UNIVERSITY OF LEEDS

This is a repository copy of Coloring Square-free Berge Graphs.
White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/92290/
Version: Submitted Version

## Article:

Chudnovsky, M, Lo, I, Maffray, F et al. (2 more authors) (Accepted: 2015) Coloring Square-free Berge Graphs. arXiv. (Unpublished)

## Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

## Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

# Coloring square-free Berge graphs 

Maria Chudnovsky* $\quad$ Irene $\mathrm{Lo}^{\dagger} \quad$ Frédéric Maffray ${ }^{\ddagger}$<br>Nicolas Trotignon ${ }^{\S} \quad$ Kristina Vuškovićđ

October 1, 2015


#### Abstract

We consider the class of Berge graphs that do not contain a chordless cycle of length 4 . We present a purely graph-theoretical algorithm that produces an optimal coloring in polynomial time for every graph in that class.


Keywords: Berge graph, square-free, coloring, algorithm

## 1 Introduction

A graph $G$ is perfect if every induced subgraph $H$ of $G$ satisfies $\chi(H)=\omega(H)$, where $\chi(H)$ is the chromatic number of $H$ and $\omega(H)$ is the maximum clique size in $H$. In a graph $G$, a hole is a chordless cycle with at least four vertices and an antihole is the complement of a hole. We say that graph $G$ contains a graph $F$, if $F$ is isomorphic to an induced subgraph of $G$. A graph $G$ is $F$-free if it does not contain $F$, and for a family of graphs $\mathcal{F}, G$ is $\mathcal{F}$-free if $G$ is $F$-free for every $F \in \mathcal{F}$. Berge [2, 3, 4] introduced perfect graphs and conjectured that a graph is perfect if and only if it does not contain an odd hole or an odd antihole. A Berge graph is any graph that contains no odd hole and no odd antihole. This famous question (the Strong Perfect Graph Conjecture) was solved by Chudnovsky, Robertson, Seymour and Thomas [7): Every Berge graph

[^0]is perfect. Moreover, Chudnovsky, Cornuéjols, Liu, Seymour and Vušković 6] devised a polynomial-time algorithm that determines if a graph is Berge.

It is known that one can obtain an optimal coloring of a perfect graph in polynomial time due to the algorithm of Grötschel, Lovász and Schrijver [12]. This algorithm however is not purely combinatorial and is usually considered impractical. No purely combinatorial algorithm exists for coloring all Berge graphs optimally and in polynomial time.

The length of a chordless path or cycle is the number of its edges. We let $C_{k}$ denote the hole of length $k(k \geq 4)$. The graph $C_{4}$ is also referred to as a square. A graph is chordal if it is hole-free. It is well-known that chordal graphs are perfect and that their chromatic number can be computed in linear time (see [11).

Alekseev [1] proved that the number of maximal cliques in a square-free graph on $n$ vertices is $O\left(n^{2}\right)$. Moreover it is known that one can list all the maximal cliques in a graph $G$ in time $O\left(n^{3} K\right)$, where $K$ is the number of maximal cliques; see [19, 17] among others. It follows that finding $\omega(G)$ (the size of a maximum clique) can be done in polynomial time for any square-free graph, and in particular finding $\chi(G)$ can be done in polynomial time for a square-free Berge graph. Moreover, Parfenoff, Roussel and Rusu [18] proved that every square-free Berge graph has a vertex whose neigbhorhood is chordal, which yields another way to find all maximal cliques in polynomial time. However getting an exact coloring of a square-free Berge graph is still hard, and this is what we do. The main result of this paper is a purely graph-theoretical algorithm that produces an optimal coloring for every square-free Berge graph in polynomial time.

Theorem 1.1 There exists an algorithm which, given any square-free Berge graph $G$ on $n$ vertices, returns a coloring of $G$ with $\omega(G)$ colors in time $O\left(n^{9}\right)$.

A prism is a graph that consists of two vertex-disjoint triangles (cliques of size 3) with three vertex-disjoint paths $P_{1}, P_{2}, P_{3}$ between them, and with no other edge than those in the two triangles and in the three paths. Note that if two of $P_{1}, P_{2}, P_{3}$ have lengths of different parities, then their union induces an odd hole. So in a Berge graph, the three paths of a prism have the same parity. A prism is even (resp. odd) if these three paths all have even length (resp. all have odd length).

Let $\mathcal{A}$ be the class of graphs that contain no odd hole, no antihole of length at least 6 , and no prism. This class was studied in [16], where purely graphtheoretical algorithms are devised for coloring and recognizing graphs in that class. In particular:

Theorem 1.2 ([16]) There exists an algorithm which, given any graph $G$ in class $\mathcal{A}$ on $n$ vertices, returns a coloring of $G$ with $\omega(G)$ colors and a clique of size $\omega(G)$, in time $O\left(n^{9}\right)$.

Note that every antihole of length at least 6 contains a square; so a squarefree graph contains no such antihole.

Since Theorem 1.2 settles the case of graphs that have no prism, we may assume for our proof of Theorem 1.1 that we are dealing with a graph that contains a prism. The next sections focus on the study of such graphs. We will prove that whenever a square-free Berge graph $G$ contains a prism, it contains a cutset of a special type, and, consequently, that $G$ can be decomposed into two induced subgraphs $G_{1}$ and $G_{2}$ such that an optimal coloring of $G$ can be obtained from optimal colorings of $G_{1}$ and $G_{2}$.

Note that results from [15] show that finding an induced prism in a Berge graph can be done in polynomial time but that finding an induced prism in general is NP-complete.

In 14, it was proved that when a square-free Berge graph contains no odd prism, then either it is a clique or it has an "even pair", as suggested by a conjecture of Everett and Reed (see [9). However, this property does not carry over to all square-free Berge graphs; indeed it follows from [13] that the linegraph of any 3-connected square-free bipartite graph (for example the "Heawood graph") is a square-free Berge graph with no even pair.

We finish this section with some notation and terminology. In a graph $G$, given a set $T \subset V(G)$, a vertex of $V(G) \backslash T$ is complete to $T$ if it is adjacent to all vertices of $T$. A vertex of $V(G) \backslash T$ is anticomplete to $T$ if it is non-adjacent to every vertex of $T$. Given two disjoint sets $S, T \subset V(G), S$ is complete to $T$ if every vertex of $S$ is complete to $T$, and $S$ is anticomplete to $T$ if every vertex of $S$ is anticomplete to $T$. Given a path or a cycle, any edge between two vertices that are not consecutive along the path or cycle is a chord. A path or cycle that has no chord is chordless.

The line-graph of a graph $H$ is the graph $L(H)$ with vertex-set $E(H)$ where $e, f \in E(H)$ are adjacent in $L(H)$ if they share an end in $H$.

In a graph $J$, subdividing an edge $u v \in E(J)$ means removing the edge $u v$ and adding a new vertex $w$ and two new edges $u w, v w$. Starting with a graph $J$, the effect of repeatedly subdividing edges produces a graph $H$ called a subdivision of $J$. Note that $V(J) \subseteq V(H)$.

Lemma 1.3 Let $G$ be square-free. Let $K$ be a clique in $G$, possibly empty. Let $X_{1}, X_{2}, \ldots, X_{k}$ be pairwise disjoint subsets of $V(G)$, also disjoint from $K$, such that $X_{i}$ is complete to $X_{j}$ for all $i \neq j$, and let $X=\bigcup_{i} X_{i}$. Suppose that for every $v$ in $K$, there is an integer $i$ so that $v$ is complete to $X \backslash X_{i}$. Then there is an integer $i$ such that $(K \cup X) \backslash X_{i}$ is a clique in $G$.

Proof. First observe that there exists an integer $j$ such that $X \backslash X_{j}$ is a clique, for otherwise two of $X_{1}, \ldots, X_{k}$ are not cliques and their union contains a square. Hence if $K$ is empty, the lemma holds.

Now we claim that $K$ is complete to at least $k-1$ of the $X_{i}$ 's. For suppose on the contrary that $K$ is not complete to any of $X_{1}$ and $X_{2}$. Then there are vertices $v_{1}, v_{2} \in K, x_{1} \in X_{1}, x_{2} \in X_{2}$ such that for $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$, $v_{i}$ adjacent to $x_{i}$ and non-adjacent to $x_{j}$. By the assumption, $v_{1} \neq v_{2}$. Then $\left\{v_{1}, x_{1}, x_{2}, v_{2}\right\}$ induces a square, contradiction. Hence there exists an index $h$ such that $K$ is complete to $X \backslash X_{h}$.

Suppose that the lemma does not hold. Then $j \neq h$ and there are vertices $x, x^{\prime} \in X_{j}, v \in K, w \in X_{h}$ such that $x$ and $x^{\prime}$ are non-adjacent and $v$ and $w$ are non-adjacent. Then $\left\{x, v, x^{\prime}, w\right\}$ induces a square, contradiction. This proves the lemma.

In a graph $G$, we say (as in [7) that a vertex $v$ can be linked to a triangle $\left\{a_{1}, a_{2}, a_{3}\right\}$ (via paths $P_{1}, P_{2}, P_{3}$ ) when: the three paths $P_{1}, P_{2}, P_{3}$ are mutually vertex-disjoint; for each $i \in\{1,2,3\}, a_{i}$ is an end of $P_{i}$; for all $i, j \in\{1,2,3\}$ with $i \neq j, a_{i} a_{j}$ is the only edge between $P_{i}$ and $P_{j}$; and $v$ has a neighbor in each of $P_{1}, P_{2}, P_{3}$.

Lemma 1.4 ((2.4) in [7]) In a Berge graph, if a vertex $v$ can be linked to a triangle $\left\{a_{1}, a_{2}, a_{3}\right\}$, then $v$ is adjacent to at least two of $a_{1}, a_{2}, a_{3}$.

## 2 Good partitions

In a graph $G$, a triad is a set of three pairwise non-adjacent vertices.
A good partition of a graph $G$ is a partition $\left(K_{1}, K_{2}, K_{3}, L, R\right)$ of $V(G)$ such that:
(i) $L$ and $R$ are not empty, and $L$ is anticomplete to $R$;
(ii) $K_{1} \cup K_{2}$ and $K_{2} \cup K_{3}$ are cliques;
(iii) In the graph obtained from $G$ by removing all edges between $K_{1}$ and $K_{3}$, every chordless path with one end in $K_{1}$, the other in $K_{3}$, and interior in $L$ contains a vertex from $L$ that is complete to $K_{1}$.
(iv) Either $K_{1}$ is anticomplete to $K_{3}$, or no vertex in $L$ has neighbors in both $K_{1}$ and $K_{3}$;
(v) For some $x \in L$ and $y \in R$, there is a triad of $G$ that contains $\{x, y\}$.

Theorem 2.1 Let $G$ be a square-free Berge graph. If $G$ contains a prism, then $G$ has a good partition.

The proof of this theorem will be given in the following sections, depending on the presence in $G$ of an even prism (Theorem4.2), an odd prism (Theorem 5.2), or the line-graph of a bipartite subdivision of $K_{4}$ (Theorem 6.1).

In the rest of this section we show how a good partition can be used to find an optimal coloring of the graph.

Lemma 2.2 Let $G$ be a square-free Berge graph. Suppose that $V(G)$ has a good partition $\left(K_{1}, K_{2}, K_{3}, L, R\right)$. Let $G_{1}=G \backslash R$ and $G_{2}=G \backslash L$, and for $i=1,2$ let $c_{i}$ be an $\omega\left(G_{i}\right)$-coloring of $G_{i}$. Then an $\omega(G)$-coloring of $G$ can be obtained in polynomial time.

Proof. Since $K_{1} \cup K_{2}$ is a clique, by permuting colors we may assume that $c_{1}(x)=c_{2}(x)$ holds for every vertex $x \in K_{1} \cup K_{2}$.

Say that a vertex $u$ in $K_{3}$ is $b a d$ if $c_{1}(u) \neq c_{2}(u)$, and let $B$ be the set of bad vertices. If $B=\emptyset$, we can merge $c_{1}$ and $c_{2}$ into a coloring of $G$ and the lemma holds. Therefore let us assume that $B \neq \emptyset$. We will show that we can produce in polynomial time a pair $\left(c_{1}^{\prime}, c_{2}^{\prime}\right)$ of $\omega(G)$-colorings of $G_{1}$ and $G_{2}$, respectively, that agree on $K_{1} \cup K_{2}$ and have strictly fewer bad vertices than $\left(c_{1}, c_{2}\right)$. Repeating this argument at most $|B|$ times will prove the lemma.

For each $h \in\{1,2\}$ and for any two distinct colors $i$ and $j$, let $G_{h}^{i, j}$ be the bipartite subgraph of $G_{h}$ induced by $\left\{v \in V\left(G_{h}\right) \mid c_{h}(v) \in\{i, j\}\right\}$; and for any vertex $u \in K_{3}$, let $C_{h}^{i, j}(u)$ be the component of $G_{h}^{i, j}$ that contains $u$.

Let $u \in B$, with $i=c_{1}(u)$ and $j=c_{2}(u)$. Then $C_{h}^{i, j}(u) \cap K_{2}=\emptyset$ for each $h \in\{1,2\}$ because $u$ is complete to $K_{2}$. Say that $u$ is free if $C_{h}^{i, j}(u) \cap K_{1}=\emptyset$ holds for some $h \in\{1,2\}$. In particular $u$ is free whenever colors $i$ and $j$ do not appear in $K_{1}$.

We may assume that there is no free vertex.
Suppose that $u$ is a free vertex, with $C_{1}^{i, j}(u) \cap K_{1}=\emptyset$ say. Then we swap colors $i$ and $j$ on $C_{1}^{i, j}(u)$. We obtain a coloring $c_{1}^{\prime}$ of $G_{1}$ where the color of every vertex in $K_{1} \cup K_{2}$ is unchanged, by the definition of a free vertex; so $c_{1}^{\prime}$ and $c_{2}$ agree on $K_{1} \cup K_{2}$. For all $v \in K_{3} \backslash B$ we have $c_{1}(v) \neq i$, because $c_{1}(u)=i$, and $c_{1}(v) \neq j$, because $c_{1}(v)=c_{2}(v) \neq c_{2}(u)=j$; so the color of $v$ is unchanged. Moreover we have $c_{1}^{\prime}(u)=j=c_{2}(u)$, so $c_{1}^{\prime}$ and $c_{2}$ agree on $u$. Hence the pair $\left(c_{1}^{\prime}, c_{2}\right)$ has strictly fewer bad vertices than $\left(c_{1}, c_{2}\right)$. Thus (1) holds.

Choose $w$ in $B$ with the largest number of neighbors in $K_{1}$. Then:

$$
\begin{equation*}
\text { Every vertex } u \in B \text { satisfies } N(u) \cap K_{1} \subseteq N(w) \cap K_{1} \text {. } \tag{2}
\end{equation*}
$$

For suppose that some vertex $x \in K_{1}$ is adjacent to $u$ and not to $w$. By the choice of $w$ there is a vertex $y \in K_{1}$ that is adjacent to $w$ and not to $u$. Then $\{x, y, u, w\}$ induces a $C_{4}$, a contradiction. Thus (2) holds.

Up to relabelling, let $c_{1}(w)=1$ and $c_{2}(w)=2$. By (1) $w$ is not a free vertex, so $C_{1}^{1,2}(w) \cap K_{1} \neq \emptyset$ and $C_{2}^{1,2}(w) \cap K_{1} \neq \emptyset$. Hence for some $i \in\{1,2\}$ there is a chordless path $P=w-p_{1} \cdots-p_{k}-a$ in $C_{1}^{1,2}(w)$, with $k \geq 1, p_{1} \in K_{3} \cup L$, $p_{2}, \ldots, p_{k} \in L$ and $a \in K_{1}$ with $c_{1}(a)=i$; and for some $i^{\prime} \in\{1,2\}$ there is a chordless path $Q=w-q_{1} \cdots-q_{\ell^{-}} a^{\prime}$ in $C_{2}^{1,2}(w)$, with $\ell \geq 1, q_{1} \in K_{3} \cup R$, $q_{2}, \ldots, q_{\ell} \in R$ and $a^{\prime} \in K_{1}$ with $c_{2}\left(a^{\prime}\right)=i^{\prime}$. It follows that at least one of the colors 1 and 2 appears in $K_{1}$. We claim that:

$$
\begin{equation*}
\text { Exactly one of the colors } 1 \text { and } 2 \text { appears in } K_{1} \text {. } \tag{3}
\end{equation*}
$$

For suppose that there are vertices $a_{1}, a_{2} \in K_{1}$ with $c_{1}\left(a_{1}\right)=1$ and $c_{1}\left(a_{2}\right)=2$. We know that $w$ is anticomplete to $\left\{a_{1}, a_{2}\right\}$. Since $P$ is bicolored by $c_{1}$, it cannot contain a vertex complete to $\left\{a_{1}, a_{2}\right\}$; so, by assumption (iii), $P$ does not meet L. This implies that $P=w-p_{1}-a_{1}$ and $p_{1} \in K_{3}$. Then $c_{2}\left(p_{1}\right) \neq 2$, because
$c_{2}(w)=2$, and so $p_{1} \in B$; but then (2) is contradicted since $w$ is non-adjacent to $a_{1}$. Thus (3) holds.

By (3) we have $i=i^{\prime}$ and $a=a^{\prime}$. Let $j=3-i$. Note that if $i=1$ then $P$ has even length and $Q$ has odd length, and if $i=2$ then $P$ has odd length and $Q$ has even length. So $P$ and $Q$ have different parities. If $p_{1} \in L$ and $q_{1} \in R$, then $V(P) \cup V(Q)$ induces an odd hole, a contradiction. Hence,

$$
\begin{equation*}
\text { At least one of } p_{1} \text { and } q_{1} \text { is in } K_{3} \text {. } \tag{4}
\end{equation*}
$$

We claim that:

$$
\begin{equation*}
\text { There is no vertex } y \text { in } K_{3} \text { such that } c_{1}(y)=2 \text { and } c_{2}(y)=1 . \tag{5}
\end{equation*}
$$

Suppose that there is such a vertex $y$. If $p_{1} \in K_{3}$ and $q_{1} \in K_{3}$, then $p_{1}=y=q_{1}$ and $(V(P) \cup V(Q)) \backslash\{w\}$ induces an odd hole, a contradiction. So, by (4), exactly one of $p_{1}$ and $q_{1}$ is in $K_{3}$. Suppose that $p_{1} \in K_{3}$ and $q_{1} \in R$. So $p_{1}=y$. If $p_{1}$ has no neighbor on $Q \backslash w$, then $V(P) \cup V(Q)$ induces an odd hole. So suppose that $p_{1}$ has a neighbor on $Q \backslash w$. Then there is a chordless path $Q^{\prime}$ from $p_{1}$ to $a^{\prime}$ with interior in $Q \backslash w$, and since it is bicolored by $c_{2}$ the parity of $Q^{\prime}$ is different from the parity of $Q$. Then $(V(P) \backslash\{w\}) \cup V\left(Q^{\prime}\right)$ induces an odd hole, a contradiction. When $p_{1} \in L$ and $q_{1} \in K_{3}$ the proof is similar. Thus (5) holds.

$$
\begin{equation*}
p_{1} \notin K_{3} . \tag{6}
\end{equation*}
$$

For suppose that $p_{1} \in K_{3}$. We have $c_{2}\left(p_{1}\right) \neq 1$ by (5) and $c_{2}\left(p_{1}\right) \neq 2$ because $c_{2}(w)=2$. Hence let $c_{2}\left(p_{1}\right)=3$. So color 3 does not appear in $K_{2}$.

Suppose that color 3 does not appear in $K_{1}$. Then, by (3), $C_{2}^{j, 3}\left(p_{1}\right) \cap K_{1}=\emptyset$. We swap colors $j$ and 3 on $C_{2}^{j, 3}\left(p_{1}\right)$. We obtain a coloring $c_{2}^{\prime}$ of $G_{2}$ such that the color of all vertices in $K_{1} \cup K_{2}$ is unchanged, so $c_{2}^{\prime}$ agrees with $c_{1}$ on $K_{1} \cup K_{2}$. For every vertex $v$ in $K_{3} \backslash B$ we have $c_{2}(v) \neq 3$, because $c_{2}\left(p_{1}\right)=3$, and $c_{2}(v) \notin$ $\{1,2\}$, because $c_{2}(v)=c_{1}(v)$ and $\{1,2\}=\left\{c_{1}(w), c_{1}\left(p_{1}\right)\right\}$; so the color of $v$ is unchanged. Moreover, $c_{2}^{\prime}\left(p_{1}\right)=j$. If $j=1$, the pair $\left(c_{1}, c_{2}^{\prime}\right)$ contradicts (5) (note that in this case the color of $w$ is unchanged). If $j=2$, then $c_{2}^{\prime}\left(p_{1}\right)=c_{1}\left(p_{1}\right)$, so the pair ( $c_{1}, c_{2}^{\prime}$ ) has strictly fewer bad vertices than $\left(c_{1}, c_{2}\right)$. Therefore we may assume that there is a vertex $a_{3}$ in $K_{1}$ with $c_{1}\left(a_{3}\right)=3$.

Vertex $p_{1}$ is not adjacent to $a_{3}$ because $c_{2}\left(p_{1}\right)=c_{2}\left(a_{3}\right)$, and $p_{1}$ is not adjacent to $a$ by (2) and because $w$ is not adjacent to $a$. This implies $k \geq 2$, so the path $P \backslash w$ meets $L$. Assumption (iii) implies that $P \backslash w$ contains a vertex that is complete to $\left\{a, a_{3}\right\}$, and since $P$ is chordless, that vertex is $p_{k}$.

Suppose that $a_{3}$ has a neighbor $p_{g}$ on $P \backslash\left\{w, p_{k}\right\}$, and choose the smallest such integer $g$. We know that $g \geq 2$. The chordless path $p_{1} \cdots-p_{g}-a_{3}$ meets $L$, but it contains no vertex that is complete to $\left\{a, a_{3}\right\}$ because $a$ has no neighbor on $P \backslash p_{k}$, so assumption (iii) is contradicted. Therefore $a_{3}$ has no neighbor on $P \backslash\left\{w, p_{k}\right\}$.

Suppose that $i=1$. Then $P$ has even length, and by (3) color 2 does not appear in $K_{1}$. If $w$ is adjacent to $a_{3}$, then since $k \geq 2$, we see that $(V(P) \backslash$
$\{a\}) \cup\left\{a_{3}\right\}$ induces an odd hole. So $w$ is non-adjacent to $a_{3}$. Hence $\left\{a, a_{3}\right\}$ is anticomplete to $\left\{w, p_{1}\right\}$. Since, by (11), $p_{1}$ is not a free vertex, and color 2 does not appear in $K_{1}$, there is a chordless path $S$ between $p_{1}$ and $a_{3}$ in $C_{2}^{2,3}\left(p_{1}\right)$, and $S$ has even length because $c_{2}\left(p_{1}\right)=c_{2}\left(a_{3}\right)$. If $w$ has a neighbor in $S \backslash p_{1}$, then there is a chordless path $S^{\prime}$ from $w$ to $a_{3}$ with interior in $S \backslash p_{1}$, and $S^{\prime}$ has odd length since it is bicolored by $c_{2}$; but then $V(P \backslash a) \cup V\left(S^{\prime}\right)$ induces an odd hole. So $w$ has no neighbor in $S \backslash p_{1}$, and in particular $w \notin V(S)$. Then $V(P \backslash\{a, w\}) \cup V(S)$ induces an odd hole, a contradiction.

Now suppose that $i=2$. Since, by (11), $p_{1}$ is not a free vertex, there is a chordless path $T$ from $p_{1}$ to $\left\{a, a_{3}\right\}$ in $C_{1}^{2,3}\left(p_{1}\right)$. Since $T$ is bicolored by $c_{1}$ it cannot contain a vertex that is complete to $\left\{a, a_{3}\right\}$, so assumption (iii) implies that $T$ does not meet $L$. So we have $T=p_{1}-x-a$ for some vertex $x$ in $K_{3}$ with $c_{1}(x)=3$. We have $c_{2}(x) \neq 3$ because $c_{2}\left(p_{1}\right)=3$; so $x \in B$. But the fact that $a$ is adjacent to $x$ and not to $w$ contradicts (2). Thus (6) holds.

By (4) and (6) we have $p_{1} \notin K_{3}$ and $q_{1} \in K_{3}$. In particular, $P$ meets $L$. We have $c_{1}\left(q_{1}\right) \neq 1$ because $c_{1}(w)=1$, and $c_{1}\left(q_{1}\right) \neq 2$ by (5). Hence let $c_{1}\left(q_{1}\right)=3$.

$$
\begin{equation*}
\text { Color } 3 \text { appears in } K_{1} . \tag{7}
\end{equation*}
$$

Assume the contrary. Then, by (3), $C_{1}^{j, 3}\left(q_{1}\right) \cap K_{1}=\emptyset$. We swap colors $j$ and 3 on $C_{1}^{j, 3}\left(q_{1}\right)$. We obtain a coloring $c_{1}^{\prime}$ of $G_{1}$ such that the color of every vertex in $K_{1} \cup K_{2}$ is unchanged, so $c_{1}^{\prime}$ agrees with $c_{2}$ on $K_{1} \cup K_{2}$. Also every vertex $v$ in $K_{3} \backslash B$ satisfies $c_{1}^{\prime}(v)=c_{1}(v)$. Moreover, $c_{1}^{\prime}\left(q_{1}\right)=j$. If $j=1$, then $c_{1}^{\prime}\left(q_{1}\right)=c_{2}\left(q_{1}\right)$, so the pair $\left(c_{1}^{\prime}, c_{2}\right)$ has strictly fewer bad vertices than $\left(c_{1}, c_{2}\right)$. If $j=2$, the pair $\left(c_{1}^{\prime}, c_{2}\right)$ contradicts (5) (note that in this case the color of $w$ is unchanged). Thus we may assume that (7) holds.

By (7) there is a vertex $a_{3}$ in $K_{1}$ with $c_{1}\left(a_{3}\right)=3$. By (2), $q_{1}$ is anticomplete to $\left\{a, a_{3}\right\}$. Vertex $q_{1}$ has a neighbor in $P \backslash w$, for otherwise $V(P) \cup V(Q)$ induces an odd hole. So there is a chordless path $P^{\prime}$ from $q_{1}$ to $a$ with interior in $P \backslash w$, and $P^{\prime}$ meets $L$ because it contains $p_{k}$. By assumption (iii), $P^{\prime}$ contains a vertex that is complete to $\left\{a, a_{3}\right\}$, and since $P$ is chordless that vertex is $p_{k}$.

Suppose that $C_{1}^{i, 3}\left(q_{1}\right) \cap K_{1}=\emptyset$. Then we swap colors $i$ and 3 on $C_{1}^{i, 3}\left(q_{1}\right)$. We obtain a coloring $c_{1}^{\prime}$ of $G_{1}$ such that the color of every vertex in $K_{1} \cup K_{2}$ is unchanged, so $c_{1}^{\prime}$ agrees with $c_{2}$ on $K_{1} \cup K_{2}$. Also every vertex $v$ in $K_{3} \backslash B$ satisfies $c_{1}^{\prime}(v)=c_{1}(v)$. Moreover, $c_{1}^{\prime}\left(q_{1}\right)=i$. If $i=1$, the pair $\left(c_{1}^{\prime}, c_{2}\right)$ has strictly fewer bad vertices than $\left(c_{1}, c_{2}\right)$. If $i=2$, then $\left(c_{1}^{\prime}, c_{2}\right)$ contradicts (5) (note that in this case the color of $w$ is unchanged). Therefore we may assume that $C_{1}^{i, 3}\left(q_{1}\right) \cap K_{1} \neq \emptyset$.

Let $Z$ be a chordless path from $q_{1}$ to $\left\{a, a_{3}\right\}$ in $C_{1}^{i, 3}\left(q_{1}\right)$. Since $Z$ is bicolored by $c_{1}$, no vertex of $Z$ can be complete to $\left\{a, a_{3}\right\}$, and so assumption (iii) implies that $Z$ does not meet $L$. This means that either $i=1$ and $Z=q_{1}-w-a_{3}$, or $i=2$ and $Z=q_{1}-z-a_{3}$ for some $z$ in $K_{3}$ with $c_{1}(z)=2$. In either case, $K_{1}$ is not anticomplete to $K_{3}$, so asumption (iv) implies that $p_{k}$ is non-adjacent to $q_{1}$ and $k \geq 2$.

If $a_{3}$ has a neighbor in $P \backslash\left\{w, p_{k}\right\}$, then (since $q_{1}$ also has a neighbor in $\left.P \backslash\left\{w, p_{k}\right\}\right)$ there is a chordless path from $q_{1}$ to $a_{3}$ with interior in $V(P) \backslash\left\{w, p_{k}\right\}$,
so, by (iii), that path must contain a vertex that is complete to $\left\{a, a_{3}\right\}$; but this is impossible because $a$ has no neighbor in $P \backslash p_{k}$. So $a_{3}$ has no neighbor in $P \backslash\left\{w, p_{k}\right\}$.

Now if $i=1$, then $w$ is adjacent to $a_{3}, P$ has even length, and hence $(V(P) \backslash\{a\}) \cup\left\{a_{3}\right\}$ induces an odd hole. So $i=2$, and $Z=q_{1}-z-a_{3}$ with $z \in K_{3}$ and $c_{1}(z)=2$. Vertex $p_{k}$ is non-adjacent to $z$ by assumption (iv). The path $z-w-P-p_{k}$ has odd length, and it is bicolored by $c_{1}$, so it contains a chordless odd path $P^{\prime \prime}$ from $z$ to $p_{k}$. But then $V\left(P^{\prime \prime}\right) \cup\left\{a_{3}\right\}$ induces an odd hole. This completes the proof.

## 3 Prisms and hyperprisms

In a graph $G$ let $R_{1}, R_{2}, R_{3}$ be three chordless paths that form a prism $K$ with triangles $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$, where each $R_{i}$ has ends $a_{i}$ and $b_{i}$. A vertex of $V(G) \backslash K$ is a major neighbor of $K$ if it has at least two neighbors in $\left\{a_{1}, a_{2}, a_{3}\right\}$ and at least two neighbors in $\left\{b_{1}, b_{2}, b_{3}\right\}$. A subset $X$ of $V(K)$ is local if either $X \subseteq\left\{a_{1}, a_{2}, a_{3}\right\}$ or $X \subseteq\left\{b_{1}, b_{2}, b_{3}\right\}$ or $X \subseteq V\left(R_{i}\right)$ for some $i \in\{1,2,3\}$.

If $F, K$ are induced subgraphs of $G$ with $V(F) \cap V(K)=\emptyset$, any vertex in $K$ that has a neighbor in $F$ is called an attachment of $F$ in $K$, and whenever any such vertex exists we say that $F$ attaches to $K$.

Here are several theorems from the Strong Perfect Graph Theorem [7] that we will use.

Theorem 3.1 ((7.4) in [7]) In a Berge graph $G$, let $R_{1}, R_{2}, R_{3}$ be three chordless paths, of even lengths, that form a prism $K$ with triangles $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$, where each $R_{i}$ has ends $a_{i}$ and $b_{i}$. Assume that $R_{1}, R_{2}, R_{3}$ all have length at least 2. Let $R_{1}^{\prime}$ be a chordless path from $a_{1}^{\prime}$ to $b_{1}$, such that $R_{1}^{\prime}, R_{2}, R_{3}$ also form a prism. Let $y$ be a major neighbor of $K$. Then $y$ has at least two neighbors in $\left\{a_{1}^{\prime}, a_{2}, a_{3}\right\}$.

Theorem 3.2 ((10.1) in [7]) In a Berge graph $G$, let $R_{1}, R_{2}, R_{3}$ be three chordless paths that form a prism $K$ with triangles $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$, where each $R_{i}$ has ends $a_{i}$ and $b_{i}$. Let $F \subseteq V(G) \backslash V(K)$ be connected, such that its set of attachments in $K$ is not local. Assume no vertex in $F$ is major with respect to $K$. Then there is a path $f_{1} \ldots-f_{n}$ in $F$ with $n \geq 1$, such that (up to symmetry) either:

1. $f_{1}$ has two adjacent neighbors in $R_{1}$, and $f_{n}$ has two adjacent neighbors in $R_{2}$, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K)$, and (therefore) $G$ has an induced subgraph which is the line graph of a bipartite subdivision of $K_{4}$, or
2. $n \geq 2, f_{1}$ is adjacent to $a_{1}, a_{2}, a_{3}$, and $f_{n}$ is adjacent to $b_{1}, b_{2}, b_{3}$, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K)$, or
3. $n \geq 2, f_{1}$ is adjacent to $a_{1}, a_{2}$, and $f_{n}$ is adjacent to $b_{1}, b_{2}$, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K)$, or
4. $f_{1}$ is adjacent to $a_{1}, a_{2}$, and there is at least one edge between $f_{n}$ and $V\left(R_{3}\right) \backslash\left\{a_{3}\right\}$, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K) \backslash$ $\left\{a_{3}\right\}$.

A hyperprism is a graph $H$ whose vertex-set can be partitioned into nine sets:

$$
\begin{array}{lll}
A_{1} & C_{1} & B_{1} \\
A_{2} & C_{2} & B_{2} \\
A_{3} & C_{3} & B_{3}
\end{array}
$$

with the following properties:

- Each of $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ is non-empty.
- For distinct $i, j \in\{1,2,3\}, A_{i}$ is complete to $A_{j}$, and $B_{i}$ is complete to $B_{j}$, and there are no other edges between $A_{i} \cup B_{i} \cup C_{i}$ and $A_{j} \cup B_{j} \cup C_{j}$.
- For each $i \in\{1,2,3\}$, every vertex of $A_{i} \cup B_{i} \cup C_{i}$ belongs to a chordless path between $A_{i}$ and $B_{i}$ with interior in $C_{i}$.

For each $i \in\{1,2,3\}$, any chordless path from $A_{i}$ to $B_{i}$ with interior in $C_{i}$ is called an $i$-rung. The triple $\left(A_{i}, C_{i}, B_{i}\right)$ is called a strip of the hyperprism. If we pick any $i$-rung $R_{i}$ for each $i \in\{1,2,3\}$, we see that $R_{1}, R_{2}, R_{3}$ form a prism; any such prism is called an instance of the hyperprism. If $H$ contains no odd hole, it is easy to see that all rungs have the same parity; then the hyperprism is called even or odd accordingly.

Let $G$ be a graph that contains a prism. Then $G$ contains a hyperprism $H$. Let $\left(A_{1}, \ldots, B_{3}\right)$ be a partition of $V(H)$ as in the definition of a hyperprism above. A subset $X \subseteq V(H)$ is local if either $X \subseteq A_{1} \cup A_{2} \cup A_{3}$ or $X \subseteq B_{1} \cup B_{2} \cup B_{3}$ or $X \subseteq A_{i} \cup B_{i} \cup C_{i}$ for some $i \in\{1,2,3\}$. A vertex $x$ in $V(G) \backslash V(H)$ is a major neighbor of $H$ if $x$ is a major neighbor of some instance of $H$. The hyperprism $H$ is maximal if there is no hyperprism $H^{\prime}$ such that $V(H)$ is strictly included in $V\left(H^{\prime}\right)$.

Lemma 3.3 Let $G$ be a Berge graph, let $H$ be a hyperprism in $G$, and let $M$ be the set of major neighbors of $H$ in $G$. Let $F$ be a component of $G \backslash(V(H) \cup M)$ such that the set of attachments of $F$ in $H$ is not local. Then one can find in polynomial time one of the following:

- A chordless path $P$, with $\emptyset \neq V(P) \subseteq V(F)$, such that $V(H) \cup V(P)$ induces a hyperprism.
- A chordless path $P$, with $\emptyset \neq V(P) \subseteq V(F)$, and for each $i \in\{1,2,3\}$ an $i$-rung $R_{i}$ of $H$, such that $V(P) \cup V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right)$ induces the line-graph of a bipartite subdivision of $K_{4}$.

Proof. When $H$ is an even hyperprism, the proof of the lemma is identical to the proof of Claim (2) in the proof of Theorem 10.6 in 7 , and we omit it. When $H$ is an odd hyperprism, the proof of the lemma is similar to the proof of Claim (2), with the following adjustments: the case when the integer $n$ in that proof is even and the case when $n$ is odd are swapped, and the argument on page 126 of [7], lines $16-18$, is replaced with the following argument:

Suppose that $f_{n}$ is not adjacent to $b_{1}$; so $f_{1}$ is adjacent to $b_{1}, n \geq 2$, and $f_{n}$ is adjacent to $a_{2}$. Let $R_{3}$ be any 3 -rung, with ends $a_{3} \in A_{3}$ and $b_{3} \in B_{3}$. Then $a_{1} b_{1}$ is an edge, for otherwise $f_{1}-a_{1}-R_{1}-b_{1}-f_{1}$ is an odd hole; and $f_{1}$ has no neighbor in $\left\{a_{3}, b_{3}\right\}$, for otherwise we would have $n=1$. Likewise, $a_{2} b_{2}$ is an edge, and $f_{n}$ has no neighbor in $\left\{a_{3}, b_{3}\right\}$. But then $V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right) \cup\left\{f_{1}, \ldots, f_{n}\right\}$ induces the line-graph of a bipartite subdivision of $K_{4}$, a contradiction.

This completes the proof of the lemma.

## 4 Even prisms

We need to analyze the behavior of major neighbors of an even hyperprism. The reader may note that in the following theorem we are not assuming that the graph is square-free.

Theorem 4.1 Let $G$ be a Berge graph that contains an even prism and does not contain the line-graph of a bipartite subdivision of $K_{4}$. Let $H$ be an even hyperprism in $G$, with partition $\left(A_{1}, \ldots, B_{3}\right)$ as in the definition of a hyperprism, and let $x$ be a major neighbor of $H$. Then either:

- $x$ is complete to at least two of $A_{1}, A_{2}, A_{3}$ and at least two of $B_{1}, B_{2}, B_{3}$, or
- $V(H) \cup\{x\}$ induces a hyperprism.

Proof. Since $x$ is a major neighbor of $H$, there exists for each $i \in\{1,2,3\}$ an $i$-rung $W_{i}$ of $H$ such that $x$ is a major neighbor of the prism $K_{W}$ formed by $W_{1}, W_{2}, W_{3}$. Suppose that the first item does not hold; so, up to symmetry, $x$ has a non-neighbor $u_{1} \in A_{1}$ and a non-neighbor $u_{2} \in A_{2}$. For each $i \in\{1,2\}$ let $U_{i}$ be an $i$-rung with end $u_{i}$, and let $U_{3}$ be any 3 -rung. Then $x$ is not a major neighbor of the prism $K_{U}$ formed by $U_{1}, U_{2}, U_{3}$. We can turn $K_{W}$ into $K_{U}$ by replacing the rungs one by one (one at each step). Along this sequence there are two consecutive prisms $K$ and $K^{\prime}$ such that $x$ is a major neighbor of $K$ and not a major neighbor of $K^{\prime}$. Since $K$ and $K^{\prime}$ are consecutive they differ by exactly one rung. Let $K$ be formed by rungs $R_{1}, R_{2}, R_{3}$, where each $R_{i}$ has ends $a_{i} \in A_{i}$ and $b_{i} \in B_{i}(i=1,2,3)$, and let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$; and let $K^{\prime}$ be formed by $P_{1}, R_{2}, R_{3}$ for some $i$-rung $P_{1}$. Let $P_{1}$ have ends $a_{1}^{\prime} \in A_{1}$ and $b_{1}^{\prime} \in B_{1}$, and let $A^{\prime}=\left\{a_{1}^{\prime}, a_{2}, a_{3}\right\}$ and $B^{\prime}=\left\{b_{1}^{\prime}, b_{2}, b_{3}\right\}$.

Let $\alpha=|N(x) \cap A|, \beta=|N(x) \cap B|, \alpha^{\prime}=\left|N(x) \cap A^{\prime}\right|, \beta^{\prime}=\mid N(x) \cap$ $B^{\prime} \mid$. We know that $\alpha \geq 2$ and $\beta \geq 2$ since $x$ is a major neighbor of $K$, and $\min \left\{\alpha^{\prime}, \beta^{\prime}\right\} \leq 1$ since $x$ is not a major neighbor of $K^{\prime}$. Moreover, $\alpha^{\prime} \geq \alpha-1$ and $\beta^{\prime} \geq \beta-1$ since $K$ and $K^{\prime}$ differ by only one rung. Up to the symmetry on $A, B$, these conditions imply that the vector $\left(\alpha, \beta, \alpha^{\prime}, \beta^{\prime}\right)$ is equal to either $(3,2,3,1),(3,2,2,1),(2,2,2,1)$ or $(2,2,1,1)$. In either case we have $\beta=2$ and $\beta^{\prime}=1$, so $x$ is adjacent to $b_{1}$, non-adjacent to $b_{1}^{\prime}$, and adjacent to exactly one of $b_{2}, b_{3}$, say to $b_{3}$.
Suppose that $\left(\alpha^{\prime}, \beta^{\prime}\right)$ is equal to $(3,1)$ or $(2,1)$. We can apply Theorem 3.2 to $K^{\prime}$ and $F=\{x\}$, and it follows that $x$ satisfies item 4 of that theorem, so $x$ is adjacent to $a_{1}^{\prime}, a_{2}, b_{3}$ and has no neighbor in $V\left(K^{\prime}\right) \backslash\left(\left\{a_{1}^{\prime}, a_{2}\right\} \cup V\left(R_{3}\right)\right)$. But then $V\left(R_{2}\right) \cup\left\{x, b_{3}\right\}$ induces an odd hole, a contradiction. So we may assume that $\left(\alpha, \beta, \alpha^{\prime}, \beta^{\prime}\right)=(2,2,1,1)$, which restores the symmetry between $A$ and $B$. Since $\alpha=2$ and $\alpha^{\prime}=1, x$ is adjacent to $a_{1}$, non-adjacent to $a_{1}^{\prime}$, and adjacent to exactly one of $a_{2}, a_{3}$. If $x$ is adjacent to $a_{2}$, then $K^{\prime}$ and $\{x\}$ violate Theorem 3.2, So $x$ is adjacent to $a_{3}$ and not to $a_{2}$, and Theorem 3.2 implies that $x$ is a local neighbor of $K^{\prime}$ with $N(x) \cap K^{\prime} \subseteq V\left(R_{3}\right)$, so $x$ has no neighbor in $P_{1}$ or $R_{2}$. Then we claim that:

For every 1-rung $Q_{1}$, the ends of $Q_{1}$ are either both adjacent to $x$ or both non-adjacent to $x$.

For suppose the contrary. Then $x$ is not a major neighbor of the prism formed by $Q_{1}, R_{2}, R_{3}$, and consequently that prism and the set $F=\{x\}$ violate Theorem 3.2. So (1) holds.

Let $A_{1}^{\prime}=A_{1} \backslash N(x)$ and $A_{1}^{\prime \prime}=A_{1} \cap N(x)$, and $B_{1}^{\prime}=B_{1} \backslash N(x)$ and $B_{1}^{\prime \prime}=B_{1} \cap N(x)$. By (11), every 1-rung is either between $A_{1}^{\prime}$ and $B_{1}^{\prime}$ or between $A_{1}^{\prime \prime}$ and $B_{1}^{\prime \prime}$. Let $C_{1}^{\prime}$ be the set of vertices of $C_{1}$ that lie on a 1-rung whose ends are in $A_{1}^{\prime} \cup B_{1}^{\prime}$, and let $C_{1}^{\prime \prime}$ be the set of vertices of $C_{1}$ that lie on a 1-rung whose ends are in $A_{1}^{\prime \prime} \cup B_{1}^{\prime \prime}$. By (11), $C_{1}^{\prime}$ and $C_{1}^{\prime \prime}$ are disjoint and there is no edge between $A_{1}^{\prime} \cup C_{1}^{\prime} \cup B_{1}^{\prime}$ and $C_{1}^{\prime \prime}$ or between $A_{1}^{\prime \prime} \cup C_{1}^{\prime \prime} \cup B_{1}^{\prime \prime}$ and $C_{1}^{\prime}$.

Pick any 1-rung $P_{1}^{\prime}$ with ends in $A_{1}^{\prime} \cup B_{1}^{\prime}$. Then Theorem 3.2 implies (just like for $P_{1}$ ) that $x$ is a local neighbor of the prism formed by $P_{1}^{\prime}, R_{2}, R_{3}$, so $x$ has no neighbor in $P_{1}^{\prime}$. It follows that:

$$
\begin{equation*}
x \text { has no neighbor in } A_{1}^{\prime} \cup C_{1}^{\prime} \cup B_{1}^{\prime} . \tag{2}
\end{equation*}
$$

Moreover, we claim that:

$$
\begin{equation*}
A_{1}^{\prime} \text { is complete to } A_{1}^{\prime \prime} \text {, and } B_{1}^{\prime} \text { is complete to } B_{1}^{\prime \prime} \text {. } \tag{3}
\end{equation*}
$$

For suppose on the contrary, up to relabelling vertices and rungs, that $a_{1}^{\prime}$ and $a_{1}$ are non-adjacent. Then, by (2), $V\left(P_{1}\right) \cup\left\{x, a_{1}, a_{2}, b_{3}\right\}$ induces an odd hole. Thus (3) holds.

Let $A_{2}^{\prime}=A_{2} \backslash N(x), A_{2}^{\prime \prime}=A_{2} \cap N(x), B_{2}^{\prime}=B_{2} \backslash N(x)$ and $B_{2}^{\prime \prime}=B_{2} \cap N(x)$. Let $C_{2}^{\prime}$ be the set of vertices of $C_{2}$ that lie on a 2-rung whose ends are in $A_{2}^{\prime} \cup B_{2}^{\prime}$, and let $C_{2}^{\prime \prime}$ be the set of vertices of $C_{2}$ that lie on a 1-rung whose ends are in
$A_{2}^{\prime \prime} \cup B_{2}^{\prime \prime}$. By the same arguments as for the 1-rungs, we see that every 2-rung is either between $A_{2}^{\prime}$ and $B_{2}^{\prime}$ or between $A_{2}^{\prime \prime}$ and $B_{2}^{\prime \prime}$, that $C_{2}^{\prime}$ and $C_{2}^{\prime \prime}$ are disjoint and that there is no edge between $A_{2}^{\prime} \cup C_{2}^{\prime} \cup B_{2}^{\prime}$ and $C_{2}^{\prime \prime}$ or between $A_{2}^{\prime \prime} \cup C_{2}^{\prime \prime} \cup B_{2}^{\prime \prime}$ and $C_{2}^{\prime}$. Also $x$ has no neighbor in $A_{2}^{\prime} \cup C_{2}^{\prime} \cup B_{2}^{\prime}$, and $A_{2}^{\prime}$ is complete to $A_{2}^{\prime \prime}$, and $B_{2}^{\prime}$ is complete to $B_{2}^{\prime \prime}$. Note that, since $x a_{1}^{\prime}$ and $x a_{2}$ are not edges, the sets $A_{1}^{\prime}$, $B_{1}^{\prime}, C_{1}^{\prime}, A_{2}^{\prime}, B_{2}^{\prime}, C_{2}^{\prime}$ are all non-empty. It follows that the nine sets

$$
\begin{array}{ccc}
A_{1}^{\prime} & C_{1}^{\prime} & B_{1}^{\prime} \\
A_{2}^{\prime} & C_{2}^{\prime} & B_{2}^{\prime} \\
A_{1}^{\prime \prime} \cup A_{2}^{\prime \prime} \cup A_{3} & C_{1}^{\prime \prime} \cup C_{2}^{\prime \prime} \cup C_{3} \cup\{x\} & B_{1}^{\prime \prime} \cup B_{2}^{\prime \prime} \cup B_{3}
\end{array}
$$

form a hyperprism. So the second item of the theorem holds.

Theorem 4.2 Let $G$ be a square-free Berge graph that contains an even prism and does not contain the line-graph of a bipartite subdivision of $K_{4}$. Then $G$ has a good partition.

Proof. Let $H$ be a maximal even hyperprism in $G$, with partition $\left(A_{1}, \ldots, B_{3}\right)$ as in the definition of a hyperprism. Let $M$ be the set of major neighbors of $H$. Let $Z$ be the set of vertices of the components of $V(G) \backslash(V(H) \cup M)$ that have no attachment in $H$. By Lemma 3.3 every component of $G \backslash(V(H) \cup M \cup Z)$ attaches locally to $H$. For each $i=1,2,3$, let $F_{i}$ be the union of the vertex-sets of the components of $G \backslash(V(H) \cup M \cup Z)$ that attach to $A_{i} \cup B_{i} \cup C_{i}$. Let $F_{A}$ be the union of the vertex-sets of the components of $G \backslash\left(V(H) \cup M \cup Z \cup F_{1} \cup F_{2} \cup F_{3}\right)$ that attach to $A_{1} \cup A_{2} \cup A_{3}$, and define $F_{B}$ similarly. By Lemma 3.3 the sets $F_{1}$, $F_{2}, F_{3}, F_{A}, F_{B}$ are well-defined and are pairwise anticomplete to each other, and $V(G)=V(H) \cup M \cup Z \cup F_{1} \cup F_{2} \cup F_{3} \cup F_{A} \cup F_{B}$.

By Theorem4.1, every vertex in $M$ is complete to at least two of $A_{1}, A_{2}, A_{3}$ and at least two of $B_{1}, B_{2}, B_{3}$.

Suppose that $M$ contains non-adjacent vertices $x, y$. By Theorem 4.1, $x$ and $y$ have a common neighbor $a$ in $A$ and a common neighbor $b$ in $B$. Then $\{x, y, a, b\}$ induces a square, a contradiction. Therefore $M$ is a clique. By Lemma 1.3, $M \cup A_{i}$ is a clique for at least two values of $i$, and similarly $M \cup B_{j}$ is a clique for at least two values of $j$. Hence we may assume that both $M \cup A_{1}$ and $M \cup B_{1}$ are cliques.

Define sets $K_{1}=A_{1}, K_{2}=M, K_{3}=B_{1}, L=A_{2} \cup B_{2} \cup C_{2} \cup F_{2} \cup$ $A_{3} \cup B_{3} \cup C_{3} \cup F_{3} \cup F_{A} \cup F_{B}$ and $R=V(G) \backslash\left(K_{1} \cup K_{2} \cup K_{3} \cup M\right)$. (So $R=C_{1} \cup F_{1} \cup Z$.) Every chordless path from $K_{3}$ to $K_{1}$ that meets $L$ contains a vertex from $A_{2} \cup A_{3}$, which is complete to $K_{1}$. Moreover, since $H$ is an even hyperprism, $K_{1}$ is anticomplete to $K_{3}$, and the sets $C_{1}, C_{2}, C_{3}$ are non-empty, so, picking any vertex $x_{i} \in C_{i}$ for each $i \in\{1,2,3\}$, we see that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a triad with a vertex in $L$ and a vertex in $R$. So $\left(K_{1}, K_{2}, K_{3}, L, R\right)$ is a good partition of $V(G)$.

## 5 Odd prisms

Now we analyze the behavior of major neighbors of an odd hyperprism. The following theorem is the analogue of Theorem 4.1, but here we need the assumption that the graph is square-free and the proof is different.
Theorem 5.1 Let $G$ be a square-free Berge graph. Let $H$ be an odd hyperprism in $G$, with partition $\left(A_{1}, \ldots, B_{3}\right)$ as in the definition of a hyperprism, and let $m$ be a major neighbor of $H$. Then either:

- $m$ is complete to at least two of $A_{1}, A_{2}, A_{3}$ and at least two of $B_{1}, B_{2}, B_{3}$, or
- $V(H) \cup\{m\}$ induces a hyperprism.

Proof. We first observe that:
Every rung of $H$ contains a neighbor of $m$.
For suppose the contrary. Let $a_{1}-P_{1}-b_{1}$ be a rung that contains no neighbor of $m$. Suppose $m$ has neighbors $p$ and $q$ such that $p \in A_{2} \cup A_{3}, q \in B_{2} \cup B_{3}$, and $p$ is non-adjacent to $q$. Then $p-a_{1}-P_{1}-b_{1}-q-m-p$ is an odd hole, contradiction. Hence, since $m$ is major, we may assume that $m$ is anticomplete to $A_{3} \cup B_{3}$ and has neighbors $a_{1}^{\prime}, b_{1}^{\prime}, a_{2}, b_{2}$ such that $a_{1}^{\prime} \in A_{1}, b_{1}^{\prime} \in B_{1}, a_{2} \in A_{2}, b_{2} \in B_{2}$, and $a_{2}$ and $b_{2}$ are adjacent. Pick any $a_{3} \in A_{3}$ and $b_{3} \in B_{3}$. Then $a_{1}^{\prime} b_{1}^{\prime}$ is not an edge, for otherwise $\left\{a_{1}^{\prime}, b_{1}^{\prime}, a_{2}, b_{2}\right\}$ induces a square; and similarly $a_{1}^{\prime} b_{1}, a_{1} b_{1}^{\prime}$ and $a_{3} b_{3}$ are not edges. If $a_{1}^{\prime}$ is adjacent to $a_{1}$, then $a_{1}^{\prime}-a_{1}-P_{1}-b_{1}-b_{2}-m-a_{1}^{\prime}$ is an odd hole, a contradiction. Similarly, if $b_{1}^{\prime}$ is adjacent to $b_{1}$, there is an odd hole. Hence $a_{1} a_{1}^{\prime}$ and $b_{1} b_{1}^{\prime}$ are not edges. But then $a_{1}^{\prime}-a_{3}-a_{1}-P_{1}-b_{1}-b_{3}-b_{1}^{\prime}-m-a_{1}^{\prime}$ is an odd hole. This proves (1).

Suppose, up to symmetry, that $m$ does not satisfy the property of being complete to at least two of $B_{1}, B_{2}, B_{3}$. So we may assume that $m$ is not complete to $B_{1}$, not complete to $B_{2}$, and (up to reversing $B_{2}$ and $B_{3}$ ), that $m$ has a neighbor in $B_{3}$. Let $b_{2} \in B_{2}$ be a non-neighbor of $m$, and $b_{3} \in B_{3}$ a neighbor of $m$.

Let $b_{1}$ be a non-neighbor of $m$ in $B_{1}$, and let $a_{1}-P_{1}-b_{1}$ be a rung through $b_{1}$. Then $m$ is adjacent to $a_{1}$ and anticomplete to $P_{1} \backslash a_{1}$.

Let $a_{2}-P_{2}-b_{2}$ be a rung through $b_{2}$. By (11), $m$ has a neighbor $c_{1}$ in $P_{1} \backslash b_{1}$ and a neighbor in $P_{2} \backslash b_{2}$. If $c_{1}$ can be chosen different from $a_{1}$, then we can link $m$ to $\left\{b_{1}, b_{2}, b_{3}\right\}$ via $P_{1} \backslash a_{1}, P_{2}$ and $m-b_{3}$, a contradiction to Lemma 1.4. So it must be that the only neighbor of $m$ in $P_{1}$ is $a_{1}$. This proves (2). Note that the analogue of (2) also holds for $B_{2}$.

For $i=1,2,3$, let $A_{i}^{*}=\left\{x \in A_{i} \mid x\right.$ has a neighbor in $\left.B_{i}\right\}$ and $B_{i}^{*}=\{x \in$ $B_{i} \mid x$ has a neighbor in $\left.A_{i}\right\}$. So $A_{i}^{*}$ and $B_{i}^{*}$ are either both empty or both non-empty. Moreover, since $G$ is square-free, $A_{i}^{*} \cup B_{i}^{*}$ is non-empty for at most one value of $i$.

$$
\begin{equation*}
\text { For each } i, m \text { is complete to } A_{i}^{*} \cup B_{i}^{*} \text {. } \tag{3}
\end{equation*}
$$

For suppose the contrary. Then there are vertices $u_{i} \in A_{i}^{*}$ and $v_{i} \in B_{i}^{*}$ such that $u_{i} v_{i}$ is an edge and $m$ has a non-neighbor in $\left\{u_{i}, v_{i}\right\}$. Since $m \in M$, it has a neighbor $a$ in $\left(A_{1} \cup A_{2} \cup A_{3}\right) \backslash A_{i}$ and a neighbor $b$ in $\left(B_{1} \cup B_{2} \cup B_{3}\right) \backslash B_{i}$. Then the subgraph induced by $\left\{m, a, b, u_{i}, v_{i}\right\}$ contains a square or a $C_{5}$, a contradiction. Thus (3) holds.

For every symbol $X$ in $\{A, B, C\}$ there is a partition of $X_{1}$ into two sets $X_{1}^{\prime}$ and $X_{1}^{\prime \prime}$ such that:

- $A_{1}^{\prime}$ is complete to $A_{1}^{\prime \prime}$, and $B_{1}^{\prime}$ is complete to $B_{1}^{\prime \prime}$;
- $A_{1}^{\prime}$ is anticomplete to $B_{1}^{\prime}$;
- $C_{1}^{\prime}$ is anticomplete to $A_{1}^{\prime \prime} \cup B_{1}^{\prime \prime} \cup C_{1}^{\prime \prime}$,
- $C_{1}^{\prime \prime}$ is anticomplete to $A_{1}^{\prime} \cup B_{1}^{\prime} \cup C_{1}^{\prime}$;
$-m$ is complete to $A_{1}^{\prime}$ and anticomplete to $B_{1}^{\prime} \cup C_{1}^{\prime}$.
Pick rungs $a_{2}-P_{2}-b_{2}$ and $a_{3}-P_{3}-b_{3}$ containing $b_{2}$ and $b_{3}$ respectively. By (2), $m$ is adjacent to $a_{2}$.

Let $B_{1}^{\prime}=\left\{y \in B_{1} \backslash B_{1}^{*} \mid y\right.$ is non-adjacent to $m$ and there exists a rung from $A_{1} \backslash A_{1}^{*}$ to $\left.y\right\}$, and let $A_{1}^{\prime}=\left\{x \in A_{1} \backslash A_{1}^{*} \mid\right.$ there is a rung from $x$ to $\left.B_{1}^{\prime}\right\}$. Let $C_{1}^{\prime}=\left\{z \in C_{1} \mid z\right.$ lies on a rung between $B_{1}^{\prime}$ and $\left.A_{1}^{\prime}\right\}$. So $m$ is anticomplete to $B_{1}^{\prime}$ and, by (21), $m$ is complete to $A_{1}^{\prime}$ and anticomplete to $C_{1}^{\prime}$. Let $B_{1}^{\prime \prime}=B_{1} \backslash B_{1}^{\prime}$, $A_{1}^{\prime \prime}=A_{1} \backslash A_{1}^{\prime}$, and $C_{1}^{\prime \prime}=C_{1} \backslash C_{1}^{\prime}$. Let $Q$ be any rung with ends $x \in A_{1}^{\prime}$ and $y \in B_{1}^{\prime}$. We prove six claims (a)-(f) as follows.
(a) $B_{1}^{\prime \prime}$ is anticomplete to $A_{1}^{\prime} \cup C_{1}^{\prime}$.

We know that $B_{1}^{\prime \prime}$ is anticomplete to $A_{1}^{\prime}$ since $A_{1}^{\prime} \subseteq A_{1} \backslash A_{1}^{*}$. Suppose up to relabelling that some vertex $b_{1}$ in $B_{1}^{\prime \prime}$ has a neighbor in $Q \backslash\{x, y\}$. Then there is a rung $Q^{\prime}$ from $x$ to $b_{1}$, with interior in $Q \backslash\{x, y\}$, of length at least 3 . The definition of $B_{1}^{\prime}$ and the existence of $Q^{\prime}$ implies that $b_{1}$ is adjacent to $m$; but then $V\left(Q^{\prime}\right) \cup\{m\}$ induces an odd hole. Since this holds for all $Q$, claim (a) is established.
(b) $B_{1}^{\prime \prime}$ is complete to $B_{1}^{\prime}$.

Suppose, up to relabelling, that some $b_{1}$ in $B_{1}^{\prime \prime}$ is not adjacent to $y$. By (a) $b_{1}$ has no neighbor in $Q$. Then $b_{1}$ is non-adjacent to $m$, for otherwise $x-Q-y-b_{2}-b_{1}-$ $m$ - $x$ induces an odd hole. Pick a rung $a_{1}-P_{1}-b_{1}$. By (3), $b_{1} \notin B_{1}^{*}$, hence, by the definition of $B_{1}^{\prime}$, we have $a_{1} \in A_{1}^{*}$, and so $a_{1}$ has a neighbor $b_{1}^{*} \in B_{1}^{*}$. If $b_{1}^{*}$ is not adjacent to $y$, then, by the same argument as for $b_{1}$ it follows that $b_{1}^{*}$ is not adjacent to $m$, which contradicts (3). Therefore $b_{1}^{*}$ is adjacent to $y$ and, by (3), to $m$. By (a) $b_{1}^{*}$ has no neighbor in $Q \backslash y$. We know that $a_{1}$ is not adjacent to $y$ since $y \notin B_{1}^{*}$. Moreover $a_{1}$ has no neighbor in $Q \backslash x$, for otherwise we can link $a_{1}$ to $\left\{b_{3}, y, b_{1}^{*}\right\}$ via $a_{3}-P_{3}-b_{3}, Q \backslash x$ and $a_{1}-b_{1}^{*}$, a contradiction to Lemma 1.4 Then $x a_{1}$ is an edge, for otherwise $x-Q-y-b_{1}^{*}-a_{1}-a_{3}-x$ is an odd hole. There is no edge between $Q$ and $P_{1}$ except $a_{1} x$, for otherwise there would be a rung from $x$ to $b_{1}$, implying $b_{1} \in B_{1}^{\prime}$. But then $b_{1}-P_{1}-a_{1}-x-Q-y-b_{3}-b_{1}$ is an odd hole. Thus $B_{1}^{\prime \prime}$ is complete to $y$, and since this holds for all $Q$, the claim is established.
(c) There is no rung from $A_{1}^{\prime}$ to $B_{1}^{\prime \prime}$.

For suppose on the contrary, up to relabelling, that $x-P_{1}-b_{1}$ is such a rung, with
$b_{1} \in B_{1}^{\prime \prime}$. We know that $b_{1}$ is non-adjacent to $x$ (because $x \notin A_{1}^{*}$ ), and $b_{1}$ is adjacent to $m$, for otherwise the existence of $P_{1}$ would imply $b_{1} \in B_{1}^{\prime}$. By (a) and (b), $b_{1}$ is adjacent to $y$ and anticomplete to $Q \backslash y$. Since $V(Q) \cup V\left(P_{1}\right)$ does not induce an odd hole, there are edges between $P_{1} \backslash\left\{x, b_{1}\right\}$ and $Q \backslash x$. Since $x-P_{1}-b_{1}-m-x$ is not an odd hole, $m$ has neighbors in $P_{1} \backslash\left\{x, b_{1}\right\}$. It follows that there is a path $S$ from $m$ to $y$ with interior in $\left(P_{1} \cup Q\right) \backslash\left\{x, b_{1}\right\}$. But now we can link $m$ to $\left\{y, b_{2}, b_{3}\right\}$ via $S, P_{2}$ and $m-b_{3}$, a contradiction.
(d) There is no rung between $A_{1}^{\prime \prime}$ and $B_{1}^{\prime}$.

For suppose up to relabelling that $a_{1}-P_{1}-y$ is such a rung. By the definition of $B_{1}^{\prime}$ we have $a_{1} \in A_{1}^{*}$, so $a_{1}$ has a neighbor $b_{1}^{*} \in B_{1}^{*}$. By (a) and (b), $b_{1}^{*}$ is adjacent to $y$ and anticomplete to $Q \backslash y$. Then $a_{1}$ has no neighbor in $Q \backslash x$, for otherwise we can link $a_{1}$ to $\left\{y, b_{1}^{*}, b_{2}\right\}$ via $Q \backslash x, a_{1}-b_{1}^{*}$ and $a_{2}-P_{2}-b_{2}$. Moreover $a_{1}$ is adjacent to $x$, for otherwise $a_{1}-b_{1}^{*}-y-Q-x-a_{2}-a_{1}$ is an odd hole. Since $V(Q) \cup V\left(P_{1}\right)$ does not induce an odd hole, there is an edge between $Q \backslash y$ and $P_{1} \backslash\left\{a_{1}, y\right\}$. Since $b_{1}^{*}-y-P_{1}-a_{1}-b_{1}^{*}$ cannot be an odd hole, $b_{1}^{*}$ has a neighbor in $P_{1} \backslash\left\{a_{1}, y\right\}$. But this implies the existence of a rung between $x$ and $b_{1}^{*}$, which contradicts (c).
(e) $A_{1}^{\prime \prime}$ is complete to $A_{1}^{\prime}$.

Suppose on the contrary that some $a_{1}$ in $A_{1}^{\prime \prime}$ is non-adjacent to $x$. Let $a_{1}-P_{1}-b_{1}$ be a rung. By (d), $b_{1} \in B_{1}^{\prime \prime}$, and by (a)-(d), the only edge between $P_{1}$ and $Q$ is $b_{1} y$. Then $a_{1}-P_{1}-b_{1}-y-Q-x-a_{3}-a_{1}$ is an odd hole, a contradiction.
(f) $C_{1}^{\prime}$ is anticomplete to $A_{1}^{\prime \prime} \cup C_{1}^{\prime \prime} \cup B_{1}^{\prime \prime}$, and $C_{1}^{\prime \prime}$ is anticomplete to $A_{1}^{\prime} \cup C_{1}^{\prime} \cup B_{1}^{\prime}$. Indeed, in the opposite case there is a rung that violates (c) or (d).

It follows from claims (a)-(f) that all the properties described in (4) are satisfied. So (4) holds.

By (4), $\left(A_{1}, C_{1}, B_{1}\right)$ breaks into two strips $\left(A_{1}^{\prime}, C_{1}^{\prime}, B_{1}^{\prime}\right)$ and $\left(A_{1}^{\prime \prime}, C_{1}^{\prime \prime}, B_{1}^{\prime \prime}\right)$ such that $m$ is complete to $A_{1}^{\prime}$ and anticomplete to $B_{1}^{\prime} \cup C_{1}^{\prime}$. Likewise, the strip $\left(A_{2}, C_{2}, B_{2}\right)$ breaks into two strips $\left(A_{2}^{\prime}, C_{2}^{\prime}, B_{2}^{\prime}\right)$ and $\left(A_{2}^{\prime \prime}, C_{2}^{\prime \prime}, B_{2}^{\prime \prime}\right)$ such that $m$ is complete to $A_{2}^{\prime}$ and anticomplete to $B_{2}^{\prime} \cup C_{2}^{\prime}$. Then, using the properties described in (4), we obtain a hyperprism:

$$
\begin{array}{ccc}
A_{1}^{\prime} & C_{1}^{\prime} & B_{1}^{\prime} \\
A_{2}^{\prime} & C_{2}^{\prime} & B_{2}^{\prime} \\
A_{3} \cup A_{1}^{\prime \prime} \cup A_{2}^{\prime \prime} \cup\{m\} & C_{3} \cup C_{1}^{\prime \prime} \cup C_{2}^{\prime \prime} & B_{3} \cup B_{1}^{\prime \prime} \cup B_{2}^{\prime \prime} .
\end{array}
$$

So the second item of the theorem holds.

Theorem 5.2 Let $G$ be a square-free Berge graph that contains an odd prism and does not contain the line-graph of a bipartite subdivision of $K_{4}$. Then $G$ admits a good partition.

Proof. Since $G$ contains an odd prism, it contains a maximal odd hyperprism $\left(A_{1}, C_{1}, B_{1}, A_{2}, C_{2}, B_{2}, A_{3}, C_{3}, B_{3}\right)$ which we call $H$. Let $M$ be the set of major neighbors of $H$. Let $Z$ be the set of vertices of the components of $V(G) \backslash(V(H) \cup$ $M)$ that have no attachment in $H$. Since $H$ is maximal, by Lemma 3.3 there is a partition of $V(G) \backslash(V(H) \cup M \cup Z)$ into sets $F_{1}, F_{2}, F_{3}, F_{A}, F_{B}$ such that:

- For $i=1,2,3, N\left(F_{i}\right) \subseteq A_{i} \cup C_{i} \cup B_{i} \cup M$;
- $N\left(F_{A}\right) \subseteq A_{1} \cup A_{2} \cup A_{3} \cup M$ and $N\left(F_{B}\right) \subseteq B_{1} \cup B_{2} \cup B_{3} \cup M$;
- The sets $Z, F_{1}, F_{2}, F_{3}, F_{A}, F_{B}$ are pairwise anticomplete to each other.

We observe that:
At least two of $A_{1}, A_{2}, A_{3}$ are cliques, and at least two of $B_{1}, B_{2}, B_{3}$ are cliques.

This follows directly from Lemma 1.3 (with $K=\emptyset$ ).
Since $H$ is maximal, Theorem 5.1 implies that:
Every vertex in $M$ is complete to at least two of $A_{1}, A_{2}, A_{3}$ and at least two of $B_{1}, B_{2}, B_{3}$.

We claim that:

$$
\begin{equation*}
M \text { is a clique. } \tag{3}
\end{equation*}
$$

Suppose that there are non-adjacent vertices $m_{1}, m_{2}$ in $M$. By (2), $m_{1}$ and $m_{2}$ have a common neighbor in $A_{1} \cup A_{2} \cup A_{3}$. Therefore let $a_{1}$ be a common neighbor of $m_{1}$ and $m_{2}$ in $A_{1}$. If $m_{1}$ and $m_{2}$ are both complete to $B_{2}$ or both complete to $B_{3}$, then they have a common neighbor $b \in B_{2} \cup B_{3}$ and $\left\{m_{1}, m_{2}, a_{1}, b\right\}$ induces a square, a contradiction. So we may assume up to symmetry that $m_{1}$ is not complete to $B_{2}$, so it is complete to $B_{1} \cup B_{3}$, and consequently that $m_{2}$ is not complete to $B_{3}$, and so it is complete to $B_{1} \cup B_{2}$. Pick a non-neighbor $b_{2}$ of $m_{1}$ in $B_{2}$ and a non-neighbor $b_{3}$ of $m_{2}$ in $B_{3}$. Then $\left\{m_{1}, m_{2}, a_{1}, b_{2}, b_{3}\right\}$ induces a $C_{5}$, a contradiction. This proves (3).
$M \cup A_{i}$ is a clique for at least two values of $i$, and similarly $M \cup B_{j}$ is a clique for at least two values of $j$.

This follows directly from (2), (3) and Lemma 1.3. Thus (4) holds.
Since $G$ is square-free, we may assume, up to symmetry, that $A_{1}$ is anticomplete to $B_{1}$ and that $A_{2}$ is anticomplete to $B_{2}$, and so $C_{1} \neq \emptyset$ and $C_{2} \neq \emptyset$. Pick any $x_{1} \in C_{1}, x_{2} \in C_{2}$ and $a_{3} \in A_{3}$. So $\left\{x_{1}, x_{2}, a_{3}\right\}$ is a triad $\tau$.

By (41) there is at least one integer $h$ in $\{1,2,3\}$ such that both $M \cup A_{h}$ and $M \cup B_{h}$ are cliques.

Suppose that $h=1$. Set $K_{1}=A_{1}, K_{2}=M, K_{3}=B_{1}, L=A_{2} \cup B_{2} \cup C_{2} \cup$ $F_{2} \cup A_{3} \cup B_{3} \cup C_{3} \cup F_{3} \cup F_{A} \cup F_{B}$ and $R=V(G) \backslash\left(K_{1} \cup K_{2} \cup K_{3} \cup L\right)$. (So $R=C_{1} \cup F_{1} \cup Z$.) We observe that $K_{1}$ is anticomplete to $K_{3}$, every chordless path from $K_{3}$ to $K_{1}$ with interior in $L$ contains a vertex from $A_{2} \cup A_{3}$, which is complete to $K_{1}$, and $\tau$ is a triad with a vertex in $L$ and a vertex in $R$. Thus $\left(K_{1}, K_{2}, K_{3}, L, R\right)$ is a good partition of $V(G)$. The same holds if $h=2$.

Now we may assume that $h=3$, and, up to symmetry, that $M \cup A_{1}$ and $M \cup B_{2}$ are cliques. Set $K_{1}=B_{2} \cup B_{3}, K_{2}=M, K_{3}=A_{1} \cup A_{3}, L=$ $B_{1} \cup C_{1} \cup F_{1} \cup F_{B}$, and $R=A_{2} \cup C_{2} \cup F_{2} \cup C_{3} \cup F_{3} \cup F_{A} \cup Z$. We observe that in the graph obtained from $G$ by removing all edges with one end in $K_{3}$ and one
in $K_{1}$ every chordless path from $K_{3}$ to $K_{1}$ with interior in $L$ goes through $B_{1}$, which is complete to $K_{1}$. Moreover, every vertex in $C_{1} \cup F_{1}$ is anticomplete to $K_{1}$ and every vertex in $B_{1} \cup F_{B}$ is anticomplete to $K_{3}$, so no vertex in $L$ has a neighbor in each of $K_{1}, K_{3}$. Also $\tau$ is a triad with a vertex in $L$ and a vertex in $R$. Thus $\left(K_{1}, K_{2}, K_{3}, L, R\right)$ is a good partition of $V(G)$. This completes the proof of the theorem.

## 6 Line-graphs

The goal of this section will be to prove the following decomposition theorem.
Theorem 6.1 Let $G$ be a square-free Berge graph, and assume that $G$ contains the line-graph of a bipartite subdivision of $K_{4}$. Then $G$ admits a good partition.

Before proving this theorem, we need some definitions from [7].
In a graph $H$, a branch is a path whose interior vertices have degree 2 and whose ends have degree at least 3. A branch-vertex is any vertex of degree at least 3 .

In a graph $G$, an appearance of a graph $J$ is any induced subgraph of $G$ that is isomorphic to the line-graph $L(H)$ of a bipartite subdivision $H$ of $J$. An appearance of $J$ is degenerate if either (a) $J=H=K_{3,3}$ (the complete bipartite graph with three vertices on each side) or (b) $J=K_{4}$ and the four vertices of $J$ form a square in $H$. Note that a degenerate appearance of a graph contains a square. An appearance $L(H)$ of $J$ in $G$ is overshadowed if there is a branch $B$ of $H$, of length at least 3 , with ends $b_{1}, b_{2}$, such that some vertex of $G$ is non-adjacent in $G$ to at most one vertex in $\delta_{H}\left(b_{1}\right)$ and at most one in $\delta_{H}\left(b_{2}\right)$, where $\delta_{H}(b)$ denotes the set of edges of $H$ (vertices of $L(H)$ ) of which $b$ is an end.

An enlargement of a 3 -connected graph $J$ (also called a $J$-enlargement) is any 3 -connected graph $J^{\prime}$ such that there is a proper induced subgraph of $J^{\prime}$ that is isomorphic to a subdivision of $J$.

To obtain a decomposition theorem for graphs containing line graphs of bipartite graphs, we first thicken the line graph into an object called a strip system, and then study how the components of the rest of the graph attach to the strip system.

Let $J$ be a 3-connected graph, and let $G$ be a Berge graph. A $J$-strip system $(S, N)$ in $G$ means

- for each edge $u v$ of $J$, a subset $S_{u v}=S_{v u}$ of $V(G)$,
- for each vertex $v$ of $J$, a subset $N_{v}$ of $V(G)$,
- $N_{u v}=S_{u v} \cap N_{u}$,
satisfying the following conditions (where for $u v \in E(J)$, a uv-rung means a path $R$ of $G$ with ends $s, t$, say, where $V(R) \subseteq S_{u v}$, and $s$ is the unique vertex of $R$ in $N_{u}$, and $t$ is the unique vertex of $R$ in $N_{v}$ ):
- The sets $S_{u v}(u v \in E(J))$ are pairwise disjoint;
- For each $u \in V(J), N_{u} \subseteq \bigcup_{u v \in E(J)} S_{u v}$;
- For each $u v \in E(J)$, every vertex of $S_{u v}$ is in a $u v$-rung;
- For any two edges $u v, w x$ of $J$ with $u, v, w, x$ all distinct, there are no edges between $S_{u v}$ and $S_{w x}$;
- If $u v, u w$ in $E(J)$ with $v \neq w$, then $N_{u v}$ is complete to $N_{u w}$ and there are no other edges between $S_{u v}$ and $S_{u w}$;
- For each $u v \in E(J)$ there is a special $u v$-rung such that for every cycle $C$ of $J$, the sum of the lengths of the special $u v$-rungs for $u v \in E(C)$ has the same parity as $|V(C)|$.

The vertex set of $(S, N)$, denoted by $V(S, N)$, is the set $\bigcup_{u v \in E(J)} S_{u v}$.
Note that $N_{u v}$ is in general different from $N_{v u}$. On the other hand, $S_{u v}$ and $S_{v u}$ mean the same thing.

The following two properties follow from the definition of a strip system:

- For distinct $u, v \in V(J)$, we have $N_{u} \cap N_{v} \subseteq S_{u v}$ if $u v \in E(J)$, and $N_{u} \cap N_{v}=\emptyset$ if $u v \notin E(J)$.
- For $u v \in E(J)$ and $w \in V(J)$, if $w \neq u, v$ then $S_{u v} \cap N_{w}=\emptyset$.

In 8.1 from [7] it is shown that for every $u v \in E(J)$, all $u v$-rungs have lengths of the same parity. It follows that the final axiom is equivalent to:

- For every cycle $C$ of $J$ and every choice of $u v$-rung for every $u v \in E(C)$, the sums of the lengths of the $u v$-rungs has the same parity as $|V(C)|$. In particular, for each edge $u v \in E(J)$, all $u v$-rungs have the same parity.

By a choice of rungs we mean the choice of one $u v$-rung for each edge $u v$ of $J$. By the above points and since $G$ is odd-hole-free, it follows that for every choice of rungs, the subgraph of $G$ induced by their union is the line-graph of a bipartite subdivision of $J$.

We say that a subset $X$ of $V(G)$ saturates the strip system if for every $u \in V(J)$ there is at most one neighbor $v$ of $u$ such that $N_{u v} \nsubseteq X$. A vertex $v$ in $V(G) \backslash V(S, N)$ is major with respect to the strip system if the set of its neighbors saturates the strip system. A vertex $v \in V(G) \backslash V(S, N)$ is major with respect to some choice of rungs if the $J$-strip system defined by this choice of rungs is saturated by the set of neighbors of $v$.

A subset $X$ of $V(S, N)$ is local with respect to the strip system if either $X \subseteq N_{v}$ for some $v \in V(J)$ or $X \subseteq S_{u v}$ for some edge $u v \in E(J)$.

Lemma 6.2 Let $G$ be a Berge graph, let $J$ be a 3-connected graph, and let $(S, N)$ be a J-strip system in $G$. Assume moreover that if $J=K_{4}$ then $(S, N)$ is non-degenerate and that no vertex is major for some choice of rungs and
non-major for another choice of rungs. Let $F \subseteq V(G) \backslash V(S, N)$ be connected and such that no member of $F$ is major with respect to $(S, N)$. If the set of attachments of $F$ in $V(S, N)$ is not local, then one can find in polynomial time one of the following:

- $A$ chordless path $P$, with $\emptyset \neq V(P) \subseteq V(F)$, such that $V(S, N) \cup V(P)$ induces a J-strip system.
- A chordless path $P$, with $\emptyset \neq V(P) \subseteq V(F)$, and for each edge uv $\in E(J)$ a uv-rung $R_{u v}$, such that $V(P) \cup \bigcup_{u v \in E(J)} R_{u v}$ is the line-graph of a bipartite subdivision of a J-enlargement.

Proof. The proof of this lemma is essentially the same as the proof of Theorem 8.5 in 7. In 8.5 there is an assumption that there is no overshadowed appearance of $J$; but all that is used is that no vertex is major for some choice of rungs of $(S, N)$ and non-major for another.

We say that a $K_{4}$-strip system $(S, N)$ in a graph $G$ is special if it satisfies the following properties, where for all $i, j \in[4], O_{i j}$ denotes the set of vertices in $V(G) \backslash V(S, N)$ that are complete to $\left(N_{i} \cup N_{j}\right) \backslash S_{i j}$ and anticomplete to $V(S, N) \backslash\left(N_{i} \cup N_{j} \cup S_{i j}\right):$
(a) $N_{13}=N_{31}=S_{13}$ and $N_{24}=N_{42}=S_{24}$.
(b) Every rung in $S_{12}$ and $S_{34}$ has even length at least 2, and every rung in $S_{14}$ and $S_{23}$ has odd length at least 3 .
(c) $O_{12}$ and $O_{34}$ are both non-empty and complete to each other.
(d) If some vertex of $V(G) \backslash\left(V(S, N) \cup O_{12} \cup O_{34}\right)$ is major with respect to some choice of rungs in $(S, N)$, then it is major with respect to $(S, N)$. In particular, there is no overshadowed appearance of $(S, N)$ in $G \backslash(M \cup$ $O_{12} \cup O_{34}$ ), where $M$ is the set of vertices that are major with respect to $(S, N)$.
(e) There is no enlargement of $(S, N)$ in $G \backslash\left(O_{12} \cup O_{34}\right)$, and $(S, N)$ is maximal in $G \backslash\left(O_{12} \cup O_{34}\right)$.

Lemma 6.3 Let $G$ be Berge and square-free, and let $J$ be a 3-connected graph. Let $(S, N)$ be a J-strip system in $G$. Let $m \in V(G) \backslash V(S, N)$. If $m$ is major for some choice of rungs in $(S, N)$, then one of the following holds:

1. There is a J-enlargement with a non-degenerate appearance in $G$ (and such an appearance can be found in polynomial time).
2. There is a J-strip system $\left(S^{\prime}, N^{\prime}\right)$ such that $V(S, N) \subset V\left(S^{\prime}, N^{\prime}\right)$ with strict inclusion (and $\left(S^{\prime}, N^{\prime}\right)$ can be found in polynomial time).
3. $m$ is major with respect to $(S, N)$.
4. $G$ has a special $K_{4}$-strip system.

Proof. Let $m$ be major for some choice of rungs in $(S, N)$. Suppose that there is no $J$-enlargement with a non-degenerate appearance in $G$, and $(S, N)$ is maximal in $G$, and that $m$ is not major with respect to $(S, N)$. Let $X$ be the set of neighbors of $m$. Let $M$ be the set of vertices of $V(G) \backslash V(S, N)$ that are major with respect to $(S, N)$. Let $M^{*}$ be the set of vertices of $V(G) \backslash V(S, N)$ that are major with respect to some choice of rungs. So $m \in M^{*} \backslash M$.

As noted earlier, every degenerate appearance of any 3-connected graph contains a copy of square, so $G$ contains no degenerate appearances of any 3connected graph. Hence, by 8.4 in [7], we must have $J=K_{4}$. Let $V(J)=$ $\{1,2,3,4\}$. Since $m$ is major with respect to some choice of rungs and not major with respect to the strip system, we may choose rungs $R_{i j}, R_{i j}^{\prime}(i \neq$ $j \in\{1,2,3,4\}$ ) forming line graphs $L(H)$ and $L\left(H^{\prime}\right)$ respectively, so that $X$ saturates $L(H)$ but not $L\left(H^{\prime}\right)$. Moreover, we may assume that $R_{i j} \neq R_{i j}^{\prime}$ if and only if $\{i, j\}=\{1,2\}$.

Let the ends of each $R_{i j}$ be $r_{i j}$ and $r_{j i}$, where $\left\{r_{i j} \mid j \in\{1,2,3,4\} \backslash\{i\}\right\}$ is a triangle $T_{i}$ for each $i$. Similarly, let the ends of each $R_{i j}^{\prime}$ be $r_{i j}^{\prime}$ and $r_{j i}^{\prime}$, where $\left\{r_{i j}^{\prime} \mid j \in\{1,2,3,4\} \backslash\{i\}\right\}$ is a triangle $T_{i}^{\prime}$ for each $i$.

Since $X$ saturates $L(H)$, it has at least two members in each of $T_{1}, \ldots, T_{4}$, and since $X$ does not saturate $L\left(H^{\prime}\right)$, there is some $T_{i}^{\prime}$ that contains at most one member of $X$. Since $T_{3}=T_{3}^{\prime}$ and $T_{4}=T_{4}^{\prime}$ we may assume that $\left|X \cap T_{1}\right|=2$ and $\left|X \cap T_{1}^{\prime}\right|=1$, so $r_{12} \in X, r_{12}^{\prime} \notin X$, and exactly one of $r_{13}, r_{14}$ is in $X$, say $r_{13} \in X$ and $r_{14} \notin X$. Also, at least two vertices of $T_{3}$ are in $X$, and similarly for $T_{4}$, so there are at least two branch-vertices of $H^{\prime}$ incident in $H^{\prime}$ with more than one edge in $X$. By 5.7 in [7] applied to $H^{\prime}$, we deduce that 5.7 .5 in [7] holds, so (since odd branches of $H^{\prime}$ correspond to even rungs in $L\left(H^{\prime}\right)$ and vice-versa) there is an edge $i j$ of $J$ such that

$$
\begin{equation*}
R_{i j}^{\prime} \text { is even and }\left[X \cap V\left(L\left(H^{\prime}\right)\right)\right] \backslash V\left(R_{i j}^{\prime}\right)=\left(T_{i}^{\prime} \cup T_{j}^{\prime}\right) \backslash V\left(R_{i j}^{\prime}\right) \tag{1}
\end{equation*}
$$

In particular, $T_{i}^{\prime}$ and $T_{j}^{\prime}$ both contain at least two vertices in $X$, so $i, j \geq 2$. Since $r_{13} \in X$, it follows that one of $i, j$ is equal to 3 , say $j=3$, and so $r_{13}=r_{31}$, in other words $R_{13}$ has length 0 . Hence $i \in\{2,4\}$. We claim that:

$$
\begin{equation*}
i=4 \tag{2}
\end{equation*}
$$

For suppose that $i=2$. By (1) $R_{23}$ is even and $\left[X \cap V\left(L\left(H^{\prime}\right)\right)\right] \backslash V\left(R_{23}\right)=$ $\left\{r_{21}^{\prime}, r_{24}, r_{31}, r_{34}\right\}$. Since at least two vertices of $T_{4}$ are in $X$ it follows that $r_{42}=r_{24}$ and $r_{43}=r_{34}\left(\right.$ and $\left.r_{41} \notin X\right)$. Hence $R_{24}$ and $R_{34}$ both have length 0, and since $R_{23}$ is even this is a contradiction to the last axiom in the definition of a strip system. Thus (2) holds.

Therefore we have $i=4$ and $j=3$. So (1) translates to:

$$
\begin{equation*}
R_{34} \text { is even and }\left[X \cap V\left(L\left(H^{\prime}\right)\right)\right] \backslash V\left(R_{34}\right)=\left\{r_{31}, r_{32}, r_{41}, r_{42}\right\} \tag{3}
\end{equation*}
$$

This implies that $V\left(R_{12}^{\prime}\right) \cap X=\emptyset$; moreover, if $r_{23} \in X$ then $r_{23}=r_{32}$, and similarly if $r_{24} \in X$ then $r_{24}=r_{42}$.

One of $R_{23}, R_{24}$ has length 0 , the other has odd length, $R_{14}$ has odd length, and $r_{21} \in X$.

Since the path $r_{32}-R_{23}-r_{23}-r_{24}-R_{24}-r_{42}$ can be completed to a hole via $r_{42}-r_{43}{ }^{-}$ $R_{34}-r_{34}-r_{32}$, the first path is even, and so exactly one of $R_{23}, R_{24}$ is odd. Since the same path can be completed to a hole via $r_{42}-r_{41}-R_{14}-r_{14}-r_{13}-r_{32}$, it follows that $R_{14}$ is odd. Since one of $R_{23}, R_{24}$ is odd, they do not both have length 0 , and hence at most one of $r_{23}, r_{24}$ is in $X$. On the other hand, since $X$ saturates $L(H)$, the triangle $T_{2}$ has at least two vertices from $X$; it follows that $r_{21} \in X$ and that exactly one of $r_{23}, r_{24}$ is in $X$ (in other words exactly one of $R_{23}, R_{24}$ has length 0). Thus (4) holds.

$$
\begin{equation*}
R_{12} \text { has length } 0 \tag{5}
\end{equation*}
$$

For suppose that $r_{21} \neq r_{12}$. If $r_{21}$ has a neighbor in $R_{12}^{\prime}$, then $m$ can be linked onto the triangle $T_{1}^{\prime}$ via $R_{12}^{\prime}, R_{14}$ and $m-r_{13}$, a contradiction. Hence $r_{21}$ has no neighbor in $R_{12}^{\prime}$. Then from the hole $m-r_{21}-r_{24}-r_{21}^{\prime}-R_{1,2}^{\prime}-r_{12}^{\prime}-r_{13}-m$, we deduce that the rungs $R_{12}$ and $R_{12}^{\prime}$ are odd. But then either $m-r_{21}-r_{23}-r_{21}^{\prime}-R_{12}^{\prime}-r_{12}^{\prime}-r_{14^{-}}$ $R_{14}-r_{41}-m$ or $m-r_{21}-r_{24}-r_{21}^{\prime}-R_{12}^{\prime}-r_{12}^{\prime}-r_{14}-R_{14}-r_{41}-m$ is an odd hole, contradiction. Thus (5) holds. It follows that every 12 -rung (in particular $R_{12}^{\prime}$ ) has even length.

$$
\begin{equation*}
R_{24} \text { has length } 0 \text { and } R_{23} \text { has odd length. } \tag{6}
\end{equation*}
$$

For suppose the contrary. As shown above, this means that $R_{23}$ has length 0 and $R_{24}$ has odd length. Then $R_{24}, R_{12}$ and $R_{14}$ contradict the last axiom in the definition of a strip system (the parity condition). Thus (6) holds. So $r_{24}=r_{42}$ and $r_{23} \neq r_{32}$ (and hence $r_{23} \notin X$ ).

Every 34-rung has non-zero even length.
By (3) $R_{34}$ has even length, so every 34 -rung has even length. If some 34 -rung has length zero, then its unique vertex $x$ is such that $\left\{x, r_{42}, r_{21}, r_{13}\right\}$ induces a square, a contradiction. Thus (7) holds.

For $i \neq j$, let $O_{i j}$ be the set of vertices that are not major with respect to $L\left(H^{\prime}\right)$ and are complete to $\left(T_{i}^{\prime} \cup T_{j}^{\prime}\right) \backslash R_{i j}^{\prime}$. In particular, $r_{12}\left(=r_{21}\right)$ is in $O_{12}$ and $m$ is in $O_{34}$, so $O_{12}$ and $O_{34}$ are non-empty. Every vertex in $M^{*} \backslash M$ is complete to $\left\{r_{13}, r_{32}, r_{42}, r_{41}\right\}$ and has no other neighbor outside of $R_{34}$ in $L(H)$. Moreover, since $G$ is square-free, every such vertex is adjacent to every 12-rung of length 0 .

For $\{i, j\} \notin\{\{1,2\},\{3,4\}\}$ and for every rung $R$ in $S_{i j}$ let $L\left(H_{1}\right)$ (resp. $L\left(H_{1}^{\prime}\right)$ ) be the graph obtained from $L(H)$ (resp. $L\left(H^{\prime}\right)$ ) by replacing $R_{i j}$ with $R$. Then $m$ is major with respect to $L\left(H_{1}\right)$ and
minor with respect to $L\left(H_{1}^{\prime}\right)$.
Clearly $m$ is minor with respect to $L\left(H_{1}^{\prime}\right)$. Suppose it is also minor with respect to $L\left(H_{1}\right)$. Then by symmetric argument applied to $L(H)$ and $L\left(H_{1}\right)$, it follows that $R$ is of even length. So we may assume that $\{i, j\}=\{1,3\}$. But then $R_{24}$ must be of non-zero length, a contradiction. Thus (8) holds.

By (8) all rungs in $S_{13}$ and $S_{24}$ have length 0 , and all rungs in $S_{23}$ and $S_{14}$ are odd. Also, $M^{*} \backslash M$ is complete to $N_{13} \cup N_{32} \cup N_{42} \cup N_{41}$ and to every zero-length rung in $S_{12}$ and has no other neighbor in $V(S, N) \backslash S_{34}$. Thus $M^{*} \backslash M \subseteq O_{34}$; and conversely, since $O_{34}$ is complete to $R_{12}$ (for otherwise $O_{34} \cup\left\{r_{12}, r_{24}, r_{13}\right\}$ would contain a square), we deduce that $O_{34}=M^{*} \backslash M$. We observe that if $R$ is any 14 -rung or 23-rung, then $R$ has length at least 3 , for otherwise $R$ has length 1 and $V(R) \cup\left\{r_{21}, m\right\}$ induces a square.

Let $\left(S^{\prime}, N^{\prime}\right)$ be the strip system obtained from $(S, N)$ by replacing $S_{12}$ with $S_{12} \backslash O_{12}$. It follows from the definition of $\left(S^{\prime}, N^{\prime}\right)$ and the facts above that items (a)-(c) of the definition of a special $K_{4}$-strip system hold. Since only $S_{12}$ and $S_{34}$ have even non-zero rungs, we deduce that item (d) in that definition also holds.

Finally suppose that $\left(S^{\prime}, N^{\prime}\right)$ is not maximal in $G \backslash\left(O_{12} \cup O_{34}\right)$. Since there is no $J$-enlargement of $(S, N)$ and $(S, N)$ is maximal, there exists an appearance $\left(S^{\prime \prime}, N^{\prime \prime}\right)$ of $J$ that contains ( $S^{\prime}, N^{\prime}$ ), and we may assume that ( $S^{\prime \prime}, N^{\prime \prime}$ ) is obtained from ( $S^{\prime}, N^{\prime}$ ) by adding one rung $R$. If $R \in S_{12}^{\prime \prime}$, then ( $S^{\prime \prime}, N^{\prime \prime}$ ) is an enlargement of $(S, N)$, a contradiction. So $R \notin S_{12}^{\prime \prime}$, and we do not get a $J$-enlargement by adding $O_{12} \cap S_{12}$ to $S_{12}^{\prime \prime}$. Therefore, there is $r \in O_{12} \cap S_{12}$ such that we do not get a $J$-enlargement or a larger strip by adding $r$ to $S_{12}^{\prime \prime}$. By 5.8 of [7], $r$ is major with respect to an appearance of $J$ using the new rung, and minor otherwise. So $R \in S_{34}^{\prime \prime},|V(R)|=1$ and $V(R) \subseteq O_{34}$, a contradiction. Thus, $(S, N)$ is a special $K_{4}$-strip system in $G$, and outcome 4 of the theorem holds.

We now focus on the case of a special $K_{4}$-strip system.
Lemma 6.4 Let $G$ be a $C_{4}$-free Berge graph and $(S, N)$ be a special $K_{4}$-strip system in $G$, with the same notation as in the definition. Let $M$ be the set of vertices that are major with respect to $(S, N)$. Let $X_{1} \in\left\{N_{12}, N_{1} \backslash N_{12}\right\}, X_{2} \in$ $\left\{N_{21}, N_{2} \backslash N_{21}\right\}$ and $X=X_{1} \cup X_{2}$. Let $A=S_{12} \backslash X$ and $B=V(S, N) \backslash\left(S_{12} \cup X\right)$. Let $F \subseteq V(G) \backslash\left(V(S, N) \cup M \cup O_{12}\right)$ be connected. Then $F$ has attachments in at most one of $A$ and $B$.

Proof. Suppose for the sake of contradiction that $F$ has attachments in both $A$ and $B$. We may assume that $|F|$ is minimal under this condition. Then $F$ forms a path with ends $f_{1}, f_{2}$ such that $f_{1}$ has attachments in $A, f_{2}$ has attachments in $B$, and there are no other edges between $F$ and $A \cup B$.

Let $Y$ be the set of attachments of $F$ in $V(S, N)$. Suppose that $Y$ is local with respect to $(S, N)$. Then, as $F$ has attachments in both $A \subseteq S_{12}$ and $B \subseteq V(S, N) \backslash S_{12}$, it follows that either $Y \subseteq N_{1}$ or $Y \subseteq N_{2}$. We may assume without loss of generality that $Y \subseteq N_{1}$. Then $N_{1} \cap A$ is non-empty, so $N_{12} \nsubseteq X$, and $N_{1} \cap B$ is non-empty, so $N_{1} \backslash N_{12} \nsubseteq X$, a contradiction. Hence $Y$ is not local in $(S, N)$.

Suppose that $F \cap O_{34} \neq \emptyset$. Then $f_{2} \in O_{34}$. Let $\left(S^{\prime}, N^{\prime}\right)$ be the strip system obtained from $(S, N)$ by adding $O_{34}$ to $S_{34}$. Then $F \backslash f_{2}$ has non-local attachments in $\left(S^{\prime}, N^{\prime}\right)$, and no vertex of $F \backslash\left\{f_{2}\right\}$ has neighbors in $B$. Let
$L(H)$ be the line graph formed by some choice of rungs in $\left(S^{\prime}, N^{\prime}\right)$, where $f_{2}$ is the rung chosen from $S_{3,4}$, and the rung from $S_{1,2}$ contains a neighbor of $f_{1}$. Apply 5.8 of [7]. Since no vertex of $F \backslash\left\{f_{2}\right\}$ has a neighbor in $B \backslash\left\{f_{2}\right\}$, none of the outcomes are possible, a contradiction. This proves that $F \cap O_{34}=\emptyset$. So $F \subseteq V(G) \backslash\left(V(S, N) \cup M \cup O_{12} \cup O_{34}\right)$. By Lemma 6.3 $(S, N)$ is maximal in $G \backslash\left(O_{12} \cup O_{34}\right)$, and no vertex of $V(G) \backslash\left(V(S, N) \cup M \cup O_{12} \cup O_{34}\right)$ is major or overshadowing with respect to $(S, N)$, a contradiction to Lemma 6.2 This proves the theorem.

Lemma 6.5 Let $G$ be a $C_{4}$-free Berge graph and $(S, N)$ be a special $K_{4}$-strip system in $G$, with the same notation as in the definition. Let $M$ be the set of vertices that are major with respect to $(S, N)$. Then:
(1) $O_{12} \cup M$ and $O_{34} \cup M$ are cliques; and
(2) there is an integer $k$ such that $O_{12} \cup M \cup\left(N_{1} \backslash N_{1 k}\right)$ is a clique, and similarly there is an integer $\ell$ such that $O_{12} \cup M \cup\left(N_{2} \backslash N_{2 \ell}\right)$ is a clique.

Proof. Suppose that (1) does not hold. Then there are non-adjacent vertices $x_{1}, x_{2}$ in $O_{12} \cup M$, say. If $x \in O_{12}$, then by Lemma $6.3 x$ is complete to $N_{1 k}$ for all $k \neq 2$, and complete to $N_{2 \ell}$ for all $\ell \neq 1$. If $x \in M$, then $x$ is complete to $N_{1 k}$ for all but at most one $k$, and complete to $N_{2 \ell}$ for all but at most one $\ell$. Hence there exist $k$, $\ell$ so that $\left\{x_{1}, x_{2}\right\}$ is complete to $N_{1 k} \cup N_{2 \ell}$, so for every $u \in N_{1 k}$ and $v \in N_{2 \ell},\left\{x_{1}, u, x_{2}, v\right\}$ induces a square, contradiction. This proves (1).

By definition, for every $x \in O_{12} \cup M$ there are indices $k$ and $\ell$ so that $x$ is complete to $\left(N_{1} \backslash N_{1 k}\right) \cup\left(N_{2} \backslash N_{2 \ell}\right)$. Hence (2) follows from (1) by a direct application of Lemma 1.3

Lemma 6.6 Let $G$ be a $C_{4}$-free Berge graph. If $G$ has a special $K_{4}$-strip system, then it has a good partition.

Proof. Let $(S, N)$ be a special $K_{4}$-strip system of $G$, with the same notation as above. Let $M$ be the set of vertices that are major with respect to $(S, N)$. There are vertices $t_{12} \in S_{12} \backslash\left(N_{12} \cup N_{21}\right), t_{34} \in S_{34} \backslash\left(N_{34} \cup N_{43}\right)$ and $t_{13} \in S_{13}$, and hence $\left\{t_{12}, t_{34}, t_{13}\right\}$ is a triad $\tau$.

Suppose that both $\left(N_{1} \backslash N_{12}\right) \cup M \cup O_{12}$ and $\left(N_{2} \backslash N_{21}\right) \cup M \cup O_{12}$ are cliques. Let $K_{1}=N_{1} \backslash N_{12}, K_{2}=O_{12} \cup M$, and $K_{3}=N_{2} \backslash N_{21}$. By Lemma 6.4 $K_{1} \cup K_{2} \cup K_{3}$ is a cutset. Let $L$ be the union of those components of $G \backslash\left(K_{1} \cup\right.$ $\left.K_{2} \cup K_{3}\right)$ that contain vertices of $S_{12}$, and let $R=V(G) \backslash\left(L \cup K_{1} \cup K_{2} \cup K_{3}\right)$. Then $K_{1}$ is anticomplete to $K_{3}$, and every chordless path from $K_{3}$ to $K_{1}$ with interior in $L$ contains a vertex of $N_{12}$, which is complete to $K_{1}$, and $\tau$ is a triad that contains a vertex of $L$ and a vertex of $R$. So $\left(K_{1}, K_{2}, K_{3}, L, R\right)$ is a good partition of $V(G)$.

Now assume, up to symmetry, that $\left(N_{1} \backslash N_{12}\right) \cup M \cup O_{12}$ is not a clique. By Lemma 6.5, $N_{12} \cup M \cup O_{12}$ is a clique. Also, at least one of $N_{21} \cup M \cup O_{12}$ and $\left(N_{2} \backslash N_{21}\right) \cup M \cup O_{12}$ is a clique. If the former is a clique, let $X=N_{21}$, and
otherwise let $X=N_{2} \backslash N_{21}$. Set $K_{1}=N_{12}, K_{2}=M \cup O_{12}$, and $K_{3}=X$. By Lemma. $6.4 K_{1} \cup K_{2} \cup K_{3}$ is a cutset. Let $L$ be the component of $G \backslash\left(K_{1} \cup K_{2} \cup K_{3}\right)$ that contains $N_{1} \backslash N_{12}$ (note that $N_{1} \backslash N_{12}$ is connected because $N_{13}$ is complete to $\left.N_{14}\right)$, and let $R=V(G) \backslash\left(L \cup K_{1} \cup K_{2} \cup K_{3}\right)$. Then $K_{1}$ is anticomplete to $K_{3}$, and every path from $K_{3}$ to $K_{1}$ with interior in $L$ contains a vertex of $N_{1} \backslash N_{12}$, which is complete to $K_{1}$, and $\tau$ is a triad that contains a vertex of $L$ and a vertex of $R$. So $\left(K_{1}, K_{2}, K_{3}, L, R\right)$ is a good partition of $V(G)$.

Now we can give the proof of Theorem 6.1.
Proof. Since $G$ contains the line-graph of a bipartite subdivision of $K_{4}$, there is a 3-connected graph $J$ such that $G$ contains an appearance of $J$, and we choose $J$ maximal with this property. Hence $G$ contains the line-graph $L(H)$ of a bipartite subdivision $H$ of $J$. Then there exists a $J$-strip system $(S, N)$ such that $V(S, N) \subseteq V(G)$, and we choose $V(S, N)$ maximal. Let $M$ be the set of vertices in $V(G) \backslash V(S, N)$ that are major with respect to the strip system $(S, N)$. We observe that:

$$
\begin{equation*}
M \text { is a clique. } \tag{1}
\end{equation*}
$$

Suppose that $m, m^{\prime}$ are non-adjacent vertices in $M$. Let $B$ be a branch of $H$, and let $u, v$ be its ends. Since there is no triangle in $H$, there exist a neighbor $u^{\prime}$ of $u$ and a neighbor $v^{\prime}$ of $v$ in $H$ such that $N_{u u^{\prime}}$ and $N_{v v^{\prime}}$ are complete to $M$ and anticomplete to each other. Then $\left\{m, m^{\prime}, u^{\prime}, v^{\prime}\right\}$ induces a square. This proves (1).

For every branch vertex $u$ in $H$, there is a branch vertex $v$ in $H$ such that $M \cup\left(N_{u} \backslash N_{u v}\right)$ is a clique.

It follows from (1) that $M$ is a clique, and by the definition of major vertices, for every $m \in M$ and every branch vertex $u$ there is a branch vertex $v$ such that $m$ is complete to $N_{u} \backslash N_{u v}$. Hence (2) follows by a direct application of Lemma 1.3 ,

If some vertex of $V(G) \backslash V(S, N)$ is major with respect to some choice of rungs but not with respect to the strip system, then by Lemma $6.3 G$ has a special $K_{4}$-strip system, and by Lemma $6.6 G$ has a good partition, so the theorem holds. Therefore we may assume that every vertex of $V(G) \backslash V(S, N)$ that is major with respect to some choice of rungs is major with respect to the strip system. By Lemma 6.2 (or Theorem 8.5 from [7]), every component of $V(G) \backslash(V(S, N) \cup M)$ attaches locally to $V(S, N)$.

For every strip $S_{u v}$ there exists a triad $\left\{t, t^{\prime}, t^{\prime \prime}\right\}$ in $G$ such that $t \in S_{u v}$ and $t^{\prime}, t^{\prime \prime} \in V(S, N) \backslash\left(S_{u v} \cup N_{u} \cup N_{v}\right)$.

For every strip $S_{x y}$ let $R_{x y}$ be an $x y$-rung, with endvertices $r_{x y} \in N_{x y}$ and $r_{y x} \in N_{y x}$. Suppose that $r_{u v} \neq r_{v u}$. Since $J$ is 3 -connected, there is a cycle $C$ in $J$ that contain $u$ and not $v$. In $G$ let $C^{\prime}=\bigcup_{x y \in E(C)} R_{x y}$. Then $C^{\prime}$ is an even hole, of length at least 6 , so it has two non-adjacent vertices $t^{\prime}, t^{\prime \prime}$ that are not in $N_{u}$. Then $\left\{r_{v u}, t^{\prime}, t^{\prime \prime}\right\}$ is the desired triad. Now suppose that $r_{u v}=r_{v u}$. There
is a cycle $C$ in $J$ that contains $u$ and $v$. In $G$ let $C^{\prime}=\bigcup_{x y \in E(C)} R_{x y}$. Then $C^{\prime}$ is an even hole, of length at least 6 , so it has three non-adjacent vertices including $r_{u v}$. Then these vertices form the desired triad. So (3) holds.

For every strip $S_{u v}$, let $S_{u v}^{*}$ denote the union of $S_{u v}$ with the components of $G \backslash V(S, N)$ that attach in $S_{u v}$ only, and let $T_{u v}=N_{u} \cap N_{v}\left(=N_{u v} \cap N_{v u}\right)$. Note that $T_{u v}$ is complete to $N_{u} \backslash N_{u v}$ and to $N_{v} \backslash N_{v u}$. Moreover we observe that:

$$
\begin{equation*}
M \cup T_{u v} \text { is a clique. } \tag{4}
\end{equation*}
$$

Suppose that $M \cup T_{u v}$ has two non-adjacent vertices $a, b$. By (2), and since every branch vertex in $H$ has degree at least $3, M$ is complete to at least one vertex $n_{u} \in N_{u} \backslash N_{u v}$, and similarly to at least one vertex $n_{v} \in N_{v} \backslash N_{v u}$. By (11) at least one of $a, b$ is in $T_{u v}$, say $a \in T_{u v}$. Since edges in $H$ that correspond to $a, n_{u}$ and $n_{v}$ cannot induce a triangle (as $H$ is bipartite), it follows that $n_{u}$ and $n_{v}$ are not adjacent. Then $\left\{a, b, n_{u}, n_{v}\right\}$ induces a square, a contradiction. So (4) holds.

Let us say that a strip $S_{u v}$ is rich if $S_{u v} \backslash T_{u v} \neq \emptyset$.

$$
\begin{equation*}
\text { If }(S, N) \text { has a rich strip, the theorem holds. } \tag{5}
\end{equation*}
$$

Let $S_{u v}$ be a rich strip in $(S, N)$. First suppose that both $M \cup\left(N_{u} \backslash N_{u v}\right)$ and $M \cup\left(N_{v} \backslash N_{v u}\right)$ are cliques. Hence, by (4) and the definition of $T_{u v}$, both $M \cup\left(N_{u} \backslash N_{u v}\right) \cup T_{u v}$ and $M \cup\left(N_{v} \backslash N_{v u}\right) \cup T_{u v}$ are cliques. Let $K_{1}=N_{u} \backslash N_{u v}$, $K_{2}=M \cup T_{u v}, K_{3}=N_{v} \backslash N_{v u}$, let $L$ consist of $S_{u v}^{*} \backslash T_{u v}$ together with those components of $G \backslash V(S, N)$ that attach only to $N_{u}$ and those that attach only to $N_{v}$, and let $R=V(G) \backslash\left(K_{1} \cup K_{2} \cup K_{3} \cup L\right)$. Then every chordless path from $K_{3}$ to $K_{1}$ with interior in $L$ contains a vertex of $N_{u v}$, which is complete to $K_{1}$, and no vertex of $L$ has both a neighbor in $K_{1}$ and a neighbor in $K_{3}$; moreover, by (3) there is a triad $\left\{t, t^{\prime}, t^{\prime \prime}\right\}$ with $t \in S_{u v}$ and $t^{\prime}, t^{\prime \prime} \in$ $V(S, N) \backslash\left(S_{u v} \cup N_{u} \cup N_{v}\right)$, so this is a triad with a vertex (namely $t$ ) in $L$ and a vertex in $R$; so $\left(K_{1}, K_{2}, K_{3}, L, R\right)$ is a good partition of $V(G)$.
Therefore we may assume that $M \cup\left(N_{u} \backslash N_{u v}\right)$ is not a clique, and so $M \cup N_{u v}$ is a clique. If $M \cup\left(N_{v} \backslash N_{v u}\right)$ is a clique, let $K_{1}=N_{u v} \backslash T_{u v}, K_{2}=M \cup T_{u v}, K_{3}=$ $N_{v} \backslash N_{v u}$, let $R$ consist of $S_{u v}^{*} \backslash N_{u}$ together with those components of $G \backslash V(S, N)$ that attach only to $N_{v}$, and let $L=V(G) \backslash\left(R \cup K_{1} \cup K_{2} \cup K_{3}\right)$. Then $K_{1}$ is anticomplete to $K_{3}$, and every chordless path from $K_{3}$ to $K_{1}$ with interior in $L$ contains a vertex of $N_{u} \backslash N_{u v}$, which is complete to $K_{1}$; moreover, by (3) there is a triad $\left\{t, t^{\prime}, t^{\prime \prime}\right\}$ with $t \in S_{u v}$ and $t^{\prime}, t^{\prime \prime} \in V(S, N) \backslash\left(S_{u v} \cup N_{u} \cup N_{v}\right)$, so this is a triad with a vertex in $L$ and a vertex (namely $t$ ) in $R$; $\operatorname{So}\left(K_{1}, K_{2}, K_{3}, L, R\right)$ is a good partition of $V(G)$.
Therefore we may assume that for every rich strip $S_{x y}$, both $M \cup N_{x y}$ and $M \cup N_{y x}$ are cliques, and neither of $M \cup\left(N_{x} \backslash N_{x y}\right)$ and $M \cup\left(N_{y} \backslash N_{y x}\right)$ is a clique. Hence, regarding $S_{u v}$, there is an edge $u w$ in $J$ such that $M \cup N_{u w}$ is not a clique. Then $S_{u w}$ is not rich, and hence $S_{u w}=T_{u w}=N_{u w}$. By (4) $M \cup T_{u w}=M \cup N_{u w}$ is a clique, a contradiction. So (5) holds.

By (5) we may assume that there is no rich strip in $(S, N)$. It follows that for every $u v \in E(J)$ we have $S_{u v}=T_{u v}$, which is a clique by (4). Consequently $N_{u}$ is a clique for every $u$, and by (4), $M \cup N_{u}$ is a clique for every $u$. Let $S_{u v}$ be a strip. By (3) there is a triad $\left\{t, t^{\prime}, t^{\prime \prime}\right\}$ with $t \in S_{u v}$ and $t^{\prime}, t^{\prime \prime} \in$ $V(S, N) \backslash\left(S_{u v} \cup N_{u} \cup N_{v}\right)$. Let $K_{1}=N_{u} \backslash S_{u v}, K_{2}=M, K_{3}=N_{v} \backslash S_{u v}$, let $L$ consist of $S_{u v}^{*}$ together with the components of $G \backslash V(S, N)$ that attach only to $N_{u}$ and only to $N_{v}$, and let $R=V(G) \backslash\left(K_{1} \cup K_{2} \cup K_{3} \cup L\right)$. Then $K_{1}$ is anticomplete to $K_{3}$ (since there is no triangle in $H$ ), and every chordless path from $K_{3}$ to $K_{1}$ with interior in $L$ contains a vertex of $S_{u v}$, which is complete to $K_{1}$, and $\left\{t, t^{\prime}, t^{\prime \prime}\right\}$ is a triad with a vertex in $L$ and a vertex in $R$. So $\left(K_{1}, K_{2}, K_{3}, L, R\right)$ is a good partition of $V(G)$. This concludes the proof.

## 7 Algorithmic aspects

Assume that we are given a graph $G$ on $n$ vertices. We want to know if $G$ is a square-free Berge graph and, if it is, we want to produce an $\omega(G)$-coloring of $G$. We can do that as follows, based on the method described in the preceding sections. We can first test whether $G$ is square-free in time $O\left(n^{4}\right)$. Therefore let us assume that $G$ is square-free.

Let $\mathcal{A}$ be the class of graphs that contain no odd hole, no antihole of length at least 6 , and no prism (sometimes called "Artemis" graphs). There is an algorithm, "Algorithm 3 " in [16], of time complexity $O\left(n^{9}\right)$, which decides whether the graph $G$ is in class $\mathcal{A}$ or not, and, if it is not, returns an induced subgraph of $G$ that is either an odd hole, an antihole of length at least 6 , or a prism. If the first outcome happens, then $G$ is not Berge and we stop. The second outcome cannot happen since $G$ is square-free. Therefore we may assume that $G$ is Berge and that the algorithm has returned a prism $K$. We want to extend $K$ either to a maximal hyperprism or to the line-graph of a bipartite subdivision of $K_{4}$. We can do that as follows. Let $K$ have rungs $R_{1}, R_{2}, R_{3}$, where, for each $i=1,2,3$, $R_{i}$ has ends $a_{i}, b_{i}$, such that $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ are triangles.

- Intially, for each $i \in\{1,2,3\}$ let $A_{i}=\left\{a_{i}\right\}, B_{i}=\left\{b_{i}\right\}$ and $C_{i}=V\left(R_{i}\right) \backslash$ $\left\{a_{i}, b_{i}\right\}$. Let $V(H)=V(K)$.
- Let $M$ be the set of major neighbors of $H$.
- If there is a component $F$ of $G \backslash(H \cup M)$ whose set of attachments on $H$ is not local, then by Lemma 3.3, one of the following occurs (and can be found in polynomial time):
(i) There is a chordless path $P$ in $F$ such that $V(H) \cup V(P)$ induces a larger hyperprism $H^{\prime}$; or
(ii) There are three rungs $R_{1}, R_{2}, R_{3}$ of $H$, one in each strip of $H$, and a chordless path $P$ in $F$, such that $V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right) \cup V(P)$ induces the line-graph of a bipartite subdivision of $K_{4}$.

Assume that outcome (ii) never happens. Whenever outcome (i) happens, we start again from the larger hyperprism that has been found. Note that outcome (i) can happen only $n$ times, because at each time we start again with a strictly larger hyperprism. So the procedure finishes with a maximal hyperprism. Then we can find a good partition of $G$ as explained in Theorem 4.2 or 5.2, decompose $G$ along that partition, and color $G$ using induction as explained in Lemma 2.2

Remark: Since a hyperprism may have exponentially many rungs, we need to show how we can determine in polynomial time the set $M$ of major neighbors of a hyperprism $H$ in a graph $G$ without listing all the rungs of $H$. It is easy to see that a vertex $x$ in $V(G) \backslash V(H)$ is a major neighbor of $H$ if and only if one of the following two situations occurs:

- For at least two distinct values of $i \in\{1,2,3\}$, there exists an $i$-rung $R_{i}$ such that $x$ is adjacent to both ends of $R_{i}$, or
- For a permutation $\{i, j, k\}$ of $\{1,2,3\}$, there exists an $i$-rung $R_{i}$ such that $x$ adjacent to both ends of $R_{i}$ and $x$ has a neighbor in $A_{j}$ and a neighbor in $B_{k}$.

So it suffices to test, for each $i \in\{1,2,3\}$, whether there exists an $i$-rung such that $x$ is adjacent to both its ends. This can be done as follows. For every pair $u_{i} \in A_{i}$ and $v_{i} \in B_{i}$, test whether there is a chordless path between $u_{i}$ and $v_{i}$ in the subgraph induced by $C_{i} \cup\left\{u_{i}, v_{i}\right\}$. If there is any such path $R_{i}$, then record it for the pair $\left\{u_{i}, v_{i}\right\}$, and for every vertex $x$ in $V(G) \backslash V(H)$ record whether $x$ is adjacent to both $u_{i}$ and $v_{i}$ or not. This takes time $O\left(n^{4}\right)\left(O\left(n^{2}\right)\right.$ for each pair $\left.\left\{u_{i}, v_{i}\right\}\right)$. So the whole procedure of growing the hyperprism and determining the set $M$ of its major neighbors takes time $O\left(n^{4}\right)$.

Now assume that outcome (ii) happens, and so $G$ contains the line-graph of a bipartite subdivision of $K_{4}$. So $G$ contains the line-graph of a bipartite subdivision of a 3-connected graph $J$, and we want to grow $J$ and the corresponding $J$-strip system $(S, N)$ to maximality. We can do that as follows.

- Intially, let $(S, N)$ be the strip system equal to the line-graph of a bipartite subdivision of $K_{4}$ found in outcome (ii).
- Let $M$ be the set of vertices in $V(G) \backslash V(S, N)$ that are major on some choice of rungs of $(S, N)$. (Determining $M$ can be done with the same arguments as in the remark above concerning the set of major neigbhors of a hyperprism, and we omit the details.)
- If there is a component $F$ of $G \backslash(V(S, N) \cup M)$ whose set of attachments on $H$ is not local, then by Lemma 6.2, one of the following occurs (and can be found in polynomial time):
- A chordless path $P$, with $\emptyset \neq V(P) \subseteq V(F)$, such that $V(S, N) \cup$ $V(P)$ induces a $J$-strip system, or
- A chordless path $P$, with $\emptyset \neq V(P) \subseteq V(F)$, and for each edge $u v \in E(J)$ a $u v$-rung $R_{u v}$, such that $V(P) \cup \bigcup_{u v \in E(J)} R_{u v}$ is the line-graph of a bipartite subdivision of a $J$-enlargement.
- If some vertex in $M$ is not major on some choice of rungs of $(S, N)$, then, by Lemma 6.3 we can either find a larger strip system of the special case described in item (iv) of that lemma.
In either case, whenever we find a larger strip system we start again with it. This will happen at most $n$ times. So the procedure finishes with a maximal strip system. Similarly to the case of the hyperprism, the whole procedure of growing the strip system and determining the set $M$ of its major neighbors takes time $O\left(n^{4}\right)$. Then we can find a good partition of $G$ as explained in Theorem 6.1, decompose $G$ along that partition, and color $G$ using induction as explained in Lemma 2.2.

Complexity analysis. Whenever $G$ contains a prism, we have shown that $G$ has a partition into sets $K_{1}, K_{2}, K_{3}, L, R$ such that $K_{1} \cup K_{2}$ and $K_{2} \cup K_{3}$ are cliques, with $L$ and $R$ non-empty, and $L$ is anticomplete to $R$. Then $G$ is decomposed into the two proper induced subgraphs $G \backslash L$ and $G \backslash R$. These subgraphs themselves may be decomposed, etc. This can be represented by a decomposition tree $T$, where $G$ is the root, and the children of every non-leaf node $G^{\prime}$ are the two induced subgraphs into which $G^{\prime}$ is decomposed. Every leaf is a subgraph that contains no prism.

Let us consider the triads of $G$. By item (v) of a good partition, there exists a triad $\tau_{G}$ that has at least one vertex from each of $L, R$; we label $G$ with $\tau_{G}$. Since the cutset $K_{1} \cup K_{2} \cup K_{3}$ is the union of two cliques it contains no triad, and so no triad of $G$ is in both $G \backslash L$ and $G \backslash R$; moreover $\tau_{G}$ itself is in none of these two subgraphs. Consequently every triad of $G$ can be used as the label of at most one non-leaf node of $T$. So $T$ has at most $n^{3}$ non-leaf nodes. Since every node has at most two children, the number of leaves is at most $2 n^{3}$, and the total number of nodes of $T$ is at most $3 n^{3}$.

Testing if $G$ is Berge takes time $O\left(n^{9}\right)$; this is done only once, at the first step of the algorithm, as a subroutine of testing whether $G$ is in class $\mathcal{A}$. At any decomposition node of $T$ different from the root we already know that we have a Berge graph (an induced subgraph of $G$ ), so we need only test whether the graph contains a prism; this can be done in time $O\left(n^{5}\right)$ with "Algorithm 2 " from [16]. The complexity of coloring a leaf is $O\left(n^{6}\right)$ since it contains no prism 16. The coloring algorithm described in the Lemma 2.2 involves only a few bichromatic exchanges, so its complexity is small. The complexity of growing a hyperprism (once a prism is known) or a strip structure is also negligible in comparison with the rest. So the total complexity of the algorithm is $O\left(n^{9}\right)+$ $O\left(n^{3}\right) \times O\left(n^{6}\right)=O\left(n^{9}\right)$ (proving Theorem 1.1).

## An alternative algorihm

The goal of this section is to present another algorithm which we feel is conceptually simpler. Instead of looking for hyperprisms or strip systems, this algorithm will search for a good partition directly, and, whenever it finds one, decompose the graph along that partition.

Let $k(G)$ denotes the number of maximal cliques in a graph $G$. Farber [10] and independantly Alexeev [1] showed that there are $O\left(n^{2}\right)$ maximal cliques in any square-free graph on $n$ vertices. Tsukiyama, Ide, Ariyoshi and Shirakawa 19 gave an $O(n m k(G))$ algorithm for generating all maximal cliques of a graph $G$, and Chiba and Nishizeki [5] improved this complexity to $O(\sqrt{m+n} m k)$. This leads to the following.

Theorem 7.1 The maximal cliques of a square-free graph can be generated in time $O\left(\sqrt{m+n} m n^{2}\right)$ and there are $O\left(n^{2}\right)$ of them.

An almost good partition in a graph $G$ is a partition $K=\left(K_{1}, K_{2}, K_{3}, L, R\right)$ of $V(G)$ into five sets $K_{1}, K_{2}, K_{3}, L, R$ that satisfy items (i), (ii) and (v) of the definition of a good partition. Thus a good partition in a graph $G$ is an almost good partition that also satisfies items (iii) and (iv) of the definition of a good partition.

A frame in a graph $G$ is a 6 -tuple $\left(Q_{1}, Q_{3}, x, y, C_{1}, C_{3}\right)$ such that:

- $x$ and $y$ are distinct vertices of $G$ that are contained in a triad of $G$.
- $Q_{1}$ and $Q_{3}$ are maximal cliques of $G \backslash\{x, y\}$.
- $\left|C_{1}\right| \leq 1$ and $\left|C_{3}\right| \leq 1$.
- $C_{1} \subseteq Q_{1} \backslash Q_{3}$ and $C_{3} \subseteq Q_{3} \backslash Q_{1}$.

It is not easy to enumerate all possible good partitions of a square-free graph, while by Theorem 7.1 it is possible to enumerate in polynomial time all frames. A frame should be thought of as "something that may lead to a good partition". Our algorithm roughly works as follows: it enumerates all possible frames, and tries to refine each one until a good partition is found. Let us make this formal. For any set $A \subseteq V(G)$ and vertex $v$, let $N_{A}(v)$ denote the set of vertices in $A$ that are adjacent to $v$.

Let $Q=\left(Q_{1}, Q_{3}, x, y, C_{1}, C_{3}\right)$ be a frame. We set $Q_{1}^{\prime}=Q_{1} \backslash Q_{3}$ and $Q_{3}^{\prime}=$ $Q_{3} \backslash Q_{1}$ (and we will use this notation in what follows every time a frame is considered). Note that $Q_{1}^{\prime}$ and $Q_{3}^{\prime}$ are disjoint cliques (possibly empty). In a square-free graph, the edges between $Q_{1}^{\prime}$ and $Q_{3}^{\prime}$ have a special structure that we now explain. When $a, a^{\prime}$ are two vertices of $Q_{1}^{\prime}$, it must be that either $N_{Q_{3}^{\prime}}(a) \subseteq N_{Q_{3}^{\prime}}\left(a^{\prime}\right)$ or $N_{Q_{3}^{\prime}}\left(a^{\prime}\right) \subseteq N_{Q_{3}^{\prime}}(a)$, for otherwise $G$ contains a square. It follows that all vertices of $Q_{1}^{\prime}$ can be ordered by decreasing neighborhood in $Q_{3}^{\prime}$, that is as $a_{1}>a_{2}>\cdots>a_{r}$, in such a way that: for all $1 \leq i \leq j \leq r$ we have $N_{Q_{3}^{\prime}}\left(a_{j}\right) \subseteq N_{Q_{3}^{\prime}}\left(a_{i}\right)$. Similarly, all vertices of $Q_{3}^{\prime}$ can be ordered by
non-increasing neighborhood in $Q_{1}^{\prime}$, that is as $b_{1}, b_{2}, \ldots b_{s}$, in such a way that for all $1 \leq i \leq j \leq s$ we have $N_{Q_{1}^{\prime}}\left(b_{j}\right) \subseteq N_{Q_{1}^{\prime}}\left(b_{i}\right)$. Vertices $a_{1}$ and $b_{1}$ in these orderings will be refered to as maximal vertices in $Q_{1}^{\prime}$ and $Q_{3}^{\prime}$ respectively.

It is easy to see that for any subsets $K_{1}, K_{3}$ of $Q_{1}^{\prime}, Q_{3}^{\prime}$ respectively, the orders obtained on $K_{1}$ and $K_{3}$ by simply comparing vertices according to their order in $Q_{1}^{\prime}, Q_{3}^{\prime}$ satisfy the same properties, namely: for all $a, a^{\prime} \in K_{1}$, if $a<a^{\prime}$ we have $N_{K_{3}}(a) \subseteq N_{K_{3}}\left(a^{\prime}\right)$ and for all $b, b^{\prime} \in K_{3}$, if $b<b^{\prime}$ we have $N_{K_{1}}(b) \subseteq N_{K_{1}}\left(b^{\prime}\right)$.

Let $K=\left(K_{1}, K_{2}, K_{3}, L, R\right)$ be a good partition in a graph $G$ and $Q=$ $\left(Q_{1}, Q_{3}, x, y, C_{1}, C_{3}\right)$ be a frame in $G$. We say that $Q$ is a frame for $K$ whenever the following hold:

- $K_{1} \subseteq Q_{1}^{\prime}, K_{2}=Q_{1} \cap Q_{3}, K_{3} \subseteq Q_{3}^{\prime}, x \in L$ and $y \in R$.
- If $K_{1}=\emptyset$, then $C_{1}=\emptyset$. Otherwise, $C_{1}=\left\{c_{1}\right\}$, where $c_{1}$ is a maximal vertex in the ordering of $K_{1}$.
- If $K_{3}=\emptyset$, then $C_{3}=\emptyset$. Otherwise, $C_{1}=\left\{c_{3}\right\}$, where $c_{3}$ is a maximal vertex in the ordering of $K_{3}$.
(Note that whenever there exists an edge between $K_{1}$ and $K_{3}$ the vertices $c_{1}$ and $c_{3}$ exist and are adjacent).

Our goal now is to prove that if a graph $G$ has a good partition, then some good partition of $G$ has a frame. Say that a good partition $\left(K_{1}, K_{2}, K_{3}, L, R\right)$ is optimal if $K_{2}$ is maximal, and subject to this, $K_{3}$ is maximal, in other words, if there is no good partition $\left(K_{1}^{\prime}, K_{2}^{\prime}, K_{3}^{\prime}, L^{\prime}, R^{\prime}\right)$ such that:

- $K_{2} \subsetneq K_{2}^{\prime}$, or
- $K_{2}=K_{2}^{\prime}$ and $K_{3} \subsetneq K_{3}^{\prime}$.

Lemma 7.2 Let $K=\left(K_{1}, K_{2}, K_{3}, L, R\right)$ be an optimal good partition of a graph $G$, and let $x \in L$ and $y \in R$ be such that $x$ and $y$ are contained in a triad of $G$. If $u$ is any vertex in $V(G) \backslash\left(K_{2} \cup\{x, y\}\right)$, then $u$ is not complete to $\left(K_{1} \cup K_{2} \cup K_{3}\right) \backslash\{u\}$. Moreover, if $u \in R$ then $u$ is not complete to $K_{2} \cup K_{3}$.

Proof. Suppose for a contradiction that $u$ is complete to $\left(K_{1} \cup K_{2} \cup K_{3}\right) \backslash\{u\}$. We shall prove that there exists a good partition $\left(\cdot, K_{2} \cup\{u\}, \cdot, \cdot, \cdot\right)$, a contradiction to the maximality of $K_{2}$. We now break into cases according to where $u$ is.

If $u \in R$, then $\left(K_{1}, K_{2} \cup\{u\}, K_{3}, L, R \backslash\{u\}\right)$ is a good partition of $G$. Indeed, since $u \neq y$, we have $R \backslash\{u\} \neq \emptyset$. All the other requirements are inherited from the fact that $\left(K_{1}, K_{2}, K_{3}, L, R\right)$ is a good partition.

If $u \in L$, then let $L_{x}$ be the component of $L \backslash\{u\}$ that contains $x$. We claim that $\left(K_{1}, K_{2} \cup\{u\}, K_{3}, L_{x}, R \cup\left(L \backslash L_{x}\right)\right)$ is a good partition of $G$. Indeed, $u \neq x$, so we have $L_{x} \neq \emptyset$ and $L_{x}$ is clearly connected. Conditions (iii) and (iv) are satisfied since moving $L \backslash L_{x}$ from $L$ to $R$ cannot perturb these conditions. All the other requirements are inherited from the fact that $\left(K_{1}, K_{2}, K_{3}, L, R\right)$ is a good partition.

If $u \in K_{1}$, then $\left(K_{1} \backslash\{u\}, K_{2} \cup\{u\}, K_{3}, L, R\right)$ is a good partition of $G$. Again, moving a vertex from $K_{1}$ to $K_{2}$ cannot perturb conditions (iii) and (iv). All the other requirements are inherited from the fact that $\left(K_{1}, K_{2}, K_{3}, L, R\right)$ is a good partition.

If $u \in K_{3}$, then $\left(K_{1}, K_{2} \cup\{u\}, K_{3} \backslash\{u\}, L, R\right)$ is a good partition of $G$. The proof is similar to the one above. This proves the first assertion of the theorem.

We now prove the second assertion. Suppose for a contradiction that $u \in R$ is complete to $K_{2} \cup K_{3}$. Then $\left(K_{1}, K_{2}, K_{3} \cup\{u\}, L, R \backslash\{u\}\right)$ is a good partition, a contradiction to the maximality of $K_{3}$. Indeed, since $u \in R, u$ has no neighbor in $L$, so moving $u$ from $R$ to $K_{3}$ will not perturb conditions (iii) and (iv).

Lemma 7.3 If $K$ is an optimal good partition of a square-free graph $G$, then there exists a frame $Q$ for $K$.

Proof. Let $K=\left(K_{1}, K_{2}, K_{3}, L, R\right)$. So there exist a vertex $x \in L$ and a vertex $y \in R$ that are contained in a triad of $G$, and there exists a maximal clique $Q_{1}$ of $G \backslash\{x, y\}$ that contains $K_{1} \cup K_{2}$ and a maximal clique $Q_{3}$ of $G \backslash\{x, y\}$ that contains $K_{3} \cup K_{2}$. For $i=1,3$, if $K_{i}=\emptyset$, set $C_{i}=\emptyset$, and otherwise consider a maximal vertex $c_{i}$ of $K_{i}$ (for the ordering defined in $Q_{i}^{\prime}$ ), and set $C_{i}=\left\{c_{i}\right\}$. We claim that $Q=\left(Q_{1}, Q_{3}, x, y, C_{1}, C_{3}\right)$ is a frame for $K$. All the conditions in the definition of a frame for a good partition are trivially satisfied except one: $K_{2}=Q_{1} \cap Q_{3}$. So let us check that one.

Obviously, $K_{2} \subseteq Q_{1} \cap Q_{3}$, so suppose for a contradiction that there exists $u \in\left(Q_{1} \cap Q_{3}\right) \backslash K_{2}$. Note that $u \notin\{x, y\}$. So, $u \in V(G) \backslash\left(K_{2} \cup\{x, y\}\right)$ and $u$ is complete to $\left(K_{1} \cup K_{2} \cup K_{3}\right) \backslash\{u\}$, a contradiction to Lemma 7.2 ,

Lemma 7.4 Let $K$ be an optimal good partition of a square-free graph $G$ and $Q$ a frame for $K$. For $i \in\{1,3\}$ the following hold.

- If $C_{i}=\emptyset$, then for all $d \in Q_{i}^{\prime}, d \in L \cup R$.
- If $C_{i}=\left\{c_{i}\right\}$, then for all $d \in Q_{i}^{\prime}$, if $d>c_{i}$ then $d \in L \cup R$.

Proof. First observe that if $d \in Q_{i}^{\prime}$ then $d \notin K_{2} \cup K_{4-i}$ because $K_{2}=Q_{1} \cap Q_{3}$ and $K_{4-i} \subseteq Q_{4-i}^{\prime}$.

If $C_{i}=\emptyset$, then a vertex $d \in Q_{1}^{\prime}$ cannot be in $K_{1}$, so it is in $L \cup R$ by the remark above.

If $C_{i}=\left\{c_{i}\right\}$, if $d \in Q_{i}^{\prime}$ and $d>c_{i}$, then by the maximality of $c_{i}$, we have $d \notin K_{i}$. So, $d \in L \cup R$.

Lemma 7.5 Let $G$ be a square-free graph. Let $K=\left(K_{1}, K_{2}, K_{3}, L, R\right)$ be an optimal good partition of $G$ such that $K_{1}, K_{3} \neq \emptyset$, let $Q=\left(Q_{1}, Q_{3}, x, y, C_{1}, C_{3}\right)$ be a frame for $K$, and let $K^{\prime}=\left(K_{1}^{\prime}, K_{2}^{\prime}, K_{3}^{\prime}, L^{\prime}, R^{\prime}\right)$ be an almost good partition of $G$ such that $x \in L^{\prime} \subseteq L, y \in R^{\prime}, K_{1} \subseteq K_{1}^{\prime} \subseteq Q_{1}^{\prime}, K_{2}=K_{2}^{\prime}=Q_{1} \cap Q_{3}$ and $K_{3} \subseteq K_{3}^{\prime} \subseteq Q_{3}^{\prime}$. Let $C_{1}=\left\{c_{1}\right\}$ and $C_{3}=\left\{c_{3}\right\}$, and suppose that $c_{1}$ is maximal in $K_{1}^{\prime}$ and $c_{3}$ is maximal in $K_{3}^{\prime}$. Let $R_{y}^{\prime}$ be the component of $G\left[R^{\prime}\right]$ that contains $y$. Then the following properties hold.
(1) Suppose that $K^{\prime}$ does not satisfy condition (iii) of the definition of a good partition, so there exist $u$ in $K_{3}^{\prime}, v$ in $K_{1}^{\prime}$, and letting $G^{\prime}=G \backslash u v$ if $u v \in E(G)$ and otherwise $G^{\prime}=G$, there exists a chordless path $P=$ $u u^{\prime} \ldots v^{\prime} v$ of length at least 2 in $G^{\prime}$ with interior in $L^{\prime}$, that contains no vertex complete to $K_{1}^{\prime}$. We suppose that $P$ is such a path of minimal length. Then:
If $c_{1} \in N\left(v^{\prime}\right)$, then $\left(K_{1}^{\prime} \backslash N\left(v^{\prime}\right)\right) \cap K_{1}=\emptyset$. If $c_{1} \notin N\left(v^{\prime}\right)$, then $N\left(v^{\prime}\right) \cap K_{1}=$ $\emptyset$.
(2) Suppose that $K^{\prime}$ satisfies condition (iii) but does not satisfies condition (iv). So, there exists an edge between $K_{1}^{\prime}$ and $K_{3}^{\prime}$ and some vertex $u \in L^{\prime}$ has neighbors in both $K_{1}^{\prime}$ and $K_{3}^{\prime}$. Then $N(u) \cap K_{3}=\emptyset$.

Proof. Let us prove (1). Suppose for a contradiction $\left(K_{1}^{\prime} \backslash N\left(v^{\prime}\right)\right) \cap K_{1} \neq \emptyset$ and $N\left(v^{\prime}\right) \cap K_{1} \neq \emptyset$.

If $u^{\prime}$ has a neighbor $w$ in $K_{3}$, then $\{w\} \cup V(P)$ contains a path from $w$ to $v^{\prime}$ and then to $K_{1}$, which contradicts condition (iii) (for $K$ ) of the definition of a good partition. So, $u^{\prime}$ has no neighbor in $K_{3}$. In particular, $u \notin K_{3}$. We have $u \notin K_{2} \cup K_{1}$ because $u \in Q_{3}^{\prime}$. If $u \in R$, then $u$ is complete to $K_{2} \cup K_{3}$, which contradicts Lemma 7.2. Hence, we have $u \in L$.

We claim that $u$ has no neighbor in $K_{1}$. Otherwise, from the maximality of $c_{1}$, we see that $u$ is adjacent to $c_{1}$. Also, $u$ is adjacent to $c_{3}$ because $K_{3}^{\prime}$ is a clique. Note that because of their maximality, $c_{1}$ and $c_{3}$ are adjacent since $u$ has a neighbor in $K_{1}^{\prime}$. So, there are edges between $K_{1}$ and $K_{3}$, and by condition (iv) in the definition of a good partition, $u$ yields a contradiction. This proves our claim. Now, $u$ has a neighbor $w$ in $K_{3}$ (because $K_{3}^{\prime}$ is a clique), so $\{w\} \cup V(P)$ contains a path that contradicts condition (iii) of the definition of a good partition.

Let us prove (2). Since there are edges between $K_{1}^{\prime}$ and $K_{3}^{\prime}, c_{1}$ and $c_{3}$ are adjacent. Vertex $u$ is the unique internal vertex of a path from $K_{3}^{\prime}$ to $K_{1}^{\prime}$, and since the almost good partition $K^{\prime}$ satisfies condition (iii), $u$ is complete to $K_{1}^{\prime}$, and therefore to $K_{1}$. Because of condition (iv) (for $K$ ), we do have $N(u) \cap K_{3}=\emptyset$.

We are now ready to describe the algorithm. The algorithm will enumerate a polynomial number of partitions of $V(G)$ into five sets, and stop whenever such a 5 -tuple is a good partition. The details will be described below, but from this informal description, it is clear that the algorithm gives the correct answer when $G$ has no good partition. So, when we prove the correctness of the algorithm, it can be assumed that $G$ contains a good partition.

The algorithm enumerates all frames $Q=\left(Q_{1}, Q_{3}, x, y, C_{1}, C_{3}\right)$. For each of them, we set $K_{1}^{\prime}=Q_{1} \backslash Q_{3}, K_{2}^{\prime}=Q_{1} \cap Q_{3}, K_{3}^{\prime}=Q_{3} \backslash Q_{1}$. The sets $K_{1}^{\prime}, K_{2}^{\prime}$ and $K_{3}^{\prime}$ are our "working sets". Throughout the process, they can only decrease until they form the cutset of a good partition, or until a failure is reported.

We now describe a subroutine that we call the connectivity update. For a given triple $\left(K_{1}^{\prime}, K_{2}^{\prime}, K_{3}^{\prime}\right)$, this operation consists of computing the component
$L^{\prime}$ of $G \backslash\left(K_{1}^{\prime} \cup K_{2}^{\prime} \cup K_{3}^{\prime}\right)$ that contains $x$, setting $R^{\prime}=V(G) \backslash\left(K_{1}^{\prime} \cup K_{2}^{\prime} \cup K_{3}^{\prime} \cup L^{\prime}\right)$, and computing the component $R_{y}^{\prime}$ of $G\left[R^{\prime}\right]$ that contains $y$. In the case when $R_{y}^{\prime}=L^{\prime}$ (so, $x$ and $y$ are in the same component), the connectivity update subroutine reports a failure. Then, the algorithm must test a further frame, and if for all frames a failure is reported, the algorithm answers that $G$ has no good partition.

We now explain what is done for each enumerated frame $Q$. We refer to the following invariant that holds under the assumption that $K$ is an optimal good partition for which $Q$ is a frame: this invariant is the fact that throughout the following procedure we always have $K_{1} \subseteq K_{1}^{\prime}, K_{2}=K_{2}^{\prime}, K_{3} \subseteq K_{3}^{\prime}, x \in L^{\prime}$ and $y \in R_{y}^{\prime}$.

Step 1: For $i=1,3$, do the following. If $C_{i}=\emptyset$, then set $K_{i}^{\prime}=\emptyset$. Otherwise, for every vertex $u>c_{i}$ in $K_{i}^{\prime}$, set $K_{i}^{\prime} \leftarrow K_{i}^{\prime} \backslash\{u\}$. Once all this is done, perform the connectivity update (and recall that if a failure is reported, the algorithm immediatly goes to next frame, so in what follows, we assume that no failure is reported). Note that in the case where $K_{1}^{\prime}=\emptyset$ or $K_{3}^{\prime}=\emptyset$, a good partition is already detected, so the algorithm stops. We may therefore assume that $K_{1}^{\prime} \neq \emptyset$ and $K_{3}^{\prime} \neq \emptyset$. Note also that by Lemma [7.4, the invariant is preserved through this step.
Step 2: The goal of this step is to handle condition (iii). We mark all vertices of $L^{\prime}$ that have a neighbor in $K_{3}$ with the mark "start", and all the vertices of $L^{\prime}$ that have a neighbor in $K_{1}^{\prime}$ and are not $K_{1}^{\prime}$-complete with mark "bad arrival". Let $L^{\prime \prime}$ be the set obtained from $L^{\prime}$ by removing all the $K_{1}$-complete vertices. We perform a breadth-first-search in $L^{\prime \prime}$ from "start" to "bad arrival". This will either detect a path $P$ violating (iii) or certify that no such path exists.

If a path $P=u u^{\prime} \ldots v^{\prime} v$ is detected, then we choose a shortest such path (with breadth-first search). If $c_{1} \in N\left(v^{\prime}\right)$, then we set $K_{1}^{\prime} \leftarrow K_{1}^{\prime} \cap N\left(v^{\prime}\right)$. If $c_{1} \notin N\left(v^{\prime}\right)$, then we set $K_{1}^{\prime} \leftarrow K_{1}^{\prime} \backslash N\left(v^{\prime}\right)$. We then perform the connectivity update, and if no failure is reported, we repeat Step 2 until condition (iii) is satisfied. Note that by Lemma 7.5 (1) the invariant is preserved through this step.

Step 3: The goal of this step is to handle condition (iv). Because of the previous step, we know that condition (iii) is satisfied. The algorithm checks whether condition (iv) is satisfied or finds a vertex $u$ with neighbors in both $K_{1}^{\prime}$ and $K_{3}^{\prime}$. We then set $K_{3}^{\prime} \leftarrow K_{3}^{\prime} \backslash N(u)$. We then perform the connectivity update, and if no failure is reported, we repeat Step 3 , until condition (iv) is satisfied. Note that by Lemma 7.5 (2), the invariant is preserved through this step.

We claim that this algorithm detects a good partition when there is one. So suppose there is an optimal good partition $K$. At some point, the algorithm considers a frame $Q$ for it (that exists by Lemma 7.3), and defines the sets $K_{1}^{\prime}, K_{2}^{\prime}, K_{3}^{\prime}$. The key to the proof is that during all the process, $K_{1}^{\prime}$ and $K_{3}^{\prime}$ always decrease while the invariant is preserved.

Let us now compute the complexity of this algorithm. By Theorem 7.1, the enumeration of all frames takes time $O\left(n^{8}\right)$ : the list of all maximal cliques is
established in time $O\left(n^{5}\right)$, and then is suffices to enumerate all vertices $x, y, c_{1}, c_{3}$ and all pairs of maximal cliques. Step 1 can be performed in linear time. Step 2 requires a breadth-first search, which can be computed in time $O\left(n^{2}\right)$, and it is done at most $O(n)$ times. Step 3 is similar. This leads to a global complexity of $O\left(n^{11}\right)$ for finding a good partition (and the complexity of $\mathcal{O}\left(n^{14}\right)$ for coloring $G$ ).

## Acknowledgement

We are grateful to Aurélie Lagoutte for suggesting a simplification in the last algorithm.

## References

[1] V.E. Alekseev. On the number of maximal independent sets in graphs from hereditary classes. Combinatorial-Algebraic Methods in Discrete Optimization, University of Nizhny Novgorod, 1991, 5-8 (in Russian).
[2] C. Berge. Les problèmes de coloration en théorie des graphes. Publ. Inst. Stat. Univ. Paris 9 (1960) 123-160.
[3] C. Berge. Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind (Zusammenfassung). Wiss. Z. Martin Luther Univ. Math.-Natur. Reihe (Halle-Wittenberg) 10 (1961) 114-115.
[4] C. Berge. Graphs. North-Holland, Amsterdam/New York, 1985.
[5] N. Chiba, T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal on Computing 14 (1985) 210-223.
[6] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, K. Vušković. Recognizing Berge Graphs. Combinatorica 25 (2005) 143-186.
[7] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas. The strong perfect graph theorem. Annals of Mathematics 164 (2006) 51-229.
[8] M. Conforti, G. Cornuéjols, K. Vušković. square-free perfect graphs. Journal of Combinatorial Theory B 90 (2004) 257-307.
[9] H. Everett, C.M.H. de Figueiredo, C. Linhares Sales, F. Maffray, O. Porto, B.A. Reed. Even pairs. In: Perfect Graphs, J.L. Ramírez-Alfonsín and B.A. Reed eds., Wiley Interscience, 2001, 67-92.
[10] M. Farber. On diameters and radii of bridged graphs. Discrete Math. 73 (1989) 249-260.
[11] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs (2nd Edition). North Holland, 2004.
[12] M. Grötschel, L. Lovász, A. Schrijver. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1 (1981) 169-197.
[13] S. Hougardy. Even and odd pairs in linegraphs of bipartite graphs. Eur. J. Comb. 16 (1995) 17-21.
[14] F. Maffray. Coloring square-free Berge graphs with no odd prism. http://arxiv.org/abs/1502.03695.
[15] F. Maffray, N. Trotignon. Algorithms for perfectly contractile graphs. SIAM Journal on Discrete Mathematics 19 (2005) 553-574.
[16] F. Maffray, N. Trotignon. A class of perfectly contractile graphs. Journal of Combinatorial Theory B 96 (2006) 1-19.
[17] K. Makino, T. Uno. New algorithms for enumerating all maximal cliques. Lecture Notes in Compute Science 3111 (2004) 260-272.
[18] I. Parfenoff, F. Roussel, I. Rusu. Triangulated Neighbourhoods in C4-Free Berge Graphs. Lecture Notes in Computer Science 1665 (199) 402-412.
[19] S. Tsukiyama, M. Ide, H. Ariyoshi, I. Shirakawa. A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6 (1977) 505-517.


[^0]:    ${ }^{*}$ Mathematics Department, Princeton University, NJ, USA. Partially supported by NSF grants DMS-1265803 and DMS-1550991.
    ${ }^{\dagger}$ Department of Industrial Engineering and Operations Research, Columbia University, New York, NY, USA.
    ${ }^{\ddagger}$ CNRS, Laboratoire G-SCOP, University of Grenoble-Alpes, France.
    §CNRS, LIP, ENS, Lyon, France.
    Authors Maffray and Trotignon are partially supported by ANR project STINT under reference ANR-13-BS02-0007.
    ${ }^{\text {§ }}$ School of Computing, University of Leeds, Leeds LS2 9JT, UK; and Faculty of Computer Science (RAF), Union University, Knez Mihajlova 6/VI, 11000 Belgrade, Serbia. Partially supported by EPSRC grant EP/K016423/1 and Serbian Ministry of Education and Science projects 174033 and III44006.

