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Abstract

This paper analyses a variation of the secretary problem in which two selectors, with different

fields of interest, each want to appoint one of the n candidates with as much expertise as possible in

their field. Selectors simultaneously vote to accept or reject: Unanimous decisions are respected and

candidates with a split decision are hired with probability p. Each candidate arrives with expertises

x and y in the two fields, uniformly and independently distributed on [0,1] and observable to both

selectors. If a candidate with expertise pair (x, y) is hired by unanimous decision, the payoffs to

the selectors are simply x and y. However in order to model the level of conformity in the firm, we

deduct a positive ’consensus cost’ c from the utility of a selector who has rejected a candidate who

is nevertheless hired.

We show (Theorem 1) that each stage game has a unique equilibrium in which there are two

thresholds, z < v, and say selector I accepts candidate (x, y) if x > v or x > z and y > v. We

show that for p and c sufficiently large, decisions are unanimous and that as the number n of

candidates goes to infinity the equilibrium value of the game goes to the golden mean. We show

that as the consensus cost c increases from 0, this hurts the selectors (Theorem 4) but helps the

firm (Theorem 6), whose utility from hiring candidate (x, y) is a weighted average of x and y. Thus

a little conformity is good for the firm.

1 Introduction

This paper represents an attempt to game theoretically model the notion of ’conformity’ in a group

and more specifically consensus-seeking on a committee. When a committee vote is about to ratify
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a positive decision, for example a high level appointment or the launch of a new product line, it is

often considered desirable to do this by unanimous assent. (For negative decisions such as not to hire

someone, unanimity is not considered important.) In particular there is pressure on a voter, who is

not in favour of a positive decision about to be agreed, to conform to the majority view. Eriksson and

Coultas (2009) refer to this pressure as a ’conformist-bias’, and model it quite generally. Our approach

here is to attach a ’consensus cost’ −c to a committee member’s decision to defy a majority view which

is nevertheless carried. This approach is somewhat more general than that of Alpern and Gal (2009)

and Alpern et al (2010) where the nonconformist (who vetoes a decision which otherwise would be

carried) is punished by depriving him of one veto in subsequent votes. (Roughly speaking, c could

represent the value of the lost veto, though this might vary over time.) Experimental evidence in Roch

(2007) shows that when rater teams (our committee) are required to reach consensus, they appear to

show improved behavioural accuracy; in our model they are not required but merely encouraged to

reach consensus.

There is an important asymmetry in our use of the consensus cost, motivated by an essential

asymmetry in the drive towards a consensus. When committees pass a motion, or hire a candidate,

they often like to announce that the decision was ‘by unanimous consent’. Sometimes they tell a

successful candidate that she was the unanimous choice of the committee, to increase the chance

that she will feel wanted and accept the post. Often when a motion is adopted by majority but non

unanimous vote, a second vote is carried out to see if the dissenters will agree to make the decision

unanimous. However, when a candidate is not hired, she is never told that the decision was unanimous.

For motions which are not passed, there is little advantage of a unanimous decision. For this reason

we ascribe a cost to preventing a consensus to hire, but no cost to prevent a consensus not to hire.

The context in which we place the notion of conformity is a ’secretary problem’ with a committee of

selectors, rather than the usual single decision maker. This approach changes a stopping time problem
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to one of game theory. For simplicity we assume that the committee consists of two selectors, I and II,

who value different qualities in the n secretaries that they are about to sequentially interview. Selector I

cares about say typing skills, denoted by x; while II cares about IT skills, denoted by y. Each secretary

comes with an observable skill level pair (x, y), with each component drawn independently from the

uniform distribution on [0,1]. We assume that each selector cares only about one component but is

sufficiently knowledgeable so that he observes both. We take the usual dynamics of the secretary

problem, though we are concerned with utility rather than rank maximization: The n secretarial

candidates come to the committee one at a time. For each one, the selectors vote simultaneously to

accept or reject her. If both accept, she is hired; if both reject, the next one is interviewed. If there is

a split decision, the case is adjudicated at a higher level, modelled as a coin flip which hires her with

a known probability p. If the first n − 1 candidates are rejected, the n-th one is automatically hired,

regardless of quality. If a secretary with skill level pair (x, y) is eventually hired, the utility to say

selector I is given by x if he voted to accept, and by x − c if he voted to reject (and she was hired by

adjudication after the other selector accepted her). Similarly for selector II.

The idea that a decision maker may take into account factors other than his sectional interests

is not new and has already been used in analysing different types of decision making. Indeed there

is a considerable body of literature involving the concepts of conformity and compliance. The classic

experiments of Asch (1951) in the 1950s demonstrated that an individual’s own opinions are influenced

by those of a majority group. It is commonly accepted that social influence processes are subtle,

indirect and outside of awareness and that they can arise in a wide variety of practical situations. Li

et al (2001) stated that ”each member becomes more cautious in casting the crucial vote than when

he alone makes the decision based on his own information”. Callander (2008) analysed symmetric

majority rule voting equilibria when voters want to elect the better candidate and also want to vote for

the winner. Moldovanu and Shi (2013) have obtained many results showing how acceptance standards

vary with the amount of partisanship shown by the selectors.
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Our main concern is the role played by conformity, as represented by the consensus cost c, in the

equilibrium behaviour of the secretary game. For fixed n and p, the value of the game to the selectors

dips, then increases, then is constant, as c increases from 0. The last part is easy to understand, as

for large enough c a selector will never reject a candidate that the other player likes enough to accept,

because the possibility of having to pay the cost c is simply too high. The value of the game to the

firm who the secretary will work for, assumed to be a weighted average of her x and y values, also

depends on c. It increases as c increases from 0, so we say that ’a little conformity is good for the firm’.

The paper is organized as follows. Section 2 formally presents our model. Section 3 gives the main

results. Section 4 derives the unique equilibrium strategies for the stage game. Section 5 describes

the iteration process by which the value vn for n candidates can be derived from vn−1. Section 6

illustrates the iteration process by numerically determining vn as a function of c for p = 1/2. Section

7 analyses the limiting behaviour of the vn and the optimal strategies as the number n of candidates

goes to infinity. Section 8 shows that some properties of the value function established numerically

for p = 1/2 in Section 6 are true for general p. In particular Theorem 4 says that a little conformity

(small c, compared with c = 0) is bad for the selectors. Section 9 deals with the expected quality of

the eventually hired secretary (what matters to the firm) and shows in Theorem 5 that this increases

as c increases from 0, so for the firm a little conformity is a good thing.

2 The Model

In this section we describe our dynamic multistage game Γn in which two selectors eventually hire one

of n successive candidate ‘ secretaries’. At the end of the section we give a brief discussion on some

natural generalizations of the model.

In our model, each candidate successively arrives for an interview with abilities observable by both

selectors valued at x and y in each of two areas, say administration and IT. While both selectors can
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observe x and y, Selector I only cares about (values) administrative ability x while Selector II only

cares about y. What this means, roughly, is that if a candidate with ability pair (x, y) is hired, then the

utility to I is x and to II is y. We say roughly, because we additionally specify that if a candidate with

ability pair (x, y) is hired after being accepted by (say) I and rejected by II, then Selector II has utility

y − c, where the given cost c > 0 is a penalty paid by II for preventing a consensus. Interpretations of

c were discussed in the Introduction.

After each candidate (x, y) (we label them by their ability pair) is interviewed, each selector votes

(simultaneously) to either accept or reject. Unanimous decisions are respected: doubly accepted

candidates are hired; doubly rejected candidates are not hired (leading to consideration of the next

candidate). If there is a mixed decision, with one selector voting to accept and the other voting to

reject, the candidate is hired with a known probability p. If the first n − 1 candidates are not hired,

then the nth one must be hired. So the parameters of the game are n, p, the consensus cost c, and the

distribution of (x, y) . We assume that x and y are independent and uniformly distributed on [0,1]. The

assumption of a uniform distribution for the skill level x is not arbitrary but rather fits naturally into

the versions of the secretary problem where the rank of the candidate among the field is what matters.

If some arbitrary measure x of skill level has a certain distribution, we can convert the problem using

x̂ to represent the fraction of secretaries whose skills lie below level x. Thus the utility to selector I of

skill level x is given by x̂, which by definition has the uniform distribution.

We begin our analysis of this multistage game which we denote by Γn by considering a generic

stage game Mr = M, which describes the game that arises after a candidate arrives (with r − 1 to

follow) with abilities (x, y) , assuming that a selector knows that he can expect a payoff of v if this

candidate is not hired and the next stage game is played. Note that the selectors can expect the same

payoff because the distribution of the abilities of the candidates in each field is the same and also the

probability of acceptance if there is a split decision is the same for each selector. Thus the game is
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symmetric. The payoff matrix for this stage game of Γn is given by

M =

















a r

A (x, y) p(x, y − c) + p′(v, v)

R p(x − c, y) + p′(v, v) (v, v)

















(1)

where

p′ = 1 − p, (2)

and A and a represent accept strategies and R and r represent reject strategies for selectors I and

II respectively. The reason why we can replace the subsequent stage game (which would be Mr−1 if

M = Mr) by its value is that we will establish for these stage games that there is always a unique

Nash equilibrium which is not Pareto dominated.

The model can encompass discounting by introducing a δ in front of the v’s and asymmetries

between the selectors by taking different v’s, p’s and c’s for the individual selectors. The arguments

used in Section 4 to establish the existence of a Nash equilibrium (Theorem 1) for our game are

easily adaptable to these more general situations to show that they also have a Nash equilibrium.

Furthermore it is not clear that discounting is appropriate for our model. If a quick appointment is

deemed necessary, this can be allowed for in our model by making the probability of appointing a

disputed candidate comparatively high. Also, in terms of the quality of the appointee, we will show

that, in many cases, little benefit is gained by interviewing more than six candidates.

3 Main Results

In this section we provide details of our main results. The first result, Theorem 1, establishes that the

game Γn has a unique solution. It says that a selector has two threshold values in his area of expertise

which determines whether he will vote for a candidate who attains them. Attainment of the upper
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value earns unqualified approval whilst attainment of the lower but not the upper value earns approval

only if the other selector has unqualified approval for the candidate. The remaining results detail the

effects that are introduced by a consensus cost.

Theorem 1, which is proved in Section 4, establishes that the game Γn has a unique solution, which

can be obtained by backwards induction. A selector i (i = I, II) has an equilibrium strategy for the

stage game consisting of a pair of threshold values 0 ≤ z ≤ v with the following acceptance rule for an

arriving candidate with known abilities (x, y):

• If her value to you (e.g. x if you are Selector I) is at least v, then accept; if the value to you is

at most z, then reject.

• If her value to you is between z and v, accept only if the other selector’s value of her is above

the upper threshold value.

We label the upper threshold value by v because it is the expected utility E for a selector if the

procedure moves to the next stage. (If M = Mr, then in the recursion v = vr−1.) In general the

lower threshold value involves not only the expected utility E but also the consensus cost c and the

probability of the candidate being appointed if one selector votes for acceptance and the other for

rejection. Taking into account the latter is intuitively reasonable because, if it is extremely likely that

an arbitrated decision will favour the other selector, it will not be worth risking the consensus cost.

The other results are as follows:

• the selectors become less choosy over time in the sense that their threshold values z and v decrease

as more candidates are rejected (Theorem 2);

• the effect of consensus cost varies; in some cases it has no effect whatsoever on threshold values, in

others it has an influence in every interview except the one when there are no further candidates
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available and sometimes it influences early decisions but not those when the number of remaining

candidates starts getting small (Section 6 and Appendix 3);

• as the consensus cost level c increases from zero, the equilibrium value to a selector initially

decreases (Theorem 4);

• in some circumstances, an increase in consensus cost can increase the equilibrium value to a

selector (Section 6 and Theorem 3);

• if the value of the candidate to the firm is the weighted average of the values of the candidate in

the two fields, a small amount of consensus cost can result in an increase in the expected quality

of the appointee compared with the situation when there is no consensus cost (Theorem 5). Thus

a small dose of consensus cost can mean that the firm is likely to hire slightly better qualified

staff;

• (Theorem 2) when the number of candidates becomes very large (n goes to infinity), the (fixed)

consensus cost is comparatively large and the probability p not too small, the equilibrium value

(denoted by vn) to the selector approaches the golden mean φ given by

φ = (
√

5 − 1)/2 ≈ 0.61803. (3)

However, when p is small and there are a very large number of candidates, a selector can afford to wait

until an excellent candidate in his field is acceptable to the other selector (in this case the equilibrium

value tends to 1). Thus the selectors can expect to appoint a candidate who is excellent in both fields.

To indicate how our paper relates to previous work on game variations of the secretary problem, we

provide a brief survey of papers already in the literature. All of these papers assume that each selector

is acting without constraint in the sense that decisions taken by him which may hurt the interests of

the other selector do not result in any adverse consequences. Thus the concept of consensus cost is

new. The paper by Mazalov et al (2002) is the one that is nearest in structure to ours but they only
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investigate a very special case. In Baston and Garnaev (2005) the interview process has similarities to

ours but there are two positions to be filled (one in each area) and each selector is trying to appoint

a good candidate in their particular area. An interesting variation of the secretary problem is given

in Eriksson et al (2007) where employers search for a secretary at the same time as secretaries search

for an employer. Cownden and Steinsaltz (2014) analyse the situation in which multiple players seek

to employ secretaries from a common labour pool, and, for the two-person case, they compute how

much players can gain through cooperation and also how the optimal strategy changes under a payoff

structure that promotes spite.

Possibly the closest in spirit to our paper are the papers by Alpern and Gal (2009) and Alpern

et al (2010) as they involve two selectors in a “one at a time” process making a decision whether or

not to appoint an interviewee. However their selectors start out with a fixed number of vetoes and, if

at least one of the selectors wants to appoint, a candidate is appointed unless the other selector uses

one of his vetoes. Furthermore the selectors do not have equal powers as one selector, say selector

I, has to announce his decision before the other and this gives selector I the opportunity to play

strategically when selector II still has vetoes at his disposal. In particular selector I could vote to

appoint a candidate that would otherwise be unacceptable to him safe in the knowledge that the

candidate is also unacceptable to selector II who would have to use a veto to ensure the candidate

is rejected. Another major difference is that our methods are applicable to any (known) number of

candidates whereas they employ steady state methods which are only applicable to a large number of

candidates.

4 Analysis of the Stage Game

In this section we show that the stage game given by the matrix M in (1) has a unique subgame

perfect Nash equilibrium in which the selectors have, in general, an upper and lower threshold value
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for each stage. If the value (quality) of the candidate in the selector’s area of expertise is above the

upper threshold, the selector votes to accept the candidate. If the value of the candidate lies between

the upper and lower thresholds, the selector accepts the candidate if and only if the candidate’s value

to the other selector is above the upper threshold value. If the candidate’s value to a selector is below

the lower threshold, the selector rejects the candidate.

To find the Nash equilibria of the bimatrix M = M(v, v) given in (1) by

M =

















a r

A (x, y) p(x, y − c) + p′(v, v)

R p(x − c, y) + p′(v, v) (v, v)

















, (4)

we find the best replies to the individual pure strategies. If selector II chooses the pure strategy accept

(a), then it is strictly better for selector I to choose Accept (A) than Reject (R) if

x > p(x − c) + p′v giving x > v − pc

p′
. (5)

When it is positive, the right hand side of the second inequality of (5) plays an important role in our

analysis so it is convenient to introduce the notation

λ = pc/p′ and z = max{v − λ, 0}. (6)

Note that Accept (A) is strictly better than Reject (R) for selector I when selector II accepts (a)

if and only if x > z, which we write as

A >a R ⇐⇒ x > z

In a similar fashion we have

A >r R ⇐⇒ px + p′v > v ⇐⇒ x > v.

10



Rr

Rr

Ra

Rr

Rr

Aa

Ar

Aa

Aa

0 z v 1
0

z

v

1

x

y

A >a R

A >r R

a >R r

a >R r

Figure 1: Equilibria in x × y space for z > 0.

Analagous results for the preferences of selector II are

a >A r ⇐⇒ y > z and a >R r ⇐⇒ y > v.

These considerations divide the x×y candidate space [0, 1]2 into nine rectangles as shown in Figure

1 where, except for the middle one, there is a unique Nash equilibrium which is written in the centre

of the box. In the middle rectangle there is a second pure Nash equilibrium Aa in addition to the cited

Rr. However both selectors prefer Rr to Aa; to see this, note that, in the Rr rectangle, the payoffs for

Rr and Aa are (v, v) and (x, y) respectively and the inequalities v ≥ x and v ≥ y hold.

There is also a Nash equilibrium which is a mixture of Rr and Aa in the middle rectangle but this

is also dominated by Rr for the same reasons. Hence it is reasonable to expect the selectors to agree

on the Nash equilibrium Rr.

There are cases in which Figure 1 reduces to just four rectangles, namely when z = 0 or z = v. If

11



z = 0, a candidate is accepted if one of the selectors wants her so the effect for this stage is the same

as taking p = 1. If z = v a candidate is only accepted if both selectors want her so the effect for this

stage is the same as taking p = 0. For both these cases the consensus cost does not come into play so

a consensus cost will only be relevant for p ∈ (0, 1).

We summarize our equilibrium of the stage game M when the distribution is continuous in the

following theorem.

Theorem 1. There is a unique subgame perfect Nash equilibrium of Γn given by (4) which can be

characterized as follows:

Consider any period in which the equilibrium value of entering the following period without having

appointed a candidate is (v, v) where v lies in (0,1), then the equilibrium strategy for each selector is:

• If your valuation of the candidate exceeds the given value v, ACCEPT:

• If your valuation is less than z = min{v − λ, 0} given by (6), REJECT;

• If your valuation lies between z and v, ACCEPT if the other interviewer’s valuation exceeds v

and REJECT otherwise.

5 Value Iterations in the Game Γn

In this section we obtain a recursion formula for the value of Γn which, for fixed p, can be thought

of as splitting into two cases; one in which the consensus cost is comparatively small, the other when

the consensus cost is comparatively large. In the latter case a selector will vote for a candidate who

attains the upper threshold in at least one of the two required qualities; in effect this means that the

selectors act as though p = 1.

Because the qualities of the candidates are uniformly distributed in [0,1], each selector can expect

to have a payoff of 1/2 when there is just one candidate. Thus when there are just two candidates,

the selectors know that each can expect a payoff of 1/2 if the first candidate to be interviewed is not
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appointed; as a consequence they are effectively playing the stage game

M2 =

















a r

A (x, y) p(x, y − c) + p′(1/2, 1/2)

R p(x − c, y) + p′(1/2, 1/2) (1/2, 1/2)

















where p′ = 1 − p as defined in (2).

Once the Nash equilibrium of this game has been found it can be substituted into the stage game

corresponding to the case when there are three candidates and so on. This process gives rise to the

recursive equilibrium equation

(vn, vn) = E[eq. val. M(vn−1, vn−1)], v1 = 1/2 (7)

where M = M(vn−1, vn−1) is

M =

















a r

A (x, y) p(x, y − c) + p′(vn−1, vn−1)

R p(x − c, y) + p′(vn−1, vn−1) (vn−1, vn−1)

















.

In order to evaluate the equilibrium equation (7) we need to find a formula for the expected

equilibrium payoff E as a function of p, c and v. The payoffs to selector I at the indicated equilibria

are given in Figure 2.

We now calculate the expected payoffs of the selectors at equilibrium averaged over the x×y square

[0, 1] × [0, 1]. The contributions from the various rectangles making up the square are as follows:
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Rr
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px + p′v

xp(x − c) + p′v
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Aa

0 z v 1
0

z

v

1
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Figure 2: Equilibrium payoffs for selector I in x × y space.

∫ v
x=0

∫ v
y=0 v dx dy = v3 for the rectangle with label Rr

∫ 1
x=z

∫ 1
y=v x dx dy for the top rectangle of area labelled Aa

∫ 1
x=v

∫ v
y=z x dx dy for the bottom rectangle of area labelled Aa

∫ z
x=0

∫ 1
y=v(p(x − c) + p′v) dx dy for the rectangle with label Ra

∫ 1
x=v

∫ z
y=0(px + p′v) dx dy for the rectangle with label Ar
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Summing these contributions gives

E(v) = v3 + (1 − v)

∫ 1

z
xdx + (v − z)

∫ 1

v
x dx

+ (1 − v)z(2p′v − pc) + (1 − v)p

∫ z

0
x dx + zp

∫ 1

v
x dx

=
v3 + 1 − z2 − z − 3zv3

2
+ 2zv − 2zvp − zpc

+
3zv2p

2
+ zvpc +

pz2 − pz2v + zp

2

=
v3 + 1 + z(1 − v)(2p′v − pc − 1 + p)

2
(8)

Although (8) gives a single expression for E(v), the expression splits naturally into two parts, one

in which z = 0 and the other when z > 0. The former arises when the consensus cost is comparatively

large (c ≥ p′v/p) and, in this case, the iteration does not explicitly involve either p or c. Because z given

by (6) involves v, its value can change from one stage to the next and we will see later in Appendix B

that there are values of c for which z > 0 in a stage game Mr+1 but z = 0 in the stage game Mr.

From our analysis summarised in Theorem 1, the equilibrium strategy in Γn is completely deter-

mined by the sequence of values vi = vi(p, c) (i = 1, . . . , n− 1) as the only other strategic variable is z,

which, from (6), is determined by vi. Thus, by (8), we can iteratively compute all the vi starting with

the known value v1 = 1/2 using the iteration vi+1 = E(vi).

6 An Illustrative Case

In order to get some idea of how the iterative process operates we look at the special case p = 1/2.

Using (8) we can numerically calculate (approximate) all the vi’s as functions of c, including the limiting

value v∞, as shown in Figure 3 (where vi is written as v(i)).

The plot fixes c and uses the iteration vn(c) = E(1/2, c, vn−1(c)) with v1(c) = 1/2. In performing

the iteration it is necessary to consider two cases, one when z > 0 and the other when z = 0. When
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v(infinity)

h(c,c)

Figure 3: Computed iterations of E for p = 1/2.

p = 1/2 and z > 0, the iteration (8) becomes

E(v, c) ≡ h(c, v) ≡ (
1

2
v3 − 1

2
(c − v)(v − 1)

(1

2
c − v +

1

2

)

+
1

2
(9)

which is quadratic in c.

When p = 1/2 and z = 0, the iteration becomes

E(v) ≡ g(v) ≡ 1 + v3

2
, with g(1/2) = 9/16.

Because c is fixed over time, the dynamics take place on a vertical line, starting at v1 = 1/2 (below

the bottom of the figure).

For an example of the iteration process (9) when c = 0 the iteration formula reduces to vn = E(vn−1)

with E(v) = (3v2 − v + 2)/4 so the first four iterations are v1 = 1/2, v2 = 9/16 = 0.5625, v3 ≈

0.596680, v4 ≈ 0.617850, v5 ≈ 0.631841 as can be seen in Figure 3 and then v6 ≈ 0.641457. The

limiting value v∞ is obtained by setting E(v) = v in (8) which becomes 4v = 3v2 − v + 2 with relevant

solution v∞ = 2/3.
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We carry out the first few interations algebraically, beginning with v2(c) = h(c, 1/2) = 1
8c(c− 1

2)+ 9
16

for c ≤ 1/2, and constant at g(1/2) = 9/16 for c ≥ 1/2. For c ≤ 1/2, the next value function v3 = v3(c)

is given by the fifth degree polynomial

v3(c) = h(c, v2(c)) =
3

256
c5 − 1

32
c4 − 13

1024
c3 +

201

1024
c2 − 115

1024
c2 +

611

1024
.

For c between 1/2 and g(1/2) = 9/16, it is given by the quadratic

v3(c) = h(c, g(1/2)) = h(c, 9/16) =
7

64
c2 − 77

1024
c +

611

1024
.

For c ≥ 9/16, it is given by the constant v3(c) = g(g(1/2)) ≈ 0.58899. It follows that the left hand

derivative of v3(c) at 1/2 is 1/6=0.625 while the right hand derivative of v3(c) at 1/2 is 35/1024 ≈ 0.034.

Hence the function v3(c) is not convex on any interval containing c = 1/2. However v3(c) is convex

on each of the intervals (0,1/2) and (1/2,9/16) as it has negative second derivative on each. The top

curve v∞ is given by v∞ = (2 + c + c2)/(3 + 3c) for c ≤ (
√

5 − 1)/2 = φ ≈ 0.61803 and equal to φ for

c ≥ φ.

It is intuitively reasonable to think that the expected utility to a selector will go down as the

consensus cost increases and this is what happens as c moves away from 0 in Figure 3; Theorem 4,

proved in Section 8, says that the same happens for any p ∈ [1/2, 1). However, after a certain value

of c, the curve in Figure 3 actually starts to rise and continues to do so until it meets the horizontal

line. Thus, when p = 1/2, the selectors can actually benefit from an increase in consensus cost. An

explanation for this behaviour is that, as the consensus cost increases, although a selector accepts

poorer qualified candidates in his own field when the other selector wants to appoint the candidate,

the same is true with regard to the other selector. As the consensus cost increases there comes a time

for each selector when the benefit from the acquiescence of the other selector becomes the dominant

factor.

We now analyze the effect of a small increase in the consensus cost from c to c + δ on the payoff
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Figure 4: Payoff changes for selector I when c increases.

to the selectors. For the remainder of this section, we take n = 2 and consider the effect on selector I

(though the final effect is the same on both). The candidates in (x, y) space for which a change will

take place are in the three rectangles A, B, C in Figure 4. A change in c will not affect the upper

threshold, which remains at v = 1/2 as this is the mean value of the candidates, and whoever appears

in the next period will be hired. However the lower threshold goes from z to a lower value z′ when c

is increased by δ.

Candidates in regions A and B were originally above one selector’s upper threshold and below the

other’s lower threshold, so originally they would have gone to adjudication. If hired, one of the selectors

would have had to pay the consensus cost c for voting against them. With the smaller lower threshold,

they are now hired definitely by unanimous assent. So in particular, selector I benefits from the fact

that candidates in region B, with high x values, are now hired. The weaker candidates in region A

are now definitely hired, but no consensus costs are paid for them; these two changes cancel out in

utility terms, which can be seen from a calculation given below, or more simply by noting that if the
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utility change ∆A is not zero then selector I (for fixed c and fixed selector II strategy z) can improve

his payoff by marginally (and unilaterally) changing his z, contradicting the Nash Equilbrium nature

of z. The candidates in region C still go to adjudication with the same probability p of being hired as

before. However if they are hired, the consensus cost that selector I has to pay is now higher. So to

sum up, as c increases, selector I benefits from changes in region B but loses from C. We calculate these

changes in utility for selector I, using the thresholds z = 1/2 − (p/p′) c and z′ = 1/2 − (p/p′) (c + δ)

and neglecting terms of order δ2, as

∆ = ∆A + ∆B + ∆C

∆ = 0 +
(

pδ/p′
)

∫ 1

1/2
p′ (x − 1/2) dx + (−pzδ/2)

= 0 + pδ/8 − pzδ/2

= (pδ/8) (1 − 4z).

From this we see that the sign of ∆ is the same as the sign of 1 − 4z, which equals 0 for 1/4 = z ≡

1/2 − (p/p′) c, or c = ĉ = p′/ (4p) . Thus the value (in this case v2 (c)) decreases as c increases from

0 to ĉ and then increases until c = p′/ (2p), after which it is constant as the consensus cost is never

paid. Of course this result (albeit without an understanding of the reason) could be obtained by simple

calculus for a given case like n = 2.

For those readers who would like to see a direct demonstration that ∆A = 0 (without reference to

the equilibrium property of z) note that the original mean payoff of p (x − c) + p′ (1/2) is replaced by

a definite payoff of x, so

∆A =

∫ z

z′

∫ 1

1/2

(

p′ (x − 1/2) + pc
)

dy dx

=
1

2

∫ z

z′

(

p′ (x − 1/2) + pc
)

dx

=
1

2

(

p′
(

z2 −
(

z′
)2

)

/2 +
(

z − z′
) (

pc − p′/2
)

)

=
z − z′

2

(

p′(z + z′)/2 + pc − p′/2
)

=
z − z′

2

(

p′z − δp/p′ + pc − p′/2
)

= −(z − z′)δp

2p′
,
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using the fact that z = 1/2 − pc/p′ in the final line.

7 Game Properties when there are a large number of candidates

In Figure 3 the graphs of the values vr for a given number of applicants r have the same basic

shape whatever the value of r. Furthermore the figure indicates that the limit curve is a fairly good

approximation for the curve of vr when r ≥ 6. Although the figure pertains to the case p = 1/2, it is

not unreasonable to expect that similar considerations apply to other values of p. However, to establish

that this is so for general p, does not seem to be easy. In this section, we therefore concentrate on the

case when there are a large number of candidates. In particular, a formula for the limit value of our

game is obtained for all values of p and c which enables us to show that, for all p ∈ (0, 1], the limit

value has the same shape as the limit curve in Figure 3. It is also established that, when λ = pc/p′

is comparatively large, the selectors gain very little benefit in terms of the expected quality of the

appointee by having more than six candidates available for interview.

For fixed values of p and c, intuition tells us that the expected value of the appointed candidate to

each selector increases as the number of candidates increases with the result that the selectors can be

more choosy when there are more candidates. This intuition is justified in the next theorem; because

the proof is not totally straightforward, it is postponed to Appendix B.

Theorem 2. For any fixed parameter values p and c, the values vn (i.e. the equilibrium value of

stage game Γn) obtained by the equilibrium equation vn+1 = E(vn), v1 = 1/2, are increasing in n and

converge to a limit v∞ given by

v∞ =











φ if λ = pc/p′ ≥ φ,

V (p, c) if λ = pc/p′ ≤ φ.

where φ given by (3) is the golden mean (= (
√

5 − 1)/2 ≈ 0.61803) and V is given by

V (p, c) =
2H

−B +
√

B2 − 4(1 − 2p)H
(10)

where B = −2 + p − 3pc < 0 and H = 1 + λp′ + λ2p′ > 0. (11)
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Theorem 2 tells us that, if p is not too close to zero and the consensus cost is comparatively high

(c ≥ p′φ/p) we are in the first case so that an increase in the consensus cost has no effect on the

quality of the appointee when there are a large number of candidates. In fact we now show that if

λ = pc/p′ > φ, the value of the game with six interviewees differs from the value when there are an

unlimited number of interviewees by about two per cent. If λ > φ, z = max{v − λ, 0} = 0 in (8) so,

remembering that the golden mean φ satisfies φ2 + φ − 1 = 0, we have

φ − E(v) = φ − v3 + 1

2
= φ − v − (1 − v)(1 − v − v2)

2

= φ − v − (1 − v)(φ2 + φ − v − v2)

2

= (φ − v)
(

1 − (1 − v)(φ + v + 1)

2

)

.

Now 1/2 ≤ v < φ so 1 − v > 1 − φ and φ + v + 1 > 2v + 1 = 2. Hence φ − E(vr) < φ(φ − vr−1) <

φ2(φ − vr−2) < · · · < φr−1(φ − 1/2). Thus

E(v6)

φ
= 1 − φ − E(v6)

φ
≥ 1 − φ5(φ − 1/2)

φ
= 0.982

so E(v6) is within 2% of φ.

Each curve in Figure 3 starts from c = 0 by steadily going down, then bottoming out and then

steadily rising until it meets the line where the value is constant. The next theorem says that this is

the case for the limit curve when p ∈ (0, 1] and not just when p = 1/2. As the proof is rather technical,

it is postponed to Appendix C.

Theorem 3. Let p ∈ (0, 1] be fixed, then the limiting value v∞ = V (p, c) given by (10) is strictly

convex in c for c ∈ [0, p′φ/p]. For fixed p the function V has a negative derivative at c = 0 and a

positive left-hand derivative at c = p′φ/p.
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8 Further Game Properties

In this section we show that some properties of the value functions vn shown for p = 1/2 in Figure 3

remain true for all p ∈ (0, 1) while another property remains true only for p ≥ 1/2.

One observation from Figure 3 is that the functions vn (c) become constant for sufficiently large c,

and this remains true for general p.

Proposition 1. For any p ∈ (0, 1) and c > p′/p, the value function vn (c) is constant and is the same

as the value of the game when p = 1.

Proof. First consider the game when p = 1, where approval of a single selector is sufficient for a

candidate to be hired. In this case it makes no sense to reject a candidate that the other selector

wants to hire, so the social cost will never be paid. It follows that the cost c will not enter the value

function vn, which will just depend on n. Now let p ∈ (0, 1) be arbitrary but suppose that c ≥ p′/p.

It follows that z = max {v − pc/p′, 0} = 0 because the value cannot exceed one. Thus by (8), vn is

obtained using the iteration E (v) =
(

v3 + 1
)

/2 starting with v1 = 1/2, and hence the game value is

independent of c and equal to the value when p = 1.

In Figure 3 the right-hand slope of vn (c) at c = 0 gets steeper as n increases, which means that

when p = 1/2 a small consensus cost has relatively more influence on the selector’s expected value

when there are more candidates. This is extended to the case p ≥ 1/2 in Theorem 4, which is proved

in Appendix D.

Theorem 4. If n ≥ 2, v′n(0) is negative for fixed p ∈ (0, 1) and it is a strictly decreasing function of

n satisfying v′n(0) → v∞ − 1 for all p ∈ [1/2, 1),

However this result is not true for all p < 1/2 because for p sufficiently near 0 we have the opposite

inequality
∣

∣v′n+1 (0)
∣

∣ < |v′n (0)| which is inequality (31) (see Appendix D).

9 The Quality of the Candidate for the Firm

In the analysis up to now we have looked at our game from the standpoint of the selectors. However

the selectors’ interests do not necessarily completely coincide with those of the firm. In this section we
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show that, under some natural assumptions concerning the interests of the firm, it can actually benefit

from a small but non-zero cohesion cost in the sense that the appointee will have the best expected

quality when there is a relatively small non-zero consensus cost.

In order to take the standpoint of the firm we must make an assumption about the value to the firm

of appointing a candidate of type (x, y). In contrast to the selectors the firm may be indifferent to any

consensus cost that might be incurred. Secondly it may not be neutral between the areas of expertise;

it was mentioned in the Introduction that a preference for one of the values might be reflected by

making the probabilities of a candidate being appointed on a split vote of the selectors depend on

which selector voted for acceptance.

In our analysis the only characteristic of the distribution of the firm’s utility that will be examined

is the expected value. If the value to the firm of an appointee of type (x, y) is a linear function of x

and y, the expected value to the firm is the same whatever form the linear function takes and we can

assume that it is of the form (x+y)/2. We make this assumption in this section. For c = 0, and c large

enough, the expected values of the firm and the selectors coincide but the question arises as to what

happens for the intermediate values of c. For these values of c, the expected value to the firm, which we

denote by qn will, in general, be higher than vn, because qn does not involve the consensus cost when

a candidate is appointed on a split decision. In contrast to the individual selector, our analysis shows

that the firm actually benefits from a small consensus cost in the sense that the firm can expect to

appoint a slightly better quality candidate as c increases from zero. However the quality soon reaches a

maximum and then declines until it reaches a constant value which coincides with that of the selectors.

The principles used in the analysis of vn in Section 5 can be applied here to obtain Figure 5 (which

corresponds to Figure 2). The differences between the two figures are that, in Figure 5, the values in

the boxes no longer involve c explicitly and have v’s replaced by q’s. Thus, in any period r, the value

of qr depends on the strategic variables vr−1 and zr−1 for that period and also on the expected value
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Figure 5: Expected payoffs for the firm in x × y space.

qr−1 of the eventually hired candidate if no one is hired in period r. Although the consensus cost no

longer occurs explicitly, it occurs implicitly via vr−1 and qr−1. We now calculate the formula for the F

which gives qr = F (qr−1, vr−1).

F (q, v) = v2q + (1 − v)

∫ 1

z
x dx + (v − z)

∫ 1

v
x dx + (1 − v)zq

+
1 − v

2

∫ z

0
x dx +

z

2

∫ 1

v
x dx

= v2q + (1 − v)(
1

2
− 1

2
z2) + (v − z)(

1

2
− 1

2
v2)

+ (1 − v)zq +
1

4
(1 − v)z2 +

1

4
z(1 − v2)

=
1 + 2qv2 − v3

2
+

z(1 − v)(4q − (1 + v + z))

4

(12)

Thus the expected quality of the eventually hired candidate when there is equilibrium play in Γn,

called qn, is given by qn = F (vn−1, qn−1), q1 = v1 = 1/2. To obtain an idea of the sort of properties
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Figure 6: Computed iterations of F when p = 1/2.
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Figure 7: Optimal c for committee size n = 2, . . . , n when p = 1/2.

that qn has, we now consider the game p = 1/2. Figure 6 shows the values of qn as a function of c. We see

that for c in an interval (which depends on n) with zero as left end point, the function qn is increasing.

This interval shrinks as n gets larger, with its length appearing to go to zero as n goes to infinity. In

particular, this suggests that increasing the consensus cost c from zero increases the expected quality

of the candidate that is eventually hired - a good thing for the firm. However Figure 6 indicates that

the benefit from a small value of c declines as the number of candidates increases. Figure 7 plots the

values of c giving the optimal values of qn for n = 2, . . . , 8; it reinforces the impression given by Fig 6

that the impact of a small cohesion cost for the firm is likely to be more significant when there are a

small number of candidates. Whereas Figure 3 indicated that v′n(0) tends to get steadily steeper as n
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increases, Figure 6 suggests that the behaviour of q′n(0) could be more complex as the slopes at c = 0

of q3, q4, q5 and q6 seem to be quite close to each other and steeper than that of q2.

However, for large values of n, the slope of qn at c = 0, appears to flatten out. Thus, in contrast

to Figure 3, q∞ does not provide a very good approximation for the cases when there are five or six

candidates. However the following theorem which is proved in Appendix E tells us that the slopes of

the curves for the qn at c = 0 behave in an orderly way when p = 1/2.

Theorem 5. Let p = 1/2. For all positive integers n ≥ 2, q′n(c) is positive at c = 0. Furthermore, as

n increases, q′n(0) initially increases and then decreases tending to zero as n tends to ∞.

10 Conclusions.

In this paper we have developed a model for a selection procedure involving two selectors who interview

candidates on a ‘ one at a time’ basis. The selectors have different areas of expertise and each is only

interested in the candidate’s ability in their particular area. The range of abilities of the candidates

in each area is assumed to be independent and uniformly distributed on [0,1] but any continuous

distribution can be covered by this assumption by taking the candidate’s quality x to a selector to be

the fraction of inferior candidates in the appropriate population. If both selectors agree, their decision

is respected. If not, there is a procedure which results in the candidate being appointed with a known

probability p. A novel feature of our model is that, when a candidate is appointed after a split decision,

the selector who favoured rejection pays a cost c which we call a consensus cost; interpretations of c

are given in the Introduction.

We have seen that, when there is a consensus cost and the other selector’s assessment of a candidate

is sufficiently high, a selector can vote to accept that candidate even though he would have voted to

reject the candidate if there were no consensus cost; thus consensus cost has a similar effect to non-

informational conformity. A consensus cost can adversely affect the expected quality of the appointed

candidate for a selector in two ways; one by inflicting a cost when the candidate is appointed on a
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split decision and secondly by a selector accepting a candidate he would otherwise reject. However a

selector can benefit from the other selector accepting a candidate who would be rejected without a

consensus cost so it is not obvious whether the benefits of consensus cost outweigh the disadvantages

to a selector. For fixed p ∈ (0, 1), we have shown that there are cases where, although the expected

quality for a selector initially declines as the consensus cost increases from zero, there comes a point

where it starts to rise and continues to do so until it reaches a point after which it remains constant;

numerical data suggests that this is in fact true for all cases but we have not been able to prove it.

This constant is less than the expected value when there is no consensus cost.

On the other hand, if we take the firm’s measure of quality as the weighted average of the selectors’

assessments, the firm can actually benefit from a small amount of consensus cost. The expected

quality of the appointed candidate for the firm initially increases as the consensus cost increases but

then declines until it reaches a point after which it remains a constant which is the same as that of

the selectors. An interesting question from the firm’s standpoint is what value should the probability

of accepting the candidate take when there is a split vote by the selectors. If the priority is to have

a person in post as quickly as possible, it is clear that they should accept the first candidate that is

acceptable to at least one of the selectors. However, when there are a large number of candidates, they

would do better to insist on unanimity if the primary interest is appointing as well qualified person as

possible; even in this case there is often little benefit from having more than six candidates.

There are many interesting lines of further research which break the symmetry between the selectors.

Thus giving the selectors different values of p could represent the firm favouring one area of expertise

over the other whilst giving them different values of c could represent that one selector is less dominant

(more conformist) than the other.
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APPENDIX

A Properties of E(v).

In this section we analyse the properties of E(v) given by (8). Because (8) takes a simple form when

z = 0 it is useful to distinguish the cases z = 0 and z > 0 so we write

E0(v) =
v3 + 1

2
when z = 0 (13)

and

E+(v) =
v3 + 1 + z(1 − v)(2p′v − pc − 1 + p)

2
when z > 0. (14)

We now obtain lemmas that assure us that E0(v) > v and E+(v) > v for the range of values of v

in which we are interested.

Lemma 1. If z = 0 and 1/2 ≤ v ≤ φ where φ ≈ 0.61803 is the golden mean given by (3), then

v ≤ E(v) = E0(v) ≤ φ.

Proof. First note that φ satisfies φ2 + φ − 1 = 0. We have

E0(v) − v =
v3 − 2v + 1

2
=

(1 − v)(1 − v − v2)

2
≥ (1 − φ)(1 − φ − φ2)

2
= 0

so E0(v) ≥ v. Further

E0(v) ≤ φ2φ + 1

2
=

φ(1 − φ) + 1

2
=

(φ − φ2 + 1)

2
=

φ − (1 − φ) + 1

2
= φ.

Now consider the case z = v − pc/p′ = v − λ > 0. Substituting for z into (14) and simplifying we

get

E(v) = E+(v) = v +
1 − v

2
Q(p,c)(v) (15)
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where Q is the “quadratic” in v with constant coefficients B and H given by

Q = Q(p,c)(v) = (1 − 2p)v2 + Bv + H (16)

B = −2 + p − 3pc < 0 and H = 1 + λp′ + λ2p′ > 0. (17)

The following lemma gathers together the properties of Q that we need.

Lemma 2. If λ ≤ 1, Q has a unique root, V = V (p, c), in (0,1) given by

V =
2H

−B +
√

B2 − 4(1 − 2p)H
(18)

and satisfies Q(v) > 0 for v ∈ [0, V ) and Q(v) < 0 for v ∈ (V, 1].

When p 6= 1/2 Q has a second root, U = U(p, c) /∈ [0, 1], which satisfies

(1 − 2p)(V + U) = −B (19)

(1 − 2p)(1 − v)(V − U) ≤ (1 − 2p)(1 − v)(v − U) < 0 for v ∈ [1/2, V ) (20)

and

(1 − 2p)(V − U) = −
√

B2 − 4(1 − 2p)H. (21)

Proof. Let λ ≤ 1, then Q(0) > 0 and Q(1) = p − 2λp′ + λ2p′ = −p′ + p′(1 − λ)2 < 0 so Q has a root,

V (p, c), in (0,1); routine calculations show that V satisfies (18).

When p 6= 1/2 Q is a quadratic so that it has a second root, U(p, c), and (19) represents the

standard sum of the roots formula. If p < 1/2, Q is convex so has a root greater than 1 because

Q(1) < 0; if p > 1/2, Q is concave so has a root less than 0 because Q(0) > 0. Thus U /∈ [0, 1] and

(1 − 2p)(V − U) ≤ (1 − 2p)(v − U) < 0 for v ∈ [1/2, V ].

When p 6= 1/2, an alternative expression for V in (18) is

V =
2H(−B −

√

B2 − 4(1 − 2p)H)

4(1 − 2p)H
=

−B −
√

B2 − 4(1 − 2p)H

2(1 − 2p)
. (22)

Now (19) gives U = −V − B/(1 − 2p) so

(1 − 2p)(V − U) = 2(1 − 2p)V + B = −
√

B2 − 4(1 − 2p)H.
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The next lemma gives a condition which ensures that the value of the game increases from stage n

to stage n + 1 when the iteration uses E+.

Lemma 3. Let V be given by (18). If z > 0, λ < V and max{1/2, λ} ≤ v ≤ V then E(v) = E+(v)

and v ≤ E+(v) ≤ V.

Proof. First assume p = 1/2. Because Q(0) > 0 and Q has just one root in [0,1], Q > 0 in [0, V ) so

E+(v) ≥ v follows from (15).

Now assume p 6= 1/2. Using (15), (16), (19) and Q(V ) = 0,

V − E+(v) = V − v − (1 − v)(Q(v) − Q(V ))

2

= (V − v)(1 +
(1 − v)((1 − 2p)(V + v) + B)

2
)

= (V − v)(1 +
(1 − v)(1 − 2p)(v − U)

2
)

= (V − v)(1 + g/2) (23)

where g = (1 − v)((1 − 2p)(v − U).

By (20) g < 0 so E+(v) ≤ V if |g| < 2. To prove |g| < 2, using (17) and simplifying, we have

B2 − 4(1 − 2p)H =
p2c2(5 − p)

1 − p
+ 2pc(4 + p) + p(4 + p) (24)

≤ (1 − p)(5 − p) + 2(1 − p)(4 + p) + p(4 + p)

= 13 − 8p + 5p2 < 13. (25)

By (20) and (21),

|g| < |(1 − 2p)(v − U)/2| ≤ |(1 − 2p)(V − U)/2| =
√

B2 − 4(1 − 2p)H /2 (26)

From (26) and (25), |g| <
√

13/2 < 2. Hence E+(v) < V by (23)

We require the following result in the proof of Theorem 2.

Lemma 4. Suppose 1/2 ≤ v < λ < φ and E0(v) ≥ λ, then E0(v) < V.

Proof. Using (16) and (17) with λ = pc/p′, Q(λ) = −λ2 − λ + 1. The golden mean φ is a root of the

quadratic −x2 −x+1 which has a (positive) maximum at −1/2. Thus −x2 −x+1 is positive in [0, φ).
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In particular Q(λ) > 0 because 0 < λ < φ. But we know, by Lemma 2, that Q(v) > 0 for v ∈ [0, V )

and Q(v) < 0 for v ∈ (V, 1] so λ < V.

Now 1/2 ≤ v < λ < φ so, by Lemma 1 and the fact that E0(v) is increasing in [0,1], E0(v) <

E0(λ) < φ. But E0(λ) = E+(λ) so that, by Lemma 3, λ < E+(λ) < V so E0(v) < V.

B Proof of Theorem 2

The proof of Theorem 2 divides into three cases and, as mentioned in section 7, it is not entirely

straightforward. We therefore give three examples to illustrate the cases. Recall from (13) and (14)

that E(v) can take on two distinct forms, E0(v) and E+(v) depending respectively on whether z = 0

or z > 0. In the first example E+ is used in every iteration, in the second E0 is used in every iteration

and, in the third, iterations start by using E0 but switch to using E+.

The three examples are:

(i) p = 1/4, c = 1/3 ; (ii) p = 3/4, c = 1/3; iii) p = 4/5 c = 1/7.

For (i), λ = 1/9 < 1/2 so z1 > 0 because v1 = 1/2. Repeated use of Lemma 3 gives vn ≥ 1/2 > λ so

zn > 0 for all n. Thus E+ is used in all iterations to calculate vn. In this example the consensus cost

factor occurs explicitly in the formula at each iteration. Thus a small change in the value of c affects

the iterated values whatever the number of candidates available for consideration.

For (ii), λ = 1 > φ > 1/2 so z1 = 0. Repeated use of Lemma 1 gives vn ≤ φ < λ so zn = 0 for all n.

Thus E0 is used in all iterations to calculate vn. In contrast to (i) the consensus cost factor does not

occur explicitly in the iterative equation. Thus a small change in the value of c will have no effect on

the iterative values whatever the number of candidates available for consideration.

For (iii), λ = 4/7 > 1/2 so z1 = 0 and E0 is used to give v2 = 9/16. Because 4/7 > 9/16, we also

have to use E0 to calculate v3 which gives v3 = 4825/8192 ≈ 0.58899 > 4/7 = λ. Thus z3 > 0 so

we use E+ to calculate v4. We want to apply Lemma 3 to assert that v4 > v3 but to do so we need

v3 < V (4/5, 1/7). For this particular case the inequality holds because V ≈ 0.6528 so Lemma 3 ensures
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that the iterations for vn for n ≥ 3 are given by E+ and that the vn are increasing. This example

illustrates that the consensus cost factor may not be a significant influence when there are a small

number of candidates but can play a role when there are a comparatively large number. In particular

it is significant for the initial interviews but not once a particular number of applicants have been

rejected.

Notice that the quantity that determines the behaviour in these examples is λ rather than c so

that, when p = 1/2, the analysis in (i), (ii) and (iii) covers the cases c = 1/9, c = 1 and c = 4/7

respectively.

It turns out that the observations hold generally as we see in the proof of the following theorem.

Theorem 2. For any fixed parameter values p and c, the values vn = eq.val.Γn obtained by the

equilibrium equation vn+1 = E(vn), v1 = 1/2 are increasing in n and converge to a limit v∞ given by

v∞ =











φ if λ ≥ φ,

V if λ ≤ φ.

where λ, the golden mean φ and V are given by (6), (3) and (18) respectively.

Proof. The proof is divided into three cases

(i) pc ≥ (1 − p)φ, (ii) 1/2 < λ < φ, and (iii) λ ≤ 1/2.

(i) Suppose λ ≥ φ, then 1/2 < λ so (6) gives z = 0 and the first iteration is given by v2 = E0(1/2) < λ

by Lemma 1. The same argument shows that at each subsequent stage vi+1 = E0(vi) and Lemma 1

tells us that (vn) is an increasing sequence which is bounded above by φ. Thus it has a limit ν ∈ [0, φ]

as n → ∞ which satisfies v = E0(v) = (v3 + 1)/2; because v3 − 2v + 1 = (v− 1)(v2 + v− 1), it has just

one root in [0, φ], namely φ.

(ii) Suppose 1/2 < λ < φ, then the iterative process begins the same way as in (i) taking v2 = E0(1/2).

However there must come a stage m such that vm < λ but vm+1 = E0(vm) ≥ λ so that the iterative

step vm+2 = E(vm+1) is given by vm+1 = E+(vm). By Lemma 4 vm+1 < V so we can apply Lemma

3 to obtain E(vm+1) < vm+2 < V. Using Lemma 3 it is now easy to see that all subsequent iterations

have E(vr) = E+(vr) and that vr is an increasing sequence bounded above by V. Thus vr tends to

a limit v∞ ≤ V < 1 satisfying E+(v∞) = v∞; by (15), this implies Q(v∞) = 0. But Q(v) = 0 has

precisely one root, V, in [0,1] so v∞ = V.
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(iii) Suppose λ ≤ 1/2, then v2 = E(1/2) = E+(1/2) and it follows from Lemma 3 that all subsequent

iterations are given by E(v) = E+(v). The argument in (ii) shows that the iterations have limit V.

C Proof of Theorem 3

Proof. When p = 1/2, (18) becomes

V (1/2, c) = H/(−B) =
c

3
+

2

3(1 + c)
.

The second derivative of V (1/2, c) w.r.t. c is positive so V (1/2, c) is strictly convex. Furthermore

v(1/2, c) has derivative less than zero at c = 0 and derivative greater than zero at c = φ ≈ 0.61803.

Hence the result holds for p = 1/2.

Thus assume p 6= 1/2. Let f(c) = B2 − 4(1 − 2p)H, then f(c) is a quadratic αc2 + 2βc + γ in c

where

α = 9p2 − 4(1 − 2p)p2

1 − p
=

p2(5 − p)

1 − p

β = 3p(2 − p) − 2(1 − 2p)p = p(4 + p)

γ = (2 − p)2 − 4(1 − 2p) = p(4 + p).

so

(1 − p)(αγ − β2) = p2(4 + p)(p(5 − p) − (4 + p)(1 − p)) = p2(4 + p)(8p − 4)

It is easy to show that
√

αc2 + 2βc + γ is strictly convex (concave) in c if αγ − β2 > 0 (αγ − β2 < 0).

Thus
√

f(c)/(2p − 1) is strictly convex. As in (22), V can be written as

V (p, c) =
−B −

√

B2 − 4(1 − 2p)H

2(1 − 2p)
=

2 − p + 3pc

2(1 − 2p)
+

√

f(c)

2(2p − 1)
. (27)

The first term is linear in c and the second strictly convex so v+
∞

is strictly convex.

Now V is a solution of E+(v) = v so a solution of Q = 0 where Q is defined in (16). Differentiating

Q(V ) = 0 implicitly with respect to c gives

0 =
dQ

dc
= 2(1 − 2p)V

dV

dc
+ V

dB

dc
+ B

dV

dc
+

dH

dc

so using (17) and (22)

−
√

B2 − 4(1 − p)H
dV

dc
= (2(1 − 2p)V + B)

dV

dc
= 3pV − p − 2pλ. (28)
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Hence dV/dc has the opposite sign to 3pV − p − 2λ.

Because V ≥ 1/2, 3pV − p > 0 so dV/dc < 0 when c = 0.

When c = p′φ/p, V = φ so that 3pV − p − 2λ = 3pφ − p − 2φ < 2pφ − 2φ ≤ 0 so dV/dc > 0 at

c = p′φ/p.

D Proof of Theorem 4

Before proving the theorem, we do some preliminary analysis.

For c sufficiently near zero, vr+1 is given by vr+1 = E+(vr) where E+ is given by (14). Thus, by

(14) and (6)

2(vn+1 − vn) = (1 − vn)(v2
n(1 − 2p) + vn(−2 + p − 3pc) + 1 + pc + p2c/p′)

so, on differentiating w.r.t. c, we obtain

2(v′n+1 − v′n) = (1 − vn)(2vnv′n(1 − 2p) + v′n(−2 + p − 3pc) − 3pvn + p(1 + 2p/p′))

− v′n(v2
n(1 − 2p) + vn(−2 + p − 3pc) + 1 + pc + p2c/p′

and, after putting c = 0 and some simplification,

2v′n+1(0) = v′n(0)(v2
n(0)(−3 + 6p) + 6p′vn(0) − p′) + p(3vn(0) − 1)(vn(0) − 1)

= v′n(0)((Jn + pKn) + p(3vn(0) − 1)(vn(0) − 1)) (29)

where

Jn = 2 − 3(vn(0) − 1)2 and Kn = 6(vn(0) − 1/2)2 − 1/2. (30)

When p is sufficiently small, we therefore have that 2v′n+1(0) ≈ Jnv′n(0) where Jn < 2 so that

|v′n+1(0)| < |v′n(0)| for p sufficiently small. (31)
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We now prove the theorem.

Proof. Now Jn + pKn defined in (30) is a strictly increasing function of vn(0) for vn(0) ∈ [1/2, 1].

When vn(0) = 1/2, Jn + pKn = 5/4 − 1/2 = 3/4 so Jn + pKn > 3/4 for vn(0) ∈ [1/2, 1]. Further

(3vn(0)− 1)(vn(0)− 1) is strictly decreasing for vn(0) ∈ [1/2, 2/3] and non-positive for vn(0) ∈ [1/2, 1].

Thus v′n(0) < 0 if v′n−1(0) < 0 by (29). However v′1(0) = 0 and v′2(0) = −p/4 < v′1(0) so v′n(0) < 0 for

n ≥ 2.

We now prove that, for p ∈ [1/2, 1), v′n(0) is a decreasing function of n by induction. Suppose that

v′r(0) < v′r−1(0) ≤ 0, then, by (29),

2v′r+1(0) = v′r(0)((Jr + pKr) + p(3vr(0) − 1)(vr(0) − 1)

≤ v′r(0)(Jr−1 + pKr−1) + p(3vr−1(0) − 1)(vr−1(0) − 1)

< v′r−1(0)((Jr−1 + pKr−1) + p(3vr−1(0) − 1)(vr−1(0) − 1) = 2v′r(0).

Thus, for p ∈ [1/2, 1), v′n(0) is a strictly decreasing function of n. We now show by induction that

v′n(0) > −1 for all n. The result holds for n = 1 and n = 2 so suppose it holds for n = r, then

2v′r+1(0) = v′r(0)((Jr + pKr) + p(3vr(0) − 1)(vr(0) − 1)

≥ −((Jr−1 + pKr−1) + p(3vr−1(0) − 1)(vr−1(0) − 1)

> v′r−1(0)((Jr−1 + pKr−1) + p(3vr−1(0) − 1)(vr−1(0) − 1) = 2v′r(0).

Thus v′n(0) is bounded below by −1 and therefore tends to a limit as n → ∞. This limit, L say, must

be a fixed point of (29) so it must satisfy

(

v2
n(0)(−3 + 6p) + 6vn(0)(1 − p) − 3 + p

)

L + p(3v∞(0) − 1)(v∞(0) − 1) = 0.

Now v∞(0) is a solution of (1−2p)x2+(−2+p)x+1 = 0 so, on substituting (−3+6p)v2
∞

= (−6+3p)v∞+3

and simplifying, we obtain L = −1 + v∞.

E Proof of Theorem 5

Proof. The proof is by induction on the period n. For n = 1, we have already observed that any

candidate that appears is hired, so q1(c) = 1/2 for all c so q′1(0) = 0. We assume that q′n(0) ≥ 0 and
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establish that q′n+1(0) > 0. Taking p = 1/2 (and hence z = v − c) in the recursive formula (12), we

obtain using the simplifying notation q = qn(c), v = vn(c)

4qn+1 = 2(1 + 2qv2 − v3) + z(1 − v)(4q − (1 + v + z)) and setting z = v − c,

= 2(1 + 2qv2 − v3) + (v − c)(1 − v)(4q − (1 + 2v − c)).

= 2 + 4q(v + vc − c) − v2(1 + 3c) − v(1 − 2c − c2) − c2 + c

Differentiating with respect to c and setting c = 0 gives

4q′n+1(0) = 4q′(0)v(0) + v′(0)(4q(0) − 2v(0) − 1)

+ 4q(0)v(0) − 4q(0) − 3v2(0) + 2v(0) + 1

Because v(0) = q(0), we have

4q′n+1(0) = 4v(0)q′(0) + (2v(0) − 1)v′(0) + (1 − v(0))2 (32)

By Theorem 2 v(0) = vn(0) is an increasing function of n which tends to 2/3 as n → ∞. By

Theorem 4 v′n(0) < 0 and tends to −1/3. Hence final two terms are strictly decreasing functions of

n and, as n → ∞, their sum tends to zero. Thus, if q′n(0) ≥ 0, then q′n+1(0) > 0. But q′1(0) = 0 so

q′n(0) > 0 for n ≥ 2.

By (13) v2(0) = 9/16 so, for n ≥ 2, (1 − vn(0))2 ≤ (7/16)2. The second term of (32) is negative so

(32) gives 4q′n+1(0) ≤ (7/16)2+(8/3)q′n(0). Routine calculations show that q′n+1(0) < 1/6 if q′n(0) < 1/6.

But, using (32), q′2(0) = 1/16 so q′n(0) < 1/6 for n ≥ 2. Note that (32) can be written in the form

4q′n+1(0) = (vn(0) − 2/3)2 + 5/9 + (2vn(0) − 1)v′n(0) + vn(0)(4q′n(0) − 2/3).

The first and third terms are strictly decreasing functions of n. Because q′n(0) < 1/6 for n ≥ 2, the

third term is negative for n ≥ 2 and

vn(0)(4q′n(0) − 2/3) < vn−1(0)(4q′n−1(0) − 2/3) if q′n(0) < q′n−1(0).

Hence q′n+1(0) < q′n(0) if q′n(0) < q′n−1(0).

Now q′
∞

(0) = limn q′n(0) is given by taking q′n+1(0) = q′(0) in (32) so

q′
∞

(0) =4v∞(0)q′
∞

(0) + (2v∞(0) − 1)v′
∞

(0) + (1 − v∞(0))2

= 8q′
∞

(0)/3 + (1/3)(−1/3) + 1/9
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giving q′
∞

(0) = 0.

Because q′2(0) = 1/16 > 0 = q′1(0), it follows that q′n(0) initially increases but then decreases.
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