pairs of Ck vectorfields on M.  Then

P contains an open dense subset of EZ2.
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2n
PROOF. Let T =TM, Q =(D T be the Whitney sum of 2n copies
of T and
we v,
xeM
where Wx consists of those 2n-tuples (vy,v,,...v, ) e Q = %0
2n X

which do not contain a basis of Tx‘ By Lemma 2.4, W is a closed

subset of Q of codimension n+1.

Let ¢ be the mapping in Lemma 2.5,
¢ ¢ E2xMxR+T : (X,Y,x,t) > (XD)*x)~1.yxt.x),
and let
o = ¢(=5=,=,k) : EZxM > T,
k-1 .
The range of the C mapping

2n 9
V= Bosb1,enes0, ) 2 E2ZxM o[ [T =17

is contained in the Ck 1 submanifold Q of T2n and so ¥ defines a

Ck 1 mapping f such that the diagram

B2 xM Y 5720
\\\\N /ﬁ inclusion

commutes. It is easily seen that, for every X € E,
X# : MXE > Q : (%x,Y) » p(X,Y,x)
is a vector-bundle morphism. Let now X ¢ E and x ¢ M be fixed and
let
¢¥ x, = XSx and v, = (XO*GE)TL
Then

#
Xt E>Q Yo (X0, 1Y(x1)5eee Youuq¥ 00y 1))

If X(x) # 0, then the points X,X1,...,X, _; aTe mutually distinct

# . . .
and so Xx : E~» Qx 1s surjective,
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Let A c E? be the set of pairs (X,Y) such that, for every
x € M, at least one of the vectors X(x), Y(x) is non-zero. A
simple transversality argument applied to the evaluation map
EZ xM > LZBT
shows that A is an open dense subset of E2. If (X,Y) € A then,
for every x € M, at least one of the functions

# #
Xx.E+Qx, YX.E->Qx

is surjective. We claim that
= 2 . =1 “ly =
Ey = {(X,Y) € B2 : pllwnollw ¢}
is an open dense subset of E . For k =2 2 this follows at once

from Lemma 2.3. If k = 1, then Lemma 2.3 implies that E, is

open; the density of Ew follows from the result for k = 2 and from
the fact that the space T'? of C? vectorfields on M is demse in
E=rl, (Note that we may assume without loss of generality that

M is a C manifold; cf. [15], p. 15.)

If S = {X,Y} and (X,Y) € E_, then, for every x € M, the

W

collection of vectors
Y(x) ’ YlY (xl) 90 ’an_lY(xzn_l) ?
X(X), GIX(Y1)9" "ézn_lx(YZn_l)

. t -
(where x_ and y, are as in (1), y, = Y*.x and §, = ((X5H*ENH™H

t

contains a basis of TxM' Hence S(x) = TxM for every x € M and,

by Theorem 5 of Part Ome, (X,Y) is an irreducible pair of vectorfields.
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