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Bound states of the Dirac equation on Kerr spacetime

Sam R. Dolan∗ and David Dempsey†
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University of Sheffield, Hicks Building,

Hounsfield Road, Sheffield S3 7RH, United Kingdom.

(Dated: July 21, 2015)

Abstract
We formulate the Dirac equation for a massive neutral spin-half particle on a rotating black

hole spacetime, and we consider its (quasi)bound states: gravitationally-trapped modes which are

regular across the future event horizon. These bound states decay with time, due to the absence of

superradiance in the (single-particle) Dirac field. We introduce a practical method for computing

the spectrum of energy levels and decay rates, and we compare our numerical results with known

asymptotic results in the small-Mµ and large-Mµ regimes. By applying perturbation theory in

a horizon-penetrating coordinate system, we compute the ‘fine structure’ of the energy spectrum,

and show good agreement with numerical results. We obtain data for a hyperfine splitting due to

black hole rotation. We evolve generic initial data in the time domain, and show how Dirac bound

states appear as spectral lines in the power spectra. In the rapidly-rotating regime, we find that

the decay of low-frequency co-rotating modes is suppressed in the (bosonic) superradiant regime.

We conclude with a discussion of physical implications and avenues for further work.

∗ s.dolan@sheffield.ac.uk
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I. INTRODUCTION

Einstein’s theory of general relativity (1915) and Dirac’s relativistic wave equation (1928)

are cornerstones of physics and ‘two households alike in dignity’. Although Dirac may have

remarked that ‘it is more important to have beauty in one’s equations than to have them

fit experiment’, these theories have also endured ever-more-stringent experimental tests.

Thus far, there has been little opportunity to test the beautiful theory of fermions on

curved spacetimes, developed by Schrödinger, Bargmann, Pauli [1] (1933) and others [2, 3];

except for in a restrictive ‘Newtonian’ setting [4, 5]. This may change in forthcoming decades.

Black holes – a radical consequence of Einstein’s theory which appear to play a pivotal role

in the development of galactic structure – may act as crucibles for stringent tests of strong-

field phenomena [6], and the interaction of fermionic fields with black holes, the topic of this

article, is of interest from a range of perspectives.

In standard experience, there is a vast difference between the typical gravitational and

quantum-mechanical length scales. A gravitating mass M interacting with a quantum field

of mass µ is characterized by a dimensionless parameter

Mµ

m2
Pl

=
GMµ

~c
∼ rh
λC
, (1)

where rh is the horizon radius of the gravitating mass, λC is the Compton wavelength of the

field, and mPl is the Planck mass. As rh is typically measured in kilometres, and λC in pico

or femtometres, it is clear that Mµ≫ 1 in standard astrophysical scenarios (henceforth we

will typically omit dimensionful constants, setting G = ~ = c = mPl = 1). Yet one may

also envisage scenarios in which this is not the case, e.g., for (i) standard-model fields bound

to ‘light’ primordial black holes, and (ii) ultra-light fields (arising from e.g. string theory

compactifications) bound to galactic black holes [7, 8]. It has been suggested that ultra-light

fields could provide a resolution of the dark matter problem (see e.g. Refs. [9–11]).

The ‘no-hair’ (Israel-Carter) conjecture [12–14] suggests that, once perturbed, a black hole

will rapidly return to a stationary state, changing only a small number of physical parameters

in the process: its mass M , angular momentum J , and charge Q. The conjecture has

been elevated to a theorem for various scenarios involving massless scalar, electromagnetic

and gravitational fields [12–17]. However, if a perturbing field is endowed with mass, the

quantum/classical correspondence principle suggests that the ‘no-hair’ picture is incomplete.

Outside the innermost stable circular orbit (risco = 6GM/c2 for Schwarzschild black holes),

a compact body of mass µ may orbit a black hole indefinitely, at least up to a gravitational

radiation-reaction timescale τrad ∼ (M/µ)(GM/c3). In the semi-classical regime λc ≪ rh

(i.e. Mµ ≫ 1) a straightforward WKB analysis (see Appendix A) suggests that a massive

field possesses bound states E < µc2 localized around orbiting timelike geodesics. For

circular orbits in the weak-field regime (r0 ≫M),

E ≈ µc2 − 1

2

GMµ

r0
+ ~Ω0(n+ 1

2
), n ∈ N, (2)
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where the first term is the rest mass energy, the second term is the ‘Newtonian’ binding

energy, and the third term gives the energy-level spacing in terms of the orbital frequency

Ω0 =
√
GM/r

3/2
0 . In cases where ~Ω0 ≪ µc2 the discrete spectrum becomes indistinguish-

able from a continuum.

There is a subtlety in the above picture. Localized states are (generically) asymmetric

under time-reversal, due to non-Hermiticity in the Dirac equation on black hole spacetimes.

Flux is absorbed through the event horizon, which acts as a one-way membrane. Notwith-

standing, lifetimes become exponentially-long when an angular momentum barrier separates

the orbit from the event horizon. That is, we have τ ∼ eMµβ where β is some tunnelling

coefficient which depends only on the ratio of Mµ/(ℓ + 1/2), with ℓ the orbital angular

momentum number.

How does a black hole’s rotation affect this picture? Consider a Kerr black hole, with

angular momentum aM . It is well-established that low-frequency modes of bosonic fields

may be amplified by a process known as superradiance. Localized bosonic states within

the superradiant regime ωω̃ < 0, where ω̃ = ω − mΩH with ΩH = a/(2Mrh) the angular

frequency of the horizon, and m the azimuthal number of the mode, may grow with time,

causing a superradiant instability to develop: this is the so-called ‘black hole bomb’ scenario

[18, 19]. Although growth, like decay, is exponentially-suppressed in the semi-classical regime

Mµ ≫ 1 (with e-folding time τ & 107 exp(1.84Mµ) [20]), it becomes significant for Mµ ∼
O(1) (with τmin ≈ 5.88×106GM/c3 for the ℓ = m = 1 mode of the scalar field atMµ = 0.45

and a = 0.997M [21–24]). By contrast, the (single-particle) Dirac equation is not subject

to superradiance [25–29], and thus all states decay. See Ref. [30] for a recent summary of

superradiance and associated phenomena, and Refs. [31–33] for recent work on the evolution

of superradiant instabilities.

Many authors [19–23, 34–51] have considered the ‘bound states’ of massive fields on

Schwarzschild, Kerr and Kerr-Newman spacetimes. A range of terminology has been used,

including ‘quasiresonances’, ‘quasilevels’ [52], ‘quasistationary states’, ‘quasibound states’

[38], ‘dynamical resonance states’ [53], ‘wigs’ [54] and ‘graviatoms’ [48]; here we use ‘bound

states’ generically, without any implication of time-reversal symmetry. Bound states are

not to be confused with ‘quasinormal modes’, which are radiative in character. Loosely

speaking, quasinormal modes are associated with a maximum (rather than a minimum) in

the effective potential; they were studied in the massless Dirac case in Refs. [55–57].

Regardless of differences in terminology, in the regimeMµ/(ℓ+1/2) . 1, a unified picture

of bound states emerges. Let ω = ωR+ iωI denote the real and imaginary parts of the mode

frequency, with ωI < 0 (ωI > 0) corresponding to decay (growth). To lowest order, the

spectrum of spin-zero and spin-half particles is hydrogenic, with

ωR/µ ≈ 1− (Mµ)2

2n2
, (3)

with n ∈ 1, 2, . . . the principle quantum number. In this regime, the bound states have a

typical radius of na0, where a0 = (Mµ)−2(GM/c2) is the gravitational ‘Bohr radius’. The
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imaginary part of a bosonic field of spin s (scalar s = 0, Proca s = 1 and massive graviton

s = 2) scales according to [34, 58–61]

ωI/µ ∝ −
(

1− mΩH

µ

)

(Mµ)4l+2S+5, (4)

where S ∈ {−s,−s + 1, . . . , s} is the spin projection. By comparison, for the Dirac field it

was shown in Ref. [37] that, for a≪M ,

ωI/µ ∝ −(Mµ)4l+2S+4, (5)

where S ∈ {−1/2, 1/2} is the spin projection. This highlights a key point: in the regime

µ < mΩH , bosonic modes become unstable, due to superradiant growth, whereas fermionic

modes remain stable [25, 26]. A more subtle point here is that the index in Eq. (5) is smaller

by 1 than would be anticipated from Eq. (4).

In this paper we formulate a practical method for computing Dirac bound states on the

Kerr spacetime. Our aim is to use highly-accurate numerical data to verify and test various

asymptotic results, such as those above; and to investigate the rich phenomenonology of the

intermediate regime Mµ ∼ O(1).

Rather remarkably, the massive Dirac equation on the Kerr spacetime admits a complete

separation of variables. This reduces our problem to the analysis of (coupled) ordinary

differential equations. Separability was first shown by Unruh [62] in 1973 for the massless

field, and by Chandasekhar [63, 64] in 1976 for the massive field. Whereas Unruh’s analysis

used the standard 4-spinor formalism, Chandrasekhar’s analysis employed the Newman-

Penrose 2-spinor formalism. In 1979, Carter & McLenaghan [65] showed that the Dirac

operator commutes with a ‘generalized total angular momentum operator’ constructed from

the Killing-Yano tensor. In 1984, Kamran & McLenaghan [66] described (see theorem 3) a

class of spacetimes for which the Dirac equation admits a separation of variables in the Weyl

representation. In 1993, McKellar et al. [67] conducted an explicit separation of variables

in the 4-spinor formalism, using the Pauli-Dirac representation. Finster and collaborators

[68–71], and others [72, 73] have also used the 4-spinor formalism, along with the Weyl

representation.

From one point of view, superradiance is a necessary consequence of the second law

of black hole thermodynamics: the horizon area A is a non-decreasing function of time.

How, then, is the absence of superradiance consistent with this law? A key assumption

underpinning the second law is that the weak energy condition holds, i.e., −Tµνtµtν ≥ 0 for

any timelike vector field, tµt
µ < 0, where Tµν is the stress-energy tensor. This condition is

violated by the (single-particle) Dirac field [62].

This paper is organised as follows. In Sec. II we review the formalism for describing a

neutral spin-half field on a Kerr black hole spacetime. In Sec. III we describe our methods

for calculating the bound state spectrum. In Sec. IV we explore the bound state spectrum on
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Schwarzschild and Kerr spacetimes, developing and testing asymptotic results in the regimes

Mµ≪ 1 and Mµ≫ 1. In Sec. V we discuss our findings.

Throughout, we set G = c = ~ = 1 and adopt a metric signature +2 (except for in

Appendix D). Coordinate indices are denoted with Greek letters α, β, γ . . . and tetrad basis

indices with Roman letters a, b, c, . . .. Symmetrization and antisymmetrization of indices is

denoted with round and square brackets, () and [], respectively. We use ∂µ, ∇µ and D̂µ to

denote partial, covariant and spinor derivatives, respectively.

II. FORMALISM

In this section we outline the formalism for describing spin-half fields on the Kerr black

hole spacetime (N.B. expert readers may wish to proceed immediately to Sec. III).

A. Kerr spacetime

1. Coordinate systems

The region outside the event horizon of a Kerr black hole may be described with the

Boyer-Lindquist coordinate system {t, r, θ, φ}, in which the line element ds2 = gαβdx
αdxβ

takes the form

ds2 = −
(

1− 2Mr

ρ2

)

dt2 − 4aMr sin2 θ

ρ2
dtdφ+

ρ2

∆
dr2

+ρ2dθ2 +

(

r2 + a2 +
2Mra2 sin2 θ

ρ2

)

sin2 θdφ2, (6)

where ρ2 = r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2. The Kerr spacetime has two horizons

at r± =M ±
√
M2 − a2, and two stationary limit surfaces, at rS± =M ±

√
M2 − a2 cos2 θ.

The angular velocity of the event horizon is ΩH = a/2Mr+.

A deficiency of the Boyer-Lindquist system is that it takes an infinite coordinate time

t for ingoing geodesics to reach the outer horizon at r = r+. To properly describe such

geodesics, we may employ the ‘ingoing Kerr’ coordinate system {t̃, r̃, θ̃, φ̃} with r̃ = r, θ̃ = θ

and

dt̃ = dt+
2Mr

∆
dr, dφ̃ = dφ+

a

∆
dr. (7)

Explicitly, t̃ = t+ α(r), φ̃ = φ+ β(r) where

α(r) =
2Mr+
r+ − r−

ln |r − r+| −
2Mr−
r+ − r−

ln |r − r−|, (8)

β(r) =
a

r+ − r−
ln

∣

∣

∣

∣

r − r+
r − r−

∣

∣

∣

∣

. (9)
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In this coordinate system the inverse metric takes a simple form,

g̃µν =
1

ρ2











− (ρ2 + 2Mr) 2Mr 0 0

2Mr ∆ 0 a

0 0 1 0

0 a 0 1
sin2 θ











(10)

and the ingoing principal null geodesics are simply given by dr = −dt̃. In either coordinate

system, the metric determinant is given by
√−g = ρ2 sin θ.

2. Canonical tetrad

Let us introduce a tetrad of vectors eαa = {eα0 , eα1 , eα2 , eα3} which we take to be an orthonor-

mal basis, i.e., gαβe
α
ae

β
b = ηαβ where ηab = diag(−1, 1, 1, 1). Roman and Greek letters are

used for tetrad and coordinate indices, respectively. Roman indices are raised and lowered

with ηab. It follows that e
a
α = ηabgαβe

β
b and gαβ = ηabe

a
αe

b
β.

We will employ the ‘canonical’ orthonormal (symmetric) tetrad for the Kerr spacetime

introduced by Carter [74, 75], viz.,

et0 =
r2 + a2

ρ
√
∆

, eφ0 =
a

ρ
√
∆
,

er1 =
√
∆/ρ, eθ2 = 1/ρ,

et3 =
a sin θ

ρ
, eφ3 =

1

ρ sin θ
, (11)

with inverse components given in (B1) such that ds2 = ηab(e
a
µdx

µ)(ebνdx
ν). It is straightfor-

ward to find the components of the canonical tetrad in the ingoing Kerr coordinate system,

using ẽµj = ∂x̃µ

∂xν e
ν
j .

3. Spacetime symmetries and conservation laws

The spacetime admits two independent Killing vectors, kµ = (∂t)
µ and hµ = (∂φ)

µ, with

the defining properties k(µ;ν) = 0 = h(µ;ν). Furthermore, the spacetime admits a Killing-Yano

tensor fµν , with the defining properties fµν = f[µν] and fµν;σ = f[µν;σ], namely

fµν = 2
(

a cos θ e0[µe
1
ν] + r e2[µe

3
ν]

)

. (12)

Now consider the stress-energy tensor Tµν associated with the field, which is symmetric

in its indices and divergence-free (∇µT
µν = 0). With the Killing vectors, we may form

two independent divergence-free vectors, Jµ
(E) = T µ

ν k
ν = T µ

t and Jµ
(J) = T µ

ν h
ν = T µ

φ ,

associated with energy and azimuthal angular momentum, respectively. A third divergence-

free vector Jµ
Ψ is given by the Dirac probability current (see Secs. II B 3 and IIB 8).

6



From each divergence-free vector (∇µJ
µ = 0) one may obtain a conservation law via

Gauss’ theorem,
∫

V
∇µJ

µdV =

∫

∂V
JµdΣµ, (13)

where V is a contiguous four-volume bounded by a three-volume (hypersurface) ∂V . Here,

the volume element is dV =
√−g dtdrdθdφ, and the 3-surface element dΣµ is defined in

terms of the metric induced on the boundary hypersurface in the standard way [76]. We

may construct a four-volume of infinitessimal extent ∆t confined between twin spacelike

hypersurfaces at t = t0 and t = t0 + ∆t and twin timelike hypersurfaces r = r1 and

r = r2 (where t0 and r2 > r1 ≥ r+ are constants). This construction leads to a quasi-local

conservation law in the form

∂

∂t

{∫ r2

r1

∮

(ρ2J t) dΩdr

}

= −
[∮

(ρ2Jr)dΩ

]r2

r1

. (14)

where dΩ = sin θdθdφ. Similarly, by considering hypersurfaces of constant t̃, we may obtain

the corresponding expression in the ingoing-Kerr coordinate system,

∂

∂t̃

{∫ r2

r1

∮

(ρ2J̃ t̃)dΩ̃dr

}

= −
[∮

(ρ2J̃r)dΩ̃

]r2

r1

. (15)

where J̃ t̃ = J t + 2Mr
∆
Jr and J̃r = Jr. Note that the t = const and t̃ = const hypersurfaces

are rather different in character, as the former approaches the bifurcation point, whereas the

latter penetrates the future horizon. Physically, we expect (and find) that the ingoing-Kerr

quantity J̃ t̃ is finite as r → r+, whereas the Boyer-Lindquist version J t is not.

B. Spin-half fields

1. The Dirac equation

The Dirac equation on a curved spacetime (in signature −+++) takes the form [3]
(

γνD̂ν − µ
)

Ψ = 0, (16)

where µ is the field mass, Ψ is a Dirac four-spinor, γν are Dirac four-matrices, and the spinor

covariant derivative D̂ν is

D̂ν = ∂ν − Γν . (17)

The spinor connection matrices Γν are defined, up to an additive multiple of the unit matrix,

by the relation

∂νγ
µ + Γµ

νλγ
λ − Γνγ

µ + γµΓν = 0. (18)

where Γµ
νλ is the affine connection. A suitable choice satisfying (18) makes use of the spin

connection ωα bc (described below),

Γα = −1

4
ωα bcγ̂

bγ̂c. (19)

7



Here, γα and γ̂a denote sets of 4× 4 matrices satisfying the anticommutation relations

{γα, γβ} = 2gαβI4, {γ̂a, γ̂b} = 2ηabI4, (20)

where {A,B} = AB+BA. Note that the former set γα are functions of spacetime position,

whereas the latter γ̂a have constant components. The two sets may be related with any

orthonormal tetrad,

γα = eαa γ̂
a. (21)

We will employ the canonical tetrad of Eq. (11). Matrix indices are raised/lowered in the

standard way: γ̂a = ηabγ̂
b and γα = gαβγ

β.

2. The spin connection

The spin-connection ωµab arises naturally when one considers how a generalized covariant

derivative ∇(gen.)
µ should act upon tensors with mixed coordinate and basis components. We

start with

∇(gen.)
µ Aa

α = ∂µA
a
α + ω a

µ bA
b
α − Γν

αµA
a
ν . (22)

Imposing metric compatibility (∇(gen.)
γ gµν = 0) leads to the usual definition for the affine

connection Γν
αµ. Imposing tetrad compatibility (∇(gen.)

µ eaα = 0) leads to

ω a
µ b = eaνe

λ
bΓ

ν
µλ − eλb∂µe

a
λ. (23)

To obtain the spin connection without first calculating the affine connection one may use

ωµab =
1

2
ecµ (λabc + λcab − λbca) , (24)

where λabc = eµa (∂νebµ − ∂µebν) e
ν
c (see Ref. [64] for details). The spin connection for the

canonical tetrad is listed in Appendix B.

3. Current and stress-energy

The Dirac current is given by

Jµ = ΨγµΨ, (25)

where Ψ ≡ Ψ†α is the Dirac conjugate, with Ψ† denoting the usual Hermitian conjugate.

The Hermitizing matrix α must satisfy the conditions

αγµ + γµ†α = 0, ∂µα + Γ†
µα + αΓµ = 0. (26)

We choose α = −γ̂0 [77].

The (symmetric) stress-energy Tµν is given by

Tµν =
i

2

[

Ψγ(µD̂ν)Ψ−
{

D̂(µΨ
}

γν)Ψ
]

, (27)

where the covariant derivative of the conjugate spinor is D̂µΨ = ∂µΨ + ΨΓµ. The Dirac

current and stress-energy are covariantly conserved, ∇µJ
µ = 0 = ∇µT

µν .

8



4. Matrix representation

We will use the Weyl/chiral representation, in which

γ̃0 =

(

O I

I O

)

, γ̃i =

(

O σi

−σi O

)

, i = 1, 2, 3, (28)

where I is the 2× 2 identity, O is the 2× 2 zero matrix, and σi are the Pauli matrices

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

, (29)

which satisfy 1
2
{σi, σj} = δijI + iǫijkσk.

In fact, we will choose our matrices γ̂i (Sec. II B 1) to be a cyclic permutation of the set

γ̃i multiplied by the unit imaginary, as follows: γ̂1 = iγ̃3, γ̂2 = iγ̃1, γ̂3 = iγ̃2 and γ̂0 = iγ̃0.

Note that making the permutation is equivalent to relabelling the tetrad legs; alternatively

one may take the view that we are applying a (constant) similarity transform γµ → SγµS−1,

Ψ → SΨ. Including the factor of i is necessary in order to satisfy anticommutation relations

(20) on a spacetime of positive signature.

We will write the Dirac four-spinor as Ψ =

(

ψ−

ψ+

)

where ψ+ and ψ− are (left- and right-

handed) two-spinors, which may be projected out from Ψ with the operators P± = 1
2
(I ± γ̂5)

where

γ̂5 = iγ̂0γ̂1γ̂2γ̂3 =

(

−I O

O I

)

. (30)

5. Separation of variables

Let us introduce the complex quantity ̺ = r+ ia cos θ, and its conjugate ̺∗ = r− ia cos θ,
such that ρ2 = ̺̺∗. A short calculation (using Eq. (19) and Appendix B) shows that the

spin-connection matrices Γµ take the form given in Eq. (B3). Next we obtain

−γµΓµ =
i

2

(

O s∗θσ1 + s∗rσ3

−(sθσ1 + srσ3) O

)

, (31)

where sr = er1
1

̺
√
∆

∂
∂r

(

̺
√
∆
)

and sθ = eθ2
1

̺ sin θ
∂
∂θ

(̺ sin θ). This result for the spin-connection

matrix suggests a natural ansatz for the wavefunction,

Ψ = ∆−1/4

(

̺−1/2 η−

̺∗−1/2η+

)

(32)

9



where η± are two-spinors. Multiplying the Dirac equation (16) by −i∆1/4ρ

(

̺∗1/2 O

O −̺1/2

)

yields a pair of two-spinor equations,

{

± 1√
∆

[

(r2 + a2)∂t + a∂φ
]

+ σ3
√
∆∂r + σ1

(

∂θ +
1
2
cot θ

)

+ σ2 (a sin θ∂t + csc θ∂φ)

}

η±

∓iµ (r ∓ ia cos θ) η∓ = 0.

(33)

Now, separating harmonic temporal and azimuthal dependence with

η±(t, r, θ, φ) = ei(mφ−ωt)η±(r, θ), (34)

where m is a half-integer, leads to a remarkable separation of the r and θ parts,

{

∓ i√
∆

[

−(r2 + a2)ω + am
]

+ σ3
√
∆∂r

}

η∓ ∓ iµrη±

+
{

σ1
(

∂θ +
1
2
cot θ

)

+ iσ2 (−aω sin θ +m csc θ)
}

η∓ + aµ cos θ η± = 0, (35)

(cf. Eq. (8) in Ref. [67]; see also Appendix C). Introducing the ansatz

η+ =

(

R1(r)S1(θ)

R2(r)S2(θ)

)

, η− = −
(

R2(r)S1(θ)

R1(r)S2(θ)

)

, (36)

and multiplying by σ3 leads to twin pairs of coupled first-order ordinary differential equa-

tions,

√
∆(∂r − iK/∆)R1 = (λ+ iµr)R2, (37)

√
∆(∂r + iK/∆)R2 = (λ− iµr)R1, (38)

and
(

∂θ +
1

2
cot θ −m csc θ + aω sin θ

)

S1 = (+λ+ aµ cos θ)S2, (39)

(

∂θ +
1

2
cot θ +m csc θ − aω sin θ

)

S2 = (−λ+ aµ cos θ)S1, (40)

where K = (r2 + a2)ω− am and λ is the separation constant. Eqs. (37)–(40) are equivalent

to the coupled ordinary differential equations originally obtained by Chandrasekhar [63, 64].

6. Angular solutions

In the non-rotating case (a = 0), the eigenvalues of the angular equations (39)–(40) are

integers λ ∈ Z\0 = {. . . ,−2,−1,+1, 2 . . .}, and the solutions are spin-weighted spherical
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harmonics (see Sec. 3 in Ref. [78]). The total angular momentum, j, a half-integer, is related

to the a = 0 eigenvalue in a simple way: λ = P(j + 1/2), where P = ±1. We may define

the orbital angular momentum, ℓ, an integer, via ℓ = j + 1
2
P .

In the rotating case the solutions of Eqs. (39)–(40) are known as mass-dependent

spheroidal harmonics (see Ref. [78] for a review). We let S1 = −SΛ and S2 = +SΛ,

where Λ = {j,m,P , aω, aµ} and we note the key symmetry relation

±SΛ(θ) = P(−1)j+m
∓SΛ(π − θ), (41)

and normalization condition
∫ π

0

sin θ
(

|+SΛ|2 + |−SΛ|2
)

dθ =
1

2π
. (42)

7. Radial solutions

Let R =

(

R1

R2

)

. In the near-horizon region r → r+, the ‘horizon-ingoing’ radial solution

has the asymptotic form

Rhor ∼
(

β
√
∆

1

)

exp (−iω̃r∗) (43)

where

ω̃ = ω −mΩH , (44)

β =
λ+ iµr+

r+ − r− − 4iMω̃r+
. (45)

Here r∗ is the tortoise coordinate defined by

dr∗
dr

=
(r2 + a2)

∆
. (46)

The ‘horizon-outgoing’ solution is obtained by the interchange R1 → R∗
2 and R2 → R∗

1.

In the far-field region, r → ∞, the propagating solutions take the form

R±
∞ ∼ r±γe±ipr

√

2p(ω ∓ p)

[(

−µ
ω ∓ p

)

+O(r−1)

]

, γ =
iM(2ω2 − µ2)

p
, (47)

where p =
√

ω2 − µ2. The bound solutions (ω < µ) may be obtained by replacing ip with

q = −
√

µ2 − ω2 in the above.

Multiplying (37) and (38) by R∗
1 and R∗

2, respectively, and taking the difference, leads to

the Wronskian relationship d
dr
(|R1|2 − |R2|2) = 0. Now let us consider a modal solution of

the form

AhRhor = A+
∞R+

∞ + A−
∞R−

∞, (48)
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where Ah and A±
∞ are complex constants. From the constancy of the Wronskian, it follows

immediately that

− |Ah|2 =
∣

∣A+
∞
∣

∣

2 −
∣

∣A−
∞
∣

∣

2
, (49)

that is, R = 1−T , where the reflection and transmission coefficients are R ≡ |A+
∞|2 / |A−

∞|2

and T ≡ |Ah|2 / |A−
∞|2. As T ≥ 0, it is clear that superradiance does not occur in the modal

reflection/transmission problem.

8. The Dirac current and absence of superradiance

We now insert (36) (see also (32) and (34)) into the definition of the Dirac current (25).

The radial component is given by

Jr =
1

ρ2
(

|R1|2 − |R2|2
) (

|S1|2 + |S2|2
)

. (50)

Let us refer back to the conservation law (14). The integral of the radial current evaluated

at the lower limit r1 = r+ has a natural interpretation as the flux passing into the horizon;

we have
dN

dt
=
(

|R1|2 − |R2|2
)∣

∣

r=r+
(51)

where N is the number density. We saw in the previous section that the right-hand side is

negative for horizon-ingoing solutions; hence dN/dt ≤ 0. This provides further confirmation

that superradiance is absent [25–27, 62].

Next, we obtain expressions for the components of the Dirac current in the canonical

basis,

J (0) ≡ e0µJ
µ =

1

ρ
√
∆

(

|R1|2 + |R2|2
) (

|S1|2 + |S2|2
)

, (52)

J (3) ≡ e3µJ
µ =

1

ρ
√
∆
4Im(R∗

1R2) Re(S
∗
1S2), (53)

The temporal component of the current, J t = et0J
(0) + et3J

(3), is

J t =
r2 + a2

ρ2∆

[

(

|R1|2 + |R2|2
) (

|S1|2 + |S2|2
)

+
4a

√
∆sin θ

r2 + a2
Im(R∗

1R2) Re(S
∗
1S2)

]

. (54)

Note that the factor of ∆ in the denominator implies that J t diverges in the limit r → r+.

This is due to the coordinate singularity in the Boyer-Lindquist system. We may instead

consider the temporal component in the ingoing-Kerr coordinate system, given by J̃ t̃ =

J t + 2Mr
∆
Jr evaluated at t = t̃− α(r), φ = φ̃− β(r) (cf. Eq. (8)–(9)), i.e.

J̃ t̃ =
1

ρ2

[(

|R̃2|2 +
(

r2 + 2Mr + a2
)

|∆−1/2R̃1|2
)

(

|S1|2 + |S2|2
)

+4a sin θ Im(∆−1/2R̃∗
1R̃2) Re(S

∗
1S2)

]

, (55)
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where

R̃k(r) = eiωα(r)e−imβ(r)Rk(r), k = 1, 2. (56)

From the asymptotic form of the ingoing solution Rhor, Eq. 43), it is clear that ∆
−1/2R1 ∼

O(1) and thus J̃ t̃ is finite on the (future) horizon r = r+, as expected.

9. Violation of weak energy principle

The weak energy condition states that −Tµνtµtν ≥ 0 for any timelike vector tµ. Let

us now introduce the quantity Ξ = −Tµνeµ0eν0, noting that eµ0 is indeed timelike. A short

calculation gives Ξ = Ξ0 + Ξ1, where

Ξ0 =
1

ρ2∆

[

(r2 + a2)ω − am
] (

|R1|2 + |R2|2
) (

|S1|2 + |S2|2
)

(57)

Ξ1 =
a

2ρ4
[

cos θ
(

|R1|2 + |R2|2
) (

|S1|2 − |S2|2
)

− sin θ
4r√
∆

Re(R∗
1R2) Re(S

∗
1S2)

]

. (58)

The first term Ξ0 arises from the partial derivatives in Eq. (27), and the second term Ξ1 arises

from the spin-connection matrices. The first term dominates over the second as ∆ → 0. It

is clear that Ξ0 is not positive-definite; it is negative in the near-horizon region if ω < mΩH .

Thus the weak-energy condition is violated for the Dirac equation on Kerr spacetime in

the superradiant regime, at least at the ‘one particle’ level (for second quantization, see

Ref. [79]).

III. METHODS

In this section we outline practical frequency-domain (Sec. III A) and time-domain

(Sec. III B) methods for investigating the bound state spectrum.

A. Frequency-domain method

We now formulate a practical method for computing the discrete spectrum of bound

states. In essence, we wish to solve the radial equations (37)–(38) subject to certain boundary

conditions. On the horizon, the solution should be finite in the Kerr-ingoing coordinate

system; towards infinity, the solution should decay exponentially. Thus, the integral of the

probability density (55) should be finite across the exterior region r ≥ r+.

A powerful method for computing the spectrum of quasi-normal modes was introduced in

Ref. [80], in the context of massless fields. With an ansatz adapted to the boundary condi-

tions, the differential equation for massless bosonic fields generates a three-term recurrence
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relation. The minimal solution of the recurrence relation is found by solving a continued-

fraction equation. This approach was adapted to compute the bound state spectrum in

Ref. [23]. We follow this approach below.

1. Angular solutions

Three-term recurrence relations for the angular equations (39)–(40) were previously ob-

tained in Refs. [78, 81, 82]. We follow the method of Ref. [78], in which the mass-dependent

spin-half spheroidal harmonics are decomposed in a basis of spin-half spherical harmonics,

leading to a three-term recurrence relation for the expansion coefficients {bk} (where k is a

half-integer):

αkbk+1 + βkbk = 0, k = |m|, (59)

αkbk+1 + βkbk + γkbk−1 = 0, k = |m|+ 1, |m|+ 2, . . . (60)

where

αk = (aµ+ ǫkaω)

√

(k + 1)2 −m2

2(k + 1)
, (61)

βk = ǫk(k + 1/2)

(

1− amω

k(k + 1)

)

+
aµm

2k(k + 1)
− λ, (62)

γk = (aµ− ǫkaω)

√
k2 −m2

2k
, (63)

and ǫk = (−1)j−kP with j = ℓ ∓ P/2. The boundary conditions at the poles are satisfied

by the minimal solution of the recurrence relation, which is found by solving a continued-

fraction equation for λ,

β|m| −
α|m|β|m|+1

β|m|+1−
α|m|+1γ|m|+2

β|m|+2−
. . . = 0, (64)

or one of its inversions.

2. Radial solutions

Let R2 =
√
∆R+ and R1 = R−, so that the radial equations (37)–(38) become

(

d

dr
− iK

∆

)

R− = (λ+ iµr)R+, (65)

(

d

dr
+
iK −M + r

∆

)

R+ =
λ− iµr

∆
R−. (66)

Near the horizon the ‘ingoing’ solution goes as,

lim
r→r+

R+ → (r − r+)
σ−1, lim

r→r+
R− → (r − r+)

σ, (67)
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and at infinity the decaying solution resembles

lim
r→∞

R+ → rν−1eqr, lim
r→∞

R− → rνeqr, (68)

where

σ =
1

2
− 2Miω̃r+
r+ − r−

, (69)

ν =M
µ2 − 2ω2

q
, (70)

q = −
√

µ2 − ω2. (71)

We may write the solution in terms of a series,
(

R−

(r − r+)R+

)

= (r − r+)
σ(r − r−)

−σ+νeqr
∞
∑

k=0

ξk

(

r − r+
r − r−

)k

. (72)

Inserting Eq. (72) into the radial equations leads to a three-term matrix-valued recurrence

relation,

α0ξ1 + β0ξ0 = 0, (73)

αkξk+1 + βkξk + γkξk−1 = 0, k > 0. (74)

Here, the matrices are of the form

αk =

(

αk1 αk2

0 αk4

)

, βk =

(

βk1 βk2
βk3 βk4

)

, γk =

(

γk1 0

γk3 γk4

)

, (75)

and the matrix coefficients are

αk1 = (k + σ + 1)(r+ − r−)− i(2Mωr+ − am), (76)

αk2 = −(λ+ iµr+)(r+ − r−), (77)

αk4 = (k + σ + 1
2
)(r+ − r−) + i(2Mωr+ − am), (78)

βk1 = (r+ − r−) (q(r+ − r−)− 2(k + σ) + ν) + 2i
(

2a2ω − am
)

, (79)

βk2 = (λ+ iµr−)(r+ − r−), (80)

βk3 = −(λ− iµr+)(r+ − r−), (81)

βk4 = (r+ − r−) (q(r+ − r−)− 2(k + σ) + ν + 1)− 2i
(

2a2ω − am
)

, (82)

γk1 = (k + σ − 1− ν)(r+ − r−)− i(2Mωr− − am), (83)

γk3 = (λ− iµr−)(r+ − r−), (84)

γk4 = (k + σ − 3
2
− ν)(r+ − r−) + i(2Mωr− − am). (85)
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Matrix-valued three-term recurrence relations can be solved using matrix-valued contin-

ued fractions, as described in Refs. [58, 83]. We seek the roots of Mξ0 = 0, where

M ≡ β0 −α0 [β1 −α1 (β2 +α2A2)γ2]
−1

γ1 , (86)

and

An = − (βn+1 +αn+1An+1)
−1

γn+1 , (87)

with −1 denoting the matrix inverse. Non-trivial solutions ξ0 exist if

det |M| = 0 . (88)

We used a numerical root finder to find pairs {λ, ω} that simultaneously satisfy Eq. (64)

and Eq. (88). As initial estimates for the root-finding algorithm, {λ0, ω0}, we made use of

the series expansions in Ref. [78] and the hydrogenic approximation, Eq. (3).

B. Time domain evolution

Several groups have investigated the excitation of bound states by generic initial data,

using time-domain codes. The majority of work has focussed on bosonic fields, in the scalar

[11, 24, 54, 84–87] and Proca cases [59]. The evolution of Dirac bound states was investigated

by Zhou et al. in Ref. [53].

We developed a 1+1D time-domain code to solve the coupled radial equations for the

Schwarzschild case, written in the form,

∂F

∂t
=
∂G

∂r∗
+
λf 1/2

r
G+ iµf 1/2F, (89)

∂G

∂t
=
∂F

∂r∗
− λf 1/2

r
F − iµf 1/2G, (90)

where F = R1 +R2 and G = i(R2 −R1) and λ = . . . ,−2,−1, 1, 2, . . .. We used the method

of lines with a fourth-order Runge-Kutta integrator, and fourth-order finite differencing on

spatial slices. To implement the absorbing boundary condition at the event horizon, we

used the ‘Perfectly Matched Layer’ method, which was previously applied in the black hole

context in Ref. [24]. This entailed adding extra terms −γ(r∗)F and −γ(r∗)G to the equations

above, where γ(r∗) is a non-negative smooth function which is zero for r∗ > −150M . At

the far-field boundary we imposed a reflecting boundary condition by setting F (rmax) = 0.

We moved this boundary to a large radius, rmax ∼ 4000M , to suppress its effect on the

excitation and evolution of low-lying bound states. To analyse the spectrum, we computed

the ‘spectral power’

P (ω) = |F̃ |2 + |G̃|2 (91)

from the square magnitudes of the (discrete) Fourier components F̃ (ω) and G̃(ω).

16



IV. RESULTS

A. Perturbation theory: Mµ ≪ 1

Many authors have shown that, in the limit Mµ ≪ 1, the bound state spectrum is

hydrogenic; see Eq. (3). In this regime, the spectrum is degenerate, as it depends only on

the principal quantum number n = ℓ + n̂ + 1 (where ℓ is the orbital angular momentum

[j = ℓ+S, where S ∈ {−1/2,+1/2}] and n̂ = 0, 1, . . . is the excitation number), rather than

on j, ℓ and n̂ individually.

How are degeneracies broken at higher orders in Mµ? The spectrum may be written as

a series in Mµ, as follows,

ωR/µ ≈ 1 + E (0)
n + E (1)

nℓj + E (2)
nℓj + . . . . (92)

The ‘hydrogenic’ term E (0)
n = − (Mµ)2

2n2 is familiar; the ‘fine-structure’ term E (1)
nℓj ∼ O((Mµ)4)

and ‘hyperfine-structure’ term E (0)
nℓj ∼ O

(

(Mµ)5(am
M
)
)

are less well-known [37, 41, 88]. Here

we review these terms, and test against numerical data.

1. Fine structure

In the case of the hydrogen atom, the fine-structure correction arises at O(α4) where α

is the fine-structure constant, and it is given by [89]

E (1,Hyd)
nl =

α4

n4

(

3

8
− n

2j + 1

)

. (93)

The second term, due to a spin-orbit coupling, breaks the degeneracy between states of

the same orbital angular momentum but opposite spin projection (i.e. the j = ℓ + 1/2 and

j = ℓ− 1/2 states, for ℓ ≥ 1).

The fine structure of the Schwarzschild bound state spectrum was calculated in Chap. 5

of Ref. [88]. The calculation is outlined in Appendix D, where a small but vital correction

is identified. The key result is

E (1)
jℓn =

(Mµ)4

n4

(

15

8
− 3n

2j + 1
− 3n

2ℓ+ 1

)

. (94)

The final term, not present in the hydrogen case (93), implies that the bound-state spectrum

depends on three quantum numbers individually: j, ℓ, n (rather than just j, n as in Eq. (93)).

Figure 1 confronts Eq. (94) with numerical data. Here, we plot the difference between

ωR/µ and the hydrogenic result 1 + E (0)
n , and we scale this difference by n4(Mµ)−4. The

plot shows excellent agreement between the prediction of Eq. (94) (indicated by horizontal

dotted lines) and the numerical data (thicker lines), for various modes. This agreement in
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FIG. 1. Fine structure of Dirac energy levels for Schwarzschild black hole. The solid lines show

numerical data for the difference Re(ω/µ)− (1− 1
2(Mµ)2/n2), where n = ℓ+ n̂+1 is the principal

quantum number, with the y-axis scaled by (Mµ)−4n4. The thick lines show the ground-state

modes (n̂ = 0) with λ = −1 (j = 1/2, ℓ = 0), λ = +1 (j = 1/2, ℓ = 1), λ = −2 (j = 3/2,

ℓ = 1), λ = +2 (j = 3/2, ℓ = 2), λ = −3 (j = 5/2, ℓ = 2). The horizontal dotted lines show the

fine-structure prediction of Eq. (94), with coefficients −21/8, −25/8, −13/8, −87/40 and −57/40,

respectively.

the Mµ → 0 regime increases our confidence in the validity of both the numerical method,

and the perturbation-theory analysis that leads to Eq. (94).

Many years ago, Ternov and Gaina [41] also calculated fine-structure splittings for bound

states, by applying standard perturbation theory techniques. Unfortunately, their fine-

structure result at O((Mµ)4) is not found to be in agreement with Eq. (94), nor with

our numerical data. We suggest that the calculation in Ref. [41] is invalid due to the

coordinate system singularity in Schwarzschild/Boyer-Lindquist coordinates, which causes

physical quantities to diverge as r → r+. We note that, by contrast, Eq. (94) was derived

with a horizon-penetrating coordinate system.

2. Hyperfine structure

In the hydrogen atom, the interaction between the magnetic dipole moments of the

nucleus and electron leads to a spin-spin splitting of the ℓ = 0 state, with the anti-aligned

spin configuration lying at a lower energy. This is an example of ‘hyperfine’ splitting, as it
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FIG. 2. Hyperfine structure of Dirac energy levels for a slowly-rotating Kerr black hole. The plot

shows numerical data for the difference in the energy of corotating and counter-rotating states (m =

+j andm = −j), after rescaling by 1
2(M/a)n5(Mµ)−5. The solid lines show the a = 0.01M dataset,

and the points show the a = 0.02M dataset; their agreement is evidence that the interaction is

linear-in-a at this order. The data supports the result of Ref. [37] that rotation-induced hyperfine

splitting scales with (am/M)(Mµ)5 at leading order (see text).

arises at subdominant order α4(me/mnuc.). The hyperfine transition between ℓ = 0 levels

generates a 21cm neutral hydrogen line, of importance in astrophysics.

In Ref. [41], it was calculated that the rotation of the black hole leads to a ‘hyperfine’

splitting at O
(

(Mµ)5(am
M
)
)

. It was asserted therein that only the modes ℓ ≥ 1 are split in

this way.

In Fig. 2 we attempt to extract the hyperfine correction from our numerical data, in

the slow rotation regime (a ≤ 0.02M). The plot shows the difference between the energies

of maximally co- and counter-rotating modes, after rescaling by 1
2
(M/a)n5(Mµ)−5. We

find that the co-rotating mode is more weakly bound than the counter-rotating mode, as

expected. The numerical data suggests that the scaling of Ternov et al. [41] is indeed correct.

However, we find that the ℓ = 0 mode is also split at this order, and the numerical coefficients

found in Eq. (38) of Ref. [37] are not consistent with our data.
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3. Decay rates

In Ref. [37], Ternov et al. used an asymptotic matching method to derive a key result for

the imaginary part of the frequency of Dirac bound states on the Kerr-Newman spacetime

in the regime Mµ/j ≪ 1, am/M ≪ 1 (see Eq. (29) in Ref. [37]). In the Kerr case,

ωI/µ ≈ −αjℓn (Mµ)4+2ℓ+2S , (95)

where S = ±1/2 and

αjℓn =

(

r+ − r−
r+ + r−

)1+2ℓ(
r+ − r−

(2l + 1)(r+ + r−)

)2S
(n+ ℓ)!

n4+2ℓ(2ℓ)!(2ℓ+ 1)!(n− ℓ− 1)!

×
j+1/2
∏

p=1

[

1 +
4Γ2

(p− 1/2)2

]

, (96)

with Γ = (2Mr+µ− am)/(r+ − r−).

Figure 3 shows numerical data for the imaginary part of bound states of the Schwarzschild

black hole, for n = 1 . . . 3 modes. The plot illustrates how the decay rate has as a power-law

scaling in the Mµ ≪ j regime. The leading-order results of Eq. (95) are shown as dotted

lines. These results are found to be in good agreement with the data in the small-Mµ

regime.

B. Time-domain evolution

Are bound states typically excited by generic initial data? For the scalar field case, a

number of studies [11, 24, 54, 84–86] have concluded that the answer is affirmative (see

Ref. [87] for a Green’s function analysis of the excitation factors in the initial-value formu-

lation). Though the conclusion is expected to be similar in the Dirac case, it has received

less attention [53], and we briefly investigate it here.

Figure 4 shows the power spectrum P (ω) [Eq. (91)] resulting from a typical time-domain

evolution, with parameters Mµ = 0.2, a = 0, λ = −1, and Gaussian initial data F (r) = 0,

G(r) = exp
(

−(r∗ − r
(0)
∗ )/(2σ2)

)

, with r
(0)
∗ = 90 and σ = 40. There is clear evidence here

that the first three bound states were excited by the initial data, at the expected frequencies

(ωR/µ ≈ 0.9741726, 0.9940106, and 0.9974677). Furthermore, the ‘spectral lines’ have the

expected Lorentzian profiles, P ∼ 1/[(ω − ωR)
2 + ω2

I ]. The widths are found to be in

proportion to the imaginary parts of frequencies (−ωI/µ ≈ 3.755× 10−3, 4.979× 10−4 and

1.407×10−5). Consequently, the spectral line for the ground state is found to be the widest,

as this mode decays most rapidly.
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FIG. 3. Power-law scaling of the decay rate of bound states on Schwarzschild spacetime. The

solid lines show numerical data for −Im(ω/µ) for the first two modes with λ = −1 (j = 1/2, ℓ = 0),

λ = +1 (j = 1/2, ℓ = 1) and λ = −2 (j = 3/2, ℓ = 1). The dotted lines show the asymptotic

results (Mµ)5, 3
128(Mµ)7 and 1

384(Mµ)9 (see Eq. (95)).

C. Mµ ≫ 1 regime

In the ‘semi-classical’ regime Mµ ≫ 1, in which the gravitational length scale is much

longer than the quantum-field length scale, we expect the key features of the spectrum

to relate closely to the properties of timelike geodesics. Indeed, this quantum-to-classical

correspondence emerges via a standard WKB analysis, as shown in Appendix A.

For circular geodesics on the Schwarzschild spacetime, the (dimensionless) energy ω̂ is

related to the angular momentum L̂ and orbital radius r̂0 by:

ω̂ =

√

√

√

√

(

1− 2

r̂0

)

(

1 +
L̂2

r̂20

)

. (97)

The orbital radius r̂0 is given in terms of L̂ in Eq. (A7). For L̂≫ 1, ω̂ ≈ 1− 1
2
L̂−2− 9

8
L̂−4+

. . .. In Appendix A, it is shown that the geodesic parameter L̂ should be associated with

(ℓ+ 1/2)/Mµ for a scalar field.

Plot (a) of Fig. 5 shows numerical data for the n̂ = 0 energy level of a selection of angular

modes in the range −4 ≥ λ ≥ −10. The energy level is shown as a function of Mµ/|λ|. We

may associate this parameter with 1/L̂ in the classical limit. Making this association, the

geodesic energy level of Eq. (97) is shown as a solid black line. The agreement between the
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FIG. 4. Power spectrum for a time-domain evolution of a massive Dirac field (Mµ = 0.2) on

Schwarzschild spacetime (a = 0). The j = 1/2, ℓ = 0 (λ = −1) mode was evolved with the

1+1D scheme outlined in Sec. IVB, starting with generic initial data described in Sec. IVB, up to

tmax = 4×104M . The plot compares numerical data for the power [Eq. (91), red symbols] with the

spectral lines for the first three bound states [black vertical lines] determined via the frequency-

domain method of Sec. IIIA). The expected Lorentzian half-widths are shown as horizontal arrows.

data and geodesic prediction is evident. A dotted vertical line indicates the innermost stable

circular orbit (r0 = 6M , L̂ = 1/
√
12), beyond which stable circular orbits do not exist. Our

numerical data suggests that, though bound-state solutions exist beyond this limit, they are

rapidly-decaying.

Plots (b) and (c) of Fig. 5 show the imaginary part of the frequency of these modes, as

a function of Mµ/|λ| ⇔ 1/L̂. Plot (b) shows that the decay rates are very similar at the

position of the innermost stable circular orbit, L̂ =
√
12 (the point at which the angular

momentum potential barrier separating the circular orbit from the horizon disappears). Plot

(c) shows that the decay rate is consistent with

Im(ω/µ) ∼ exp
(

−β(L̂)Mµ
)

(98)

where β(L̂) is some quantum-tunnelling factor, determined from an integral across the po-

tential barrier.
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FIG. 5. Bound state frequencies in semi-classical regime (Mµ ≫ 1, |λ| ≫ 1), for a Schwarzschild

black hole. The dotted line at Mµ/|λ| = (12)−1/2 corresponds to the innermost stable circular

orbit at r = 6M .

D. Kerr bound states: decay

Now we focus attention on the decay rate of modes on a rotating black hole spacetime.

Figure 6 shows the imaginary part of bound state frequency as a function of Mµ, for both

co-rotating (m > 0) and counter-rotating (m < 0) cases. For low couplings Mµ≪ 1, we see

that the counter-rotating case is rather similar to the Schwarzschild case: the decay rate is

governed by a power law, in accord with Eq. (95).
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FIG. 6. The decay rate of bound states on Kerr spacetime for co-rotating (m = +j) and counter-

rotating (m = −j) modes. The plots show −Im(ω/µ) for the j = 1/2, ℓ = 0 [left] j = 1/2, ℓ = 1

[right] and j = 3/2, ℓ = 1 [lower] states, as a function of Mµ, on logarithmic axes.

The co-rotating modes exhibit an interesting feature. In the regime ω < mΩH the decay

rate is suppressed; whereas outside this regime, the decay rate increases rapidly. The plots

suggest that, for rapidly-rotating black holes a & 0.99, the decay rate has a local minimum

precisely at ω = mΩH .

Figure 7 shows the decay rate as a function of ω/mΩH , where ΩH is the angular frequency

of the event horizon. The plot makes it evident that the local minimum coincides with

the ‘critical’ superradiant frequency ωc = mΩH . The data suggests that minimum value

decreases with increasing a, which hints at the possibility that there may be a non-decaying

‘critical’ mode in the extremal case a→M . This possibility remains to be investigated.

E. Kerr bound states: spectrum

Now we turn attention to results for the Kerr energy spectrum. In the limit Mµ→ 0 the

spectrum is well-understood, as outlined in Sec. IVA, but outside this regime the spectrum
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has not been examined in detail.

Figure 8 shows the spectrum of the lowest modes n = 1 and n = 2 (where n is the

principal quantum number) for a Kerr black hole with a = 0.9M , as a function of Mµ. Let

us make several observations. (1) At low Mµ, the j = 1/2 co-rotating (m = +1/2) state is

higher-lying, and decays more slowly, than the counter-rotating state (m = −1/2). (2) As

Mµ increases, the roles are reversed, with the co-rotating state lower-lying for Mµ & 0.2

and faster-decaying for Mµ & 0.33. (3) At higher couplings, the j = 1/2 states appear

to achieve large binding energies; but here the states are highly transient (with no classical

analogue) and may not be physically significant. (4) At lowMµ, the ℓ = 1 states are ordered

according to the fine and hyperfine structure equations: the j = ℓ − 1/2 states [solid] are

lower-lying and faster-decaying than the j = ℓ+1/2 states [dotted], and the counter-rotating

states (m < 0) are lower-lying than the co-rotating states (m > 0). Fig. 8(b) shows how

this hierarchy changes as Mµ increases, and the states become more transient. (5) The

maximally-corotating modes (e.g. m = j = 3/2, ℓ = 1) are slowly-decaying in the regime

Re(ω) < mΩH .

In Table I we present a sample of numerical data for bound state frequencies, together

with the corresponding angular separation constants.
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FIG. 8. Spectrum of n = 1 and n = 2 Dirac bound states for Kerr black hole at a = 0.9M .

Plot (a) shows the real part of the frequency, Re(ω)/µ, as a function of Mµ, for j = 1/2, ℓ = 0

(dashed), j = 1/2, ℓ = 1 (solid) and j = 3/2, ℓ = 1 (dotted) modes. Plot (b) shows the fine

structure, [Re(ω)/µ− 1]/(Mµ)2, for the n = 2 states. At low Mµ, the j = 1/2, ℓ = 1 states [solid]

are lower-lying than the j = 3/2, ℓ = 1 states [dotted]; and the counter-rotating states (m < 0)

are lower-lying than the co-rotating states (m > 0). The ordering changes as Mµ increases, as the

imaginary part of the frequency increases: see plot (c).

F. Kerr bound states: wavefunctions

The components of the Dirac current in the ‘ingoing Kerr’ coordinate system were con-

sidered in Sec. II B 8. In obtaining (54)–(55), we tacitly assumed that the frequency ω is

real. For bound states as defined in Sec. III, for which this is not the case, Eq. (55) should

be multiplied by an additional factor of exp(2Im(ω)t̃). After integrating over the two-surface
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Mode m Re(ω)/µ Im(ω)/µ Re(λ) Im(λ)

j = 1/2, ℓ = 0, −1/2 0.95120580 −3.1293497× 10−2 −1.2612238 +5.6180382× 10−3

+1/2 0.92200086 −2.3193867× 10−2 −0.7440728 −4.1963431× 10−3

j = 1/2, ℓ = 1, −1/2 0.98580062 −8.1786335× 10−4 +1.1074300 −1.6229636× 10−4

+1/2 0.98662631 −6.3064813× 10−5 +0.9348739 +9.8118563× 10−6

j = 3/2, ℓ = 1, −3/2 0.98744302 −3.2293333× 10−5 −2.2672880 +6.9736117× 10−6

−1/2 0.98767652 −4.1491804× 10−6 −2.1091337 +3.7495425× 10−7

+1/2 0.98785317 −7.7639988× 10−8 −1.9333717 −3.6997312× 10−9

+3/2 0.98798850 −4.2000702× 10−8 −1.7325948 −9.0746837× 10−9

TABLE I. Sample numerical data for Dirac bound states (n = 1, 2) for a Kerr black hole at

Mµ = 0.3, a = 0.9M . The columns show the real and imaginary parts of the frequency, ω/µ, and

the angular separation constant, λ.

of constant r, and applying the normalization condition (42), we have

∮

ρ2J̃ t̃dΩ = e2Im(ω)t̃
(

Υ(0) +Υ(1)

)

(99)

where

Υ(0) =

(

(r − r+)
r+

(r − r−)r−

)−2Im(ω)
(

|R2|2 +
(

r2 + 2Mr + a2
)

|∆−1/2R1|2
)

(100)

with Υ(1) associated with the second term in Eq. (55). These terms are finite at the outer

horizon.

In the limit Mµ→ 0, the radial solutions are hydrogenic in form [44] (see Appendix D).

The radial functions may be written in terms of Laguerre polynomials in the dimensionless

variable x = (Mµ)2(r/M)n−1. The radial function has n̂ nodes, where n̂ = n− ℓ− 1 is the

excitation number.

Figure 9 shows the radial profile of Υ(0) for the j = m = 1/2, ℓ = 0 mode at Mµ = 0.38,

for a variety of Kerr parameters a. Changing a modifies the shape of the profile somewhat.

In this case, the peaks in the profile move closer to the horizon, and the value on the horizon

also increases, as shown in the inset.

V. DISCUSSION AND CONCLUSIONS

In this article we have explored the spectrum of bound states of the massive Dirac equa-

tion on Kerr spacetime: ‘trapped’ modes which are ingoing at the horizon and fall off

exponentially towards spatial infinity. Let us now briefly review the key results.

In Sec. II we formulated the Dirac equation on Kerr spacetime, reviewing (i) the sep-

aration of variables, (ii) the absence of superradiance, and (iii) the violation of the weak
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Kerr black holes with Mµ = 0.38 and a/M = 0, 0.5, 0.9 and 0.99. The plot shows Υ(0), defined in

Eq. (100), which is related to the Dirac probability density in the ingoing Kerr coordinate system.

The inset shows that the density is finite at the outer event horizon, as expected.

energy principle. Eschewing the Newman-Penrose 2-spinor formalism used in pioneering

works [63, 64, 90], we favoured instead the 4-spinor formalism [3, 62, 67, 68, 77, 79], with

the Weyl representation; positive spacetime signature; and Carter’s canonical (‘symmetric’)

tetrad.

In Sec. III we presented a practical method for computing the bound state spectrum,

reducing the problem to that of finding the roots of certain (matrix-valued) three-term

recurrence relations. We also briefly described a time-domain method for the Schwarzschild

case, with scope for extension to the Kerr case.

In Sec. IVA we confronted small-Mµ asymptotic results, obtained in the 1980s by Ternov,

Gaina and coworkers [41], with new numerical data. We concluded that (i) the decay of

bound states is well described by Eq. (95); and (ii) the scaling of the fine-structure and

hyperfine-structure terms has been correctly deduced. However, the numerical coefficients

for the (hyper)fine-structure terms were found to be inconsistent with the data. We found

that, instead, our data is fully consistent with the fine-structure result presented in Eq. (94),

which was derived in Ref. [88] and Appendix D.

In Sec. IVB we used a time-domain code to demonstrate that bound states are typically

excited by generic initial data. In Sec. IVC we briefly considered the large-Mµ regime,

showing in Fig. 5 that our new results are consistent with ‘semi-classical’ expectations from

a WKB analysis (e.g. Appendix A). In Secs. IVD–IVF we examined the novel features of

bound states of rapidly-rotating black holes. We found that the decay rate of the maximally-

corotating mode is strongly suppressed in the regime ω < mΩH (Figs. 6–7).
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Let us now discuss some of the implications of our findings. For the scalar field, modes

precisely at the superradiant transition frequency (ωR = mΩH) are stationary (i.e. non-

decaying) [34, 91, 92]. Herdeiro and Radu have recently shown that this transition mode

is implicated in the Kerr family ‘branching off’ into a new family of ‘hairy’ solutions with

(complex massive) scalar-field hair [93–95]. In the Dirac case, the transition mode is not

stationary, due to the lack of superradiance. On the other hand, as decay may be strongly

suppressed (Fig. 7), it is plausible that rapidly-rotating black holes can support very long-

lived co-rotating Dirac hair.

Let us now highlight several avenues for future work which could lead to a more complete

understanding. Despite the progress described above, this work lacks: (i) correct coefficients

for the hyperfine structure at O((am/M)(Mµ)5); (ii) an asymptotic result for the rate

of decay for co-rotating modes for ω ≤ mΩH , a . M ; (iii) asymptotic WKB results at

subleading order (for Mµ≫ 1) to account for the effects of spin. Revisiting the asymptotic

analysis of the Dirac equation in second-order form [37–41] could pay dividends.

Another possibility would be to examine the bound-state wavefunction inside the black

hole horizon. It is well-known that the inner (Cauchy) horizon at r = r− has the effect of

repelling geodesics. Therefore, it seems unlikely that the bound states investigated here will

be ‘ingoing’ at r = r−, in general. Nevertheless, there may exist particular frequencies for

which the mode may be ingoing at both horizons. This remains to be investigated.

A further topic for investigation is the excitation of Dirac bound states by generic initial

data on Kerr spacetime. Two approaches suggest themselves. First, an extension of the

Green’s function analysis of Ref. [87] to the Dirac case. Second, an extension of the time-

domain approach of Sec. III B and Refs. [24, 53] to the a > 0 case.

In this work we have treated the Dirac field as a ‘classical’ field, which is of course

not the case. Unruh’s second-quantized analysis [79] (1974) showed that fermions, as well

as bosons, experience an instability to spontaneous particle creation (Unruh-Starobinski

radiation [79, 96]); that is, a quantum version of superradiance. In 1983, Gal’tsov et al. [38]

considered the filling of Dirac bound states in the Schwarzschild case, concluding that the

distribution is thermal (N ≈ [8(1 + exp(ω/κTH))]
−1) in the limit Mµ ≪ 1, where TH is

the Hawking temperature. The filling of states on the Schwarzschild spacetime was also

considered in Ref. [46]. Hartman et al. [47] have considered the Kerr case, arguing that

all bound states with energies ω < mΩH will be filled in Unruh’s vacuum, creating a

(stable) ‘Kerr-Fermi sea’ which extends outside the ergosphere. This intriguing possibility

undoubtedly deserves some further consideration.

ACKNOWLEDGMENTS

With thanks to Helvi Witek and Paolo Pani. The work of S.D. was supported in part by

the Lancaster-Manchester-Sheffield Consortium for Fundamental Physics under STFC grant

29



ST/L000520/1, and by EPSRC grant EP/M025802/1.

Appendix A: WKB analysis of Schwarzschild bound states

Consider a scalar field Φ on Schwarzschild spacetime, satisfying �Φ − µ2Φ = 0, which

may be decomposed into modes in the standard way,

Φ =
1

r
e−iωtu(r)Ylm(θ, φ). (A1)

The radial equation is
{

d2

dr2∗
+ ω2 − V0(r)

}

u = 0, V0(r) = f(r)

(

µ2 +
l(l + 1)

r2
+

2M

r3

)

, (A2)

where f(r) = 1−2M/r and r∗ = r+2M ln(r/2M−1). In the regimeMµ≫ 1 (i.e. rh ≫ λc),

this may be written in dimensionless form as
{

d2

dr̂2∗
+ (Mµ)2 Û(r̂)

}

u = 0, Û(r̂) = ω̂2 − V̂ (r̂) +O
(

(Mµ)−2
)

, (A3)

and

V̂ (r̂) = f(r)

(

1 +
L̂2

r̂2

)

(A4)

where r̂ = r/M , r̂∗ = r∗/M , ω̂ = ω/µ and L̂ = (ℓ + 1/2)/(Mµ). Note that (A3) resembles

a Schrödinger equation with a large parameter Mµ ⇔
√
2m/~, and thus we may apply

standard WKB methods to reach the Bohr-Sommerfeld condition for bound states:
∫

Û1/2dr̂∗ =
2π

Mµ
(n+ 1/2), n ∈ N. (A5)

At this point we note the close analogue between U(r̂) in (A3) and the right-hand side

of the geodesic ‘energy’ equation,

ṙ2 = Ugeo(r) ≡ E2 − f(r)

(

1 +
L2

r̂2

)

(A6)

where E = f ṫ and L = r2φ̇/M are constants of motion, and the overdot notation indicates

differentiation with respect to proper time. Circular orbits are defined by dUgeo/dr̂ = 0 with

stable orbits satisfying d2Ugeo/dr
2 < 0. The former condition leads to an equation for the

circular orbit radius in terms of the dimensionless angular momentum:

r̂0 =
1
2
L̂2

(

1 +

√

1− 12/L̂2

)

. (A7)

The latter condition implies that r̂0 ≥ 6 and L̂2 > 12 for stable orbits. After expanding

around the circular-orbit radius, and inserting into (A5), we obtain

ω̂2 = V0 +
√
2V ′′f(r0)

(n+ 1/2)

Mµ
+ . . . , (A8)
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where V0 = V (r̂0) and V
′′ = d2V

dr̂2

∣

∣

∣

r̂0
. Equivalently,

ω̂ = V
1/2
0 +

√

V ′′

2V0
f(r0)

(n+ 1/2)

Mµ
+ . . . (A9)

In the weak-field regime, where r̂0 ≈ L̂2 ≫ 1, V0 ≈ 1 − r̂−1
0 , V ′′ ≈ 2/r̂3 we reach Eq. (2)

(after reinserting dimensionful constants).

Appendix B: Carter tetrad and spin connection

The inverse components of Carter’s tetrad are

e0µdx
µ =

√
∆

ρ

(

dt− a sin2 θdφ
)

, e1µdx
µ =

ρ√
∆
dr,

e3µdx
µ =

sin θ

ρ

(

−adt+ (r2 + a2)dφ
)

, e2µdx
µ =ρdθ, (B1)

Noting the anti-symmetry relation ωµab = −ωµba, the non-trivial components of the spin

connection are

ωt 01 = −M(r2 − a2 cos2 θ)

ρ4
, ωt 23 =

2aMr cos θ

ρ4
,

ωr 03 =
ar sin θ

ρ2
√
∆
, ωr 12 = −a

2 sin θ cos θ

ρ2
√
∆

,

ωθ 03 = −a
√
∆cos θ

ρ2
, ωθ 12 = −r

√
∆

ρ2
,

ωφ 01 =
a sin2 θ

ρ4
B, ωφ 02 =

a
√
∆sin θ cos θ

ρ2
,

ωφ 13 = −r
√
∆sin θ

ρ2
, ωφ 23 = −cos θ

ρ4
A, (B2)

where A = ρ2∆+ 2Mr(r2 + a2) and B = a2r cos2 θ − a2M cos2 θ + r3 +Mr2.

The matrices Γµ, defined in Eq. (19), are given by

Γt =
M

2

(

̺−2 σ3 O

O −̺∗−2 σ3

)

,

Γr = −1

2

(

a sin θ√
∆

)

(

̺−1 σ2 O

O −̺∗−1 σ2

)

,

Γθ = −1

2

(√
∆
)

(

(i̺)−1 σ2 O

O −(i̺)∗−1 σ2

)

,

Γφ =
1

2

√
∆sin θ

(

(i̺)−1 σ1 O

O −(i̺)∗−1 σ1

)

+
1

2

(

̟σ3 O

O −̟∗ σ3

)

, (B3)

where ̟ = i cos θ − a̺−2(̺+M) sin2 θ.
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Appendix C: Connection with Finster et al.

After multiplying Eq. (35) by σ3, we may write once more in the four-matrix form

(R(r) +Q(θ))

(

η−

η+

)

= 0 (C1)

where

R(r) =











iµr 0
√
∆D+ 0

0 −iµr 0
√
∆D−√

∆D− 0 −iµr 0

0
√
∆D+ 0 iµr











, Q(r) =











aµ cos θ 0 0 L+

0 −aµ cos θ −L− 0

0 L+ aµ cos θ 0

−L− 0 0 −aµ cos θ











.

(C2)

with

D± = ∂r ±
i

∆

[

−ω(r2 + a2) + am
]

(C3)

L± = ∂θ +
1
2
cot θ ± (m csc θ − aω sin θ) . (C4)

A spinor transformation takes this to the form found in Refs. [68–71].

Appendix D: Fine-structure calculation for Schwarzschild bound states

Here we give an overview of a calculation in Chap. 5 in Ref. [88], which leads to the fine-

structure result, Eq. (94). The calculation starts with the Dirac equation in the ‘Newtonian’

gauge (Painlevé-Gullstrand coordinates) [44], which can be written in Hamiltonian form

i∂tψ = Ĥψ where

Ĥψ = −iγ0γj∂jψ + µγ0ψ + ĤIψ, ĤIψ = i

√

2M

r

(

∂

∂r
+

3

4r

)

ψ, (D1)

with gamma matrices from the Dirac-Pauli representation. This resembles a flat-space equa-

tion with a novel interaction term. Applying a Foldy-Wouthuysen transformation [97] leads

to

Ĥ = γ0µ+ Ĥ0 + Ĥ1 + . . . , (D2)

where

Ĥ0 =
1

2µ
γ0Ô2 + Ê , Ĥ1 = − 1

8µ3
γ0Ô4 − 1

8µ2

[

Ô,
[

Ô, Ê
]]

, (D3)

and the Pauli-even and odd operators are Ô = −iγ0γi∂i and Ê = ĤI . The Foldy-Wouthuysen

transformation renders the Dirac equation in block-diagonal form, with upper (lower) com-

ponents representing particles (anti-particles).
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The zeroth-order equation i∂tψ = µγ0ψ + Ĥ0ψ can be written in more familiar form by

introducing the phase-transformed wavefunction,

ψ = eiMµ
√

8r/M

(

Ψ

0

)

, (D4)

leading to

(i∂t − µ)Ψ = − 1

2µ
∇2Ψ− Mµ

r
Ψ. (D5)

Introducing a separation of variables,

Ψ ≡ e−iµ(1+E(0)
n )tΨnℓ, Ψnℓ = Rnℓ(r)Ylm(θ, φ)χ, (D6)

where χ is any constant two-spinor, leads to a time-independent 1D Schrodinger equation

with a 1/r ‘Newtonian’ potential,

E (0)
n Rnℓ = − 1

2µ

(

d2

dr2
+

2

r

d

dr
− ℓ(ℓ+ 1)

r2

)

Rnℓ −
Mµ

r
Rnℓ. (D7)

This equation has standard hydrogenic solutions for the bound state energy levels E (0)
n =

−(Mµ)2/2n2 and wavefunctions,

Rnl(r) = Anℓe
−x/2xℓL2ℓ+1

n−ℓ−1(x), (D8)

where x = (2/n)(Mµ)2(r/M), L2ℓ+1
n̂ is an associated Laguerre polynomial, Ylm is a spherical

harmonic, and Anℓ is a normalization constant.

To deduce the fine-structure correction to the energy, E (1)
nℓj, one calculates the expectation

values of terms in the first-order Hamiltonian Ĥ1, Eq. (D3), when closed with the zeroth

order wavefunctions, that is,

E (1)
nℓj =

〈

Ψ∗
nℓe

−iMµ
√

8r/M
∣

∣

∣µ−1Ĥ1

∣

∣

∣eiMµ
√

8r/MΨnℓ

〉

. (D9)

The details of this calculation may be found on p100–105 of Ref. [88]. The fine-structure

correction E (1)
nℓj is made up of two parts,
〈

− 1

8µ4
γ0Ô4

〉

= −(Mµ)4

8n4

(

−15 +
48n

2ℓ+ 1
+

9n

ℓ(ℓ+ 1)(2ℓ+ 1)

)

(D10)

and
〈

− 1

8µ3

[

Ô,
[

Ô, Ê
]]

〉

= −(Mµ)4

8n4

n(12λ+ 3)

ℓ(ℓ+ 1)(2ℓ+ 1)
. (D11)

Here we have corrected an error in Ref. [88] in the coefficient of the second term of Eq. (D10)

(this error may be traced back to the final entry of Table 5.1 of Ref. [88], where the ‘4’ should

be a ‘2’). Taking the sum of contributions leads to Eq. (94).
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