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The electrocaloric effects (ECEs) of the morphotropic phase boundary (MPB) composition

0.82(Na0.5Bi0.5)TiO3-0.18(K0.5Bi0.5)TiO3 (NBT-18KBT) are studied by direct measurements. The

maximum ECE DTmax¼ 0.73 K is measured at 160 �C under 22 kV/cm. This corresponds to an

ECE responsivity (DT/DE) of 0.33 � 10�6 K m/V, which is comparable with the best reported

values for lead-free ceramics. A comparison between the direct and indirect ECE measurements

shows significant discrepancies. The direct measurement of both positive and negative electro-

caloric effect confirms the presence of numerous polar phases near the MPB of NBT-based materi-

als and highlights their potential for solid-state cooling based on high field-induced entropy

changes. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934759]

The need for more efficient and environmental-friendly

materials in the refrigeration industry has led to a significant

effort towards the discovery of materials with potential for

solid state cooling. Adiabatic depolarization cooling, which

is based on the electrocaloric effect (ECE), has arisen as one

of the main contender for solid state refrigeration techniques.

In polar crystals, the net polarization increases with applica-

tion of an external electric field. Under adiabatic conditions,

the system compensates this alignment of dipoles with

an increase in temperature, in order to keep the overall en-

tropy of the system constant. This phenomenon is called the

ECE.1 Several materials, both lead-containing, such as

Pb(Zr1�xTix)O3 (PZT),2 (1� x)Pb(Zn1/3Nb2/3)O3-xPbTiO3

(PZN-PT),3 or (1� x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-

xPT),4,5 and lead-free, such as BaTiO3 (BT),6 SrxBa(1�x)Nb2O3

(SBN),7,8 or (Na0.5Bi0.5)TiO3 (NBT),9 have been considered

for electrocaloric cooling. Lead-free relaxor ferroelectrics

(FEs) with high dielectric strength10 seem highly suitable can-

didates; however, it is critical to find ways to increase their

ECE.

One way forward is to operate in regions of the phase

diagram close to critical points (CPs), where the energy bar-

riers for switching between different FE phases are signifi-

cantly reduced. As more than one polar phase coexist near the

CP, the entropy of the unpoled system is greatly increased,

which leads to an ECE enhancement.11 Such an ECE

enhancement was reported recently by Qian et al. in Zr-

doped BT near the CP.12 Furthermore, it has been shown that

an invariant critical point, where the number of available po-

lar phases in the composition-temperature-electric field phase

diagram is maximised, can be found in materials with a mor-

photropic phase boundary (MPB). Some of the highest ECE

performances ever reported were found in the Pb-containing

compounds close to their MPB, such as PMN-30PT.4 The

ECE of some lead-free materials with compositions near the

CP, such as Zr-doped Ba0.8Ca0.2TiO3,13 Sn-doped BT,14 or

Sr-doped NBT-BT,15,16 has also been reported, but very few

were studied by direct ECE measurements.

NBT forms solid solutions with numerous FE com-

pounds, such as BT, KNbO3 (KN), or (K0.5Bi0.5)TiO3

(KBT), and several MPB have been reported.17,18 Most ther-

mal and electromechanical properties of these materials have

been found to be significantly increased in the vicinity of the

MPB. The NBT-KBT phase diagram shows a MPB near

18%-KBT, where the rhombohedral, tetragonal, and cubic

phase can exist.19 NBT-KBT shows its highest reported elec-

tromechanical properties, including polarization and piezo-

electric coefficient near this composition.19 NBT-18KBT has

been considered for electrocaloric cooling and its ECE has

been reported;20 however, only indirect evaluations of the

ECE have been published and actual ECE values remain to

be confirmed by direct measurements.

Here, we report direct measurements of the ECE

enhancement in NBT-based bulk ceramics near the MPB.

NBT-18KBT ceramic powders were prepared by con-

ventional solid-state synthesis. Stoichiometric quantities of

the starting reagents, Bi2O3, K2CO3, Na2CO3, and TiO2

(99.99% purity, Sigma-Aldrich), were mixed in a planetary

mill for 24 h with the slip then dried. The powder was cal-

cined in covered crucibles at 850 �C for 4 h, then sieved

through a 300 lm mesh. The calcined powder was subjected

to high energy attrition milling (Willy A. Bachofen, Basel,

Switzerland) to reduce the particle size for 2 h with stabilized

yttria stabilized zirconia balls in iso-propyl alcohol. 2 wt. %

binder (Glascol HA-40) was added before drying and siev-

ing. The calcined powder was pressed into pellets anda)Electronic mail: f.le-goupil09@imperial.ac.uk
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sintered at 1150 �C for 2 h with a density of 5.752 g/cm3 real-

ised. The dielectric permittivity was measured with a HP

4263B LCR meter from 25 �C to 400 �C at different frequen-

cies (from 100 Hz to 100 kHz) on both poled and unpoled

ceramics. The samples were poled under high electric field

(22 kV/cm) at 100 �C. The polarization versus electric field

measurements (P-E), along with leakage current measure-

ments, were carried out using a Radiant LC Precision Unit

with a High Voltage Amplifier (TREK model 609B) from

40 �C to 165 �C. The specific heat capacity of NBT-18KBT

was measured experimentally and was found to linearly

increase over the studied temperature range from 510 to

557 J kg�1 K�1. The direct ECE measurements were per-

formed on the unpoled ceramics with a modified-Differential

Scanning Calorimeter (DSC) (Netzsch DSC 200 F3), as

described elsewhere.4

Fig. 1(a) shows the real part of the dielectric permittivity

as a function of temperature measured for NBT-18KBT for

poled and unpoled ceramics at 10 kHz upon heating. The

shape of the plot for the poled sample is typical of the NBT-

based system, with two successive dielectric anomalies, one

�150 �C and one �287 �C. Although there is still debate on

the nature of the phases found in this material system, these

anomalies are believed to be the convolution of three distinct

processes: The dielectric relaxation due to a mixture of polar

nano-regions (PNRs) with two different local symmetry, the

diffuse phase transition of lower symmetry PNRs into higher

symmetry PNRs, and the additional dielectric relaxation of

existing PNRs.21 The anomaly observed at lower tempera-

tures (�150 �C) corresponds to the temperature of depolar-

isation (Td), which marks the transition from the long-range

FE regions to the short-range PNRs. The maximum ECE is

expected to be found near this lower temperature in conven-

tional ferroelectrics, but it is shifted to much higher tempera-

tures when high fields are applied to the relaxors due to the

contribution of the PNRs. The values of both the temperature

of maximum permittivity (Tm) and Td observed in this per-

mittivity measurement are in good agreement with values

reported by Hiruma et al. for the same composition.19 The

significant frequency dispersion observed near Td for the

poled ceramics, in Fig. 1(b), confirms the presence of a

weakly polar relaxor phase with short range PNRs.

Fig. 2 shows the polarization versus applied electric field

measured for the NBT-18KBT unpoled ceramics between

130 �C and 165 �C. Only the upper branch of the positive side

of the bipolar loop is plotted for clarity purposes. It can be

seen that large polarisation values (over 25 lC/cm2) are

obtained at 22 kV/cm. The inset of Fig. 2 shows the evolution

of the remanent polarization as a function of temperature. Td,

defined as the temperature of the steepest decrease of the re-

manent polarization, was found to be �150 �C, which is in

good agreement with the values obtained from the dielectric

permittivity measurements.

Fig. 3 shows the ECE versus temperature measured for

the NBT-18KBT unpoled ceramics for different values of

applied electric field. The ECE steadily increases with tem-

perature until it reaches Td, where a sharp increase is

observed. A strong field-dependence of the absolute value

and the temperature of the maximum ECE (DTmax) is

observed, as expected from the relaxor ferroelectrics. The

FIG. 1. Real part of the dielectric permittivity versus temperature measured for NBT-18KBT (a) on poled and unpoled ceramics measured at 10 kHz upon heat-

ing and (b) as a function of frequency near Td for the poled ceramics.

FIG. 2. Polarisation versus applied electric field measured for the NBT-

18KBT unpoled ceramics between 130 �C and 165 �C, the inset shows the

position of Td determined from the temperature dependence of the remanent

polarisation.

172903-2 Le Goupil et al. Appl. Phys. Lett. 107, 172903 (2015)
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maximum ECE, DTmax¼ 0.73 K, was observed at 160 �C
under 22 kV/cm. Above 13 kV/cm, the ECE increases line-

arly over the studied range of applied field, with a slope of

0.33 � 10�6 K m/V. This slope, which is referred to as the

ECE responsivity, is often used to compare the performances

of ECE materials in the literature. The ECE responsivity

must be used with caution as it is unclear if the linear evolu-

tion can still be found at much higher field values and the

dielectric strength of the ceramic will limit the electric field

application. The best ECE responsivities reported for lead-

free materials are found between 0.31 and 0.34 � 10�6 K m/

V (Refs. 12 and 13) and are comparable to what we obtained

for NBT-18KBT. These results highlight how promising

NBT-based material with MPB are for electrocaloric cooling

applications. The only current issue is the fact that most of

reported MPB compositions have their Td too high

(>100 �C) for practical applications, and more systems need

to be studied to shift it closer to the room temperature.

Hiruma et al.22 reported that, similar to lead-based perov-

skites, the position of the MPB in (1� x)NBT-xABO3 materi-

als depends on the tolerance factor of the end-member

perovskite. The use of the formula that they proposed could

be an effective tool to efficiently screen different types of both

A- and B-sites dopants, which could lead to a near-RT MPB.

The inset of Fig. 3 shows a comparison between the

direct and indirect measurements obtained for 22 kV/cm.

The method used to calculate the indirect measurement is

given elsewhere.4 There is a good agreement between both

sets of data at high temperature with an increasing trend

observed between 130 �C and 160 �C and the maximum indi-

rect ECE also measured at 160 �C. However, the absolute

value DTmax¼ 0.57 K, which corresponds to an ECE respon-

sivity of only 0.26 � 10�6 K m/V, is significantly lower than

that observed by direct measurements. Furthermore, it can be

seen that there are significant discrepancies at lower temper-

atures. A positive ECE is observed by direct measurements

with small values of ECE slowly increasing with tempera-

ture. However, the indirect measurements show a large nega-

tive ECE with a maximum of jDTECj observed near 80 �C.

The indirect ECE only becomes positive near 120 �C. The

negative ECE observed by indirect measurements is a result

of the combination of the hysteresis loops not being fully sat-

urated at 22 kV/cm and the decrease of the coercive field

with increasing temperature, which leads to an increase of

the induced polarisation with temperature. As the pyroelec-

tric coefficient is used for the indirect measurement, a

positive dP/dT results in a negative effect. Our direct meas-

urements clearly show that the ECE is positive in that range

of temperature, which highlights that the indirect methods,

based on Maxwell’s equations, are not valid in the non-

equilibrium conditions that accompanies unsaturated

ceramics.23 Only when fully saturated hysteresis loops are

observed (above 130 �C), the trend of the indirect ECE starts

to match that obtained by direct measurements. Indirect ECE

measurements performed on NBT-18KBT were reported by

Cao et al.20 Although they applied electric fields high

enough to saturate the ceramics and observed a positive ECE

over the studied range of temperature, they found a maxi-

mum ECE of 1.06 K at 80 �C under 50 kV/cm, which corre-

spond to an ECE responsivity of only 0.22� 10�6 K m/V

and is much lower than what we measured directly. The sig-

nificant discrepancies between the direct and indirect meas-

urements highlights the limitations of indirect ECE

measurements and emphasises the need for a systematic

direct characterisation of the ECE properties, especially for

complex relaxor ferroelectric systems, as previously reported

by Lu et al.24

Fig. 4 shows the ECE versus applied electric field meas-

ured for NBT-18KBT at 60 �C. It can be seen that the ECE

increases almost linearly with electric field above 7 kV/cm,

with a regular ECE response on the DSC measurement, as

shown in the inset of the bottom right corner. However,

Fig. 4 also shows that a negative ECE is observed at lower

fields, around 5 kV/cm. It can be seen in the inset in the top

left corner that there is a reversal of the observed peaks, with

an endothermic peak observed upon application of the field

and an exothermic observed upon removal, as seen in h001i-
PMN-30PT single crystals.4,25 A negative ECE has also been

observed by indirect ECE measurements on NBT,9 where it

FIG. 3. ECE versus temperature measured for the NBT-18KBT unpoled

ceramics for different values of applied electric field. The vertical line marks

the position of Td. The inset shows a comparison between the direct and

indirect ECE versus temperature measured for 22 kV/cm.

FIG. 4. ECE versus applied electric field measured for the NBT-18KBT

unpoled ceramics at 60 �C. The data measured at 5 kV/cm on poled and

annealed ceramics are also presented. The insets show the DSC response for

5 kV/cm (left) and 22 kV/cm (right); the peaks going down are exothermic.

172903-3 Le Goupil et al. Appl. Phys. Lett. 107, 172903 (2015)
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was attributed to the presence of a field-induced phase transi-

tion from tetragonal AFE to a more entropic tetragonal FE

phase. The negative effect in NBT-18KBT is most likely

also due to the presence of a weakly polar phase with differ-

ent dipolar directions at low applied fields as reported by

Viola et al.26 Similar to NBT-BT,27,28 unpoled ceramics

with compositions near the MPB of NBT-KBT show a mix-

ture of R3c and P4bm polar nano-regions.29 The tetragonal

P4bm phase is a weakly polar relaxor ferrielectric with anti-

parallel cation displacements along the polar axis.27,30 The

application of an electric field higher than the coercive field

induces the formation of a long-range order FE phase, with

the R3c or P4 mm structure depending on the composition.

However, when a smaller electric is applied, the P4bm nano-

domains coalesce into thin lamellar domains while maintain-

ing the P4bm structure, as observed by Guo et al. with in situ
TEM.31 The formation of this lamellar domains with anti-

parallel dipolar directions is responsible for the negative

ECE observed at 5 kV/cm on the unpoled ceramics. The

application of low electric fields to this phase actually

increases the dipolar disorder of the system due to the

different dipolar directions available, which leads to a field-

induced entropy increase and a negative ECE. The observa-

tion of a negative ECE in that case is consistent with reports

from Ponomareva and Lisenkov32 and Axelsson et al.,25 who

attributed its occurrence to the non-collinearity between the

direction of field application and the dipolar directions avail-

able in the sample. The application of a stronger field indu-

ces the irreversible formation of the FE phase, which is

accompanied by the conventional field-induced entropy

reduction and a positive ECE, as observed for electric fields

above 7 kV/cm. Similarly, when a 5 kV/cm-electric field is

applied to a poled ceramic, a positive ECE is observed as the

FE phase induced by the poling did not revert back to the

weakly polar phase after the field was removed. However, if

the poled ceramic is depoled by annealing at temperatures

above Td, only the weakly polar phase is present upon cool-

ing and a negative ECE is produced by the application of a

5 kV/cm-electric field, which was also confirmed by our

measurements, as shown in Fig. 4. The presence of the nega-

tive ECE highlights the numerous polar phases available in

the NBT-based ceramics and is another proof of their high

potential for solid-state cooling based on high field-induced

entropy changes.

In conclusion, we have reported the direct measurements

of the ECE enhancement resulting from the MPB formed by

the solid solution of NBT with KBT. A maximum ECE

DTmax¼ 0.73 K was measured at 160 �C under 22 kV/cm for

NBT-18KBT. This corresponds to an ECE responsivity (DT/

DE) of 0.33 � 10�6 K m/V, which is comparable with the

best reported values for lead-free ceramics. The significant

discrepancies between the direct and indirect measurements

have also emphasised the need for a systematic direct charac-

terisation of the ECE properties, especially for complex

relaxor ferroelectric systems. The direct measurement of

both positive and negative electrocaloric effect also con-

firmed the presence of numerous polar phases near the MPB

of NBT-based materials and highlighted their potential for

solid-state cooling based on high field-induced entropy

changes.
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