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Abstract 

There is a growing interest in non-surgical gait rehabilitation treatments to reduce the loading in the knee joint. In 
particular, synergetic kinematic changes required for joint offloading should be determined individually for each 
subject. Previous studies for gait rehabilitation designs are typically relied on a “trial-and-error” approach, using 
multi-body dynamic (MBD) analysis. However MBD is fairly time demanding which prevents it to be used 
iteratively for each subject. 

This study employed an artificial neural network to develop a cost-effective computational framework for designing 
gait rehabilitation patterns. A feed forward artificial neural network (FFANN) was trained based on a number of 
experimental gait trials obtained from literature. The trained network was then hired to calculate the appropriate 
kinematic waveforms (output) needed to achieve desired knee joint loading patterns (input). An auxiliary neural 
network was also developed to update the ground reaction force and moment profiles with respect to the predicted 
kinematic waveforms. The feasibility and efficiency of the predicted kinematic patterns were then evaluated through 
MBD analysis. 

Results showed that FFANN-based predicted kinematics could effectively decrease the total knee joint reaction 
forces. Peak values of the resultant knee joint forces, with respect to the bodyweight (BW), were reduced by 20%BW 
and 25%BW in the midstance and the terminal stance phases. Impulse values of the knee joint loading patterns were 
also decreased by 17%BW*s and 24%BW*s in the corresponding phases. The FFANN-based framework suggested a 
cost-effective forward solution which directly calculated the kinematic variations needed to implement a given 
desired knee joint loading pattern. It is therefore expected that this approach provides potential advantages and 
further insights into knee rehabilitation designs. 
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Introduction  1 

 Non-invasive gait rehabilitation strategies are of significant advantages for patients with knee 2 

osteoarthritis (OA). Pre-surgical gait rehabilitation can decrease pain, decelerate joint disease progression 3 

and post-pone surgery[1, 2]. Post-surgical gait rehabilitation can also accelerate patient recovery[3, 4], 4 

reinforce joint functionality[5, 6], decrease gait asymmetry[7] and augment the durability and longevity of 5 

the implanted prostheses[8, 9]. Gait rehabilitation mainly aims to decrease knee joint loading through minor 6 

changes in human gait patterns. Recognizing the synergistic kinematic changes, required for joint 7 

offloading, however has been a very challenging task. Although various gait modifications have been 8 

developed in association with knee joint offloading [10-22], none of them have yet been accepted as a 9 

general modification strategy. In fact, large inter-patient variability has been reported in gait kinematics and 10 

joint loading patterns[23, 24] which may directly affect the results and the efficiency of gait rehabilitation 11 

from one group of patients to another group. In other words, a gait rehabilitation might be effective for joint 12 

offloading in a group of participants [13, 16, 25] while it might be ineffective[26] or even detrimental [27] 13 

for other groups of patients. Thus, gait rehabilitation strategies should be determined individually for each 14 

subject. 15 

  Current studies for gait rehabilitation design have been typically carried out based on multi-body 16 

dynamics (MBD) analysis[13, 14]. Although MBD can determine the knee joint loadings from known gait 17 

kinematics, the nonlinear relationship between kinematic variations and knee joint offloading is still 18 

unknown. Available techniques therefore, require iterative “trial-and-error” attempts of MBD analysis to 19 

recognize the most influential kinematic variations needed for joint offloading. In each attempt, kinematic 20 

waveforms and ground reaction forces (GRFs) should be collected experimentally or produced 21 

computationally and then imported into an inverse dynamic analysis to calculate the resultant joint 22 

moments. MBD computations should be repeated until a reasonable reduction in knee joint loading is 23 

achieved. This “trial-and-error” approach of MBD would be fairly time demanding and prevent this method 24 

to be used iteratively for each subject. Thus, a cost-effective surrogate model which replicates the original 25 

MBD would be of much advantage.  26 

Furthermore, previous studies have been mainly performed to reduce knee adduction moment (KAM) 27 

as a surrogate of medial knee contact force (KCF) [28] but KAM is not always a reliable measure for knee 28 

joint offloading: (1) gait modifications that reduce KAM are not guaranteed to reduce KCF[29]; (2) 29 

interpreting the KAM is highly dependent on the chosen reference frame (e.g., laboratory, tibia, femur and 30 
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floating reference frames). This reference dependency can potentially yield to inconsistent results from one 31 

laboratory to another [16, 26]. Accordingly, gait modification strategies should directly aim to decrease 32 

KCF. 33 

Artificial neural network (ANN) has been commonly used in various fields of biomechanics as a cost-34 

effective surrogate model [30-33]. Once a set of inputs and resultant outputs are presented to the network, 35 

ANN learns the causal interactions between input and output variables. Given a new set of inputs, the 36 

trained neural network (surrogate model) can generalize the relationship to produce the associated outputs. 37 

Therefore it releases the necessity of running the original physics-based model or repeating the time-38 

consuming iterations [34]. In human gait studies, ANN has been particularly used as an alternative to MBD 39 

analysis to investigate joint moments [35-38], gait kinematics [39] and ground reaction forces [40-42]. It is 40 

therefore expected that ANN can also provide further insight into the interactions between gait kinematics 41 

and resultant knee joint loads. 42 

Although ANN has been used to calculate knee joint loadings from gait kinematics [43], it has not been 43 

used to solve the inverse problem. The underlying hypothesis of this study was that ANN can be used to 44 

calculate gait kinematics for a given joint loading pattern.  In particular, the main aim of this study was to 45 

develop a cost-effective computational framework for designing gait rehabilitation patterns which (1) 46 

released the necessity of iterative MBD analysis and (2) directly calculated the specific kinematics needed 47 

to achieve a desired reduction in KCF. 48 

2. Materials and methods 49 

 A published repository of the experimental gait cycles was obtained from the literature (section 2.1). 50 

The most influential gait kinematics for knee joint offloading and those body segment trajectories which 51 

control the overall lower limb alignments (constraints) were determined (section 2.2). Using the 52 

experimental repository, an artificial neural network was trained to predict the most influential gait 53 

kinematics (outputs) based on knee joint loading and constraint limb alignments (inputs) (section 2.3). The 54 

trained network was then employed to predict the appropriate waveforms of influential kinematics based on 55 

given patterns of knee joint loadings. Ground reaction forces and moments (GRF&M) were updated with 56 

respect to the proposed kinematic variations (section 2.4). In order to evaluate the efficiency and feasibility 57 

of the proposed kinematics, predicted kinematics and updated GRF&M were then imported into a MBD 58 

analysis to investigate whether the knee joint loading was decreased effectively (section 2.5). It should be 59 
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noted that artificial neural network was used for a twofold purpose: (1) to predict the synergetic kinematic 60 

variations needed to achieve a desired knee joint loading pattern (section 2.3) and (2) to update the 61 

GRF&M profile according to the kinematic variations (section 2.4). Figure 1 shows the schematic diagram 62 

of the proposed methodology.  63 

2.1. Subject 64 

 A subject pool consisted of four different participants, implanted with unilateral sensor-based knee 65 

prostheses (three males, one female; height: 168.3±2.6 cm; mass: 69.2±6.2kg), was adopted from a 66 

published repository (https://simtk.org/home/kneeloads ; accessed on 20 December 2013). This repository 67 

contained the experimental gait trials of seven different walking patterns: normal, bouncy, crouch, trunk 68 

sway and forefoot strike gait plus two knee rehabilitation strategies: medial thrust and walking pole patterns. 69 

Medial thrust pattern includes a slight decrease in pelvis obliquity and a slight increase in pelvis axial 70 

rotation and leg flexion compared to normal gait [13]. In walking pole gait, patient uses two lateral poles as 71 

supportive walking aids [17]. For each specific walking pattern, subjects repeated five gait trials under the 72 

same walking condition. One complete gait cycle was picked up for each gait trial. A gait cycle was defined 73 

as the time interval between foot strike of one leg to the following foot strike of the same leg [44]. Gait 74 

cycles were normalized to 100 samples and then averaged over each walking pattern, leading to a total 75 

number of 28 gait cycles for four participants. For a complete description of this repository one can refer to 76 

[45].  77 

2.2 Input/output selection  78 

2.2.1. Input selection 79 

 Presented in this study is a forward approach that is expected to directly predict the kinematic 80 

waveforms needed to implement a desired knee joint loading pattern. Medial and lateral components of 81 

desired KCF were considered as inputs. On the other hand, predicted kinematics should preserve the 82 

normal patterns of natural walking without any exaggerated limb orientation. Due to this constraint, those 83 

body segment trajectories which have been highly similar (ȡ>0.85) across normal and natural-looking 84 

rehabilitation patterns (e.g., medial thrust and walking pole) were determined through Pearson correlation 85 

coefficients. These body segment trajectories were then considered as constraint inputs.  86 

 

https://simtk.org/home/kneeloads
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2.2.2. Output selection  87 

 In order to determine a specific gait modification, the most influential kinematics with significant 88 

contributions to the knee joint loading were chosen as outputs to be calculated. Reviewing previous studies, 89 

kernel mutual information (MI) has been used successfully as a nonlinear variable selection technique 90 

which releases the disadvantages of histogram-based MI [46]. This criterion was therefore recruited to 91 

measure the amount of information that each individual kinematic provided about knee joint loading [47]: 92 
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in which d is the vector dimension and S is the covariance matrix on yj . It should be noted that unlike the 102 

previous applications of mutual information technique to select the inputs of a neural network[48], this 103 

technique was employed to determine the outputs of interest for the proposed neural network.  104 

2.3. Artificial neural network  105 

 Feed forward artificial neural network (FFANN) has been widely accepted as a universal 106 

approximator [49]. This structure can learn any nonlinear relationship between inputs and outputs 107 

regardless of its complexity and dimension. In particular, FFANN was successfully used to predict knee 108 

joint loading patterns from gait kinematics in our previous study [43].  In the present study however, 109 

FFANN was used to solve the inverse of the former problem and predict the gait kinematics from knee joint 110 

loading patterns. The proposed FFANN consisted of a number of processor units (neurons) organized in 111 
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certain arrangements (layers). Layers were densely connected to each other via numeric weights [34]. 112 

Once the neural network was trained for a specific nonlinear relationship, these numeric weights were 113 

adjusted to keep the “cause-and-effect” features of the input-output interaction [43]. All of the hidden 114 

neurons were activated by ಯhyperbolic tangent sigmoid” function whilst output nodes were activated with a 115 

“pure line” function which simply produced a weighted sum of hidden neurons in the output. Gradient 116 

descent back propagation algorithm with an adaptive learning rate (traingdx) and an error goal of 10-5 were 117 

used to train the FFANN.  118 

 Experimental gait cycles of normal, bouncy, crouch, trunk sway and fore-foot strike patterns of all 119 

subjects were considered as the training data space (20 inter-patient data sets). This data space was 120 

randomly divided into three distinguished subsets: train (70%), validation (15%) and test (15%). Train and 121 

validation subsets were used to train the network and adjust the connection weights whilst the test subset 122 

was not included in the training procedure. The network prediction errors on the test and validation subsets 123 

were then considered to determine the optimum number of hidden neurons, hidden layers and training 124 

epochs. Whilst increasing the number of hidden neurons and layers would reduce the validation error, using 125 

too many hidden neurons and layers decrease the network generalization ability due to over-fitting and 126 

yield to an increase in prediction errors on the test subset [50]. This technique has been widely used in the 127 

literature to construct the optimal structure of a neural network [32, 33]. Training procedure continued until 128 

the maximum numbers of training epochs were reached or until the error goal was implemented. Once the 129 

trained network was validated and tested, it was then employed to calculate the appropriate kinematic 130 

waveforms (outputs) for a desired knee joint loading pattern (input).  In this study, desired knee joint 131 

loading patterns were adopted from the medial thrust and walking pole trials. Subsequently, a five-layer 132 

FFANN with one input layer, three hidden layers (20, 25, 25 hidden neurons) and one output layer was 133 

constructed. This structure had 10 inputs (medial and lateral KCF plus eight constraint inputs) and four 134 

outputs (influential kinematics).  Previous studies revealed the superiority of the FFANN compared to the 135 

regression surrogates for modeling complex nonlinear interactions [32, 37, 51]. In the present study, linear 136 

regression was also established for comparison purposes. All regression analyses were performed using 137 

MATLAB (v.2009, The MathWorks Inc.).  A one-way analysis of variance (ANOVA) test  with the 138 

significance level of p < 0.05 was conducted (Matlab v.2009, Statistics toolbox) to compare the normalized 139 

root mean square errors between experimental kinematics (targets) and those predictions obtained from 140 

FFANN and regression surrogates for the test subset . 141 
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2.4. Ground reaction force computations 142 

 In general, three dimensional ground reaction forces and moments (GRF&M) are measured using 143 

force plates. However, GRF&M can also be calculated through a number of computational techniques [41, 144 

52, 53]. Here, an auxiliary four-layer FFANN with one input layer, two hidden layers (20 and 25 hidden 145 

neurons) and one output layer was constructed. This network had 15 inputs including 11 key values of 146 

predicted kinematic waveforms plus two peak and two impulse values of medial KCF in the midstance and 147 

terminal stance phases. These inputs are described in Table 1 and are shown in Figure 2. Midstance (17-148 

50% of stance) and terminal stance (51-83% of stance) phases were defined based on the gait phase 149 

definitions by Perry and Burnfield [44] This FFANN had six output neurons to predict the peak values of 150 

ground reaction forces (Fx, Fy, and Fz) and ground reaction moments (Mx, My, and Mz). Hidden neurons’ 151 

activation functions (hyperbolic tangent sigmoid), output neurons’ activation functions (pure line) and 152 

training algorithm (gradient descent back propagation) were similar to the first FFANN in the previous 153 

section. The network was trained and validated based on the experimental gait cycles of normal , bouncy, 154 

crouch , trunk sway and fore foot strike gait trials (obtained from the published repository ; section 2.1).The 155 

trained structure was then employed to predict peak values of the GRF&M with respect to the proposed 156 

kinematic variations. Using linear interpolation technique (MATLAB software), the predicted peak values 157 

of GRF&M were used to re-scale and update an averaged ground reaction force profile of a normal gait 158 

cycle for each subject. This updated GRF&M profile accompanied the kinematic waveforms for further 159 

evaluation in MBD (section 2.5). Figure 3 outlines the sample input and output waveforms of the two 160 

neural networks used in this study. 161 

2.5 Multi-body dynamics evaluation 162 

 For each subject, predicted gait kinematic waveforms (obtained from FFANN) were substituted in 163 

an averaged normal gait cycle of that subject (Appendix, Figure A.1) to generate a complete motion profile. 164 

This modified motion profile and updated GRF&M profile were then imported into the three-dimensional 165 

multi-body simulation software AnyBody Modeling System (version 5.2, AnyBody Technology, Aalborg, 166 

Denmark) to calculate the knee joint loading. The resultant knee joint loadings were expected to be lower 167 

than the resultant forces which were achieved from the original averaged normal gait cycle. 168 

 A lower extremity musculoskeletal model was used in AnyBody software based on the University 169 

of Twente Lower Extremity Model (TLEM) [54]. The TLEM model is available in the published repository 170 
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of AnyBody software. This model includes approximately 160 muscle units as well as thorax, trunk, 171 

pelvis, thigh, patella, shank and foot segments. Hip joint was modeled as a spherical joint with three 172 

degrees of freedom (DOF): flexion-extension, abduction-adduction and internal-external rotation. Knee 173 

joint was modeled as a hinge joint with only one DOF for flexion-extension and universal joint was 174 

considered for ankle-subtalar complex. 175 

3. Results  176 

 In the present study, feed forward artificial neural network was employed to predict gait kinematics 177 

as outputs based on given knee joint loading patterns as inputs.  Left heel, right lateral thigh, left inferior 178 

thigh , left lateral thigh, left patella, and left superior/inferior/lateral shank trajectories were highly 179 

correlated (p>0.85)  between different natural-looking walking patterns (normal, medial thrust and walking 180 

pole patterns)(Figure 4). These body segment trajectories were therefore considered as constraint inputs to 181 

control the natural appearance and orientations of the predicted kinematics. Kernel mutual information also 182 

highlighted the significant contributions of four influential kinematics (kernel MI > 0.55) to the knee joint 183 

loading including hip flexion, knee flexion, anterior-posterior and vertical components of pelvis position. 184 

These kinematic waveforms therefore were considered as outputs needed to be predicted by FFANN 185 

(Figure 5).  186 

 The predicted kinematics obtained from the regression surrogate model and FFANN were 187 

benchmarked versus experimental kinematic waveforms for the test subset (Appendix, Figure A.2).   A 188 

significant difference of p=3.8727e-005 was found between the prediction accuracy of FFANN and 189 

regression surrogate in terms of the normalized root mean square errors. Accordingly, for the rest of this 190 

study, FFANN was considered. In addition, for comparison purposes and in order to show the importance 191 

of relevant constraint inputs to be chosen, FFANN predictions were repeated with all body segment 192 

trajectories as constraint inputs. This in turn resulted in a large increase in the prediction error on the test 193 

subset (up to 34%) (Appendix, Figure A.3). 194 

Consequently, the trained FFANN with relevant constraint inputs (chosen through kernel MI) was 195 

employed to calculate the kinematic waveforms needed to achieve “desired knee joint loading” patterns. 196 

For each subject, kinematic waveforms were predicted corresponding to the knee joint loading patterns 197 

adopted from medial thrust (Figure 6) and walking pole (Figure 7) patterns as desired loading patterns. The 198 

auxiliary FFANN also predicted the peak values of GRF&M which were used to update the ground reaction 199 

force profiles for the medial thrust-based predicted kinematics (Figure 8) and walking pole-based predicted 200 
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kinematics (Figure 9). For brevity, adjusted GRF&M profiles are presented versus one representative 201 

normal gait cycle. For comparison purposes, FFANN-based updated GRF&M profile was compared versus 202 

the experimental GRF&M measurements of medial thrust pattern for subject 3 (Figure 8-b).  203 

Feasibility and efficiency of the predicted gait kinematics were evaluated through MBD analysis 204 

(AnyBody software, section 2.5). For each subject, total knee joint loading was calculated based on the 205 

adjusted motion profiles (normal gait cycles in which predicted kinematic waveforms were substituted) and 206 

updated GRF&M profiles. Both medial thrust-based predicted kinematics and walking pole-based predicted 207 

kinematics could decrease the knee joint loading compared to the normal gait pattern (Figure 10). For 208 

comparison purposes, experimental kinematics of medial thrust and walking pole rehabilitation patterns, 209 

available in the published repository, were also imported into the MBD analysis. Computed total knee joint 210 

loadings are presented in Figure 10.  Compared to normal walking pattern, medial thrust-based kinematics 211 

(predicted by FFANN) could decrease knee joint loading by 15%BW*s and 23%BW*s in the impulse 212 

values and by 19%BW and 22%BW in the peak values in the midstance and terminal stance phases. 213 

Walking pole-based kinematics (predicted by FFANN) also reduced knee joint loading by 19%BW*s and 214 

25%BW*s in the impulse values and by 21%BW and 28%BW in the peak values at the corresponding 215 

phases (averaged over four subjects) (Figure 11).  216 

4. Discussion 217 

 A feed forward artificial neural network was trained over a number of different gait trials and then 218 

was recruited to calculate the appropriate kinematics (outputs) for a given knee joint loading pattern 219 

(inputs). The FFANN structure was trained based on in vivo knee joint loadings obtained from instrumented 220 

knee prostheses. The proposed framework however, can also be trained using knee joint reaction forces 221 

computed through MBD analysis. Indeed all types of artificial neural networks require an initial 222 

computational expense to be trained over a primary training data space. The network learns the causal 223 

input-output interactions through this primary training data space. It should be pointed out that this initial 224 

cost would be much lower than the iterative “trial-and-error” analyses required in conventional 225 

rehabilitation designs using MBD analysis. 226 

 First, in each attempt of MBD analysis, the subject is hired to implement a gait pattern. The 227 

kinematic waveforms and GRF&M data are collected experimentally or calculated computationally to 228 

compute the resultant knee joint loading patterns. The design procedure is therefore established using an 229 
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inverse solution to obtain “force” from “kinematics”. Due to the unknown nonlinear interaction between 230 

gait kinematic variations and knee joint loading reduction, convergence of the solution may need numbers 231 

of attempts to achieve a reasonable reduction in the knee joint loading. Moreover, the solution and 232 

convergence probably differ from one subject to another. On the other hand, once a FFANN was trained 233 

based on a few numbers of gait trials (20 gait cycles for four subjects), it had the ability to directly calculate 234 

the appropriate kinematic waveforms from desired knee joint loading patterns (forward solution). Moreover, 235 

the trained FFANN could predict the corresponding kinematic variations for each of four different 236 

participants. Second, in order to produce a primary training data space for FFANN, several MBD analyses 237 

can be employed in parallel which may significantly reduce the required time of computations. In a 238 

conventional MBD-based rehabilitation design however, MBD analysis cannot be recruited in a parallel 239 

framework since the MBD computation results in each attempt specify how the kinematic waveforms and 240 

GRF&M profiles should be modified for the next attempt.  241 

 It should be pointed out that although a trained FFANN can lean and generalize a causal 242 

relationship to new situations, FFANN can only interpolate the training examples. In other words, 243 

predictions of FFANN are accurate and valid for those inputs which lay within the training data space. In 244 

the present study, the proposed FFANN was trained based on normal gait pattern as well as several 245 

exaggerated gait patterns (e.g., bouncy, crouch, fore foot strike and trunk sway). These gait patterns 246 

covered the span of executable gait patterns for each subject. Medial thrust and walking pole patterns (test 247 

data space) were natural-looking rehabilitation patterns with non-significant kinematic variations compared 248 

to normal gait. Thus, the kinematic waveforms of both patterns lay within the initial training data space. 249 

 The current approach is consistent with the previous studies for rehabilitation design in which a few 250 

influential gait kinematics are of particular interest to be varied while others are assumed to be normal [10, 251 

13, 14, 55, 56]. The rationale behind this technique can be justified according to two main reasons: (1) gait 252 

kinematics with low contributions to the knee joint loading, may have significant contributions to the 253 

adjacent joints (e.g. hip joint). Varying such kinematics may cause unwanted adverse changes in other 254 

joints loading patterns. As a conservative consideration therefore, targeted gait rehabilitations are mostly 255 

defined based on the minimum numbers of the kinematic variations. In other words, only those kinematics 256 

with significant influence on the knee joint loading should be altered; (2) after a rehabilitation strategy is 257 

designed theoretically, a patient should be trained clinically over the defined pattern. Fewer numbers of 258 

kinematic variations, required to be executed, will ease the training procedure. Extra facilities and attempts 259 
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will be required for patient training if the rehabilitation strategy involves more numbers of kinematic 260 

variations. In the present study, rehabilitation strategies were therefore suggested based upon four 261 

influential kinematic waveforms recognized through the kernel mutual information analysis.  262 

 Ground reaction forces mainly depend on the gravity, body mass and acceleration. Accordingly, 263 

variations in gait kinematics lead to unavoidable changes in GRF&M acting on the human body. Both 264 

kinematic variations and GRF&M changes in turn contribute to changes in the knee joint loading. In order 265 

to evaluate the predicted kinematic waveforms in a MBD analysis, GRF&M profiles should be updated. An 266 

auxiliary neural network was therefore constructed to update the peak values of GRF&M based on 267 

descriptive key values of the kinematic waveforms and desired knee joint loading patterns. These key 268 

values have been suggested in literature for a number of studies such as gait  analysis  [57-59], gait 269 

classification  [60]  and  evaluation of  joint loading  [61],  and  joint inter-coordination  [62].  Peak and 270 

impulse values of the knee joint loading in the midstance and terminal stance phases have also been used as 271 

important descriptive features of the knee joint loading in literature [13, 29, 36]. Predicted GRF&M profiles 272 

were in a good agreement with clinical reports [13]. For example, whilst statistical differences were 273 

reported to be noticeable between GRF&M profiles of walking pole and normal gait patterns (see Figure 9), 274 

GRF&M profiles of medial thrust were expected not to differ significantly from normal gait pattern (see 275 

Figure 8) .  276 

 The FFANN-based framework suggested a forward solution for designing knee joint rehabilitation. 277 

Therefore, it can provide potential advantages and further insights into knee rehabilitation design. For 278 

example, kinematic waveforms predicted by FFANN, can serve as a starting point (initial guess) for 279 

conventional MBD-based designing approaches. Moreover, the FFANN framework can be fed with desired 280 

knee joint loading patterns which have not been achieved so far. For example, it is still not exactly clear 281 

whether any rehabilitation strategies can be designed to reduce knee joint loading at 25% of the stance 282 

phase. FFANN may be fed with a desired reduction at specific stages of a gait cycle. Estimated kinematics 283 

can then be evaluated clinically to investigate the possibility of a rehabilitation strategy capable of 284 

achieving this goal. As another example, knee joint loading patterns obtained from medial thrust and 285 

walking pole gaits can be combined and considered as the desired loading pattern (e.g., medial knee joint 286 

loading of medial thrust pattern plus lateral knee joint loading of walking pole rehabilitation) to investigate 287 

the feasibility of a compromised set of kinematics which inherits the potential advantages of both 288 

rehabilitation strategies.   289 
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 One of the most important limitations of this study was lack of clinical investigation on estimated 290 

kinematics. However from a technical point of view, the predicted kinematic waveforms are expected to be 291 

feasible: (1) a total of eight body segment trajectories (constraint inputs) were considered to keep the 292 

natural orientation of the estimated kinematics; (2) the FFANN was trained based on executable walking 293 

patterns. Once the network learns this dynamics, it uses this dynamics as the acting function to respond to 294 

new sets of inputs. Due to the above reasons, it is unlikely that our model would generate highly aberrant 295 

kinematics. It should be noted that even if the predicted kinematics will be feasible to implement, further 296 

investigation is still necessary for compensatory or unexpected effects on the other joints or on the contra-297 

lateral limb. The second limitation was that knee joint was modeled as a hinge joint with only one DOF 298 

(flexion-extension). Although six DOFs are possible for the knee joint , the dominant movement of the 299 

knee joint  takes place  in  the  sagittal  plane,  so  a  number of previous studies have modeled the knee as a 300 

hinge joint  , especially  for knee rehabilitation design  purposes [13, 63, 64]. Nevertheless, the 301 

computational approach that was developed in the present study can be equally used with more complex 302 

musculoskeletal models. It should be noted that predicted kinematic waveforms were computationally 303 

replaced in an averaged normal gait cycle to generate a complete motion profile for MBD evaluation. 304 

Generally, after designing a gait rehabilitation strategy, based on a few kinematic variations, patients will 305 

be asked to execute the prescribed kinematics in their gait patterns. Other gait kinematics, which are not 306 

prescribed in the rehabilitation strategy, will be therefore synchronized while patient is walking. In the 307 

present study however we mainly aimed to introduce the computational approach (FFANN) for gait 308 

modification designs. Due to lack of experimental set-up and clinical validation, predicted kinematic 309 

waveforms were only computationally replaced in a normal gait cycle to be evaluated in a MBD approach. 310 

Nevertheless, the results are not expected to vary noticeably since the predicted kinematics does not differ 311 

significantly from normal gait patterns (see Figures 5 and 6). Finally it should be pointed out that no special 312 

assumption was made to include or exclude a participant. In other words, the proposed computational 313 

framework was constructed based on a few numbers of ordinary subjects with unilateral knee implants. The 314 

proposed methodology is therefore expected to be equally applicable for any given subject. However, for 315 

patients with abnormal varus or valgus knee joint alignment , pathologic gait patterns or those subjects with 316 

other joint diseases , other gait trials may be needed to train the neural network. Caution is required to train 317 

subjects on the predicted kinematics and further clinical validation should be carried out to investigate other 318 

effects of the proposed kinematics on the other joints. 319 
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5. Conclusions 320 

 A FFANN-based computational framework was developed to calculate the appropriate kinematic 321 

waveforms needed to achieve desired knee joint loadings corresponding to medial thrust and walking pole 322 

patterns. Evaluating the predicted kinematic waveforms in a multi-body dynamics analysis, impulse values 323 

of the knee joint loadings, with respect to bodyweight (BW),  were decreased by 17%BW*s and 24%BW*s 324 

in the midstance and the terminal stance phases. Peak values of the knee joint loadings were also reduced 325 

by 20%BW and 25%BW at the corresponding phases. This computational framework provided a cost-326 

effective approach capable of designing gait rehabilitation strategies for individual subjects which released 327 

the necessity of iterative multi-body dynamic analysis. 328 
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Figure 1 A schematic block diagram of the proposed framework  
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Figure 2 Input variables of the auxiliary FFANN (red circles) including key values of the predicted gait kinematics plus peak & impulse values 

of the desired medial KCF. Due to the periodicity of the gait, kinematic values at the end of the gait cycle (gray points) were equal to the initial 

values at 0% of the gait cycle; except for pelvis anterior-posterior translation. 
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Figure 3 (a) Sample input and output waveforms for the principal FFANN. Medial and lateral knee joint forces plus marker 

displacement trajectories served as inputs to predict kinematics as outputs, (b) descriptive features of kinematics and 

kinetics which served as input variables for the auxiliary FFANN , (c) GRF&M profile as outputs of the auxiliary FFANN. 
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Figure 4 Pearson correlation coefficients were calculated across different body segment trajectories over different 

natural-looking walking patterns (normal, medial thrust and walking pole patterns) 
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Figure 5 Kernel mutual information values between gait kinematics and medial KCF; x, y and z refer to anterior-posterior, 

vertical and medial-lateral directions. 
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Figure 6 Predicted kinematic waveforms (outputs) corresponding to the knee joint loading patterns adopted from the medial thrust 

rehabilitation strategy (inputs). 
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Figure 7 Predicted kinematic waveforms (outputs) corresponding to the knee joint loading patterns adopted from the walking pole 

rehabilitation strategy (inputs). 
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Figure 8 (a) Updated ground reaction force and moment profiles corresponding to the medial thrust-based predicted 

kinematics, (b) FFANN-based updated GRF&M was compared versus the corresponding experimental measurements of medial 

thrust pattern for subject 3 as an example. 
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Figure 9 Updated ground reaction force and moment profiles corresponding to the walking pole-based predicted kinematics. 
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Figure 10 Both medial thrust-based predicted kinematics and walking pole-based predicted kinematics could decrease the 

knee joint loading compared to the normal gait pattern 
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Figure 11 Both medial thrust-based kinematics and walking pole-based kinematics could decrease knee joint loadings in 

terms of the peak and angular impulse values in the midstance and terminal stance phases. 
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Supplementary data
Click here to download Supplementary data: Appendix.docx
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