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SUMMARY

To agreat extent, rigidity theory is the study of boundaries
of semisimple groups. Here we investigate the action of a lattice on
such a boundary. While we can construct topological factors for real
rank 1 groups we show the nonexistence of such factors in higher rank

for some cases.

We also study the geodesic flow on a compact locally symmetric
manifold of the noncompact type. We calculate metric and topological
entropies and see that the Liouville measure is a measurec of maximal
entropy. This leads to a study of compact maximal flats. We pgive a
new proof of their density in the space of all flats. We prove speci-
fication and expansiveness theorems for the geodesic flow and apply

them to determine a growth rate for compact maximal flats. Finally,

we give an example of a space with infinitely many closed singular

geodesics.
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Introduction

We present this thesis in two parts. They deal with different
specific problems. But at the core of both of them lies the study of

closed geodesics.

Part I: In the first part, we investigate a problem of G. A. Margulis.
He analyzed the group theoretical structure of a lattice I' in a semi-
simple group G by analyzing the action of I on the maximal boundary

of G. More precisely, he proved

Theorem (G. A. Margulis): Let I' be an irreducible lattice in a connected
semisimple algebraic group G over some local field k and suppose

that {;k G > 2. Then any I'-equivariant measurable quotient of a
boundary G/p, P a parabolic, is measurably isomorphic to G/P',

P' 5 P a parabolic (i.e. up to sets of measure 0).

He also showed that this theorem is false for T = SL(2,Z) and
G = SL(2,R). More generally, it fails for all surface groups and
some three-dimensional hyperbolic groups. The general situation in
rank 1 seems to be unknown.

One may wonder whether this theorem holds true in the topological
category rather than the measurable realm. More precisely, Margulis
asked at the end of [Mall:

When does SL(n,Z) acting on the projective space D?n—l have an
equivariant topological Hausdorff factor? In particular, is there a
dichotomy between n é 35 and n= 22

R. J. Zimmer first proved in [Zil] that for n > 2 there are no
such quotients. His method of proof relied heavily on results of
S. G. Dani and Raghavan ([Da2]). In [Spl] we gave an entirely elementary
argument and we also indicated how to construct a quotient for n = 2.

This construction generalizes very nicely to an arbitrary lattice in a



group of real rank 1, even to fundamental groups of visibility manifolds.
The idea is to use the classical correspondence between geodesics and
pairs of points on the boundary. Then one can employ the special
properties of the endpoints of the 1lift of a closed geodesic to construct
an equivalence relation that defines our quotient. We present this in
detail in I Section 1.

In Section 2 we discuss the nonexistence of factors for I = SL(n,Z)
acting on Grassmanhians. Basically it is a calculation. The key is
that the isotropy group of a rational point is "big" in TI'. One might
try to use this for more general split lattices.

For IPn we get a.slightlz,better result: SL(n,Z) acts
minimally on IPn-'l X IPn—l—diagonal. This obviously implies the
non-existence of factors. This approach can't work in general as we
prove in Section 3: for the maximal boundary G/p there are always
I'-invariant closed sets in G/P X G/? that are not G-invariant. Here
I' and G are arbitrary. The technique is the same as in Section 1:
use a compact maximal flat to find special points on the boundary. Here
we use Mostow's realization of G/p as points at infinity of a globally

symmetric space.

The general case of the existence of factors remains open.

After the campletion of this work Dani proved the non-existence

of these factors in the higher rank case.

Part II: We study the geodesic flow on a locally symmetric manifold of

the noncompact type. Our motivation is threefold.

(i) While the geodesic flow on a manifold of negative curvature is well
understood not too much is known for arbitrary manifolds of nonpositive

curvature, Ballmann's condition seems to be quite critical. It requires

that no geodesic in the universal cover bound a flat half plane. If this
condition is satisfied quite a lot of the usual theory can be pushed

through using Pesin theory.



Locally symmetric spaces of higher rank clearly fail to satisfy
this condition. We have tried to understand some of the difficulties
caused by the presence of flats for these simple examples.

Finally, locally symmetric spaces seem to be prime examples of
manifolds that do not satisfy Ballmann's condition in the sense that
they may be building blocks for a general manifold of this type. Evi-
dence for this is the Gromov-Eberlein theorem. It roughly says that
one cannot perturb the metric on a locally symmetric manifold of rank

> 2 maintaining nonpositive curvature,

(ii) The geodesic flow on a general locally symmetric manifold is
another example of a non Axiom A situation where we still have a lot
of hyperbolicity. In particular, it is an example of an Anosov R
action . We do not know to what extent our results generalise to

Anosov actions.

(iii) Locally symmetric spaces are very lovely as they are rich in
structure and display many connections to number theory and represen-
tation theory in particular. We hope that'soft' dynamical methods

like ours will shed some light on these areas.

More precisely we may call our investigations the study of the
Liouville measure as a measure of maximal entropy. Let us review the
Bowen-Margulis theory for the geodesic flow on a compact manifold of
negative curvature.

There are two natural flow invariant measures:

1) the Liouville measure u: this is the only smooth invariant mea-
sure for the geodesic flow arising from its Hamiltonian nature.

2) the measure of maximal entropy or Bowen-Margulis measure Vi
there is a unique measure of maximal entropy for the geodesic flow
dué"to its hyperbolicity. It can be obtained in two ways:

a) as Bowen showed it gives the equidistribution of the

R



closed geodesics on M (cf. [Bo 1]).
b) Margulis on the other hand constructs it by exhibiting
uniformly expanding and contracting measures along the stable
and unstabie manifolds of the geodesic flow (cf. [Ma 1]).
This measure is also the unique invariant measure for the horocycle
foliation and can be obtained from the symbolic dynamics of the geo-
desic flow (cf. [Bo-Ma 1]).
Both of these measures are ergodic, even Bernoulli. Naturally one
 wonders when y and v coincide.
The classical examples of manifolds of negative curvature are
the real rank one locally symmetric spaces M of the noncompact type.
‘'he unit tangent bundle TlM is just a double coset space of a semi-
simple group G and the Liouville measure turns out to be Haar measure.
Since the horocycle foliation is the orbit foliation of a maximal uni-
potent subgroup acting on TlM Haar measure is invariant for it. By
unique ergodicity we see that p = v. This was first proved in [Bo 2]
in a somewhat less sophisticated way.

Moreover, one may conjecture that these are the only manifolds
of negative curvature with u= v, For Riemann surfaces this was proved
in [¥a 1]-

Here we pursue these ideas in a different direction. Consider an
arbitrary compact locally symmetric manifold M of the noncompact type.
The geodesic flow fails to be ergodic if the rank is greater than i.
But the ergodic decomposition is readily obtained in terms of algebraic
data (as in [Mau 1] ). In particular, the ergodic components are double
coset spaces of the group and embed smoothly into TlM. Hence the topo-
logical entropy of the geodesic flow is defined on the ergodic com-
ponents and we can compare it with the metric entropy for the Liou-
ville measure. It turns out that they coincide and we have generaliged

part of Bowen's result:

the Liouville measure is a measure of maximal entropy on



the ergodic components of the geodesic flow.

This follows quite easily from the observation that the sum of the
positive Lyapunov exponents is constant everywhere, not just almost
everywhere, by the'homogeneity' of the ergodic component. We also
calculate the exponents and the entropies on the ergodic components
and the unit tangent bundle explicitly in terms of the root system.
This constitutes Section 1 of part II.

The main problem now is to see which properties of the measure
of maximal entropy carry over from the negative curvature case to
our situation.Certainly, the Liouville measure is a Margulis measure:
it contracts and expands uniformly along stable and unstable mani-
folds. As is well known, it is also the unique invariant measure
for the horospherical foliation. It is not so clear however that
the closed geodesics are equidistributed with respect to Liouville
measure. Indeed, in higher rank there are uncountably many closed
geodusics coming from flat tori and the question doesn't even make
quite sense. But it leads us to the study of compact maximal flats
in a locally symmetric space.

In Section 2 we discuss some basic properties of compact flats
and give a new proof of Mostow's result that the compact flats are
dense in the space of all flats. We use dynamics and in fact, we try

to keep it as soft as possible.

The crucial point is that to 'close up' a flat one only has 'to
close up' a regular geodesic in it. For this we can use a generalised
Closing Lemma,

In Section 3 we briefly go back to closed geodesics. While
most closed geodesics (in some sense) are going to lie in a compact

maximal flat there may be some exceptional closed geodesics that

are not contained in any higher dimensional compact flat. In fact,



we show by way of example that this situation can arise, We do not
know however whether such exceptional closed geodesics always exist.

In Section 4 we discuss Bowen's main technical tool, the speci-
fication theorem. We prove weak specification for the geodesic flow
on anergodic component, i.e. we can shadow orbit segments by the orbit
of some point though not necessarily a periodic point (as is the case
for Anosov flows).Let us draw attention to the similarity of this
with the specification properties of a nonhyperbolic toral automor-
phism. The crucial point is that the geodesic flow is an isometry
on the centermanifolds .

In Section 5 finally we apply specification to get hold of the
logarithmic growth of the maximal compact flats. Let us first recall
the situation for negative curvature. The best result here is due to
Margulis. Let v(t) be the number of closed geodesics of length < t
(counted with multiplicities). Then v(t) ~ eht/ht where h is the
topological entropy of the geodesic flow (the determination of the
constant in the denominator is due to Ch.Toll). In particular, the
logarithmic growth rate is the topological entropy.

In the higher rank case it is not so clear how to count the maxi-
mal compact flats as there are various characteristics for a compact
flat. In fact, we propose to study a mixed property: recall that

WY
the¥dystol of a compact flat is the length of a shortest closed FEQU&lY
geodesic. Then we study the function

VsS(t) = Yitewnl P i
vegsysF<t

show that it is well defined and again show that its logarithmic
growth rate is the topological entropy of the geodesic flow on the
unit tangent bundle. The summation condition is
of a technical nature but unfortunately necessary (as we show by

way of example).



It would be interesting to determine the growth rate of

quantities that just involve the systol or just the volume.

There are two other questions that we haven't quite answered yet:
a Is the measure of maximal entropy unique? At the moment we only
know that it is unique if we assume that the measure is invariant
under the center manifold foliation.
b Are the compact maximal flats equidistributed with respect to the
Liouville measure ( in a suitable sense) ? We hope that we have ex-
hibited many enough properties of the Liouville measure to make
this look plausible.

As far as the techniques are concerned we have been drawing
heavily on Bowen's hyperbolic flow paper [Bo 1]. As can be expected,
many of the details just work the same. The geometry usually is

just ad hoc with no bigger underlying scheme.

Appendix: We include a brief review of the basic properties of

semisimple groups in an appendiX. The material is mainly from

[He 1] and [Wa 1].



Chapter I

Section 1. Closed Geodesics and Factors of the Boundary

In this section we will consider the fundamental group
I'' of a compact visibility manifold of non-positive curvature.
We will first review the notion of a boundary B for. these
manifolds and then give our construction of a non-trivial
topological quotient of I acting on B. The main reference

on visibility manifolds is [Eb 11].

Tivl: Pointe of Infinity

For any Riemannian manifold M we let <,> be the
Riemannian structure and d be the Riemannian metric. For
P €M we let S(p) be the unit sphere in the tangent space
Mp and we let SM be the unit tangent bundle. If v,w € S(p)
the angle =<3p(v,w) is the unique number 0 = 6 =«
such that <v,w> = cos 6. All our manifolds will be complete
and for v € SM we let a : R = M be the geodesic such

that a&(O) = v. All geodesics will be parametrized by arc

length. Finally, K will denote the sectional curvature.

Definition: A Hadamard manifold H is a complete simply

connected Riemannian manifold of dimension n 2 2 with
sec{onal curvature K = 0. The most important feature of

a Hadamard manifold is Cartan's:

Proposition 1: Any two points on a Hadamard manifold H are

joined by a unique geodesic.

Proof: This is well known, see for example Theorem 19.2 of

[Mi 11. 0



/For Hadamard manifolds we can introduce a nice equiva-

lence relation between geodesics:

Definition: Two geodesics a and B in a Hadamard manifold

H are asymptotic if there exists a number c¢ > 0 such that

d(at,Bt) < ¢ for all t 2 0. The equivalence classes are

called asymptote classes.

Remark: Clearly, this definition works for any complete
Riemannian manifold. For Hadamard manifolds a point p € H
lies on at most one geodesic in each asymptote class, i.e.
"there is at most one geodesic joining a point p € H to a
point at infinity". This follows easily from the "law of

cosines": for any p,q and r € H
2 2 2
d“(p,q) 2 d°(p,r) + d"(g,r) - 2d(p,r)d(gq,r) - cos %r(p,q).

Proposition 2: Given a geodesic a and a point po& H

there exists a unique geodesic B such that g(0) = p and

B is asymptotic to a.

Proof: This is consequence (4) after Definition 1.1 in

1 e e g L o

Definition: A point at infinity of H is an asymptote class

of geodesics of H. The collection of points at infinity

of H is called the boundary B of H or boundary sphere
of H. For a geodesic a of H, we let a(=) denote the
asymptote class of a and a(-=) the asymptote class of
the reverse curve t » a(-t). a(«) and a(-=) are called
the endpoints of a.

In this terminology, the last two propositions may be

restated as:



Any point p in a Hadamard manifold H can be joined
uniquely to any point q in H U B Dby é geodesic Tog"
Next, we want to put a topology on H U B. There are
a few natural topologies on H U B (cf. [Eb 1, §3]1) but

we will only be interested in the cone topology.

Definition: Let v € S(p) c Hp and let ¢ be a number,

e il gri e aFThentitheset
Etvse ke 5o {beH. U B: %p(v,ypb) < &}

is called the cone of vertex p and angle e¢.

Proposition 3: There is a unique topology k at HUB = H

such that
(1) H is dense and open in H.
(2) k induces the original topology on H.
(33 :For each b € B the set of cones coﬁtaining b3
a'lopal basis for k- at  x.

We call k the cone topology on H U B.

Proof: This is Proposition 2.3 of [Eb 1]. o

The cone topology is admissible in the sense of

(Eh:11,-p:50, In pabticular, the following twoO properties

hold:

a  Geodesic extension property: for any a in-H
its asymptotic extension a: R U {t+»} > HU B 1is
continuous.

b  Isometric extension property: 38 b is any

isometry of H then its asymptotic extension is a

homeomorphism.



In particular, any group of covering transformations
of a quotient of H will act on the boundary.

Finally, we describe the topology of B.

Proposition 4: B 1is homeomorphic to a sphere. H U B is

a topological cell. In fact, a homeomorphism from B to
the sphere is given by: Let p € H. To any Vv € S(p)

associate the point at =: av(w).
Proof: This is Theorem 2.10 and Corollary 2.12 of EED T

Example: For n-dimensional hyperbolic space consider the
unit ball model. Then the boundary sphere of the unit ball

is clearly the boundary of hyperbolic space as defined above.

1.2. Visibility manifolds

Definition: A Hadamard manifold H satisfies Axiom 1 if for
any two points x # y in B there exists at least one
geodesic joining them.

Notice that the geodesic joining two points on the
boundary may not be unique. If uniqueness holds true we
say that H satisfies Axiom 2. See Example £ 0 of frb 1)

for a Hadamard manifold satisfying Axiom 1 but not Axiom 2.

Definition: A Hadamard manifold H satisfies the

Visibility Axiom if for any point p € H and ¢ > 0 . there

exists a number r = r(p,e) such that any geodesic segment

¢: [a,b] » H with d(p,G) =2 r makes an angle less than ¢

Wath B <)p(ap,G(a)’ap,G(b)) e
Roughly speaking, H is a visibility manifold if

distant geodesics look small.



Proposition 5: The following three properties are equivalent

for a Hadamard manifold H:

& H satisfies Axiom 1.

2 H satisfies the Visibility Axiom.

3 Let a,: [an,bn] - H be a sequence of geodesics in
Hy w»wis a -« bn g R an(an) %' and

an(bn) +y as n-»« and x ¢y then every a,
meets some compact set K of H. In particular,
some subsequence of the o  converges to a geodesic

& cjoining x. Lo ¥

Proof: The equivalence of 2 and 3 and that 2 implies 1 are

Proposition 4.4 of [Eb 11.

1=2: We first prove that no geodesic bounds a flat half

plane: Suppose the contrary and pick a point p and two

lines Tglaiflat halr

e
plane. Let x and y be the

end points of and a,-

i 8
Since H satisfies Axiom 1 we
may pick a geodesic a joining.

X Mo N Let xn(yn) be

points on al(a2) converging

to x(y) and let B pe the
geodesic segment .joining X, to y.. Recall that the square
of the distance to « is a convex function and hence
dz(Bn(t),a) $4 convex in t  (ef. [Bi 1] Proposition 2.1(2)
and Theorem 4.1). Let gq be the point on a closest to P
and q, on B, @ point on B such that its orthogonal

projection (cf. [Bi 1], Lemma 3.2) onto a ig g. Such a

point clearly exists by continuity and because the orthogonal




projections from x, 2 to a converge to x (the ones from

Yo to y respectively).

Hence by choice of 9. and convexity we have:
d(q_,q) = d(q ,a) = max(d(x ,a),d(y ,e)) < C< =

since ay and a (a2 and a) are asymptotes.

From this we see that
d(p,B, ) = d(p,q,) = d(p,q) + d(q,q,) = d(p,q) + C < =.

This is a contradiction since the $_~ and p lie in
a flat half plane. Now we can use Ballmann's (cf. [Ba 1],

Lemma 2.2):

Lemma: Suppose a geodesic a in a Hadamard manifold H
doesn't bound a flat half plane. Then there are neighbour-
hoods L and V of a(=) and a(-=) respectively such
that for any u € U and v € V there exist a geodesic
joining them. Moreover, any geodesic p Joining u and

v satisfies d(p,a(0)) < C where C only depends on U
and V.

Indeed, suppose visibility fails. Then there is a
point p € H and a sequence of geodesics a such that
d(p,e,) + = as n -+« and %p(an(w),an(—m)) > ¢ for some
¢ > 0. For a subsequence of the a s the endpoints
a,(=) and an(—;) will converge to x and Yy respectively.

By Axiom 1 join x and y Dby a geodesic a. From what

we have proved above and Rallmann's Lemma we see that
d(a(O),an) v,

Therefore d(p,an) < d(p,a(0)) + d(a(O),an) is bounded in



contradiction to our assumptions.

Note: That 1 = 2 seems to hetdiieito’ Bur0'Neill (ef. LER1]

p. 62). It was pointed out again in [Eb 2] p. 439, also
Lemma 2.3a, but there seems to be no clear reference.
Essentially we followed Eberlein's suggestions in [Eb 2],

avoiding Busemann functions though.

Proposition 6: If a Hadamard manifold H has sectional

curvature K < C< 0 then H is a visibility manifold.
Proof: This is Lemma 9.10 of [Bi 11].

In particular, any globally symmetric space of rank 1
(and no compact factors) is a visibility manifold. On the

other hand we have:

Example: Any globally symmetric space of rank .z 2 (and

no compact factors) violates the Visibility Axiom.

Proof: By definition, the rank is the maximal dimension

a flat totally geodesic subspace can have. Clearly,

visibility fails for flat n-space, n 2 2.

Remark: We will see later on that even the higher rank
locally symmetric spaces satisfy a suitable modification

of the Visibility Axiom.

1.3: Axial isometries

Let us first recall the standard classification of

isometries.

Definition: For any isometry ¢, we let the displacement

function g be defined by:



g (p): = dip,ep).

We call an isometry ¢
elliptic if &p has minimum O
axial if & has positive minimum

parabolic if & has no minimum.

Proposition 1: An isometry ¢ is axial iff ¢ translates

a geodesic '@, i,e., if o¢(a(t)) = a(t-+t0). a 1is called

an axiscobian

Proof: This is Proposition 10.9 of [Bi 1]. o

Proposition 2: Let H satisfy the Visibility Axiom. Then

every non-elliptic isometry has at most two fixed points in

B, the boundary: one if parabolic and two if axial.
Proof: This is Theorem 6.5 of [Eb 1]. 0

Proposition 3: Let a be an axis of an isometry ¢ of H

with endpoints x and y. If an isometry V¥ fixes - x and
if ¥ and ¢ generate a properly discontinuous group then
¥ commutes with a power of ¢, and in particular, V

leaves y invariant.
Proof: This is Proposition 6.8 of [Eb 1]. o
This last result is the key to our construction.

1.4: The Construction

Let M be a manifold of non-positive curvature whose

™
)

universal cover satisfies the Visibility Axiom (a visibility

manifold for short). Assume that M has a closed geodesic



a. For example, if M is compact this holds true by the
theorem of Lyusternik and Fet ([F1 1] Theorem 5.7) (or simply
because there is a closed geodesic in each free homotopy
class and because M is not simply connected). Let

r = nl(M). Then T acts properly discontinuously on the

universal cover H of M. In particular, we have the

lLemme il Ese Ty ibhe B 1ift of a to H, Let x and Yy
be the endpoints of a in B (points at infinity of H)
and let FX(Fy) be the isotropy subgroup in T of x(y).
Then FX = Ty. Moreover, there is no & € T' such that

6x = y.

Proof: ‘Clearly, g 1is an axis for some isometry «y €T
(since @ ' is closed there is a t,; € D and elements
Y, € T such that a(t~+t0) = Yt(a(t)). By proper dis-
continuity P ¢ is constant). The first claim therefore
is Proposition 3 of 1.3.

Suppose that y = 6x for some & € I'. Then 6yé—l
has the geodesic through (y,8y) as an axis. On the other
hand, y fixes y, hence 6y by the first part of this
lemma. Since any non-elliptic isometry of H has at most
two fixed points we see that &y = x (1.3 Proposition 2),
i.e. 6 permutes x and y. Since T
is torsion free there are no elliptic elements in T.
Since H U B is a closed cell (1.1 Proposition 4) & has
a fixed point in H U B by the Brouwer fixed point theorem.
Since & is non-elliptic it has a fixed point in B. We

see that 62 has at least three fixed points in B in

contradiction to 1.3 Proposition 2. W
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Now we can define our equivalence relation: Let «a
be a closed geodesic in M as before. We let ~ Dbe the
relation on B given by:

R T e (I B SR

|

|o’

Rovye ek Yy iff x and y are endpoints of one

and the same lift a to H of «a.
Lemma 2: The relation ~ is an equivalence relation.

Proof: We only have to check transitivity: Let x ~y an

y ~ z. We have geodesics ay and a,

y to 2z vrespectively that project to a in M. Hence th

Toining %X to | ¥

sari s e T siich-that a, = éal.

In particular, we must have either

that ' 8. 6x =z .and by = y .or

» 5% = v and® 6y = 'z, Both of

these cases are impossible by Lemma

unless x = Z.

Finally, we use the visibility property in

Lemma 3: The relation ~ 1is closed.

Proof: Suppose that x ~ y_ sl g Bl Slindl Sy

no+w, (Piek aXes - 9. Sorning: k. 0 to ¥ . By the third
equivalence in Proposition 5 of 1.2 the a converge to a
geodesic a joining x to y. As all the a project
to @ in M a has to project to @ in M. This means

that i i,

This finishes our construction and we have

Proposition: Let M be a visibility manifold with a

closed geodesic. In particular, M may be any compact

d

and

exre

1

0



%1

visibility manifold. Then there exists a non-trivial
nl(M)—equivariant topological Hausdorff quotient of the

boundary B of the universal cover of M.

Proof: Above we constructed a closed equivalence relation
~ on B that was clearly TI-invariant. Any closed
equivalence relation on a compact Hausdorff space gives rise
to a Hausdorff quotient (ef. [Vi 1] Proposition 2.1). Since
R nl(M)—invariant we can define an action of nl(M) on
B/~. Since we identify only countably many points by ~
B/~ cannot be a point. On the other hand, the axial isometry
y of the 1ift a of our closed geodesic a has two fixed
points on B which get identified in B/~. There are no
more fixed points of y in B/~ since any such fixed point
cori Jsponds to an axis of y in H, but axes are unique.
So B and B/~ cannot be equivariantly isomorphic. This

proves that B/~ 1is non-trivial. o

It may be interesting to notice that B/~ 1is not even
a manifold. This follows from a very general argument about

branch points:

Lemma 4: Let M be a manifold and ~ be a countable
equivalence relation. (i.e. ~ is trivial on M-3% where

3 is a countable set). Then M/~ is not a manifold.

Proof: Let p: M = M/~ be the projection map and let
RF v e M B iz = plx). Suppose M/~ is a
manifold and let U be a coordinate chart about z. Let
Sr(t) be the sphere of radius r about t. Then

gl Sr(x) U Sr(y) + M/~ is an injective continuous map
r#r.
i



12

where the {ri} are a countable exceptional set of radii.

In particular, pIS (x) (resp. pIS (y)) is a homeomorphism
r r

ontg" its image for r # r.. For i A pei small enough,
p(Sr(x)) separates U into two connected components by
the Jordan-Brouwer separation theorem ([Spall, Chapter 4
Theorem 15). As r = 0 p(SP(x)) - z by continuity. For
any given r p(Sr,(x)) l1ies either inside or outside
p(Sr(x)) {p, o' # ri). As p(Sr,(x)) o p(SP,(x)) lies

. inside p(Sr(x)) and in particular z 1lies inside
p(Sr(X)). As the p(Sr,(y)) + Z p(Sr,(y)) lies inside
p(SP(X)) and 2z lies inside p(Sr,(y)). Consider a radial
line p(t) connecting x *TO Sr(X)' By the Jordan-Brouwer
separation theorem p(g(to)) € p(Sr,(y)) for some t,.
Since this happens for uncountably many r' # r. there is

a t, with p(tg) f s, (x), all §iutand’ plplt,)) €
p(Sr,(y)) in contradiciion to our assumption on the

e o
o

In particular, this construction solves Margulis'
question in the case of a lattice in any R-rank 1l semisimple
group of the non-compact type. Strictly speaking we had
to assume that T has no torsion so that the locally
symmetric space T\G/K is a manifold. An easy variation
of our argument gives the same result for lattices with

torsion.

Also notice that our factor is measurably trivial as
we identified only countably many points. Therefore we may

conclude this section with the
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Problem: Does there exist a factor of SL(2,Z) . acting on
S' that is non-trivial both topologically and measure-
theoretically? Margulis constructs a non-trivial

measure-theoretical quotient in Corollary 2.9.1 of [Ma 11].
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Section 2. Nonexistence of Factors in Higher Rank

We mainly consider SL(n,Z) acting on ZTn—l, N a2y

and show that there do not exist any SL(n,Z)-equivariant

Hausdorff quotients of "1,

This together with
1.4 for n = 2 answers Margulis precise question in [Ma 11].
This was first proven by Zimmer in [Zi 1] using different

techniques. We can generalise the above result to some

other Grassmannians using a result of Dani.

2.1; SL(n,Z) acting on phrl

et Taeaslitn ) and 6§ = SL{n,R) for short. It
follows from Hermite's and Siegel's work that T is a
lattice in G (ef. [B-Hch] Theorem 9.4). As we discuss
:Pn—l

in Al10.5 the projective space is a boundary of G.

We claim:

Proposition 1: All Hausdorff quotients of T acting on

nri iy
Bl e Bt da i amaatpavial |

Note: For uniform lattices T in SL(n,IR) (i.e. G/T
is compact) the same result is true by [Ve 2]. We first

observe

Lemma 1: Let a group T act on a compact Hausdorff space
M. If the diagonal action of T on (MxM-diagonal) is

minimal then all equivariant TI'-quotients of M are trivial.

Note: Recall that one calls an action minimal if every

nonempty TI'-invariant closed set is the whole space.

Proof: Any Hausdorff quotient X of M is defined by a
closed equivalence relation R ¢ M x M, By T-equivariance

of X we conclude that R is TI-invariant. By the



}
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minimality of T on (Mx M-diagonal) R is either M x M
or just the diagonal and the quotient is trivial. o

Proposition 1 follows from the stronger

Proposition 2: The lattice T = SL(n,Z) acts minimally on

P IPn_l—diagonal for n> 2,

2

Proof: On the level of P"~ itself we fiprst have

Lemma 2: For n > 1, T acts. minimally on phrd,

Note: This is completely general: any lattice T in any

semisimple Lie group G without compact factors acts

minimally on any boundary of Gj; in fact, [Mo 1] Lemma 8.5

says that TI'sP = 6. Since for any x € G, x—lfx is a

lattice it is clear that I * x * P is dense in G/P for
any x € G. Of course, the case at hand is standard and

follows from elementary arguments.

Now the proof of Proposition 2 develops in two stages.

n-1

For notation let x € TP be the line through x for any

b4 GIRn.
1l) Let e, be the standard basis of ke Let

x € R, X # e,. We claim that F(El,E) is dense in
n-1

B
iPn—l X JP -diagonal: a typical element of the stabiliser

subgroup T, of T at El looks like

o

In particular, SL(n-1,Z) embeds into Ty in the obvious

way. It suffices to prove that F(El,§) is dense in
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n-1

P X I’n—l-diagonal for some y in the closure of

P0(§). By Lemma 2 and the above we may assume that the
coordinates Koo aX ) of x are linearly independent over
. Let V # z be two lines in phcd | ond V,W neighbour-
hoods of them. By Lemma 2 there is a y € T such that
Y(El) € W. Hence it suffices to find a ¥, €Ty such that

Yo(f) € Y_l(V). For some t € R" let T = Y—1(§). We can

find vy € SL(n-1,Z) such that Yl(D’XQ""’Xn) is close

) by Lemma 2. Let xé,...,x' be a

to (O,tz,...,t 34

n-1

choice of coordinates for Yl(O,xz,...,xn). We may assume

That ok 3 are close to  %xl,...,x'. Clearly, the
n 2 n

ERERE
xé,...,xg are linearly independent over @. As the group

genc.,ated by LEERRE

,xﬁ is dense in R we can find a

O .

'+ ! e e feie g ioosnoe
such that Xq m,X, % mx 18 close: to tl
Y, doesn't change the other coordinates we have proved our

first claim.

2) Consider any two lines y # z. We claim that the
closure of their T-orbit contains (;,El) or (El’;)'

We consider two cases:

a) z is rational. Our claim follows by the well

known:

Lemma 3: All rational lines lie on the SL(n,Z)-orbit of

e

1



B

Note: One may phrase this in terms of number theory: all
coprime n-tuples of integers lie in the SL(n,Z)-orbit of

& R il B

Proof: For n = 2 a rational line is represented by a pair
of coprime integers (p,q). There are integers p, and q,

such that PPy = Q44 ¢ 1w Clearly,
qQ qQ Pyl \O

is in the "SL{2.Z) orbit of  (1,0),

For n>2 let (m .,mn) be a point on a given line

12

£ with integer entries. Then ¢ 1lies in the plane

spanned by (my,...,m 0) and Eh. By induction pick

n-1

¥ € SL{n-1.Z) such that

Yo, s (ml,...,mn_l,O).
Then Y‘l(e) lies in the plane spanned by El and Eh
and we can apply the result for n = 2. o

b) Z is irrational. Then there is i and ] such
that Zs and zj are rationally independent, say 1 = 2,
ji= 3. In pavrticular, 7Z 2y + %24 is dense in IR.

Hence there are matrices

o
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such that g At (0,22,...,zn) as n - = yhile
i n n
Yy = (LAmoy, tmaya,y,sYase).

If (22’23) # (y2,y3) then »

mny +mD y Va=Z,Y z'l
gvoiilag 2. n 73 "37272 e
n n 1 Z; Mo n VS it

MaZytmazg MyZytMaZg

since the denominator stays bounded and w.l.o.g. mg -3 A

: 3 g AR R
Otherwise y, - 2,2, = 0 and (22’23) = (y2,y3). Hence
| P4 voa (150, 0.30) and in this case we are done. If
(22,23) =z (yz,y3) we can still pick Y, as above., Let
a be so that a - (22,23) = (y2,y3). Then ¥ "

yi gg£yl - az. # 0, Notice that Yy and y, are rationally

4
independent. Hence one of (yi,yz) or (yi,ya) is
rationally independent, say the first. Since
(y15v,) # (0,2,) we can apply the previous argument to
(yi,yz). Instead of z, we could have used any zi,i e £
before. Hence we only have to deal with the case that

(z,52,5,2;) = (¥,,y5,y;) for all i. Obviously z = ¥y

in this case.

2.2: SL(n,Z) acting on Grassmannians

The argument of 2.1 generalises to some other Grass-

mannians. Again we let T = SL(n,Z) and € = SL(n,R).

Proposition 1: All Hausdorff factors of the action of

SL{n,Z) on Gk n> the Grassmannian of k-planes in
2
n

n-space, are trivial if k < 5
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Proof: Let ~ be a closed T -invariant equivalence

relation.
We consider ~ as a subset of G X G U & S
Kan k,n
# diagonal we will show that ~ is all of G X G
k,n K.t
We need a result of Dani:
Lemma: Let fl""’fn-l be linearly independent vectors
in TR". Then there exist linearly independent rational
vectors ajs,...say 4 in R"™ (with respect to the
canonical basis {ei}), nonzero scalars Xl""’xn—l in
IR and a sequence {Yj} in T such that
Yj(flA...Afk) - Xk(alA...Aak) An Ly .

for alli ki sul ol i A=l

Proof: This is [Da 1] Corollary 9.8. Even though the
linear independence of the a. is not explicitly stated

it is contained in the proof. o

Next recall the correspondence between k-planes and
simple duct L SR I i A . by choosing a basis
P products 1A Atk X,n y g
for a k-plane we get a point in A, o which is well
2
defined up to multiplication by a scalar. Conversely, each

simple product flA"'Afk determines the plane spanned by

fl""’fk'

Suppose that P # Q but P~ Q where P,Q € Gk,n'

Let £ = dim P N Q. Then we may represent Biin. Ao by
2

Pypc oAl aP1a" " APK-¢ and @ by rlA"'APBAqlA"'Aqk—@'
Since kK= % we may apply the lemma to the product

.- . . . o . 1 IE
Piat AT APIA" APk a%1a A%k We find y; € T and
planes S and T such that
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Yi(P) + S8 and Yi(Q) -+ T -t Hl e e P

and such that S and T are represented by rational
vectors. Since the rational vectors a; in the lemma are
rationally independent we see that dim(SNT) = £. Moreover
S~T as ~ 1is closed.

We claim that any two rational k-planes are translates
of each other under TI': by 2.1 Lemma 3 a rational vector

a; in a rational plane S given by Bqseeerdy is a

translate of ey (where {ei} is a canonical basis).
Assuming that S contains e, we can replace a,,...,ay
by vectors in the span of €nseees€ - This starts an

induction after which S is given by R

Applying this to our rational planes S and T above

we may assume that S 1is spanned by e Lat: T

RERREL 0

be the stabiliser of S in TI. Notice that an element of

TO has the form:

The intersection T N 8 defines a plane in T. Any

element y of SL(k,Z) embeds into T by way of the

0
first quadrant in the matrix expression above. Hence with
T ~ S we also have «(T) ~ S by the T-invariance of ~.

By the note after 2.1 Lemma 2 SL(k,Z) acts minimally on

any Grassmannian of S. As ~ is closed we see that

S~R where RN S is spanned by €;,...,8,. Let R Dbe

i 1
spanned by €15:025€,, Sl""’sk—g' Let Sl be the
orthogonal projection of S1 onto the span of €42t ol
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There exists a sequence ¥, € PO of the form

such that Hyﬂ(Si)H - «, Hence 1lim Y,R is spanned by

€15 r2€ps Apscceady where a, = ai. Similarly, we may
get a plane B such that B is spanned by S EREEEL PR

- 1
bl’L"’bk-s where bi = bi and B 8

Since SL(n-k,Z) acts minimally on G we see
k-2 ,n-k

that S ~ U where U is any plane spanned by €1sre5€,,

et | : :
ul""’uk—ﬂ where u. S a vector contained in the span

Of € qsrri18p" Clearly, S ~U if U intersects S in

an f£-dimensional rational plane and if U is transversely

orthogonal to S (i.e. U is in the span of U N S and

e e ). Since ~ 1is closed and the rational planes
K$12° 0 3%

are dense we see that S ~ U whenever dim S N U = ¢ and

U is transversely orthogonal to S. Clearly we may allow
S to be an arbitrary rational plane and hence S ~ U

whenever dim S N U = ¢ and U is transversely
orthogonal to S.

Next 1let Fl,F2 be two k-planes such that
dim Fl n F2 =k - 1. Then there clearly exists S that

has an ¢-dimensional intersection with both F; and F

2
and is transversely orthogonal to both of them. Hence
s ~ Fp»F, and by transitivity F; ~ F,. Given any two
k-planes Fl’Fn it is easy to find a chain of k-planes
Fi’ i=2,...,0-1 such that dim Fi n Pi+l FoXiw 1. Hence

| PR and ~ 1s everything.
b5 n i
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Section 3. Nonminimality of Lattices Acting on Boundaries

Wwhen we proved the nonexistence of factors of the projective
space in the last section, our main tool was to prove the minimality
of SL(n,%Z) acting on Pn-lx Pn—l—diagonal. For a general boundary
B we cannot hope for the same for the stupid reason that not even G
acts minimally on B x B-diagonal: consider the Grassmannian of 2-
planes in n-space. Then pairs of planes that intersect nontrivally
certainly are an SL(n/R) -orbit.

This suggests the

Definition: Let T ¢ G be a subgroup and let X be a G-space. We

call the action of I' on X G-minimal if all r-invariant closed sets
in X are G-invariant.

We will prove that no lattice acts G-minimally on G/P x G/P
if P is a minimal parabolic. The main idea is to replace closed
geodesics in the construction in Section 1 by compact flats. We need
to recall the geometric realization of G/P as "points at infinity"

of flats. This material is from [Mo 1] and will be developed in

3.1-3.3. See also Chapter II, Section 3.

3.1 Flats

Definition: A flat F in a globally symmetric space H is a totally

geodesic subspace of H of sectional curvature 0. In the following,

we assume that H# = G/K isof the non-compact type. Let 0 be a point

of a flat F such that K is the isotropy group of 0 in G. e

F is carried over into a vector subspace of g by the inverse of the

exponential map since F is totally geodesic. Since F is flat
F = Expan where is an abelian subalgebra of . In particular

a maximal flat corresponds to a maximal abelian subalgebra of ® and

the rank r of G is the maximal dimension of a flat of G/K
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(cf. A8.4 Definition). Clearly, expsn < G stabilises F. On the

other hand, let GF be the stabiliser of F. Then we have:

Lemma 1: The polar part of each element of GF is contained in

expan which acts simply transitively on F. If F 1is maximal then
GF-——normaliser (exppn) . Let exppn = pol F, the polar subgroup of F.
The mp F +»pol F is a bijection between the set of all maximal

flats and the set of all maximal polar subgroups.

Note: We call a subgroup H of G polar if h = pol h for all

h e H.

Proof: This is [Mo 1], Lemma 5.1. 0

Recall from A2.2 that Cartan subalgebras arise as centralisers

of regular elements. In a similar vein, we define:
Definition: We call g e G polar regular if

dim centraliser (pol g) <dim centraliser (polh)
for:all ‘h ¢ G

It is easy to see that g is polar regular if polg lies off
the walls of the Weyl chambers in a maximal abelian subgroup of some

exp . -03:4‘— +(p a Cartan decomposition. More important for us is

Lemma 2: Let rank G = r. Then
i) a polar regular element of G is semisinple.
ii) a polar ;:egular element stabilises a unique r-flat in G/K.
iii) if the polar reqular element g stabilises the r-flat F
then centraliser of g stabilises F and acts transitively

on F. Moreover, g+x = (polg) x for all x ¢ F.

Proof: This is (Mo 1] Lemma 5.2. 0
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The next fact is a generalisation of the uniqueness of the

geodesic joining two points at infinity in negative curvature.

Lemma 3: Any two maximal flats that are a bounded distance apart

coincide.

Proof: This is [Mo 1] Lemma 5.4. 0

3.2 Lattices and Compact Flats

By G we will always denote a connected semisirmple group without

compact factors,of rank r. Let us first recall the

Definition 1: A discrete subgroup I' of G is called a lattice if

G/T has finite volume.

Recall from Al2 that I‘\G/K is a locally symmetric space if
I' is torsion free. On the other hand, it is well known that any
lattice has a torsion free subgroup of finite index (cf. [Ra 11,
Corollary 6.13). 1In this sense, this section is a direct generaliza-

tion of our investigations in 2.1.

We are mainly interested in the existence of compact flats in

\G/,,.. We first need the

Taai

Definition 2: ILet A(g) be the representation of g ¢ G on the

exterior algebra of Ag. We call g R-hyperregular if the number of
eigenvalues of modulus 1 (counted with multiplicities) is as small as
possible and -1 is not an eigenvalue of A(qg).

Lemma 1: Every IR-hyperregular element is polar regular.

Proof: This is Remark 1.2 of [Pr-Ra 1]. 0

More important is

Jeswm 2: If I is a lattice in G and y e is R-hyperregular

or if T 1is cocompact and y regular then
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centraliser y/centraliser y n I' is compact.
proof: If G/I' is not compact, this is [Pr-Ral] Theorem 1.14. If
G/T 1is compact, this is [Mo 1] Lemma 8.1. Notice that we don't need

any assumptions on vy in the latter case. 0

The existence of R-hyperregular elements in T is established

by Mostow. In fact, we get the stronger

Proposition 1: The set of I'-compact r-flats in /K (i.e. flats F

such that I,\I‘-F is compact) is dense in the set of all r-flats in G/K.

proof: This is [Mo 1] Lemma 8.3' or Chapter II, Section 3 of this

thesis.

g
Clearly, any compact r-flat in F\G/K is covered by a torus.
Hence I ocontains abelian subgroups of rank r. In more detail, we

have the

Proposition 2: a) If y e I' is R-hyperregular, then centraliser yn T

contains an abelian subgroup of rank r and finite index.

b) Any abelian subgroup of B semisimple elements of T has rank
at most r. Any such group contains animrhyperregular element. In
fact, all elements are R-hyperregular except for those lying in a

finite wnion of subgroups of rank less than r.

Proof: This is (Mo 1] 11.1' and 11.2'. 0

3.3 The Maximal Boundary fram a Geometric Point of View

The gecmetric boundary of a Euclidean space is not very interesting
as the geodesics joining two points at are not unique. Moreover, any
two such geodesics differ in only a trivial way as they are parallel.
In a higher rank globally symmetric space H we have flat s. We would
like to replace the gecmetric boundary of H by a smaller boundary that
reflects only the non-Euclidean aspect of the geametry of .

Given a maximal flat F and a gecdesic ray c(t) we have 'zones of

stability' U c F(oo)'c(oo) e U in the following sense: Let F' be a secord
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flat and suppose that for same ray c'(t) < F' we have c'(=») = c(»).

Then far any Cl(t) c F with cl(m) € U there is a cj(t) < F' with
cl(oo) = ci(“') . Moreover, d(cl(t) ; ci(t) + 0 as t + «» for a suitable
choice of ci (t). These '"zones of stability' are precisely the points
at «® of the various open Weyl chambers of F (recall that F = Exp a1s0
that we may call the exponentials of the Weyl chambers of u the Weyl
chambers of F). Hence, we may identify these 'zones of stability' to
one point and forget about the points at infinity of the walls of the
Weyl chambers. .

On the basis of these considerations, we make the following
Definition: We call the exponentials of the open (closed) Weyl
chanbers of a maximal polar subalgebra 1 the open (closed) Weyl
chambers of F = Expsr. We call two Weyl chambers C,C' of flats
F,F' asymptotic if they are only a finite distance apart. We let
X be the collection of Weyl chambers modulo asymptoticity. By

0~
[C], we will denote the equivalence class of a chamber C.

Lemma 1: We have X, = G/P where P is a minimal parabolic.

Proof: This is [Mo 1] Lemma 4.1. 0

Naturally, XO now carries the topology of the homogeneous space

G/p. One may describe it geometrically as a 'cone topology': let

P

]

M-A-N_ be a Langlands decomposition. Then G/P = K/M. Let

0 =1-K in G/K. Then any chamber C is asymptotic to a unique
chamber C' that passes through 0: as G = K-P (immediate from

G =K-A-N and P = M-A-Nf) K acts transitively on G/p. Hence,
we may assume that P stabilises [C]. Pick ge G such that g.C
contains 0. Write g = kep. Then k_lgC = p.C is asynptotic to C
and contains 0. Given two chambers C,C' containing 0 there is
me K such that m-C' = C. Since m-[C] = [C], meP hence me M

‘where P = MAN is the isotropy group of [C]. Therefore, m leaves
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=A 0 invariant and C = C'. For two asymptoty classes [Cl],
[02] let Cl,C2 be the representatives containing 0. We may

talk about the "angle" Cl,C2 subtend at 0. Clearly, writing
C2 = kC2 for k € K this angle is small iff k-M is close to
1-M in K/M.

Recall the notion of Hausdorff distance: Let X be a metric space,
A,B c X subsets. Then

hd(a,B) = influ< | for all xe¢ A thereis y ¢ B
such that d(x,y) < u and for all y € B

there is x ¢ A such that d(x,y) < u}.

Let S be a geocdesic ray in the closure of a chamber £ of
a flat F. Under the exponential map S corresponds to a vector Vv
in the maximal polar subalgebra /o such that exptxa= F. let © be
the set of all those roots that vanish on v and let P(S) be the
parabolic containing P defined by © (where P stabilises [C]).

Then we have the

Lemma 2: For S a geodesic ray and g € G. Then

a) hd(s,gS) <~ iff g e P(S).
b)  dis,e) =0 1ff g ¢ RuP(S) ;
c) If S' is another geodesic ray, then

hd(S,s') < » iff S' =gS and g € P(S).

Proof: These are Lemma 7.1 and 7.2 of [Mo 11. 0

Notice that this implies our claim above on "zones of stability':
As indicated, we let the Ui be the points at infinity of the open
Weyl chambers. Since any two flats are translates of each other,
F' = g-F (cf. A5.2 Proposition 1). If o and o' are asymptotic,
o= 99" for 99 € P(a) by Leima?2. Since o lies in an open Weyl
chanber P(a) = P is minimal. Also, g can be taken to be 99

since o is regular. As B lies in the same Weyl chamber P = P(8).
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So gB lies a finite distance apart from £ and also

9 [ B

Note: It might be interesting to try to understand "zones of stability'
for artibrary Hadamard manifolds and to try to define a smaller, more

manageable boundary as above.

3.4 The Nonminimality

Unless otherwise stated, G will be a connected semisimple
group of rank r without compact factors, I < G will always be a

\G/.,. The maximal

lattice. Let M be the locally symmetric space K

P
boundary B = G/p will be interpreted as the collection of asymptote
classes of maximal flats in G/K. We will construct a I-invariant

closed set E in B x B that is not G-invariant.

To find E, we pick a compact r-flat F in M and a lift F
of it in G/K such that F is stabilised by an R-hyperregular
element y e I' (cf. 3.2 Proposition 2). For each chamber Cof B,
let'P be the parabolic stabilising the asymptote class [(C] of F.
Fix C and let D be the chamber opposite to C. ILet E be the

closure of the I'-orbit of the pair ([C],[D]).

The next lemma generalizes the visibility property to the higher

rank case:

Lemma 1: Any two points Py/Py € B can be "joined" by a maximal
flat F. More precisely, F has chanbers Cl,C2 such that

[Ci] € Pp;- If C, and C., are opposite charbers then F is the

1 2
wmique flat joining Py and Py-

Proof: let Pl’PZ be the isotropy subgroups of PPy and
choose an X ¢ G such that P2 = x-lPlx. Write x = pi-w-pl as in

the Bruhat decomposition for P1 and a maximal polar subgroup A
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of P (we may assume that Pl is a standard parabolic for A).

As w normalises A, the polar subgroup A' = p']:l.ll\.pl is contained
both in Pl and P2' Clearly, both Pl and P2 are standard with
respect to A', i.e., there are chambers Cl and C2 of A' such

that Py and P, are the associated parabolic subgroups.

Let Cl and C2 be opposite, i.e., for some order of the root
system Cl is defined by the positive roots and C2 by the negative
roots. Hence, P, and P, are opposite parabolics. We see that
being opposite is an intrinsic property of the points at infinity.
Also, Py and P, intersect in their common Levi subgroup L. Iet
L = M-A be the decomposition into the compact and split parts (cf.A
10.3). Then A is the polar subgroup corresponding to the flat F.
As any other fla£ F' joining Py and P, represents P, and P,
by opposite chambers, A also is the polar subgroup corresponding to

F'. By 3.1letmma l, F and F' coincide. 0

lemma 2: G acts transitively on pairs of opposite points in G/P.

Proof: ILet (pl,pz) and (ql,qz) be pairs of opposite points. Iet
Fl and F2 be the unique flats joining them. As any two flats are

translates of each other (cf.A 5.2 Proposition 1(i)), there is

geG with gf, =F,. Then (gp,,9p,) are pairs of opposite points
joined by F2. Use an element of the Weyl group to translate
(gpl,gpz) to (ql,qz) and recall that it has a representative
in G. 5

O

Lemma 3: There are only countably many pairs of opposite points in

E.

Proof: First, note that the flat joining opposite points depends

continuously on these points: let (r,q) and (r',q') be pairs of
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opposite points close to each other. Then there is g e G close to
the identity such that gr = r'. Clearly, if F and F' are the
flats joining these points, g—lE" is close to F' and we may assume
that v = ¢'. There is g' close to 1 in G such that g'-q=q"'.
Decompose g' = pleZW! as in the decomposition G = UpwPw' with
respect to the Wéyl group of the flat F (derived from the Bruhat
decomposition A 10.1), where w! is the element of the Weyl group
that sends the positive roots to the negative roots. One ‘sees that
W= w! since otherwise g-q cannot be oppositeto r. Since

w!Pw! = P, the opposite parabolic, g' e P-P. The map P x N -+ G
given by (p,n) + pn where N is the nilpotent radical of P is
injective, open and continuous (cf. [Wa 1], the proof of Proposition
1.2.3.5). Hence, g' =p-n with p close to the identity. As

q' = g'g=pq, we see that p'F is the unique flat joining r tO

q' and p-F is close to F.

Suppose there are uncountably many pairs of opposite points in
E. Then there is a nonconstant sequence of such points (xn,yn)
converging to (x,y) ¢ € where x and y are opposite. ILet F
be the wnique flat through (x,y) and Fn the flat through (xn,yn) g
By the above, F_~ F. BAs all the F = cover the compact flat F
in M, so does F. Pick a pomévln F and a fundamental set F  for
r containing p. As F_~ Folalen F is open in F, for big n.
As Fn and F project to F, we see that anF=Fn F is open
on F. By analyticity of F and F, it is clear that F =F .
This is the final contradiction. 0

Lemmata 2 and 3 show that E is not G-invariant. By construction

E is closed and r-invariant. Hence, we have shown the

ProEsition: let G and I' be as above., Then T does not act

G-minimally on G/p x G/p for P a minimal parabolic.
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Chapter II

Section 1. The Geodesic Flow on Locally Symmetric Spaces

We will describe the geodesic flow ¢4 on locally
symmetric spaces in algebraic terms. This is originally
due to Mautner in [Ma 1]. Then we calculate the topological
and the metric entropy of ¢, and show that the Liouville

measure is a measure of maximal entropy for on each

P
ergodic component. This extends a result of Bowen

 (cf. [Bo 11, Theorem 3.1) in the rank one case.

1.1: The Action of G on the Unit Tangent Bundle of a

Globally Symmetric Space

The decomposition of the unit tangent bundle Tl(H) of
H = G/K by orbits of G as well as the appropriate
decomposition of the Liouville measure are developed. We recall
that every globally symmetric space H 1looks like G/K
where G is semisimple and K is a maximal compact
subgroup of 6. Henceforth we assume that G does not
have compact factors.

Given a point (g = K,X) € Tl(H) we can translate it
F e ta i Dn s K EG/K) Tet (g KXY = g o»(0,Y)
for some Y ¢ Tl,O(H)' Recall from ARlthat we may identify

the unt . o

Tl,O(H) witﬁY’E‘j%%%%gi)g = k + p is a Cartan decomposition.
Let a Dbe a maximal abelian subalgebra of gp. Since K
stabilises 0 and g = Ad(K) « a by A5.2 Proposition 1
we may translate (0,Y) to (O’Hl) by some k ¢ K where

H. € a. Since the Weyl group W of the pair (g,a) acts

3
transitively on the Weyl chambers (cf. A6.3 Theorem 1) and
sind) each element of W is represented by an element of

K (cf. A8.6) we may translate (O,Hl) to some (0,H)
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where H 1lies in the closure of the positive Weyl chamber
for some fixed order of the root system of (3,a) (recall
that a Weyl chamber C 1is called positive if all positive
roots take on positive values on (). This representation
is unique: Suppose the contrary and let g(0,H) = (0,H")
where both H and H' 'lie in U, Hence g € kK as g
fixes 0 and gH = H'. By A8.6 Proposition 2 there is a
w € W such that wH = H'. By A6.3 Theorem 1 each W-orbit
meets C exactly once and H = H'.

We summarize this discussion in

Lemma 1l: The elements Ci of norm 1 in the closure of the
positive Weyl chamber C viewed as a subset of the unit
tangent bundle at 0 1is a fundamental set for the action
of G- on TlH’ 3.6, each orbit of G intersects Cl
exactly once.

Next, we describe the Liouville measure p onh TlH
in terms of the Haar measure on G and see how 4 decomposes

unden the action ofi Gi

We first describe the canonical metric on TlH:

LetanTHH-+ H be the projection and KITH + TH the connector map
for the Riemannian connection on fi. Then the canonical metric on
TH is given by <g,n> = <dﬂ£'dwq> + <KE,Kn>. The cancnical metric on
T,"H is given by restriction.

Now we define the Liocuville measure Y as the volume induced by this
netric. let us note that y is invarlant under the geodeslic flow ¢ ¢
introduced in the next section (cf. [Besl], p. 51 and [(Bel], pp. 161 ff).

As the cancnical metric is invariant under d¢ for any isometry ¢ of H
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it is clear that p is invariant under the action of G on TlH' Finally

we can write du = do @ dx where do is the canonical measure of the unit

qﬂmxe'rollin‘d«:EuclhkﬁnlspaerQ;{\dth the metric given by the
’

Riemannian metric on H (cf. [Besl] p.52).

—

To decompose p along the orbits of G we first
normalize Haar measure on the orbits:
On the Lie algebra 3 we have a canonical positive

definite metric defined by

1

Be(X,Y) = -B(X,0Y).

11

(this is clear since for X s il Be(X,X) = -B(X,X) = 0

1

and for X =Y € p Be(X,X) -B(X,-X) > 0 (cf. AB.3
Proposition 1). On G we can normalise Haar measure by

requiring that the volume of a hypercube determined by an

orthonormal basis with respect to Be have measure 1. This
doesn't depend on the choice of orthonormal basis since ortho-
gonal matrices have determinant 1. One can check that this

is also independent of the choice of Cartan involution 6
(basically since any two Cartan involutions are conjugate) .
On the orbits themselves we simply choose the Haar measure
that comes from the normalised Haar measure on G. We
denote the measure on the orbit of H ¢ C by uy. Further-

more, we let A Dbe Lebesque measure on a restricted to

C,.
gince B by and )\ are all smooth measures we can

decompose u into

T J _ FH) pydN(H)
H€C1

where f(H) is smooth weighting function.
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Without further work we get

Lemma 2: Measure theoretically, TlH splits into a direct

product
Rl mr s GoM X
where M = centraliser of a in K.

Proof: With respect to Lebesque measure the open Weyl
chamber C€ has full measure in its closure. For H € C
the isotropy group of (1+K,H) € TH is the centraliser

HNt K. Clearly,

centraliser H = Y g% +a+m = g +m

a€l
a(H)=0
(cf. A8.3 Proposition) where 3 1is the root system of

(g,a).. In particular, the isotropy group of (1l.K,H) is

M and our claim is clear. 0

Now we determine the weighting function f(H) explicitly:

Lemma 3: Up to a constant multiple

$CRY 5 1 a(H)
a€e,

where ¢, are the nonimaginary positive roots (cf. A7.1).

Proof: We first decompose p along the fibers of the unit

tangent bundle over H:

W= jHude
where dx 1s the Riemannian volume on H and b is the

fiber measure.
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Since dy = do ® dx we see that ul K is the Riemannian volume on T1 1K = o)
_ 1 = &

given by restriction of the Cartan-Killing form B to the unit sphere

Py of p.

Now consider the decomposition of TlH into orbits
of T¥a. . Oné Ty l'KH = p this induces the decomposition
b

inte Keopbitsiof 8. We claim that Wy = J f(H)l-L1 H X
C" )
1

dA(H) where is Haar measure on the K-orbit through

H1,H

(1-X,H). Again we normalise p, , Dby comparing it with
¢ 4

the Cartan-Killing form. Note that the Cartan-Killing

form of &k is the restriction of the Cartan-Killing form

prs-gas o ERY

Indeed, we do have Wy = J g(H)ul HdX(H) for some
C’ ’

1t
weighting function g(H). Hence
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;=
1

JHX*uldX = JHJ— g(H)x*(ul,H)dX(H)dx

¥4

1

JU g(H) (JHX*(“l,H)dx )dK(H)
¥

JU g(H) pdA(H).
1

because by our normalizations By = J X*(“l H)dx. We deduce
H b

that g(H) = f(H) and derive the following description: The
weighting function f(H) is the volume of the orbit
AdK(H) in the Euclidean metric on p defined by the
Cartan-Killing form B.

We have the following commutative diagram where Exp
is the exponential map: # = Tl-KH - H 1in the
differential-geometric sense and exp: 8 > G 1is the
exponential map from group theory: For H ¢ [

. 2.3 + G/K

Exp
AdK(H) ———— K * exp H - K/K.
This allows us to compute the volume of AdK(H) from
the volume of K exp H *+ K/K (Lemma 5) and knowledge of

the derivative of the exponential map (Lemmata 6 and 7).*

Lemma 5: The volume of K * exp H * K/K 1is (up to a constant

independent of H)

card ¢
m{exp HY = 71T ke e_a(H) = 2 *TT sinha(H).
a€¢+ a€¢+

¥ Nohce Yot det ‘E’(?,AAK(“))-; c\(E;qQ \Ao\\C(H) S\ynce ExF 'S A
QSDW\e'\‘t\aovx/m omd/cn ‘s Ponsuesa o A K (+).
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Proof: This 1s clear from the formula:

[Gf(x)dG(x) = LKJCJKf(kleXP H k2)m (exp H)dkldX(H)de

where f 1is a continuous compactly supported function and
dG(x) and dk are Haar measures on G and K respectively.
This can be found in [wa 1}, vol. 2, 8.1.3,1, p. 68, Of
course one only has to check that the measure defined by

this formula is G-invariant. The commutation relations

account for the m weighting function. a

Lemma 6: The differential of the exponential map Exp is:

= 2 e 1 2n
dEXPX = d'l:(exp X)l‘ K ngo m(ad}() »
where t(g): # -~ H is the mapping xk - gxk.
Proof: This is [He 1], Chapter IV, Theorem U.l. 0

") Now we can calculate the determinant of dExpy,
H € a, with respect to the Riemannian volumes determined

by the Cartan-Killing form B on both g and TH.

-T—]— sinh (a(H))

Lemma 7: det dEpo = S () .
+

Proof: Since left translations on H are isometries

) o g 2n
e have to calculate det (adH) . Instead
b A 1"12:0 32n+15.i lp

o

% 2n
omplexify and calculate det (adH) S Yo
we complexlly néo 2n+1y 71 lp@

g. we have the decomposition (cf. A8.5 Proposition)

[

p g + ] C(X -8X ).
() (% 06, a a
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which is the eigenspace decomposition for (adH)Z: namely,

(adH)2|

i
o

%

(adH)Q(X -0X )
a a

i

S i - X ).
a a

because H is fixed by 6. Now the lemma is obvious. o

In particular we see that this determinant is constant
along AdK-orbits. By change of variables and Lemmata 5

and 7 this finishes the proof of Lemma 3. o

1.2: The Geodesic Flow

We describe the geodesic flow on a finite volume
locally symmetric space in algebraic language. It turns
out that the ergodic components are given by the G-orbits
on TlH' Most of this is due to Mautner in [Mau 11]. Mainly
we parametrize the ergodic components differently and deal
with the case of a reducible lattice in all detail. First
we recall the definition of the geodesic flow for an
arbitrary Riemannian manifold M. We will not explain any
of the standard terms of differential geometry (cf. [He ;18
[Ko-No 11). Let (x%,X) € T;M. There is a unique geodesic
a passing through x in the direction of X. In terms
of the exponential map Epr: TXM + M a is given by

Exp tX. Moreover, this gives the unit speed parametrization

of a. Now we can define the geodesic flow ? by:

|
¢t(x,X) z (EprtX, .= EprsX s=t)'

It is clear that mt(x,X) € T{M again.
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Now consider a globally symmetric space H = G/K as
above. We assume that H does not have any flat or compact
fac*tors (mainly for simplicity of the exposition). For
H € Ul we calculate the orbit of the geodesic flow through
(0,H) ¢ TlH: By definition wt(O,H) = (Exp tH, é% Exp sH szt)
where Exp = EXpy,.y: ¥ 2 H. Using the chain rule and 1.1

Lemma 6
d ol d
b ps EXD SHIS:t % dEXPtH (EE(SH) |8=‘t)
B 2n
(ad+H)
= dEXEH(H) = dr(exp tH)O . nZO a2n+l i (H)

dt (exp {H)O(H).

As dt(exp tH)O is the action of exp +tH on TlH
restricted to the unit tangent space at 1 ¢« K we finally

arrive at the

Lemma 1: ¢t(O,H) = (exp tH)(0,H).

As a corollary of this we have the

Lemma 2: The geodesic flow fixes every G-orbit on TIH'
Moreover, if we write G(O0,H) = G/Z(H) N K as a
homogeneous space where Z(H) 1is the centraliser of H

the geodesic flow on G(0,H) is given by:
g(Z(H) N K) » g exp tH(Z(H) N K).

Proof: For any manifold M the geodesic flow ¢,
commutes with the differentials of isometries of M as
is obvious from the definition. Let (x,X) 1lie on the

G=orbit of (0,H): (x,X) = g(0,H) for some g € G. Then
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¢t(x,X) = gwt(O,H) = g +» (exp tH) « (0,H) 1lies in the same
orbit. This formula also proves the second claim of the

lemma. s

Now we want to study the geodesic flow on locally
symmetric spaces M of finite volume. Recall from Al2
that the universal cover of M 1is a globally symmetric
space H = G/K. 1In fact, we can write M = I'\H where
is a torsion free lattice in G.

Let p: H = M be the covering projection. Then it
is clear that p intertwines the geodesic flows on TlH
and TIM‘ Also TlM ; T\T,H is "foliated" by the
G-orbits on TlH factored out by T on the left (as the
dimension of the G-orbit changes as H ¢ El moves out to
a wall this is only a foliation with singularities). The
leaves are TI'\G/Z(H) N K. In particular, all the leaves
are smooth submanifolds of TlM of finite volume. As the
geodesic flow ? 4 acts on G/Z(H) N K by right transla-

tions (Lemma 2) we see that the geodesic flow wz of - M

restricted to T\G/Z(H) N XK acts by
wg(r-g'(zcﬂ)nx)) = T « g s exp tH » (Z(H) NK).

At this point Mautner proved a lemma on the ergodicity
of the geodesic flow on most of these orbits., Later on

C.C. Moore generalised this so called Mautner's Lemma to the

Theorem 1: Let G be a non-compact connected semisimple
group with finite center but without compact factors and
let T ¢ 6 be an irreducible lattice (cf. Al2). Then a

subgroup H of G 1is ergodic on §g iff H is not compact.
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Proof: The easiest proof of this theorem is in [H-Mlj.

There one first proves that for any unitary representation

of G the "matrix coefficients vanish at infinity". Moore's
theorem then becomes an obvious corollary (cf. also L2123,

the discussion of Theorems 2.3 and AT T o]

: We want to apply the preceding theorem to our situation.'
For simplicity we assume first that T is irreducible in G.
Let yl: I\G » I'\@ be right translation by exp tH. By
Lemma 2 we obtain the commutative diagram:

H

v
T\G L v T\G

M
T\G/Z(H)NK ~—i£* '\G/Z(H)NK .
By Moore's theorem Wi is ergodic, in particular ¢, on
'\G/Z(H) N K is also ergodic with respect to Haar measure Or
conditional Liouville measure.
In general we decompose T into irreducible lattices
as in A12, Proposition 3. As in the proof of Lemma 3
we may assume that G is the adjoint group. 1In particular,
G = HGi is a direct product of adjoint groups and w.l.0.g2.%

where T. = rneG, (cf. Al2, Proposition 3). We

i
=4
T |

T

see that M = HMi is a Riemannian product of the spaces

M= I‘i\Hi where Hi is the globally symmetric space
associated to Gi' Furthermore, any H € C splits up
n
iitc & ém H = | H, where H; Delongs to the positive
i=1

Weyl chamber or its closure of some Gi' Hence G(o,H)

HGi(o,Hi).

%#as any I 1lies in between special TI''s all our claims follow
easily from the special case.
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If all the Hi =00t han restricted to

b
Fi\Gi(o,Hi) is ergodic for all t by Moore's theorem. The
ergodicity of all single transformations of a flow implies
the weak mixing of the flow as is clear from spectral
theory: By [Fu 1] Theorem 4.30 weak mixing is equivalent

to the non-existence of eigenfunctions. If f 1is an

eigenfunction: @tf = e?™M¢  then f is invariant under

¢; and hence constant. By [Fu 1] Proposition 4.4 any

x

~product of o restricted to Fi\Gi(o,Hi) with an ergodic
flow is ergodic. Hence all G-orbits G(o,H) with none

of the Hi = 0 are ergodic components.

If some Hi are ‘0 write G = GO X B' where the

G,-component of H is 0 and G' is the product of the

0
remaining factors. Then the previous argument applies to
the G'-factor. As right translation by exp tH doesn't
affect the Go-coordinate it is clear that the G-orbit of
(o,H) splits up into G'-orbits each of which is an ergodic

component.
We may summarize this discussion as follows:

. n n
Theorem 2 (Mautner): Let G = ] G s i TR Fi as above.
i izl

for any H € Ul such that no H, = 0 T\G(o,H) is an

ergodic component of ¢ . If some H, = 0 write
G = 6y X G' as above. Then all T'\G'(gy* k,H) are
ergodic components for P, where g € G is arbitrary

BEna Pl tidisirheddntansaotion . of T with G

Corollary: Almost all G-orbits on T,H are ergodic

components of Py

Proof: Obvious. o
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1.3: Lyapunov Exponents and Entropy

We will calculate the Lyapunov exponents of the
geodesic flow and determine the metric and topological
entropy. In more detail, we first recall the definition
and fundamental properties of the Lyapunov exponents of a
flow. We introduce Jacobi fields and relate them to the
double tangent space. This reduces the calculation of the
Lyapunov exponents to the determination of the asymptotic
exponential growth rates of the Jacobi fields. These
growth rates define a filtration of the space of Jacobi
fields. To determine it we use a suitable basis of the
Jacobi fields given explicitly in terms of the root system.
From this and the general properties of the Lyapunov
exponents we can then calculate the metric and topological
entropy. In particular, this will prove that the Liouville
measure is a measure of maximal entropy on the ergodic
components.

We first recall the definition of the Lyapunov exponents
of a diffeomorphism or flow on a compact manifold N. We
fix a Riemannian métric on N. As will be clear the
Lyapunov exponents are independent of the metric we choose.
We let || || denote the norm induced by the metric on each

tangent space of N.! Then we have the

Definition 1: The upper Lyapunov exponent for a Cl-flow

¢, on N is the function X+: TN - IR defined by:
loglldo, v

) X+(v) e T

oo

The upper Lyapunov exponents have the following
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properties:
a On each tangent space TXN there are at most
dim N many values of X+, say Xl(x) < Xz(x) <

L LG S 2

)(x).

Xr(x

b There is a filtration
Ll(x) < Lz(x) i e LP(X)(X) = TXN
given as follows:
18t ovE Li(x)\Li_l(x) then X+(V) = Xi(X)'

We call the Xi(x) the upper Lyapunov exponents of
at the point x and say that Xi(x) has multiplicity

(x).

ot

dim Li(x) - dim Ly 1

e wleti - be a wt-invariant probability measure.
Then for p-almost every point x the

Logldg, (v)
i

lim
toreo

exists for all v GTXN.

For such an x we simple speak of the Lyapunov

exponents at ' 'x,
Moreover, for p-almost every x the Lyapunov

exponents Ti(x) of the inverse flow @_t(x) are simply

-Xr(x)—i (x) with the same multiplicities.
()
*'g The upper Lyapunov exponents are measurable

functions invariant under In particular,

(Dt.

if up 1is an ergodic -invariant measure then

¢

the Lyapunov exponents are constant p-almost

everywhere.
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(Pesin's entropy formula). Let X(x) =

@

b 2 e
Xi(§)>0 l(x)(dlm Li(x) dim Li_l(x)) be the sum

of the positive Lyapunov exponents. Then the metric
entropy hu(wl) for any C2-flow o, and any
smooth wt—invariant probability measure p is

given by:

hu(wl) = INX(X)du.

|+

For any Cl—flow ¢4 and any @t-invariant
probability measure p we have
hu(wl) < INX(x)du.

This was first due to Margulis for the case of a
smooth measure. Then Ruelle gave this generaliza-
tion in [Ru 1].

General references for this material are [Pe 1,2]
and [M 1].

In the case of the geodesic flow the most convenient
way to calculate the Lyapuno& exponents is to use Jacobi

fields. We recall the

Definition 2: A Jacobi field Y along a geodesic ¢ is

a vector field along < satisfying the so called Jacobi

equation

1" A
et RXYX = 0

where X = g(t), ' is covariant differentiation along <«

and R 1is the curvature tensor.
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Note: Geometrically, Jacobi fields come about by variations

of the geodesic ¢, i.e. let A% he & one~-parameter
0

family of geodesics such that < = ¢ . Then
g S - { L
Y(t) = 5= c ()| __ is a Jacobi field.
ds s=0

Let v € TM and let < be the geodesic on M defined
by v. Then we have an isomorphism between TV(TM) and
Jacobi fields along ¢ as follows: for any Jacobi field
Y(t) along c let & = (v,Y(0),Y'(0)) be the corresponding

point in TV(TM). Moreover, one finds that

lag 12 = fyce)l? + fiyr o).

op R BT g

In the following we will mainly consider Jacobi fields
perpendicular to ¢ as we are only interested in the
exponential growth rate of deg (&).

For locally symmetric manifolds we can write down the
Jacobi fields explicitly. Recall that we can identify
the tangent space at the identity with p where
8 =k + p is a Cartan decomposition. We first have to
describe a basis for p in terms of the root structure.
Recall from A7.4 that the real structure of 8 induces an
automorphism o of the root system ¢ of Boe The
Cartan involution © induces another automorphism of ¢
given by ae(H5 = ga(BH) for H ¢ h¢ where § is a

Cartan subalgebra of 3 as in 7.4. Then we have the

Lemma 1: Let ¢, = {a > Ola # «®1 and
$_ = {a > 0|a -~ ae} (cf. A7.1). Then the following

properties hold:



i3I8 o8¢t then e ¢, and a’ € b,
(113 1f ‘o '€ ¢  ~ then ae 28 al =z -g and
a -a
+
g g Ck(l)'
Proof: This is [He 1] Chapter VI Lemma 3.3. o

Given a Weyl basis X ,a € ¢ for g, Wwe let

UXa = kaX g for ka € C.
a
Lemma 2: We can choose Ea € ga for a € ¢ that satisfy
the properties:
(I i-fEs B ). 20H
a L ¢ 1 a
(ii) If a = a° then g8 = k€. We call such
a root real
A (o)

(iid) 1feca & 9. and o # a then oEa = an.
Proof: Let T be the complex Con}qqgmwomrthe compact
real form u = k + ip. Let X  Dbe a Weyl basis with
respect to T, i.e. X = -X_q (cf. [Wa 1l vol, 1,ips 25
gince 8.= ot ='7%c.. . we pee that Fa &Ko

Next notice that |ka| =1 for a real since

‘(=02‘( il X ) = kK k(X
g g a‘a 8 a.g
Then for o' peal let a, € € such that ai =z ka and let
a &' a L iThen a2 2k by the above. For a real
-a a -a -a
lex B8 aaXa. Then (i) and (ii) are clearly satisfied.
14 w6 ¢y ¥ 2% then o° is a positive root by
Lemma 1. We may let E‘1 Sy (A YR Ny E Sl oXa,
a
E = oX hhen LB .\E T 0t Pl s ol = H and
o - o o a by 4 a a
-a : a -a a
(i) holds true.
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=3
H

(Ea'FoEa) - G(Ea'FoEa)-

and

=
1"

i(Ea"OEa) - 6(i(Ea-oEa)).

It is clear that Wa =.0 for a real and that Ta =T 4
a

and W..» Wt aan particular the non-zero Ta’wa are in
a
1-1 correspondence with the set of pairs (a,ag),

Qe ¢+.

Lemma 3: For all a € ¢, both T €gp and W € p.
Moreover, the set {Ta,wa]wa non-zero} is linearly

independent over IR and together with a generates gp:

where the summation is ovex one vepesenmive of eadh palr [wa®) Lor HER,-

Proof: To see that Ta € p we have to check that

(a) GTa & Ta: this is clear since 06 = 6o

and

(b) oT, I this is obvious.
The same remarks apply to wa
By Lemma 1 the T ,W  are linearly independent if
Pl= g S aPy iand W' = i(E ~-cE ) are linearly
a a a a a a
independent (since these are the projections of T oW,
to I 8% . Any dependence between T  and W! clearly
a>0
is of the form: aT; ¥ bW& = 0 for some particular

g € ¢, IX is obvious that there is no dependence over

R.
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Recall from A8.5 that
B im 8, + ) C(E, - 6E ).
aE¢+
As Ta - :LW(I = Z(Ea-GEa) and Ta P iwa 2 20F - E 0)

the last claim becomes obvious.

Now we can describe a canonical set of Jacobi fields.
As always let a Dbe a maximal abelian subalgebra of g

contained -dn  b.

Lemma 4: Let H € a. The space of Jacobi fields along the

geodesic Exp tH admits the following basis:

a(H)tT

Ta(t) =  exp(tH),(e i3,
T (0 = exp(th), (e * M)ty )
i a(H)t
WoCE) . = exp(tH), (e W)
W (8) = exp(tH) (e Mty )
- o a
HB(t) = exp(tH)*(HB)
H-B(t) = exp(tH)*(tHB)
one vepreserichive of e
where the indices a run over i pair (a,ac) with

5 ¢, as above and the B are a set V¥ of simple roots

for the root system 2 of the pair (s,a) (cf. A7.4).

Proof: First we check that our vector fields are Jacobi
fie}ds. We only check T_, and H_B as the others are
perfectly similar:

First recall that parallel translation along Exp tH

is given by (exp tH),. This is [He 1] Chapter IV Theorem
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3.3 (iii). Then for any curve Z(t) € p we claim that

(Cexp tH),Z(t))" = (exp sH), £ 2(0)|, ). |

rza t=s |

In fact, from [He 1] Chapter I Theorem 7.1 we see that

(Cexp tH)JZ(E))'| . = lim £-((exp(-At H)),(exp(s+ATIH), Z(s+at)
4 At-0

- (exp sH),Z(s)) = (exp sH), (- z(t)|._ ). |

§

a Check of the Jacobi equation for T_a(t): |

By the above covariant differentiation gives

# "‘tCI(H)T )
a

(T_ ") = (e, (et ’e 2ehe (HL AT, (8D -

To evaluate the curvature tensor we recall Theorem 4.2 from

[He 1], Chapter IV:
Lemma 5: At the point 0 € G/K and X,Y,Z € g we have

RX,YZ = =[[x,Y1,2].

In our case we find that at the origin

he g 2
RH,TaH = —[[H,Ta],H] = -a(H) Ta.

This is clear from the definition of T, and since H is
fixed by both o and 6. Since et is an isometry

etH)* commuteé with the curvature tensor. As T_a(O) = Ta

(

we get

exp(tH) ,(H) = -a(H)2T  (1).

a

Riexp tH),(H),T__(t)

Comparison with the expression from the covariant

differentiation proves our claim.
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b Check of the Jacobi equation for H_ﬁ(t):

Clearly we have

(H—B)"(t) = exp(tH),(0) = O
On the other hand,
RH,H (O)H = -[[H,0],H] = O

-p

as. ' H (0) 41is 0., Our claim is clear.

-

That the given Jacobi fields are linearly independent
is clear from Lemma 3 and the obvious fact that the HB(t)
and H_B(t) are linearly independent.

Again from Lemma 3 it is clear that the dimension of
the space generated by the given Jacobi fields is

2« dim g =-2 dim H = dim T(0 H)TH = dim{Jacobi fields
b

along Exp tH}. o

Now we can calculate the Lyapunov exponents of a

Jacobi field and determine the filtration they define

Lemma 6: Let J(t) be a Jacobi field along Exp tH for

H € C, the positive Weyl chamber. Then

Jitd - ) a,T,(t) + bW (t) + ] CoHy

t(a,a”) €, ol spey !
where the indexing is as above. Let aJ(H) be the biggest
of the numbers {a(H))|a as above}. Then the Lyapunov

exponent of J(t) 1is
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Vo k
aJ(H) il aJ(H) o)

< 0 I F aJ(H) < 0 and some
%k =<
< B¢ 0

k?J(H) otherwise.

Note: By the Lyapunov exponent of a Jacobi field J we

mean the Lyapunov exponent of the corresponding vector &
T(O,H)TH’

Proof: Recall from our discussion of Jacobi fields that
2 2 2
ldg o)1 = Naco ) + 13wl

where & corresponds to J in T(0 H)TH' To calculate
2
IlJ(t)lI2 and IIJ'(t)II2 notice that any two Ta’TB and

Wa,W are orthogonal (B # a,ao) since this is true for

B

the E -E with respect to the Cartan-Killing form

p'S

(cf. A3.2 Theorem (ii)). TFor a given a we have

1 a(H)t

i

Tre

$

Tt

Cobid
lim £ log fla T _(t) + b W (1)l

a(H)

since exp tH is an isometry. Similarly we find that

in

lim = loge . HaaTairbaWa)”

S ; : Sl La(H)t .
iiﬂ flOg”aaTa(t)4'bawa(t)” = iiz,tloga(H)e ||aaT(1 bawa”
=-alH),

.Finally it is clear that the HB'S contribute 0 growth

and that they are orthogonal to the rest of the space.

Putting all these facts together proves the lemma.
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In particular, the Lyapunov exponents are defined
everywhere since any point in TlH is an isometric translate
of (0,H) for some H € T.
We really want to calculate the Lyapunov exponents and

the entropies on an ergodic component of Py The next

lemma describes the Jacobi fields tangent to an orbit of G.

Lemma 7: The tangent space T(0 H)({0} x a) 1is ortho-
il i i sl o b
gonal to G * (0,H) and corresponds to the Jacobi fields

of the form e (),
-pey PP

Proof: Since HB(O) = 0 for B < 0 the specified Jacobi
fields are tangent to {0} x a. By a dimension argument

they also span T H)'{O} X 8),
2

Take any curve exp tX € G, X € s. Then
L ((exp tX),H) = [X,H] +& ¢ T({0} x §)

as follows from the Campbell-Hausdorff-Dynkin formula

(cf) [Va 1], Chapter I). Since B([X,H],H) = B(X,[H,H]) =0
(as follows from the invariance of B under inner
automorphisms) G * (0,H) is orthogonal to

T(O,H)({O} x 8). : a

Also we really have to work with T(O H)TlH for
?
Hi€ Cl. For a Jacobi field J(t) along Exp tH this
means that J'(0) . H. Expressing J(t) as in Lemma 6 this

is equivalent with
e e
-pey PP
By Lemma 7 this condition holds true for all J(t) tangent

to G(O0,H). Also, if we just want to calculate X(0,H),
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the sum of the positive Lyapunov exponents on G(0,H), by
Lemma 7 and the above we may just as well add the positive
Lyapunov exponents of all Jacobi fields along Exp tH. By
Lemma 6 it is clear that the Xi(O,H) are just 0 and the
a(H) for ta ¢ ¢, with multiplicity the multiplicity of

a(H) as #a 7runs over ¢, . In particular, we obtain the

Lemma 8: The sum of the positive Lyapunov exponents at

(0. B)  for H ¢ Cl is

X(0,H) = Y a(H).
a€¢+

Moreover, if g € G then Xx(g(O0,H)) = X(0,H).

Proof: The first claim follows from the discussion above.
For the latter just notice that g is the differential

of an isometry. 0
Finally, we obtain the

Proposition: For a uniform lattice I in G,I' without

torsion, the metric and topological entropy of the geodesic

flow on TI'\G (0,H) are equal for any H € Cq and given by

Bz h Bty e 2o (H)
H w,H a€¢+
where p = % Zna. Furthermore, we find expressions for the

a>0
topological and metric entropy of the geodesic flow on

Tl(T\G/K) as follows:

h = 2|lpll =2 max p(H)
HeCq

and
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BinGs J 2 p(H) « T a(H)dA, (H)

b HEC, a€h,

where xl is a Lebesgue measure on C1 such that

I a(H)Xm(H) is a probability measure. In particular,
a€¢+

h= hu iff G has real rank 1.

Proof: Pesin's formula proves that hu 4= 2p(H). On the
2

other hand, hH = sup hv where v runs over all the

probability measures on T\G(0,H). By Ruelle's inequality

(cf. Property f of the Lyapunov exponents) we see that

=
i

- f x(x)dy = 2p(H)
L G(0,H)

since X(x) is constant on G(0,H). This proves that

hH = .2plH).

That h = 2|lpll is clear from generalities: the topological

entropy is always the supremum over the topological

entropies of a decomposition into invariant submanifolds.

A similar generality proves the claim on h“.
Finally notice that Cl consists of one point iff G

has real rank 1. In this case, certainly h = hu. On the

other hand if the rank is not 1 then Cl is a submanifold

of a sphere of positive dimension. Notice that p(H) 1is

a linear functional positive on Cl' It is elementary that
the average of p(H) with respect to [ a(H)Xm(H) is
a€ed
+

strictly smaller than p.

Corollary: Both topological and metric entropy only depend

on the universal cover in the locally symmetric case.
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Proof: This is clear from our expressions. For the
topological entropy h this is well known as h 1is the
exponential growth rate of the volume of balls in the

universal cover (cf. [Man 11). o

Note: 1 To avoid further complications we didn't discuss

the case where the ergodic component is not a
G-orbit (ef. 1.2 Theorem 2). Certainly the
topological entropy and metric entropy are equal

and in fact are’
2p(H) .

This is clear as all the ergodic components
ri\e'(g, " k,H) are isometric, simply since
gy € GO commutes with G'. Hence the topological
and metric entropies are independent of the

particular g, ¢ GO'

(]

In rank 1 the geodesic flow is Anosov. Hence
there is a unique measure of maximal entropy v.
That v = p was first proved by Bowen in [Bo 2].
‘This particular case can be proven very easily
(up to some hard dynamics) as follows: By

[Bo-Ma 1] one knows that the horocycle foliation
is uniquely ergodic with invariant measure the
measure of maximal entropy for the geodesic flow.
On the other, it is clear that Haar measure is
invariant under the horocycle foliation in the
locally symmetric case.

Also it may be of some interest to calculate the entropy

in the rank 1 case explicitly. The following table first
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appeared in [Ka 1].

Symmetric Space Dimension Maximal Sectional Entropy
Curyvature
Real hyperbolic n-space n --k2 (n-1)k
Complex hyperbolic n-space 2n —k2 2nk
Quaternionic hyperbolic 4n -k2 (4n+2)k
n-space
Cajley plane 16 x? 22k.

This follows easily from our Proposition: First note

that C, is just a point since G has real rank 1. Hence

3
h = hu = 2p which we can compute explicitly from the

Satake diagrams of these groups (cf. [He 11), pp. 532ff).
On the other hand, it is clear from Lemma 5 that the

maximal curvature K is given by the unique root a € 2
1

such that >a ¢ 2 (by rank 1, 2z has at most two positive
>

roots: ay a).
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Section 2. Compact Maximal Flats

For a compact manifold of negative curvature the
closed geodesics correspond to the free homotopy classes
in a one-to-one way as is well-known. The main point is
that the energy functional E on the space of closed curves
is strictly convex. If we allow some 0 curvature E is
only convex and hence the free homotopy classes correspond
to continuous families of closed geodesics. For example, in
a compact locally symmetric space of rank r > 1 we
have compact flat r-tori and hence (r-1)-dimensional
families of closed geodesics. In this section we will first
see that this is generic. Then we will study compact
r-flats and their equidistribution.

We will consider a finite volume locally symmetric
space M = r\G/K of the non-compact type. Let r be the

rank of M. Any geodesic a is contained in an r-flat.

Definition: We call ¢ a regular geodesic if o 1lies in

an open Weyl chamber of F.

Notice that this does not depend on the choice of the
$ilat F. In faot, let g = Exp tH pass through T - O
- where H € p. Then a 1is regular iff H is polar regular
(cf, I, 3.1 Definition and the remark thereafter).
Moreover, a regular geodesic « 1lies on a unique r-flat F:
We argue in the universal cover # = G/K and pick the
1ift ¥ of F through T = Exp s where u c g is
abelian. Then H 1lies in & hence exp tH leaves T
invariant. By I, 3.1, Lemma 2(ii) ¥ is unique.

Clearly the regular geodesics form an open dense subset
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of the set of all geodesics.

Proposition 1: Any closed regular geodesic a 1is contained

in an (r-1l)-dimensional family of closed geodesics. If M

is compact a 1lies in a unique compact r-flat.

Note: Eberlein has informed us that he has a purely geometric

proof of this proposition. Our argument is algebraic.

Proof: That F is unique is clear by the above. On the
other hand let evr be an axial isometry for the 1lift
~f o through 0: ~(a(T)) = E(t+t0). Let ¥ be'a lift
through 0 by the above ¥ «F = ¥. Hence F is covered by
a cy}inder and the first claim is clear.

Suppose M 1is compact. Clearly pol vy = exp tH for
some t € R where a(t) = Exp tH. Hence 4 is polar

regular and by 2.3 Lemma 2, F is compact. o

Note: 1 I do not know whether a lies in a compact r-flat
in the cofinite volume case. The usual criterion for the com-
pactness of a flat is the R -hyperregularity of while

we only know that y 1s regular.

2 Suppose G is algebraic. Then we have Borel's
density theorem (cf. [Ra 1], Theorem 5.5 a lattice T is
Zariski dense in G. As the regular as well as the R-
hyperregular elements form a Zariski dense open subset of G
it is clear that a generic free homotopy class with respect
to the Zariski topology on T corresponds to a compact r-flat.
For a locally symmetric space of rank 1 Bowen proved
in [Bo 1] and [Bo 2] that the closed geodesics are equi-
distributed with respect to the Liouville measure. For

higher rank we expect something similar. Since there are
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uncountably many closed geodesics equidistribution is not
well defined and we have to consider continuous families
insﬁead. As we will use dynamical arguments we will hence-
foftﬁ assume that M is compact. Then the Proposition says
that only the (r-l)-dimensional families are dense in the
space of all geodesics. Since the (r-1)-dimensional
families all lie in compact r-flats and are equidistributed
there with respect to the Lebesgue measure we really want
to study the equidistribution of the compact r-flats.
First, we want to replace the whole unit tangent
bundle by a generic ergodic component of the geodesic flow
Py i.e.,.by E = F\G/Z(H)lK where H is polar regular,
Hoidn o Chl Let A 5. eXp 8 be a maximal polar subgroup.

ki
Notice that A acts on E. Let F Dbe the orbit foliation

of this action.

Lemma 1: The compact pr-flats are in one-to-one correspon-

dence with the compact leaves of F.

Proof: Suppose F c¢ M is a compact r-flat. Recall from
A5.2 Proposition 1(i) that in the universal cover G/K = H

of M all r-flats are translates of each other. Hence

F s TsgeA forsome g €6 and T'-g-+A- Z(G)ﬂK)I is
compact in E.

Vice versa since Z(H)nK is compact a compact leaf

PrgrAr (A(H)nK) gives rise to the compact flat

F'zT+g~r A, 0

Clearly ¢, leaves F invariant. Recall the

Definition 1: A Cl—diffeomorphism f:M - M is normally

hyperbolic to a C1 foliation L if f preserves L and
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Tf is normally hyperbolic over TL: there is a decomposition

T™ = N ®TL ®N° and Tf = NYf & Lf & N°f

such that for any point p € M
inf m(N;f) 5 supHNng w1

inf m(N;f)HLpr—l >t supHl\lgfnm(Lpf)‘l i)

where m is the minimum norm of a linear operator and | |
'is the sup norm for some metric d of M.
~This definition is taken from [Hi-Pu-Sh 1], p. 116.

In our case we have the

Lemma 2: The geodesic flow ¢, on E is normally hyperbolic
to o¥,
Proof: This is obvious from our discussion in 1.3. o

We need the

Definition 2: An e-pseudo orbit of f: M » M is a.sequence

RS M, n €% ‘such -that d(fpn ) < ¢e. We say that a

P+l
pseudo orbit respects a foliation if f(pn) and P+l lie in

the same leaf of the foliation.

Finally we arrive at the following generalization of

Bowen's shadowing lemma.

Lemma 3: Suppose f is normally hyperbolic to a foliation
F. Given v > 0 there exists &6 such that any &-pseudo

orbit {xn} of f can be v-shadowed by a v-pseudo orbit
{yn} for f which respects F. Moreover, AN and Yoit

1ie in an e-ball of a leaf of F.
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Note: That {yn}-v—shadows {xn} means that d(xn,yn) R

Proof: This is [Hi-Pu-Sh 1] (7a.2). That normal hyperbol-
icity implies that (f,F) have local product structure is
clear (cf. also p. 132 of [Hi-Pu-Sh 1].) The last claim
emerges in the proof in [Hi-Pu-Sh 11]. a

We also have the

Definition 3: Suppose f leaves F invariant. We call

(f,F) expansive if there exists a constant ¢ > 0 such
that: ot Fl # F2 are leaves of F and x15%, € Fl’FQ

respectively then dc£™x fnxz) > ¢ for some nied.

l,
This clearly generalizes the usual notion of expansive-
ness,

We have the

on E is expansive with

Lemma 4: The geodesic flow ¢,
respect to F.
Proof: This is obvious from the normal hyperbolicity. a

. From [Hi-Pu-Sh 1] or in our case by direct inspection
we have strong stable and unstable manifolds w'(p) and

wss(p) for any point p. Moreover, in a small enough

neighborhood of a point x the foliations F, {w'} and

S8

{W°®} are transverse and 'span' the neighborhood. More

precisely, we have the

Lemma 5: For any x there is a neighborhood B of x

such that for any p € B there are unique points z%  and

s® in B 'such that x and z% 1ie on the same leaf of

Foinz % w(z" and p € wS%(2z%). We call B a box and

u s A 3 ;
2 and =z the canonical coordinates of p with respect
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to x. The canonical coordinates are continuous in p.

Proof: This follows easily from the transversality of the

three foliations. 0

The next lemma permits us to replace pseudo orbits by
compact flats: We let ¢ be an expansion constant and
assume that the ball of radius 100e is contained in a box

about any point x € TlM' Since TlM is compact this is

clearly possible.

Lemma 6. Let 0 < v < 8/3. For small enough & any orbit

Xy 9qXseeesp X such that d(x,ynx) < &6 1s v-shadowed by

a v-pseudo orbit {yi} that is contained in a compact

maximal flat.

Ppoahiicelatiax Then {xi} is a 6&-pseudo

i T ?i mod(n+1)*

orbit and for small enough & there is a v=-pseudo orbit

{yi} that v-shadows {xi} and is contained in a leaf F

S

of “Fs - iletiicg 2% be the canonical coordinates of e

ik
with respect to y,. Also let Vi1 = 94 hi+iyi where
g i o0
hi+l € A and ”hi+1~l“ < v. Then z, 9y hz- 272,

u : A ;
cplhzzl are the canonical coordinates for wlhz yn+l since

h2 commutes with ®q and hence leaves the stable and un-

stable foliations invariant. Since cplhzyn+l and Yn+2

iie on F and are close on F (in fact, they are at most

"8 u : 2
2v apart) cplhzzl and cplhzzl are the canonical coordinates
of Y42 with respect to Yo Notice that

BOy i) = dly ..%) +.dlx,,y,) = 2V.

zo are close to Yo

3 : s
Hence the canonical coordinates 2z 2

2’
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say they are at most f(2v) apart from ¥a for some functions
f with f0EY » 8  as £ -0,
In general we see that we have canonical coordinates

S y
: o ¥ ey

8]
-
N

with respect to Vi such that

8 u I : u
hizi and Frgnir Bopg hizi
where H. € A and lh.ll = v. Moreover z° and 2z, 1lie
i i i i
in a f(2v)-ball about Vs
Suppose that zi # z?. Then zi = Exp j where j 1is in

the unstable part of the tangent bundle of z?. Decompose

j as in 1.3, Lemma 6 and let Q € ¢ index a non-trivial

s,u

component of j. As z; = -1 jﬂ' h z the distance
between z; and zi expands at least by »
i-1
exp R(logly. ; ;]; hj)) > exp(i-1)(KH)-v)
where ¢y = exp H and we used the conservative estimate

| Log th < v. As H is regular and fixed @(H) = 0, ‘80

for small v, zg and zi diverge in contradiction to the

S,u

fact 'that zi’ lie in an f(2v)-ball about Y- Hence
z; = zi. By a similar argument for ¢_; We see that
Sk - g
Vne1 = %y° Hence A nand . 2RNE lie close to each other on
Eyon v (gl Ml h;)y, where ihellie FL29), It is

i=1

clear that for v small enough

HY = log(hep TT' h;) € a

is regular and lies in the positive Weyl chamber. This means
that we have produced a closed orbit for exp tH' acting on

E = P\G/z(H')nk. By Proposition 1 this regular closed geodesic
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lies in a compact maximal flat. 0

An easy consequence of this is Mostow's theorem (cf.

I3.3 Proposition 1):

Proposition 2: The compact r-flats in M are dense in the

space of all flats.

Note: We would like to mention that P. Eberlein has a
geometric proof of this (unpublished). Mostow's proof is

algebraic.

Proof: By Lemma 1 (and its proof) it is sufficient to see
that the compact leaves of F are dense in the leaves for
some generic ergodic component E. By the Poincaré recurrence
theorem for almost every leaf F we can find an orbit of

¢4 in F that returns very close to itself. This is

we find x € F such that d(@n+lx,x) < & for some given

small & and some n € N. By Lemma 6 there is a v-shadow
that lies in a compact leaf F'. From the proof of Lemma 6
F' contains a regular geodesic a' <close to a = ¢.X. Since

regular geodesics determine the flat they lie in uniquely

it is clear that F and F' are close. 0

Note: One may notice that our proof is not completely

dynamic in as far as we use Proposition 1 which is a simple
consequence of Selberg's lemma. The main point in Mostow's
proof is to produce R-hyperregular elements tne 1. > Thisg

is exactly where we use dynamics instead.
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Section 3. Singqular Closed Geodesics

So far we have studied the relation between regular closed
geodesics and maximal flats. Now we want to study singular closed
geodesics. We first show by way of example that singular closed
geodesics that are not contained in any higher dimensional compact
flat exist for some higher rank locally symmetric spaces. The main

tool is a theorem of Prasad and Ragunathan. Let us first recall the

Definition: Let ¢ be the representation of G on/\o,}. We call
g e G hyperregular if the multiplicity of 1 as an eigenvalue of

o(g) 1is as small as possible.

Now we have the
Theorem: Iet G be a semisimple Lie group without compact factors.
let T be an irreducible lattice in G and let H be any non-
compact Cartan subgroup of G. Then T contains a hyperregular

3 . 0
element conjugate to some element in H .

0

Note: Here we let H® be the component of the identity of H.

Proof: This is [Pr-Ra 1], Theorem 2.7. 0

Recall that any Cartan subgroup H has a decomposi tion

; ‘ ;
H = Hp-Hg where HK =HnK and He = H n exp@p fox o suitabe chowe
Og Coxctan c&e:owq:os\-\‘wom.

Suppose that H is a Cartan subgroup of some semisimple group

G (no compact factors) such that dim H@= 1. 1et TG De anet
irreducible lattice in G, i.e. no element of I has a nontrivial

root of unity as an eigenvalue for the adjoint representation.

By the theorem and conjugating H if necessary H contains a
hyperregular element y e I'. Clearly vy gives rise to a closed
geodesic a. In fact, o is cowered by H@-O where 0 1is the fix

point of K. Suppose o 1is contained in a compact flat
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F with dimF > 1. W.l.0.g. suppose dim F = 2. Consider lifts

~

o ¢ F in the universal cover G/K of F\G/K' There are two elements

Yy1Yq € I that translate F and form an abelian group of rank 2:
in fact, F is covered by a compact torus T. Let Yy1Y¥p € I' be

generators of m,T. Then we find that v,v,0 = y,v,0. Since T is

lY

torsion free (as T is net) and Yy commute and our claim is

1

clear. Next we claim that some power Yk of Yy comutes with Yy

and Yot indeed, let 0 ¢ o as above. Then for k ¢ Z, Yko e F
as o c F, By corpactness of F there are integers . and m.

and a constant c > 0 such that

ek

aly; ™, O,YkO) £0
for all k. As I is torsion free, T acts properly discontinuously
on G/K. Hence, there are integers k,n and m such that
Y Yyt ¥ In particular, yk commutes with Y1 and 1IPE As
I' is net, Yk is still hyperregular and clearly the centraliser

of y is H. Hence Yy and Yo lie in H. In particular Yy

s

and Yo translate the geodesic o= Exp Hg - As T is discrete
&
there are integers ll and 22 such that YllYZ 0 = 0 where

2 -2
0 ¢ o is as above. As I is torsion free Yll = Y2

diction to our hypothesis that Yy and Y, generate an abelian group

in contra—

of rank 2.

Now suppose [ is an arbitrary irreducible lattice. We have

the

Proposition 1: Any finitely generated subgroup of GL(n,R) contains

a net subgroup of finite index.

Proof: This [Ra 1] Theorem 6.11. 0

Also recall that all lattices are finitely generated (cf. [Ra 1]

Theorem 6.16 and remarks 6.18).
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By the proposition, we find I'' < I' net and of finite index.

By the above, there is a singular closed geodesic gtoian \G/

5 K
that is not contained in any compact higher dimensional flat. Project
atarEnl geain I.\G/K. As T'' c Tl has finite index a also is not

contained in a compact flat of dimension greater than 2.

We summarize this discussion in the

Proposition 2: Suppose G is semisimple of rank = 2 and without

camwact factors. Let G contain a Cartan subgroup H whose split
part Hg is one dimensional. Then any locally symmetric space of
finite volume contains a closed singular geodesic that is not contained

in a compact flat F with dim F 2> 2.

Proof: It remains to show that o as above is singular. Suppose not.
Then any expX € H@ is polar regular. Hence, H < centrX is
contained in the centraliser M:A of a maximal polar subalgebra /oL
(for notation cf.A 10..3) of «3. As M:-A is an abelian extension

of a compact group all its Cartan subgroups are conjugate. This
proves that H is a maximally split Cartan subgroup in contradiction

to kG2 2 anddi_mH=l.D

Note: . If 1H\G is wiform then « is singular by Section 2, Proposition

1.

We still have to exhibit a higher rank group that has a Cartan

subalgebra with one dimensional split part.

Example 1 The algebra s2(3,/R) has a Cartan of the form

hl --h2 0
h2 hl 0 " hi e R
0 0 -2h

Clearly, the split part has dimension 1.
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Example 2: The algebra s2(4R) has a Cartan as above given by

( i
hl 0 h3 0
0 h 0 -h
2 4 > hi e R
h3 0 hl 0
L0 h4 0 h2

It is easy to see that s&(n,R) for n>4 does not have a .
Cartan with one dimensional split part (cf. [Wa 1], 1.3.1 Example 1).

For other real Lie groups see [Su 1].
One may also notice that our arguments prove the

Proposition 2': ILet G have no compact factors and let rank G =1 > 1

Suppose G has a Cartan H of split dimension 0 < k < r. Thern any
locally syrmetric space 1,\G/K contains a compact flat of dimension

k that is not contained in a compact flat F with dim F > k.

Proof: Theorem 2.8 of [Ra-Pr 1] asserts that I intersects a conjugate
of H in a uniform lattice. Hence, there exists a compact flat of

dimension k. The rest is proved as above. 0
Finally, Let us refine Proposition 2 by

Proposition 2": Let I be an irreducible lattice in a semisirple

connected group G of rank 2 2 and without compact factors. Assume

\G/,, contains a singular closed geodesic a. Then there are

I LREEE
infinitely many different singular closed geodesics.

Idea ovf Proof: Let C(I') be the commensurability group of I' in G,
i.e., C(I) ={ge GlgTirg n I has finite index in T}. By [Ma 3]

I' is arithmetic and hence C(I') is dense in G. Let y e¢ I' trans-
late o, Fer ¢ e C(I), cw(nc_l lies in T for some n and translates
the geodesic c(a). By the above the geodesics c(a) for c e C(T)

are dense in G(a). This clearly proves our claim. 0
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Section 4. Specification and Expansiveness

As before, we will study the geodesic flow ¢, on an ergodic

T

component E = F\G/MH where H e C is regular. We refine the tools
of Section 2 and prove uniform specification and expansiveness. We
mean weak specification in the sense of [Ru 2] , i.e. we shadow orbit
segments by the orbit of only a point rather than a periodic point.
Strong specification fails to hold in higher rank. One may compare
this with nonhyperbolic toral automorphisms (cf. [Mar 3], [L1]). Our
expansiveness is slightly different from the usual notion as we allow
"perturbations into all flat directions" rather than just along the
flow. This section is really just understanding Bowen's ideas in

[Bo 1] in our case. The proofs are similar, for the specification
almost identical.

4.1 Expansiveness: Let y be so small that we have canonial

coordinates in a 2yball about any point. By abuse of notation, for
aeA wesay that ||a]] < u if ||log al| < u (where log:A >p) .
Prokésition: For u > 0 small there is an a > 0 such that:
if x,y€E and s;:R »A, i=1,2, are continuous functions
such that (1) sy(0) = 52(0) =1
(ii) ¢.s,(t) lies in the closure of the positive
Weyl chamber C for t > 0 and ¢tsz(t) e - C for
£ <05
(iii) q(¢tsl(t)x,¢tsz(t)y)5a for all |t|sL some L>0
then ]|sl(t)sz(t)—l|| < 3u for all |t|< L and there is an

ae A, |lal]] £u such that

IA
—<

for all |t| < L.

Proof: We adopt Bowen's argument in [Bol] , Proposition 1.6. Iet
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n < y/g Such that diam {ux , ug A , |[u|| = 8 n} < y/y for all x ¢E.
Pick ¢ < n so small that for x,y ¢E with d(x,y) < ¢ all canonical
coordinates are at most p apart,

Let x,y be as in the proposition and let v,w be the strong
unstable and stable coordinates. Let 0 < t be the smallest t < L
such that either || s (t) sz(tl)—l[[ % 3 o
d(¢ tls2 (tl)v, ) tlSZ (tl) W) > y/2. We will derive a contradiction. As

: -1 1 :
5,(0) =5,(0) =1, ¢t >0and || s (t)s,(t)7 || < 3q. We claim

' that the unstable and stable coordinates of ¢ £ S (tl)y with respect

43
to¢tlsl(tl)x are ¢tls2(tl)v and ¢tlsz(tl)w:

By the definition of t, , d(¢t152 (tl)v"btlSZ (t))w) < Y/ 2.
Foru>0, d(q,tl_us2 (tl) v, ¢’tl—u82 (tl)w)s y/2 obviously. Hence

‘ptlSZ (tw e w:u((ptlsz (€)v) .
On the other hand, for u > 0 , d(q>tl+ 052 (tl)w’q’tl-rusz (t))y) =y

as w ¢ st(y) and ¢, s,(t;) is in C. This means that ¢tlsz(tl)w

W:s(qa_t s, (tl)y) . Henie the stzflble coordinate of ¢tlsz (tl)y with

respectl: to ¢t152 (tl)v is q’tlSZ (t))w. Note that ¢tlsl (ty)v and

¢tlsz'(tl)v differ by s, (t))s, (tl)_'l which has norm < 3n. Hence

¢ tlsl (tl) lies on the'same coordinate patch' and our claim is clear.
As d(q’tlsl ()%, ¢t152 (t;)y) < o the canonical coordinates

-1
are 1 close. In particular, || s, (t;)s,(t)) "|| <n . AlSO
d(¢t152 (tl)v, ¢tlsz (tl)w)g n < y /2 - This contradicts the choice
of tl.

A similar argument proves that || s (tls, (t)—‘lH < 3g. for
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where

NSTE

] =
-L <t <0 and d(q>tsz(t)a Vi ¢tsz(t)a w) <
aeh, ||la]| s n satisfies v = a-x . Now the last statement is

obvious.

0

Note: If we let s, (¢) =1 for all t we retrieve Bowen's Proposi-

tion. Just observe in this case that d(¢ % ¢ (@) <y for [t| sL
inplies d(¢ty,¢tax) <y e~ MI-[t]) . Unfortunately, we need our
version to prove a "uniqueness" for specification (4.2 Lemma 2).

4.2 Weak Specification: We call (T,r) an L-specification if

o

e i gl & et 2 L for all ie Z and
i itl i1

¥

Gl B We call, (T.T) . S-posaible if
d(“’ti(xi)' ¢ti(xi_l)) < § for alli.

Consider s : R+ A. let U (,T,I') = fy ¢ E : d(g,s5(B)y,

cbt(xi))Se: for t, < t<tipie Z} and StepE(T) = {8318 i8

<g and

& + i
constant on  (t,t, ), 8(t;) = s(t70) or s(t,-0) /| s (ty) |
| |s(t;+0) - s(t,-0) || <e}.
*
Finally, let Ue(T,I‘) = u{UE(s,T,l“) . SeStep? {Th =

Now we can prove an analogue of Bowen's

Approximation Theorem: Given e > 0 there are L and & such that

*
UE (T,T) = § whenever (T,I') is a d&-possible L~specification.
Proof: We follow the argument in [Bo 1] with only minor changes.

Iet 6. > 0. Choose 6 < &, such that ngu(ax) n wss(y) z f
1

1 3 &l

for some a ¢ A, [|a|| = 6, whenever d(x,y) <26. Pick L so
*

% £ e *
that L =] - 61 satisfies ce M 51 < § and E" ce Mk o
-XL* k=1
ce
oF S
1-e

Let (T,I') be ¢&-possible and suppose that ty s 0 < tl s

Let 2y = X and define z inductively:
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given z_ such that d(¢ ) end fara )0 98
i tn+l e tn+l .
. uua SS
pick z ¢ WUtg (z ) n (¢ x ,))
n+1 61 tn+l t %n+l l tn+l n+l
with a ., ealla || <8. Clearly,
Mt . .=t ..)
d(¢ (z i ()l dlitce T k2 Tl <
tn+2 tn+l 2l tn+2 n+1 3
Since (T,I') is &-possible,
d(¢ nE (z ), ¢ (x )} =26
tn+2 tn+l ol tr1~i—2 e 1
and we can continue with the next induction step.
*
let r ., =a .exp(t -t )HecA. Then llrn+l[| 2L-4 2L,
=+ uu
Clearly, r ., (z )¢ Wcslce Al Ir l] ] (z ).
s} il e ] uu
i “n+1'n (zn+l)€ WcSlcae-'>‘l IJ:n 2 H( n “n
CWuu
s ttiny tedl s o i
1 1
; i =l
Inductively, we let un,j = (rn...rj+l) (zn)
W (z ) e W (z))
k=1
Lemma 1. Fix j . Then v. = lim u_, exists, e WM (2
J § L2 xists VJEG(:]
‘ and vj+l & rj+le'
Proof: For n 2 j+k, we have u +k € wl( 3+k) and
d(un,j uj+k,k) =
ALY -1 -AL"k
d((rj k"'r3+l) (u ,j+k) Ax i k"'r3+l) (zj+k)) < c(Sle it
Clearly, {u Ly J}r‘;’_ is Cauchy. Hence the limit vj exists and
: - ; ! =1
lies in Wﬁl(zj)' Since un,j B (rj+l) un,j+l we get
2 w] Hins
vj = (rj +l) (vj +l) by continuity.

g

§ .
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v i . © = 1 d
We define s:[tg, ) +A by Sl[to'tl) an

s|[t iy e el Let y, = oo (vy). For t, <t <t
i+l
= - R -a,) (y ) =
$¢S(Eyy ¢t—ti(¢ti—ti_l a;) (¢tl—to i ¢t0 ¥y
: = (v.) = e R
fee dghnis ¥y (V) = et Vs bt Fivl Vinl
Therefore
-1 -1
Al0yS(E) lyy e (kD) = ALy T5py” Vi) O iy g 7 NSRS

o A

d(¢t-tiri+l (z (z;)) +de,_ (z Vo 0 (%))

e
i+l t ti

For a number 62 to be determined make 61 < 62 /3 so small that

if x,yeE, dlx,y) <6 and |[[a]| <8, then

dla(x), aly)) = &/3.

As v.

i+1 gnd. | iinc . we see that

€ W (z 141

)
l b

¢, _ i i B (¢, SR b R
£t 2 i) 51 tet o iin
-1 _ 2y

t-t, Titl St ke i
-1 -1
d(q’t—tlriﬂ (Vi)e ¢t-tiri+1

Notice that ¢ By the above

e S 62/3

i+l i+l
: S
since z; € W (e Gi))e Al (1)1 9, 05))) 5 6

< 8§73
1 2

1
Finally, Zi € Wg:(riﬂ(zi)) . As for the first term we get

r =1 (z
t-ti i+l

l

e ¢t—t i+l 1+l

a(¢ (z;)) < & /3.

i+l
Consequently, d(¢,S(t)y,,¢,(x;)) < 6, for Bttt 20,

Applying this argument to cp_t we may extend s to a step
function on all of R and find ¥y such that

for t <t<t+l,i50. For 1 =0 we find that



77

d(¢t0(yl), ¢t (YZ)) = lim d (¢t(yl)¢t(y2)) < 252 ;

0 +
t
s i 0

Iet n < €/8 such that for all xet

diam {ax,|a] <n,aeA} <€ /10
Assqre §,<e/10 1is so small that
Wih@@)n Wiy) = g
for some aceA,||al| s n whenever d(x,y) < 2,.
Pick y'e Wu:(u¢t0(y2)) n WS:(cbto(yl)) where ||u]] = n .

Let y=4¢_ (y') andlet s' € S'I'EPdl+n(T) c STEP_ (T) be defined by
0

L leit) for tat,
8lit) _{s(t)u'1 for t<tg

Then vy e UE(S',T,I‘). Indeed, if t; <t <t. a4 i =20 then

d(4,8' (£) (v) 0, (x;)) < d(9,5(t) (¥) ,9,5(E) (yy)) +

e
d(¢,s(t) (yl),¢t(xi))s S8, < ¢

as 0, s(t) =s(the,_, ¢, ls®)]] < n and
00
Aig. o 0 (0o, . ¢, (Va)) <n.
t-ty 't t-t, 'ty 1
For ti <t <ti+l’i <ii6)

d(9,8" (£) () 8, (%;)) = Al4,8' (1) (v) ,6,5(E) (¥)) +

d(¢ts(t)(y),¢t5(t)(y2)) +

d(¢,8(t)¥, 0, (%)) < f-o +n +fb +-€5- + 5, <¢

€

since (e v) rop lyp) < d(“’t—to (y').qst_tO 8% (¥,))) +ip S0 tyg

and hence  d(¢,s(t) () ,0,S(t) (y,)) sn+ 1 + 275

by our assumption on 1 .
0

We proceed as in [Bo 1]. The next lemma says that two
different shadows of a specification lie close on a leaf F ¢F:

Lemma 2: Given 8 > 0 there is ¢ > 0 such that for any L-specifi -
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cation (T,M with ¢/L <s 1 and Y1r¥s & UE(T,I’) there is a A,
[l al| <8 suchthat y; = ay,.
Proof: To apply expansiveness we need to make our step functions
continuous. We follow Bowen. Suppose Yie U (sk,T,I‘) for the
step functions 5, € StepE (T} . Define a map 1s }t by
1s ¢ ((t;+t. . 11/2) = log s ((Eytt 11/2)

and extending it linearly. Let s}’; = exp (1s }’2) 3 1R + A, W.1.0.9.
we may assume that t = 0. As e/L << 1 it is clear that
¢ 8E(t) lies in the positive Weyl chamber for t » 0 (respectively
in: -0 Tork <oy

Let ' = sup { d(ax,x), xeE , ac A, || a|| < ¢} . Then for
LR L d(¢.s} (Elyy 4 85 (t)y,) < dlo s} (B)y;r9.8q (Blyy)

+d(¢t51 (t) rhpX;) + d(¢txi’¢t52 (t1y,)
+d(¢tsz(t)y2,¢ts§(t)y2) Sde + 2 er,

As s}’é(o) =1, k=1,2 we can apply 4.1 Proposition (with
n=8 and 2e + 2e*s o ) to find an aeA such that ||a|| < B
and d(¢t52(,t)y,¢tsz(t)ax) s cgllifor.all-t,
As ¢/L << 1,]| |68, (t) || » » as t> += and stays inside a cone in
C (or -C). Clearly, y = ax. 0

We need one more ingredient to prove the weak specification,
namely the " C-density": |
Theorem: The strong stable manifold W °(x) is dense in £ for any xeE .
Proof:This is an obvious consequence of the minimality of the horo-
spherical flow (cf.[Vel,2] or [Bo5] ) as the strong stable foliation
cames from the orbit foliation of the horospherical flow on [I'\G. 0

A simple consequence is the
Lemma 3: Let § »0. Then there is a T such that Bcs (.sbtwlgu(x)) = F

for any Ps L @wl . ueE
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Proof: First fix x. By the theorem, some large but bounded piece W
of W () (in the metric on W' (x)} is §~dense. Pick t, such that
q)th + x as k » « . For same big k, q>tkwuu(zl is §/2 ~ close
to W. Hence the claim is clear for a single x.

For variable x, suppose the claim is false. Then there are
Xse Y3 and Ti such that d(yi,q>Tiwuu(x)) =28 M l.0,0, let X; > X,
Y; + Y- By the above, there is a T such that d(y,q)Tw“u(x)) < § . As
Ti > T eventually and ¢ Twuu (Xi) > ¢ Y(x) this gives rise to a

contradiction. 0

We can deduce the
Proposition: Let e » 0. There is an N such that, for any N-specifi-
cation (T,T) one can find y ¢ E and sc Ste.pE (T) such that

d(¢ts(t)y,q>t(xi)) < € for ti T A SIS e

i+l
Proof: This is exactly the proof of Proposition 3.7 in [Bo 1] .
We include it for completeness.

Let ¢ and L be as in the approximation theorem, but for ¢/2
instead of ¢ . Make sure g<e. let N » L be the T of Lemma 3, for §/2

)).

3 . X5 41

y; - Then d(¢txi,¢tx3!_) <§/2 for
itl

instead of §. Pick yie¢NW1;>12(¢t_+ &) n B6/2(¢t_+
¥, €L

3 b, ' Tyt
Define r {x;} by x:=¢_

tig € = ti‘i'l_N . As

)

d (¢ b ) X: L-xdls X!
ti+l i ti+l i+l T ti+

o
31
i+l * ¥

1

+ d(¢ X:, 119 %)) 58 '
ti+l i+l ti+l 1l . .
(T,r') is s-possible. By the approximation theorem there 1S y e t
and se Step ,,(T) so that
e/2
1
d(¢ts(t)y,¢txi) < e/2 for ti e b,

Our claim follows from the triangle inequality, 0

Finally we can prove the
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Weak Specification Theorem: For any m.7Q and n 21 there is an

N = N@m,n) such that:

ﬁZo,..o,Z are. in E andto,...,tn in R with tk+l—tk_>_ N

n
then there is a point X such that for Q <k <n

d(@tkmx, g;uzkl i SO Q=<ucx tk-!-l—tk—N .

Proof: This is even easier than in Bowen.
Pick e<n/2 so small that diam {ax, ||a|| < @+2)e} < m/4 . Let N

be as in the proposition. Extend the Oop % = %5 and the t, to an
i 1
N-specification . By the proposition there is a point y and an
S € Stepe (T) such that d(¢ts(t)y,¢txk)s & <imf2 i for tk ilige tk+l-N.
For such a t and 0 < k < ntl we have ||s(t)|| = (nt2)e. By choice
of ¢ and the triangle inequality we get d(¢ty,¢txk)s v, for tk S

< tk+l—N and 0 <k < n+1.D

Finally, let us observe that strong specification doesn't
hold in our case. In fact, there are only countably many regular
ergodic camponents on which ¢ t has periodic points. Recall that
each regular periodic orbit lies on a maximal compact flat. There
are only countably many such flats as each of them corresponds
to an element of the free hamotopy group of M. (cf. [Eb 4], Propo-
sition 3.1). On each campact flat there are only countably many flow
directions that have periodic orbits if dim F 2 2 .

We do not know whether we have strong specification on
same ergodic comporiénts. The technique of [Ll] may be helpful.

Also notice the discussion in Section 5.2 . There we see that
strong specification holds in a weak sense on the whole unit

tangent bundie.
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Section 5. Growth of Maximal  Flats

Bowen and Margﬁlis studied the relationship between the
number of closed geodesics y(+] of length < t and the topological en-
tropy for a campact manifold of negative curvature. In fact, they
obtained the asymptotics y(t) ~ eht/h't as t> » where h is the topo-—
logical entropy. ‘

For a higher, rank locally symmetnic space the campact maximal
flats replace the closed geodesics. There are at least two natural
invariants for a campact flat F, its volume vol F and its systol sys F.
Recall that the systol is the length of the shortest closed geodesic
on F. While the systol is of an obvious dynamic nature this is not
so clear for the volume. It cames in via the weak specification theoren
4.2 as we shadow a pseudoorbit only up to an e-ball in a flat about the
orbit points.

s More precisely, we study the shortest regular closed geocdesic on
a campact flat F whose length we call the regular systol reg sys F.
We will see that the function

VS(t) = I vol F
regsysFst

is well defined. Then we calculate that the exponential growth of US

is given by the topological entropy of the geodesic flow on the unit
tangent bundle.
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5.1 Volume and Systol: We discuss two characteristics of a campact

flat on a campact locally symmetric manifold M = T'\G/K.

Definition; The systol sys F is the length of a shortest closed geo-

desic on F. We denote the yolume of F by vol F and the length of a

closed geodesic o by £(a) The \—eq‘\)\\c)& sj‘i‘s\'o\ '(e%s\a;‘\' s Yhe \evxq‘\s‘/\
O% o Shoxiest \’eriuk\o« Aosed -\ ==\c .
Recall the connection between closed geodesics and free homo-

topy classes. We have the
Lemma 1: If two closed geodesics o and § belong to the same free
homotopy class in M then , and g lie on a flat F and are translates
of each other.
Proof: This is a reformulation of [Eb4 ], Proposition 3.1. 0
Lemma 2: The closed geodesics of length less than + correspond to
a finite number of free homotopy classes.
Proof: Consider a sequence of closed geodesics o of length < t
W.l.0.g. the o converge to a closed geodesic o of length <+t
Pick lifts o', 0‘1:1 of g, R in the universal cover G/K such that

'

°‘r|1 +a' as n» o Let y and y, translate o' and o) respectively.

Let X¢ o' and pick a fundamental domain D for T such that x lies

in the interior of D. Clearly Yf-lx{nx » X as n» » JHence y "y X

lies in the interior of D for all big n. Asr is torsionfreey =y . 0
Recall that a crystallographic group is a discrete uniform

subgroup of the group of Euclidean motions E(n). We have the famous

Bieberbach Theorem: ' For each n, there are only finitely many crystal-

lographic groups up to isomorphism. A crystallographic group ¢ has
a unique maximal normal abelian subgroup ¢* of finite index.
Proof: This is [Wo 1], Theorem 3.2.2 and 3.2.9.

U
Geametrically, ¢ is the fundamental group of a campact flat
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menifold F = O\R® which is covered by the flat n—torus T = ¢*\ R'. In
particular, we see that for all n there is a constant c(n) such that
[¢*:¢] s c(n).

Lema: Let L be the space of flat tori. For any campact subset of L
there is a constant ¢ > 0 such that for F e k

n
volLF2c I 2(a;)
i g &
i=1
wWhere oy s« /0 are the first n independent shortest gecdesics on F.

Proof: Notice that for F ek all the angles between the sides of F are
bounded away fram O. The volume of F is a product of the length of

sides and sin's of these angles. Now the claim is obvious. [
Corollary 2: There are only finitely many campact r-flats F in M with

Vol . P 5, any 5 0L

<

Proof: Iet F, be a sequence of campact r-flats such that volF <

Then a subsequence converges to a campact flat F with vol F = . Iet
a; y i=l,4.4,T be the first r shortest geodesics on Fn. By C.rollary 1

1(ai) <1', some 1'> 0 ( use also Lemma 3 B

We want to bound the length of a closed regular geodesic o
in Fo. If no a:;, some i , is regular for all big n consider the closed
geodesics d al where d is the index of the maximal abelian subgroup
«p* of the fundamental group my (F ) = 9 s We may think of d u. as a
closed geodesic on a torus covering F . Then 1(n a. d a B8 2 alunl( r;)
for all positive integers a,. Here ]I denotes the closed geodeslc wrap-
ping around dnui‘1 aitjmes. Clearly, aidnai is regular for same a; C
where C only depends on the shape of the Weyl chamber,

We have found a sequence of regular closed geodesics in F
with 1{a ) < C c(n) 1'. By Iemma 1 the o are all homotopic for a

subsequence of n's. These Oy 1ie on a flat F'. By regularity of ay

Bls B for all big n. 0
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Finally, we have the
Corollary 3: For all t > 0, there are only finitely many r-flats F
such that reg sys F < t. '
Proof: Otherwise let Fn be a sequence of such flats. lLet <, in Fn
be a shortest regular geodesic. Then 2.(cn) < t. By Lemma 1 there is
a subsequence of the n's such that these c, lie on a unique flat F (by
regularity). Hence F, =F. [ ! |

If we drop the regularity . in Corollary 3 the con-
clusion unfortunately doesn't hold. One counterexample is trivial:
simply consider the product of two manifolds of negative curvature.
The product of any two closed geodesics is a campact maximal flat.
Making the second geodesic longer and longer we obtain infinitely
many campact flats with the same systol.

Even if the manifold is irreducible the corollary is still
false in general. We describe one example.
Example: There is a uniform lattice I ¢ G = SL(3,R) and a subgroup
H of G conjugate to GL(2,R) in G over R such that r'nH is uniform. One
can either write down [ explicitly as a group of units of a number
field or follow tne procedure in [Bor 1]. By [Eb 5] H/rpH is finitely
covered by M‘xSl where M' is a surface of negative curvature and S
corresponds to the center of H (cf. Corollary 2, loc.cit.). Any com-
pact flat F is covered by F‘xSl. In particular, F contains the closed

geodesic o caming from the center of H. Since the center of H is con-

jugate to the group aaav-2} In G; g is singular. As there are in-

finitely many campact flats we are done.
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5.2, A Growth Rate for Campact r-Flats: Corollary 3 of 5.1 shows that

ve(t] = Z yol F
vegsysFst

is well defined. We follow Bowen in [Bo 1] in order to determine the
logarithmic growth rate of VS(t).

Call a subset E of TlM (t,e)—separated if d(¢sx,¢sy)> €
for some 0 < s < t. As § ¢ expands and contracts monotonically a set E
is (n,e)-separated iff it is (n,e)-separated for the time one map 1
of ¢t. Hence if M(e,t) denotes the maximal numker of (t,ec)-separated
points then the topological entropy h is given by

h = lim Iim log M(e,t)/t
e>0 tre

The same is true on any ergodic camponent.

We make a few observations leading to a multiplicative
asymptotic law for M(e,t) on an ergodic camponent E , E regular:
(1) let E be a maximal (t,e)-separated set. Then for any x in E
there is a y in E such that d(¢sx,q)sy) g st Sor all 0 %% 51,
{2) For small m,e >0 there are constants C and D such that

Mf,t+C) =2 D M(e,t) for all t =20 .

Proof: " .1t q’-t/ZE be (t,e)-separated. Let F be maximal such that
¢—(t+C)/2F is (t+C,m)-separated. By (1) for all x in E there is
gx in F such that d(gXep 1 <M for all |u| <(t+C)/2 .

If gx = gy then d(¢uX,¢uy) < 2n for |u| <(t4C)/2. By 4.1

Note there is an a = a(x,y) in A , || a||<d <1 (for wsmall enough)

such that 4
d(¢pYr¢an) < ¥ e’)‘(c 2)/2

/3
for all|p| < t/2 and C very big. Letg> 0 be so small that

diam { ax, ||a|| < g} <w3 for all x in E, If ||la(x,y) || < 8
then d(q)py,qapx) <v, for |p| £ t/2. Then x =y by our assumption

on E.
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Form, small the set {xl, A ,xm} = g"lgx lies in a chart for
the canonical coordinates, Then y(x,yl = a(%,ylx is the strong unstable
coordinate of y with respect to x (cf, 4,1). If all the mutual strong
unstable coordinates are at least gdistant then it is clear that V(Xi’xl) P
i=1,...m, are m'—distant for same ' that only depends on m
(by the contimuity of the canonical coordinates). Hence

m < vol (lev"(xl) )/m! = constant . i

The next five observations are exactly like in[Bo 1]. We include
the proof for campleteness.
(3) M(e,tl+...+tn) < M(e/2,tl)'...-M(e/2,tn) .
Proof: let E be (tl+...+tn,a)—separated, Ekbe maximal (tk,e/Z)-—sepa—
.ted. By (1) there is a map g: E ->g Ek so that gy X satisfies

d(¢u+tl+...+tk_lx'¢ugkx) s &/2
for Qs u s tk.Clearly g is injective. (]
(4) For any L and small ¢ >0 there is a constant C' sO that for t > 0
M(e,t+L) < C'M(e,t)

Proof: It is sufficient to prove this for large t . By (2) there
are constants C and D such that M(e,t+C) = DM(e/2,t) . By (3)

M(e,ttL) s M(e/2,tC)M(e/2,C+L) < M(s,t)M(e/Z,C+L)/D 0
(5) For all smallm,e there is a constant C" so that for all t= 0

" Mt} = Mle,t) .
Proof: For C and D as in (2) Mfm,t+C) = DM(e,t). By (4) there
is C' such that Mg;t+C ) < C'Mw,t) .
(6) For ¢ small there is a constant C* such that for all t,sz 0
M(e,tts] =< C* M(g,t) M(e,s) .

Proof: Obvious from (3) and (4). 0
(7) For smallm and n = 1 there is a constant ¢ > 0 such that

for all sufficiently large S;

M(y-.,sl+...+sn) > cM(msl).‘.-.'thsn) '
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Proof; Like in Bowen's case this follows frqm the specification
theorem,

Let N=Nf,n) be as for specification. Assume s;2 N. Let
E‘.i be (si—N,&rﬂ—separated. Assume L is maximal. Let ty =Q and

i‘_k=so-i-...+sk_l ol s Rkl . let. z,

i € Ei' By weak specifi-

cation there is a point 9('20’ ,zn) such that
d(‘btk_*_ug (ZOI Ve Izn) ,¢u2k>) S,
for 0 <u < s, ~N. By the triangle inequality, the g(zo,...,zn) are
(t, M) ~separated. Hence
Mm, tn) = M3, soﬁN) i 1C g7 Sn*N) >

Now the claim follows from (5) and (4) ‘0

We obtain the desired multiplicative asymptotic law by
cambining (3) and (7).

We start to examine the interplay between the dynamics on an
ergodic component and on the whole unit tangent pundie. As we saw
in 4.2, strong specification fails on an ergodic component. But
given orbit segments on one component we can shadow them by
a pericdic orbit on a nearby ergodic component.

M. We first get the

1
Closed Orbit Theorem: For g > 0 there are §, L > ( such that:

Let X =1

ifr>l avd d(¢rx,x) < § then there are y in X and r' such

that R izlerlic g and d(¢ty,¢tx) i tor O0SEsy.,

Proof: Iet e<<g , t; =ir and x, = ¢_ X. This is a §-possible
i

L-specification. Apply the approximation theorem to the ergodic

component of x to find y' such that ty‘ e—shadows Xy

ti < i< ti+l . As 1n Section 2, Lemma 6 we see that 9.y 18

contained in a compact flat. As d(¢ry,y) < 2e we may vary the

flow direction a little to get a closed orbit of length rf

where |r'-—r]5 10¢ and such that the new orbit 10e¢ shadows the

orbit of vy. 0
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This has an easy corollary:

A Weak Strong Specification Theorem: For anym> 0 and n 2 1 there

is an N = N(m,n) such that:
1. ZoreserZy lie on an ergodic component and to""’tn+l€ R
with 417t = N then there is a point x in X such that
d(¢tk+ux,¢uzk) g iifor Osus G N and 0 <k
£ n and X is a periodic point with period tn+l-totfn_.'*
Proof: Use the proof for weak specification where you extend
¢’-—tizi =X, to an N-specification such that ¢ thlxrl O We
get a point y that comes back close to itself after time tn aTh,
Now we can apply the closed orbit theorem.
Notice that the N in principal depends on the ergodic
component in question. Checking through 4.2 Lemma 3 and Proposition

we see that one N works for an open set of ergodic components. As

the space of ergodic components = WS is compact we are done. ]

Recall from the discussion in Section 2 that the topological
entropy h ot the geodesic flow on X is achieved on the ergodic com-

ponent E = E(H) where H is dual to p = 1/2 Ia ,a a positive root.

Let M(m.t) count the maximal number of (t,w)-separated points on E .
Lemma 1: There is a constant d such that VS(t) z d Mm,t).
Proof: Iet N be as in the weak strong specification theorem. Let
E be a (t-N-w,m)-separated set in E . For e in E we can find x(e)
in X such that x(e) is periodic with period t and
d(¢se,¢sx(e)) <7L/3 for 0 < 8 £ t=N-m,.

For 8 ¥ e in E. (g x(el g x(e')) > w3 Pr Some OcsttN-m.

* By period we don't necessarily mean least period, |
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let B, be the g-ball about 1 in A. Pick B> 0 so small that
the diam B3Sx sm/3  forall x inX. If y ¢ B3Bx(e) then
d(py,px(e)) <m/3  for all s .
Hence for e' #e in E, x(e') ¢ B3Bx(e) . Hence BBx(e) n BBx(e') =g .
The x(e) determine flats F(e) with systol <t . As the x(e) lie close

to £ and E is regular ( p lies deep in the Weyl chamber) the F(e)

are campact. As the volume of BBX (e) = 4at Br for some constant 4d'
we get VS(t) 2 d'st mMé,t). .
Corollary 1: lim log Vs(t) /t = h .

tro

Proof: By property (5) of Mfn,t)
h = é_i)rg %_)11;1 log Mfn,t) /t = %ﬂ log My, t) /t.
Now the claim is obvious from the lemma.

g

Let Nfn,t) count the maximal number of (tsm)-separated points

in X. let
V8. (t) - =/ 2wl F
E FeS(t,e)
where we sum over the set S(t,e) of all compact r—flats

with t-e sys F < t+e . Fix e very small.

Iemma 2: For some c > 0 and all smallwm, VSe(t) < CWLr N, t) .
Proof: 1et F,F' ¢ S = S(t,e). Let y,y' be shortest regular geodesics
of F,F' and suppose that y and y' arem-close. Let X,y be points in X,
tangent to y,y' such that d(¢ %,¢y) <m for 0=<s <t Let

tr es teroscbte ) such that $X=X 4 9 Y=Y . Let t, = it and

6 SR

i
by sl ) = i(r=t) for ti gk R ti+l'

x define a specification (T,r). Let Sy ¢ StepE (T) be given

Then Xx ¢ U*(r'), Define 52
£

the same way using ¢' instead of 1 . For 0 < u £ t we see that

% +uts t.+u)Y = k.
i Y. g
As  d{¢ X9 ¥) sw, yeU*() . By 4.2 Lemma 2 and  e<<l,

X
I

ay for some a e A, ||a]| < 8 (some universalg ). In particular,

F=F' (as y,y' are regular).
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For Fe¢ S, c> 0 auniversal constant, there are vol F/c'rf
many points on F that are at least —distant. They give rise tom-dis-
tant points X, on the ergodic camponent corresponding to a shortest
regular geodesic of F . For F #F' 8 the argument above shows

that the x; and x; are (tm)-separated. Hence VS(t) = cn Nint) ‘0

Proposition: %y-p 1og W8k} /t = h.
o . . —— ] r =
Proof: Clearly, Jf+u£ log Vse(t) 74 o4 Sq]f%‘ %E«B log (e NMm,t) /t I

|

As i V8it) s VSE(t) + VS_ (£=28)+.. .+ VSC(O) our claim is clear. -



91

Appendix
In this appendix we will briefly review the basic struc-
ture theory of real semisimple Lie groups. Our main sources
are [He 1] and [Wa 1]. We will assume the general theory of

Lie groups.

~Connected,
1l: Let G be a reallLie group

», g its Lie algebra, Bg

the complexification of g.

1.1: Definition: g is simple if g has no ideals except

{0} and g.

g 1s semisimple if g is a direct sum of simple Lie

algebras.

The Lie group G 1is called (semi)simple iff its Lie

algebra g 1is (semi)simple.

1.2: We denote the adjoint action of g on itself by ad.
We ‘Jecall that

gatxity) = [X, Y1,

Exponentiating ad we get the adjoint action Ad of G on
8. Recall that a finite dimensional representation is semi-
simple iff every invariant subspace has an invariant comple-
mentary subspace. In these terms we get a first important
consequence of the semisimplicity that nearly characterizes

dirs

Proposition: If 8 is semisimple then ad g is semisimple.

Conversely, if ad g is semisimple then 8 is reductive i.e.
g 1is the direct sum of an abelian and a semisimple Lie

algebra.
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Proof: This is Theorem 3.16.3 of [Va 1]. 8

1.3: The next characterization is in terms of the Cartan-

Killing form.

Definition: The bilinear form B(X,Y) = trace (ad X ad Y)

is called the Cartan-Killing form of the Lie algebra 3.

Proposition: A Lie algebra g is semisimple iff its Cartan-

Killing form is non-degenerate.

Proof: This is Proposition 6.1 and its corollaries in
[He 11. o
Notice that the Cartan-Killing form is invariant under

all automofphisms af. g,

2: An important element in the structure theory of semi-

simple Lie algebras is the Cartan subalgebra.

2.1: Definition 1: A subalgebra 4§ € g is called a

Cartan subalgebra of g if 4§ is maximal abelian and

ad(H) is a semisimple endomorphism for each H € 3.

There is an intimate connection between Cartan sub-

algebras and regular elements. Let us first recall the

2.2: Definition 2: Expand the characteristic polynomial

det(t-ad(X)) = f; di(X)tl for X € g, Let ¢ Dbe the least
in£gger such that dZ(X) # 0 for some X € g. We call

X € g regular if dg(X) £.04

We first get an existence result:

Proposition l: Let 3 be semisimple. Then the centralizer

of a regular element is a Cartan subalgebra of dimension ¢£.

Conversely, every Cartan subalgebra arises in this manner.
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Proof: This is [He' 1], III, §3, Theorem 3.1. To prove the

converse we need:

Proposition 2: Over €, Cartan subalgebras are unique up

to conjugacy.

Proof of Proposition 2: This is the remark following Propo-

sition 1.301.24n " IWa 2], o

Back in the proof of Proposition 1, suppose we are
given a Cartan subalgebra 4. Its complexification hc is
a Cartan subalgebra in B¢ By Proposition 2 and the first
part of Proposition 1 he is the centralizer
of a regular element. In particular, h¢ contains a regular
element. Since 4§ is Zariski dense (over €) in h@ we

also find a regular element in 4. a

Corollary 1: Every semisimple Lie algebra g has a Cartan

subalgebra.

Proof: This is obvious from Proposition 1. o

Let us observe that the whole structure theory hinges

on this result.
2.3: As a complement to Proposition 2 and Corollary 1l we have:

Proposition 3: Every real semisimple Lie algebra g has a

finite number of conjugacy classes of Cartan subalgebras.

They may be described in terms of the root system.

Pro. f: This is Theorem 1.3.1.10 of [Wa 11]. g

Finally, let us observe that the set of regular elements
g' is open and dense in g. If hvn,h K are representative

Cartan subalgebras of all the conjugacy classes then
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gt = U Ad(g)h! where }§: are the regular elements of
i i
eTqe
1=i=<k
hi, (obvious from Proposition 1). In particular, g' has a

finite number of connected components.

3: Since the adjoint representation restricted to a Cartan

subalgebra 4 is a semisimple representation of an abelian

Lie algebra we can diagonalize it. This leads to the

3.1: Definition: Let a ¢ hz, the dual of the complexifi-

a

cation of ' k. Let ."g = {X egcl[H,X] = a(H)X for all H € hgl.

If g% # 0 we call a a root and g* a root space. For a

given Cartan subalgebra 4, we denote the set of all non-

zero roots by &.

Since the Cartan-Killing form B is non-degenerate

even when restricted to & we get a canonical isomorphism

(¥
ho ;' In particular, we have a dual element H  for a
such that B(H,Ha) sa(H) “ifor all  H.€ hc. Moreover, we

can transport B to hg and let (a,B) = B(HQ,HB).

3.2: The diagonalization of adlhC and its special proper-

ties is obtained in the root space decomposition.

Theorem: (i) =B

Cii) “‘dim gﬂ -t

"
1
w0

(i%i) 9 R with respect to B unless a
(iv) ‘It a € ¢ and ca € $ then c = tl.
(v) For each a € & we can choose Xa € ga such that

(1) [Xa’x-a] 5 H(1 and [H’Xa] * a(H)Xa for all

H £ hC°
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(2) There are real numbers N for all

a,p
a,8 € & such that

[Xa,X J=N

D e A

N =0 if a+ p ¢ ® and a # ~-B.

Note that N_ __ is not defined.

b
We have the following relations whenever the terms

are well-defined:

NG’B 3 -N'Q"B ¥ _NBNI

Foieg 7 Tarp-p T T-poa’

(vi) Given a,B € &, the roots of the form B * na
for n € Z are an uninterrupted progression. If
p and gq denote the ends of this progression

Pisin s 'g  then

g E.B_’_a)_ - niwidg
((1)(1)
2 _ aq(l-p)
and NG’B = 5 (a,a).
Proof: This is contained in [He 11, III, §k.5. o

We will call a set of Xa,Ha satisfying the properties

of the theorem a Weyl basis of

Bq’:'
4: To advance further we have to use the unitary trick which

presents us with a lot of compactness in 8. We also discuss

normal real forms. First recall the
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4.1: Definition: A real Lie algebra is called compact if

its Cartan-Killing form is negative definite.

Now we can formulate Weyl's unitary trick:

4.2: Theorem: Every complex semisimple Lie algebra B¢

has a compact real form u, i.e. a compact real Lie algebra
% such that ﬁc ol P Up to isomorphism 1 is unique.
Proof: This is Theorem 6.3 of [He 1], III, §6. o

This result allows us to introduce Cartan decompositions:

4.3: Let o be the complex qﬁéﬂ%ﬂﬁon of the complexifica-

tion of g induced by .

8¢

Definition: A direct sum g = k + g for k a Lie sub-

algebra and p a vector subspace is called a Cartan decom-

position for g if there exists a compact real form u of

B¢ such that om = n and

v

ki = W and g = gniu.

80

Theorem: Every real semisimple Lie algebra g has a

Cartan decomposition which is unique up to conjugacy.

Frobf: oAbl sas Theopem 7.1 and 7.2 of [He 1], III, §7. o

One characterizes Cartan decompositions in terms of

the Killing form B:

Proposition: Let g3 = k + p be a direct decomposition

into a Lie subalgebra k and a vector subspace p. Then

g8 = kR + p is a Cartan decomposition iff B is positive
definite on g and negative definite on &k and if the
involution 6 defined by e(K+P) = K-P is an automorphism

of = m,
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Proof: This is Proposition 7.4 of [He i o gl 5 o

We call 6 the Cartan involution associated to the

Cartan decomposition. This condition also implies that
k  is a maximal compactly imbedded subalgebra of 5. We

call k the maximal compact and g the vector part of

a Cartan decomposition.

4.4: Normal real forms form the opposite of compact real

forms. They provide real semisimple Lie algebras whose

structure is about as simple as that of complex Lie algebras.

Definition: Let gc be a semisimple complex Lie algebra.

A real form g of gc is called normal if for a Cartan

decomposition 8 = kR + g, p contains a Cartan subalgebra.

Theorem: Each semisimple complex Lie algebra gc has a

normal real form 3. In terms of the root system & of g
g g} BN L R
aed a€Ed

Proof: This is [He 1], IX, Theorem 5.10. Note that our
definition of a normal real form coincides with Helgason's
because a maximal abelian subalgebra of g contained in

p 1is a Cartan. This is clear from A5.1 Proposition 1(i).

The description in terms of the roots is given in the proof

of the theorem. o

5: We pursue the theme of A4 on the group level.

5.1: Theorem 1: Let K be any Lie subgroup of G with

Lie algebra k, k a maximal compact. Then

(i) K 1is connected, closed and contains the center

C.
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Z of G. Moreover, K 1is compact iff Z 1is
finite.

(ii) There exists an involutive, analytic automorphism
9 of G whose fixed point set is K and whose

diffevential ‘at 1 lis: 9.

(iii) The map ¢ : (X,k) = (exp X) k is a diffeomorphism

pflidwy "W o tonto ! G,

Proof: This is Theorem 1.1 of [He 11, VI, §1. 0

In particular, the theorem shows that maximal compact
stJgroups of G exist provided the center of G is finite,

Very important is the

Theorem 2: All maximal compact subgroups of G are connected

and conjugate in G.
Proof: This is Theorem 2.2 of [He 11, VI, §2. o

5.2: From the fact that 6 is an automorphism one easily

concludes that [k,p] ¢ g. In particular, Ad K leaves

p invariant as a set.

Proposition 1: Let a be anyYabelian subalgebra of g. Then

(i) a can be extended to a Cartan subalgebra § of

g. Moreover a is unique up to conjugacy.

(ii) p = Ad(K)+. & i.e. a is a "cross-section" to

the Ad K ‘action.,

Proof: (i) is part of the Iwasawa decomposition, [He 1],
VI, §3. Uniqueness and (ii) are Lemma 6.3 of [He 11, V,

§6. » )
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One can use this result to improve on 5.1 Theorem 2:

Proposition 2: Suppose that G has finite center. Then

K is a maximal closed subgroup of G.
Proof: This is Theorem 1.3 in [Gl 11, VI.

6: We want to tie up the structures in A4 and A5 with the

theory of the roots of Bp in A3. Notice that we only used

the complexification of 3 in A3. 8o we have to

8¢

study the effects of the real structure on the root system.

We first have to recall abstract root systems and their

properties in this section.

6.1: 'Definition 17 llet E" be a finite dimensional real

vector space. A reflection W, with respect to a € E is
an automorphism of E such that
(AW (e = -a,

(ii) The fixed points of w_  are a hyperplane & X

!A.. ) . -
Definition 2: A subset @ c E is a root system in E if

(i) & is finite, generates E and 0 ¢ &

(ii) For every a € & there exists a reflection W

with respect to a which leaves ¢ invariant.

(iii) For every a,B € &, wa(B) -B is an integral

multible of ¢,

Notice that w is unique.

a

Definition 3: The group W = W(®&) generated by the

reflections w_,a € ¢ is called the Weyl group of &.

Fix a positive non-degenerate symmetric bilinear form
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( ,) on E invariant under W. (Since W is finite it

exists). Then we may describe W explicitly by:

(e,a)

Wa(e) = e - 2 W a.
By property (iii) of a root system A, 8 = 2 %gl%% is an
L b

integer, called the Cartan integer for all B € #.

6.2: Definition: Let & be a root system in E. A subset

¥ of @& is called a fundamental system of roots for & if:

(i) V¥ 4is a vector space basis for E.
(ii) Every root can be written as a linear combination

n a
aéw 2

where n_ are all integers of the same sign.

We call the elements of ¥ simple roots.

Clearly, a fundamental system defines a unique vector
space ordering on E such that the simple roots are positive.
Conversely, one can prove that the positive roots with
respect to some order on E contain a unique fundamental

system.

Proposition: Let ¥ be a fundamental system. Then the

W for a € y are a system of generators for W.

Proof: This is [Wa 1] Proposition 1.1.2.3. 0

Using this proposition one can prove the

Theorem: Any two fundamental systems of ¢ are conjugate

under a unique element w € W.

Proof: This is [Wa 1] Theorem 1.1.2.6. o
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6.3: Every root a € & defines a hyperplane orthogonal to

@ .with respect to ( , ), called a singular hyperplane.

Definition: A connected component of the complement of the

singular hyperplanes is called a Weyl chamber.

Notice that each Weyl chamber defines an order on E
and conversely. Hence 6.2 Theorem says that W acts simply
transitively on the Weyl chambers i.e. for any two Weyl
chambers C, C' there is a unique w € W such that

wC = C'. Even more is true:

Theorem 1: Let C be a Weyl chamber. The closure of C

(in E) is a fundamental domain for the action of W on

E, i.e. the closure of C meets each W-orbit exactly

once.

Proof: This [Wa 1] Theorem 1.1.2.7.

We also need a result of Chevalley.

Theorem 2: Let F be a subset of E, wF the subgroup of
W that fixes F pointwise. Then WF is generated by

the reflections w_,a € V¥ that fix F pointwise.
Proof: This is [Wa 1] Theorem 1.1.2.8. o

6.4: Definition 1: A root system ¢ is called reduced if

+a and -a are the only roots in @ proportional to

g tud

The most important example is the root system associ-

ated to a complex semisimple Lie algebra g: More precisely

we take E = h* and we let & = {a €h*
All the properties of a reduced root system are contained

in A3.2 Theorem.

@ a root as in A3.l1l}.
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Given two root systems (El,@l) and (Ez,éz) we

K ¢ .
can form their direct sum (El E2,®1U®2).

Definition 2: A root system & is irreducible if & 1is

not the direct sum of two subsystems.

One can show easily that the root system of a complex
semisimple Lie algebra g is irreducible iff g 1is simple.

Also

Proposition: @ 1is irreducible iff there are no two ortho-

gonal subsets A, B of @& iff W acts irreducibly on E.

Proof: If W does not act irreducibly on E let E==El-*E2

a W-invariant decomposition. Take a € ¢ and let

@l St R G Esip e e g S W 4 =W g YW g, R
i 1 a S A 2

ik 2 a

-Gy = Gy By W-invariance of the decomposition w _a, =

' (a,a )

a s a, - e 4% - Ko iCa. )iz (lavsa, Y #0
i §1 400 Tk R Ty % WY L
unless @ = 0 we get a linear dependence between a, and
A Therefore either a; or a, is 0 and every root
lives either in E, or EQ. As E, 1 E2 this defines two
orthogonal subsets of &. The other claims are obvious. m]

7: Now we study the effects of a real structure on the

root system. For clarity, we fiprst deal with an abstract

root system.

7.1: Definition: Let & be a reduced root system. If

o is a linear involutive isometry of E such that
o =& and o # %1 then (&,0) or ¢ is called a

o-system of roots. We call ¢ normal it Top all a € &,

i g b,

In the following ¢ will always be a normal o-system.
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We let @ = {ac'e¢d|a # -a®} and ¢ = {a€®|la = -a7}.
Also let E = E_ + E_ Dbe the decomposition into the #l-
eigenspaces of o¢. Finally, we can project a ¢ S -

a € E+. The collection of these a is called Z. Then

2 is finite and generates E,. In fact, Araki proved:

Proposition: For & as above I is a root system in E_.

Proof: This is [Wa 1] Proposition 1.1.3.1. o

Let us notice that 2 is not a reduced root system in

general.

4.2: "Noticeithat '@ = 18 a root system. Let W_ Dbe the
Weyl group of & _  and wc = {w€W|wo = ow}. Then wg is
the subgroup of W = w® consisting precisely of those
elements which stabilize E,. Also W_ 1is a normal sub-

group of Wc.

Proposition: Restriction of w ¢ w0 to E, defines a

hoi_dmorphism from M. to W with kernel W_

Proof: This is [Wa 1] Proposition 1.1.3.3. o

7.3: Definition: The multiplicity m()x) for X € z is

the cardinality of a € &  such that the orthogonal pro-

jection to E . is .

The multiplicities turn out to be an important invariant

in classifying real semisimple Lie algebras.

7.4. We discuss the most important example of a o-system,
namely let 3 be a real semisimple Lie algebra. Let ¢

be the root system of the complexification of . g, Let

%
@ Dbe a maximal abelian subalgebra of g as in A5.2 and
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h a Cartan subalgebra that contains a. Then

= (hnk) + a. Let o be the complex Congﬁyﬁbn 02; B¢
induced by 3. Let =~ denote complex conjugation® For

a € hé let a®(H) = a(oH), H € bc. Choose compatible
orderings on a® and hg, 1.8, 'the restriction of

¢

g = Buita 0y is also positive (=0).

C

Lemma: For all a € &, a° - a ¢ . Therefore (&,0) 1is

a normal g-system.

Proof: This is [Wa 1], Lemma 1.1.3.6. o

Now the preceding machinery applies and we get a
root system 2, called the root system of (g,a). One
can prove that &, Z and the multiplicities are a complete
invariant of 3 (follows from the classification). We
may interpret Z as a subset of a;. Choosing compatible

orders gives us a correspondence between fundamental systems

of & and 3z (after fixing an order on @ ).

8: We describe the Iwasawa decomposition of g 1into a

compact and a solvable respectively nilpotent subalgebra.
8.1: We assume the notations from 7.4. For each \ ¢ a¥

let BX i X et tH %] = A(H)X for each H € m}. Since

ada is a commuting family of self-adjoint operators we
get a decomposition g = ZXEa* gx. By comparison with the
root space decomposition of Bp We see that gx i SIS K 3
Xi€ 3 op 'k =0, 'Hence g = ZXEZ gx + go. Fix an order
on 2z and let Z+ denote the positive roots. Let

* A

24 g X p. X+u +
Bow i v g Bince [3°,9'] <2 b

is a nilpotent
< :
subalgebra. Let 8 = a +n , Then & 1s a solvable

subalgebra.
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Theorem: We have the Iwasawa decomposition g = k + a + n+.
Proof: This is [He 1}, VI, §3, Theorem 3.h. o

+
8.2: Let N ,A be the subgroups of G corresponding to

e
a and n . We get the global decomposition

Theorem: The map K x A x | SN given by (k,a,n) +» k+a-+n
! ! + :

is a diffeomeorphism. Moreover, A and N are simply

connected. In particular, G/K is diffeomorphic to an

n
i1 R some n.

We call G = K+*A -N+ an Iwasawa decomposition. Any

two Iwasawa decompositions are conjugate.

Proof: The first two claims are [He 1], VI, §5, Theorem 5.1.
Uniqueness of the decomposition follows easily from the
uniqueness of the Cartan decomposition (A4.3) and the maximal

subalgebra a of g (A5.2). o

8.3: Proposition: The centralizer of a in g iR g -+ n

i a
where we let m = (Xaeé_g ) + (hnk). Also m c b,

Proof: The centralizer of a clearly consists of K and
all those ga whose root a is identically 0 on =a

i.e. a € & . Notice that mop = {0} since a is maximal
abelian in p. Notice that [k,p] c g and [p,pl c kK
(from an eigenvalue consideration of @). Hence if

K+ P eém then K ém and P € m, so by the above

o o

8.4: Definition: The complex dimension of is called

g
the complex rank of g, while the rank, real rank or split

rank is the real dimension of a.
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Rank 1 and rank =2 groups have different fundamental

properties.

8.5: With the real structure on the root system we can
describe the terms of the Cartan decomposition: Let

hk = hnh. Then

Proposition: The following decompositions are direct:

s a -0
e gty )+ ] - €(X veX )

i .
aG@_ a6®+

and S g z C(X -exa).

a€@+

Fe
where 6 is the Cartan involution.

Proof: This is [He 1}, VI, §3, Lemma 3.6.

8.6: We describe the Weyl group in terms of the semisimple
group. Let M* be the normalizer, M the centralizer of

g ey S

(ke€Klad x a = a}

M

{k € K|Ad X H

B fop all-=HE g},

and M

Then M* and M are compact as they are closed in
K, and they have the same Lie algebra m: this is cleanr
for M and follows easily for M#. If there is
any root a ¢ & such that Xa enters into some term of
the root space decomposition of an element X ¢ Lie M¥*
then [Xa,H] = a(H)Xa for some H € a# with a(H)#0 and X
clearly does not normalize a. In particular M*/M 1is a

finite group and it acts on a.
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Proposition 1: By the embedding into Gl(a) by the adjoint

action, M#*/M is the Weyl group of the root system of

(g,a).

Proof: This is a consequence of [He 1], VII, §2 (Theorem

2.12 in particular). o

As a corollary we see that the Weyl group of the complex
root system is Norm hnU/Centr hﬂU where U 1is a compact

real form of GC'

We also need a kind of 'rigidity' of a:

Proposition 2: Let A be a subset of a and suppose

k € K such that Adk(A) ¢ a. Then there exists an element
w € W= W(g,a) such that we+<H = Adk H for each H ¢ A.
Proof: This is [He 1, VII, 82, Proposition 2.2, o

Let us note that one can write down explicit formulas
for representing elements in K of the Weyl group, et

[Wa 1], Lemma 1.1.3.9 and Lemma 1.3.2.4.

8.7: Quite important is Cartan's polar coordinate decompo-

sition:

Proposition: G = K=+ A+ K,

Proof: Recall that (k,P) + ke-exp P is a diffeomorphism
(A5.1 Theorem 1 (iii)). We only need to prove that
exp p € K+ A+ K or that g ¢ Adk * a. This is A5.2

Proposition 1(ii). o

9: The main point of this section is the Jordan decomposition

of an element into a semisimple and unipotent part.
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9.1: Definition: An element X ¢ g is called semisimple

if adX is diagonalizable over €. We call X ¢ g nilpotent

if adX is nilpotent.

Proposition: Every element X ¢ g can be written in a

unique way as X = Xs + Xn where Xs is semisimple, Xn

is nilpotent and [Xs’xn] = 0. Moreover, if Y commutes

with X then Y commutes with XS and Xn.
Proof: ¢ C¥. B p. 79. 0
9.2: We also need the Jordan decomposition on the group level.

Definition: We call x ¢ G. semisimple if Adx is semi-

simple. Moreover, the exponential of a nilpotent element

is called unipotent.

Proposition: 2 can write x € G wuniquely in the form

X = X X where X is semisimple, X, is unipotent and
X and X, commute. Moreover, if y commutes with x
then it also commutes with X, and X .
Proof: This is [Wa 1], Proposition 1.4.3.3. o

9.3: One can characterize semisimple elements in terms of

Cartan subalgebras.

Proposition: The centralizer 3, in 3 of a semisimple

element x of g or G 1is reductive in g with
rank 92 rank g. In particular, the set of semisimple
elements is the union of all Cartan subalgebras of g

respectively all Cartan subgroups of G.

Note: A Cartan subgroup is a centralizer in G of a Cartan

subalgebra in g.
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Proof: This is [Wa 1], Proposition 1.3.5.4 and 1.4,3.2. o

9.4: Definition: We call a semisimple element x €@

elliptic if all the eigenvalues of Adx 1lie on the unit

circle. We call x hyperbolic if the eigenvalues of Adx

are positive real.

Proposition 1: Let G = K+A N be an Iwasawa decomposition.

Then
(i) G > g 1is elliptic iff g is conjugate to an

element of K.

(ii) G > g is hyperbolic iff g is conjugate to an

element of A.

(iii) G 3 g 1is unipotent iff g is conjugate to an

element of N.
Proof: This is [He 1], IX, §7, Theorem 7.2. O

Proposition 2: Every semisimple element x has a unique

decomposition x = e+h where e is elliptic and h

hyperbolic.
Bpontl: Thie is in [Mo 2]. o

Definition: We call h in x = e+h the polar part of a

semisimple element x € G. We write h = pol x. For

arbitrary x € G let pol x = pol X. where . x & x_ o

is the Jordan decomposition.

10: We discuss the Bruhat decomposition and parabvlic sub-

groups. We will always assume that G has finite center.

10.1: Definition: For an Iwasawa decomposition G = KeA*N_

et M = cantralizer A in K. . and set P = M+«A -N+. We
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call P a minimal parabolic in G.

Notice that P is a closed subgroup of G and that
all minimal parabolics are conjugate. Recall from A8.6
Proposition 1 that each w € W (the Weyl group) has a
representative m in M* = normalizer of A in K. Since
two representatives of w differ only by an element in M
the double coset PmP only depends on w. By abuse
of Hotation we write PwP for PmP. We have the Bruhat

decomposition

Theorem: We can decompose G into a disjoint union of
double cosets: G = U  PwP,

wEW
Proof: This is [Wa 1] Theorem 1.2.3. o

A simple but quite important consequence is

Proposition: The minimal parabolic P is the normalizer of

N, in G, Moreover, P 1is selfnormalizing. Also there

exists a unique double coset of P whose dimension is
equal to 6. It is open and dense in G and has full

measure.

Proof: This is [Wa 1] Propositions 1.2.3.4% and 1.2.3.5. o

10.2: Definition: A parabolic subgroup is any subgroup

containing a minimal parabolic subgroup.

Quite surprisingly one can describe all parabolics
containing a given minimal parabolic P quite easily:

Fix a fundamental system V¥ for 2. TFor any subset
gc W let we be the subgroup of W generated by the

Wi for i € 6. Notice that WW = W by A6.2 Proposition.
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We let Pe = PweP. This is a parabolic subgroup. Clearly,

P¢ = P and PW = G . by the Bruhat decomposition. Tits

proved

Theorem: The subgroups Pe are all the parabolics con-
taining P. No two of them are conjugate or equal. Hence
there are 2° of them where r is the split rank of G.

All the parabolics are their own normalizers.
Proof: This is [Wa 1] Theorem 1.2.1.1. 0

To describe the Lie algebra of P6 iet A< Z 'be the

set of all roots that are either positive or that are a
Z-linear combination of 1 ¢ 6. Then

Proposition: The Lie algebra of o Sgoumy T g
ach

Proof: This is contained in [Wa 1] Theorem 1.2.4.8. 0

10.3: Definition 1: The unipotent radical Ru(P) is the

greatest connected normal subgroup of P all of whose

elements are unipotent.

Note: Cf. [Hu 1] 19.5 to see that this is well defined.

~—

{ )

Definition 2: A Levi subgroup L of a parabolic P 1is a

closed reductive subgroup L of P such that P = L- Ru(P)

defines a unique decomposition p = 1l.r of any p € P.

Proposition: Every parabolic possesses a Levi subgroup that

is unique up to conjugation by Ru(P)'

Proof: This is [Wa 1] Proposition 1.2.4.1H4. o

For a parabolic P with a Levi subgroup L we let

A Dbe the unique maximal connected split abelian subgroup
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of the center of L. We let M = n ker x where
X €X(L)

¥(L) are all continuous homomorphisms of L into the
multiplicative group of the reals. Clearly L = M-A

and M)A = {1}. This gives us the Langlands decomposition
ol P

Pz - M«A+R (P),
u

Clearly, any two Langlands decompositions of P are conjugate
since any two Levi subgroups are conjugate. Notice that

for a minimal parabolic P we have Ru(P) = N L 5 centr =

+)
is a Levi subgroup, A = exp & the split abelian component
as above and U = centr AﬂK (otherwise said, our notation

is consistent with previous denominations in this case.)

10.4: Definition: A homogeneous space G/H is called a

boundary of G 1if for every probability measure u ON

G/H there exists a sequence X ¢ G such that X *u

converges to a point measure.

~ Flrstenberg proved that boundaries are very special:
Theorem: G/H is a boundary iff H is a parabolic.
Proof: This is [Wa 1] Proposition 1.2.3.11. o

Note: One can compactify the globally symmetric space

/K in such a way that G/P for P a minimal parabolic
arises as the only compact G-orbit. Hence the name

boundary (cf. I Section 25953

10.5: We discuss G = SL(n,R) as an example. For each

sequence of integers n,; < Ny .0 Dy <N consider a flag

Vl c V2 AR o Vk of linear subspaces of R" of dimensions
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dim Vi e The space of all such flags for a given

sequence (ni) is called a flag manifold F. Clearly

SL(n,R) acts transitively on each F with an isotropy

subgroup consisting of matrices of the form,

i.e. generalized upper triangular matrices. It is easy
to see that these are all the parabolics of SL(n,R).
Accordingly, the flag manifolds are all the boundaries of
SL(n,R). The minimal parabolic is the group of upper

triangular matrices.

11: Without going into any details we want to mention the

notion of an algebraic group.

Definition: An algebraic variety G is called an algebraic

group if G has a group structure such that (X, y) &» X V¥

and X+ x—l are morphisms of algebraic varieties.

Noil: Here G x G carries the Zariski product topology.

The basic fact for our purposes is

Proposition: Every connected semisimple Lie group G 1is

locally isomorphic (i.e. has the same Lie algebra as) to a



114
real algebraic group G'.

Proof: The adjoint group of the complex Lie algebra Bp
is a complex algebraic group defined over R. The real
points form a real algebraic group whose connected compon-

ent of the identity is the adjoint group of g. By semi-

simplicity this is locally isomorphic to G. o

This fact allows us to use the language of algebraic
geometry. Also we would like to point out that the theory
of semisimple algebraic groups is similar to the theory of
real semisimple groups, cf. [Hu 1] and [B-T]. Let us
note that the notion of a parabolic subgroup is very natural

in this context.

Definition: A parabolic subgroup P of a real semisimple

algebraic group 6 is an algebraic subgroup such that G/P

is a complete projective variety.

Finally, we want to remark on Chevalley's theorem on

the rationality of semisimple Lie algebras.

Theorem: Every real semisimple Lie algebra has a Weyl basis

with rational structure constants.
Proof: This is [Ch 1], Theorem 1. 0

12: We outline' the theory of locally and globally symmetric

spaces. We assume all the differential geometry used.

12.1: Let M be a Riemannian manifold. Let p € M and

.knﬂw

define the geodesic symmetry sp to be the map defined'by:

for any geodesic y with y(0) = p 1let s(y(t)) = y(-t).
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Definition 1: The manifold M is called locally symmetric

if sP is an isometry in a neighborhood of p for all

p € M. We call M globally symmetric "% 5, extends to
an isometry of all of M for all p € M. The main point
is that each complete locally symmetric manifold M has

a globally symmetric universal cover. (Cf, [He 11, IV, 88,
Corollary 5.7) and that one can classify globally symmetric

spaces. The first step is the

Theorem: Let M be globally symmetric. Then the connected
component G of the isometry group of M acts transitively

on M with compact isotropy group K.
Proof: This [He 11, IV, §3, Theorem 3.3 0

One can further classify M into non-compact, compact
and Euclidean type. Any M admits a decomposition (in
the sense of de Rham) into these types. We are only interested

in the non-compact type:

Definition 3: A globally symmetric space M is said to be

of the non-compact type if G 1is a semisimple group with

no compact factors and K a maximal compact of G.

This program reduces the study and classification of
symmetric spaces to a group theoretic problem. Conversely,
given a semisiﬁfle group G without compact factors and a
maximal compact K we can give G/XK a globally symmetfic
structure: Recall from Al.3 Proposition that the Cartan-
Killing form B 1is positive definite on p. Clearly, we
can identify the tangent space to 8l at 1K with 8.

Hence B defines a Riemannian structure on G/X. The group-
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theoretic and the Riemannian exponential map are very
similar: Let X € g then BXPRiem X = exp X* K. Moreover,
A5.1 Theorem 1(ii) asserts that G6/K is globally symmetric.
One can also calculate the curvature in terms of the group

structure.

Proposition 1: Let R denote the curvature tensor of G/K.

Then at Nixilta R Eweirsnd that
RO(X,Y)Z = -[[X,Y],Z] fOI‘ X,Y,Z E {1.

Proof: This is [He 1], IV, §4, Theorem k. 0

This allows us to characterize the spaces of non-compact

type:

Proposition 2: A globally symmetric space M is of non-

compact type.iff M has non-positive curvature and none of

the de Rham components are flat.

Proof: This clear from [He 1], IV, §3, Theorem 3.1. o

Let us finally note that the fundamental group of a
locally symmetric space of the non-compact type and of
finite volume defines a lattice T in the semisimple
group G, i.e. a discrete subgroup T of G such that
G/T has finite volume. Conversely, any torsion-free lattice
gives rise to a locally symmetric space.

We will need the following:

Definition: A lattice I ¢ G in a connected semisimple

group without compact factors is reducible if G admits
connected normal subgroups H,H' such that G = H-H',
HnH' is discrete and F/(FnH)(FnH') is finite. We call

I irreducible if T is not reducible.
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One has the following decomposition theorem.

Proposition 3: Let I be a lattice in a connected semi-

simple Lie group G without compact factors. Then there

exist connected closed normal subgroups Gl,...,Gn such that
n
G138 @ lattice in 6. and TT (G;.T) is a subgroup
1N v $xq 1l
of finite index of “I'., Moreover, let " denote the pro-
2 n =

Sab e Saje o0, ., .G Then T'= N n,J”nlr

1 i 3 n syl

Ha aidatenesinr 0 and T 00T,

Proof: This is obvious from [Ra 1], Corollary 5.19. o
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