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Colouring of plane graphs with unique maximal colours on faces

Alex Wendland∗

Abstract

The Four Colour Theorem asserts that the vertices of every plane graph can be properly coloured
with four colours. Fabrici and Göring conjectured the following stronger statement to also hold: the
vertices of every plane graph can be properly coloured with the numbers 1, . . . , 4 in such a way that
every face contains a unique vertex coloured with the maximal colour appearing on that face. They
proved that every plane graph has such a colouring with the numbers 1, . . . , 6. We prove that every
plane graph has such a colouring with the numbers 1, . . . , 5 and we also prove the list variant of the
statement for lists of sizes seven.

1 Introduction

A lot of research in graph theory was sparked by the problem of four colours posed by Francis Guthrie
in 1852. It took more than 125 years until the problem was resolved by Appel and Haken [1] and the
conjectured statement became known as the Four Colour Theorem. A refined proof of the Four Colour
Theorem was given by Robertson, Seymour, Sanders and Thomas [4]. Our work is motivated by a
conjecture of Fabrici and Göring [2] which, if true, would strengthen the Four Colour Theorem.

Conjecture 1.1. (Fabrici and Göring [2, Conjecture 9]) Every plane graph has a proper colouring using
the number 1, 2, 3 and 4 such that every face contains a unique vertex coloured with the maximal colour
appearing on that face.

We will refer to a colouring of this kind as to a capital colouring, i.e., a capital colouring is a proper
vertex colouring using integers such that every face contains a unique vertex coloured with the maximal
colour appearing on that face. The name comes from the fact that every face (region) has a unique vertex
(capital) with the maximal colour. The capital chromatic number χC(G) of a graph G is the smallest k
such that there exists a capital colouring using 1, . . . , k. Here we would like to note that we state our
results using plane graphs, graphs with an embedding into the plane, instead of planar graphs, graphs
such that there exists an embedding into the plane so does not have a fixed embedding. A face of a plane
graph is the maximal connected part of the plane with the drawing of the graph removed and we often
associate a face with the vertices and faces that bound it.

Note that Conjecture 1.1 holds for triangulations since any proper colouring of a triangulation has the
required properties. Fabrici and Göring [2] proved that every plane graph has a capital colouring using
colours 1, . . . , 6. We prove a stronger result that every plane graph has a capital colouring using colours
1, . . . , 5.

Theorem 1.2. If G is a plane graph then χC(G) ≤ 5.

In addition, we consider the list version of capital colourings and we show that if each vertex of a
plane graph is assigned a list of seven integers, then there exists a capital colouring assigning each vertex
a colour from its list. Throughout this paper, a plane graph is a loopless graph embedded in the plane
that may contain parallel edges which may (but need not) form 2-faces.

∗Warwick Institute of Mathematics, University of Warwick, Coventry, United Kingdom, CV4 7AL. E-mail:
a.p.wendland@warwick.ac.uk. This research was done during the author’s visit to Charles University in Prague and
University of West Bohemia in Pilsen which was supported by Undergraduate Research Support Scheme of the University
of Warwick and the grant GA14-19503S (Graph coloring and structure) of the Czech Science Foundation.
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2 Unique maximum 5-colouring

We start by recalling an auxiliary Lemma 2.1 from [2].

Lemma 2.1. (Fabrici and Göring [2, Lemma 6]) Let G be a plane graph with no parallel edges, let
xy ∈ E(G) be an edge of G incident with the outer face, and let c ∈ {black, blue}. There is a non-proper
3-vertex-colouring of G with colours red, blue and black such that

1. vertex x has colour c,

2. vertex y is black,

3. each edge is incident with at most one blue vertex,

4. no vertex incident with the outer face is red,

5. each inner face is incident with at most one red vertex, and

6. each inner face that is not incident with a red vertex is incident with exactly one blue vertex.

The proof of Theorem 1.2 uses a stronger version of Lemma 2.1. The version differs by adding the
condition that all triangles contain at least one blue or red vertex. Throughout the following proof we
use the terminology separating cycles, which is a cycle such that when removed it disconnects the graph.

Lemma 2.2. Let G be a plane graph without 2-faces, let xy ∈ E(G) be an edge of G incident with the
outer face, and let c ∈ {black, blue}. There is a non-proper 3-vertex-colouring of G with colours red, blue
and black such that

1. vertex x has colour c,

2. vertex y is black,

3. each edge is incident with at most one blue vertex,

4. no vertex incident with the outer face is red,

5. each inner face is incident with at most one red vertex,

6. each inner face that is not incident with a red vertex is incident with exactly one blue vertex, and

7. each triangle contains at least one vertex that is not black.

Proof. We proceed by induction on the number of vertices. Let xy ∈ E(G) be an edge of G incident with
the outer face and c ∈ {black,blue}. If G has no separating cycles of length two or three, then Lemma 2.1
yields the statement unless the outer face is 3-face (note that the outer face is not a 2-cycle since G has
no 2-faces). If c = blue and the outer face is a 3-face, Lemma 2.1 also yields the statement. If c = black,
switch x to the vertex of the outer 3-face different from x and y, let c = blue and apply Lemma 2.1. Note
that the vertices that were originally x and y must be black since G has no edge with two blue end vertices.

Assume there are separating cycles of length two and consider an inner most separating cycle of length
two C. Use u1 and u2 for the vertices of this cycle. Let G1 be the graph contained strictly outside C
and G2 be the graph contained strictly inside C, therefore the vertex sets of G1, G2 and C partition the
vertex set of G. We call the graph induced on the vertices of G1 and C G1 ∪ {u1, u2} whereas we call
G1 ∪ {u1, u2} without one of the edges contained in C the graph G1 + u1u2. See Figure 1 for set up.

G1CG2

u1

u2

Figure 1: Cycle C.
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G2 is not empty as C is a separating cycle. Next apply the induction assumption on the graph G1+u1u2
(i.e. there is only one of the edges of C present). Then given xy and c, induction hypothesis guarantees a
3-colouring of G1 +u1u2 with the properties as desired in the statement. As u1u2 is an edge, there are two
possibilities for the colours of the vertices u1 and u2: one vertex is red and the other is coloured with c′

and one vertex is black and the other coloured with c′, where c′ ∈ {blue,black}. See figure 2 for these cases.

G1CG2

u1

u2

black

c’

red

G1CG2

u1

u2

Figure 2: Two possibilities for cycle C after colouring G1 ∪ {u1, u2} with inductive assumption.

One vertex red and one vertex coloured with c′. Assume that u1 is red. Consider the induced
graph on V (G2) ∪ {u2}. Then if u2 is joined to a vertex in G2 take an edge u2v on the outer face. If u2
is not joined to a vertex in G2 take a vertex v on the outer face of G2, and add edge u2v. Then apply the
inductive assumption to the constructed graph with u2 as x with colour c′ and v as y coloured black.
The constructed 3-colouring matches up with the one of G1 + u1u2 and gives the desired 3-colouring.

One vertex black and one vertex coloured with c′. Say that u1 is black. Since C does not bound
a face, the graph G2 + u1u2 contains another vertex on its outer face. Let v be this vertex. Apply the
inductive assumption to the graph (G2 + u1u2)\{v} with u1 as y coloured black and u2 as x coloured c′.
Then colour v red to get a 3-colouring on G2 ∪ {u1, u2}. The constructed 3-colouring matches up with
the one on G1 + u1u2 and gives the desired 3-colouring.

Assume there are no separating cycles of length two but G has separating cycles of length three. Let
T be an inner most triangle. Use t1, t2 and t3 for the vertices of this triangle. Let G1 be the graph
strictly contained outside T and G2 be the graph strictly contained inside T . See figure 3 for set up.

G1

T

G2

t3 t2

t1

Figure 3: Triangle T .

G2 is not empty as T is a separating triangle. Apply the induction assumption on the graph G1 ∪ T
with xy and c to get a 3-colouring of G1 ∪ T with the properties as desired in the statement. As T
bounds an inner face in G1 ∪ T , some of its vertices must be coloured with blue or red and there are
three possibilities: one vertex is red, blue and black, one vertex is red and two are black, or one vertex is
blue and two are black. We now consider these three cases, demonstrated in figure 4.
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G1

T

G2

black

blue

red t3 t2

t1 G1

T

G2

t3 t2

t1 G1

T

G2

t3 t2

t1

Figure 4: Three possibilities for triangle T after colouring G1 ∪ T with inductive assumption.

One vertex of each colour. Without loss of generality assume t1 is red, t2 is blue and t3 is black.
Apply the inductive assumption on the graph induced by V (G2) ∪ {t2, t3} with t2 as x to be coloured
blue, which is the colour c, and t3 as y to be black. The 3-colourings on G1 ∪ T and the graph induced
by V (G2) ∪ {t2, t3} match up and give a colouring of G having the desired properties.

Two black vertices and one red. Assume t1 is red. The inductive assumption is applied on the
graph induced by V (G2) ∪ {t2, t3} again with t2t3 being xy to be both coloured black. The 3-colourings
on G1 ∪ T and the graph induced by V (G2) ∪ {t2, t3} match up on t2t3 and give us a 3-colouring as
described in the statement of Lemma 2.2.

Two black vertices and one blue. Let t1 be blue. Apply the inductive assumption on the graph
G2 ∪ T with t1 as x to be coloured blue and t2 as y to black. The 3-colourings on G1 ∪ T and G2 ∪ T
match up (t3 cannot be coloured blue as it is connected to t1 therefore as it is on the outer face it must
be black) and give us the required 3-colouring.

Lemma 2.2 in conjunction with Grötzsch theorem, yields a proof of Theorem 1.2. We recall the
statement of Grötzsch theorem and complete the proof of Theorem 1.2.

Theorem 2.3. (Grötzsch [3]) Every triangle-free planar graph G has a proper 3-colouring.

Proof of Theorem 1.2. The goal of this proof is to find a non-proper 3-colouring of G that has either a
single red vertex or no red vertex and a single blue vertex on each face but won’t abide by all the rules of
Lemma 2.2. Then to convert this non-proper 3-colouring to a Capital colouring of G. If G has 2-faces
replace these with a single edge, then a capital colouring of the altered graph is a capital colouring of
the original graph. So without loss of generality assume G has no 2-faces. Choose a vertex v ∈ V (G) on
the outer face and then apply Lemma 2.2 to the graph G\v, picking any edge xy on the outer face with
any colour c ∈ {black,blue}. Then let v be coloured red to get a 3-colouring. Note that each face has
either exactly one red vertex (such as any face containing v), or no red vertex and exactly one blue vertex.
Moreover, every triangle contains at least one red or blue vertex. Let H be the subgraph of G induced by
the black vertices. As H is triangle-free, by Grötzsch theorem, there exists a proper 3-colouring of it
using {1, 2, 3}. Then assign blue vertices the colour 4 and red vertices the colour 5. The constructed
5-colouring is proper and has a unique maximal colour on each face from the construction.

3 List Colouring

In this section we will present an upper bound for the capital list colouring of a plane graph G.

Definition 3.1. A list assignment is a function L : V (G)→ P(N). A graph G has a capital L-colouring
if it has a capital colouring c : V (G)→ N such that c(v) ∈ L(v) for every v ∈ V (G). We say that a graph
G is capital k-choosable if there is a capital L-colouring for all list assignments with |L(v)| ≥ k for all
v ∈ V (G). The minimum k such that G is capital k-choosable is denoted by χl

C(G).

We will prove an upper bound of seven on χl
C(G) for any plane graph G.

Theorem 3.2. If G is a plane graph then χl
C(G) ≤ 7.
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The proof of Theorem 3.2 shall use a discharging argument. We assume Theorem 3.2 is false and
take G to be an extremal counter-example with a list assignment L. We say G is extremal if we partially
order counter examples by the following criteria and pick the G to be a minimal graph in this ordering,
so it has the minimum number of vertices, the minimum number of 2-faces and the maximal number of
edges (in this order). Lets first discus why we can pick such a graph G.

Lemma 3.3. Assuming Theorem 3.2 is false an extremal counter example G exists.

Proof. As Theorem 3.2 is false a counter example exists, therefore we can partially order the counter
examples with respect to the criteria above. As the number of vertices and the number of 2-faces are
countable we can find a set of extremal counter examples with respect to these criteria. Then with a
set number of vertices and 2-faces the number of edges is bounded, therefore we can pick a G with the
maximum number of edges.

Before examining properties of a extremal counter-example, we introduce some notation. A vertex of
degree d is called a d-vertex and a ≥ d-vertex is a vertex of degree at least d. A d-face is a face incident
with exactly d edges and ≥ d-face is a face incident with at least d edges. If f is a face, then we write
c(f) to be the maximal colour of f under a colouring c.

3.1 Reducible Configurations

In this subsection, we will explore properties of a extremal counter-example G with list colouring L.

Lemma 3.4. Let G be a extremal counter-example.

1. G is 2-connected: in other words G is connected and no vertex can be removed to disconnected G.

2. For all vertices v ∈ V (G), if v is adjacent to k vertices and l faces of size at least four then k+ l ≥ 7.

3. Each vertex of G is a ≥ 4-vertex.

4. Each face of G is a ≥ 3-face.

5. No two 3-faces share a 4-vertex.

Proof. 1. If G is disconnected, then it has different components G1 and G2. Pick a vertex on the
face shared by G1 and G2 for both G1 and G2 and then add an edge between the two. By the
extremity of G, specifically the maximality in terms of edges as we are not increasing the number of
vertices or 2-faces, we can find an L-colouring. This colouring is also a colouring of the original graph.

Suppose G has a cut vertex v with a face f on two sides, let v1vv2 and v3vv4 be walks on the
boundary of face f , see Figure 5. Consider the graph H which is G with an additional edge v1v2.
By extremity of G, H has an L-colouring as H has no vertices or 2-faces as any 2-face would be
one of G. Then this is a capital L-colouring on G.

ff

v

v1

v3

v2

v4

ff

v

v1

v3

v2

v4

Figure 5: Configuration of Proposition 3.4 and reduction.
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2. Suppose G has a vertex v ∈ V (G) such that k + l ≤ 6. Let v1, . . . , vk be the neighbours of v in the
cyclic order. Remove v and add edges v1v2, v2v3, . . . vk−1vk and vkv1. By extremity of G we can
colour the remaining graph from the lists L, as the graph remaining has less vertices. Then assign a
colour to v from its list that is not assigned to its neighbours and that is not the maximal colour
on any of the incident faces. Since there are at most k + l such colours, there is a colour in L(v)
that can be assigned to v. On the faces containing v, the maximal colour of the face is either on
the vertex that had the maximal colour in the modified graph or on v. Therefore G has a capital
L-colouring.

3. This follows from Part 2 as l ≤ k for any vertex.

4. If f is a 2-face remove one of the edges. By the extremity of G, we can find a capital L-colouring.
This colouring is still a capital colouring of the original graph.

5. Follows directly from Part 2.

We now look at a 4-face sharing an edge with a 3-face.

Proposition 3.5. In a extremal counter-example G, no 3-face and 4-face can share an edge joining two
4-vertices.

Proof. Assume Proposition 3.5 is false and there exists a extremal counter-example G with such a
configuration. Let the 3-face be v1v2v3 and the 4-face v1v2v5v4 with v1 and v2 being 4-vertices. Let v7 be
the remaining vertex connected to v1, f1 the face bounded partially by v3v1v7 and f2 the face partially
bounded by v7v1v4. Let v6 be the remaining vertex connected to v2, f3 the face partially bounded by
v5v2v6 and f4 the face partially bounded by v6v2v3. See Figure 6.

f1

f2

f3

f4

v1

v3 v2

v4

v5

v6

v7

f ′1

f ′2

f ′3

f ′4

v3

v4

v5

v6

v7

Figure 6: Configuration of Proposition 3.5 and reduction.

Let H be the graph G\{v1, v2} but with the additional edges v4v7, v7v3, v3v6 and v6v5. Let f ′1 be
the new face partially bounded by v3v7, f ′2 by v7v4, f ′3 by v5v6 and f ′4 by v6v3. Then by the extremity
of G, H has an L-colouring c. As v4 and v5 are adjacent by symmetry we can assume c(v4) > c(v5).
Colour v2 from L(v2) by a colour different from c(v3), c(v4), c(v5), c(v6), c(f ′3) and c(f ′4); call this colour
c(v2). Then colour v1 from L(v1) by a colour different from c(v2), c(v3), c(v4), c(v7), c(f ′1) and c(f ′2). The
resulting colouring is a capital L-colouring. Indeed, the maximal colour on the face v1v2v5v4 is the colour
of either v1, v2 or v4. Therefore a capital L-colouring of G exists contradicting that G is a extremal
counter-example.

The proofs of Proposition 3.6 and 3.7 use the same idea as in the proof of Proposition 3.5.

Proposition 3.6. In a extremal counter-example G, no 3-face and 4-face can share an edge joining a
4-vertex and a 5-vertex incident to three 3-faces.

Proof. Let v1 be a 5-vertex and let its neighbours be v2, v3, v4, v5 and v6 in the cyclic order with v1v2v3
being a 3-face. Let v1v2v7v6 be a 4-face and v2 a 4-vertex with v8 being the neighbour of v2 different from
v1, v3 and v7. Let f1 be the face partially bounded by v7v2v8 and f2 by v8v2v3. Let f3 be the second
≥ 4-face adjacent to v1. Let vertices vk and vk+1 be neighbours of v1 that are on face f3. One of these
configurations is depicted in Figure 7.
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f1

f2

f3v1

v2 v3

v4
v5

v6

v7

v8

f ′1

f ′2

f ′3

v3

v4
v5

v6

v7

v8

Figure 7: Configuration of Proposition 3.6 and reduction.

Let H be the graph G\{v1, v2} with edges v6v8, v3v8 and vkvk+1 added. Let f ′1 be the new face in H
partially bounded by v7v8, f ′2 by v3v8 and f ′3 by vkvk+1. By the extremity of G there is a L-colouring c
of H. As v6 and v7 are adjacent, they have different colours examine two cases:

Case c(v6) > c(v7). Colour v2 by a colour from L(v2) different from c(v3), c(v6), c(v7), c(v8), c(f ′1) and
c(f ′2) call it c(v2). Colour v1 a colour from L(v1) different from c(v2), c(v3), c(v4), c(v5), c(v6) and c(f ′3).
This is a capital L-colouring as on the 4-face v1v2v7v8 the maximal colour is that of either v1, v2 or v6.

Case c(v7) > c(v6). Colour v1 by a colour from L(v1) different from c(v3), c(v4), c(v5), c(v6), c(v7)
and c(f ′3) call it c(v1). Colour v2 a colour from L(v2) different from c(v1), c(v3), c(v7), c(v8), c(f ′1) and
c(f ′2). This is a capital L-colouring as on the 4-face v1v2v7v8 the maximal colour is that of either v1, v2 or v7.

Therefore G has an L-colouring.

Proposition 3.7. In a extremal counter example G, no 3-face and 4-face can share an edge joining a
4-vertex and a 6-vertex incident with five 3-faces.

Proof. Let v1 be a 6-vertex and let its neighbours be v2, v3, v4, v5, v6 and v7 in the cyclic order. Let
v1v2v3, v1v3v4, v1v4v5, v1v5v6, v1v6v7 be 3-faces. Let v1v2v8v7 be a 4-face and v2 is a 4-vertex. The
remaining neighbour of v2 is v9. Let f1 be the face partially bounded by v8v2v9 and f2 by v3v2v9. This
is demonstrated in figure 8.

f1

f2

v1

v2 v3

v4

v5
v6

v7

v8

v9

f ′1

f ′2
v3

v4

v5
v6

v7

v8

v9

Figure 8: Configuration of Proposition 3.7 and reduction.

Let H be the induced graph on G\{v1, v2} but with the added edges v8v9 and v3v9. Then by the
extremity of G, H has an L-colouring, c. Then as v7 and v8 are adjacent, they have different colours. We
consider two cases:

Case c(v8) > c(v7). Colour v1 by a colour from L(v1) different from c(v3), c(v4), c(v5), c(v6), c(v7) and
c(v8), call it c(v1). Colour v2 a colour from L(v2) different from c(v1), c(v3), c(v8), c(v9), c(f ′1) and c(f ′2).
This is a capital L-colouring of G as in the 4-face v1v2v8v7 the maximal colour is that of either v1, v2 or
v8.

Case c(v7) > c(v8). Colour v2 by a colour from L(v2) different from c(v3), c(v7), c(v8), c(v9), c(f ′1) and
c(f ′2) and call it c(v2). Then colour v1 a colour from L(v1) different from c(v2), c(v3), c(v4), c(v5), c(v6)
and c(v7). This is a capital L-colouring of G as in the 4-face v1v2v8v7 the maximal colour is that of either
v1, v2 or v7.

So there is a L-colouring of G.

7



3.2 Discharging

The existence of an extremal counter-example will be disproved by the discharging method. The initial
charge of each d(f)-face f ∈ F (G) is d(f) − 4, and the initial charge of each d(v)-vertex v ∈ V (G) is
d(v)− 4. By Euler’s formula the total amount of charge is∑

v∈V (G)

d(v)− 4 +
∑

f∈F (G)

d(f)− 4 = 2|E(G)| − 4|V (G)|+ 2|E(G)| − 4|F (G)| = −8.

The initial charge is redistributed by the following rules.

Rule V5 A 5-vertex incident with at most two 3-faces shall give each 3-face 1/2 units of charge. A 5-vertex
incident with three 3-faces shall give each 3-face 1/3 units of charge.

Rule V6 A 6-vertex incident with at most four 3-faces shall give each 3-face 1/2 units of charge. A 6-vertex
incident with five 3-faces shall give each 3-face 1/3 units of charge.

Rule V7 A 7-vertex incident with at most six 3-faces shall give each 3-face 1/2 units of charge. A 7-vertex
incident with seven 3-faces shall give each 3-face 1/3 units of charge.

Rule V8 A ≥ 8-vertex will give every 3-face 1/2 units of charge.

Rule E1 A ≥ 5-face will give 1/2 units of charge to every 3-face adjacent via an edge joining two 4-vertices.

Rule E2 A ≥ 5-face will give 1/6 units of charge to every 3-face adjacent via an edge joining a 4-vertex and
a ≥ 5-vertex.

Rules V5-8 do not allow a vertex to give out more charge than it started with, therefore any vertex
after the application of the rules has non-negative charge. Also note that 4-faces are unaffected by the
rules so they keep zero charge.

Lemma 3.8. Every ≥ 5-face after the rules have been applied has non-negative charge.

Proof. Consider a ≥ 5-face, let v1, v2 and v3 be 3 consecutive vertices on its boundary. If Rule E1
applies to the edge v1v2, then the other face partially bounded by v2v3 is a ≥ 4-face by Lemma 3.4 Part
5. If the edge v1v2 uses Rule E2 with v2 being the 4-vertex, then the other face containing v2v3 is a
≥ 4-face. If the edge v1v2 uses Rule E2 with v1 being the 4-vertex, then Rule E2 can apply with respect
to v2v3. Therefore the ≥ 5-face sends out through any two consecutive edges at most 1/2 units of charge.
Therefore, ≥ 6-faces have non-negative charge after discharging.

Let f be a 5-face v1v2v3v4v5. Note that the initial charge of f is 1. If no edge on the boundary of f
uses Rule E1, then it gives out at most 5/6 units of charge. Suppose the v1v2 uses Rule E1, then v1 and
v2 are 4-vertices. By Lemma 3.4 Part 5 the other faces containing v2v3 and v1v5 are ≥ 4-faces, so no rule
applies with respect to them. Since at most 1/2 units of charge is sent through v3v4 and v4v5 by the
argument in the above paragraph, 5-faces have non-negative charge after the rules are applied.

It remains to consider 3-faces.

Lemma 3.9. Every 3-face after discharging has non-negitive charge.

Proof. We distinguish cases based on how many 4-vertices are incident to a 3-face f . Recall that the
initial charge of f is -1.

Three 4-vertices By Proposition 3.5 each edge of the 3-face is incident to a ≥ 5-face. Therefore by
Rule E1 the face f receives 1/2 unit of charge from each of these three ≥ 5-faces. So its final charge after
discharging is 1/2.
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Two 4-vertices From Proposition 3.5 the edge of the 3-face that is joining the two 4-vertices is also
contained in ≥ 5-face. By Lemma 3.4 Part 5, the other two faces incident with f are ≥ 4-faces. Then
there are three possibilities regarding the remaining vertex which we call v: v is either ≥ 6-vertex, a
5-vertex incident with two or less 3-faces, or a 5-vertex incident with three 3-faces. These cases are
represented in figure 9.

≥ 5-vertex

4-vertex

≥ 5-face

≥ 4-face ≥ 4-face

≥ 6-vertex

≥ 5-face

≥ 5-face ≥ 5-face

5-vertex with three 3-faces

Figure 9: Two 2-vertex cases.

The vertex v is a ≥ 6-vertex. Note that the number of 3-faces incident with v is at most d(v)− 2.
So by Rules V6-8, the face receives 1/2 unit of charge from v. It also receives 1/2 unit of charge from the
≥ 5-face containing the other two vertices of f by Rule E1. Therefore the face f has non-negative charge
after discharging.

The vertex v is a 5-vertex incident with two or less 3-faces. By Rule V5 the 3-face receives
1/2 unit of charge from v. The 3-face also receives 1/2 unit of charge from the ≥ 5-face containing the
other two vertices from Rule E1. Therefore after discharging the face f has non-negative charge.

The vertex v is a 5-vertex incident with three 3-faces. By Proposition 3.6 the faces incident
with v that share an edge with the face f are ≥ 5-faces. By Rule V5 the face f receives 1/3 units of
charge from v. The face f receives 1/6 unit of charge from each of the two ≥ 5-faces sharing an edge
containing v by Rule E2. Finally, the face f receives 1/2 unit of charge from the ≥ 5-face sharing the
edge not containing v. Therefore after discharging the faces has 1/6 units of charge.

A single 4-vertex. Let v be one of the two ≥ 5-vertices. The edge between v and the 4-vertex is
contained in the 3-face f and a ≥ 4-face by Lemma 3.4 Part 5. Therefore the number of 3-faces incident
to v is at most d(v)− 1. Then one of five cases happens with respect to v: v is ≥ 7-vertex, v is a 6-vertex
incident with four or less 3-faces, v is a 5-vertex incident with two or less 3-faces, v is a 6-vertex incident
with five 3-faces, or v is a 5-vertex incident with three 3-faces. See figure 10 for clarification.

≥ 5-vertex

4-vertex

≥ 4-face

≥ 7-vertex

≥ 5-face

6-vertex with five 3-faces

≥ 5-face

5-vertex with three 3-faces

Figure 10: Three half cases.

The vertex v is ≥ 7-vertex, v is a 6-vertex incident with four or less 3-faces or v is a
5-vertex with incident with two or less 3-faces. In all these cases the face f receives at least 1/2
units of charge from v by Rule V5-8.
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The vertex v is a 6-vertex incident with five 3-faces. By Proposition 3.7 the edge between v
and the 4-vertex is contained in a ≥ 5-face. By Rule E2, the 3-face receives 1/6 units of charge from the
≥ 5-face. By Rule V6, the 3-face also receives 1/3 units of charge from v.

The vertex v is a 5-vertex incident with three 3-faces. By Proposition 3.6 the edge between
v and the 4-vertex is adjacent to a ≥ 5-face. By Rule E2, the 3-face receives 1/6 units of charge from the
≥ 5-face. By Rule V6, the 3-face receives 1/3 units of charge from v.

In each of the cases the face receives at least 1/2 unit of charge together from the vertex v and the
edge containing v and the 4-vertex. So, the 3-face f has non-negative charge after discharging.

No 4-vertex By Rules V5-8 the face receives at least 1/3 unit of charge from each vertex it contains.
Therefore the 3-face has non-negative charge after discharging.

Proof of Theorem 3.2. From discussion after discharging rules, Lemma 3.8, and Lemma 3.9, we have that
every vertex and face after discharging has non-negative charge. This contradicts the amount of charge
in the system. So, there is no extremal counter-example so by Lemma 3.3 it is true that Theorem 3.2
holds.

4 Conclusion

In the case of ordinary colouring, it is known that every plane graph is 5-choosable [5]. The bound is
tight as shown by Voigt [6]. We have tried to construct an example of a plane graph with lists of sizes
five such that there is no capital colouring assigning each vertex a colour from its list. However, we have
not managed to have done so, which led us to propose the following.

Conjecture 4.1. If each vertex of a plane graph is assigned a list of five integers, then there exists a
capital colouring assigning each vertex a colour from its list.
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