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smU'lARY

To agreat extent, rigidity theory is the study of boundaries

of semisirnple groups. Here we investigate the action ()f a lattice on

such a boundary. While we can construct topological factors for real

rank 1 groups we 31101" the nonexistence of such [actors in higher rank

for some cases.

\~e also stuely the geodesic f low on a compact locally symmetric

manifold of the nuncompact type. He calculQte metric and topulugical

entropies and see that t nc Liouville measure is a measure or ma x Lrna L

entropy. This leads to a study of comp act maximal flats. \.Je L\ive a

new proof of their elensity in the s pacc of all f la t s . \.Je prov e speci-

fication and expansiveness theorems for the geodesic flow and apply

them to determine a growth rate for compact maximal fJats. Finally,

we give an example of a space with infinitely many closed singular

geodesics.
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Introduction

We present this thesis in two parts. They deal with different

specific problems. But at the core of both of them lies the study of

closed geodesics.

Part I: In the first part, we investigate a problem of G. A. Margulis.

He analyzed the group theoretical structure of a lattice r in a semi-

simple group G by analyzing the action of r on the maximal boundary

of G. More precisely, he proved

Theorem (G. A. Margulis): Let r be an irreducible lattice in a connected

semisimp1e algebraic group G over some local field k and suppose

that l"'kG > 2. Then any r-equivariant measurable quotient of a

boundary Gip, P a parabolic, is measurably isomorphic to G/~I,

pI ~ p a parabolic (i.e. up to sets of measure 0).

He also showed that this theorem is false for r SL(2,Z) and

G = SL(2,lR). More generally, it fails for all surface groups and

some three-dimensional hyperbolic groups. The general situation in

rank 1 seems to be unknown.

One may wonder tchether this theorem holds true in the topological

category rather than the measurable realm. More precisely, Margulis

asked at the end of [Mal]:

When does SL(n,Z) acting on the projective space
n-1JP have an

equivariant topological Hausdorff factor? In particular, is there a

dichotomy between n ~ 3 and n = 2?

R. J. Zimmer first proved in [Zi1] that for n > 2 there are no

such quotients. Bis method of proof relied heavily on results of

S. G. Dani and Raghavan ([Da2]). In [Spl] we gave an entirely elementary

argument and we also indicated how to construct a quotient for n = 2.

This construction generalizes very nicely to an arbitrary lattice in a



group of real rank 1, even to fundamental groups of visibility manifolds.

The idea is to use the classical correspondence between geodesics and

pairs of points on the boundary. Then one can employ the special

properties of the endpoints of the lift of a closed geodesic to construct

an equivalence relation that defines our quotient. We present this in

detail in I Section 1.

In Section 2 we discuss the nonexistence of factors for f = SL(n,Z)

acting on Grassmannians. Basically it is a calculation. The key is

that the isotropy group of a rational point is "big" in f. One might,

try to use this for more general split lattices.
n+L~ we get a slightly better result:

--'
For SL(n,Z) acts

minimally on n-l n-lIP x TI) -diagonal. This obviously implies the

non-existence of factors. This approach can't work in general as we

prove in Section 3: [or the maximal boundary Gtp there are always

f-invariant closed sets in Cl? x Cl? that are not G-invariant. Here

f and G are arbitrary. The technique is the same as in Section 1:

usc a compact maximal f La t to find special poLn t s on the boundary. llc rc

we use Mosto~v's realization of GIV as points at infinity of a globally

synunetric space.

The general case of the existence of factors remains open.

After the CXITlpletionof this v..orkDani proved the non-€Xistence

of these factors in the higher rank case.

Part II: We study the geodesic flow on a locally synunetric manifold of

the noncompact type. Our motivation is threefold.

(L) While the geodes.ic f Low on a manifold of nega t tve curvature is Hell

understood 'not too much is known for arbitrary manifolds of nonpositive

curvature. Ballmann1s condition seems to be quite critical. It requires

that no geodesic in the universal cover bound a flat half plane. If this

condition is satisfied quite a lot of the usual theory can be pushed

through using Pesin theory.



Locally symmetric spaces of higher rank clearly fail to satisfy

th:i:;scond LtLon , We have tried to understand some of t.h.e difficulties

caused by the presence of flats for these simple examples.

Finally, locally symmetric spaces seem to be prime examples of

manifolds that do not satisfy Ballmann's condition in the sense that

they may be building blocks for a general manifold of this type. Evi-

dence for this is the Gromov-Eberlein theorem. It roughly says that

one cannot perturb the metric on a locally symmetric manifold of rank

~ 2 maintaining nonpositive curvature.

(iii) Locally symmetric spaces are very lovely as they are rich in

(ii) The geodesic flow on a general locally symmetric manifold is

another example of a non Axiom A situation where we still have a lot

of hyperbolicity. In particular, it is an example of an Anosov Rn_

action. We do not know to what extent our results generalise to

Anosov actions.

structure and display many connections co number theory and represen-

tation theory in particular. We hope that'soft' dynamical methods

like ours will shed some light on these areas.

More precisely we may call our investigations the study of the

Liouville measure as a measure of maximal entropy. Let us review the

Bowen-Margulis theory for the geodesic flow on a compact manifold of

negative curvature.

There are two natural flow invariant measures:

1) the Liouville measure~: this is the only smooth invariant mea-

sure for the geodesic flow arising from its Hamiltonian nature.

2) the measure of maximal entropy or Bowen-Margulis measure v:

there is a unique measure of maximal entropy for the geodesic flow

due to its hyperbolicity. It can be obtained in two ways:

a) as Bowen showed it glves the equidistribution of the



closed geodesics on M (cf. [Ba 1]).

b) Margulis on the other hand constructs it by exhibiting

uni-formly expanding and contracting measures along the stable

and unstable manifolds of the geodesic flow (cf. [Ma 1]).

This measure is also the unique invariant measure for the horocycle

foliation and can be obtained from the symbolic dynamics of the geo-

desic flow (cf. [Bo-Ma 1]).
Both of these measures are ergodic, even Bernoulli. Naturally one

I wonders when ~ and y coincide.

The classical examples of manitolds of negative curvature are

the real rank one locally symmetric spaces M of the noncompact type.

'the unit tangent bundle T1M is just a double coset space of a semi-

simple group G and the Liouville measure turns out to be Haar measure.

Since the horocycle foliation is the orbit foliation of a maximal uni-

potent subgroup acting on TIM l-iaarmeasure is invariant for it. By

unique ergodicity we see that ~ = v. This was first proved in [Bo 2]

in a somewhat less sophisticated way.

Moreover, one may conjecture that these are the only manifolds

of negative curvature with ~= v. For Riemann surfaces this was proved.

in [Ka 1].

Here we pursue these ideas in a different direction. Consider an

arbitrary compact locally symmetric manifold M of the noncompact type.

The geodesic flow fails to be ergodic if the rank is greater than 1.

But the ergodic decomposition is readily obtalned in terms of algebraic

data (as in [Mau 1] ). In particular, the ergodic components are double

coset spaces of the group and embed smoothly into T1M. Hence the topo-

logical entropy of the geodesic flow is defined on the ergodic com-

ponents and we can compare it with the metric entropy for the Liou-

ville measure. It turns out that they coincide and we have generalised

part of Bowen's result:

the Liouville measure is a measure of maximal entropy on



the ergodic components of the geodesic flow.

This follows quite easily from the observation that the sum of the

positive Lyapunov exponents is constant everywhere, not just almost

everywhere, by the'homogeneity~ of the ergodic component. We also

calculate the exponents and the entropies on the ergodic components

and the unit tangent bundle explicitly in terms of the root system.

This constitutes Section 1 of part II.

The main problem now is to see which properties of the measure

of maximal entropy carryover from the negative curvature case to

our situation.Certainly, the Liouville measure is a Margulis measure:

it contracts and expands uniformly along stable and unstable mani-

folds. As is well known, it is also the unique invariant measure

for the horospherical foliation. It is not so clear however that

the closed geodesics are equidistributed with respect to Liouville

measure. Indeed, in higher rank there are uncountably many closed

geodLsics coming from flat tori and the question doesn't even make

quite sense. But it leads us to the study of compact maximal flats

in a locally symmetric space.

In Section 2 we discuss some basic properties of compact flats

and give a new proof of Mostow's result that the compact flats are

dense in the space of all flats. ~Je use dynamics and in fact, we try

to keep it as soft as possible.

The crucial pOint is that to 'close up' a flat one only has 'to

close up' a regular geodesic in it. For this we can use a generalised

Closing Lemma.

In Section 3 we briefly go back to closed geodesics. \~1ile

most closed geodesics (in some sense) are going to lie in a compact

maximal flat there may be some exceptional closed geodesics that

are not contained in any higher dimensional compact flat. In fact,



we show by way of example that this situation can a~ise, We do not

know however whether such exceptional closed geodesics always exist.

In Section 4 we discuss Bowen\s main technical tool, the speci-

fication theorem. We prove weak specification for the geodesic flow

on anergodic component, i.e. we can shadow orbit segments by the orbit

of some point though not necessarily a periodic point (as is the case

for Anosov flows).Let us draw attention to the similarity of this

with the specification properties of a nonhyperbolic toral automor-

phism. The crucial point is that the geodesic flow is an isomet:ry

on the centermanifolds .

in Section 5 finally we apply specification to get hold of the

logarithmic growth of the maximal compact flats. Let us first recall

the situation for negative curvature. The best result here is due to

Margulis. Let v(t) be the number of closed geodesics of length:::;t

(counted with multiplicities). Then v(t) - eht/ht where h is the

topological entropy of the geodesic flow (the determination of the

constant in the denominator is due to Ch.Toll). In particular, the

logarithmic growth rate is the topological entropy.

In the higher rank case it is not so clear how to count tne maxi-

Inal compact flats as there are various characteristics for a compact

flat. In fact, we propose to study a mixed property: recall that
~~ \thevsy5tol of a compact flat is the length of a shortest closed ~~~~~

geodesic. Then we study the function

VS(t) = vol F

show that it is well defined and again show that its logarithmic

growth rate is the topological entropy of the geodesic flow on the

unit tangent bundle. The sUilllllationcondition is

of a technical nature but unfortunately necessary (as we show by

way of example).



Lt would be interesting to determine the growth rate of

quantities that just involve the systol or just the volume.

There are two other questions that we haven't quite answered yet:

a Is the measure of maximal entropy uru.que? At the moment we only

know that it is unique if we assume that the measure is invariant

under the center manifold foliation.

b Are the compact maximal flats equidistributed with respect to the

Liouville measure ( in a suitable sense) ? We hope that we have ex-

hibited many enough properties of the Liouville measure to make

this look plausible.

As far as the techniques are concerned we have been drawing

heavily on Bowen's hyperbolic flow paper [Ba 1]. As can be expected,

many of the details just work the same. The geometry usually is

just ad hoc with no bigger underlying scheme.

Appendix: We include a brief review of the basic properties of

semisimple groups in an appendix. The material is mainly from

[He 1) and [Wa 1].
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Chapter I

Section 1. Closed Geodesics and Factors of the Boundary

In this section we will consider the fundamental group

r of a compact visibility manifold of non-positive curvature.

We will first review the notion of a boundary B for. these

manifolds and then give our construction of a non-trivial

topological quotient of r acting on B. The main reference

on visibility manifolds lS [Eb IJ.

1.1: Points of Infinity

For any Riemannian manifold M we let < ,> be the

Riemannian structure and d be the Riemannian metric. For

P E M we let SCp) be the unit sphere in the tangent space

Mp and we let SM be the unit tangent bundle. If V,w E S(p)

the angle e = <9 (v,w) lS the unique number 0 < e < 11
P

such that <v,W> = cos e . All our manifolds will be compleJ:e

and for v E SM we let a JR -+ M be the geodesic suchv
that a 1 ( 0) = v. All geodesics will be parametrized by arc

v
length. Finally, K will denote the sectional curvature.

Definition: A Hadamard manifold H is a complete simply

connected Riemannian manifold of dimension n ~ 2 with

sect~onal curvature K 5 O. The most important feature of

a Hadamdrd manifold is Cartan1s:

Proposition 1: Any two points on a Hadamard manifold Hare

joined by a unique geodesic.

Proof: This lS well known, see for example Theorem 19.2 of

[Mi 1]. 0
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For Hadamard manifolds we can introduce a n1ce equiva-

lence relation between geodesics:

Definition: Two geodesics a and ~ 1n a Hadamard manifold

Hare asymptotic if there exists a number c > 0 such that

d(at,~t) < c for all t ~ O. The equivalence classes are

called asymptote classes.

Remark: Clearly, this definition works for any complete

Riemannian manifold. For Hadamard manifolds a point p E H

lies on at most one geodesic in each asymptote class, i.e.

"there is at most one geodesic joining a point p E H to a

point at infinity". This follows easily from the "law of

cosines": for any p,q and r E H

222d (p,q) ~ d (p,r) + d (q,r) - 2d(p,r)d(q,r) cos 1: (p,q ).r

Proposition 2: Given a geodesic a and a point p E H

there exists a un1que geodesic ~ such that ~(O) = P and

~ 1S asymptotic to a.

Proof: This 1S consequence (4) after Definition 1.1 in

[Eb 1]. o

Definition: A point at infinity of H is an asymptote class

of geodesics of H. The collection of points at infinity

of H is called the boundary B of H or boundary sphere

of H. For a geodesic a of H, we let a(oo) denote the

asymptote class of a and aC-oo) the asymptote class of

the reverse curve t ~ a(-t). a(oo) and a(-oo) are called

the endpoints of a.
In this terminology, the last two propositions may be

restated as:
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Any point p in a Hadamard manifold H can be joined

uniquely to any point q in H U B by a geodesic Ypq'
Next, we want to put a topology on H U B. There are

a fc..wnatural topologies on H U B (cf. [Eb 1, §3J) but

we will only be interested in the cone topology.

Definition: Let v E S(p) cHand let E be a number,p

o < E < n. Then the set

c (v, E ) ::: {b E HUB: -1p (v, YPb) < e ]

lS called the cone of vertex p and angle e·

Propo sition 3 : There lS a unique topology k at H U B ::: H

such that

(1) H lS dense and open In H.
(2 ) k induces the original topology on H.

( 3 ) For each b E B the set of cones con-taining b lS

a local basis for k at x.

We call k the cone topology on H U B.

Proof: This lS Proposition 2.3 of [Eb lJ. o

The cone topology is admissible in the sense of

[Eb lJ, p.SO. In particular, the following two properties

hold:

b

Geodesic extension property: for any a In H

its asymptotic extension a: JR U {±oo} ~ H U B lS

continuous.

Isometric extension property: if <.P is any

isometry of H then its asymptotic extension lS a

homeomorphism.

a
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In particular, any group of covering transformations

of a quotient of H will act on the boundary.

Finally, we describe the topology of B.

Propo sition 4: B is homeomorphic to a sphere. H U B lS

a topological cell. In fact, a homeomorphism from B to

the sphere is given by: Let p E I-I. To any v E S(p)

associate the point at 00 • a (GO) •
V

Proof: This lS Theorem 2.10 and Corollary 2.12 of [Eb lJ. 0

Example: For n-dimensional hyperbolic space consider the

unit ball model. Then the boundary sphere of the unit ball

is clearly the boundary of hyperbolic space as defined above.

1.2. Visibility manifolds

Definition: A Hadamard manifold H satisfies Axiom 1 if for

any two points x # y in B there exists at least one

geodesic joining them.
Notice that the geodesic joining two points on the

boundary may not be unique. If uniqueness holds true we

say that H satisfies Axiom 2. See Example 5.10 of [Eb lJ

for a Hadamard manifold satisfying Axiom 1 but not Axiom 2.

Definition: A Hadamard manifold H satisfies the

Visibility Axio~ if for any point p E Hand s > 0 there

exists a number r = rep,s) such that any geodesic segment

G: [a,bJ ~ H with d(p,G) ~ r makes an angle less than s

with p: 1pCap,GCa),ap,GCb)) < s·
Roughly speaking, H is a visibility manifold if

distant geodesics look small.
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Proposition 5: The following three properties are equivalent

for a Hadamard manifold H:

1 H satisfies Axiom 1.
2 H satisfies the Visibility Axiom.

Let a : [an,bnJ -+ H be a sequence of geodesics In
n

H, _ 00 :::: an < b :::: 00. If a (a ) -+ x and
n n n

an(bn) -+ y as n -+ 00 and x -:f. y then every an

3

meets some compact set K of H. In particular,

some subsequence of the an converges to a geodesic

a joining x to y.

Proof: The equivalence of 2 and 3 and that 2 implies 1 are

Proposition 4.4 of [Eb lJ.

1=2: We first prove that no geodesic bounds a flat half

plane: Suppose the contrary and pick a point p and two

I

\

lines al,a2 in a flat half

plane. Let x and y be the

end points of al and a'2 •

Since H satisfies Axiom 1 we

may pick a geodesic a joining.

x to y. Let x (y) ben n
al (a2) converglngpoints on

\~ to x(y) and let ~n be the

geodesic segment .joining xn to y •n
Recall that the square

of the distance to a is a convex function and hence
2d (~(t),a) is convex in t (cf. [Bi IJ Proposition 2.1(2)

n
and Theorem 4.1). Let q be the point on a closest to p

and a point onon such that its orthogonal

projection (cf. [Bi lJ, Lemma 3.2) onto a lS q. Such a

point clearly exists by continuity and because the orthogonal



6

projections from xn to a converge to x (the ones from

to y respect ively) .

Hence by choice of qn and convexity we have:

= d Cq ,a) ::: ma x f d Cx ,a) ,dCy ,a)) < C < 00n n n

slnce and a and a) are asymptotes.

From this we see that

d(p'~n) ~ d(p,q ) ~ d(p,q) + d(q,q ) ~ d(p,q) + C < 00n n

This is a contradiction since the ~ and p lie inn

a flat half plane. Now we can use Ballmann's (cf. [Ba IJ,

Lemma 2.2):

Lemma: Suppose a geodesic a in a Hadamard manifold H

doesn't bound a flat half plane. Then there are neighbour-

hoods U and V of aCoo) and aC-oo) respectively such

that for any u E U and v E V there exist a geodesic

joining them. Moreover, any geodesic ~ ]Olnlng u and

v satisfies d(~,a(O) < C where C only depends on U

and V.
Indeed, suppose visibility fails. Then there is a

point p E H and a sequence of geodesics a such that
n

and <1 (a (00), a (-00 » ~ EP n n
for some

s > O. For a subsequence of the a ,
n

the endpoints

a (00)n and a (_00)n
will converge to x and y respectively.

By Axiom 1 join x and y by a geodesic a. From what

we have proved above and Ballmann's Lemma we see that

d(a(O),a ) < C < 00

n

Therefore < d(p,a(O)) + d(a(O),a )n
lS bounded in
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contradiction to our assumptions. o

Note: That 1 = 2 seems to be due to B. O'Neill (cf. [Eb lJ

p. 52). It was pointed out again In [Eb 2J p. 439, also

Lemma 2.3a, but there seems to be no clear reference.

Essentially we followed Iberlein's suggestions in [Eb 2J,

avoiding Busemann functions though.

Proposition 5: If a Hadamard manifold H has sectional

curvature K ~ C < 0 then H is a visibility manifold.

Proof: This lS Lemma 9.10 of [Bi lJ. o

In particular, any globally symmetric space of rank 1

(and no compact factors) is a visibility manifold. On the

other hand we have:

Example: Any globally symmetric space of rank ~ 2 (and

no compact factors) violates the Visibility Axiom.

Proof: By definition, the rank is the maximal dimension
a flat totally geodesic subspctce can have. Clearly,

visibility fails for flat n-space, n ~ 2.

Remark: We will see later on that even the higher rank

locally symmetric spaces satisfy a suitable modification

of the Visibility Axiom.

1.3: Axial isometries
Let us first recall the standard classification of

isometries.

function

For any isometry

be defined by:

tp , we let the displacementDefinition:



8

g C p ) = d C P ,<Pp) .<p

We call an isometry <p

elliptic if g<P has mlnlmum 0

axial if g<P has positive mlnlmum

parabolic if g<P has no mlnlffium.

Proposition 1: An isometry <p is axial iff <p translates

a geodesic a, i.e., if <pCaCt)) = aCt + to)· a is called

an axis of <p.

Proof: This is Proposition 10.9 of [Bi lJ. o

Proposition 2: Let H satisfy the Visibility Axiom. Then

every non-elliptic isometry has at most two fixed points In

B, the boundary: one if parabolic and two if axial.

Proof: This is Theorem 6.5 of [Eb lJ. o

Proposition 3: Let a be an axis of an isometry <p of H

with endpoints x and y. If an isometry t fixes x and

if t and <p generate a properly discontinuous group then

t commutes with a power of <p, and in particular, t

leaves y invariant.

Proof: This is Proposition 6.8 of [Eb lJ. o

This last result lS the key to our construction.

1.4: The Construction
Let M be a manifold of non-positive curvature whose

universal cover satisfies the Visibility Axiom (a visibility

manifold for short). Assume that M has a closed geodesic
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a. For example, if M is compact this holds true by the

theorem of Lyusternik and Fet ([Fl IJ Theorem 5.7) (or simply
because there is a closed geodesic in each free homotopy

class and because M is not simply connected). Let

r = "l(M). Then r acts properly discontinuously on the

universal cover H of M. In particular, we have the

Lemma 1: Let a be a lift of -a to H. Let x and y

(points at infinity of H)be the endpoints of a in B
I and let r (r) be the isotropy subgroup 1n r of x(y).

x y

Then r = r. Moreover, there is no a E r such thatx y

ox = y.

Proof: Clearly, a is an axis for some isometry y E r

(since a is closed there is a to E ID and elements

Yt E r such that c Ct + to) = ytCaCt». By proper dis-
continuity Yt = Y is constant). The first claim therefore

1S Proposition 3 of 1.3.
Suppose that y = ox for some a E r. Then aya-l

has the geodesic through (y,ay) as an aX1S. On the other

hand, y fixes y, hence ay by the first part of this

lemma. Since any non-elliptic isometry of H has at most

two fixed points we see that 5y = x (1.3 Proposition 2),

1.e. 5 permutes x and y. Since r

\s -furs\on ~ree there are no elliptic elements ln r.

Since HUB is a closed cell (1.1 Proposition 4) 5 has

a fixed point 1n HUB by the Brouwer fixed point theorem.

Since a is non-elliptic it has a fixed point in B. We

see that 52 has at least three fixed points in B in

contradiction to 1.3 Proposition 2. o
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Now we can define our equivalence relation: Let a

be a closed geodesic 1n M as before. We let be the

relation on B given by:

a x cv x for all x E B

b x y, x f; Y iff x and y are endpoints of one

and the same lift a to H of a.

Lemma 2: The relation is an equivalence relation.

Proof: We only have to check transitivity: Let x rv y and

y r-;» Z. We have geodesics and joining x to y and

y to z respectively that project to a in M. Hence there

is s E r such that a =2

In particular, we must have either

that a ox = z and oy = y or

/
b ox = y and oy = z. Both of

these cases are impossible by Lemma 1

unless x = z. o

Finally, we use the visibility property in

Lemma 3: The relation 1S closed.

Proof: Suppose that x cv y and x -r x, Yn -r Y as
n n n

n -r 00 Pick axes a ]Olnlng xn to y . By the third
n n

equivalence in Proposition 5 of 1.2 the a converge to a
n

geodesic a joining x to y. As all the a projectn
in M has to project to - in M. Thisto a a a means

that x rv y. o

This finishes our construction and we have

Proposition: Let M be a visibility manifold with a

clo~d geodesic. In particular, M may be any compact
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visibility manifold. Then there exists a non-trivial

ITlCM)-equivariant topological Hausdorff quotient of the

boundary B of the universal cover of M.

Proof: Above we constructed a closed equivalence relation

on B that was clearly r-invariant. Any closed

equivalence relation on a compact Hausdorff space gives rise

to a Hausdorff quotient (cf. [Vi IJ Proposition 2.1). Since

is ITl(M)-invariant we can define an action of ITICM) on

Since we identify only countably many points by

B/~ cannot be a point. On the other hand, the axial isometry

y of the lift a of our closed geodesic a has two fixed

points on B which get identified in B/~. There are no

more fixed points of y In B/~ Slnce any such fixed point

corl~sponds to an axis of y in H, but axes are unique.

So B and B/~ cannot be equivariantly isomorphic. This

proves that B/~ is non-trivial. o

It may be interesting to notice that B/~ lS not even

a manifold. This follows from a very general argument about

branch points:

Lemma 4: Let M be a manifold and be a countable

equivalence relation. (i.e. lS trivial on M - l: where

l: lS a countable set). Then M/~ is not a manifold.

Proof: Let p: M ~ M/~ be the projection map and let

x t y E M, x ~ y. Let z = p Cx ) . Suppose M/~ is a

manifold and let U be a coordinate chart about z. Let

S (t)
r

p: U S (x) U S (y) ~ M/~ lS an injective continuous mapr rrtr.
l

be the sphere of radius r about t. Then
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where the {r.} are a countable exceptional set of radii.
l

In particular, pis (x)
r

(resp. pis Cy» lS a homeomorphism
r

onto its lmage for r i: r ..
l

For r i: r. . small enough,
l

pCs (x)r
separates U into two connected components by

the Jordan-Brouwer separation theorem C[SpalJ, Chapter 4
Theorem 15). As r ~ 0 pes (x» ~ z by continuity. For

r

any glven r pCSr,(x» lies either inside or outside

pCS (x)
r

(r,r' i: r.). As pes ,(x» ~ z , pes ,(x» lies
l r r

inside pCS Cx» and in particular z lies inside
r

pes ex». As the pes ICy»~ ~ z pCS ICy»~ lies inside
r r r

pes (x» and z lies inside
r

line pet) connecting x to

pes ICy»~. Consider a radial
r

S (x). By the Jordan-Brouwer
r

Since this happens for uncountably many r' f. r.
l

there is

a to with

pCS ICy»~r

pCto) t Sr. (x), all a , and pCp(tO» E
l

in contradiction to our assumption on the
o

r.' s.
l

In particular, this construction solves Margulis'

question in the case of a lattice in any 1R-rank 1 semisimple

group of the non-compact type. Strictly speaking we had

to assume that r has no torsion so that the locally

symmetric space r\G/K is a manifold. An easy variation

of our argument gives the same result for lattices with

torsion.

Also notice that our factor is measurably trivial as

we identified only countably many points. Therefore we may

conclude this section with the
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Problem: Does there exist a factor of SL(2,~) acting on

S' that is non-trivial both topologically and measure-

theoretically? Margulis constructs a non-trivial

measure-theoretical quotient in Corollary 2.9.1 of [Ma lJ.
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Sectio~ 2. Nonexistence of Factors in Higher Rank

We mainly consider SL(n,~) acting on

and show that there do not exist any SL(n,~)-equivariant
Hausdorff quotients of n-llP . This together with

1.4 for n = 2 answers Margulis precise question in [Ma IJ.

This was first proven by Zimmer in [Zi IJ using different

techniques. We can generalise the above result to some

other Grassmannians using a result of Dani.

2.1: SLCn,'ZZ) acting onlPn-l

Let r = SL(n,~) and G = SL(n ,JR) for short. It

follows from Hermite's and Siegel's work that r is a

lattice In G (cf. [B-Hch] Theorem 9.4). As we discuss

In AIO.S the projective space lPn-l is a boundary of G.

We claim:

Proposition I: All Hausdorff quotients of r acti.ng on

n > 2, are trivial.

Note: For uniform lattices r in SL(n,JR) (i.e. c/r

is compact) the same result lS true by eVe LJ. We first

observe

Lemma 1: Let a group r act on a compact Hausdorff space

M. If the diagonal action of r on (M x M-diagonal) is

minimal then al~ equivariant r-quotients of M are trivial.

Note: Recall that one calls an action minimal if every

nonempty r-invariant closed set is the whole space.

Proof: Any Hausdorff quotient X of M is defined by a

closed equivalence relation ReM x M. By r-equivariance

of X we conclude that R lS r-invariant. By the
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minimali ty of I' on (M x M-diagonal) R 1S either M x M

or just the diagonal and the quotient is trivial. o

Proposition 1 follows from the stronger

Proposition 2: The lattice r = SL(n,Zl) acts minimally on
JPn-l n-lx JP - diagonal for n > 2 .

Proof: On the level of JPn-l itself we first have

Lemma 2: For n > 1, r acts minimally on n-lJP •

Note: This is completely general: any lattice f 1n any

semisimple Lie group G without compact factors acts

minimally on any boundary of G', in fact, [Mo lJ Lemma 8.5

says that f·P = G. Since for any x E G, -1x fx is a

lattice it is clear that f • x • P 1S dense in GIP for

any x E G. Of course, the case at hand is standard and

follows from elementary arguments.
Now the proof of Proposition 2 develops in two stages.

For notation let x E JPn-l be the line through x for any

x E JRn.

1) Let e. be the standard basis of JR
n. Let

1

x E JRn, x 1: e
l
. We claim that r (el ,x) is dense in

n-l n 1JP x JP - -diagonal: a typical element of the stabiliser

subgroup fa of f at looks like

o

o

In particular, SL(n-l,Zl) embeds into fO 1n the obvious

way. It suffices to prove that f(~l'~) is dense in
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n-l n-l for inJP x JP -diagonal some y the closure of

r a ex) . By Lemma 2 and the above we may assume that the

coordinates x2,···,xn of x are linearly independent over

~. Let y f z be two lines in JPn-l and V,W neighbour-

hoods of them. By Lemma 2 there lS ayE r such that

E W. Hence it suffices to find a
E y-leV). For some t E ]Rn

Yo E fa such that
- -1 -t ~ y (y). We canlet

find Yl E SL(n-l,n)

to by Lemma 2. Let be a

choice of coordinates for Yl(O,x2, ... ,xn). We may assume

that are close to Clearly, the

x2, ... ,x~ are linearly independent over ~. As the group

geri..r-a t ed by is dense in we can find a

1 m2
. mn

0

Y2 ::; E fa
id

0

such that .•• + m x'n n
is close to Since

Y2 doesn't change the other coordinates we have proved our

first claim.

2) Consider any two lines y f z. We claim that the

closure of their f-orbit contains (x,el) or (el,x).

We consider two cases:
a) z is rational. Our claim follows by the well

known:

Lemma 3: All rational lines lie on the SL(n,n)-orbit of
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Note: One may phrase this in terms of number theory: all

coprime n-tuples of integers lie in the SL(n,LZ)-orbit of

(1 ,0, .•.,0) .

Proof: For n = 2 a rational line is represented by a palr

of coprime integers (p,q) . There are integers and

such that PPl - qql = 1. Clearly,

=

lSlnthe SL(2,LZ) orbit of (1 ,0) .

For n > 2 let (ml, ...,mn) be a point on a glven line

~ with integer entries. Then e lies in the plane

spanned by (ml,·· .,mn_l,O) and e.n By induction pick

Y E SL(n-l,LZ) such that

= ('"i ' ... ,mn_l, 0) .

lies in the plane spanned by and en

and we can apply the result for n = 2. o

b) Z 1S irrational. Then there is 1 and J such

that z. and z. are rationally independent, say i = 2,
1 J

j = 3. In particular, LZ is dense in ]R.

Hence there are matrices

=
o
1 o . . 0

E rid

o
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such that Yn • Z -+ (0,z2"" ,zn) as n -+ 00 while

=

If (z2,z3) f. (Y2'Y3) then

n n -1
m2Y2+m3Y3 Y2 n y3-z3y2z2= + m3 --+ ±""n n z2 n nm2z2+m 3z3 m2z2+m 3z3

slnce the denominator stays bounded and w.l.o.g.

Otherwise = ° and Hence

Y • Y -+ (1,0,...,0) and In this case we are done. If
n

(Yl-azl'Y2"")'
! def 0Yl ---Yl - aZl f. .

we can still pick Yn as above.

(z2,z3) = (y2,y3), Then Yn . Y -+

If (zl,z2,z3) f. (Yl'Y2'Y3) then

Let(z2,z3) = (Y2'Y3)
a be so that a'

Notice that and are rationally

independent. Hence one of (Yl'Y2) or (y1,y3) lS

rationally independent, say the first. Since

(Y1'Y2) f. (0,z2) we can apply the previous argument to

Instead of Zl we could have used any z.,i> 3,
l

before. Hence we only have to deal with the case that

CZ2,z3'Zi) = (Y2'Y3'Yi) for all l. Obviously z = y

in this case. o

2.2: SL(n,'ll) acting on Grassmannians

The argument of 2.1 generalises to some other Grass-

mannians. Again we let r = SL(n,'ll) and G = SL( n ,JR) •

Proposition 1: All Hausdorff factors of the action of

SL(n,'ll) on Gk ' the Grassmannian of k-planes In,n
n-space, trivial if k <

nare 2'
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Proof: Let be a closed r-invariant equivalence

relation.
We consider as a subset of G x Gk,n k,n If

# diagonal we will show that ~ is all of Gk x Gk .,n ,n

We need a result of Dani:

Lemma: Let fl' ... ,fn-l be linearly independent vector's

In Then there exist linearly independent rational

vectors a, , ... ,a 1
j_ n- In (with respect to the

canonical basis {ei}), nonzero scalars Al,··· ,An_l in

JR and a sequence {y .}
J

In r such that

for all k = 1,2, ... ,n-l.

Proof: This is [Da lJ Corollary 9.8. Even though the

linear independence of the a.
]-

is not explicitly stated

it is contained in the proof. 0

Next recall the correspondence between k-planes and

simple products f 1/\ ... /\f k In /\ .k,n' by choosing a basis

for a k-plane we get a point in /\ k,n which is well

defined up to multiplication by a scalar. Conversely, each

simple product fl/\"'Afk determines the plane spanned by

fl,··· ,fk·
Suppose that P # Q but P rv Q where P,Q E Gk,n

Let .e = dim P n Q. Then we may represent P in /\ byk,n

nk < 2 we may apply the lemma to the product

rl/\.../\r,eAP1A'../\Pk-tAql/\'../\qk-e' We find Yi Er and

Since

planes Sand T such that
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y.(P) 4 Sand y.(Q) 4 T
1 1

as i 4 00

and such that Sand T are represented by rational

vectors. Since the rational vectors a. 1n the lemma are
1

rationally independent we see that dim(SnT) = t. Moreover

S rv T as is closed.
We claim that any two rational k-planes are translates

of each other under r: by 2.1 Lemma 3 a rational vector

al 1n a rational plane S given by al, ... ,ak 1S a
, translate of el (where {e.} 1S a canonical basis) .1

Assuming that S contains el we can replace a2,···,ak
by vectors in the span of e2, ... ,en' This starts an

induction after which S 1S glven by el,··· ,ek·

Applying this to our rational planes Sand T above

we may assume that S is spanned by el,··· ,ek, Let rO
be the stabiliser of S ln r. Notice that an element of

fa has the form:

.:~ "J':

k

The intersection T n S defines a plane In T. Any

element y of SL(k,~) embeds into rO by way of the

first quadrant in the matrix expression above, Hence with

T rv S we also have yeT) rv S by the f-invariance of rv,

By the note after 2.1 Lemma 2 SL(k,~) acts minimally on

any Grassmannian of S. As is closed we see that

S rv R where R n S is spanned by el'" "et' Let R be

spanned by el,··· ,et' Let S' be the
1

orthogonal projection of Sl onto the span of ek+l,·· .,en,



21

There exists a sequence Yn E ra of the form

k

~~a Y'
n

such that Ily~(Si)11-+ 00. Hence lim YnR lS spanned by

el, ..·,et, al, ..·,ak_t
get a plane B such that B

where Similarly, we may
lS spanned by e e1'"'' t'

b1' ._.. ,bk_~

Since

where b. = b ! and
l l

B AJ S.

SL(n-k,LZ) acts minimally on Gk-t,n-k we see

where u.
l

is any plane spanned by e e
1'"'' t'

lS a vector contained in the span

that S AJ U where U

of ek+l,· ..,en· Clearly, S AJ U if U intersects S In

an t-dimensional rational plane and if U lS transversely

orthogonal to S (i.e. U lS in the span of U n S and

ek+l,···,en ) . Since is closed and the rational planes

are dense we see that S '" U whenever dim S n U = e and
U is transversely orthogonal to S. Clearly we may allow
S to be an arbitrary rational plane and hence S ~ U

whenever dim S n U = e and U is transversely

orthogonal to S.
Next let Fl,F2 be two k-planes such that

dim Fl n F2 = k - 1. Then there clearly exists S that

has an ~-dimensional intersection with both Fl and F2

and is transversely orthogonal to both of them, Hence

S AJ F1,F2 and by transitivity Fl '" F2' Given any two

k-p1anes Fl,Fn it is easy to find a chain of k-planes

F., i=2,., "n-l such that dim Fi n Fi+l = k - 1. Hence
l

and is everything.
o
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Section 3. Nonminimalityof Lattices Acting on BoW1daries

Whenwe proved the nonexistence of factors of the projective

space in the last section, our main tCX)lwas to prove the minirrality

of SL(n,?l)
. n-l n-lactmg on JP x JP -diagonal. For a general boundary

B we cannot hope for the sarre for the stupid reason that not even G

acts minimally on B x B-diagonal: consider the Grassm:mnianof 2-

planes in n-space. Thenpairs of planes that intersect nontrivally

certainly are an SL(n~)-orbit.

This suggests the

Definition: Let reG be a subgroupand let X be a G-space. We

call the action of r on X G-minimalif all r-invariant closed sets

in X are G-ll1variant.

~vewill prove that no lattice acts G-minimallyon Gip x Gip

if P is a minimalparabolic. Themain idea is to replace closed

geodesics in the construction in Section 1 by compactflats. Weneed

to recall the georretric realization of Gip as "points at infinity"

of flats. -This material is from [Mo IJ and will be developed in

3.1-3.3. See also Chapter II, section 3.

3.1 Flats

Definition: A flat F in a globally symmetricspace H is a totally

geodesic subspace of H of sectional curvature o. In the follc:wing,

we assure that H =- G/Kis of the non-compacttype. Let 0 be a point

of a flat F such that K is the isotropy group of 0 in G. Then

F is carried over into a vector subspace of ~~ by the inverse of the

exponential mapsince F is totally geodesic. Since F is flat

F = ExpP' where;01 is an abelian subalgebra of ~ . In particular ,
. 1 flat corresponds to a ma.xi.rralabelian subalgebra of II;a ma.xJ_IPa 'J

the rank r of G is the maximaldimensionof a flat of G/K

and
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(cf. AS.4 Definition). Clearly, exp/:71 c G stabilises F. On the

other hand, let ~ be the stabiliser of F. Thenwe have:

Lerrrna 1: Thepolar part of each el.errerrtof ~ is contained in

exp,,,-,, which acts sirrply transitively on F. If F is rnaxinal then

~=norrna.liser (exppd. Let expp! = pol F, the pol.ar subgroup of F.

Thenap F -+ pol F is a bijection between the set of all maxinal

flats and the set of all n-a:xirralpolar subgroups.

Note: Wecall a subgroup H of G po Lar if h = pol h for all

h E H.

Proof: This is [MoIJ, Lerma 5.1. o
Recall fromA2.2 that Cartan subalgebras arise as centralisers

of regular elenents. In a similar vein, we define:

Definition: Wecall 9 E G polar regular if

dimcentraliser (pol g) s; dim centraliser (pol h)

for all h E G.

It is easy to see that g is poLar regular if pol g lies off

the walls of the Wey1 cha.rrbersin a rnaxinal abelian subgroupof sorre

exp r, '--"1 = l~ + er a Cartan decorrq::::osition. t-bre irrportant for us is

LermB 2: Let rank G = r. Then

i) a polar regular elenent of G is semisinple.

ii) a polar regular element stabilises a unique r-flat in G/K.

iii) if the polar regular elenent g stabilises the r-flat F

then centraliser of 9 stabilises F and acts transitively

on F. Moreover, q-x = (pol g) x for all x E F.

Proof: This is [Mo1J Lerrrna 5.2. o
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Thenext fact is a generalisation of the uniqueness of the

geodesic joining twopoints at infinity in negative curvature.

Lenrna 3: Any twomaximal, flats that are a boundeddistance apart

coincide.

Proof: This is [}b IJ Lerrma. 5.4. o

3.2 Lattices and CompactFlats

By G wewill always denote a oonnected semisinple group without

oompactfactors, of rank r. Let us first recall the

D2finition 1: A discrete subgroup r of G is called a lattice if

G/r has finite vol.ure,

Recall fromAl2 that r \G!K is a locally synnetric space if

r is torsion free. On the other hand, it is well knownthat any

lattice has a torsion free subgroupof finite index (cf. [Ra lJ,

Corollary 6.13). In this sense, this section is Cl direct generaliza-

tion of our investigations in 2.1.

Weare mainly interested in the existence of oompactflats in

r\G/K. Wefirst need the

~finition 2: Let 1\ (g) be the representation of g E G on the

exterior algebra of /\~.. Wecall g JR-hyperregular if the m:rrnberof

eigenvalues of modulus1 (countedwith multiplicities) is as small as

possib.Ie and -1 is not an eigenvalue of 1\ (g).

lerrrna 1: Every JR-hyperregularelerrent is polar regular.

Proof: This is Remark1.2 of [Pr-Ra lJ. o
Moreimportant is

Lenma 2: If r is a lattice in G and Y E r is R-hyperregular

or if r is cocompactand y regular then
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centraliser '(/centraliser '( n r is canpact.

Proof: If G/r is not compact, this is [Pr-Ha] Theorem1.14. If

G/r is conpact, this is [t-b IJ LeIT1!T1CI 8.1. Notice that we don't need

any assumptions on '( in the latter case. o
f -,

The existence of JR-hyperregular elerrents in r lS established

by Mostow. In fact., we get the stronger

Proposition 1: The set of r-ca~act r~flats in G/K (i.e. flats F
such that r \ r .F is compact) is dense in the set of all r-flats in G/K.

Proof: This is [MoIJ lenma 8.3' or Chapter II I Section 3 of this

thesis. o
Clearly r any compact r-flat in r \G/ I~ is covered by a torus.

Hence r contains abelian subgroups of rank r. In rrore detail, we

have the

proposi tion 2: a) If '( E: r is :m.-hypcrregulart then centraliser '( n I'

coni.a ins cU1 i:l!x:Lic111 sUD<jrOLJpof rnnk r and fini. t.c Lndox ,

b) My abelian subgroup of B semi.s.irrp'l,e elerrents of r has rank

at rrost r. Anysuch group contains an JR-hyperregUlarelerrent. In

fact, all elements areJR-hyperregular except for those lying in a

fini te union of subgroups of rank less than r.

proof: 1nis is [MoIJ 11.11 and 11.2'. o
3.3 '!he MaximalBo1IDdaryfran a Geometric Point of View

The gearetric boundary of a Euclidean space is not very interesting

as the geodesics joining tw::>pcd.rrts at are not unique. M::')reoverI any

blO such geodesics differ in only a trivial way as they are parallel.

In a higher rank globally synmetric space H l.B have flat s . Wewould

like to replace the geanetric boundary of H by a smaller bourdary that

reflec.ts only the nan-Euclidean aspect of the gearetry of H.

Given a maximalflat F and a geodesiC ray c(t) l.B have 'zones of

stability' U c F (00) I ct=) € U in the following sense: Let F I be a secorrl
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flat and suppose that for sore ray Cl (t) c FI we have Cl (co) a: C(co} •

Then for any cl (t) c F with cl (00) € U there is a cl (t) c F' with

cl (00) :0: ci (co). l-breover, d(cl (t), ci (t) + 0 as t + 00 for a suitable

clnice of ci (t). Trese "zones of stability' are precisely the points

at co of th: various open Weyl chaml:ersof F (recall that F == Exp ,Pt so

that wemay call tl:e exponentials of the Weyl chamJ:ersof lJ the Weyl

chamber's of F). Hence, 't'..e may identify these Izones of stability I to

one point and forget about the points at infinity of the walls of the

Weyl charnb:rrs.

On the basis of trese consdderataons , \'.'e make the following

Definition: Wecall the exponentials of the open (closed) Weyl

chanbers of a rraxirre.Ipo.Larsubalgebra? the open (closed) WeyL

chambers of F == Expp. Wecall two \oleyl chambers C,C I of flats

F,FI asymptotic if they are only a finite distance apart. Welet

Xo be the collection of Weyl chanbers rrodulo asymptotici ty . By

[ C J r we will denote the equivalence class of a chamber C •

LorTOlU1: Wehave Xo == GIP where P is a minimal parabolic.

Proof: This is [Mo IJ Lerma 4.1. o

Naturally, Xo no,.; carries the topology of the horroqeneous space

Gip. One nuy describe it geometrically as a Icone topology': let

P == H·A·N be a Langlands decorrq:osition. Then Gip == KIM. Let
+

o == 1·K in G/K. Then any charroer C is asynptot.i,c to a uni.que

charrber C! that passes through 0: as G =: K·P (imrediate from

+ +G == K·A·N and p.= M·A·N) K acts transitively on Gip. Hence,

we rray assume that P s+ab.i.Li.ses CC]. pick g E: G such that g.C

-1contains O. Write 9 == k-p, Then k gC = p·e is asyrrptotic to C

and contains O. Given two chambers C,CI corrta.irunq 0 there is

m E: K such that m·C' == C. Since m'[C] = [C], ms P hence m E: M

where P =}1AN is the isotropy group of [CJ. Therefore I m leaves
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C = A 0 invariant and C = C'. For two asymptoty classes [C1],
[C
2
J let C

l
,C
2

be the representatives containing O. Wemay

talk about the "angle" C
l
,C2 subtend at O. Clearly, writing

C2 = kC2 for k E K this angle is srrall iff k·M is close to

l·M in K/M.

Recall the notion of Hausdorff distance: Let X be a metric space,
A,B c X subsets. Thsl

hd(A,B) = inf{u ~ 001 for all x E A there is y E B

such that d(x,y) ~ u and for all y E B

there is x E A such that d(x,y) ~ u}.

Let S be a geodesic ray in the closure of a chamber C of

a flat F. Under the exponential map S corresponds to a vector v

in the maximal polar subalgebra pi such that eXJ?f;'\=F. Let 0 be

the set of all those roots that vanish on v and let P (S) be the

parabolic' containing P defined by 8 (where P stabilises [C]).

Then we have the

LermB. 2: For S a geodesic ray and g E G. Then

a) hd(S,gS) < 00 iff g E P(S) .

b) d(S,g3) = 0 iff g E R P(S).
u

c) If S' is another geodesic ray, then

hd(S,S') < 00 iff SI = gS and g E P(S).

Proof: These are Lerrma 7.1 and 7.2 of [Mo 1]. o

Notice that this implies our claim above on "zones of stability I :

As indicated, we let the U. be the points at infinity of the open
l

Weyl charroer s , Since any two flats are translates of each other,

F' = q-F (cf. 'AS.2 Proposition 1). If ex and a' are asyrrptotic,

\
ex= 9 ·ao for go E P(ex) by Lerrma '2 . Since ex lies in an open Weyl

charrber P (a) = P is minimal. Also, g can be taken to be go

since ex is regular. As 13 lies in the same Weyl charroer P = P (13).
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So gS lies a finite distance apart from S and also

gS c F'.

Note: It might be interesting to try to understand "zones of stability'

for artibrary Hadamardrranifolds and to try to define a smal.LerI rrore

nanageable boundary as above.

3.4 TheNonmininality

Unless otherwise stated, G will be a connected semisinple

group of rank r without corrpact factors, reG will always be a

lattice. Let M be the locally syrnrretric space r\G/K' The maxirna.I

boundary B = G/p will be interpreted as the collection of asymptote

classes of rraximal.flats in G/K. ~\lewill construct a r-invariant

closed set E in B x B that is not G-invariant.

To find E, we pick a compactr-flat F in M and a lift F

of it in G/K such that F is stabilised by an JR-hyperregular

elerrent Y E r (cf. 3.2 ProPJsi tion 2). For each chanber C of F,

let P be the parabolic stabilising the asyrrptote class [C] of F.

Fix C and let V be the charrber opposi,te to C. Let E be the

closure of the f-orbit of the pair ([C]/[V]),

The next lerrna generalizes the visibility property to the higher

rank case:

Lerrma 1: My two points Pl,P2 E B can be "joined" by a maxirra.l

flat F. Morepreci.se.ly, F has charrbers Cl/C2 such that

[C.] E p .. If Cl and C2 are oPfOsite cha.TI'bersthen F is the
1 1

unique flat joining PI and P2'

Proof: Let Pl,P2 be the isotropy subgroups of Pl,P2 and

choose an x E G such that P2 = x-~lx. Write x = p' 'W'P as in1 1

the Bruhat decomposition for PI and a rraxirna.L polar subgroup A
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of P (wemayassurre that Pl is a standard parabolic for A) ,

As normalises A, the polar subgroup AI -1 is containedw = Pl API

both in PI and P2, Clearly, both PI and P2 are standard with

respect to AI, i. e" there are charrbers eland c2 of AI such

that P1 and P2 are the associated parabolic subgroups,

Let eland c2 be opposite, L,e" for sorreorder of the root

system Cl is defined by the positive roots and C2 by the negative

roots, Hence, P1 and P2 are oppositeparabo.Li.cs , Wesee that

being opposite is an intrinsic property of the points at infinity,

Al.so , Pl and P2 intersect in their corrrronLevi subgroup L. Let

L = M·A be the decomposition into the compactand split parts (cf.A

10.3). Then A is the polar subgroupcorresponding to the flat F.

As any other flat FI joining Pl and P2 represents Pl and P2

by opposite charrbers, A also is the polar subgroup corresponding to

Fl. By 3. 1 Lerrma 1, F and FI coincide. o

I..enm:l. 2: G acts transi ti vely on pairs of opposite points in G/p •

Proof: Let (Pl,P2) and (ql,q2) be pairs of opposite points. Let

F1 and F2 be the unique flats joining them. As any two flats are

translates of each other (cf.A 5.2 Proposition l(i))~ there is

g E: G with gF
l
= F2. Then (gpl,gp2) are pairs of opposite points

joined by F2' Use an elerrent of the Weylgroup to translate

(gpl,gp2) to (ql,q2) and recall that it has a representative

in G. o

Lerrma 3: There are only oountably many pairs of opposite points in

Proof: First, note that the flat joining opposite points depends

continuously on these points: let (r ,q) and (r I,q 1) be pairs of
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opposi,te point.s close to each other. Then there is g E G close to

the identity such that gr = r'. Clearly, if F and F' are the

flats joining these points, g-~' is close to F' and we nay assurre

that r = r-'. There is g' close to 1 in G such that g"q = q'.
I I

Deconpose g' = PlWP2w. as in the deconposition G = U PwPw· with

respect to the Weylgroup of the flat F (derived from the BruhRt
I

decomposition A 10.1) ,where w· is the element of the Weyl group

that sends the positive roots to the negative root;s, One sees that

I
W = w· since otherwise g' q cannot be opposi te to r , Since

I I - -w·Pw·= P, the opposite parabolic, g' E P·P. The map P x N -+ G

given by (p,n) -+ p' n where N- is the nilpotent radical of P is

injective, open and continuous (cf . [WalJ, the proof of proposition

1.2.3.5). Hence, g' = p·ri with p close to the identity. As

q' = g' q = P'q, we see that p-F is the unique flat joining r to

q' and p·F is close to F.

Suppose there are uncountably manypairs of opposite points in

E. Then there is a nonconstant sequence of such points (xn'Yn)

ronverging to (x,y) E E where x and y are opposite. Let F

be the unique flat through (x,y) and F the flat through (x ,y ).
n n n

By the above, F -+ F. As all the F rover the ccrrpact; flat F
n n

in M, so does F. pick a poinWin F and a fundarrental set F .for

r rontaining p. As F -+ F, F n F is open in F for big n.
n n n

As F and P project to Ft we see t."'1at F n F = F n F is open
n n

on F. By analytici ty of F and F, it is clear that F = F .
n n

This is the final oontradiction. o
Lemrata 2 and 3 shONthat E is not G-invariant. By ronstruction

E is closed and r-invariant. Hence, we have ShCMmthe

Proposition: Let G and r be as above. Then r does not act

G-mininB.llyon GIP x Glop for P a minirral parabolic.
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Chapter II

Section 1. The Geodesic Flow on Locally Symmetric Spaces

We will describe the geodesic flow ~t on locally

symmetric spaces in algebraic terms. This is originally

due to Mautner in [Ma IJ. Then we calculate the topological

and the metric entropy of ~t and show that the Liouville

measure is a measure of maximal entropy for ~t on each

ergodic component. This extends a result of Bowen

I (cf. [Ba IJ, Theorem 3.1) in the rank one case.

1.1: The Action of G on the Unit Tangent Bundle of a

Globally Symmetric Space

The decomposition of the unit tangent bundle TICH) of

H = G/K by orbits of G as well as the appropriate

decomposition of the Liouville measure are developed. We recall

that every globally symmetric space H looks like G/K

where G is semisimple and K lS a maximal compact

subgroup of G. Henceforth we assume that G does not

have compact factors.
Given a point (g. K,X) E Tl (H) we can translate it

by g toO = 1 • KEG / K . Let (g. K, X) = g • (0,Y)

for some YET 1 0CH). Recall from A1L.lthat we may identify
,,*'_; ut\~ ~""- lP, Ot)withr p where 9 = k + p is a Cartan decomposition.

Let a be a maximal abelian subalgebra of p. Since K

stabuises 0 and p = AdCK) . & by AS.2 Proposition 1

we may translate (O,Y) to CO,Hl) by some k E K where

HI E a. Since the Weyl group W of the pair (g,a) acts

transitively on the Weyl chambers (cf. A6.3 Theorem 1) and

Slnc each element of W is represented by an element of

K (cf. AB.6) we may translate (O,Hl) to some (O,H)
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where H lies ln the closure of the positive Weyl chamber

for some fixed order of the root system of (g,u) (recall

that a Weyl chamber C is called positive if all positive

roots take on positive values on C). This representation
. .lS unlque: Suppose the contrary and let g(O,H) = (O,H')

where both H and HT lie in r. Hence g E k as g

fixes 0 and gH = H'. By AB.G ,Proposition 2 there is a

w E W such that wH = H'. By A6.3 Theorem 1 each W-orbit

meets ~ exactly once and H = ~'.
We summarize .this discussion in

Lemma 1: The elements ~1. of norm 1 ln the closure of the

positive Weyl chamber C viewed as a subset of the unit

tangent bundle at 0 is a fundamental set for the action

of G on T IH , l.e. each orbit of G intersects (;1

exactly once.
Next, we describe the Liouville measure ~ on TIH

ln terms of the Haar measure on G and see how ~ decomposes

under the action of G.

Wefirst descril::e the canonical metric on T1H :

Let JT:'l\H + H be the projection ard KTI'H + THthe connector nap

for tie Riemannian connection on H. Then the canonical netric on

TH is given by <~,n> Ie <d7T~d'fl1\>+ <Ks,Kn>. 'I'he canonical metric on,
T 1. H is given by restriction.

Nowwe define ~ Liouville measure 11as the volume induced by this

mull:"Ic, Lot, us nolo thaL p is invariant: urdcr Lilo ljccilc!:31cflow tilt

intrcducErl in the next section (cf . [Besl], p. 51 am [Bel], pp. 161 ff) •

As the carorucal. metric is invariant under do for any isometry ~ of H
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it is clear that u is invariant urder the action of Gon T1H. Finally

~ can write du :: do 0 ax wrere do is the eamnieal measure of the unit

sphere T 1 in the Euclidean space T H with the rretrie given by the0, 0
Riemannian metric on H (ef. [Besl] p.52) .

To decompose ~ along the orbits of G we first

normalize Haar measure on the orbits:
On the Lie algebra g we have a canonical positive

definite metric defined by

{ ,

(this J_Sclear Slnce for X = Y E It BeeX,X) - -B(X,X) > 0

and for X = y E p BeeX,X) = -B(X,-X) > 0 (cf. AB.3

Proposition 1) . On G we can normalise Haar measure by

requiring that the volume of a hypercube determined by an

orthonormal basis with respect to Be have measur~ 1.
.Ioc sn 't depend 011 the choice 0(' or t honor-ma I hasis ~;iJlcC orLho>

This

gonal matrices have determinant ±l. One can check that this

is also independent of the choice of Cartan involution e
(basically since any two Cartan involutions are conjugate).

On the orbits themselves we simply choose the Haar measure

that comes from the normalised llaar measure on G. We

denote the measure on the orbit of H E ~ by ~H'

more, we let ~ be Lebesque measure on a restricted to

Further-

Since and ~ are all smooth measures we canfL , !l°lI

decompose ~ into

fl =

where fCH) lS smooth weighting function.
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Without further work we get

Lemma 2: Measure theoretically, TIH splits into a direct
product

=

where M = centraliser of a In K.

Proof: With respect to Lebesque measure the open Weyl

chamber C has full measure in its closure. For H E C
the isotropy group of (10K ,H) E TH is the centraliser

H n K. Clearly,

centraliser H = a
9 + a + 11t = a + 11t

aU:
a(H)=Q

(cf. A8.3 Proposition) where ~ is the root system of

Cg,a). In particular, the isotropy group of (loK,H) is

M and our claim is clear. o

Now we determine the weighting function f(H) explicitly:

Lemma 3: Up to a constant mUltiple

fo-n = IT a(H)
a E¢+

where ¢+ are the nonimaginary positive roots (cf. A7.1).

Proof: We first decompose ~ along the fibers of the unit

tangent bundle over H:

= J ~ dx
H x

where dx is the Riemannian volume on H and lS the

fiber measure.



Since du IC do 0 dx we see that 111.Kis the Rianannian volume on T1,1.K II: P

given by restriction of the Cartan-Killing farm B to the unit sphere

Now consider the decomposition of r H"1 into orbits

of G. On Tl l'KH = p this induces,
into K-orbits of P. We claim that

the decomposition
iJ.1::: J fCH)iJ.lH )l

"C- '
1

dA.(H) iJ.lH, 1S Haar measure on the K-orbit through
(l·K,H). Again we normalise iJ.1H by comparing it with,
the Cartan-Killing form. Note that the Cartan-Killing
f onm of It 18 the r-e stri.ct i.on of the Cartan-Killing form
on 9 to It.

Indeed, we do have iJ.l= J~ gCH)iJ.l,HdX(H) for some
1

weighting function g(H). Hence

-,
I
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=

=

because by our normalizations ~H = J x*C~l H)dx. We deduce
H '

that gCH) = fCH) and derive the following description: The

weighting function f(H) lS the volume of the orbit

AdK(H) in the Euclidean metric on p defined by the

Cartan-Killing form B.
We have the following commutative diagram where Exp

is the exponential map: p = Tl.KH ~ H in the

differential-geometric sense ,wei CX]J: U > r, l ,; I:1]('

exponential map from group theory: For H E ~

p
Exp__ ..;:;..:.;..I_;;__ ~) G I K

r Exp 1
AdK(H)---- K • exp H . K/K.

This allows us to compute the volume of AdK(H) from

the volume of K exp H . K/K (Lemma 5) and knowledge of
~the derivative of the exponential map (Lemmata 6 and 7).

Lemma 5: The volume of K· exp H • K/K is (up to a constant

independent of H)

m(exp H) =
-a(H)e =

card ,I..'1'+
2 IT sin h a(H) .

aEcf>+
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Proof: This lS clear from the formula:

=

where f lS a continuous compactly supported function and

dG(x) and dk are Haar measures on G and K respectively.

This can be found in [Wa IJ, vol. 2, 8.1.3.1, p. 68. Of

course one only has to check that the measure defined by

this formula is G-invariant. The commutation relations

I account for the m weighting function. o

Lemma 6: The differential of the exponential map Exp is:

dExp =x

00

\' 1 2nldr Ce xp X)l-K' L (2n+l)!(adX) "n=O r

where 'reg): H ~ H is the mapping xk ~ gxk.

Proof: This lS [He IJ, Chapter IV, Theorem L~.l. o

Now we can calculate the determinant of dExPH'

H E tt, with respect to the Riemannian volumes determined

by the Cartan-Killing form B on both p and TH.

Lemma 7: det dExPH
sin h (a (H))

a(H)

Proof: Since left translations on Hare isometries

1 1 d t ~ 1 (adH)2nl
p
' Insteadwe have to ca cu ate e L (2n+l)! -

n=O

we complexify and calculate
00

\' 1 (adH)2nl'
L (2n+l)! "If'n= 0 r IJ.,

p~ we have the decomposition (cf. A8.S Proposition)

det For

= Q:(X -ex ).a a,
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which lS the elgenspace decomposition for 2(adH) : namely,

(adH)21 = 0
<tre

2 -ex ) 2(adH) (X = cGl ) ex - x ).
a a a a

because H is fixed by e. Now the lemma is obvious. 0

In particular we see that this determinant lS constant

along AdK-orbits. By change of variables and Lemmata 5

and 7 this finishes the proof of Lemma 3. 0

1.2: The Geodesic Flow
We describe the geodesic flow on a finite volume

locally symmetric space in algebraic language. It turns

out that the ergodic components are given by the G-orbits

on T1H. Most of this is due to Mautner in [Mau lJ. Mainly

we parametrize the ergodic components differently and deal

with the case of a reducible lattice in all detail. First

we recall the definition of the geodesic flow for an

arbitrary Riemannian manifold M. We will ,not explain any

of the standard terms of differential geometry (cf. [He lJ,

[Ko-No lJ). Let (x,X) E T1M. There is a unique geodesic

a passlng through x In the direction of X. In terms

of the exponential map Exp : T M ~ M a lS given by
x x

Exp tX. Moreover, this glves the unit speed parametrization

of a . Now we can define the geodesic flow (j)t by:

=

It is clear that (j)t(x,X)E T1M again.



Now consider a globally symmetric space H = G/K as

above. We assume that H does not have any flat or compact

factors (mainly for simplicity of the exposition). For

H E Cl we calculate the orbit of the geodesic flow through
dCO,H) E T1H: By definition ~t(O,H) = (Exp tH, ds Exp SH!s=t)

where Exp = EXPloK: P ~ H. Using the chain rule and 1.1

Lemma 6

d
ds Exp SH!s=t = dExP..LH(-~( sH) ! )

L ds s=t

00 (ad-l:H)2n
(2n+l)! (H)= = d-rCex p tH)O 0 I

n=O

=

As drd exp tH) 0 lS the action of exp -I:::H on T111

restricted to the unit tangent space at 1· K we finally

arrive at the

Lemma 1: ~t (0,H) = (exp tH) (0 ,H).

As a corollary of this we have the

Lemma 2: The geodesic flow fixes every G-orbit on TIH.

Moreover, if we write G(O,H) = G/Z(H) n K as a

homogeneous space where Z(H) is the centraliser of H

the geodesic flow on G(O,H) lS given by:

gCZ(H) n K) rr g exp tH(Z(H) n K).

Proof: For any manifold M the geodesic flow ~t

commutes with the differentials of isometries of M as

is obvious from the definition. Let (x,X) lie on the

G-orbit of (O,H): (x,X) = g(O,H) for some g E G. Then
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<Pt (x ,X) = g<P t(0 ,H) = g • (exp tH ) • (0, H ) 1iesin the same
orbit. This formula also proves the second claim of the

lemma. o

Now we want to study the geodesic flow on locally

symmetric spaces M of finite volume. Recall from A12

that the universal cover of M is a globally symmetric

space H = G/K. In fact, we can write M = r\H where

is a torsion free lattice In G.

Let p: H ~ M be the covering projection. Then it

lS clear that p intertwines the geodesic flows on T H
1

and TIM. Also TIM = r\TlH is flfoliatedflby the

G-orbits on TIH factored out by r on the left (as the

dimension of the G-orbit changes as H E Cl moves out to

a wall this is only a foliation with singularities). The

leaves are r\G/Z(H) n K. In particular, all the leaves

geodesic flow acts on

TIM of finite volume. As the
G/Z(H) n K by right transla-

M<Pt of M

are smooth submanifolds of

tions (Lemma 2) we see that the geodesic flow

restricted to r\G/Z(H) n K acts by

<p~(r. g. (Z(H) n K» = r· g . exp tH • (Z(H) n K).

At this point Mautner proved a lemma on the ergodicity

of the geodesic flow on most of these orbits. Later on

C.C. Moore generalised this so called Mautner's Lemma to the

Theorem 1: Let G be a non-compact connected semisimple

group with finite center but w it hou t compact factors and

let r c G be an irreducible lattice (cf. A12) . Then a

subgroup H of G lS ergodic on ~G iff H is not compact.
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theorem then becomes an obvious corollary (cf. also [Zi 2J,

the discussion of Theorems 2.3 and 2.4.). o

Proof: The easiest proof of this theorem is in [H-MIJ.

There one first proves that for any unitary representation

of G the "matrix coefficients vanish at infinity". Moore's

We want to apply the preceding theorem to our situation.

For simplicity we assume first that l' is irreducible in G.

Let H'itt: 1'\G -+ 1'\G be right translation by exp tHo By

Lemma 2 we obtain the commutative diagram:

'ljrH
t---_..:;.--_ r \ Gf\G

i <pM
t

1
f\G/Z(H)nK f\G/Z(H)riK .

By Moore's theorem is ergodic, in particular <jlt on

r\G/ZCH) n K is also ergodic with respect to Haar measure or

conditional Liouville measure.
In general we decompose I' into irreducible lattices

as in A12, Proposition 3. As 1n the proof of Lemma 3
we may assume that G 1S the adjoint group. In particular,

G = nG. is a direct product of adjoint groupS and w.l.o.g.*
1

f = nr. where I'. = fnG. (cf. A12, Proposition 3). We111
see that M = nM. 1S a Riemannian product of the spaces

'1

M. = 1'.\H. where H. is the globally symmetric space
111 1

into a sum H =
G.. Furthermore, any H E ~ splits up
1nI H. where H. belongs to the positive
i::l 1 1

associated to

Weyl chamber or its closure of some G .•
1

Hence G( o,H) =

*as any f lies in between special f's all our claims follow
easily from the special case.



44

If all the H. t 0
l

then <Pt restricted to

r.\G·(o,H.) is ergodic for all t by Moore's theorem. The
l l l

ergodicity of all single transformations of a flow implies

the weak mixing of the flow as is clear from spectral

theory: By [Fu IJ Theorem 4.30 weak mixing lS equivalent

to the non-existence of eigenfunctions. If f is an
eigenfunction: <Pf ~ e2rriAtf then f is invariant under

't

and hence constant. By [Fu IJ Proposition 4.4 any<PI
A

product of <Pt restricted to r.\G.(o,H.)
l l l

with an ergodic

flow is ergodic. Hence all G-orbits G(o,H) with none

of the H. = 0 are ergodic components.
l

If some H.
l

are o write G ~ G X G'o where the

Go-component of H is 0 and G' is the product of the

remaining factors. Then the previous argument applies to

the G'-factor. As right translation by exp tH doesn't

affect the GO-coordinate it is clear that the G-orbit of

(o,H) splits up into G'-orbits each of which is an ergodic

component.

We may summarize this discussion as follows:

.. n n
Theorem 2 (Mautner) : Let G ~ lTG. , r .. lTr. as above.

i~l l . 1 ll~

for any H E Cl such that no H. ~ 0 rxc: o,H) is anl
ergodic component of <Pt' If some H. = 0 write

l

G - G x G' as above.- 0 Then all r :\G' (gO· k ,H) are

ergodic components for <Pt where go E GO is arbitrary

and r' is the intersection of r with G'.

Corollary: Almost all G-orbits on TIH are ergodic

components of <Pt'

Proof: Obvious. o
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1.3: Lyapunov Exponents and Entropy

We will calculate the Lyapunov exponents of the

geodesic flow and determine the metric and topological

entropy. In more detail, we first recall the definition

and fundamental properties of the Lyapunov exponents of a

flow. We introduce Jacobi fields and relate them to the

double tangent space. This reduces the calculation of the

Lyapunov exponents to the determination of the asymptotic

~ exponential growth rates of the Jacobi fields. These

growth rates define a filtration of the space of Jacobi

fields. To determine it we use a suitable basis of the

Jacobi fields given explicitly in terms of the root system.

From this and the general properties of the Lyapunov

exponents we can then calculate the metric and topological

entropy. In particular, this will prove that the Liouville

measure is a measure of maximal entropy on the ergodic

components.

We first recall the definition of the Lyapunov exponents

of a diffeomorphism or flow on a compact manifold N. We

fix a Riemannian metric on N. As will be clear the

Lyapunov exponents are independent of the metric we choose.

We let II II denote the norm induced by the metric on each

tangent space of N. Then we have the

Definition 1: The upper Lyapunov exponent for a 1C -flow

<Pt on N lS the function +X : TN -;. JR defined by:

+
X (v) =

The upper Lyapunov exponents have the following
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properties:

a On each tangent space T N there are at mostx
dim N many values of +X ,

< XrCx) (x ) .

b There is a filtration

= T Nx

glven as follows:

if vEL. (x)\L. lex)l l- then +X (v) = x . (x ) .
l

We call the X .(x) the upper Lyapunov exponents of
l

~t at the point x and say that Xi(x) has mUltiplicity
dim L. ex) - dim L. 1(x ) .

l l-

c Let ~ be a ~t-invariant probability measure.

Then for ~-almost every point x the

t.-roo

exists for all vET N.
x

For such an x we simple speak of the Lyapunov
exponents at x.

Moreover, for ~-almost every x the Lyapunov

exponents z .ex)
l

of the inverse flow ~_t(X) are simply
-Xr(x)_i (x) with the same multiplicities.

d The upper Lyapunov exponents are measurable

functions invariant under In particular,

if ~ lS an ergodic ~t-invariant measure then

the Lyapunov exponents are constant ~-almost

everywhere.
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e (Pesin1s entropy formula). Let X(x) =

I X.ex)(dim L.ex)-dim Li_lex» be the sumX.(x»O l l
l

of the positive Lyapunov exponents. Then the metric

entropy for any 2C -flow and any

smooth ~t-invariant probability measure ~ is

given by:

=

f For any 1C -flow and any lilt-invariant

probability measure ~ we have

This was first due to Margulis for the case of a

smooth measure. Then Ruelle gave this generaliza-

tion in [Ru IJ.

General references for this material are [Pe 1,2J
and [M 1].

In the case of the geodesic flow the most convenient

way to calculate the Lyapunov exponents is to use Jacobi

fields. We recall the

Definition 2: A Jacobi field Y along a geodesic

a vector field ~long c satisfying the so called Jacobi

C. lS

equation

= o

where X = G.et), is covariant differentiation along c

and R lS the curvature tensor.
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Note: Geometrically, Jacobi fields come about by variations

of the geodesic c, i.e. let s
C be a one-parameter

family of geodesics such that oc = c . Then

yet) = d~ cSCt)!s=o lS a Jacobi field.
Let v E TM and let c be the geodesic on M defined

by v. Then we have an isomorphism between T (TM)
v

and

Jacobi fields along c as follows: for any Jacobi field

yet) along c let t; = (v,Y(O) ,Y'(O» be the corresponding

~ point in T (TM).v Moreover, one finds that

!ld<r-l:.(~) 112 = IIY(t)112 + IIYI Ct) 112.

(cf. [Eb 3]).

In the following we will mainly consider Jacobi fields

perpendicular to c as we are only interested in the

exponential growth rate of d~~(~).
For locally symmetric manifolds we can write down the

Jacobi fields explicitly. Recall that we can identify

the tangent space at the identity with p where

9 = k + p is a Cartan decomposition. We first have to

describe a basis for p in terms of ~he root structure.

Recall from A7.4 that the real structure of 9 induces an

automorphism 0 of the root system ¢ of The

Cartan involution e induces another automorphism of ¢
given by

e .a CH) = a(8H) for H E ij~ where 4 is a

Cartan subalgebra of 9 as in 7.4. Then we have the

Lemma 1: Let ¢+ = {a > ola t a
8
} and

¢ = {a > ola = a8} (cf. A7.l). Then the following

properties hold:
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(i) If a E cP+ then 9
-a E cP + and

(ii) If a E cP then 9
a = a,

o
a =-a and

a -a
g + g C R(C.

Given a Weyl basis X ,a E 1> for !Ja: we let
a

0X = k X for k E tt.
a a 0 aa

Lemma 2: We choose E E a for E that satisfycan !J a ¢
a

the properties:

(i) [E E ] = Ha' -a a

(ii) If 0 then sucha = a aE = E E !J. We call
a a

a root real

(iii) If and 0 then Ea E rP+ a ;fi a aE =a aa

Proof: Let 't" be the complex CO"}\.l'j~+:on ovex the compact

real form u = It + ip. Le-t X be a Weyl basis with
a

respect to '[ , 1.e. 'LX = -X (cf. [VJa IJ, vol. 1, p. 25) .
a -a

Since 9 = a'L = 't"a we see that k = k
a -a

Next notice that Ik I = 1 for a real since
a

X
2 a(k X ) k k X= o X = =

a a a a a a a

Then for real let E (C such that 2 k and leta a a =a a a

Then 2 k by the above. For reala = a a = a.-a a -a -a

let E = a X Then (i) and (ii) are clearly satisfied.
a a a

If E f:-
a then 0 a positive root bya ¢+' a a a 1S

Lemma 1. We may let E -- X E = X E = oXa a' -a -a' 0 a'
a

[E ,E ] = a[E E J = aH = H and
0 0 a' -a a 0

a -a a
E = oX Then

o -a
-a

(i) holds true. o
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For a E ~+ let

T = (E + aE ) - 8(E + oE ) .a a a a a

and

W = iCE - aE ) - eCiCE - aE )).
a a a a a

It 1S clear that W = 0 for a real and that T
a a = T a

a

and w = Wa aa
correspondence with the set of pairs

In particular the non-zero T ,Ware 1n
a a

a
(a ,a ),1-1

a E ~ +'

Lemma 3: For all a E cb + both T E p
a

and W E p.
a

Moreover, the set {T ,W Iw non-zero}a a a
1S linearly

independent over m and together with a generates p:

p = Cl + cmT + mw ).a a

Proof: To see that T E P we have to check that
a

Ca) aT = T this is clear since ae = ea
a a

and

Cb) eT = -T this is obvious.
a a

The same remarks apply to W .a

By Lemma 1 the T ,\!J are linearly independent if
a a

T' = CE + aE ) and W' = iCE - aE ) are linearly
a a a a a a

independent (since these are the projections of T ,\!Ja a

to a
!J ). Any dependence between T'

a
and W,

a
clearly

0,>0
1S of the form: aT' + bW' = 0

a a
for some particular

a E cb+. It is obvious that there 1S no dependence over

F.
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Recall from A8.S that

Pa; = (la:: + I cr(E - eE ).
aEc/l+ a a

As T iW = 2(E - eE ) and T + iW = 2eE E )
a a a a a a (J 0-a a

the last claim becomes obvious. o

Now we can describe a canonical set of Jacobi fields.

As always let a be a maximal abelian subalgebra of P

contained In 11.

Lemma 4: Let H E a. The space of Jacobi fields along the

geodesic Exp tH admits the following basis:

T et) a(H)t
= exp(tH)~(e T )a .. a

T (t) -a(H)t= exp(tH)~(e T )-a .. a

et) a(H)tW = exp(tH)~ee W )a .. a

W et) ) ( -a(H)t= exp(tH * e Wa)-a

= exp (tH),',(H~)

= exp (tH),',(tH~ )

where the indices with

a E ¢+ as above and the ~ are a set ~ of simple roots

for the root system E of the pair (;,a) (cf. A7.4).

Proof: First we check that our vector fields are Jacobi

fields. We only check T -a and H_~ as the others are

perfectly similar:
First recall that parallel transla~ion along Exp tH

lS given by eexp tH)*. This is [He IJ Chapter IV Theorem
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3.3 (iii). Then for any curve Z(t) E p we claim that

=

In fact, from [He lJ Chapter I Theorem 7.1 we see that

«exp tH),~Z(t»' /t=s = 1lim t.t«exp(-6t H),,:(exp(s+6T)H),,:Z(S+6t)
6t-+O

=

lS

a Check of the Jacobi equation for T (t):-a
By the above covariant differentiation gives

(T )"(t)-a =

To evaluate the curvature tensor we recall Theorem 4.2 from

[He lJ, Chapter IV:

Lemma 5: At the point 0 E G/K and X,Y,Z E p we have

= -[[X,YJ,ZJ.

In our case we find that at the origin

= -[[H,T J,HJa = 2-a(H) Ta

This is clear from the definition of T a
and Slnce H

fixed by both
tH

(e )~:

er and e. Since tHe lS an isometry

commutes with the curvature tensor. As T (0) = T-a a
we get

= -a(H)2T et).-a

Comparison with the expresslon from the covariant

differentiation proves our claim.
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b Check of the Jacobi equation for H_pCt):

Clearly we have

(H )"(t) = exp (tH) ~':(°) = °-p
On the other hand,

= -CCH,OJ,H] = °
as is o . Our claim is clear.

That the given Jacobi fields are linearly independent

is clear from Lemma 3 and the obvious fact that the H~ Ct )

and H_~ (t) are linearly independent.

Again from Lemma 3 it is clear that the dimension of

the space generated by the given Jacobi fields is

2 • dim p = 2 dim H = dim T(O,H)TH = dim{Jacobi fields

along Exp tH}. o

Now we can calculate the Lyapunov exponents of a

Jacobi field and determine the filtration they define

Lemma 6: Let J(t) be a Jacobi field along Exp tH for

H E C, the positive Weyl chamber. Then

J(t) =

where the indexing lS as above. Let aJCH) be the biggest

of the numbers {aCH» la as above}. Then the Lyapunov

exponent of J(t) lS
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aJCH) if aJ(H) > 0

x+(J)
0 if aJeH) < 0 and some

=
< ~ t 0

aJ(H) otherwise.

Note: By the Lyapunov exponent of a Jacobi field J we

mean the Lyapunov exponent of the corresponding vector ~ In

Proof: Recall from our discussion of Jacobi fields that

where l;

IIJ (t) 112

corresponds to J In T(O,H)TH. To calculate

and IIJ 'Ct ) 112 notice that any two and

Wa'W~ are orthogonal
a

(~ t a,a ) since this is true for

the Ea,E~'s with respect to the Cartan-Killing form

(cf. A3.2 Theorem (ii». For a given a we have

11im f log IIa T (t ) + b W (t )IIt~oo a a a a
= lim llog eaCH)t • IiaT + b W )IIt a a a at-+oo

= a(H)

slnce exp tH is an isometry. Similarly we find that

1lim -tlog IiaT'(t) +b W'(t)11a a a at~oo
= lim ~log aCH)eaCH)tlla T + b W II

l. a a a at-+oo

= aCH).

Finally it is clear that the H 's
~

contribute o growth

and that they are orthogonal to the rest of the space.

Putting all these facts together proves the lemma. o
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In particular, the Lyapunov exponents are defined

everywhere Slnce any point in TIH is an isometric translate
of (O,H) for some H E ~.

We really want to calculate the Lyapunov exponents and

the entropies on an ergodic component of ~t' The next

lemma describes the Jacobi fields tangent to an orbit of G.

Lemma 7: The tangent space TCO,H)({O} x tt) is ortho-

gonal to G· (D,H) and corresponds to the Jacobi fields

Proof: Since H~(O) = D for ~ < D the specified Jacobi

fields are tangent to {D} x tt. By a dimension argument

they also span T(O,H)I{O} x a).

Take any curve exp tX E G, X E g. Then

ddt «exp tX)*H) = [X,H] + k E TC{O} x p)

as follows from the Campbell-Hausdorff-Dynkin formula

(cf. [Va 1], Chapter I). Since B([X,H],H) = BCX,[H,HJ) = 0

(as follows from the invariance of B under inner

automorphisms) G· (O,H) is orthogonal to
o

Also we really have to work with T(O,H)TIH for

H E Cl' For a Jacobi field J(t) along Exp tH this

means that J'(D) ~ H. Expressing J(t) as in Lemma 6 this

is equivalent with

By Lemma 7 this condition holds true for all Jet) tangent

to G(O,H). Also, if we just want to calculate X(O,H),
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the sum of the positive Lyapunov exponents on GCO,H), by

Lemma 7 and the above we may just as well add the positive

Lyapunov exponents of all Jacobi fields along Exp tHo By

Lemma 6 it is clear that the X. (0 ,H) are j ust ° and the
l

u(H) for ±a E ¢+ with mUltiplicity the mUltiplicity of

u(H) as ±a runs over ¢+' In particular, we obtain the

Lemma 8: The sum of the positive Lyapunov exponents at

(O,H) for H E Cl is

XCO,H) = I aCH).
aE¢ +

Moreover, if g E G then X(g(O,H» = X(O,H).

Proof: The first claim follows from the discussion above.

For the latter just notice that g is the differential

of an isometry. o

Finally, we obtain the

Proposition: For a uniform lattice r in G,r without

torsion, the metric and topological entropy of the geodesic

flow on r\G (O,H) are equal for any H E Cl and given by

= h
I-L,H = = 2pCH)

where p =} I~. Furthermore, we find expressions for the
a>O

topological and metric entropy of the geodesic flow on

Tl Cr\G/K) as follows:

h = 211 p II = 2 max p (H )
HECI

and
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h =
j..L

where Al is a Lebesgue measure on Cl such that

llraCH)dAl CH) is a probability measure. In particular,
aE<p+

h = h iff G has real rank 1.
j..L

Proof: Pesin's formula proves that h = 2p(H).
j..L,H

On the

other hand, hH:: sup hv where v runs over all the

probability measures on f\G(O,H). By Ruelle's inequality

(cf. Property f of the Lyapunov exponents) we see that

h < J X(x)dv = 2p(H)
v G(O,H)

since X(x) is constant on G(O,H). This proves that

:: 2p(H) .

That h = 211pil lS clear from generalities: the topological

entropy is always the supremum over the topological

entropies of a decomposition into invariant submanifolds.

A similar generality proves the claim on h .
j..L

Finally notice that Cl consists of one point iff G

has real rank 1. In this case, certainly h = h .
j..L

On the

other hand if the rank is not 1 then Cl lS a submanifold

of a sphere of positive dimension. Notice that p(H) lS

a linear functional positive on Cl. It is elementary that

strictly smaller than p.

isthe average of p(H) with respect to
o

Corollary: Both topological and metric entropy only depend

on the universal cover in the locally symmetric case.
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Proof: This is clear from our expressions. For the

topological entropy h this is well known as h is the

exponential growth rate of the volume of balls In the

universal cover (cf. [Man 1]). o

Note: 1 To avoid further complications we didn't discuss
the case where the ergodic component is not a

G-orbit (cf. 1.2 Theorem 2). Certainly the

topological entropy and metric entropy are equal

and in fact are

2pCH).

This is clear as all the ergodic components

r'\G'(gO. k,H) are isometric, si.mpLy since

go E GO commutes with G'. Hence the topological

and metric entropies are independent of the

particular go EGO'

2 In rank I the geodesic flow is Anosov. Hence

there is a unique measure of maximal entropy v·

That v = ~ was first proved by Bowen in [Bo 2J.

This particular case can be proven very easily

(up to some hard dynamics) as follows: By

[Bo-Ma IJ one knows that the horocycle foliation

is uniquely ergodic with invariant measure the

measure of maximal entropy for the geodesic flow.

On the other, it is clear that Haar measure is

invariant under the horocycle foliation in the

locally sywnetric case.
Also it may be of some interest to calculate the entropy

ln the rank I case explicitly. The following table first



appeared In [Ka IJ.

Symmetric Space Dimension Maximal Sectional Entropy
Curvature

n _1<:2 (n-l)1<:
2n _1<:2 2n1<:
4n _1<:2 (4n+2)1<:

16 _1<:2 221<:.

Real hyperbolic n-space
Complex hyperbolic n-space
Quaternionic hyperbolic

n-space
CajLey plane

This follows easily from our Proposition: First note
that Cl is just a point since G has real rank 1. Hence
h = h = 2p which we can compute explicitly from the

[l

Satake diagrams of these groups (cf. [He IJ), pp. 532ff).
On the other hand, it lS clear from Lemma 5 that the
maximal curvature K is glven by the unique root a E ~

such that (by rank 1, has at most two positive

roots: al::: a).
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Sect-ion 2. Compact Maximal Flats

For a compact manifold of negative curvature the

closed geodesics correspond to the free homotopy classes

in a one-to-one way as is well-known. The main point is

that the energy functional E on the space of closed curves

is strictly convex. If we allow some 0 curvature E is

only convex and hence the free homotopy classes correspond

to continuous families of closed geodesics. For example, In

a compact locally symmetric space of rank r > 1 we

have compact flat r-tori and hence Cr-l)-dimensional

families of closed geodesics. In this section we will first

see that this is generic. Then we will study compact

r-flats and their equidistribution.

We will consider a finite volume locally symmetric

space M = r\G/K of the non-compact type. Let r be the

rank of M. Any geodesic a is contained in an r-fla"t.

Definition: We call a a regular geodesic if a lies in

an open Weyl chamber of F.

Notice that this does not depend on the choice of the

flat F. In fact, let a = Exp tH pass through r· 0

where H E p. Then a lS regular iff H is polar regular

Ccf. I , 3.1 Definition and the remark thereafter) .

Moreover, a regular geodesic a lies on a unlque r-flat F:

We argue In the universal cover H = G/K and pick the

lift r of F through r = Exp u whE:re « c p is

abelian. Then H lies in a hence exp tH leaves r
invariant. By I, 3.1, Lemma 2Cii) r lS unique.

Clearly the regular geodesics form an open dense subset
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of the set of all geodesics.

Proposition 1: Any closed regular geodesic a is contained

In an (r-l)-dimensional family of closed geodesics. If M

is compact a lies in a unique compact r-flat.

Note: Eberlein has informed us that he has a purely geometric

proof of this proposition. Our argument is algebraic.

Proof: That F is unique lS clear by the above. On the

other hand let y E r be an axial isometry for the lift

r)f a through o : ·yC';{CT» = ~Ct+tO) . Let F be a lift
r-v 'v

through 0 by the above y • F = F. Hence F lS covered by

a cylinder and the first claim lS clear.

Suppose M is compact. Clearly pol r = exp tH for

some t E JR where aCt) = Exp tHo Hence y is polar

regular and by 2.3 Lemma 2, F is compact. o

Note: 1 I do not know whether a lies in a compact r-flat

in the cofinite volume case. The usual criterion for the com-

pactness of a flat is the JR -hyperregulari ty of y while

we only know that y is regular.

2 Suppose G is algebraic. Then we have Borelf s

density theorem (cf. [Ra IJ, Theorem 5.~ a lattice r is

Zariski dense in G. As the regular as well as the JR-
hyperregular elements form a Zariski dense open subset of G

it is clear that a generic free homotopy class with respect

to the Zariski topology on r corresponds to a compact r-flat.

For a locally symmetric space of rank 1 Bowen proved

in [Bo IJ and [Bo 2J that the closed geodesics are equl-

distributed with respect to the Liouville measure. For

higher rank we expect something similar. Since there are
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uncountably many closed geodesics equidistribution is not

well defined and we have to consider continuous families

instead. As we will use dynamical arguments we will hence-

forth assume that M is compact. Then the Proposition says

that only the (r-l)-dimensional families are dense in the

space of all geodesics. Since the Cr-l)-dimensional

families all lie in compact r-flats and are equidistributed

there with respect to the Lebesgue measure we really want

to study the equidistribution of the compact r-flats.

First, we want to replace the whole unit tangent

bundle by a generlc ergodic component of the geodesic flow

~t' i.e., by E = r\G/ZCH)lK where H is polar regular,

H in Cl. Let A = exp a be a maximal polar subgroup.

Notice that A acts on E. Let F be the orbit foliation

of this action.

Lemma 1: The compact r-flats are in one-to-one correspon-

dence with the compact leaves of F.

Proof: Suppose F c M is a compact r-flat. Recall from

AS.2 Proposition lei) that in the universal cover G/K = H

of M all r-flats are translates of each other. Hence

F = r . g . A for some g E G and r· g • A • I ZCG) nK) I is

compact in E.
Vice versa since ZCH)nK is compact a compact leaf

r . g . A . CACH) K) gives rise to the compact flat
n

F = r . g • A. 0

Clearly ~t leaves F invariant. Recall the

Definition 1: A Cl_diffeomorphism f: M -+ M is normally
. 1 f .. Lhyperbollc to a C ollatlon if f preserves Land
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Tf 1S normally hyperbolic over TL: there 1S a decomposition

TM = u sN d~ TL d1 N and Tf =

such that for any point p E M

inf m(Nuf) > 1 supllNsfl1< 1p P

inf m(Nuf)I/L fl/-l > 1 s -1supl/N fl/m(L f) < 1P P P P

where m 1S the m1n1mum norm of a linear operator and 1/ 1/

.is the sup norm for some metric d of M.

,-This definition is taken from [Hi-Pu-Sh IJ, p. 116.

In our case we have the

Lemma 2: The geodesic flow <Pt on E is normally hyperbolic

to F.

Proof: This 1S obvious from our discussion 1n 1.3. o

We need the

Definition 2: An E;-pseudo orbit of f: M -+ M is a sequence

"?n EM, n E 7l such that d(fPn,Pn+l) < e . We say that a

pseudo orbit respects a foliation if fCp )
n

and lie in

the same leaf of the foliation.

Finally we arrive at the following generalization of

Bowen's shadowing lemma.

Lemma 3: Suppose f 1S normally hyperbolic to a foliation

F. Given v > 0 there exists a such that any a-pseudo

orbit {xn} of f can be v-shadowed by a

{y} for f which respects F. Moreover,
n

v-pseudo orbit

and

lie in an [-ball of a leaf of F.
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Note: That {y} v-shadows {x} means that d(x ,y ) < v.n n n n

Proof: This is [Hi-Pu-Sh IJ (7a.2). That normal hyperbol-

icity implies that (f,F) have local product structure is

clear (cf. also p. 132 of [Hi-Pu-Sh IJ.) The last claim

emerges in the proof in [Hi-Pu-Sh IJ. 0

We also have the

Definition 3: Suppose f leaves F invariant. We call

(f,F) expansive if there exists a constant 6 > 0 such

that:
n E 7L.

This clearly generalizes the usual notion of expansive-

ness.

We have the

Lemma l!: The !~eoclesic flow (Pt on E is expansivc wi t.11

respect to F.

Proof: This is obvious from the normal hyperbolicity. 0

From [Hi-Pu-Sh IJ or In our case by direct inspection

d . Wuu(p)we have strong stable an unstable manlfolds and

Wss(p) for any point p. Moreover, in a small enough

neighborhood of a point x the foliations F, {Wuu} and

{Wss} are transverse and 'span' the neighborhood. More

precisely, we have the

Lemma 5 : For any x there lS a neighborhood B of x

such that for E B there are unique points u andany p z

s B such that and u lie the leaf ofs In x z on same

F , s
E Wuu(zu) and E WssCzs). We call B a box andz p

u and s the canonical coordinates of withz z P respect
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to x. The canonical coordinates are continuous In p.

Proof: This follows easily from the transversality of the

three foliations. o

The next lemma permits us to replace pseudo orbits by

compact flats: We let & be an expansion constant and

assume that the ball of radius 100e is contained in a box

about any point x E TIM. Since T1M is compact this is

clearly possible.

Lemma 6. Let 0 < v < 6/3. For small enough 6 any orbit

such that d(x,W x) < 6
n

lS v-shadowed by

a v-pseudo orbit {y:} that is contained in a compact
l

maximal flat.

Proof: Let Then {x.} is a 6-pseudo
l

orbit and for small enough 6 there is a v~pseudo orbit

{y.} that v-shadows {x.} and is contained in a leaf F
l l

of F . Let be the canonical coordinates of

wi i 't respect to Yl' Also let Yi+l = lP.. hi+iYi where
l

hi+l A IIhi+l-lll Then s h s u
E and s v. z2 = lP • . zl,z2 =

1 2
u the canonical coordinates for lP1h2· since<Plh2zl are Yn+l

h2 commutes with <Pl and hence leaves the stable and un-

stable foliations invariant. Since lPlh2Yn+l and Yn+2

lie on F and are close on F (in fact, they are at most

2v apart)
, s and u the canonical coordinates<Plh2zl lPlh2Zl are

of Yn+2 with respect to y 2' Notice that

Hence the canonical coordinates are close to
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say they are at most f(2v) apart from Y2 for some functions

f with fCs) ~ 0 as s ~ o.
In general we see that we have canonical coordinates

s uz. ,z .
1 1

for Yn+i with respect to y.
1

such that

s
z. 11+ = s(jJl0 h. Z.

1 1
and = (jJ0 h.z';1

111

where H. E A and Ilh.11s Moreover s and u liev. z . Z.
1 1 1 1

1n a fe2v)-ball about y ..1
Suppose that s -t u Then s Exp where j is inz. z .. z. = J1 1 1

the unstable part of the tangent bundle of u Decomposezl'
] as 1n 1. 3, Lemma 6 and let (3 E ~+ index a non-trivial

S,u i-l h s,ucomponent of j . As z. = tp. 1 n- .z. the distance
1 1- J=l ] 1

between uz. and
1

sz. expands at least by
1

•

i-l
exp ~(log«(jJi_ln h.)) ::: exp(i-l)(~(H)-v)

j=l ]
;

where (jJl= exp H and we used the conservative estimate

Illoghjll ::::v. As H is regular and fixed ~(H) > O. So

for small v, u sz. and z. diverge in contradiction to the
1 1

f ac. that
u s

zl = zl'
s

Yn+l = zl'

z~,u lie in an f(2v)-ball about y .. Hence
1 1

By a similar argument for (jJ.
-1

we see that

Hence and lie close to each other on

F, It is

clear that for v small enough

n
HI = Log Cb -tp on h.) E a

n . 1 11=

is regular and lies in the positive Weyl chamber. This means

that we have produced a closed orbit for exp tHI acting on

E = f\G/zeHI)nK. By Proposition 1 this regular closed geodesic
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An easy consequence of this is Mostow's theorem (cf.

13.3 Proposition 1):

Proposition 2: The compact r-flats in M are dense In the

space of all flats.

Note: We would like to mention that P. Eberlein has a

geometric proof of this (unpublished). Mostow's proof lS

• algebraic.

Proof: By Lemma 1 (and its proof) it is sufficient to see

that the compact leaves of F are dense in the leaves for

some generic ergodic component E. By the Poincare recurrence

theorem for almost every leaf F we can find an orbit of

~t In F that returns very close to itself. This is

we find x E F such that d(~n+lx,x) < 6 for some given

small 6 and some n E ~. By Lemma 6 there is a v-shadow

that lies in a compact leaf F'. From the proof of Lemma 6

F' contains a regular geodesic a' close to a = ~tx. Since

regular geodesics determine the flat they lie in uniquely

it is clear that F and F' are close. o

Note: One may notice that our proof is not completely

dynamic in as far as we use Proposition 1 which lS a simple

consequence of Selberg's lemma. The main point In Mostow's

proof is to produce R-hyperregular elements in r. This

is exactly where we use dynamics instead.
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Section 3. Singular Closed Geodesics

So far we have studied the relation between regular closed

geodesics and naxirral flats. NCMwe want to study singular closed

geodesics. Wefirst showby wayof example that singular closed

geodesics that are not contained in any higher dirrensional compact

flat exist for somehigher rank locally symmetric spaces. Themain

tool is a theoremof Prasad and Ragunathan. Let us first recall the

Definition: Let G be the representation of G on!\~. Wecall

g E G huperrequl.ar if the multiplicity of I as an eigenvalue of

a(g) is as small as possible.

Nowwe have the

Theorem: Let G be a semi.s.irrp.Ie Lie group without compact factors.

Let r be an irreducible lattice in G and let H be any non-

corrpact Cartan subgroup of G. Then I' contains a hyperregular

elerrent conjugate to someelement in HO.

Note: Here we let HO be the componentof the identity of H.

Proof: This is [Pr-Ra lJ, Theorem2.7. o

Recall that any Cartan subgroup H has a decomposition

H = f\:.H(j>where ~ = H n K and H(j> = H n exp(p ~Ol; 0 s:uHQ'de C.ho\ce.
0t Co..-ctn\f\ deco·.·,("t:>Os\-hov\.

Suppose that H is a cartan subgroup of sorre semisirrple group

G (no corrpact factors) such that dimH~= 1. Let reG be a net

irreducible lattice in G, i.e. no element of r has a nontrivial

root of unity as an eigenvalue for the adjoint representation.

By the theorem and conjugating H if necessary H contains a

hyperregular elerrent Y E f. Clearly y gives rise to a closed

geodesic et. In fact, et is covered by \>. ° where ° is the fix

point of K. Suppose et is contained in a conpact flat
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F with dim F > 1. V."J.1. 0•g. suppose dim F = 2. Consi.der lifts
~

a c F in the universal cover G/K of r \G/ K' There are tv.;o elerrents

Yl' Y2 E r that translate F and form an abeli.an group of rank 2:

in fact, F is covered by a corrpact torus T. Let Yl' Y2 E r be

generators of 1T 1T. Thenwe find that Y1Y20 = Y2YlO. Since r is

torsion free (as r is net) Y1 and Y2 corrmuteand our claim is
kclear. Next we claim that sorre power y of y corrmuteswithy 1

and y2: indeed, let 0 E a as above. Then for k E 7J" ykO E F
~ ~

as a cF. By corrpactness of F there are integers ~ and ~

and a constant c > 0 such that

~~ kd(Yl Y2 O,y 0) < c

for all k. As r is torsion free, r acts properly discontinuously

on G/K. Hence, there are integers k,n and m such that

k n m ky = y1.y2' In particular, y conmuteswithy 1 and y2. As

r is net, ky is still hyperregular and clearly the centraliser

of Y
k .1S H. Hence Yl and y2 lie in H. In particular y1

and y2 translate the geodesic

there are integers t 1 and £2

~
a = ExpHQ'. As r is discrete

tl £2
such that Yl Y2 0 = 0 where

o E a is as above. As r is torsion free
-£2= Y2 in contra-

diction to our hypothesis that y 1 and Y2 generate an abelian group

of rank 2.

Newsuppose r is an arbitrary irreducible lattice. Wehave

the

Proposition 1: Any finitely generated subgroup of GL(n,JR) contains

a net subgroup of finite index.

Proof: This [Ra 1J Theorem6.11. o

Also recall that all lattices are finitely generated (cf. [Ra lJ

Theorem6.16 and remarks 6.18) .
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By the proposition, we find r ' c r net and of finite index.

By the above, there is a singular closed geodesic a' in r' \ G/ K

that is not contained in any compacthigher dimensional flat. Project

ct' to ct in r\G/ K' As r' c I' has finite index a also is not

contained in a compactflat of dimension greater than 2.

Wesummarizethis discussion in the

Proposition 2: Suppose G is semisirnpleof rank ~ 2 and without

carpact factors. Let G contain a Cartan subgroup H whose split

part H(J' is one dimensional. Thenany locally synmetric space of

fini te volurre contains a closed singular geodesic that is not contained

in a compactflat F with dim F ~ 2.

Proof: It remains to shew that a as above is singular. Supposenot.

Thenany exp X E H(i~ is polar regular. Hence, HC centr X is

contained in the centraliser M·A of a rraxirral polar subalgebra pi..

(for notation cf.A 10 .. 3) of ,\jJ.. As M·A is an abelian extension

of a carrpact group all its Cartan subgroups are conjugate. This

proves that H is a rraxirrally split Cartan subgroup in contradiction

to rkG ~ 2 and dim H = 1. o
Note: If r\G is unifonn then ex lS singular by Section 2, Proposition

1.

Westill have to exhibit a higher rank group that has a Cartan

subalgebra with one dimensional split part.

Exarrple1 The algebra s Q,( 3,JR) has a Cartan

hl -h 02

h2 hl 0

0 0 -2h1

Clearly, the split part has dimension 1.

of the form

h. E JR •
l
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Example2: The algebra sJ/,(4~) has a Cartan as above given by

hl 0 -h 03
0 h2 0 -h4 h. ER
h3 0 hl 0 l

0 h4 0 h2

It is easy to see that si (n,.R) for n > 4 does not have a

Cartan with one dimensional split part (cf. [WaIJ, 1.3.1 Example1).

For other real Lie groups see [Su 1J .

Onemay also notice that our arguments prove the

PrqXlsition 2I: let G have no corrpact factors and let rank. G = r > 1.

Suppose G has a Cartan H of split dirrension 0 < k < r. Then any

locally symmetric space r\G/K contains a compact flat of dimension

k that is not contained in a corrpact flat F with dim F > \<.

Proof: Theorem2.8 of [Ra-Pr IJ asserts that r intersects a conjugate

of H an a uniform lattice. Hence, there exists a corrpact flat of

dimension k . The rest is proved as above. o
Finally, Let us refine proposition 2 by

Proposition 2": Let r be an irreducible lattice in a semisimple

connected group G of rank. ~ 2 and without canpact factors. Assure

r \G/K contains a singular closed gecdesic a. Then there are

infinitely manydifferent singular closed geodesics.

Idea of Proof: Let C(I') be the cormensurabili ty group of r in G,

i.e., C(r) = {g E Glg-lrg n r has finite index in r}. By [Ma 3J

r is ari thrretic and hence C(r) is dense in G. Let Y E r trans-

late a. n -1For c E C(r), cy c lies in r for some n and translates

the geodesic c(a). By the above the geodesics c(a) for c E C(r)

are dense in G(a). This clearly proves our claim. o
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As before, we will study the geodesic flow <Pt on an ergodic

Section 4. ~cification and Expansiveness

component where H E C is regular. We refine the tools

of Section 2 and prove uniform specification and expanslveness. We
mean weak specification in the sense of [Ru 2] , i.e. we shadow orbit
segments by the orbit of only a point rather than a periodic point.
Strong specification fails to hold in higher rank. One may compare
this with nonhyperbolic toral automorphisms (cf. [Mar 3], [Ll]). Our
expansiveness is slightly different from the usual notion as we allow

[Bo 1] in our case. The proofs are similar, for the specification

"perturbations into all flat directions" rather than just along the
flow. This section is really just understanding Bowen's ideas in

almost identical.
Lt-.lExpansiveness: Let y be so small that we have canonxa l
coordinates in a 2y-bal1 about any point. By abuse of notation, for
a E A we say that IIall $; u if IIlog all s: u (where 10g:A -+p'-)'

ProJ!Vsition: For u > 0 small there is an a > 0 such that:
if X,Y E E and si: JR -)- A, i = 1,2, are continuous functions

such that (i) SI (0) = s2 (0) = 1
lies in the closure of the positive

Weyl chamber C for t > 0 and <PtS2(t) E - C for
t < 0 •

(iii) ~ (<PtSl (t)x l<Pts2(t)y)~ a for all 1tl ~ L sorre L > 0

then 1181(t)S2(t)-111 s: 3u for all ItI s: L and there is an
a E A, IIall s u such that

for all ItI s: L.
Proof: We adopt Bowen's argurrent in [Bo 1] I Proposi tion 1.6. Let
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T1_ :<::: '('/8 such. that, di.am {ux , uc A , llull ;5; 8 n) :<::: '(/~ for all x EE.

pick et :0:; Q so ~ll that for x,'! f.E with d(x,yl :0:; et all canonical

Let x,y be as in the proposition and let v,w be the strong

coordinates are at rrost, Q apart.

unstable and stable coordinates. Let 0 :0:; t1 be the srmllest t -c L

-l
such that either II s1 (t1) s2 (tl) II~· 311 or

d(~t s2(tl)v, <Pts2(tl) w) ~ 1/2' Wewill derive a contradiction. As
1 1 -1

sl(O) = s2(0) = I , tl > 0 and I I s1 (t1}s2(tl) I I ~ 311' Weclaim

that the unstable and stable coordinates of <Pts2 (tl) y with respect
1

to <PtISI(tl)x are <Ptls2 (S)v and Pt
l
S2 (t1lw :

By the definition of tl I d(~t s2(t1)v'¢t s2(tl)w) :0:; y/2'
I 1

For u ~ 0 , d(¢t _us2(tl) v, <Pt_uS2(tl)W):o:;y/2 obviously. Hence
1 1

<Pts2(tl)w E wuu(¢t s2(tl)v} .
1 y 1

On the other l.and, for u ~ 0 , d(¢t
l
+ US2(tl)W'¢tl+uS2(tl)Y)~'(

as w £. vfs (y) and (~t s2 (tl) is in C. This means that CPtS2 (tl}W
y 1 1

wPs(~t s2(tl)y) . Hence tlle stable coordinate of ¢t s2(t1}y with
y 1 1
respect to <Pts2(t1)v is ¢t s2(t1)w. Note that CPts1 (t1)v and

1 1 -1 1
<Pts2(tl)v differ by sl (tl) s2 (tl) which has norm ~ 3n· hence
1

<Pt51(tl) lies on the'same coordinate patch \ and our claim is clear,
1

As d(<pt sl (tl)x, CPts2(tl)y) ~ a the canonical coordinates
1 1 -1

are n close, In particular I II 51(tIl 52(tl) II ~ n . Also

d(<pt s2(tl)v, ¢t s2(t1)W):o:;n < y 12 . This contradicts the choice
1 1

of tl'
~l

A similar argument proves that II 51etl 52et) . II s 3n for
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-1 -1 y
-L < t ~ 0 and d(¢ts2(t)a y, ¢ts2(t)a w) ~ 2 where

a E A, IIa II ~ n satisfies v > a' x. Nowthe last statement is

obvious. o
Note: If we let "z (t) = 1 for all t we retrieve Eo~n 's propos.i+

tion. Just observe in this case that d(¢tY,<Ptax) < y for It I ~ L

irrplies d (<P tY' <Ptax) < y e- J\ (L-I t I). Unfortunately, we need our

version to prove a "uniqueness" for specification (4.2 Lernna 2).

4.2 weak Specification: Wecall (T,r) an L-specification if

T = {t.} .i ~ 00 It. E JR and t. l-t. ~ L for all i E :;z andl - -dO l l+ l
00r := lx.}. I x. E E. Wecall (T,I') a-possible if

l l =- co l

d(¢t (x.) I ¢t (x·_l») ~ a for alli.
. l . l
l l

consider s : JR -+ A. Let Us (sITI r ) = {y E E : d (<Pts (t) y I

and Step (T) = {s : s is
c

constant on (to ,t. 1)' s(t.) = s(t..+O) or s(tl·-O), Ils(to) II ~E: and
l l+ l l

Ils(t.+O) - s{t.-O) II ~s}.
l l

*Finally, let U (T,r) = u{U (s,T,r), SE Step (T)}.
€ s ~t:

Nowwe can prove an analogue of Bc:wen's

Approx:LP1.3.t.ionTheorem: Given E: > 0 there are L and 0 such that

*U (T,r) ~ ~ whenever (T,f) is a a-possible L-specification.
E:

Proof: Wefollow the argurrent in [Eo 1] with only minor changes.

Choose
UU _..5 Sa < al such that W
al
(ax) n W \ (y) ~ ,0

for sorre a EA, IIa II ~ °1
*that L = L - al satisfies

-J\L*
ce
- -J\L* < l.
l-e

whenever
*-J\Lce al

d (x,y) s 2 8. pick L so

< 8 and ccL
k=l

Let (T, r) be a-possible and suppose that to s 0 < tl .

Let 20 = Xo and define z inductively:
n
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given

pick

-A(t -t )s <51 ce n+2 n+1 < a .

Since (T,I') lS a-possible,

and we can continue with the next induction step.

Let r 1 = a lexp (t +l-t )H E A.n+ n+ n n Then L - a1 *~ L .

r ~~1 (zn+1) E w~uce-A II rn-H II (Zn).
1

r -+llr -1 (z +lh w~u -Allr l+r II (r-lz )n n n vIce n+ n n n
uu

C W a ce- A II rn+1 + rn II + 0 ce -All rn I I (Zn)
1 1

-1Inductively, we let u ,= (r ... r '+1) (z)n,J n J n

Clearly,

Hence

uu uu
Then u ,E W 00 AL*k (z ,) C W (z ,) .

n, J <5 cz e- J <51 J
lk=l

Lemma1. Fix j Then v, = lim u I

J n+» n,d- exists, uuv . e Wo (z ,)
J 1 J

and v . 1 = .r . t-lv , .J+ J- J

Proof: For n ~ j+k, we have uuu '+k E W~ (z'+k)n,] vl J and

is Cauchy. Hence the limit v . exists and
J

Since u ,n,J

by continuity.
o
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Wedefine s: [to'oo) -+ A by s I [to' tI)::: 1 and

si - a' 'a Let Yl = ,f,_t(V1)' For t1· < t < t1·+I,[t t ) - 1 ... .. ~
i' i+l 1

(¢t -t .al)¢t (Yl) =
100

-1
= ¢t-t.ri+l (Vi+I)·

1

Therefore

For a m.rrrber 62 to be detennined make 61 < 62 /3 so srrall that

if x,y E E, d(x,y)
< ° and Iiall < ° then1

d(a(x) I a(y)) ~ °2/3 .

uu
As vi+1 E W

Ol
(zi+l) and t < ti+1 we see that

uu
<Pt-t. (V1'+I) E W", (<Pt-t (V·+1)·1+1 "i i+l 1

-1 -1
Notice that <Pt-t.ri+1 = ¢t-t. ai+1. By the above

1 1+1
-1 -1

d(<pt-tlri+l (vi+l)' <pt-tiri+l (zi+l» ::::;°2/3
ss

zi E W01 (¢ti
(xi)' d(<Pt-ti (zi)' <Pt(xi» ::::;°1 ::::;°2/3Since

uuFinally, zi+l E W
Ol

(ri+l (zi» . As for the first term we get

-1 -1
d (<Pt-t.ri+ I (zi+1) '<Pt-t. ri+ 1ri+ I (zi» s ~ /3.

1 1

Consequently, for t. < t < t. I,i ? 0 .
1 1+

Applying this argurrent to <P -t we mayextend s to a step

function on all of JR and find y2 such that

d(<Pt+s(t) (Y2)' <Pt(xi» s °2
for t. < t < t. l' i s O. For i = 0 we find that1 l+



77

Let n< e /8 such that for all x E E

diam {ax ,Ial < n,aE A} ::;;e /10

Assurre 02 < e /10 is so small that

Wuu{a{x))n ~s(y) ~ ~n n
for sorre a EA, Iiall s n whenever d(x,y) :; 2°2"

Pick y' E Wuu(u¢t (Y2)) n wSs (¢t (Yl)) where Ilull S n "
nOn 0

Let Y = ¢-t (y')
o
s ' (t)

and let s ' E STEP" + (T)
ul n

_ ls(t) for t~to
-ls (t) u-1 for t<tO

c STEP
€

(T) re defined by

Then Y U (s' T I') Indeed, .i.f t.. < t < t.. l' i ~ 0 then
E € " " 1 1+

as

e
d(¢ts(t) (Yl) '¢t(xi))s 2" + °2

¢tS (t) = s (t) ¢t-t ¢t ,II s (t) II s n
o 0

d(¢t-t ¢t (Y)'<Pt-t ¢t (Yl)) < n "o 0 0 0

< e:

and

For t.. < t < t.. l' i < 0,
1 1+

d(¢ts' (t) (Y)'¢t(xi)) s d(¢ts' (t) (Y)l¢tS(t) (Y)) +

d(<Pts(t) (y) ,<Pts(t) (Y2)) +
€ £ £

d(¢ts(t)Y2'¢t(xi)) S fo + n +iQ +5+ 02 < 8

since d(<Pt(Y)'<Pt(Y2) s d(<Pt_t (y') '<Pt-t u <Pt(Y2)) + fo s n + {o
. 000

and hence

by our asscrrpt.Lon on n.
n

Weproceed as in [Bo 1]" The next lemna says that t::MJ

different shadcws of a specification lie close on a leaf F E F:

I..ernPa 2: Given B > 0 there is 8 > 0 such that for any L-specifi-
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cat.ion (T,rl with t;./L <S 1 and ¥~'¥2 t:. u~(';1',0 there. Ls a A,

Il a[ I < ~ such, rhat y1 ;:::ay2.

Proof: To a~ply expans;Lvenes~we need to make our step functions

continuous. We follow Bowen. Su~po::;eYkE: Ue: (Sk,T,r) for the

step functions sk E:StepE:LTl • Def ine a map Is k by

Is k «ti+ti+11/2) ;:::log ~ Uti+ti+11/2}

and extending it linearly. Let sk_;:::; exp (Ls k_) : lR -+ A. W.l.o.g.

we may assume that t ;:::;O. As E/L« 1 it is clear that
o

¢t'sk(t) lies in the positive weyl chamber for t > 0 (respectively

in -C for t < 0).

Let s';:::; SUp{ d (ax,x), xEE , ac A, II all < c ) • 'l'hen for

t.<
l t< ti+l:

+d(¢tSl (t) '¢tXi) + d(¢tXi'¢tS2Lt}Y2)

+d(¢tS2(t)Y2'¢tS2(t)Y2}!> 2s + 2 s*.

As sk_(O);:::1, k;::: 1,2 we can apply 4.1 Proposition (with

II :::::S and 2s + 2E:*!>a) to find an ae:Asuch that II a II < S

and d(¢tS2 (t)y'¢tS2 (t}ax) $ S for all t.

As s/L« 1, II ¢tS2 (t) II .+ co as t» ±oo and stays inside a cone in

C (or -C). Clearly, y:::::ax. 0

Weneed one rmre ingredient to prove the weak specification,

namely the " C-density":

Theorem: The strong stable mani£old w..ss (x) is dense in E for any xcf •

Proof:This is an obvious consequence of t.he miniJnality of ·the horo-

spherical flow (cf. !Vel, 2J or lBoSJ 1 as the strong stable fol i.at ion

comes from the orbit foliation of the horos~herical flow on r\G. 0
A simple consequence is the

I..emna 3: Let <5 (> O. Then there is a T such that BClttl>tw~u(x}) ;:::;E

for any T!>t and xe:E.
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Proof: First fix x, By the theorem, sorre large but bounded piece W

of ~ (xL (in the metrtc on tfu (xll ;ts <S-Ciense.pick ~ such that

~"Sc.x-7- x as k » Q> • For some.big k, p~ifu exl is 0/2 ....close

to W. Hence the claim is clear for a s;ingle x ,

For variable x, suppose the. claim is false. Then there are

x., y. and T. such that dCy',PT vPu(xll ~ 6 ,W.l.o,g. let x . -+ X,
l l l l i l

Yi -+ y. By the above, there is a T such that d (Y'PTWuU(x)} < 0 • As

Ti 2': Ir eventually and <P T\fuCx.} -+ PTyfU(xl this gives rise to a
J..

contradiction. 0

Wecan deduce the

•

Proposition: Let E: ;> O. There is an N such that, for any N-specifi-

cation (T,r) one can find y E: E and SE: Step (T) such thatf.

Proof: This is exactly the proof of Proposition 3.7 Ln [Bo 1]

Weinclude it for completeness.

Let Cland L be as in the approximat.ion theorem, but for (./2

instead of E: • Make sure 6~E:' Let N ~ L be the T of Lerrma 3 I for 6/2

instead of

Define r I :;:, {x~}
.i,

by x~.=Pt y .. Thend(ptx·'Ptx!) ::;0/2 for
l - i+l l l l

ti ::;t ::;ti+l-N . As

d(¢t x ' '¢t x!+ll ::;d(<j>t. x ' '<Pt, xl'+l)
i+l l i+l l l+l l l+l

+ dept. Xi+1,<Pt. xi+ll::; 6
l+l l+l

(T,r I) is o-possible. By the approximation theorem there is y e E

ill~ SE: stePf./2(T} so that

d(¢ts(t}y,<pt!l) s <-/2

Our claim follows frau the triangle. inequality. o

Finally we can prove the



80

W~ Speci;fi'Cation Theorem:

N ;:::;NEn,nr such that:

For any --n. f" Q , and n c; .L there La an

if z ,...,z aretn E and t , ... ,tono n

then there is a point x such, that for Q s k s n

for

Proof: This is even easi.er than in Bowen.

Pick E<'1'/2so small that diam {ax, IIa II < (n+2)d < 'I'l/4 . Let N

be. as in the proposition. Extend the <P t z. ::::x. and the t. to an
- . J.. J.. l

J..
N-specification. By the proposition there is a point y and an

S E StePECT)such that d(<Pts(t)Y'<Pt~)~ E ~ TV2 for ~ ~ t ~ ~+l-N.

For such a t and 0 ~ k s n+l we have Ils(t) II s (n+2)E. By choice

of E and the triangle inequality we get d(¢ty,tt~)~ ~ for ~ ~ t

~ ~+l-N and 0 ~ k ~ n+l·O

Finally, let us observe that strong specification doesnIt

hold in our case. In fact, there are only countably many regular

erqo+ic carnponentson which ¢t has periodic points. Recall that

each regular periodic orbit lies on a maximal compact flat. There

are only countably manysuch flats as each of them corresponds

to an element of the free hamtopy group of H. (cf. [Eb 4], Propo-

sition 3.1). On each canpact flat tbere are only countably manyflow

directions that have per iodi.c orbits II dim F ~ 2 •

We do not knowwnather we have strong specification on

someergodic components. The technique of ILl] rnay be helpful.

Also notice the discussion in Section 5.2 . There we see that

strong specification holds in a weak sense on the whole unit

tangent bundle.
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Section 5.

Bowen and Margulis studied the relat;Lonsh.ipbetween the.

numberof closed geodesics ~)(tl of length :;;-\:_and the topological en-

tropy for a compactmani.fo.ld of negative. curvature, In fact, they

obtaineCi the asymptotics ijJ (-\:..1 '" e.h-l:./h-t_as -t.-+ 00 where h is the topo-

logical entropy.

For a higher. rank locally syrrmet.ni.c space me ccrnpact; rnaxirre.l

flats replace the closed geodesics. There are at least tv.Dnatural,
invariants for a compact flat F, its volune vol F and its 5Y5tol 5Y5.F.
Recall that the systol is the length of the sl'or test; cLosed geodesic

on F. While the systol is of an obvious dynamicnature this is not

so clear for the voLrme. It canes in via the weak specification theorem

4.2 as we shadowa pseudoorbit only up to an c-bal.I in a flat about the

orbit points.

l>breprecisely, we study the shortest regular closed gecdesic on

a carpact flat F mose length l'Je call the regular systol reg sys F.

Wewill see that the function

vs (t);::; 1: vol F
regsysFst

is \\ell defined. Then~ calculate that the exponential growth of US

is given by tile topological entropy of the geodesic flow on the unit

tangent bundle.

, I
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5.1 VolumeartdSystol: We. discuss t~ characteristics of a compact

flat on a campact locally symmetrtcmanifold M~ f\G/K.

Definition: The S:fStol sys F t~ the length of a shortest closed geo-

desic on F. We denote. the "yoluneof F by vol F and the length of a

closed geodesic a by .RCal .~e \9""\0." 'S.~\ \<e~"S:~+ \S ~€ \~V\9~
o~ <::A ~'c-\es\- ~9""'\o..'<" dosed ~=d.<=s~c,

Recall the connection between closed geodesics and free l~-

topy classes. We have the

Lemma 1: If two closed geodesics a and B belong to the same free

homotopyclass in Mthen a and B lie on a flat F and are translates

of each other.

Proof: This is a reformulation of IEb4 I, Proposi.t.ion 3.1. 0

Lemna 2: The closed geodesics of length less than +, correspond to

a finite number of free homotopyclasses.

Proof: Consider a sequence of closed geodesics a of Lenqt.hs -I::.n

W.l.o.g. the ~ conve.rge to a closed geodesic a of length s~.

Pick lifts a" , ~ of a' ~ in the uni.ver-sal, cover G/Ksuch that

a~ + (Xl as n-. 00. Let '( and Y'ntranslate at and ~ respectively.

Let x E. a' and pick a fundamental domain0 for r such that x lies

ill
' the' , -1 -1anter ior of D. Clearly v y x + x as n» 00 .Hence 'Y Yx, n n

lies in the interior of 0 for all big n. Asr is torsionfreey ==Yn' LJ

Recall that a crystallographic group is a discrete unifonn

subgroup of the group of Euclidean notions E(n). Wehave the famous

Biebe.rbachTheorem: 'For each n, there are only finitely manycrystal-

lographic groups up to isomorphism. A crystallographic group <p has

a unique maxirna.Inormal abelian sutgroup cp* of finite index.

Proof: This is [Wo lJ, Theorem3. 2.2 and 3. 2. 9.
LJ

Geometrically, cjJ is the fundamental group of a ccmpact flat
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manifold F II: ~\lf which is covered by the flat n-torus T JIll: ~*\ Rn. In

particular I we see that far all n there is a constant c(n) such that

[4>*:4>J s c(n) •

Larma: Let L be tre space of flat tori. For any canpact subset of L

tlere is a constant c > 0 such that for F EO k

n
vol F ~ c II ,Q,Jai)

i-=l
-wterea

l
, ... ,an are tte first n irrlep:mdent shortest gec:xiesicson F.

bounded awayfran O. The volune of F is a prcx:luctof the length of

Proof: NJtice that for F ek all the aIBles l:etllle8I1tre sides of F are

sides and sin Is of t.hese angles. Nowthe claim is obvious. 0
Corollary 2: There are only finitely manyocmpact; r-flats F in M with

vol F ~ , any > O.
Proof: Let Fn be a sequence of ccmpact; r-flats such that vall' n ~

Then a subsequence converges to a ccmpact; flat F with vol 1":;; • Let

ian t i=l, ... ,r be the first r shortest gecxlesics on Fn' lJy C '·"lLary 1

l(a;) $ 1', some 1'> 0 (use also LerrnB 1 ).
We want to round the length of a closed regular gecdesic an

i edin 1" • If no a f somei f is regular for all big n consider the clos
n n

geodesics d et i where d is the index of the maximalabelian subgroup
nn n

cp* of the fundamental group IT} (F ) = ¢ • Wemaythink of d a
i
as an . n n nn

closed geodesic on a torus covering F . Then l(n a.d a
i
) $ L a.d l(a

i
)n ),nn 1.n n

for all positive integers a .. here 11 denotes the closed geodesic wrap-
1.

ping around d ai ct. ti.Jres. Clearly,
n n 1.

a .d ai is regular for somea.
1. n n ;t._

C

wnere C only depends on the. shape of the Weylchamber.

Webave found a sequence of regular closed gecdesics an in Fn

with 1Ca} :;; C c (n) 1'. By Lenma 1 the a are all harotopic for a
n n

subsequence of n ' s . These Cin lie on a flat F'. By regularity of un

1'" == Fn for all big n. 0
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Finally, "We have tie

Corollary 3: For all t > 0, trere are only finitely manyr-flats F

such that reg sys F s t.

Proof: Otherwise let Fn re a sequence of such flats. !.et cn in Fn

be a storte..st regular geodesic. Then 9.,,(c ) ~ t.
n By I..errrra. 1 there is

a subsequence of tie n' s such that these cn lie 00 a unique flat F (by'

regularity) • o
If we drop the regularity , in Corollary J the con-

elusion unfortunately doesn't hold. Onecounterexample is trivial:

simply considex the product of two manifolds of negative curvature.

The product; of any two closed geodesics is a compactmaximal flat.

Making the second geodesic longer and longer we obtain inf ini tely

manycarpact flats with the sane systol.

Even i£ the manifold is irreducible the corollary is still

false in gene.ral. Wedescribe one example.

Example: There is a uni.forrn lattice reG := SL(J,R) and a subqroup

H of G conjugate to GL(2,R) in Gover R such that fnH is uniform. One

can either write downr explicitly as a group of units of a number

field or follow t.ne procedure in lOOr 1]. By IEb 5j H/rnH is f.iru.t.eIy

covered by W xSl where M.' is a surface of negative curvature and S1

corresponds to the center of H (c£. Corollary 2, loc.cit.). Any can-

pact flat F is covered by F IxSl. D1 particular, F contains the closed

gecdesic a caning from the center of H. Since the center of H is con-

jugate to the group [aaa~21 in G; Cl is singular. As there are in-

finitelyrrany ccmpact flats we are done.
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5.2. A GrowthR.a.tefor 'Canpact r-Flats; Corollary 3 of S.l shows that

VSetI ::= vol F

is well defined. We follow Bowen tn jso lJ P1 order to determine the

logarithmic growth rate of VS(t).

Call a subset E of TIM

for some 0:::; s :::;t. As ¢t expands and contracts monotonically a set E

is (n,E)-separated iff it is (n,c)-separated for the time one map ~l

of ¢t' Hence if M (E , t) denotes the maximal nuncer of (t, c)=separated

points then the topological entropy h is given by

h = lim lim log M(E,t)/t
s-rO t-+<>a

The same is true on any ergodic ccrrponent.,

Wemake a few observations leading to a multiplicative

asymptotic law for M (c ,t) on an ergodic component E E regular:,
(1) Let E be a maximal (t, c ) -separated set. Then for any x in E

there is a y in E such that d(¢ x,¢ y}:::; E for all 0:::; s :::;t.s s
(2) For smaLl.oj, E >0 there are constants C and D such that

M(1'L,ttC)~ D M(E,t) for all t ~ 0 •

Proof: Let ¢_t/2E be (t,d-separated. Let F be. maximal such that

¢-(ttC)/2F is (ttC,"y\')-separated. By (1) for all x in E there is

gx in F such that d(¢ux,¢ugx):::; ~ for all lui ~(t+C)!2 .

If gx = gy then d(¢ux,¢uY}:::; ~~ for lui ~(t+C)/2. By 4.1
Note there is an a = a(x,y) in A , II all:::;J:::;l (for vi smal.Lenough)

such that

for alllpi :::;

d(¢pYr¢pax} s '( e-;" (_C-2l/2 <; 11/3

t/2 and C very big. LetS> 0 be so small that

diarn {ax, II a II < n <--vy3 for all x in E. If Ila(x,y) II < B

then d(¢~,¢px) <"'Yl for Ipl :::; t/2. Thenx = y by our assumption

on E.
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For"Ylsmal.l. the. set; lx~, .•. ,xm} ;::;9-lgx LLes in a chart for

the cancnrcal, coordrnatea, 'I'hen Y(¥,Xl ;::; a ~'XLx i.$ the strong unstable

coordinate of y with .respect, to x lcf, 4,ll. II all the mutual strong

unstable coordtnates are at least qdistant then it t~clear tllat v (xi,xl) ,

i = 1, ... ,m , are -n_t-distant for sane 'Y1.,~ that only depends on 'YL

(by the continuity of the canonical coordinates). ~e

o
The next five observations are exactly like in[Bo 1]. Weinclude

the proof for completeness.

(3) M(E,tl+ ... +tn) ~ M(E/2,tl)· ..• OH(E/2,tn) .

Proof: Let E be (tl+ ... +tn, E:) -separated, Ekbe maximal (1<.'E/2)-sepa-

. ted. By (1) there is a map g: E -~~ ~ so that gkx satisfies

d(¢U+t
l
+···+1<._IX,¢u

gkX)~

for 0 ~ u s ~.Clearly g is injective. Cl

(4) For any L and small E >0 there is a constant Cl so that for t > 0

e/2

M(E,t+L) ~ C'M(E,t) .

Proof: It is sufficient to prove this for large t . By (2) there

are constants C and D sucn that M(E,t+C) ~ DM(e/2,t) . By (3)

Iv1(E,t+L)~ M(E:/2,t-C)M(E/2,C+L) :'> M(E,t)1'1(E:/2,C+L)/D . 0

(5) For all small"'l.,E:there is a constant C" so t.hat; for all t~ 0

C" Mb",t) ~ H{t:.,t) •

Proof: For C and D as in (2) M61,t+C) ~ DM(E:,t). By (4) there

is Cl such that MEvtit+C) ~ CtMEYt,tl. lJ

(6) For E: srrall there is a constant C* such that for all t, sz, 0

Proof: Obvious from (3) and (4). 0

(7) For srrall'VL and n ~ 1 there is a constant c > 0 such that

for all sufficiently large s.
1..
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Proof: Li.ke in Bo~ "s case this follo\X~from the specification

theorem,

Let Z. E:E.,. By weak specifi-
J.. ;I.;

cation there is a point g (zo"'.' zn) such that

d (cpt_.+ g (z , ••• , Z ), cP zk) < '1't
-k u 0 n u

By the triangle Ineqoal.i.ty, the g (z , ... , z ) are
..l, 0 nfor

Ctn ,"'l,} -separated. Hence

H('Yl.t} ~ H(3'",.s -N)" ·M(3""".s -N).
'V n 'V 0 . 'V n

Nowthe c.Iaim follows fran (5) and (4)'0

v~ obta~! the desired nmltiplicative asymptotic law by

combining (3) and (7).

Westart to examine the interplay between the dynamics on an

ergcxiic componentand on the whole unit tangent bundl,e, As we saw

in 4.2, strong specification fails on an ergodic component. But

given orbit segments on one componentwe can shadowthem by

a pericxiic orbit on a nearby ergcxiic component.

Let X = 'l'lM.Wefirst get the

Closed Orbit 'rheorem. For ~ > D there are Cl, L > 0 such that:

if r ~ L and d(cprx,x) S 0 then there are y in X and r' such

Preof: Let E:«S , ti = ir and xi = CP_t.x.This is a 8-possible
a,

L-specification. Apply the approximation theorem to the ergodic

componentof x to find v' such that CPtyl

ti s t s ti+l • AS in Section 2, Lenrna 6 we see that CPtYis

contained in a compact flat. As d (cprY,y) :s 2E: wemayvary tne

flow direction a little to get a closed orbit at length ri

where Jr' -r i:S lDE: and such that the neworbit lDE:shadows the

orbit Of y. 0
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This has an easy corollary:

A weak Strort9 S~cificatiort'Thebrem:

1..S an N = N ("l1In) such that:

For any -n> 0 and n ~ 1 there

if zo"" ,zn lie on an ergodic componentand to"" ,tn+1E:R

with ~+l-t.K ~ N then there i-s a point x in X such that

d (<P~ +ux,~uZk) s 'YL for 0 ~ u :5 ~+l-~ -N and 0:5 k

:5 n and x is a periodic point with period t +l-t ±'Yl.,. *n. 0

Proof: Use the proof for weak specification where you extend

¢-t.Zi = xi to an N-specification such that ¢t xn+l = zo' We
1.. ~l

get a point y that comesback close to itself after time tn+l-to .

Nowwe can apply the closed orbit theorem.

Notice that ti1e N in principal depends on the ergodic

componentin question. Checkingthrough 4. 2 Lerrma 3 and Proposition

we see that one N works for an open set of ergodic components.As

the space of ergodic ccmponent.s = WS is compactwe are done. L.J

Recall from the discussion lil Section 2 that the topological

entropy h ot the geodesic flow on X is achieved on the ergodic com-

ponent E = fCH) where H is dual to p = 1/2 La ,a a positive root.

Let M ("1.' t) count the maximal. mmber of (t,"yt)-separated points on E •

Lemna 1: There is a constant d such that vs (t) ~ d M ('Yl." t) .

Proof: Let N be as in the weak strong specification theorem. Let

E be a (t-N-~...u-separated set in E • For e in E we can find x (e)

in X such that x (e) is periodic with period t and

for o :s; s :s; t-N--n,.

For e f e' in E,

* By period we don't necessarily mean least period.
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Let B~ be the S-ball about, I in A, Pick S;> 0 so small that

the diam B3Sx <; '113 for all x in X. Lf Y E B3~x(e) then

de¢sY'¢sx(e)} <~3 for all s .

Hence for el f e in E,

The x(e) detennine flats Fee) with systol ::;t. As the x(e) lie close

to E and E is regular ( p lies deep in the Weyl chamber) the F (e)

are compact. As the volume of BSx(e) ;::: d' Br for same constant d'

Corollary 1: lim log vs (t) It? h

we get VS(t) ? d 1 Sr MM_,t). 0

Proof: By property (5) of MM.,t)

h ;:::lim lim log M (Yu t) It ;:::lim log Mht, t) It.
n+o t-roo t-roo

Nowthe claim is obvious from the Lenma , 0

Let N(1'l, t) count the maxirnal. number of (t,-vJ -separated points

in X. Let
vs (t)

E
;::: 1: vol F
FESet,E)

where we sum over the set S(t,E) of all compact r-flats

with t-E sys F ::;t+E . Fix € very small.

Lerrrn.::l 2: For sorre c > 0 and all srra Ll m , vs (t) s c 'l.r Nh, t) .
E

Proof: Let F,F' E S = S(t,E). Let y,yl be shortest regular geodesics

of 1", F' and suppose that y and y' are -n-c.lose. Let x, Y be points in X,

t- E$ T,T' $ t+E: such that ¢ x ;:::x , ¢ ,y;::: Y . Let t. = it and
T T 1.

x. = CP_t.x define a specification (T, 1') • Let sI c Step (,r) be given
l E

l
by si (u) ;:::ih-t) for t. < U < t. I' Then x E U* (rl. Defille 521. - l+ t:

the same way using T I instead of T . For 0 $ u $ t we see that

¢t.+u+s2Ct.+U)y = ¢uy .
1. 1.

As d(¢ux,¢uY) s"YL, Y E U* (r) • By 4.2 Lerrma 2 and €«1,

X ;::: ay for some a E:A , II a II < B (sane universalS ). In p.rrticular,

F ;:::F' (as y,y' are regular) .
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As VS(t) ~ VS et) + VS (t-2E)+ ..•+ VS (0)
SEE

our c.l.a.imis clear. 0

For F E S, C > 0 a universal constant, there are vol FIc-{

many points on F that are at least -n.-<iistant. Tt>..ey give rise to 'Yl-o.is-

tant points x_ on the ergodic componentcorresponding to a shortest
1.

regular geodesic of F. Por P ~ pI S S the argument above shows

that the xi and xi are CtfY\..)-separated.Hence vs~t) ~ ~ Nl"Yt,t)·0

Prcof: Clearly,

lim log VS (tj It = h.t-+oo
lim log VS€ et) It ~lim lim log Cc-re N ('Y]_, t.) It = h.
t -+<x> 'Y1--70 t-+<x>

Proposition:
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Appendix

In this appendix we will briefly review the basic struc-

ture theory of real semisimple Lie groups. Our main sources

are [He IJ and [Wa IJ. We will assume the general theory of
Lie groups.

connec~J
1: Let G be a realrLie group

9 its Lie algebra, g~

the complexification of g.

1.1: Definition: 9 is simple if 9 has no ideals exce~t

{O} and n.

9 is semisimple if 9 1S a direct sum of simple Lie

algebras.

The Lie group G 1S called (semi)simple iff its Lie

algebra 9 is (semi)simple.

1.2: We denote the adjoint action of 9 on itself by ad.

We ~ecall that

ad(X)(Y) = [X,YJ.

Exponentiating ad we get the adjoint action Ad of G on

g. Recall that a finite dimensional representation is sem1-

simple iff every invariant subspace has an invariant comple-

mentary subspace. In these terms we get a first important

consequence of the semisimplicity that nearly characterizes
it:

Proposition: If 9 1S semisimple then ad 9 1S semisimple.

Conversely, if ad 9 is semisimple then 9 is reductive 1.e.

9 is the direct sum of an abelian and a semisimple Lie
algebra.
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Proof: This lS Theorem 3.16.3 of [Va IJ. o

1.3: The next characterization is in terms of the Cartan-

Killing form.

is called the Cartan-Killing form of the Lie algebra g.

Definition: The bilinear form B(X,Y) = trace (ad X ad Y)

Proposition: A Lie algebra 9 is semisimple iff its Cartan-

Killing form is non-degenerate.

Proof: This lS Proposition 6.1 and its corollaries in

[He IJ. 0

Notice that the Cartan-Killing form is invariant under

all automorphisms of g.

2: An important element in the structure theory of seml-

simple Lie algebras is the Cartan subalgebra.

2.1: Definition 1: A subalgebra q E 9 is called a

Cart an subalgebra of 9 if q is maximal abelian and

ad(H) is a semisimple endomorphism for each H E g.

There is an intimate connection between Cartan sub-

algebras and regular elements. Let us first recall the

2.2: Definition 2: Expand the characteristic polynomial

det(t-adCX)) = to d.(X)ti for X E 9 . Let e be the least
l

integer such that de(X) ~ 0 for some X E 9. We call

X E 9 regular if deCX) ~ o .
We first get an existence result:

Proposition 1: Let 9 be semisimple. Then the centralizer

of a regular element lS a Cartan subalgebra of dimension t.

Conversely, every Cartan subalgebra arises in this manner.
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Proof: This is [He lJ, III, § 3, Theorem 3.1. To prove the

Proposition 2: Over ~, Cartan subalgebras are unlque up

to conjugacy.

Proof of Proposition 2: This is the remark following Propo-

sition 1.3.1.2 in [Wa lJ. 0

Back in the proof of Proposition 1, suppose we are

given a Cartan subalgebra ij. Its complexification qc is

a Cartan subalgebra In gC' By Proposition 2 and the first

part of Proposition 1 ijC lS the centralizer

of a regular element. In particular, 4~ contains a regular

element. Since is Zariski dense (over C) In we

also find a regular element in ~. o

Corollary 1: Every semisimple Lie algebra g has a Cartan

subalgebra.

Proof: This is obvious from Proposition 1. o

Let us observe that the whole structure theory hinges

on this result.

2.3: As a complement to Proposition 2 and Corollary 1 we have:

Proposition 3: Every real semisimple Lie algebra 9 has a

finite number of conjugacy classes of Cartan subalgebras.

They may be described in terms of the root system.

Pro.r: This is Theorem 1.3.1.10 of [Wa r l. o

Finally, let us observe that the set of regular elements

gl lS open and dense In g. If qv···,b k are representative

Cartan subalgebras of all the conJugacy classes then
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a ' = U
<a-EGl~i~k

~i' Cobvious from Proposition 1). In particular, 9' has a

Ad(g)1J~
l

where are the regular elements of

finite number of connected components.

3: Since the adjoint representation restricted to a Cartan

subalgebra 1J is a semisimple representation of an abelian

Lie algebra we can diagonalize it. This leads to th~

3.1 : Definition: Let a E 4~, the dual of the complexifi-

cation of q . Let IT {X E Se I [H,xJ aCH)X for all HElIe}'9 = =

If a f- a call root and a a root For
9 we a a 9 space. a

given Cartan subalgebra q, we denote the set of all non-

zero roots by P.

Since the Cartan-Killing form B lS non-degenerate

even when restricted to b~ we get a canonical isomorphism

1J
.0.

r :2:: 1Jf· In particular, we have a dual element Ha
for IT

such that BCH,Ha) = aCH) for all H E qC' Moreover, we

can transport B to 1],0, and let
C

3.2: The diagonalization of adllJCand its special proper-

ties is obtained in the root space decomposition.

Theorem: (i) ge decomposes into a direct sum:

l1c + I a
ge = 9 .

aEp

Cii) dimeS a 1.=

(iii) a 0 with respect to B unless -~.S .L S a =

(iv) If a E l' and ca E p then c = ±l.

(v) For each E q, choose X E
IT such thatIT we can SIT

( 1) [X ,X ] = H and [H,X ] = IT(H)X for alla -IT IT a IT

H E l}c'



95

( 2 ) There are real numbers N a,~
for all

a,~ E ~ such that

if a + ~ E ~

if a + ~ f p and a 1 -~.

Note that N is not defined.a ,-a

We have the following relations whenever the terms

are well-defined:

N = -N =-Na,~ -a,-~ ~,a

N-a,a+~ = N ({ .
- t-' ,-a

f -

(vi) Given a,~ E~, the roots of the form 6 + na

for n E Z are an uninterrupted progression. If

p and q denote the ends of this progression

p S n S q then

-2 (~,a) = p + q
(a,a,)

and N
2 q(l-p) (a,a).=a,~ 2

Proof: This is contained in [He lJ, III, §4.5. o

We will call a set of X ,Ha a
satisfying the properties

of the theorem a Weyl basis of B~'

4: To advance further we have to use the unitary trick which

presents us with a lot of compactness In g. We also discuss

normal real forms. First recall the
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4.1: Definition: A real Lie algebra is called compact if

its Cartan-Killing form is negative definite.

Now we can formulate Weyl's unitary trick:

4.2: Theorem: Every complex semisimple Lie algebra g~

has real form " i.e. real Lie algebraa compact u , a compact
v such that v isomorphism v is unique.u uQ; = !:J~. Up to u

Proof: This is Theorem 6.3 of [He lJ, III, §6. o

This result allows us to introduce Cartan decompositions:

4.3: Let a be the complex COh~Oh of the complexifica-

tion of induced by g.

Definition: A direct sum 9 = k + P for k a Lie sub-

algebra and p a vector subspace is called a Cartan decom-

posi tion for 9 if there exists a compact rea 1 form u of
vsuch that au = u and

k =
• v

=

Theorem: Every real semisimple Lie algebra 9 has a

Cartan decomposition which is unique up to conjugacy.

Proof: This is Theorem 7.1 and 7.2 of [He lJ, III, §7. 0

One characterizes Cartan decompositions in terms of

the Killing form B:

Proposition: Let 9 = k + p be a direct decomposition

into a Lie subalgebra k and a vector subspace p. Then

involution e defined by e (K+P) = K - P lS an automorphism

9 = k + P lS a Cartan decomposition iff B lS positive

definite on p and negative definite on k and if the

of g.
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Proof: This is Proposition 7.4 of [He lJ, III, §7. o

We call 8 the Cartan involution associated to the
Cartan decomposition. This condition also implies that

k lS a maximal compactly imbedded subalgebra of g. We
call R the maximal compact and p the vector part of
a Cartan decomposition.

4.4: Normal real forms form the opposite of compact real

forms. They provide real semisimple Lie algebras whose
structure is about as simple as that of complex Lie algebras.

Definition: Let If be semisimple complex Lie algebra.9 a
A real form of IC is called normal if for Cartan9 9 a
decomposition 9 = k + p , p contains a Cartan subalgebra.

Theorem: Each semisimple complex Lie algebra gC has a

normal real form g. In terms of the root system ~ of glC:

= JRH a + L
aEep

JR X .a

Proof: This is [He lJ, IX, Theorem 5.10. Note that our

definition of a normal real form coincides with Helgason's

because a maximal abelian subalgebra of 9 contained in

p is a Cartan. This is clear from AS.l Proposition lCi).

The description in terms of the roots is given in the proof

of the theorem~ o

5: We pursue the theme of A4 on the group level.

Ci) K lS connected, closed and contains the center

5.1: Theorem 1: Let K be any Lie subgroup of G with

Lie algebra R, R a maximal compact. Then
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Z of G. Moreover, K lS compact iff Z is

finite.

Cii) There exists an involutive, analytic automorphism
'"e of G whose fixed point set is K and whose

differential at 1 lS e.
(iii) The map ~ (X,k) ~ (exp X) k is a diffeomorphism

of p x K onto G.

Proof: This is Theorem 1.1 of [He IJ, VI, §l. o

In particular, the theorem shows that maximal compact

s~~groups of G exist provided the center of G is finite.

Very important is the

Theorem 2: All maximal compact subgroups of G are connected

and conjugate in G.

Proof: This lS Theorem 2.2 of [He IJ, VI, §2. o

5.2: From the fact that e 1S an automorphism one easily

concludes that [k,pJ c p. In particular, Ad K leaves

p invariant as a set.
~x~ma.\

Proposition 1: Let tt be an~ian subalgebra of p. Then

(i) tt can be extended to a Cartan subalgebra 4 of

g. Moreover tt is unique up to conj ugacy.

(ii) p:: Ad (K) • a i.e . .. lS a "cross-section" to

the Ad K action.

§6. o

Proof: (i) lS part of the Iwasawa decomposition, [He lJ,

VI, §3. Uniqueness and (ii) are Lemma 6.3 of [He lJ, V,
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One can use this result to improve on 5.1 Theorem 2:

Proposition 2: Suppose that G has finite center. Then

K is a maximal closed subgroup of G.

Proof: This is Theorem 1.3 in [Gl lJ, VI. o

6: We want to tie up the structures in A4 and AS with the

theory of the roots of B~ in A3. Notice that we only used

the complexification of 9 a n A3. So we have to

study the effects of the real structure on the root system.

We first have to recall abstract root systems and their

properties in this section.

6.1: Definition 1: Let E be a finite dimensional real

vector space. A reflection w
a

with respect to a E E is

an automorphism of E such that

(i) w (a)
a = -a.

(ii) The fixed points of w a
are a hyperplane in E.

Definition 2: A subset ~ c E is a root system ln E if

(i) ~ is finite, eenerates E and 0 f ¢

Cii) For every a E ~ there exists a reflection w
a

with respect to a which leaves ~ invariant.

(iii) For every a,~ E ~, w (n -~a
is an integral

multiple of a.

Notice that w a is unique.

Definition 3: The group W = W(~) generated by the

reflections w ,a E ¢ is called the Weyl group of ~.
a

Fix a positive non-degenerate symmetric bilinear form
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,) on E invariant under W. (Since W lS finite it

exists). Then we may describe w a explicitly by:

w (e)a = Ce,a)e - 2 (a,a) a.

By property (iii) of a root system A =a,~
2 C§,a)

(a,a)

~ E ~.

is an

integer, called the Cartan integer for all

6.2: Definition: Let P be a root system In E. A subset

t of ~ lS called a fundamental system of roots for P if:

Ci) t is a vector space basis for E.

(ii) Every root can be written as a linear combination

n aa

where n are all integers of the same sign.
a

We call the elements of t simple roots.

Clearly, a fundamental system defines a unique vector

space ordering on E such that the simple roots are positive.

Conversely, one can prove that the positive roots with

respect to some order on E contain a unique fundamental

system.

Proposition: Let t be a fundamental system. Then the

w for a E t are a system of generators for W.
a

Proof: This is [Wa IJ Proposition 1.1.2.3. o

Using this proposition one can prove the

Theorem: Any two fundamental systems of ~ are conjugate

under a unique element w E W.

Proof: This lS [Wa IJ Theorem 1.1.2.6. o
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6.3: Every root a E ~ defines a hyperplane orthogonal to

a ~ith respect to ( ,), called a singular hyperplane.

Definition: A connected component of the complement of the

singular hyperplanes is called a Weyl chamber.

Notice that each Weyl chamber defines an order on E

and conversely. Hence 6.2 Theorem says that W acts simply

transitively on the Weyl chambers i.e. for any two Weyl

chambers C, Cl there is a unique w E W such that

wC = C'. Even more is true:

Theorem 1: Let C be a Weyl chamber. The closure of C

(in E) is a fundamental domain for the action of W on

E, i.e. the closure of C meets each W-orbit exactly

once.

o
Proof: This [Wa lJ Theorem 1.1.2.7.

We also need a result of Chevalley.

Theorem 2 : Let F be a subset of E, WF the subgroup of

W that fixes F pointwise. Then WF is generated by

the reflections wa,a E t that fix F pointwise.

Proof: This 1S [Wa lJ Theorem 1.1.2.8. o

6.4: Definition 1: A root system ¢ is called reduced if

+a and -a are the only roots in ~ proportional to

a E ~.

The most important example is the root system associ-

ated to a complex semisimple Lie algebra g: More precisely

we take E = 11~': and we let ~ = {a E 1J~':laa root as in A3.1}.

All the properties of a reduced root system are contained

in A3. 2 Theorem.
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Given two root systems (El'~l) and (E2'~2) we

can form their direct sum (El+E2'~lU42)'

One can show easily that the root system of a complex

Definition 2: A root system ~ 1S irreducibl~ if * 1S

not the direct sum of two sUbsystems.

semisimple Lie algebra 9 is irreducible iff 9 is simple.

Also

Proposition: ~ 1S irreducible iff there are no two ortho-

gonal subsets A, B of ~ iff W acts irreducibly on E.

Proof: If W does not act irreducibly on E let E:=E +E1 2
a W-invariant decomposition. Take a E ~ and let

a = al + a2 ' a. E E .. Then -a = w a = waal + waa2 =
1 1 a

-a - a2· By W-invariance of the decomposition waal =
1

(alia )
-al, so (11- a = -al' As «(1,al) = (al,al) f:. 0

(a,a)

unless al = 0 we get a linear dependence between (11 and

(12' Therefore either (11 or (12 1S 0 and every root

lives either in El or E2 . As El .L E2 this defines two

orthogonal subsets of ~. The other claims are obvious. 0

7: Now we study the effects of a real structure on the

root system. For clarity, we first deal with an abstract

root system.

7.1 : Definition: Let p be a reduced root system. If

U 1S a linear involutive isometry of E such that

cr~ = 4 and a # ±l then (~,a) or 4 1S called a

u-system of roots. We call ~ normal iff, for all a E ~,
(1u- a f <P.

In the following ~ will always be a normal a-system.
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Also let E = E + E+ be the decomposition into the ±l-
eigenspaces of 0, Finally, we can project a E ~+ to

cv
a E E+, The collection of these a is called ~. Then

~ is finite and generates E+, In fact, Araki proved:

Proposition: For ~ as above ~ 1S a root system in E+,

Proof: This is [Wa IJ Proposition 1.1.3.1. o

Let us notice that ~ is not a reduced root system 1n

general.

7.2: Notice that ¢ 1S a root system. Let W be the

Weyl group of ~ and W = {w E WIW0 = 0W}. Then W is
o 0

the subgroup of W = W¢ consisting precisely of those

elements which stabilize E+. Also W is a normal sub-

group of W ,
c

Proposition: Restriction of w E W0 to E+ defines a

hor.omor-ph i sm from W
c

to with kernel W .

Proof: This 1S [Wa IJ Proposition 1.1.3.3. o

7.3: Definition: The mUltiplicity m(\) for \ E ~ 1S

the cardinality of a E ¢+ such that the orthogonal pro-

jection to E+ 1S \.

The multiplicities turn out to be an important invariant

in classifying real semisimple Lie algebras.

7.4. We discuss the most important example of a 0-system,

namely let 9 be a real semisimple Lie algebra. Let ¢

be the root system of the complexification of g. Let

u be a maximal abelian subalgebra of p as in AS.2 and
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11 a Cartan subalgebra that contains a . Then

l} = (I}nk) + tt • Let a be the complex con~'i!0~D" on gt
~induced by 9 • Let denote complex conjugation. For

a E l}~ let aCJ(H) = a(aH), H E lIt' Choose compatible

orderings on s:tt"
~

and i.e. the restriction of

a ::: 0 to lS also positive (:::0),

Lemma: For all a E ~, aa - a ~~. Therefore (~,CJ) lS

a normal a-system.

Proof: This lS [Wa IJ, Lemma 1.1.3.6. o

Now the preceding machinery applies and we get a

root system ~, called the root system of (9,&). One

can prove that tt, ~ and the mUltiplicities are a complete

invariant of g (follows from the classification). We

may interpret as a subset of s,

a~. Choosing compatible

orders gives us a correspondence between fundamental systems

of ~ and 6 (after fixing an order on ~ ).

8: We describe the Iwasawa decomposition of 9 into a

compact and a solvable respectively nilpotent subalgebra.

8.1: We assume the notations from 7.4. For each \ E a*

let x9 = {X E g : [H,XJ = A(H)X for each H Ea}. Since

ada is a commuting family of self-adjoint operators we
Aget a decomposition 9 = IAEtt* 9 By comparison with the

gA .J. 0 l' ffwe see tha't t:root space decomposition of g(

\' A + 0
A E ~ or A = O. Hence 9 = LAEZ 9 g. Fix an order

on ~ and let
A

= IAEz+ 9

+6 denote the positive roots. Let
A f-L A+ f-L +Since [g, g ] C g n lS a nilpotent+n

+subalgebra. Let 6 = & + n Then 6 lS a solvable

subalgebra.
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Theorem: We have the Iwasawa decomposition !J = It + a + +
n •

Proof: This is [He IJ, VI, §3, Theorem 3.4. o

8.2: Let +N ,A be the subgroups of G corresponding to
+a and n. We get the global decomposition

Theorem: The map K x A x N+ -+ G gi.ven by Ck,a,n) f-+ k • a .n

is a diffeomeorphism. Moreover, A and N+ are simply

connected. In particular, G/K is diffeomorphic to an
]Rn , some n.

+We call G = K .A .N an Iwasawa decomposition. Any

two Iwasawa decompositions are conjugate.

Proof: The first two claims are [He IJ, VI, §S, Theorem 5.1.

Uniqueness of the decomposition follows easily from the

uniqueness of the Cartan decomposition CA4.3) and the maximal

subalgebra a of p (AS.2). o

8.3: Proposition: The centralizer of a In 9 lS a + m

where we let m = CI
aE
¢ ga) + (11n1d. Also m c k .

Proof: The centralizer of tt clearly consists of q and

all those ga whose root a is identically 0 on tt

l.e. a E ¢ . Notice that mnp = {O} since tt is maximal

abelian In p. Notice that [k,pJ c p and [p,pJ c k
(from an eigenvalue consideration of e). Hence if

K + P E m then K E m and PEnt, so by the above

m c k. o

8.4: Definition: The complex dimension of q~ is called

the complex rank of g, while the rank, real rank or split

rank is the real dimension of a.
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Rank 1 and rank ~2 groups have different fundamental

properties.

8.S· With the real structure on the root system we can

describe the terms of the Cartan decomposition: Let

Proposition: The following decompositions are direct:

= tex +ex )a a

and = t(X -ex ).
a

where 8 lS the Cartan involution.

Proof: This is [He D, VI, §3, Lemma 3.6. o

8.6: We describe the Weyl group in terms of the semisimple

group. Let M* be the normalizer, M the centralizer of

et in K l.e.

and

W· = {k E K lAd k et = et}..

M = {k E K [Ad K H = H for all n s e j .

Then W· and M are compact as they are closed ln..
and they have the same Lie algebra m: this is clear.K,

for M and follows easily for M* If there is

any root a f 1>_ such that Xa enters into some term of

the root space decomposition of an element X E Lie M*

then [X ,HJ = a(H)X for some H E a with aCH) f 0 and X
a a

clearly does not normalize tt. In particular M*/M is a

finite group and it acts on tt.



107

Proposition 1: By the embedding into Gl(n) by the adjoint

action, M*/M is the Weyl group of the root system of

(g"d.

Proof: This is a consequence of [He IJ, VII, §2 (Theorem

2.12 in particular). 0

As a corollary we see that the Weyl group of the complex

root system is Norm ~nU/Centr 4nU where U is a compact

real form of G~.

We also need a kind of 'rigidity' of n:

Proposition 2: Let A be a subset of n and suppose

k E K such that Adk(A) c n. Then there exists an element

w E W = WCy,a) such that w· H = Adk H for each H E A.

Proof: This is [He 1, VII, §2, Proposition 2.2. o

Let us note that one can write down explicit formulas

for representing elements ln K of the Weyl group, cf.

[Wa IJ, Lemma 1.1.3.9 and Lemma 1.3.2.4.

8.7: Quite important lS Cartan's polar coordinate decompo-

sition:

Proposition: G = K .A . K.

Proof: Recall that (k,P) ~ k • exp P is a diffeomorphism

(A5.1 Theorem 1 (iii». We only need to prove that

exp p c K .A • K or that p c Adk • a. This is A5. 2

Proposition l(ii). o

9: The maln point of this section is the Jordan decomposition

of an element into a semisimple and unipotent part.
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9.1: Definition: An element X E 9 lS called semisimple

if adX is diagonalizable over C. We call X E 9 nilpotent

is nilpotent.if adX

Proposition: Every element XED can be written in a
unique way as X = X + X where Xs n s is semisimple, X n
is nilpotent and [X ,X ] = o.s n Moreover, if Y commutes
with X then Y commutes with X and X.s n

Proof: Cf. [BIL p. 79. o

9.2: We also need the Jordan decomposition on the group level.

Definition: We call x E G. semisimple if Adx lS seml-

simple. Moreover, the exponential of a nilpotent element

is called unipotent.

Proposition: We can write x E G uniquely in the form

x = x x where x is semisimple, x lS unipotent ands u s u
x and x commute. Moreover, if y commutes with xs u
then it also commutes with x and xs u

Proof: This is [Wa IJ, Proposition 1.4.3.3. o

9.3: One can characterize semisimple elements In terms of

Cartan subalgebras.

Proposition: The centralizer Bx In 9 of a semisimple

element x of 9 or G lS reductive In 9 with

rank gx = rank g. In particular, the set of semisimple

elements is the unlon of all Cartan subalgebras of 9

respectively all Cartan subgroups of G.

Note: A Cartan subgroup lS a centralizer In G of a Cartan

subalgebra in g.
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Pro0f: This lS [Wa IJ, Proposition 1.3.5.4 and 1.4.3.2. 0

9.4: Definition: We call a semisimple element x E G

elliptic if all the eigenvalues of Adx lie on the unit

circle. We call x hyperbolic if the eigenvalues of Adx

are positive real.

Proposition 1: Let G = K .A .N be an Iwasawa decomposition.

Then

(i) G 1 g lS elliptic iff g lS conjugate to an

element of K.

Cii) G 3 g is hyperbolic iff g is conjugate to an

element of A.

(iii) G 3 g is unipotent iff g lS conjugate to an

element of N.

Proof: This is [He IJ, IX, §7, Theorem 7.2. o

Proposition 2: Every semisimple element x has a unique

decomposition x = e . h where e is elliptic and h
hyperbolic.

Proof: This lS In [Mo 2J. o

Definition: We call h In x = e·h the polar part of a

semisimple element x E G. We write h = pol x. For

arbitrary x E G let pol x = pol x where x = x . xs s U

lS the Jordan decomposition.

10: We discuss the Bruhat decomposition and parabblic sub-

groups. We will always assume that G has finite center.

10.1: Definition: For an Iwasawa decomposition G = K·A·N +

let M = centralizer A in K and set P = M . A . N+. We
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call P a minimal parabolic in G.

Notice that P is a closed subgroup of G and that
all minimal parabolics are conjugate. Recall from A8.6

Proposition I that each w E W (the Weyl group) has a

representative m in M* = normalizer of A in K. Since

two representatives of w differ only by an element In M
the double coset PmP only depends on w. By abuse

\

of notation we write PwP for PmP. We have the Bruhat

decomposition

Theorem: We can decompose G int0 a disjoint union of

double cosets: G = U PwP.
wEW

Proof: This is [Wa IJ Theorem 1.2.3. o

A simple but quite important consequence lS

Proposition: The minimal parabolic P is the normalizer of

N+ In G. Moreover, P is selfnormalizing. Also there

exists a unique double coset of P whose dimension is

equal to G. It is open and dense In G and has full

measure.

Proof: This lS [Wa IJ Propositions 1.2.3.4 and 1.2.3.5. 0

10.2: Definition: A parabolic subgroup lS any subgroup

containing a minimal parabolic subgroup.

Quite surprisingly one can describe all parabolics

containing a given minimal parabolic P quite easily:

Fix a fundamental system t for 2::. For any subset

e c 'It let We be the subgroup of W generated by the

w. for l E e . Notice that Wt = W by A6.2 Proposition.
l
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We let Pe = PWeP. This is a parabolic subgroup. Clearly,
P = P

if>
proved

and P~ = G by the Bruhat decomposition. Tits

Theorem: The subgroups Pe are all the parabolics con-

taining P. No two of them are conjugate or equal. Hence
there are 2r of them where r is the split rank of G.
All the parabolics are their own normalizers.

Proof: This lS [Wa IJ Theorem 1.2.1.1. o

To describe the Lie algebra of Pe let 6 c ~ be the

set of all roots that are either positive or that are a

~-linear combination of i E e. Then

Proposition: The Lie algebra of is ut + I
aE6

a
9 .'

Proof: This lS contained In [Wa lJ Theorem 1.2.4.8. 0

10.3: Definition 1: The unipotent radical R ep)
u

is the

greatest connected normal subgroup of P all of whose

elements are unipotent.

Note: Cf. [Hu IJ 19.5 to see that this is well defined.
,r

Definition 2: A Levi subgroup L of a parabolic P is a

closed reductive subgroup L of P such that P=LoR(P)
u

defines a unique decomposition p = 1 . r of any pEP.

Proposition: Every parabolic possesses a Levi subgroup that

is unique up to conjugation by R (P).
u

Proof: This is [Wa IJ Proposition 1.2.4.14. o

For a parabolic P with a Levi subgroup L we let

A be the unique maximal connected split abelian subgroup
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of the center of L. We let M = n ker x where
XEX(L)

X(L) are all continuous homomorphisms of L into the

multiplicative group of the reals. Clearly L = M' A

and MnA = {I}. This gives us the Langlands decomposition

of P:
P = M·A·R (P).u

Clearly, any two Langlands decompositions of P are conjugate

slnce any two Levi subgroups are conjugate. Notice that

for a minimal parabolic P we have RuCP) = N+, L = centr tt

lS a Levi subgroup, A = exp tt the split abelian component

as above and U = centr AnK (otherwise said, our notation

is consistent with previous denominations in this case.)

10.4: Definition: A homogeneous space G/H is called a

boundary of G if for every probability measure ~ on

GIH there exists a sequence x E Gn
such that

converges to a point measure.

Furstenberg proved that boundaries are very special:

Theorem: GIH lS a boundary iff H is a parabolic.

Proof: This is [Wa IJ Proposition 1.2.3.11. o

Note: One can compactify the globally symmetric space

G/K in such a way that GIP for P a minimal parabolic

arises as the only compact G-orbit. Hence the name

boundary (cf. I Section 2.3.)

10.5: We discuss G = SL(n,~) as an example. For each

sequence of integers nl < n2 < ... < nk < n consider a flag

V
l

c V2 c ...c Vk of linear subspaces of of dimensions
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dim V. = n .. The space of all such flags for a givena l
sequence Cn .) is called a flag manifold F. Clearlyl
SLCn,JR) acts transitively on each F with an isotropy

subgroup consisting of matrices of the form,

I

*

o

i.e. generalized upper triangular matrices. It is easy

to see that these are all the parabolics of SLCn,~).

Accordingly, the flag manifolds are all the boundaries of

SL(n,JR) . The minimal parabolic is the group of upper

triangular matrices.

11; Without gOlng into any details we want to mention the

notion of an algebraic group.

Definition: An algebraic variety G is called an algebraic

group if G has a group structure such that (x,y) 1-+ x • Y

and -1x I-> x are morphisms of algebraic varieties.

No~j: Here G x G carries the Zariski product topology.

The basic fact for our purposes lS

Proposition: Every connected semisimple Lie group G 1S

locally isomorphic (i.e. has the same Lie algebra as) to a
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real algebraic group G'.

Proof: The adjoint group of the complex Lie algebra Se
is a complex algebraic group defined over ~. The real

points form a real algebraic group whose connected compon-

ent of the identity is the adjoint group of g. By semi-

simplicity this is locally isomorphic to G. o

This fact allows us to use the language of algebraic

geometry. Also we would like to point out that the theory

of semisimple algebraic groups is similar to the theory of

real semisimple groups, cf. [Hu 1] and [B - TJ. Let us

note that the notion of a parabolic subgroup is very natural

in this context.

Definition: A parabolic subgroup P of a real semisimple

algebraic group G is an algebraic subgroup such that GIP

is a complete projective variety.

Finally, we want to remark on Chevalley's theorem on

the rationality of semisimple Lie algebras.

Theorem: Every real semisimple Lie algebra has a Weyl basis

with rational structure constants.

Proof: This lS [Ch IJ, Theorem 1. o

12: We outline the theory of locally and globally symmetric

spaces. We assume all the differential geometry used.

12.1: Let M be a Riemannian manifold. Let p E M and
~to be the map defined by:define the geodesic symmetry

for any geodesic with

s
P

yCO) = p let s(yCt» = y(-t).
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Definition 1: The manifold M is called locally symmetric

if sp lS an isometry in a neighborhood of p for all

p E M. We call M globally symmetric if sp extends to

an isometry of all of M for all p E M. The main point

is that each complete locally symmetric manifold M has

a globally symmetric universal cover. (Cf. [He 1], IV, §6,

Corollary 5.7) and that one can classify globally symmetric

spaces. The first step is the

Theorem: Let M be globally symmetric. Then the connected

component G of the isometry group of M acts transitively

on M with compact isotropy group K.

Proof: This [He IJ, IV, §3, Theorem 3.3 o

One can further classify M into non-compact, compact

and Euclidean type. Any M admits a decomposition (in

~he sense of de Rham) into these types. We are only interested

in the non-compact type:

Definition 3: A globally symmetric space M lS said to be

of the non-compact type if G lS a semisimple group with

no compact factors and K a maximal compact of G.

This program reduces the study and cla~sification of

symmetric spaces to a group theoretic problern. Conversely,

given a semisimple group G without compact factors and a

maximal compact K we can give G/K a globally symmetric

structure: Recall from A4.3 Proposition that the Cartan-

Killing form B is positive definite on p. Clearly, we

can identify the tangent space to G/K at l' K with p.

Hence B defines a Riemannian structure on G/K. The group-
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theoretic and the Riemannian exponential map are very

similar: Let X E P then EXPR' X = exp X • K. Moreover,1em
AS.l Theorem lCii) asserts that G/K is globally symmetric.

One can also calculate the curvature in terms of the group

structure.

Proposition 1: Let R denote the curvature tensor of G/K.

Then at 0 = l' K we find that

RO(X,Y)Z = -[[X,Y],zJ for X,Y,Z E p.

Proof: This is [He IJ, IV, §4, Theorem 4. o

This allows us to characterize the spaces of non-compact

type:

Proposition 2: A globally symmetric space M is of non-

compact type, iff M has non-positive curvature and none of

the de Rham components are flat.

Proof: This clear from [He IJ, IV, §3, Theorem 3.1. 0

Let us finally note that the fundamental group of a

locally symmetric space of the non-compact type and of

finite volume defines a lattice r 1n the semisimple

group G, i.e. a discrete subgroup f of G such that

G/f has finite volume. Conversely, any torsion-free lattice

gives rise to a locally symmetric space.

We will need the following:

Definition: A lattice f c G 1n a connected semisimple

group without compact factors 1S reducible if G admits

connected normal subgroups H,H' such that G = H • H' ,

HnH' is discrete and r/(fnH)(fnH') 18 finite. We call

r irreducible if f is not reducible.
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One has the following decomposition theorcm.

Proposition 3: Let f be a lattice 1n a connected seml-

simple Lie group G without compact factors. Then there

exist connected closed normal subgroups Gl,··· ,Gn ouch that
nn CG·11f)i=l 1

G.
1

and is a subgroupGi1f is a lattice in

jection Then

11.
1

r' =

denote the pro-of finite index of f. Moreover, let

TT • :
1

"G ~ G/G1 ... G .... G .
1 n

n -1n 11. TI-\.f
. 1 1_1=

is a lattice 1n G and r' J f.

Froof: This 1S obvious from [Ra IJ, Corollary 5.19. 0



[Ba 1]

[Hi 1]

[Bar 1]

[B-Hch]

[ 1:)-T]

[B lJ

[Ba 1]

lBo 2l

[Ba 3]

[Ba 4]

[130 5]

[Ba-Hall

[Ch 1]

118

BIBLIOGRAPHY

Iv. Ballmann: "Einige neue Kesultate uber Mannigfaltigkeiten

"nichtpositiver Krummung, Bonner Mathematische Schriften Nr.113.

R.L. Bishop, B. O'Neill: Manifolds of Negative Curvature,

Transactions of the American Mathematical Society 145 (1969),

1 - 49.

A.Bore1: Compact Clifford Klein Forms of Symmetric Spaces,

Topology 2 (1963), 111 - 122.

A. Borel, Harish-Chandra: Arithmetic Subgroups of Alge-

braic Groups, Annals of Mathematics 75 (1962), 485 - 535.

A. Borel, J.Tits: Groupes R~ductifs, i.H.E.S. Publications

Mathematiques 27 (1965), 55 - 152.

N. Bourbaki: E16ments de Mathematique, Groupes et AJg~bres

de Lie, Chapter I, Hermann, Paris, 1960.

R. Bowe n : Periodic Orbits for Hyperbolic Flows, American

Journal of Mathematics 94 (1972), 1 - 30.

R. Bowen: The Equidistribution of Closed Geodesics,

American Journal of Mathematics 94 (1972), 413 - 423.

R. Bowen: Some Systems with Unique Equilibrium States,

Mathematical Systems Theory 8 (1974), 193 - 202.

R. Bowen: Maximizing Entropy for a Hyperbolic Flow,

Mathematical Systems Theory I (1973), 300 - 303.

R. Bowcn : I-Jcak Mixing and Unique Ergcd ic Lty on llomo-

gcncous Spaces, Israel Journal of Mathematics 23

(1976), 267 - 273.

R. Bowen, B.Marcus: Unique Ergodicity for Horocycle

Foliations, Israel Journal of Mathematics 26 (19/7), 43- 67.

C. Cheval1ey; Sur Certains Groupes Simples, Tohoku

Mathematical Journal(a) 7 (1955), 14 - 66.



lDa 1J

[Da 2]

[DGS]

[Eb 1J

[Eh 1]

[Eb 3]

[Eb 4)

[Eb 5]

[Fu 1]

lCl 1]

[He 1]

[Hu I)

119

S.G. Dani: Invariant Measures and Minimal Sets of Horo-

spherical Flows, Inventiones Mathema ticae 6 Lt (1981), 357-385.

S.G. Dani; S. Raghavan: Orbits of Euclidean Frames under

Discrete Linear Groups, Israel Journal of Mathematics 36

(1980), 300 - 320.

M. Denker, C. Gri1lenberger, K. Sigmund: Ergodic Theory

on Compact Spaces, Lecture Notes in Mathematics 527,

Springer Verlag, 19i6.

P. Eberlein, B. O'Neill: V~sibility Manlfolds, Pacific

Journal of Mathematics 46 (1973), 45 - 109.

1'. Eberlein: La t t Lccs in Spaces o f No nposi t ivc Curvature,

Annals of Mathematics III (1980), 435 - 476.

P. Eberlein: ffi1enis a Geodesic Flow of Anosov Type?I,

Journal of Differential Geometry 8 {1973), 437 - 463.

P. Eberlein: Geodesic R~gidlty in Compact Nonpositlvely

Curved Manifolds, Transactions of the American Mathematical

Society 185 (1981), 411 - 443.
P. Eberlein: The Euclidean De Rham Factor of a Lattice

of Nonpositive Curvature is Determined by the Fundamental

Group, preprint.

H. Furstenberg: Recurrence in Ergodic Theory and Combi-

natorial Number Theory, M.B. Porter Lectures, Princeton

University Press 1981.

S. Glasner: Proximal Flows, Lecture NoLes in Mathematics

517, Springer Verlag 1974.

S. Hclgason: Di([erential Geometry, Lie Croups and Symmetric

Spaces, second edition, Academic Press 1978.

J.E. Humphreys: Linear Algebraic Groups, Graduate Texts

in Mathematics 21, Springer Verlag 1975.



[H-l'1 1]

[Ka 1]

[Ko-No 1]

[L IJ

[l'1 1J

[Han 1]

[Nar 1]

[Har 2]

[Na r J]

[Ha IJ

to

120

M.W. Hirsch, C.C. Pugh, M. Shub: Invariant Manifolds,

Lecture Notes in mathematics 5H3, Springer Verlag 1977.

R. Howe, C.C. Moore: Asymptotic Properties of Unitary

Representations, Journal of Functional Analysis 32

(1979), 72 - 96.

A. Katok, Entropy and Closed Geodesics, preprint.

S. Kobayashi, K. Nomizu, Foundations of Differential

Geometry, two volumes, Interscience Publishers lY69.

D. Lind: Ergodic Group Automorphisms and Specification,

Proceedings of the Ergodic Theory Conference in Ober-

wolfach, Lecture Notes in Mathematics 729, Springer

Verlag 1979.

R. Hane: A Proof of Pesin's Formula, Ergodic Theory

and Dynamical Systems 1 (lY81), 95 - 102.

A. Manning, Topological Entropy (or Geodesic Flows,

Annals of Mathematics 110 (1979), 567 - 573.

B. Marcus: Unique Ergodicity of the Horocycle Flow:

Variable Negative Curvature ~ase, Israel Journal of

Mathematics Ll (1975), 133 - 144.

B. Marcus: Unique Ergodicity of Some Flows Related

to Axiom A Dif£eomorphisms, Israel Journal of Mathema-

tics 21 (1975), 111 - 132.

B. Marcus: A Note on Periodic Points for Ergodic Tora1

Au tomo rph i sras , Monatshe£ to.fLlr Malhemat:Li<.89 (1980),121-129.

G.1\. t-1argulis: Quotient Groups of Dj scre t e Subgroups

arid t-lc.asure Theory, Func t Lona l, Analysis and Lts Appli-

cations 12 (L979), 29) - 305.



[Ha 2.]

[Ha 3]

lHa 4]

[Ha 5]

[Nau 1]

[Hi 1]

[Hoo 1]

[Mo 1]

[Ho ~]

[Pe 1]

[Pe 2.]

121

G,A, Margulis: Finiteness of Quotient Groups of Discrete

Subgroups, Functional Analysis and lts Applications 13

(1~79), 178 - 187.

G.A. Hargulis: Discrete Groups of Motions of Manifolds

of Nonpositive Curvature, American Mathematical Society

Translations (2) 109, 1977.

G.A. Hargulis: Applications of Ergodic Theory to the

Investigation of Manifolds of Negative Curvature, Func-

tional Analysis and its Applications 4 (1970), ~9 - 90.

G.A. Margulis: Certain Measures Associated with U-Flows

on Compact Manifolds, Functional Analysis and Its Applicati-

ons 4 (1970), 62 - 76.

F.1. Mau tner: Geodesic Flows on Symmetric Riemann

Sp accs , Anna Ls or M;lti1cmalics 65 (1957), 416 - Ldl.

J. Hilnor: Norse Theory, i\nnals of Mathematics Studies 51,

PrinccLon Un ivcrs it.y Press 1':lbJ.

C.C. Hoare: Ergodicity of Flows on 1I0mogeneous Spaces,

American Journal of Mathematics 88 (1966), 1.J4 - 178.

G.D. Mostow: Strong Rigidity of Locally Synunetric Spaces,

Annals of Mathematics Studies 78, Princeton University

Press 1973.

C.D. Mostow: Factor Spaces of Solvable Groups, Annals

of Mathematics 60 (1954), 1 - 27.

Ja.lj. Pc sLn : Fumi,Lies of J nva rLan t, M<lllifoldsCo rrespori-

d ing t.oNo n+Zc ro Char act.crLs t lc Ex poncn Ls , MiltltctnnLiu.;

of the USSR - lzvestija 10 (1976), 6. 1261 - 1305.

Ja. B. Pesin: Characteristic Lyapunov Exponents and Smoolh

Ergodic Theory, Russian Ha t.hematLcaL Surveys 32 (1977),4,

55 - 114.



[Pr-Ra 1]

l Ra 1]

[Ru 1]

[Ru 2]

[Spa 1]

[Sp 1]

lSu IJ

[Va 1]

[Vi 1]

[Ve 1]

[Vc 2]

[\~a 1]

[Zi 1]

122

G, Prasad, M.S. Raghunathan: Cartan Subgroups and Lattices

in Semisimple Groups, Annals o[ Mathematics 96 (1972),

296 - 317.

M.S. Raghunathan: Discrete Subgroups in Lie Groups,

Ergebnisse der Mathematik und ihrer Grenzgebiete Band 68,

Springer 1972.

D. Ruelle: Ergodic Tneory of Differentiable Dynamical

Systems, I.H.E.S. Publications Mathematiques 50 (1979),27-58.

D. Ruelle: An Inequality for ehe Entropy of Differentiable

Maps, Bol. Soc. Bras. Mat. Y (1978), 83 - 87.

E.H. Spanier: Algebraic Topology, Tata Mc Graw Hill 1966.

K.J. Spatzier: On Lattices Acting on Boundaries of

Semisimple Groups, Ergodic Theory and Dynamical Systems 1,

(1981), L,89 - 494.

M. Sugiura, Conjugate CJ()SSCS o[ CarLan Subalgebras in

keal Semisimple Lie Algebras, Journal of the Mathematical

Society of Japan 11 (1959), 374 - 434.

V.S. Varadarajan, Lie Groups, Lie Algebras and Their

Representations, Prentice Hall Inc., 1974.

J.R. Vick: Homology Theory, Academic Press.

\-J.A. Veech: The Minimallty of the Horospherical Flow,

Israel Journo.l of MatltemaLics,21 (1976), 233 - 239.

Iv.A. Vccch : Uni que ErgodicLty of the lio rosphc r LcaL Flow,

AmerLc<111JC1urn31 of MnLllcJIlclLics99 (1977), ?)27 - ?)S9.

G. ihlrner: llnrrno n Lc Analysis on Scmi s irnp lc Croups,

two volumes, Die Grundlchren dcr MaLltematiscl!cn Wlssen-

schaften in ELnzeldarstcllungcn Band 188 und 189,

Springer Verlag 1972.

R. J. Zimmer: Equivariant Images of Proj cc tive Space

under the Action of SL(n,Z), Ergodic Theory and



123

Dynamical Systems 1 (1981), 519 - 522.

[Zi 2] R,J. Zbnmer: Ergodic Theory, Group Representations, and

Rigidity, Bulletin of the American Mathematical Society,

New Series, 6 (1982), 383 - 416.

p.1=b~e\ J \J. \<\\~~I;!X%" ~\eV'rCl.v\V\~e w..\b<:_rrV'AO.V\V\i'a=\h\~-

ke~-t-e......Pe'l: \cx::Us.~e 6--eo~'5ch-e) S1"'\~~.'(1L-e~\'(e ~

~V\ ~e fY\D.~CS \00.LK2. l\q-=\-L} .

M.\se.~~"C : \...e.c-hA'(E?'S O\r\ be.oJ~\cs; \\r\ \\\~V'v\.OV\V\~o..V\

beOIMM'd/\O.-\o. \",s;;-\;-\-v_~ (\~ 6S) .

A. L.~e'S.Se:. }-bV-:\~c:A~ CA\.\ o~ w\r-ose &e::,J...e.~\cs O,_'(e.

c'os.ed I 6~~~V\\s.S.e_ d~, \Ao.~~ VlAo..-+' \<.. \.AV\o\ \~"Ce."
6-'(~V\~~\~~ C\s J "S\>~~V\.6~" 0<=\,-=1-8').


	WRAP_THESIS_Spatzier_1983.pdf

