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Abstract 

Once a digital image is processed in some way and the reconstruction is 
compared to the original, the final arbiter of reconstruction quality is the human 
to whom the images are presented. The research presented here is concerned with 
the development of schemes for the quantisation of colour images and for the 
encoding of colour images for transmission, with the goal of minimising the 
perceived image distortion rather than minimising a traditional error signal 
statistic. 

In order to quantise colour images with minimum perceived distortion, a 
colour space is sought in which Euclidean distances correspond linearly to 
perceived colour difference. The response of the visual system to colour and 
colour difference is investigated. A new quantisation scheme is developed and 
implemented to achieve a colour image compression ratio of approximately 6: 1. 
Three variations on the basic quantiser algorithm are considered and results of 
applying each variation to three test images are presented. 

Two-component encoding of colour images for low bit-rate transmission 
is investigated. A new method of encoding the contents of the image regions 
following contour extraction is developed. Rather than using parametric surface 
descriptions, a quad-tree is constructed and a simple measure of perceived image 
contrast threshold is used to determine the transmitted data. Arithmetic entropy 
coding is used to discard statistical redundancy in the signal . A colour wash 
process recreates the colour in each region. Implementation details are presented 
and several examples are given to illustrate differing contrast thresholds with 
compression rates of up to 50: 1. 

An analysis of the textures in certain regions of the test images leads to 
the development of an algorithm to synthesise the appearance of the textures 
following extraction of a small block which may be repeated across the region, 
leading to dramatic compression rates in · some instances. 
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Chapter 1. Introduction 

This thesis concentrates on aspects of colour image quantisation, 

redundancy and coding, and how the pertinent factors may be manipulated within 

the context of minimising the perception of noise or errors by the average viewer 

of processed images; by using perceptual criteria, any processed image should 

contain an "optimal" distortion, i.e. one that is least easily perceived, hence the 

thesis title. The investigation of these factors includes visits to the fields of human 

physiology, colour science, optical physics, image processing and information 

theory. The primary motivation in the investigation is the considerably increased 

raw storage requirement of typical colour images compared with their grey-scale 

counterparts, and the likely impact of successful compression of the image beyond 

that which is currently considered acceptable. A specific application for such 

compression would be video conferencing at the increasingly available ISDN 

(64kbitls x N) bandwidths. 

1.1. Theories of Vision 

The central concept of colour vision is that of trichromacy, which holds 

that colour vision is a function of at least three variables. It is widely held that 
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this theory was proposed in 1807 by Thomas Young [1] and elaborated by von 

Helmholtz [2] a half century later (see MacAdam [3] for evidence to the 

contrary.) Young assumed that the eye contains three independent response 

mechanisms to light: one predominantly sensitive to the shorter wavelengths of 

light, the second favouring the middle part of the visible spectrum and the third 

most sensitive to the longer wavelengths. Each of these responses would have 

some value over the whole visible spectrum, and the visual sensation to a given 

light source would come from the integration of the three responses with the 

components of the light. In 1860 Maxwell determined the shape of three 

responses from experimental observations [4] (a reprint of Maxwell's paper can 

be found in MacAdam [5]). Maxwell's experiment is widely considered to be the 

first fundamental study of colour vision. His experiment involved the arbitrary 

choice of three spectral wavelengths or primaries, from which light of any 

wavelength or wavelengths could be generated, and subsequently matched, or 

distinguished, by the receptors of the eye. These primaries can be labelled "red", 

"green" and "blue" according to the subjective appearance of monochromatic light 

of the selected primary wavelengths. Maxwell selected the primary wavelengths 

to be 630 nm for the red primary, 528 nm for the green primary and 457 nm for 

the blue primary. These colour receptors in the retina are named "cones", because 

of their physical appearance. 

Competing theories to Young's soon appeared [4]. The motivation for 
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alternative theories for colour VISIon lay in the way the previous models 

performed in the case of abnormal colour vision, such as colour blindness. The 

theory did not adequately account for the sensations experienced by dichromats, 

the most common of which is the inability to distinguish between red and green. 

Konig [6] suggested that one of the colour receptors in the eye may actually 

perceive brightness only, i.e possessed an achromatic response, with the other 

two mechanisms providing the chromatic response. Hering [7] proposed a theory 

based on these ideas in 1878, known as the opponent-colours theory. The theory 

states that the sensation of colour is a result of three opposing pairs of processes: 

a light-dark, a red-green and a yellow-blue. From a physiological standpoint, this 

theory allowed for dichromatic vision simply by the notion of the loss of one of 

these processes. Unfortunately, the advantage in Young's theory was that it was 

simple and deemed physiologically plausible, whereas Hering's theory was 

considered unacceptable physiologically. 

The logical progression from these early theories were more complex 

models of colour vision which included parts of both trichromacy and opponent­

colours [4]. These are known as stage theories because they incorporate one or 

more distinct transformations of the processes in the visual system, from the 

retina to the optic nerve. The stages began with a retinal process similar to that 

suggested by Young, ending with a signal similar to an opponent-colours process. 

The Young model became by far the more popular, and little research was 
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undertaken to provide a quantitative account of opponent-colours processes. 

Although Young's cone theory has always been generally accepted, however, it 

was not until the latter part of this century that any physical evidence for such 

responses appeared in the literature [8]. 

1.2. Colour Standards 

As the science of colour vision developed, many researchers contributed 

their own models, each differing slightly in an attempt to account for those 

situations in which other models failed. In order to provide some sort of 

international standard, in 1931, the Commission Internationale de l'Eclairage 

(CIE) [9] defined the colour response curves for the eye of the Standard 

Observer, a normal male trichromat (in fact an average of previous experiments 

by Wright [10] and Guild [11]), in terms of spectrum primaries of 600 nm, 546 

nm and 436 nm, considered to be a better choice of primaries from a 

physiological standpoint. These curves have been used to specify paints, television 

monitors, etc. from the view of how colours appear to a normal human. These 

curves are shown in figure 1.1 (from Judd [4]). It is apparent that the range of 

light that the human visual system can perceive is about 380 to 700 nm. 

As well as developing standardised physiological models, the CIE is also 

the governing body for colour space definitions [9]. A colour space is defined as 
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that volume occupied by all possible colour vectors with axes drawn from the 

three selected primaries. One of the disadvantages of the normal colour matching 

functions using the red, green and blue primary wavelengths, is that in certain 

situations, negative amounts of one or more primaries are required to generate the 

desired colour [4]. Obviously there can be no such thing as a negative amount of 

radiant flux; however, the concept is well understood to mean that some amount 

of one of the primaries is subtracted from the light incident on the retina in order 

to make the colour match (this is one of the central concepts in the laws of 

Grassman for compound colours [12]). However, since an additive colour system 

is a requirement for the likes of colour display systems such as televisions, the 

CIE established a colour space in which all colours that can be seen are composed 

of positive amounts of the three primaries. This colour space is referred to as the 

(CIE) XYZ colour space [9], and it contains what is known as the cone of 

realisable colours. 

A more common representation of vectors in the CIE colour space is the 

specification of the chromaticity of a colour, which, together with a third value, 

the luminance, (Y), provide a direction and magnitude from the origin. Working 

with a 2-dimensional chromaticity space makes the graphical display of graphical 

colour information more straightforward, and also provides a dimensionless, 

normalised, reference for the spectrum, which resolves the extreme changes in 

energy found at different light wavelengths. 
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Figure 1.1. CIE colour matching functions for 

the Standard Observer. 

(Source: Judd [4]). 

1.3. Colour Spaces 

It has long been recognised that there is considerable redundancy in the 

use of a colour space developed from the red, green and blue primaries. As well 

as the fact that the eye's response to the red sensation is very similar to the green 

sensation, the human observer is much more sensitive to changes in the middle 

and longer wavelengths than to the shorter ones (see Wald [8] for example). This 

means that as the spectral content of the generated light is perturbed, the colour 
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difference perceived by the observer is not isotropic. The colour space is not 

metric from the viewpoint of sensed changes. The importance of a metric colour 

space to the printing industry has driven research to find such a colour space for 

many years. MacAdam, however, has shown that a truly metric colour space is 

impossible to attain in 3 dimensions [13], although he and others have presented 

approximations to it based on curve fitting experiments. The experiments 

conducted by MacAdam and others in measuring the responses of a number of 

observers to changes in the chromatic content of equiluminous light sources and 

their perceptions of just noticeable differences in colours, led to a transformation 

under which the plot of just noticeable differences on the 2-d chromaticity 

diagram produced circles. Plotting within the CIE (x,y) chromaticity space or the 

(r,g) chromaticity space show ellipses, with longer axes in the direction of the 

green and red primaries. MacAdam was unsuccessful in getting the CIE to adopt 

his geodesic chromaticity model [14], so called because the curve between any 

two colours on the chromaticity diagram is a straight line, or geodesic, and 

involves the least number of colour differences. However the CIE in 1961 

adopted his recommendations for a more metric space than the XYZ colour space, 

labelled the UVW colour space [15]. Transformations from RGB to XYZ and to 

UVW can all be achieved through matrix multiplication. 

Other colour spaces which have been proposed include the Lab space [16], 

the HSL (Hue, Saturation, Lightness) space [17] and the Munsell system [18], 
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which was conceived by the artist Edward Munsell in 1905 as an attempt to bring 

a rigourous language to the description of colours. The Munsell Colour 

Company's tables of colour tiles are used extensively in the colour industry today. 

During the 1950s and 196Os, Hurvich and Jameson conducted a number 

of investigations within the framework of an opponent-colours theory [19]. Their 

argument for this model was that an enormous amount of research had been 

expended in finding the "best" set of primary wavelengths under a Young model, 

with no general consensus emerging as to the "right" choice, because of the 

failure of the model to account for all the facts of colour vision. Their work 

yielded fundamental quantitative models whereas, before, the data were decidedly 

qUalitative. In fact, their model was a two-stage model, incorporating a 

trichromatic "front end" to the visual system with response curves similar·to that 

of the CIE standard observer, and an appropriate transformation to yield the 

light-dark, red-green and yellow-blue sensations which are transmitted along the 

optic nerve. They stated that physiologically, this model made excellent sense 

because it explained, in a simple fashion, phenomena such as chromatic 

adaptation and colour constancy, for which the three colours theories failed to 

provide. Ohta et al. [20] also propose, from empirical observations, an opponent­

colours model in which three best-fit colour response functions are used to 

segment colour images. 
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The opponent-colours theory is of interest because the implication is that 

the visual system performs its own colour compression [21], as the red, green 

and blue responses from the cones in the eye are transformed into a space with 

three pathways which contain high-bandwidth information (the light-dark 

sensation), medium-bandwidth information (the red-green sensation) and 

low-bandwidth information (the yellow-blue sensation). In recent years, many 

advances in image processing have been made by considering human physiology 

and attempting to exploit its weaknesses, rather than generating ad hoc models 

and algorithms. It seems to make sense, then, to base investigations of colour 

image properties on considerations of the characteristics of the visual system, 

since that is the intended "receiver". 

1.4. Image Processing 

There are many examples in the literature of quantisation schemes for 

colour image data. Since the work of Max on quantisation with a minimum 

mean-square error criterion [22], and the subsequent work of Linde, Buzo and 

Gray on vector quantisation [23], there have also been attempts to perform space 

decomposition using the Mandelbrot set [24,25] and a variety of clustering and 

binning algorithms designed to find a good representative set of image colours. 

There is, however, little work in the literature on the subject of the choice of a 

suitable colour space in which to quantise colour data, although the review by 
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Limb et al. [26] does discuss this issue. 

Image processmg has evolved rapidly as a science throughout its 

reasonably brief history. The main stumbling block to applications has been the 

sheer data throughput required when developing and testing algorithms, a problem 

which has only recently eased with the development of inexpensive, fast computer 

technology. Two distinct generations of image processing algorithms have been 

reported in the literature [27]. The so-called first generation includes both spatial 

and transform techniques, for instance DPCM and DCT algorithms, both of 

which have been extensively represented in the literature, but the majority of 

algorithms have at best assumed that colour image processing is no more than an 

extension of gray-scale processing, with the two chromatic channels simply being 

assumed to occupy narrower bandwidths than the achromatic signal, but 

possessing similar properties. 

The second-generation image processing algorithms, which in fact date 

back to Schreiber's "Synthetic High" processing model [28], attempt to account 

for or model, at varying levels of resolution and complexity, the framework and 

behaviour of the visual system. They are known as two-component image models. 

There are a number of possible categories that these models fall into, such as 

pyramid coding and texture coding [27]. Pyramid coding schemes attempt to take 

into account the fact that the visual system incorporates parallel filtering processes 
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at differing resolutions. Texture coding schemes attempt to find simple base 

patterns which can be repeated throughout a region of the image to synthesise the 

original. The model which has been investigated in this research is known as the 

region-growing model. The model assumes that the average scene or image 

frame, is composed of large areas or regions in which the data is stationary and 

in which the variation in pixel value or values is small. These regions are 

bounded by discontinuities, known as edges, where there are abrupt changes in 

the image content. The processing of the two feature types involves encoding the 

edge pixels and finding succinct descriptions of the slowly changing information 

in the regions. The human visual system is known to be far more sensitive to 

discontinuities in image content than to slowly changing properties, and the 

expected compression from this type of coding scheme is potentially enormous. 

1.5. Image Distortion 

Another area of interest within this investigation has been the 

determination of a suitable error measure for the results of image processing 

algorithms. The traditional mean-square error estimate is widely agreed to be a 

poor representative of the success of any image compression scheme [26,29,30], 

simply because it is physiologically unacceptable, requiring the visual system to 

calculate square roots, as well as providing only global statistics, which do not 

accurately follow the few large distortions which may be found in one image and 
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not in another with the same measure. Referring to the last paragraph, it is known 

that the visual system is far more sensitive to sharp changes in an image than to 

low spatial-frequency ones. An ability to estimate the impact of a small number 

of large errors within a processed image must be taken into account. This thesis 

includes analyses of the applicability of error measures to the success of colour 

image quantisation and coding schemes with a view to providing substantial 

agreement between subjective appearance and numerical error value. 

1.6. Other Chapter Contents 

The next chapter contains an investigation of colour quantisation for 

minimum perceived distortion, with a further description of the colour space and 

chromaticity space, colour space homogeneity, linearity and metricity. 

Quantisation schemes which are found in the literature are discussed. A novel 

quantisation is developed, along . with complete details of an implementation. 

Results are obtained from three test images, together with a discussion of error 

statistics. A comparison of the success of the algorithms developed in this chapter 

with selected other literature is also given . . 

In chapter three the role of colour within the region-growing image coding 

model is discussed. A survey of image coding techniques found in the literature 

is given, with emphasis on two-component coding concepts. This is followed by 
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a brief presentation of the methods used to generate the edges and regions which 

make up each image frame. The rest of the chapter is devoted to an investigation 

of models for coding colour regions and their applicability within the framework 

of the human visual system. The details of a new region-coding model are 

presented, along with an investigation of arithmetic entropy-coding schemes for 

further compression of the region descriptions. Implementation details and results 

are presented in depth, and comparisons are made with other literature. 

Chapter four is concerned with the analysis and synthesis of the textures 

which can be identified in colour images, and the potential for compression based 

on popular texture models in the literature. An algorithm is developed to improve 

the compression achieved in chapter three on certain colour image regions 

containing a feature which is regularly or semi-regularly repeated; the synthesis 

of such features and the rules for repetition are derived and a comparison is made 

between cost and perceived quality of reconstructed regions using the algorithms 

developed in this chapter and in the previous one. 

Chapter five includes summaries of chapters two, three and four, 

discussions of those areas in which further improvements could be made, a 

conclusion of the results obtained overall and proposals for further research in the 

field of colour image processing. 
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Chapter 2. Quantisation of Colour Image Data 

Consider the storage requirements for a typical digitised colour image. The 

matrix size is usually 256x256 pixels at low resolution, and perhaps 512x512 

pixels for a high-quality image (most television standards offer resolutions in the 

500-600 line range) . If the data are stored as RGB triplets, the typical 

quantisation is to 8-bits per primary, 24-bits per pixel, or 24 bpp. Therefore, for 

a high-resolution digitised colour image, the requirement is 786432 bytes, or 

three-quarters of a MegaByte. Even in the days of inexpensive magnetic media, 

a sequence of such images requires a considerable storage commitment, and 

access to anyone frame or pixel for real-time applications requires high-speed 

disk access hardware. Given that the human observer is incapable of 

distinguishing the 16.7 million colours available at 24-bpp, it is often desirable 

to provide quantisation to considerably reduce the storage cost per frame, 

depending on the application envisaged for the data. 

In this chapter, we will investigate an algorithm, designed to find the 

quantisation of any colour image such that any introduced distortion in the 

reconstructed image is always the least easily perceived. Three variations on a 

basic quantisation algorithm are presented, together with a number of 
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reconstructed images, and an attempt is made to quantitatively measure the 

distortion, if any, that is introduced by the quantisation process. The main interest 

is in reducing as far as possible the cost of storing the chromatic content of the 

colour image. The results are favourable when compared with those found 

elsewhere in the literature. 

2.1. Introduction 

Since the early 1970s, there has been interest in processing colour images 

as well as monochromatic ("black-and-white") images. Quantisation of the image 

"signal" is generally implicit in the processing algorithm. In the 1980s, the 

burgeoning field of computer graphics produced much research on quantities such 

as the most suitable number of colours to use on display and the science of 

ergonomics has produced much research on the interaction of the observer with 

colour information on his display screen. Since typical displays allow 256 colours 

to be displayed concurrently, algorithms to generate 8-bit colour maps from 24-bit 

images are prevalent in the literature. The work of Stockham [31] (for 

monochromatic signals) and Faugeras [29] highlighted the importance of working 

with a model of human perception. Faugeras' vision model works as an opponent­

colours process and, in the case of achromatic signals, reduced to that of 

Stockham's. He used empirical studies to compute matrix coefficients to 

transform experimental cone absorption spectra into his own colour space, and 
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demonstrated an agreement between subjective measurements of introduced colour 

image distortions with MSE m,easurements for the distorted images. He did not 

attempt any quantisation experiments, however. Stenger [32] considered the 

perception of chrominance differences in his design for a quantiser of television 

signals. He computed a number of luminance-dependent grids to quantise the 

signal. Kurz [17] used a similar scheme and incorporated the MacAdam geodesic 

as a quantisation grid for pixel chromaticities, rather than the chrominance 

considered by Stenger. Multiple grids were used depending on the quanti sed 

luminance value. Many schemes which have become popular, however, such as 

those of Heckbert [33], and Lena and Mitchell [34], which work by repeatedly 

dividing the histogram of the data into blocks, depend solely on the use of the 

RGB colour space for their algorithms. Given that, in most natural scenes, the 

colours are generally unsaturated [26], then the correlation between the red, green 

and blue components will be high. The effect of a linear transformation to a more 

uncorrelated set of primaries may itself be sufficient to quantise the image in 

some cases. (It should be mentioned that in the field of computer graphics, 

images often contain artificially saturated colours.) 

2.2. Colour Space Transformations 

The aim of this study is to quantise the image in such a way as to provide 

the minimum distortion in the resulting image from a perceptual viewpoint. The 
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interest is not in finding, on a pixel-by-pixel basis, the smallest difference 

between the input primaries - red, green and blue - and the output. Consider the 

diagram shown in figure 2.1. It is a plot of some experimental results obtained 

by MacAdam (from Wysecki and Stiles [35]), which show the ellipses of just 

noticeable differences about some 25 different chromaticities, plotted on the CIE 

(x-y) chromaticity chart [9]. The circumferences of each ellipse indicate the 

distance travelled on the chart from the ellipse center before the observer noticed, 

on average, a definite change in the displayed colour. It is apparent that human 

perception of chromaticity change is not linearly related to the cm co-ordinate 

system. Since the CIE XYZ colour space is linearly related to the RGB colour 

space in which the display hardware operates, attempting to minimise the 

differences between input and output of RGB triplets is not guaranteed to provide 

the closest colour match as far as the average observer is concerned. The diagram 

in figure 2.2 (from Durrett [36]) shows these same ellipses plotted on the 

CIE-UCS (u-v) chart [15], a linear modification of the x-y chart. There is a 

visible improvement, but the radii of the ellipses still vary considerably. There 

is considerable ongoing research aimed at providing a linear transformation of the 

x-y chart which aproximates circles rather than ellipses (although exactly equal­

radii circles cannot be generated this way [13]). The importance of the linear 

requirement is that without it, the centre-of-gravity principle (which defines the 

chromaticity of a two colour mixture as the luminance-weighted average of the 

two chromaticities) would be lost, and colour mixtures within the space would 

17 



become unpredictable [26]. 
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Figure 2.1. MacAdam's ellipses plotted on eIE x-y chromaticity 

chart. (Source: Wysecki and Stiles [35]). 
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2.3. MacAdam's Geodesic 

MacAdam [14], allowing for the loss of centre-of-gravity, has generated 

a pair of non-linear transforms which generate the almost circular ellipses shown 

in figure 2.3 (from MacAdam [14]). The resulting chart is called a geodesic, 

because the straight-line distance from one point to any other on the chart 

involves the least number of just noticeable colour differences Gnds). The two 

equations which MacAdam derived by experiment are (from [14]) 

T) = 404b-185b2+52b3+69(1-b~-3a2b+30ab3 , (2.1) 

where 

lOx (2.2a) a = 
4.2y-x+1 

and 

b = lOy (2.2b) 
4.2y-x+1 

~ = 3571a'-lOa4 -520b'+13295b3 +32327ab- (2.3) 
25491 alb -41672ab2 + lOa3b -5227 a1!2 +295a l/4 , 

where 

lOx 
a =---- (2.4a) 

2.4x+34y+l 

and 

19 



b = __ lO-:!.y __ 
2.4x +34y + 1 

(2.4b) 

Of course, the symbols x and y denote the CIE chromaticity co-ordinates, Figure 

2.4 (from MacAdam [14]) illustrates the relationship between the CIE and 

MacAdam domains for loci of x and y, 

• 
~~--~~+-----~+-~~-+--~~-+----~-+-------+--~ 

~1~------+-~~-tt&-------+-~~--+-------4-------4-~ 

0.1 • G.4 

Alles of MacAdam', tIIipsa 
.. 10 times IduII ~ 

Figure 2.2. MacAdam's ellipses plotted on C~UCS chart. 

(Source: Durrett [36]) 

G.6 

Apparently, the complex, non-linear transformation described above is not 

algebraically reversible, Such a restriction is a serious impediment to a 
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quantisation scheme, since it is a requirement that the output data are RGB 

triplets, to be sent to the colour guns of the display. A method of transforming 

between (x,y) and MacAdam chromaticity spaces using a lookup table (LU1) 

technique will be described subsequently, but consider first the effect of linear 

transformations alone on the chromatic content of a colour image. 
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Figure 2.3. MacAdam's ellipses plotted on geodesic chromaticity 

charl. (Source: MacAdam [14]) 
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Figure 2.4. Plot of eIE x- and y-Ioci on MacAdam's geodesic 

chromaticity chart. (Source: MacAdam [14]) 
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Figures 2.5, 2.6, 2.7 and 2.8 indicate the extent of some chromaticity 

diagrams occupied by the data (at all luminance levels) from the image shown in 

figure 2.9. The change in the size of the area represents a transfer of image 

energy from the red, green and blue primaries to the luminance primary. Figure 

2.5 is plotted from the r-g chromaticity space, using the normalisations 

R 
r = ---

R+G+B 
G 

g= --­
R+G+B 

(2.5) 

where R, G and B are values for the pixel, usually in the range 0-255, i.e. 8-bit 

quantities. It is assumed that any gamma correction which has been applied to 

these prior to use has been equalised. 

The axes of figure 2.6 are the CIE 1931 (x,y) chromaticity axes. Those 

of figure 2.7 are the CIE 1960 DCS (u, v) space, related to the (x,y) space by the 

following transforms (from [15]): 

4x u = ----
-2x+12y+3 
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v = __ 6~y __ 
-2x+12y+3 

(2.6) 
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Figure 2.6. Chromaticity locus of figure 2.9 plotted on 
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Figure 2.7. Chromaticity locus of figure 2.9 plotted on 

CIE-UCS u-v chromaticity chart. 
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Figure 2.S. Chromaticity locus of figure 2.9 plotted on 

MacAdam's geodesic chromaticity chart. 
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Figure 2.8 is a plot in the MacAdam geodesic. In all of the 

transformations, the lightness co-ordinate, which will be referred to from now on 

as the grey-level, or the intensity, or the luminance, of the colour, is related to 

the red, green and blue values by the standard (CIE) formula (normalised to a 

particular distribution of light known as illuminant C) 

Y = 0.299R +0.587 G +0.114B (2.7) 

This formula represents the response of the standard observer to provide a match 

to an equal-intensity light of any mixture of wavelengths. 

Figure 2.9. Colour image used for chromaticity plots in figures 2.5, 

2.6, 2.7 and 2.8. 
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2.4. Quantisation Parameters 

From the previous figures, then, it is apparent that simply transforming 

from RGB to one of the chromaticity-luminance spaces seems to provide a 

considerable compression of the "colour" in the image. At this point, some 

consideration should be given as to how coarse a quantisation, i.e. how many 

bits-per-pixel, is likely to be acceptable. It is widely held, for instance, that the 

untrained eye is only capable of discriminating about 64 grey shades, or 6 bits. 

What about chromaticity? Consider figure 2.8 and Maxwell's geodesic once 

again. The ellipses in the geodesic, which indicate typical ability to perceive 

colour difference, indicate that about 10 units in the geodesic correspond to ajnd. 

Hence, under the assumption that one can add these across the chart, figure 2.8 

shows that about 4 bits are needed to adequately represent the typical image. But 

to provide a finer quantisation scheme, consider figure 2.10. (from Fink [37]). 

This figure shows the (x,y) chart with the typical gamut or extent of realisable 

colours contained inside the triangle. Notice that the true range of colours lies 

within the triangle with sides defined approximately by the following ineqUalities: 

0.14~~0.66; 0.07 ~y~0.72; y~O.Sx; x+y~1.0 (2.8) 

Plotting this triangle on the geodesic generates the relationship shown in figure 

2.11. The range of realisable colours is reduced to an area bounded by the 

following ineqUalities: 
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720~~:d04O; 240~t'\~480 (2.9) 

Note that MacAdam's experimental results indicated a threshold of at least 

10 units on his chart before a colour change was detected on average. With this 

information, it should be reasonable to halve the resolution of the space as a 

quantisation, without loss of information. This will be discussed further when the 

design for the LUT is presented. 

Returning to the discussion of perceived distortion, it is apparent that 

MacAdam's chart is a metric space, because straight line vectors correspond to 

the smallest amount of perceived equiluminous colour change. The nature of this 

space allows an analytic measure of colour distortion, in that the distance between 

any two points on the chart is linearly related to the perceived difference, a 

feature known as proportionality, and the perceived difference is independent of 

the absolute positions of the points, a feature known as homogeneity. In fact, it 

is now meaningful for us to apply a simple measure like the Mean Square Error 

(MSE) measure, 

(2.10) 

to the quanti sed pixel chromaticity values, and thus provide a reasonable account 

of the average distortion perceived by the viewer. At this point, it should be 

mentioned that the role of the quantised grey-levels in this distortion measure has 

30 



not been explored. This will be discussed in future sections. 
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Figure 2.10. Typical colour gamut (Solid) and r-g chromaticity (Dotted) 

plotted on CIE x-y chromaticity chart. Point "C" corresponds to 

chromaticity or illuminant C. (Source: Fink [37]) 
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Figure 2.11. Colour gamut from figure 2.10 plotted on MacAdam's 

geodesic chromaticity chart. "r", "g" and "b" arrows correspond 

to "RED", "GREEN" and "BLUE" in figure 2.10. 

Having considered the various colour spaces in which perceived distortion 

closely matches distance through the space, and the use of measurements of such 

distortion, the discussion turns to the implementation of an image quantisation 

scheme. The goal, which was somewhat arbitrarily chosen, is to reproduce 24 

bpp images at around 4 bpp, with minimal perceived colour distortion. This 
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quantisation scheme would thus provide approximately twice the compression of 

common schemes with less visible distortion. Before the details of the proposed 

scheme are described, those elements which are common to all quantisation 

schemes should be presented. The procedure involves the selection from the input 

data of a set of symbols or codewords, vectors or scalars, which is known as an 

alphabet or codebook; these symbols are considered to provide the "best" 

representatives for the input data, where "best" is a function of the quantisation 

algorithm. All input data have a corresponding symbol, and the size of the 

codebook determines the storage requirements of the output image. 

2.S. Quantisation by Data Clustering 

The particular quantisation scheme investigated in this study makes use of 

a clustering algorithm, rather than choosing a series of fixed quantisation levels 

and a series of related grids. The reasons for choosing a clustering method rather 

than fixed levels are: 

1. The content of typical images such as are encountered in 

videoconferencing contain few large "groups" of colours, Le. a 

histogram of the image in RGB space would contain a few strong 

peaks or modes. 
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2. Using fixed quantisation levels on such an image would be a 

waste of bits: few symbols would be produced from the available 

alphabet. Note that no entropy coding is being considered for this 

quantisation scheme. 

2.6. The "k-means" Test 

The clustering algorithm involves the execution of an iterative scheme 

designed to "relax" to a stable solution to the problem of finding a fixed number 

of representative chromaticities and grey-levels. One of the most well-known is 

the k-means test, developed by MacQueen [38]. The algorithm is a simple one 

and has been proven to converge, although it is noted that the final solution does 

depend on the choice of initial guesses, i.e. the algorithm is not guaranteed to 

find a global minimum or maximum. The k-means test resembles a vector 

quantiser, such as that proposed by Linde et al. [23] In both these algorithms, the 

relaxation involves iteratively computing, in an arbitrary n-dimensional Euclidean 

space, the minimum distonion vector in the space. Linde et al. christened this 

vector the centroid, or centre 0/ gravity, of a part of the signal space. The i-th 

centroid of the space, ci, is defined as 

(2.11) 
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where Xj is the j-th codeword which lies in the i-th sub-space, and pO is the 

probability of occurrence of that codeword. In the case of an unknown 

distribution, this value is usually the number of occurrences of the codeword. 

Once the number of symbols in the alphabet has been decided, and a 

histogram or some other measure of the sample signal distribution has been 

determined, the k-means algorithm proceeds in the following manner: 

1. Assume that the signal space is divided into k sets Si' with local 

centroids Cit and i=O,J, •.. k-J i.e. k symbols comprise the alphabet. 

2. Assume that there are N input vectors, or symbols xi' j=O,J, .• ,N-J in 

the signal. 

3. Repeat until there is no change in the value of any centroid after 

iteration n : 

For each vector xi' j=O,J, .. ,N-J, 

For each centroid c/,,-1), i=O,J, .. ,k-J, 

(2.13) 
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4. Retain the final set boundaries Sil i=O,l, ... ,k-l as the assigned 

sub-spaces for each symbol in the alphabet. 

2.7. Quantiser Colour Space Conversions 

The signals which are supplied to the quantiser in this scheme are the 

luminance values for each pixel, and the chromaticity values in the MacAdam 

space. A series of transformations are required to move from the input RGB 

signal space to the quantiser inputs. The MacAdam chart is a transformation of 

the eIE colour space, so the data must first be transformed from RGB to XYZ 

triplets. This is achieved simply by matrix multiplication (see for example Pratt 

[39] for an extensive list of linear transformations between colour spaces.) The 

form is as follows: 

[~ ~
0.607 0.174 0.201] [R] 

Y = 0.299 0.587 0.114' G 
Z 0.000.0.066 1.117 B 

(2.14) 

and the XYZ triplet is in tum rendered as luminance (Y) and chromaticities (x,y) 

by equations similar to those in (2.5), i.e. 

x X=---; 
X+Y+Z 

Y 
y = --­

X+Y+Z 
(2.1S) 

Now consider the conversion between the eIE and MacAdam chromaticity 
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spaces. It is impossible to provide an analytic method , so we must seek other 

means. A simple way is to store tables of forward and inverse transformations, 

and link the two to form an integrated look-up table, or LUT. Referring to the 

discussion of the geometric formulae which specify the extent of the CIE and 

MacAdam spaces, we note that with a halving of the resolution in the MacAdam 

domain, the numerical distances are in the range of 0 to 255. Quantisation of 

chromaticity values to 8-bit values, therefore, is sufficient to provide the range 

required. The error introduced by this rounding process will be discussed in a 

later section. 

The number of indices required for the forward transformation can be 

derived from the inequalities (2.8) and the 8-bit quantisation per chromaticity 

ordinate. The area of the triangle in figure 2.10 can be approximated by a 

rectangle and two triangles as 

(0.72-0.33) · (O.2~-0.14) + 

(O.72-0.33)~(O.66-0.28») + 

(O.33-0.07)~(O.66-0.14) ) 
.. 0.20 (2.16) 

and if this number is multiplied by the square of 256 the approximate number of 

indices required is 

(0.2) ' (256)'(256) .. 13110 indices. (2.17) 
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To implement the table in hardware, an additional (0.72 -0.07) ·256 = 167 entries 

are needed, to indicate the number of indices in each row of the table. 

The upper limit on the number of entries required for the reverse 

transformation, from the inequalities in Eq. (2.9) (at half resolution) with integer 

accuracy is 

(520-360)·(240-120) = 19200 indices . (2.18) 

which means that the two-way LUT will have approximately 32500 entries, with 

each entry containing two 8-bit numbers. The table therefore requires about 64 

kilobytes of storage. Note that because the "origins" of both the transform spaces 

are not (0,0) a subtraction and addition will be required along with each lookup 

operation. 

Statistics gathered from a program which generates this LUT show that the 

rounding of the data occasionally results in more than one entry per index, so an 

averaging process must be performed to provide a reasonable result from the 

look-up operation. The maximum number of entries per index was found to be 

seven, with an average of 1.4, and the maximum standard deviation in the 

averaging process was 1.667 (using 8-bit values), less than one percent of the 

maximum value along either axis. 
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Given that the centre-of-gravity principle is not preserved in the MacAdam 

chromaticity space, it is important to consider the propriety of cluster analysis and 

LUT cell-averaging given such conditions. In the introduction, the centre-of­

gravity principle was noted as being essential if one wishes to predict the 

chromaticity of a mixture of colours. The equations can be found in, for example, 

Limb et al. [26] However, in this study the interest is not in colour mixtures, but 

rather in colour distortions or differences. The clustering algorithm is designed 

to find those sub-spaces within which all vectors are perceived as being closer to 

a particular representative vector than to any of the other representatives; the 

result of their mixture is not considered. Averaging entries in the LUT is actually 

an averaging of vectors in the (x,y) space which are mapped to the same "box" 

in the MacAdam space; the calculated average vector is also a location in the 

(x,y) space, and it may be envisaged as being mapped from the "centre" of the 

box. 

2.8. Quantisation of Achromatic Data 

Turning the discussion to the quantisation of the achromatic part of the 

image signal, the interest once again is in the perceived distortion in the output. 

Studies of the visual system indicate (See for example Hecht [40], Corn sweet 

[41], Michelson [42]) that the visual system has a linear response to the contrast 

in an image rather than to the absolute values of the pixels. Models of the visual 
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system using an analogy to film development (Stockham [31], Hunt [43]) hold 

that the visual system is linearly sensitive to the natural logarithm of the signal. 

(Some others, such as Mannos [44], Stevens [45] and Pearson [46], argue that the 

base for the power law is not exactly e. Mannos computes from experiment a 

number closer to 0.33 than to 0.27. Pearson proposes 0.33 for TV images and 

higher values when the surround is very bright, such as hardcopy images on white 

paper.) For videoconferencing applications, using a fixed quantisation, then, the 

scale should be approximately log-linear, as employed by Kurz [17], for example. 

The clustering algorithm, however, behaves poorly when the achromatic values 

are converted to logarithms. The tendency is for all the. pixels to be associated 

with one or two centroids only. Because of this empirical drawback, and to avoid 

further use of floating-point arithmetic, the absolute luminance values were used 

within the cluster algorithm throughout this study. This course of action 

undoubtedly seems to fly in the face of the established literature, but the 

improved results obtained from using absolute data suggested that this approach 

was the better of the two. This subject will be discussed further at the end of the 

chapter, and in the concluding chapter. 

2.9. Quantiser Implementation Details 

Now that the colour space-conversions and the clustering algorithm h~ve 

been investigated, consider the next part of the quantisation process, which 
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involves the quanti sed luminance and chromaticity symbols and their 

corresponding absolute values. The clustering itself takes place in the luminance 

and MacAdam colour spaces. Because these signals are quanti sed independently, 

it is possible to generate quanti sed vectors (Y, 1],~) which in fact lie slightly 

outside the RGB colour space. In other words, the regenerated colours may be 

too saturated, lying outside the triangle shown in figure 2.9. This is a drawback 

which must be addressed in a manner which provides both a minimum perceptual 

distortion and a quanti sed colour which is also found in the generated codebook. 

It is assumed that the codebook which will be searched contains equiluminous 

chromaticities. In fact, as long as separate codebooks are found for each 

luminance sub-set, then the chromaticities will be nearly equiluminous, and the 

condition is thus satisfied. The procedure is straightforward. The codebook is 

searched until the closest chromaticity to the chosen one (by its Euclidean 

distance, on the MacAdam chart) which is realisable in RGB space, is the new 

choice. 

Once the quantised luminance and MacAdam chromaticity values have 

been chosen from the codebooks for each pixel, then the (x-y) chromaticities are 

obtained from the LUT and the XYZ values may be found simply from the 

following: 
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(2.19a) 

x = x ·(X+Y+Z) • 
f f f ' 

(2.19b) 

and 

Z = (l-x -y\·(X+Y+Z) 
f f r f 

(2. 19c) 

where the subscript q indicates a value which has been quantised. From this 

point, the quantised RGB values can be found by matrix multiplication (see Pratt 

[39]). A flow chart of the complete quantisation procedure, excluding the 

generation of the LUT, is shown in figure 2.12. 

2.10. Sources of Quantiser Error 

Now that the complete quantisation scheme has been described, consider 

the various sources of numerical error that contribute to distortions in the 

processed image. If the individual stages of the scheme are scrutinised, the main 

sources of error are seen to be those where real arithmetic is needed, leading to 

rounding and truncation errors. These occur at the following transformations : 

RGB ... XYZ; XYZ ... Yxy; xy ... ~" ... ; i ; 
(2.20) 

l..!l ... xy; Yxy ... xyz; XYZ ... RGB. 
22 
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The initial matrix multiplication, which was modified for integer 

arithmetic by multiplying all the coefficients of the matrix by 4096 and right­

shifting the result twelve times, introduces a maximum error in any row of 

1.8lxl04
• For the maximum signal, (255,255,255), the error is therefore less 

than 0.04, so the integer result may vary by at most 1. With the inverse matrix 

multiplication, the maximum error is 1.81x104
; the error may be at most 0.05, 

so the true value may differ by at most 1. 

Rounding the (x,y) chromaticity values to the nearest integer produces a 

maximum error of 0.0039. The maximum error transferred to the MacAdam 

space (with halved resolution) is 1 in each ordinate. This figure includes any 

rounding in the MacAdam space. The error introduced by the transformations in 

the LUT are, on average, at most 1 after both a forward and reverse transform. 

Converting integral chromaticity values back to real numbers again introduces a 

maximum error of 0.0039. 

There will also be numerical errors introduced into the clustering process, 

because after each iteration, the centroids are set as integers. The effect of these 

errors on the overall distortion in the image will be variable in character. 
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Figure 2.12. Quantisation flow diagram Ceaturing Transmitter (Tx) 

and Receiver (Rx) Elements. 
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2.11. Results from The Quantiser Algorithm 

The investigation into the efficacy of this quantisation scheme involved the 

implementation of three variations on the flow diagram shown in figure 2.12, in 

order to improve the perceived distortion over the previous variation. As well as 

these variations, an additional compression was introduced into each process, 

motivated by the available data, which were a series of digitised frames from a 

videotape suitable for the testing of videoconferencing compression algorithms. 

The data in fact appeared on tape as (YUV) triplets, but the chrominance 

information was only half the resolution of the luminance. Because of this factor, 

and also because television standards, such as SECAM (see Wright [47] and 

Carnt and Townsend [48] for a discussion of television standards), also typically 

furnish only every other video line with chrominance information, only every 

fourth input (RGB) vector had its chromaticity calculated by the "transmitter" 

section of the quantisation, leading to a situation at the "receiver" as illustrated 

in figure 2.13, where only the shaded _ pixels have both a luminance and 

chromaticity component; the white pixels have only the luminance. Linear 

interpolation (along rows, columns and diagonals) is used to provide a best guess 

chromaticity, and the closest match to this in the codebook is used in its place. 

The additional distortion introduced by this process was not noticeable, although 

again it is noted that the input data itself contained low-resolution chrominance. 

The algorithm itself does not introduce any further perceived distortion, then, by 

halving the resolution at the quantisation stage. Note that the full resolution of the 
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input image was used in the quantisation process, before discarding the extra 

chromaticity values. Using a luminance codebook with sixteen values, then, and 

a chromaticity codebook with eight values, the output bit-rate for this quantisation 

is 4 + (3/4), or 4.75 bpp. 

-0-0-

-0 
I 

0-

Figure 2.13. Pixel arrangement at reconstruction. Only the black 

pixels are assigned both luminance and chromaticity. White 

pixels are assigned luminance only. 

2.12. Three Variations on the Quantiser Algorithm 

The three variations on the basic outline are now considered. They are in 
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order of increasing complexity and decreasing perceived output distortion. 

Because the interest in this study is in the colour quantisation, specifically the 

chromaticity quantisation, the luminance quantisation remained fixed; luminance 

quantisation involved the creation of a single codebook from the histogram of the 

entire image (the histogram therefore contains 256 indices). 

The first method (Method I) involves the creation of one codebook, taken 

from a histogram of the entire image. This is in fact the basic scheme shown in 

the flow graph in figure 2.12. As we may expect, the basic scheme, which breaks 

a number of the rules discussed earlier, provides poor results. 

The second method (Method ll) involves the creation of n_Y chromaticity 

codebooks, where n _ Y is the size of the luminance codebook. A histogram was 

created for those pixels which were assigned to each luminance codeword, and 

a clustering algorithm applied to each histogram. The resulting codewords are 

anticipated to more accurately follow brightness-dependent chromatic variation in 

the image. At the reconstruction stage, the luminance information for the pixel 

is used to select which chromaticity codebook to use. Note that the additional 

overhead of multiple chromaticity codebooks is small compared to the size of the 

output image. 

The third method (Method Ill) also involves the creation of n Y 
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chromaticity codebooks, where n_Y is equal to the number of (m_Y x m_Y) 

blocks of pixels in the image. Because all the test images were 256 x 256, m_Y 

is equal to 64 (256/4). This method was devised to exploit position-dependent 

chromatic variation in the image. The block number at the reconstruction stage 

is used to select the chromaticity values. 

The three algorithms were implemented and tested on three images. These 

were frames taken from the videoconferencing test sequences mentioned earlier. 

The sequences are called "Miss America", "Split Screen" and "Trevor White". 

Figures 2.14, 2.15 and 2.16 portray the test images. It is apparent that these 

images vary considerably in their content and complexity. "Miss America" 

contains by far the least complexity in luminance variation, but the face, with its 

many subtle changes in flesh tones, occupies a large part of the image, and the 

pink of the model's sweater is fairly saturated. The backing curtain in the "Split 

Screen" image seems fairly equiluminou~ but in fact contains a considerable 

variation in intensity. The majority of colours in this image are unsaturated, 

however. The "Trevor White" image is by far the most complex; the texture in 

the curtain and in the shirt is difficult to quantise without distortion. Note also the 

saturated colours in the red polka-dot handkerchief in the model's pocket. 

The experimental conditions under which all images were viewed are 

described in appendix A. The details of these conditions will be discussed further 

in this and other chapters. 
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Figure 2.14. Original digitised frame from the video 

codec test sequence "Miss America". The 

image resolution is 256x256 pixels. 
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Figure 2.15. Original digitised frame from the video 

codec test sequence "Split Screen". The 

image resolution is 256x256 pixels. 
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Figure 2.16. Original digitised frame from the video 

codec test sequence "Trevor White". The 

image resolution is 256x256 pixels. 
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Figures 2.17, 2.18 and 2.19 are the results obtained from Method I. It is 

apparent that there is a considerable distortion introduced by this method. In 

figure 2.17, the models's face has acquired a slightly bluish tint, and the variety 

of tones in the face has been replaced with one or two hues. The model's lipstick 

has vanished. In figure 2.18, the red colour of the jacket worn by the model in 

the upper right has become subdued, as has the red in the handkerchief worn by 

the model in figure 2.19. Because the clustering scheme operates in a statistical 

fashion, these colours, which lie toward the outside of the chromaticity chart, are 

likely to be rare in the single histogram of the image, hence a symbol has not 

been found close to the correct chromaticity. In the case of figure 2.17, the bluish 

appearance of the face is induced by the strong pink of the model's sweater, thus 

leading the algorithm to find chromaticites with little green content, necessary for 

successful reproduction of flesh tones. 
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Figure 2.17. Quantisation performed on frame from video 

codec test sequence "Miss America" using 

quantiser Method I. 
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Figure 2.1S. Quantisation performed on frame from video 

codec test sequence "Split Screen" using 

quantiser Method I. 
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Figure 2.19. Quantisation performed on frame from video 

codec test sequence "Trevor White" using 

quantiser Method I. 
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The results from Method II, shown in figures 2.20, 2.21 and 2.22, are 

more favourable. The "Miss America" frame contains a more life-like face and 

a more vibrant sweater. The model's jacket in "Split Screen" has regained its 

original red colour. Note, however, that "Trevor White" still has a rather muddy 

brown-coloured handkerchief. Apparently, then, the statistics engine in this 

scheme is still failing to pick up the rare colours in the handkerchief. Many of the 

pixels in the model's shirt are obviously assigned the same luminance codeword, 

hence the resulting chromaticity codewords tend to the achromatic centre of the 

chart. Figures 2.23 and 2.24 show the variations in the size of the chart at 

various luminance values (from McColl and Martin [49]). Comparing these 

contours with those shown in figure 2.25, which show the variations in the size 

of equiluminous planes through the RGB colour cube, one can see that at the high 

luminance, the chromaticity chart is restricted. Unless the "sensitivity" or 

resolution in the chart can be varied with luminance, there will inevitably be a 

loss of colour accuracy after clustering at high -luminance levels. 
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Figure 2.20. Quantisation performed on frame from video 

codec test sequence "Miss America" using 

quantiser Method ll. 
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Figure 2.21. Quantisation performed on frame from video 

codec test sequence "Split Screen" using 

quantiser variation Method II. 

58 



Figure 2.22. Quantisation performed on frame from video 

codec test sequence "Trevor White" using 

quantiser variation Method II. 
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Figure 1.13. Variation of the maximum area on MacAdam's geodesic 

chromaticity chart as luminance value varies. 

(Source: McColl and Martin [49]) 
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Figure 2.24. 3D plot of available chromaticities on MacAdam's geodesic 

chromaticity chart as luminance varies. 

(Source: McColl and Martin [49]) 

The results from Method m are shown in figures 2.26, 2.27 and 2.28. It 

would be fair to say that these are the closest to the originals from an 

observational standpoint. "Miss America" has regained her flesh tones and her 

lipstick. The model in "Split Screen" has regained the full colour of her jacket. 

"Trevor White" has his red handkerchief back. The spatial-dependence of the 

chromaticity quantisation therefore seems stronger than the luminance-

dependence, at least for these test images. 
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Figure 2.25. Plot of the intersection of luminance planes through the 

RGB colour cube. Y 4 > Y3 > Y2 > YI. 
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Figure 2.26. Quantisation performed on frame from video 

co dec test sequence "Miss America" using 

quantiser Method m. 
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Figure 2.27. Quantisation performed on frame from video 

codec test sequence "Split Screen" using 

quantiser Method m. 
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Figure 2.28. Quantisation perfonned on frame from video 

codec test sequence "Trevor White" using 

quantiser Method m. 
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2.13. Discussion of Results 

One important, and "obvious" aspect of the quantisation, which has been 

neglected thus far, is that for all the methods, the contouring in both the curtain 

of "Split Screen", and to a lesser extent in the shadows on the face of "Miss 

America", indicate that the luminance quantisation has not properly succeeded. 

In fact, 32 levels, or 5 bits, are needed to remove these false contours. The 

contouring is not apparent in the "Trevor White" image because of the texture in 

the curtain, which contains a high spatial frequency content. The eye's sensitivity 

to image content and change decreases with increasing spatial frequency, hence 

the distortion is not perceived. This will be discussed more extensively in the next 

chapter. 

What about a quantitative distortion measure, and its relation to the 

perceived distortions introduced by these quantised schemes ? Taking the MSE 

of the quantised chromaticities from each method, the results are shown in table 

2.1. 

In order to determine whether the MSE is in fact in good agreement with 

subjective measurement of colour image distortion, the Mean Absolute Error 

(MAE), 
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MAE(x,x") = ~ L F;-iJ ' 
N;aO 

(2.21) 

was also calculated for each result given above. While it was stated that within 

the MacAdam geodesic a Euclidean distance should be valid and meaningful, it 

is unlikely that the visual system can compute Euclidean distances. The results for 

the MAE statistic are given in table 2.2. 

Quantisation Miss America Split Screen Trevor White 

MSE MSE MSE 

Method I 78 73 31 

Method IT 57 30 26 

Method ill 49 19 19 

Table 2.1. Chromaticity MSE for Quantisation Methods I, IT and ill on 

test images. 

There is a corresponding agreement with visual assessment of the output 

images and the distortion measures shown in the tables. Taking the square roots 

67 



of the numbers given in table 2.1. provides the RMSE, which is on the order of 

the MAEs given in table 2.2, but, from the previous paragraph, it is unlikely that 

the visual system is capable of computing square roots. Unfortunately, a multi­

subject test, using the" 1 to 5" scale for subjective image quality assessment (see 

Pratt [39], for example, for a discussion of this scale), could not be performed 

under the laboratory conditions available. Such a test would perhaps have 

provided a more absolute correlation between numerical distortions and subjective 

distortions. For these techniques then, the MSE and MAE seem to perform 

adequately (and similarly) in determining image quality, even though such an 

error measure does not take into account the magnitude of local distortions. 

Quantisation Miss America Split Screen Trevor White 

MAE MAE MAE 

Method I 7 5 4 

Method n 6 4 4 

Method m 5 3 3 

Table 2.2. Chromaticity MAE (or Quantisation Methods I, nand m on 

test images. 
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It is noteworthy that Limb [112] finds that the RMSE agrees well with 

subjective distortion, although he finds that local measurements across the image 

perform slightly better and errors are less visible close to edges. This effect, 

together with the significant masking of chrominance (and hence chromaticity) 

errors that can occur at luminance edges (see, for example, Limb [26] or Wysecki 

and Stiles [35]) implies that chromaticity distortions will not be equally visible, 

and an improved measure may be found by using the scene luminance signal to 

weight the measure. 

The performance of the variations on the algorithm described in this 

chapter compares favourably with similar schemes found elsewhere in the 

literature, such as in Kurz [17], Stevens [24] and Heckbert [33]. These schemes 

did not necessarily achieve the same compressions, but it is felt that the results 

presented here improve on the others either in the image quality at the same 

compression rate, or in compression achi~ved for similar image quality, or both. 

In addition, none of the other schemes make an attempt to quantify distortions in 

reconstructed images. 

2.14. Summary 

In summary, an image quantisation technique has been designed and 

implemented with a view to .minimising perceived distortion in the output image. 
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Of the three schemes presented, at least one seems to perform well on the range 

of test images available, at rates around 4-5 bpp, corresponding to a compression 

of about 6: 1. What could be done to improve these schemes, in order to decrease 

distortion and increase compression? Improvements (reduction of) the distortion 

introduced by this quantisation scheme could be achieved in a number of areas. 

First, the clustering algorithm could be improved. Often, the algorithm finds a 

set of codewords which are really not the global optima, because of the starting 

point of the algorithm and the nature of the data. Overcoming this drawback in 

the k-means iteration is not trivial and may not be tractable [50]. Introducing 

interdependence in the luminance and chromaticity quantisations, in order to 

guarantee realisable colours, is also likely to improve the output, and avoid the 

use of a "nearest neighbour" search when the quantised vector is unrealisable 

(which may lead to wasted symbols). Perturbing the centroids to provide such 

agreement is one possible solution. An extra iteration could be added at each 

stage to provide such a guarantee. This_ has not been investigated. A fourth 

quantisation method would logically incorporate both luminance- and position­

dependence on codebook construction, but such a scheme would really be 

infringing on, and would provide poorer results than, the image coding scheme 

which will be introduced in the next chapter. 

The main interest in the quantisation scheme presented here is in reducing, 

in a reliable manner, the colour cost of the image. As the results, in general, are 
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visually appealing at a cost of 4.75 bits per pel, this technique has been 

reasonably successful at achieving a coarse colour image quantisation. The 

chromaticity spaces visited here will be discussed further in the next chapter. 

It was noted in the development of the quantisation process that the use of 

absolute intensity values provided better clusters than using the logarithm of the 

intensity. This implies a linear relationship between grey-level and perceived 

brightness (this may be a result of the interaction of monitor gamma and the 

visual system (see appendix A)). Perhaps what is required, rather than a 

logarithm computed on every pixel, is the use of a distance measure which has 

a perceptual analogy and is relates one pixel to another in a more meaningful way 

than the logarithm (which only relates every pixel to the base e). In the next 

. chapter, such a distance measure is introduced. 
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Chapter 3. TwO:Component Colour Image Coding 

The introductory chapter contained a brief discussion of the two 

generations of image processing techniques [27]. The second generation, 

including algorithms which attempt to mimic and exploit the known features, and 

in particular the deficiencies, of the visual system, is the subject of this chapter. 

The context in which this work was conducted was the role of colour in coding 

textures and images, hence the scope of this part of the research includes those 

aspects of two-component image coding which apply to visual perception of image 

distortions and in particular colour image distortions. 

This chapter, investigates the implementation of an algorithm to perform 

the encoding of the data in color images. The algorithm develops from a concept 

of the structure of an image which is believed to resemble that used implicitly by 

the human visual system. Emphasis will be placed on the importance of color 

encoding, the perception of variation in the image content, and on the removal 

of certain redundancy in the information content of the encoded data. This 

algorithm is intended to perform some of the functions found in a complete codec 

suitable for videoconferencing applications at ISDN data rates. 
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3.1. Introduction 

The second generation of image processing algorithms can be considered 

to be those algorithms which try to exploit known features of the human visual 

processing apparatus. Prior to 1970, the approaches to image processing for 

coding and compression involved typically either predictive coding techniques, 

such as DPCM, or transform-coding techniques, such as DCT. Often, the 

algorithm would be a hybrid of both, with some sort of additional entropy­

compression such a Huffman coding prior to "transmission", whatever that 

entailed. Generally, by 1970, the compression limit had saturated at about 10: 1 

[27]. During the 1970s, however, a number of new approaches, which 

incorporated known characteristics of the human visual system, achieved 

considerably higher compressions, up to 50: 1 and higher. The first algorithm of 

the second generation, however, was suggested in the 1950s by Schreiber [28]. 

His algorithm was known as "Synthetic Highs", and consisted simply of 

complementary low-pass and high-pass filt~rs, which split the input into low- and 

high-spatial frequency components. The low-spatial frequency signal was coarsely 

quantised and coded; the high-pass signal was processed, by thresholding, to 

extract contours of interest, then coded; at the receiver the signals were combined 

to produce the reconstructed image. By exploiting the lateral inhibition in the 

visual system, this technique achieved good compression. However, the 

thresholding operation was poorly arranged, hence the results were either too 

much lost texture, or too Iowa compression. This technique did, however, 
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precede the second generation by over ten years. A number of more recent 

techniques to exploit visual system characteristics are based on this two­

component image model. 

3.2. Discussion of Image Models 

The image model which was decided as the basis for the project is one 

suggested by, among others, Mason [51] , Kocher [52], and Silverman [53] in the 

early 1980s. This two-component model attempts to consider the image as a scene 

which may be divided into a series of connected regions of nearly uniform values, 

known as texture, separated by abrupt changes in the signal, known as edges or 

contours. These features are the two components of the model. Rather than 

simply coarsely quanti sing the signal in the textured areas of the scene, the model 

generally attempts to describe this data with a polynomial surface function of 

fixed degree. The contour extraction and transmission is, even today, little 

changed from Schreiber's in its basic operation: however, the work of those such 

as Marr and Hildreth [54], and Canny [55], have provided far superior 

identification of image contours, hence the reconstructed quality and compression 

have both considerably increased, allowing better preservation of the edge 

structure, which makes the image appear considerably more "in focus". 

There are a number of reasons why the current region-modelling 
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algorithms can be improved. If we consider the content of example regions 

isolated from the sort of images which we want to compress, and identify those 

features which are likely to be lost by the use of a parametric region model, then 

the task of devising a replacement will be simpler. Consider the regions shown 

in figures 3.1 and 3.2. The first region is taken from a segmented frame from the 

"Miss America" sequence; the second is taken from the "Trevor White" 

sequence. 

Parametric region models generally incorporate zero-, first- and second­

order polynomials as the possible matches for the region content. The zero-order 

model simply extracts the mean value of the signal in the region. The first-order 

model extracts a mean value and a fixed gradient across the region, hence there 

are three parameters. The second-order model extracts the following coefficients 

to describe the signall(x,y): 

1(x,y) = ax2 + by2 +-cxy + dx + ey + f (3.1) 

Hence, -the zero- and first-order models simply set some of the above coefficients 

(a-j) to zero. The most appropriate model is then chosen by finding the minimum 

error associated with each polynomial surface approximation, such as the MSE, 

and considering the transmission restrictions on the system. The drawbacks to 

using this system, apart from descriptive accuracy, are that the coefficients 

themselves are real valued, and often vary over many orders of magnitude [56], 
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which make the design of descriptive codes difficult. Because of the considerably 

higher overhead of the second-order model over both the others, in practice only 

a few regions from each frame can be described using a second-order model so 

that transmission costs can be kept low enough. Additionally, it is often found 

that the first-order model provides results which are only slightly more appealing 

visually than the zero-order model [56], but at three times the cost. 

Figure 3.1. Region taken from a segmented frame in the 

test sequence "Miss America". 
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Figure 3.2. Region taken from a segmented frame in the 

test sequence "Trevor White". 

Referring to the figures 3.1 and 3.2, it is apparent that the visible textures 

in each region will be completely lost by a second-order polynomial description. 

In order to model these features, the region model will have to take into account 

local variations as well as global ones. Recently, Julesz, Haralick and others have 

developed more sophisticated models of image textures, which show the promise 

of describing texture as a mosaic or repeated tile, with an associated skew or 

some statistical measure of variation. This type of region model is the subject of 

chapter 4. For the coder developed in this chapter, the investigation of a suitable 
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region model centred on the use of local-operator models such as pyramidal 

/ 

coders. It was noted by Kunt [27] that because pyramidal coders in general 

combine predictive and transform coding, that they are in fact hybrid first-

generation techniques. However, they possess a structure similar to that of the 

human visual system, so can be considered as belonging to both generations. 

There are two classes of pyramidal coders: the Laplacian pyramid of Burt 

and Adelson [57], and the quad-tree of Wilson [58], Tanimoto [59] and others. 

The pyramid or quad-tree forms a structure in which the image is represented at 

many resolutions, hence the "local" nature of the image varies within each layer. 

The quad-tree will be discussed at some length later in this chapter. The 

algorithm developed by Burt and Adelson [57] involves repeatedly extracting 

image Laplacians, by subtracting Gaussian low-pass filtered versions of the image 

from itself, saving a coarsely quantised Laplacian image and a half-resolution (in 

both x- and y-dimensions) low-pass image, then repeating the process until the 

lowest level of resolution has been reached. In order to reconstruct the image, the 

saved low-pass image would be interpolated to twice its size, then combined with 

the saved Laplacian, or "edge" image, then interpolated again, and this process 

would be repeated until the reconstructed image is the same size as the original. 

By conceiving the initial image as the bottom level of an image pyramid, then 

halving the resolution each time is analogous to progressing up the pyramid, with 

each higher cell containing a low-resolution description of the cells immediately 
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"below". Hence, the algorithm essentially involves the transmission of a series 

of error images at differing resolutions. There is evidence that the human visual 

system provides multiple-resolution filtered images from the retinal signal, hence 

this algorithm elegantly mimics this process. 

3.3. The Quad-Tree - Motivation and Use 

The motivation for the use of the quad-tree for region-coding is three-fold: 

1. The quad-tree has the promise of providing significantly more 

information than a parametric region model. 

2. The quad-tree structure is simple, which permits easier software 

and hardware design. 

3. The data to be coded are regions, which are assumed to possess 

few sharp discontinuities, i.e. the correlation coefficient between 

pixels is high. It is expected that few levels of the quad-tree would 

need to be transmitted in this case. 

Additionally, it is important to remember that we are seeking to successfully 

model and code image regions, not images themselves. The input to the coder 

will be a previously segmented image, hence there is no need to generate a 

complex, edge-rmding algorithm as part of the coder. 

The quad-tree is a hierarchical, or pyramidal, data structure, in which the 
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data resolution halves in both dimensions as we proceed "up" the tree. The "top" 
/ 

of the tree contains only one data value, or node. It is connected to four nodes 

at the next level going "down" the tree; these nodes are referred to as its 

children; it is their parent. The children are in tum each connected to four 

children one more level down, and so on until the lowest level in the tree, in 

which the nodes have no children. These nodes are referred to as the leaves of 

the quad-tree. Hence, if the tree is complete, i.e. all nodes except the leaves have 

four children, and there are ~ leaves, then there will be logiN) + 1 levels in the 

tree, so the levels can be numbered, from the base to the root, as O,1,2, •• m, .• ,n, 

where n equals log/i, and at level m, the quad-tree will have M nodes, where 

M equals 2" ... 

In order to generate a series of images at differing resolutions in the quad-

tree, the method is to assign the leaves of the tree the values of the pixels in the 

input image. We assume for now that the image is square, of side N. By 

assigning the parent of each group of four (2x2) leaves their average, and 

repeating at the next level, we arrive at the top of the tree where the root contains 

the average value of the whole image. It is interesting to note at this point, that 

if we are attempting to estimate the value of a node at level m, the best estimate 

(in a MSE sense) will always be the value of the parent node [58] (from the 

orthogonality principle [60]). Thus the best estimate is simply the average of the 

children. 
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3.4. The Use of Incomplete Quad-Trees 

It is apparent that the structure of the quad-tree is likely to be very 

different from that of an image region, which may be highly convoluted, such as 

the example shown in figure 3.3. In order to model and code the region, then, the 

quad-tree must be somehow fitted over the region. The only practical solution is 

to find the maximum orthogonal dimension of the region, which is supplied from 

the output of the segmentation algorithm, and centre the appropriately sized quad-

tree over the region, as shown in figure 3.4 (from McColl and Martin [61]). 

Referring to this figure, it is likely that the quad-tree will be incomplete. The 

averaging process, and hence the estimation algorithm, must be modified to take 

this into account. Hence, for any node in the quad-tree above the leaf level, i.e. 

at any levell> 0, the value can be expressed as 

1 1 

L L S1i+U).j+jj,l+l • t1i+jj).j +jj,l + 1 
- _uaO--=-jjaO_______ 1-1" 1 'AI 
siJ,l = 1 1 ' - tM, .. , og2" (3.2) 

L L t2i+ii).j+jj,I+1 
u-o jjaO 

where the bars indicate averages, and the denominator indicates the number of 

leaf nodes accessible from this node. 10,0,0 equals one or zero. This number then 

will always be a multiple of four if the tree is complete, but could be zero 

otherwise; in this situation, the upward averaging process must check before a 

division is attempted. This modified quad-tree structure must store at every node, 

as well as the average, the number of leaves below it. 
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Figure 3.3. Dimensions of highly convoluted region taken from 

segmented frame in test sequence "Trevor White". 

82 



16 

Figure 3.4. Centred quad-tree over region at various resolutions. 

Shaded boxes indicate the parts of the tree which are occupied at 

each of the specified resolutions. (Source: Mccoll and Martin [61]) 

3.S. Coding the Quad-Tree Data 

Once the quad-tree has been constructed by upward averaging, the region 

coding process can take place. This is normally a recursive process. Each node, 

from the root through its children and so on, is visited in tum. If a criterion, 

which is usually some error or distortion measure, is exceeded for that node, then 

each of its children will be visited and the process will continue, otherwise, this 

downward process will terminate at that node. The further the process continues 
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through the tree, the more data is likely to be generated. For any region, then, 

the amount of generated data should correspond with the complexity of, or 

activity in, the region. The simplest criterion is one in which the difference 

between the node and its children is found, and if this is zero, then the sub-tree 

with this node as its root is completely described by the node itself - all the 

descendants have equal values. 

3.6. Coding the Chromatic Content of the Region 

Since the topic of this research is perceptual distortions and in particular, 

colour distortions, it is important to compare the approach to coding colour region 

data found in the literature. Of the papers found, the RGB colour space was used 

for the coding, and the parametric model used was identical to that for the 

luminance. However, it is found in practice that a zero-order model is sufficient 

to provide acceptable results. Experiments conducted on images from the digitised 

test sequences bore out this statement. By contrast, the use of a zero-order model 

on the luminance in every region produces extremely unappealing results. In fact, 

the visual system is far less sensitive to colour changes than to luminance changes 

[62]. This is demonstrated by examples such as watercolour and ink paintings and 

children's crayon drawings, in which the sharp outlines of the scene are first 

drawn, then the enclosed regions are "filled" with the desired colour, using a 

colour "wash". This phenomenon is often explained as a demonstration that the 
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visual system removes the chromatic component from the visual stimulus early 
, 

in the pathway to the processing centres, and uses the achromatic signal alone for 

the scene segmentation. A corollary to this argument is that in most images, a 

change in pixel colour is almost always accompanied by a change in pixel 

luminance. although there has been research which indicates that colour changes 

without luminance changes may be important in some recognition tasks. 

Because the experience in this research indicated that an analogy to a zero-

order parametric model works well in reproducing the colour in image regions, 

this simple model was pursued. From the previous chapter, it is apparent that 

using the RGB triplets to provide an average colour value for the region will not 

provide the perceived average. The average chromaticity was found instead. In 

order to provide a reasonable approximation to the perceived average, the 

chromaticity chart used was either the CIE-UCS or MacAdam chart. Because of 

the inability of the MacAdam chart to preserve centre-of-gravity, the work 

centred on the use of a (u • ..., v .... ) chromaticity pair for each region. The coding 

of these data will be discussed further in this chapter. 

3.7. Threshold Coding of Quad-Tree Data - Image Contrast 

The data to be coded for the pixels in each region, then, were the 

luminance and chromaticity. Because the segmentation data is to be used to 
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provide the edges in the reconstructed image, it was important that the region 

coding produce a succinct region description which nonetheless provided 

considerably more region detail, and thence produced more appealing 

reconstructions, than the parametric region model at similar compression rates. 

The use of the quad-tree as the structure for the model meant that the coding 

process would be a function of the properties of the nodes and their descendants. 

Because it was found that the average chromaticity value for the region is 

generally sufficient to provide adequate colour in most reconstructed scenes, the 

contents of the quad-tree would be the luminance only, so the coding process 

should consider the perceived distortions introduced in incomplete transmission 

of the quad-tree. As mentioned earlier, the simplest criterion is whether a node 

exactly represents all those below it. In practice, this coding procedure is 

insufficient for high compressions, even for region data. Wilson [58] suggested 

that the compression available from the quad-tree alone is not sufficient for 

classical image coding. He proposed the u_se of a DCT on the image together with 

hierarchical coding, so that the quad-tree encoding operated on spatial-frequency 

data, with a quantised parent-child difference which terminated when this fell 

below a set threshold. Clippingdale and Wilson [63], using the quad-tree to 

provide image enhancement, used a recursive function of the node energy, or 

variance, at each level in the tree to provide the best estimate of the child and 

hence drive the parent-child difference function. The energy distribution will not 

be stationary through the tree, hence using the node energy alone is insufficient 
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to determine activity in the sub-tree. These schemes, however, are used on 

complete images and it must be remembered that regions are being coded here. 

Recall that the visual system has a linear response to image contrast. The 

Weber fraction definition [40] of image contrast C for a target of uniform 

luminance against a uniform background is 

C = AL 
L 

(3.3) 

where J1L is the increment or decrement of the target luminance from the uniform 

background luminance L. Some people have noted that this value is a constant, 

with reported values ranging from 0.01 to 0.15, depending on the experimental 

conditions. There is another formula proposed by Michelson [42], used to 

determine contrast C of periodic patterns such as sinusoidal gratings. It is defined 

as 

(3.4) 

where LIIfIU and L"'in are the highest and lowest luminance encountered in the 

sinusoid. Note that the contrast sensitivity of the human visual system is not a 

constant but is in fact a function of spatial frequency. The response is somewhat 

like a low-pass fIlter, with a small peak prior to the cutoff. The curve, as found 
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by Kelly [64], is shown in figure 3.5 (from Robson [65]). In this diagram, the 

relationship between contrast sensitivity and spatial frequency is shown for 

varying temporal frequencies (also measured in cycles/second). This means that, 

except for very low temporal frequencies, the observer is less sensitive to high-

frequency "noise" or image distortion than to errors which have a low spatial 

frequency. Returning to the choice of distortion criteria for visual fidelity, it is 

obvious that high frequency noise alone is liable to be less visible than low 

frequency noise, even if the MSE of the reconstructed image is the same in each 

case. 

The importance of minimising the perceived distortion in the image, or 

image region, leads us to find, for each node in the quad-tree, some threshold 

which correlates to a fixed perceived distortion. By using the Weber fraction, it 

seems that the potential visibility of the sub-tree can be determined for any node: 

if all the nodes below any node are perceived to be no different from it, then the 

coding process can terminate. In practice, what is required then is to provide the 

ratios 

1 max () -I 
(l,m,n) e ST,J,k S',m/t' - StJ,k (3.5a) 

and 
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(3.Sh) 

where STij,A; is the sub-tree whose root is Sij,A;, maxO is the largest value found, 

minO is the smallest value found and I I indicates that the magnitude is taken. 

If neither of these ratios is found to exceed the level at which this contrast will 

become just noticeable, i.e. 

lmax(s) -SJ < C's; lmin(s) -SJ < C's , (3.6) 

where c is the "just noticeable contrast" defined by Weber, then the transmission 

of region data can stop at this level in the quad-tree, otherwise the children must 

be similarly tested and so on. In order to avoid the recursion inherent in finding 

the maximum and minimum value in the sub-tree, these can easily be calculated 

as part of the upward averaging process. 

By using the Weber fraction as the threshold criterion, a slightly different 

approach is being taken to perceived brightness (and perceived brightness 

difference) than that of the previous chapter. Indeed, there is some argument over 

this issue, as has been discussed earlier in this paper. There will be further 

discussion about this issue at the conclusion of this chapter and in chapter five. 
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Figure 3.5. Visual contrast sensitivity curves as a function of spatial 

frequency, for temporal frequencies of 1, 6, 16 and 22 cycles/degree. 

(Source: Robson [65]) 
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3.S. Entropy Coding 

It was mentioned previously that the best estimate of any node in a quad­

tree is the parent node. This estimate is the best in the sense of generating a 

minimum MSE prediction error. When coding the region, it is obviously desirable 

to send or store as few bits as possible. As well as providing the best 

reconstruction of the region by removing the perceptual redundancy in the data, 

we also need to remove any statistical redundancy in the data. Entropy coding is 

used to remove statistical redundancy. 

The stream of data being sent or stored consists of a sequence of discrete 

data values, each value comprising a certain number of bits. If each possible 

group of bits is assigned a unique symbol b;, and there are N. symbols in the 

symbol alphabet, then a binary code can be devised for each symbol with the 

number of bits per symbol being the nearest integer larger than logiN,). Given 

the probability P{bJ of an occurrence of symbol b;, then if the probability 

distribution of the whole alphabet is not uniform, it is likely that some 

compression can be achieved, by using more bits for less likely symbols. The 

optimum number of bits for any symbol is given by the entropy of that symbol, 

which is defined as -logJP(bJ}. 

Entropy coding the data stream produces a codeword or codewords by 

combining the appropriate codes for each of the received symbols. If a technique 
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such as Huffman coding is used [66], this codeword is simply a concatenation of 

individual codewords selected from a previously calculated alphabet. The alphabet 

must be computed before the data can be coded, which in general means that the 

entropy coding will be a two-pass algorithm. The first pass generates the statistics 

which are used to calculate the codes; the second to construct the codeword. The 

alphabet must also be transmitted, introducing overhead into the entropy 

compression. As well as this, Huffman coding also suffers from the fact that an 

integer number of bits is required for each codeword; in general, then, the 

Huffman code for each symbol will be greater than the entropy of that symbol. 

In theory, if the entire sequence of input symbols were taken as a whole, then by 

fmding an alphabet to code all possible sequences of symbols, a Huffman code 

can be devised which would converge on the entropy as the concatenated 

codeword becomes large. However, this is clearly impractical as the number of 

possible multi-symbol sequences would be the symbol size raised to the power of 

the codeword size. One method of accurately approximating the entropy of a 

sequence is to use arithmetic coding [70]. This method is particularly effective 

if the symbols in the sequence are not independent. 

3.9. Arithmetic Coding 

In arithmetic coding, instead of forming the output codeword from the 

concatenation of the codewords associated with the input symbols, the output is 
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a single fraction between 0 and 1 which, in the limit, equals the combined 

probabilities of the complete sequence. The work by Rissanen and Langdon [67], 

and Mitchell and Pennebaker [68,69] at ruM during the 1980s has shown that a 

number of practical problems associated with arithmetic coding are tractable. This 

has made arithmetic coding more attractive as a tool for the removal of statistical 

redundancy. The problems are the infinite precision problem, which requires that 

the precision (in bits) of the output codeword is unknown until all the data has 

been read; the carry over problem, which involves the possibility of an arithmetic 

carry operation propagating through an arbitrarily long sequence of 1 's in the 

codeword; and the increasing precision problem, which requires that the precision 

required from the multiplication of two finite precision numbers is always higher. 

All these problems prevent the decoder from being able to start decoding the 

transmitted codeword until the entire sequence is received. The buffering and 

communication challenges presented were considered insoluble until the IBM 

results appeared in the literature. 

Arithmetic coding can be viewed as a process of repeatedly sub-dividing 

the real number line [0-1]. Initially the line is divided into intervals, .the width (A) 

of each interval representing the probability of each symbol, and the starting point 

of the interval being the sum of all preceding symbol probabilities. This starting 

point is used as the binary codeword (C) for the current state of the sequence. 

When coding a symbol, any binary value in the corresponding interval A, from 
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the starting point for that symbol to the starting point of the next symbol (but not 

including it), uniquely identifies the given symbol. When another symbol is to be 

coded, the line [0-1] is replaced by that part of the line occupied by the first 

symbol, a fraction, and subdivided by the alphabet once again, in the same 

proportion as before. Again, any point within the new interval, from the start of 

the new symbol to the start of the next, will uniquely identify the two-symbol 

sequence. An example of this is given in figure 3.6, in this case for an alphabet 

with symbols a, b and c, whose probabilities are 0.5, 0.25 and 0.25 respectively. 

Note that these probabilities correspond to the binary probabilities 0.1, 0.01 and 

0.01, which accumulate to 0.1, 0.11 and 1.0. In this example, the codeword C 

for the symbol pair bb will be 0.101 and the interval size will be 0.0001. 

The process of splitting the number line continues until the entire 

codeword is generated. The length of the interval associated with this completed 

process will be the product of the probabilities, i.e. P(i1,i1 .••• ,i,J, and hence the 

logarithm of this interval will be the entropy of the sequence. From this, a point 

can be found on the final interval, with r-loglA)l bits, where r 1 is the ceiling 

operator, which means "nearest integer greater than" and A is the interval size. 

The decoding process is simply the reverse, with the decoder using the boundaries 

it knows about to calculate the coded symbols. 
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Figure 3.6. Example or arithmetic coding ror tbree-symbol alpbabet. 

Probabilities are Pea) =0.5, Pcb) =0.25, P(c) =0.25. 

The obvious advantage of arithmetic coding over Huffman coding then is 

that the probability for the given sequence only is being calculated, rather than 

the probabilities for all possible sequences. Another important feature of the 

arithmetic coder is that, if the coder and decoder have attached statistics units or 

other knowledge of dynamic behaviour, then the various symbol probabilities can 

change, to reflect priori dependence, without affecting the coding or decoding 

algorithm. With Huffman coding, there would obviously be a need for many 

alphabets for this to be implemented. (Dynamic Huffman coding [71] does go 

some way toward solving this problem, but the algorithm is slow and the other 
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limitations of Huffman coding still apply.) 

3.10. The Binary Arithmetic Coder and Q-Coder 

If the alphabet can be reduced to two symbols [70], then the arithmetic 

coder is simplified to a binary arithmetic coder (BAC), which at every stage in 

the coding process has to code either a less probable symbol (LPS) or a more 

probable symbol (MPS) , with probabilities Q and l-Q, and associated starting 

positions on the [0-1] line of 0 and Q respectively. The calculations required to 

create the codeword are simplified, and by modifying Q at every stage to take 

account of the changing signal statistics, the coder can be made to follow the local 

entropy of the symbol sequence. Thus input symbols are rendered as binary 

events by constructing a binary tree for the alphabet, with number of leaves equal 

to the number of symbols. Moving through the tree to reach the leaf associated 

with a particular symbol involves repeated selection of a MPS or LPS, which is 

the input to the BAC. 

The problems which the mM team solved involved the infinite precision 

required of the interval A on the number line and the increasing precision 

required when A is multiplied. By truncating the result of multiplication, the 

compression is reduced, but the increasing precision problem is solved; by 

"windowing" the precision of the current interval to a fixed number of bits, and 
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by "stuffing" additional bits from time to time if a series of Is are encountered 

(to prevent a carry greater than the length of the window), the infinite precision 

problem is solved. 

Additionall y , Mitchell and Pennebaker designed aD PCM -coding algorithm 

which they called the Q-coder [68,69], in which the coder and decoder, working 

in synchrony, need not perform multiplications of cumulative probabilities and 

intervals. By detecting when the "local" interval gets too small, each unit left 

shifts the interval A, thereby multiplying by two. These simplifications reduce the 

operations required to create the codeword from a maximum of two high­

precision multiplies and an addition, for an event in the general arithmetic coder, 

to at most two additions, for a LPS/MPS bit in the (BAC) Q-coder. 

The importance of the arithmetic coder's ability to easily code changing 

statistics is its attraction as far as this study is concerned. For the Q-coder, a 

fixed set of possible probabilities are used as a lookup table to drive the estimate 

Q., a measure of the current LPS/MPS ratio. This value will change to keep track 

of the local ratio of LPS to MPS events. Because the Q-coder renormalises every 

time the interval A drops below a fixed value, then if the chosen event which 

causes this renormalisation is an LPS, the coder assumes that the estimate Q. is 

too low, so the next higher value of Q. is selected and the coder begins to receive 

LPS decisions. If this continues, then at some point another renormalisation will 
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occur, and the previous ~ will be selected. In this way, the coder tracks the local 

entropy of the signal. By choosing many different ~ values for different nodes 

in the binary tree for the symbol alphabet, which are known as contexts, the 

c~er can dynamically track the entropy associated with each node, and hence the 

entropy of the signal as a whole. The design of the table of ~ values can be 

made to reflect the granularity of the signal statistics and its general shape, e.g. 

Laplacian or Gaussian. 

3.11. Region Coding - Quantisation 

Once the quad-tree is constructed, the tree traversal, with each node tested 

to see if it meets the perceived distortion criterion, will result in production of 

quantised parent-child differences. The root node is coded separately. The 

distributions of the quanti sed parent-child differences for all of the regions of a 

selected frame from each of the three test sequences are shown in figures 3.7, 3.8 

and 3.9, on a y-axis log-scale, for a contrast threshold value of 0.01. The 

horizontal axis is in integer multiples of c (All indices with entries of 1 are also 

shown.) As we expect, the distribution is Laplacian in each case. Because of the 

ability of the Q-coder to adapt to local entropy changes, the quantiser can be 

linear. The quantiser form qO used here is 
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q(~Y,Y,c) = int( ~Y +0.5), 
c·y 

(3.7) 

where Y is the value of the parent, ~Y is the magnitude of difference between the 

pfITent and the child, C is the Weber fraction, and intO generates the nearest 

integer less-than-or-equal-to the argument. This quanti sed value is then used to 

provide an error of the value of the child node if traversal continues. The 

"quantised" child estimate is 

(~Y+Y)q = (q(~Y,Y,c)·c+l)·Y. (3.8) 

In these equations, the sign of ~y is saved and used to select which codeword to 

select. It must be included when calculating (3.8). 
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Figure 3.7. Distribution of Parent-Child Differences for all 

quad-trees constructed from a segmented frame from the test 

sequence "Miss America". The threshold c was 0.01. The vertical 

axis is log-scale. The horizontal axis is multiples of c. 
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FIgUre 3.S. Distribution of Parent-Child differences Cor aU 

quad-trees constructed from a segmented frame from the test 

sequence "Split Screen". The threshold c was 0.01. The vertical 

axis Is log-scale. The horizontal axis is multiples of c. 
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Figure 3.9. Distribution of Parent-Child Differences for aU 

quad-trees constructed from a segmented frame from the test 

sequence "Trevor White". The threshold c was 0.01. The vertical 

axis is log-scale. The horizontal axis is multiples of c. 
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The integer difference value, which is actually a multiple of the Weber 

fraction, is generally in the range -16 ~ qO ~ 16, so a 5-bit quantiser is used 

as the structure of the context tree for the Q-coder. At lower levels in the tree, 

a 4-bit quantiser can be used effectively because the parent-child differences tend 

to zero at successively lower levels in the tree. 

Empirical experience with the coder indicated that at the leaf level, there 

are occasionally severe distortions in the approximate child values which 

generated unappealing features in the reconstructed images. By doubling the 

resolution of the coder at levell, this was greatly reduced. The equation at level 

1 was 

. 2'('Y 
ql«('Y'Y'c) = mt(-- +0.5) . 

c'Y 
(3.9) 

It was observed that this extra accuracy at level 1 increased the Q-coder output 

by less than one percent while improving the perceived quality of the 

reconstructed images. Note that occasionally the value sent to the 4- or 5-bit 

quantiser will actually exceed the range allowed and a flag of some sort must be 

sent to the Q-coder. By providing a separate context for this eventuality, which 

rarely occurs, the compression achieved generates very few bits. It is restricted 

by how small the (L estimate in the Q-code is allowed to go. This behaviour also 

OCcurs at the beginning of the region coding, in which the root itself is checked 
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to see if it is representative of the entire tree. 

Traditionally, extra bits must be sent to the decoder to indicate when the 

tree traversal is complete, i.e. when a node meets the criteria described above. 

However, the ability of the Q-coder to follow local entropy means that instead of 

signalling the termination of the traversal, a zero difference value can be sent 

instead, leading to many more bits sent to the Q-coder, but fewer bits sent to the 

decoder, because the flagging mechanism may be completely removed from the 

algorithm. There is no need to signal that the edge of a partially complete quad­

tree has been reached because both the decoder and the coder have access to the 

edge map and therefore to the region shapes. 

3.12. Discussion of the Coding Process 

The complete coding algorithm is shown in figure 3.10. It is apparent that 

the entire frame is processed before any data is sent to the Q-coder. This is 

necessary in order to create the segmentation, which drives the region coding and 

decoding. The segmentation algorithm involves a number of steps. The image is 

frrst filtered to ensure that it is differentiable. This is necessary because the initial 

edge pixels are extracted using the Canny edge detector [72]. Contours are then 

extracted, closed and thinned to provide a complete edge map enclosing discrete 

regions, which are then numbered in a defined order. This work was carried out 
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by a team at the GEC Hirst Research Centre in Wembley. The references to this 

procedure can be found in [56] and Canny's algorithm is originally found in [55]. 

The shaded boxes in figure 3.10 therefore indicate steps which have been 

performed separately from the rest of the coding process developed in this 

chapter. 

The colour compression, or rather the compression of the two chromatic 

signals, is considerable because only a single pair of chromaticities need be sent 

for each region. This technique of assuming the modulation of the luminance 

signal by a single chromaticity vector is a high resolution analogy to the "colour 

washing" process used to add colour to classic black-and-white films [73]. 

"Colour washing" is an apt term in some ways because in addition to describing 

the technique, it portrays the result, which tends to be a slightly "washed out" 

version of the original. What this means of course is that the saturation is 

decreased; colours all take on a more neutral appearance. This is not at all 

noticeable in general. By finding the lowest values and the range, the quantisation 

for this part can be 3- to 4-bits per ordinate per region. The shape of the 

distribution varies, but is often approximately Gaussian. 
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Figure 3.10. Flow diagram of the region coding algorithm. The 

shaded boxes marked "Edge Detect" and "Edge Map" Indicate steps 

which were not performed by the algorithms developed as part 

of this thesis. (Source: McColl and Martin [61]) 
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Rather than encode all regions with a quad-tree, all regions with fewer 

than "LPIX" pixels (see figure 3.10) have only their averages coded. 

Experiments indicate that this number should be around 16. The variation in 

reconstruction quality can be large, especially if there are a lot of small regions 

around an object of importance such as a face. 

For the coder described here, approximately 1000 contexts were used to 

drive the Q-coder. The statistical variation between levels of the binary LPS/MPS 

tree for the 4- and 5-bit tree coders and the chromaticity coders tend to be 

pronounced, and experiments with smaller numbers of contexts generated poorer 

compressions. The Q.. table used is the one derived by Mitchell and Pennebaker 

for their DPCM experiments. 

3.13. Decoding the Compressed Data 

Decoding is predictably the reverse of coding. The edge map is received 

initially from the Q-coder, or other entropy coder. Compression rates for the edge 

map are on the order of 0.1 bpp [74] (i.e. 0.1 x 65536 pels), and there are 

usually 8000-10000 edge pixels. The decoder can then construct the region layout 

and build quad-trees when necessary. If the decoder detects that a given region 

is sufficiently energetic to need a tree traversal to reconstruct the pixels, then the 

nodes are visited in tum, and the predicted value is calculated from the parent and 
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the quanti sed difference. Because all parent-child differences are transmitted, even 

zeros, in order to exploit the Q-coder behaviour, then the tree traversal cannot 

stop when a zero difference is received, otherwise the synchronicity between 

coder and decoder may be lost. This means that extra compression is gained at 

the expense of a longer decoding cycle per region. 

Once the luminance data is reconstructed from the decoder and the (u" v,) 

relative chromaticity offsets are added to the local "origin", the reconstructed 

(UVW)f triplets are found from simple equations similar to (2.5) and (2.6), i.e. 

(U+Y+W) = 
2SS·Yq (3. lOa) q v

f 

U = 
Vq ,U+Y+W)q (3.l0b) q 2SS 

Yf = Yf ' (3.l0e) 

and 

W = 
(2SS-u

f 
-v ~,U+Y+W)q (3.l0d) q 2SS 

and the equivalent (RGB)f vectors can be calculated by matrix multiplication. 
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3.14. Edge Reconstruction 

Now that the region data has been reconstructed, there remains the task 

of choosing suitable pixel values for the edge pixels, whose values are not 

transmitted. Typical schemes involve choosing the average of the pixels around 

the edge pixel [56], or alternatively generating pixels which emphasise an effect 

such as seen in Mach bands, in order to make the resulting image seem 

adequately sharp. Consideration can also be given to the use of an operator which 

behaves differently depending on the region activity, so that reconstructed data 

such as faces do not end up becoming "blocky", as may occur with simple 

averaging. In practice, however, the results of using a simple averaging were not 

perceptibly different from more time-consuming algorithms, so this scheme was 

used. Often, random noise is added to the reconstructed image after this stage in 

order to dither the image and thus break up any severe contouring introduced by 

the edge synthesis. Because of the interest in perceptual distortion and its 

parameters, postprocessing by noise addition has not been performed in this 

study. 

3.1S. Smoothing of Quad-Tree Aliasing 

One important drawback of using quad-trees for region reconstruction is 

the aliasing introduced by the upward averaging process. After reconstruction, 

this aliasing is seen as a blockiness in the image, with the block size dependent 
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on the level in the tree at which the greatest aliasing occurred. There are two 

ways to overcome this problem, both based on Clippingdale's method [63] of 

adding extra nodes to the quad-tree structure. These nodes can be called 

"phantoms" because they do not form a quad-tree themselves but rather straddle 

the boundaries between the artifactual "blocks" in the reconstructed images. The 

number of extra nodes in the tree is given from the following. At level I in the 

tree (lslsn-l), in which there are, from before, Z,,-I)l original nodes, there are 

(2"-l-1J' phantom nodes added; these lie between four original nodes, as shown in 

figure 3.11, which also illustrates the upward averaging process described in the 

next paragraph. The children of these nodes are simply the four original nodes 

closest vertically to this one at the next lowest level in the tree. Rather than 

having a single parent, though, these children instead have four different original 

parents. 

The upward averaging proces~ involves assigning a phantom node the 

average of its children in the normal fashion (see figure 3.11). Proceeding from 

the root down the tree to the leaves, then, the assignment of the children is 

modified, for the simple case of a complete tree, to 

- -
sJ..l .. +PJ..l .. 

2·2.... 1·1 .... (3.11) 

2 

Because the tree may not be complete, this equation is modified to a form similar 
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to (3.2), i.e. 

SlJ~ = 
i'l ·t, 1 + PI 1 .q I 1 - ~+1 -, ~+l -, ~+1 -, ~+l 

2'2 2 2 2 2 2 2 

til +Q'l -, ~+1 -, ~+1 
2 2 2 2 

(3.12) 

where Q represents leaf coverage in a similar manner to t. Figure 3.12 illustrates 

the interpolation process on descent of the quad-tree. 

s s 

Figure 3.11. D1ustration of phantom nodes in the quad-tree and their 

assignment in the upward averaging process. 

(Source: McColl and Martin [61]) 
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FIgure 3.12. lliustration of the role of phantom nodes in the 

downward interpolation on the quad-tree to reduce aliasing. 

(Source: McColl and Martin [61]) 

A problem which immediately arises from the formulation given above is 

the situation in which either the number of nodes covered by the original nodes 

is much smaller than that covered by the phantom, or vice versa. This situation 

can often occur at nodes near region perimeters. In this situation, the best solution 

has been to adopt the use of (3.11). 
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The two solutions involve the use of the phantom nodes in the coder and 

decoder. The first solution is to encode and transmit both the original and 

phantom nodes by modifying the coding algorithm. This solution is inadequate to 

remove the blocking effect however, because the effect is more pronounced in 

regions for which only a few levels of the tree are received by the decoder. 

Hence the second solution. The algorithm is as follows: 

1. Generate the decoded quad-tree as before. 

2. Perform a further upward averaging process at the decoder in order to 

create the phantom nodes through the tree. 

3. Perform a further downward traversal, but instead of using only 

original nodes to generate the children, use (3.12). 

The result of using this simple modification, which requires no transmission 

overhead at the coder, is a considerable reduction of the block artifacts. Often 

they are not visible in any way. It should be noted however, that this is simply 

a smoothing operation to remove an objectionable artefact; as such, extra noise 

is in fact being introduced to the reconstruction process, in a way that leads to a 

more appealing result to the observer. 
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3.16. Test Results with Varying Compression and Reconstruction 

Quality 

In the test images that follow, the parameter used to control the coding 

process was simply a constant, the "just noticeable contrast difference" threshold, 

c. The value was adjusted in order to reduce the number of transmitted bits or 

conversely increase the reconstruction qUality. A discussion of this parameter will 

follow the results. The complete decoder flow diagram is shown in figure 3.13. 

Figures 3.14. 3.15 and 3.16 show the original test images used to drive 

the region coding algorithm. The edge maps corresponding to these images are 

shown in figures 3.17, 3.18 and 3. 19. These maps were generated by the GEC 

research group [56]. Table 3.1 provides the various statistics generated as the 

parameter c was adjusted. In column five of the table, the "Bit Rate" value 

reflects the compression achieved from coding the region data alone, by dividing 

the "Q-Coder Bits Out" values by 65536. The true transmission cost for the 

whole frame can be approximated by adding 0.1 or so to this value. 

The experimental conditions under which all the reconstructions were 

viewed were the same as those used in the previous chapter. These are described 

in appendix A. 
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Figure 3.13. Flow diagram for the decoder algorithm. The shaded box 

marked "GET TIlE EDGE MAP" is not included in the decoder 

implemented as part or this thesis. 

(Source: McColl and Martin [61]) 
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Figure 3.14. Original digitised frame from video 

codec test sequence "Miss America" used to 

generate edge maps and region data for codec algorithms. 
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Figure 3.1S. Original digitised frame from video 

codec test sequence "Split Screen" used to 

generate edge maps and region data for codec algorithms. 
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Figure 3.16. Original digitised frame from video 

co dec test sequence "Trevor White" used to 

generate edge maps and region data for codec algorithms. 
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Figure 3.17. Edge map computed for frame from test sequence 

"Miss America", for use in region coding. Corresponding 

original frame Is shown in figure 3.14. 
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Figure 3.18. Edge map computed for frame from test sequence 

"Split Screen", for use in region coding. Corresponding 

original frame is shown in figure 3.1S. 
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D 

Figure 3.19. Edge map computed Cor Crame Crom test sequence 

"Trevor White", for use in region coding. Corresponding 

original frame is shown in figure 3.16. 
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Image c Raw Q-Coder Bit Rate Figure 

Sequence Value Bits Out Bits Out (bpp) Shown 

Miss 0.06 330046 67090 1.024 3.20 

America 0.08 322919 44512 0.679 3.21 

0.10 318730 32347 0.494 3.22 

Split 0.06 327156 65194 0.995 3.23 

Screen 0.08 323445 50224 0.766 3.24 

0.10 318607 39902 0.609 3.25 

Trevor 0.08 322171 84114 1.284 3.26 

White 0.10 312738 62014 0.946 3.27 

0.12 307028 48108 0.734 3.28 

Table 3.1. Coder Statistics for Various c Values 

For each of the entries in table 3.1 there is a corresponding reconstruction. 

For the "Miss America" and "Split Screen" sequences, the reconstructions, for 

c values of 0.06.0.08 and 0.10, are displayed in figures 3.20, 3.21, 3.22 ("Miss 

America"), 3.23, 3.24 and 3.25 ("Split Screen") respectively. For the "Trevor 

White" sequence, the reconstructions using c values of 0.08, 0.10 and 0.12 are 

shown in figures 3.26, 3.27 and 3.28 respectively. 
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Figure 3.20. Reconstructed frame from test sequence "Miss America". 

The contrast threshold value for this reconstruction was c=0.06. 

The total bit rate for all regions was 1.024 bpp. 
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Figure 3.21. Reconstructed frame from test sequence "Miss America". 

The contrast threshold value for this reconstruction was c=O.OS. 

The total bit rate for all regions was 0.679 bpp. 
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Figure 3.22. Reconstructed frame from test sequence "Miss America". 

The contrast threshold value for this reconstruction was c=0.10. 

The total bit rate for all regions was 0.494 bpp. 
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Figure 3.23. Reconstructed frame from test sequence "Split Screen". 

The contrast threshold value for this reconstruction was c=0.06. 

The total bit rate for all region pixels was 0.995 bpp. 

126 



Figure 3.24. Reconstructed frame from test sequence "Split Screen". 

The contrast threshold value for this reconstruction was c=O.OS. 

The total bit rate for all region pixels was 0.766 bpp. 
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Figure 3.25. Reconstructed frame from test sequence "Split Screen". 

The contrast threshold value for this reconstruction was c=0.10. 

The total bit rate for all region pixels was 0.609 bpp. 
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Figure 3.26. Reconstructed frame from test sequence "Trevor White". 

The contrast threshold value for this reconstruction was c=O.08. 

The total bit rate for all region pixels was 1.284 bpp. 

129 



Figure 3.27. Reconstructed frame from test sequence "Trevor White". 

The contrast threshold value for this reconstruction was c=0.10. 

The total bit rate for all region pixels was 0.946 bpp. 
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Figure 3.28. Reconstructed frame from test sequence "Trevor White". 

The contrast threshold value for this reconstruction was c=O.12. 

The total bit rate for all region pixels was 0.734 bpp. 
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It is apparent that the increase in bits required to adequately reproduce the 

"Trevor White" frame reflects the detail present. From the data, it is also 

apparent that for the results of this study, a figure for c of less than 0.08 seems 

appropriate in order to reproduce all the detail in the "Trevor White" frame. By 

contrast, the "Miss America" frame is adequately reconstructed with a much 

higher value. It is interesting to note that when comparing the results obtained 

from the "Miss America" frame and the "Split Screen" frame, coding the former 

at "low" c values generates more bits than does the latter, and vice versa at 

"high" c values. This behaviour is apparent when the various regions in each 

frame are studied. The activity in the large number of small regions in the face 

of '"Miss America" is such that as the contrast threshold ratio is reduced, the 

number of bits generated rises dramatically. As the threshold increases, however, 

. the large regions representing the curtain backdrop in "Split Screen" begin to 

generate a large number of pixels relative to the output from "Miss America". 

The behaviour shown in the table can be considered to be a reflection of the 

different perceptually oriented features in the coding-decoding algorithm. 

Although the "Miss America" results provided the highest compression 

factors, the large portion of the image occupied by the model's face, which is 

segmented into many small regions, leads to a blurred reconstruction at each 

threshold value. By contrast, the "Trevor White" results are much more "in 

focus", due to the smaller number of regions which comprise the model's face. 
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The impact of the segmentation should be considered when discussing the results; 

we cannot consider one component to the exclusion of the other. 

The results presented here are, I feel, a definite improvement over those 

found in other comparable literature, such as [51] and [52]. No other schemes 

which attempt to encode colour region data in a two-component model have been 

found in the literature, unfortunately, which limits the sort of claims one can 

make about the success of this method. 

3.17. Summary 

The use of a simple perceptually oriented parameter in a region-coding 

model has been demonstrated. The results vary in appeal and compression, 

according to image complexity. Because of this variation, the implication is 

that this parameter is either insufficient or improperly applied. In fact, as 

mentioned earlier, the visual system has a varying contrast sensitivity in 

relation to the spatial frequency of the signal being observed. At the very least 

this means that the value of c should be increased toward the bottom of the 

quad-tree to take into account the likely increase in the rate of variation 

between averaged pixels. The incorporation of this minor modification can be 

easily incorporated into the algorithm; the "perceptual difference" value would 

be modified to a level-dependent value c=c(l). A further incorporation which 
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would not be difficult to add is the "bath tub curve" that the Weber fraction 

traces; at high and low intensities, the nominal value increases considerably 

(see Stevens [45]). What is ideally required however is a measure of spatial 

frequencies in the given sub-tree, which would then modify c accordingly. An 

isotropic solution to this would be to find a spatial-frequency transform of the 

data and apply a threshold function to determine what energy will be lost at a 

given radial frequency. Unfortunately this procedure is impractical due to the 

convoluted shape of the region, which effectively imposes a severe windowing 

effect on the resulting spectrum. This effect will be discussed further in the 

next chapter. Further improvement in compression and image quality may also 

be gained by considering monitor gamma and its interaction with the visual 

system and incorporating these factors into the expression for the threshold 

parameter. In chapter two, a linear relationship seemed to be occurring. It is 

likely to be more complex than that, but the net effect may be that the 

threshold parameter can be better expressed as a combination of 11 y and 11 Y. 
Y 
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Chapter 4. Textures - Analysis and Synthesis 

Part of this study involved an investigation of image texture, with a view 

to synthesising all or part of a colour image from some succinct description of the 

image derived from an analysis of the textures found in the image. Given that, 

from before, we have a set of images which have already been segmented in some 

way, this chapter is concerned with the possibility of extracting and transmitting 

some simple repeating pattern or set of parameters which can be used to 

synthesise the regions at the receiver. There has been much research into the 

understanding, measurement and manipulation of textures. Despite all this work, 

the definition of texture is rather tenuous, being more easily described in terms 

of its functional properties than as an object or characteristic. Texture is defined 

by Faugeras [75] as a "region property or feature of an image that characterizes 

the structural relationship within the region.· Others are more able to describe 

what texture analysis can be used to achieve rather than what texture is per se. 

Hence texture analysis is used to classify images, to recognise a particular feature 

in an image, and of course to segment the image. Finally, what is of interest to 

this study is the 'filling in' of these textured areas in the reconstructed image by 

performing a synthesis of the original texture in such a way as to be visually 

pleasing (or at least acceptable). 
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This chapter involves the development of an algorithm which is designed 

to synthesise, in an fashion which leads to an appealing result, regions within the 

test sequences described before in which there is an identifiable texture. Particular 

emphasis is placed on the successes of two recent investigations found in the 

literature, and some comparisons are made between the compression and image 

quality achieved with the algorithm developed in this chapter, and that achieved 

by the algorithm in the previous chapter for similar parts of the example images. 

4.1. Texture Models - Statistical and Structural 

There are two main approaches to texture analysis. Davis [76] has argued 

that there are in fact three, but in his survey, the second and third categories 

. could be considered as sub-categories with a common ancestor. These are not 

presented in order of importance. Most of the early models of texture do fall into 

the first category so the order may be considered roughly chronological. 

4.1.1. Statistical Models 

Statistical models of texture involve the identification of global statistics 

such as moments (mean and variance); correlation measures are also used to 

provide a description of the texture. The use of Markov chains and autoregressive 

functions are used to provide a suitable "fit" for the texture from the original. 
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Iulesz [77-79] has contributed many papers in this area. He reported [77] that 

human subjects were unable to discriminate between synthetic textures with equal 

first- and second-order statistics or moments, but differing higher-order statistics. 

Counter examples have since proved that this is not always so, however. Iulesz 

more recently reported that in fact local features within the texture, which he 

named textons [79], were the basis for texture discrimination and that differences 

in the first-order statistics of the textons themselves was a sufficient condition for 

discrimination. Voorhees and Poggio [80] have reported an algorithm to identify 

and use such elements for segmentation of real images. There are few examples 

of such applications, however. 

The importance of second-order statistics of the texture density function 

implies that the autocorrelation function, which is the expectation of the second­

order density function of the texture, is a useful texture-measurement function. 

The use of the power spectrum, which is in fact the Fourier transform of the 

autocorrelation, is also used extensively in the literature. Pratt [81] notes however 

that no single statistical function on its own is sufficient as a textural descriptor. 

He also argues that Iulesz' original conjecture holds in the main. 

The Gray Level Co-occurrence Matrix (GLCM) (see Davis [76], 

Rosenfeld and Kale [82]) has been widely studied by Haralick as a texture 

discriminator and descriptor [83-85]. He has also called this the Gray-Tone 
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Spatial Dependence Matrix. The GLCM is a joint histogram of gray-scales which 

is an analogy to a correlation, emphasising patterns of gray-level variations about 

the diagonal axis of the local image. The dimensions of this structure grow with 

the size of the texture area and with the size of gray scale unfortunately, which 

limits its practicality in real images. Texture segmentation algorithms using the 

GLCM over windows in an image have been reported however [86]. There are 

many other statistical techniques which use similar devices to find a "direction" 

in which a given texture sample "lies" i.e. the orientation of the texture 

[76,87,88]. 

Another statistical approach to texture analysis is to model the texture as 

the result of filtering a random process [75]. Decorrelating the texture using 

"whitening" filters leads to an estimation of the generating process, and hence to 

the filter function. The whitening is performed on the autocorrelation function of 

the texture, or rather its Fourier transform, i.e. the power spectrum. 

Gagalowicz [89] has used the colour vision model developed by Faugeras 

[29] to generate colour texture fields using the same technique as that of Faugeras 

and Pratt and has shown that, for the Faugeras model, texture fields with the 

same second order statistics are indistinguishable, regardless of which primary is 

tested. There are no other colour texture analyses that the author has found in 'the 

literature. 
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4.1.2. Structural Models 

The structural approach to texture discrimination has been studied since 

the late 1960s. Hawkins [90] was one of the first to view texture as a regular or 

semi-regular placement of a 'primitive' over a whole region, so that the 

reconstruction resembles a mosaic, or tiling. The role of the texture primitive in 

texture analysis, description and also in texture synthesis has been researched 

extensively. Zucker [91,92] conceived of an ideal texture, composed of a single 

primitive, regularly repeated over the whole field; geometric transformations to 

each instance of the primitive could then be used to synthesise a "surface texture" 

as an approximation to the original. Rosenfeld et al. [93,94] have studied texture 

extraction and discrimination using various methods; they have studied various 

placement rules to provide for realistic synthesis. Gonzalez and Wintz [95] 

. contains a discussion of placement rules and the statistics used to derive them. 

Ahuja and Rosenfeld [93] proposed the concept of hierarchical textures, in which 

a primitive could itself be composed of other primitives, with the recursion 

extending to the pixel level. This concept is an analogy to the concepts of fractal 

analysis that have become popular recently. Burt et al. have proposed hierarchical 

texture segmentation schemes based on a pyramidal structure which was discussed 

in the last chapter [96]. Spann and Wilson [97,98] have used the quad-tree as a 

structure on which to segment textures. Their algorithm integrated structural and 

statistical information which drove the segmentation process down the tree. 
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4.2. Two Recent Approaches to Texture Synthesis 

Two very recent approaches to texture discrimination and synthesis will 

be discussed in more detail. Elements of both of these schemes have been used 

to synthesise region data using the test sequences described throughout this 

document. 

Volet [99] has used a concept of textures similar to that of Zucker; he 

considered textures to be formed from a quasi-periodically repeated primitive over 

the whole region. His synthesis method involved tessellating the texture into a 

number of small squares. Within each square autocorrelation, median filtering and 

peak retention are computed to provide the identification of a primitive. 

Ensembles of the primitives from each small square are used to generate the ideal 

primitive, and affine transforms [100,101] are derived to supply the local dilation 

and rotation needed to synthesis the texture over the dimensions of the original 

in a smoothly varying manner. The synthesised results are very close to the 

originals; however, the data used are square regions, with edge dimension much 

larger than the period of the texture. In practice, such as in the data used in this 

study, the regions are rarely square and the texture primitives may be large 

compared to the region. 

Franke [102-104] uses an approach similar to that of Pratt and Faugeras 

in order to synthesise non-rectangular textured regions. He takes the power 
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spectrum from an arbitrary textured region, and iteratively deconvolves the 

texture from the window envelope. His algorithm works iteratively, extracting the 

largest spectral pair from the DFf of the autocorrelation over the region, 

reconstructing the texture with a filter controlled by the extracted spectral lines, 

applying the reverse transform, subtracting and then repeating. Eventually a 

texture is synthesised, represented by a fixed number of spectral lines in the 

spatial-frequency, which provides an acceptable approximation to the original 

over the region. His results, like those of Volet, are appealing, but the 

computation required to generate them is expensive, often involving tens of 

iterations and forward-reverse transform sequences. 

4.3. Texture Synthesis for Colour Data Compression 

From the last chapter, the regions which required the most transmitted bits 

were ones in which there was high activity. This activity measure correlates well 

with texture that appears to be constructed from a quasi-periodic pattern, such as 

the shirt and the curtain in the "Trevor White" sequence. The goal of texture 

synthesis within this part of the study is essentially one of fmding an alternative 

region description in situations where the compression of the texture achieved by 

the quad-tree was considered insufficient. Because of Volet's success in 

synthesising "regular" textures similar to those discussed above, the use of 

autocorrelations was investigated initially. It should be noted that both Volet and 
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Franke investigated achromatic textures only. In this study, the use of colour in 

the texture synthesis was restricted to the methods used in the last chapter; a 

single pair of co-ordinates were used to wash the synthesised achromatic textures. 

This method produced acceptable colour reproduction of the regions selected for 

synthesis. Colour textures will be discussed further in the concluding paragraphs 

of this chapter. 

4.4. The Autocorrelation Function as an Estimator 

There are two autocorrelation estimators found in the literature, known as 

biased and unbiased estimators. The biased estimator is defined as 

K-lkl-1 L-III-1 
E E x(iJ)'x(k+i,/+J) 

(k 1) l-o}-o cb ' • -.:..~----.:..~-----
K'L 

(4.1) 

and the unbiased estimator is defined as 

X-lkl-1 L-III-1 
E E x(iJ)'x(k+i,I+J) 

(k 1) l-o}-o cMb ' !I ---..:.~-:----:--:---

(K -Ikl)-(L-I/I) 

(4.2) 

where K and L are the x- and y-dimensions of the (rectangular) area of interest. 

Hence for a square area of side N, there are N2 
-( N; 1 r multiplications and 
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additions required to get the autocorrelation, biased or unbiased, i.e.O(N4
) 

calculations. The unbiased estimator, unlike the biased estimator, makes an 

allowance for the smaller number of coefficients in the summations as k and I 

approach the dimensions K and L respectively. The two are related by 

= K·L .c (k,l) Ic<K I<L 
(K-IIcI).(L-I/I) b ' , • 

(4.3) 

There is support for both these estimators in the literature (see, for example, 

Volet). This study will investigate the use of both in texture synthesis. 

4.5. Autocorrelation ~imates from Image Regions 

Volet, and Deguchi and Morishta [105] perform an autocorrelation over 

the entire data (or a large part of it) and use that signal as the basis for further 

processing. This method is quite practicable when the texture field is rectangular 

and the dimensions of the texture primitive are much smaller than the edge 

lengths. Unfortunately, in this study, the regions are the result of a prior 

segmentation, and these requirements cannot be met. Indeed, the regions are often 

not even convex polygons, being highly convoluted (as the perimeter follows a 

contour identified by the segmentation algorithm). The two assumptions which 

had to be made in order to perform autocorrelations on the data were: 
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1. It is possible to extract a rectangular area from within the 

region which is large enough to cover a multiple of the 

primitives in any direction from the centre of the selected 

rectangle 

and 

2. the primitive that is extracted from this rectangle is a reasonable 

candidate for semi-regular placement throughout the region, i.e. 

the autocorrelation calculated from this rectangle is a good 

approximation to that of the signal throughout the region. 

Once the candidate rectangle was found for the region, and before the 

autocorrelation was calculated, it was found to be necessary to contrast enhance 

the signal in order to improve the peak response. This process involved the 

following simple steps: 

1. Identify the maximum, minimum and average grey-level values 

in the candidate rectangle. 

2. Select the smaller of 255 -max and 
max-ave 

enhancement factor, F. 

3. Add F'Cpiul-ave) to each pixel. 

min 
ave-min 

as an 

The assumptions used in this enhancement are that ave" max+min and ave .. 128 , 
2 
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i.e. that the data were reasonably evenly distributed about the middle of the grey­

scale. This enhancement led to a much improved autocorrelation signal. The 

textures that Volet investigated in general produced so many peaks in the 

autocorrelation that he performed median filtering in order to preserve only the 

most pronounced; there were typically more than thirty peaks around the origin. 

The textures investigated in this study did not lead to this sort of signal richness. 

Indeed, there were usually too few peaks in the 2-d representative autocorrelation 

to enable extraction of a primitive to proceed. Stanger [106] suggested that I-d 

autocorrelations have a rich signal, and implementation of a series of these on the 

textures being investigated suggested that an alternative to Volet's general 

algorithm could be used to detect the primitive and determine the placement rules. 

4.6. Multiple Autocorrelations for Texture Synthesis 

The use of I-d autocorrelations along rows and columns within the 

candidate rectangle produced favourable signals with demonstrable peaks. By 

using a histogram of these signals over the rectangle and selecting the largest peak 

along the x- and y-axes, it was found that there was good agreement in many 

instances between the perceived texture primitive and the rectangle extracted from 

the histogram analysis. The use of both biased and unbiased estimators in these 

calculations demonstrated than in most instances the unbiased estimator performed 

far better than the biased estimator. At long correlation lags, however, as 
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(K-lkl)'(L-III)-+I, the unbiased estimator could often produce spurious signals. 

Note that, from a computational standpoint, the use of 1-d autocorrelations rather 

than 2-d reduces the number of arithmetic operations to 2N2 {N;l), or O(N3). 

4.7. Texture Primitive and Placement Rules 

Having extracted the peaks from his 2-d autocorrelations, Volet selected 

a number of these to determine basis vectors which describe the local periodicity 

' of the texture primitive. The rules of regular tessellations of polygons (see Fejes­

Toth [107], Lord and Wilson [108]), those deformations which leave a shape 

invariant, were then used to identify the shape of the primitive and the rules for 

placement. In order to identify placement rules for the primitive extracted from 

the histogram analysis used in this study, the autocorrelations of individual rows 

and columns had to be compared. Those in agreement with the ensemble from the 

histogram were considered to be the best choice. By selecting two rows and two 

columns, ideally placed as far apart as possible, and by cross-correlating their 

signals, the basis vectors could be extracted and hence the placement rules 

calculated. Figure 4.1 illustrates the entire process described above. Note that 

regular tessellations are not considered here because the only r~gular tessellation 

possible for a rectangle results in orthogonal vectors. By selecting basis vectors, 

two of them, which are not themselves orthogonal, the rectangle is deformed into 
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a parallelogram. Figures 4.2 and 4.3 then illustrate the placement rules associated 

with this algorithm and the typical relationship between any pixel in the region 

and the extracted primitive. It is apparent that there are eight parameters extracted 

from this algorithm, as well as the primitive: 

and 

the origin (x, y) and dimensions (width, height) of the rectangle 

containing the primitive 

the relative co-ordinates (x, y) of the two vectors which determine 

the placement rules. 
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Fi&nre 4.1. Diagrams of the various stages in the 

texture Identification and extraction or placement 

rules ror a region in the image. 
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Figure 4.2. Examples or the placement rules according to 

repetition vectors extracted rrom texture analysis 
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Figure 4.3. Relationship of pixel in synthesised region to 

pixel found in the texture primitive rectangle. 
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4.8. Test Results 

This algorithm was implemented on suitable regions from the test 

sequences used throughout this paper. The experimental viewing conditions were 

the same as those used for the experiments in chapters two and three and are 

described in appendix A. The following observations can be made, with reference 

to figures 4.4 and 4.5 which show real and synthesised textures in various regions 

from a frame of the test sequence "Trevor White". The resulting synthetic texture 

is similar in appearance to the original, but the regular placement of the texture 

is unappealing. The regions of this image which were synthesised are shown 

shaded in figure 4.6. The grey-scales of all the other pixels in the image are the 

same as in the original. In every region in the image, the chromaticity is averaged 

before reconstruction, as in chapter three. As well as the regular placement of the 

texture primitive, there is no variation of local mean grey-level throughout the 

region and rounding errors in the placement of pixels from the primitive lead to 

jagged boundaries between neighbouring placements of the primitive. 
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frame from test sequence "Trevor White". 

Figure 4.5. Synthesised textures using input from figure 4.4 

and the synthesis scheme described above. 
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Figure 4.6. Segmentation map or original rrame used ror region 

texture synthesis. Those regions in which the texture was 

synthesised are shaded. 
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Figure 4.7. DIustration of bilinear interpolation algorithm. 

Used by synthesis algorithm to find best-fit corner pixels. 
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4.9. Bilinear Interpolation for Improved Texture Synthesis 

The solution to the problem of fixed mean intensity in the placement of 

the primitive is to perform some interpolation process across the region, for 

instance bilinear interpolation, in order to add a smooth surface to the repeated 

"perturbation" that forms the primitive. If the region were rectangular, the 

solution would be straightforward. Once again, the region shape makes the 

algorithm more complicated. With reference to figure 4.7, which includes the 

general formula for bilinear interpolation, the solution is to find those four corner 

pixel values which lead to the least error between the true region data and the 

synthesised texture. By choosing as a distortion measure the visible difference 

threshold criterion used in the last chapter, 

lx-xl D(x,xj == ~ (4.4) 

and then using the method of least-squares to find the minimum mean square 

error (MMSE) of this distortion measure over the whole region R, the following 

equation results: 

(4.5) · 

where k is the index for the I-d array of the four corner pixels, and dkO is the 

distance coefficient for the estimated pixel value associated with the appropriate 
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comer pixel (the expectation is simply a division of both sides by the number of 

pixels in the region R). The left-hand side of (4.5) is a lx4 vector of summations, 

and the right-hand side is the product of a 4x4 and a lx4 matrix, which will be 

the solution for the comer pixels, Xk , (the summations apply to every pixel x(iJ) 

over R): 

(4.6) 

Inversion of the 4x4 matrix leads to the desired solution. 

Applying the bilinear interpolation alone to the test images produces a 

more pleasing reproduction of the texture, as can be seen by comparing figure 4.8 

with figures 4.4. and 4.5, at the expense of approximately four extra bytes of 

description. It should be noted that this solution is in fact not the preferred one; 

the denominator in equation (4.4) is normally the interpolated value, rather than 

the actual value. The use of the actual value as the denominator was required to 

make the minimisation tractable in matrix form. The regions which have been 

synthesised are also those which are shaded in figure 4.6. 

156 



Figure 4.8. Synthesised textures with bilinear interpolation in each 

region to provide variation of mean intensity level. 

The solution to the placement rule, the semi-regular rather than regular 

placement of the primitive in order to more accurately represent the texture data, 

is considerably more complex. The technique used by Volet was to derive an 

'ideal' texture from the ensemble of candidate primitives, and apply affine 

transforms from the ideal to the extracted primitives to calculate, for every pixel 

in the region, the appropriate pixel to use from the ideal primitive and hence 

generate a smooth variation in the synthesised texture throughout. Because in this 

study there is no ensemble of candidate primitives this technique cannot be used. 
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The alternative was to move the primitive around the selected point of placement 

and try to find the best agreement. Unfortunately this technique still does not 

allow for rotation and scaling effects. Rotation effects can be incorporated to 

some extent by simply testing rotated versions of the primitive to find the best 

local cross-correlation between the primitive and the original, but this is time­

consuming. More favourable results using this technique depend on developing 

suitable rotation and scaling algorithms . 

. 4.10. Cost Comparison of Region Compression Schemes 

Remember that the goal of texture synthesis in this study was a greater 

compression of high activity regions than that obtained from the region-coding 

algorithm developed in the last chapter, with a similar reconstruction fidelity. The 

cost, before entropy coding, of synthesising the regions described above will be 

sum of the following: 

1. The origin of the candidate rectangle, with respect to the origin 

of the region; 

2. The dimensions of the candidate rectangle; 

3. The two vectors that specify the placement rules; 

4. The best-fit comer pixels XO-X3; 

5. The mean value of the pixels in the candidate rectangle; and 
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6. The difference between each pixel in the candidate rectangle and 

the mean of the rectangle. 

The first five items listed above can be adequately expressed using 8- to to-bit 

quantities, and the pixel differences can be expressed using 4- or 5-bit quantisers, 

as were used in the last chapter. It is important, however, that the placement rules 

are coded exactly, otherwise spurious placement vectors may result. Consider 

figure 4.9, which shows two of the synthesised regions shaded lighter than the 

rest. These may be labelled Left of Trevor and Right of Trevor. For each of 

these regions, the dimensions of the candidate rectangle, and the resulting 

transmission cost, were significantly smaller than that generated by the quad-tree 

coder developed in the last chapter. Table 4.1 gives the approximate costs 

associated with each region. For the quad-tree coder, the numbers given reflect 

a contrast threshold value of 0.10, which was used previously (see table 3.1 and 

figure 3.27). The numbers for the synthesis algorithm are raw output; the use of 

entropy coding could be expected to reduce them by a further ten to thirty 

percent. For the region Right of Trevor, the cost is less than a fifth of that 

associated with the quad-tree coder; for the region Left of Trevor, this ratio . is 

less than 2 percent. 

Unfortunately, the compression rate that is achievable with this algorithm 

is directly dependent on the size of the candidate rectangle which is extracted. 
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Most of the regions which were synthesised required a much larger number of 

bits in relation to their size. In general, it seems that the more vivid the texture, 

the higher the compression that can be achieved. It is unfortunate then that so few 

of the regions found in the segmented test sequences used meet the criteria needed 

to apply this synthesis algorithm. 

Figure 4.9. Segmented image map highlighting two regions from 

the "Trevor White" frame used for texture synthesis. 

160 



Texture Primitive Approx Cost Q-Coder 

Region X-Dim and Y -Dim from Cost from 

Pixels Synthesis Quad-Tree 

Left of Trevor 17 xl 200 bits 15,687 bits 

Right of Trevor 15 x 29 2,290 bits 11,626 bits 

Table 4.1. Comparisons of approximate coding cost for texture synthesis of 

the two regions highlighted in figure 4.9 and for the entropy-

coded output from the quad-tree coder used in chapter three. 

(contrast threshold value is 0.10) 

4.11. Texture Synthesis from the Power Spectrum 

Franke proposes an algorithm which conceives of any textured region r(iJ) 

as the product a complete, rectangular image or texture, t{iJ) and a binary 

window function, w(iJ) , 

r(iJ) = t(iJ)·w(iJ) . (4.5) 

In the spatial frequency domain, the power spectrum R(u, v) is therefore the 

convolution of the spectrum T(u, v) with the spectrum of the window W(u, v), 
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R(u,v) = 7{u,v) * W(u,v) . (3.6) 

His algorithm iteratively computes the spectrum of the "current" windowed, 

rectangular texture, extracts the largest spectral pair which has not yet been 

considered; these are added to the new estimate of the deconvolved texture. The 

result is transformed back to the spatial-domain and so on, until a reasonable 

texture synthesis is achieved with a limited number of spectral pairs. 

The basis to Franke's algorithm was investigated as part of a possible 

solution to the texture synthesis problem. By simply retaining a few (ten or less) 

of the peaks found in the DFf of the 2-D autocorrelation, which is also the power 

spectrum, from selected squares of texture in the "Trevor White" image (curtains, 

shirt), the reconstructed texture was fairly appealing, even when the peaks did not 

lie on the orthogonal axes, i.e. when the spatial "direction" of the key textural 

feature or features was non-orthogonal to the vertical and horizontal axes. It was 

felt, ho~ever, that an iterative solution, which is required to deconvolve the effect 
- , 

of the window, was liable to be too time-consuming for teleconferencing 

applications. In fact, Franke has proposed this technique for archiving purposes 

rather than real-time applications. 
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4.12. Summary 

To summarise, the use of autocorrelations, histograms, texture primitives, 

placement vectors and interpolation techniques can in some instances lead to the 

successful synthesis of vivid textures such as were found in certain regions of 

segmented images from the test sequences. Unfortunately, however, the complex 

polygonal region shape complicates the identification of the primitive and the 

computation of the placement rules. In addition, the lack of provision for scaling 

and rotation components in the placement rules leads only to a regular placement 

of the primitive, rather than the quasi-regular or aperiodic placement strategy 

proposed elsewhere, hence the results are somewhat less appealing. Low pass 

filtering the synthesised texture to reduce the impact of such artifacts may be a 

solution but it is felt that this runs contrary to the goal, and the tendency to smear 

true edges is unlikely to improve the perceived qUality. 

The chromatic components were synthesised as per the scheme discussed 

in the previous chapter. The fact that a single pair of chromaticity co-ordinates 

co~ld be used to reconstruct accurately (from a subjective standpoint) the colour 

of the texture could be due to the fact that the achromatic textures synthesised 

were vivid, leading to a loss of sensitivity to chromatic errors by the visual 

system, especially if there is strong evidence of an achromatic distortion. 

163 



Chapter S. Conclusions 

Throughout this thesis, the important role of human perception in color 

image processing has been stressed. It is apparent that a reliable, automatic 

method with which to specify the quality of a reconstructed colour image, when 

it is compared with the original, has still to be found. It may not even be possible 

to specify accurately the quantity of colour image distortion in a way that agrees, 

in an exactly linear fashion, with our perception of it. Schemes have been 

presented in this thesis to quantise, encode and synthesise the content of typical 

colour images encountered in the somewhat restricted world ofvideoconferencing. 

I feel that the algorithms and results presented in chapters two, three and four 

have at least achieved the goal of an improvement on other algorithms reported 

in the literature, from the standpoint of perceived image quality versus the 

quantisation cost or compression ratios achieved. Of course, there are a number 

of P9ssible improvements which can be made to these algorithms. 
i 

\ 

In the next seven sections, I will first summarise the contents of, and 

algorithms developed in, each of chapters two, three and four, then I will briefly 

revisit particular points which were discussed in each of these chapters. I will 

mention the failings of the appropriate algorithms and the improvements that 
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hopefully can be made to these schemes. Some improvements may be 

implemented at little cost; others present considerable challenges, if the basic 

framework of the algorithm is to be preserved. Such future work that is discussed 

for this project will be included within each section. A final section will briefly 

discuss the future trends of video communications technology up to the end of this 

century. 

5.1. Summary of Chapter 2 - Quantisation of Colour Image Data 

In chapter two the aim was to develop an algorithm which would allow the 

quantisation of any digitised colour image in such a way that any distortions 

introduced in the image were such that the perceived distortion was minimised. 

MacAdam's geodesic was selected as a chromaticity space in which perceived 

colour difference is related to Euclidean distance on the geodesic. A clustering 

algorithm, the k-means test, was used to generate a relaxed solution to the choice 

of quanti sed outputs for luminance and chromaticity. Three variations on the basic 

quantiser design were compared for reconstructed quality. The Mean Square and 
.( 

Mean Absolute Errors (MSE and MAE) were calculated to relate the chromaticity 

distortions to subjective evaluation of the reconstructions. The final quantisation 

was 4.75 bits per pixel, or a compression ratio of approximately 6: 1. Original 

contributions in this chapter include the use of clustering, the design of the LUT 

and the distortion analysis. 
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5.2. Summary of Chapter 3 - Two-Component Colour Image Coding 

In chapter three I developed an algorithm to improve the compression and 

quality of those areas in digitised colour images identified as regions, areas of 

almost constant or slowly changing intensity, which are in tum separated from 

other regions by contours or edges, those points where the image properties 

change quickly. Rather than using a polynomial model for the data in the region, 

the algorithm developed from the use of a partially filled quad-tree, constructed 

from the luminance data in the region. A simple contrast threshold criterion for 

node transmission was developed, using the Weber fraction. The chromaticity 

data for the region was simply an average over the region, leading to a colour 

washing process at the decoder, wherein the reconstructed luminance values were 

modulated by the chromaticity to generate the resulting pixel colour. Arithmetic 

coding techniques were also employed to further compress the data transmitted 

as the description of each region. A number of segmented colour images were 

used to test the region-coding algorithm at various compression rates. The highest 

compression achieved from the test images was over 48: 1, at a rate of 0.494 bits 

per ~ixel. The original contributions in this chapter include the development of 

the quad-tree based region coder and the contrast threshold node transmission 

criterion. 

5.3. Summary of Chapter 4 - Textures: Analysis and Synthesis 

In chapter four, a structural and statistical description was sought of the 
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textures found in certain regions of the segmented images processed in chapter 

three, in order to provide further compression of the region data by a process of 

identification, extraction and synthesis of the texture in the region. 

Autocorrelation functions, the grey-scale histogram, contrast thresholding and 

bilinear interpolation were all used to develop a texture synthesis algorithm which 

could extract and repeat a texture primitive over a region of a segmented colour 

image. Comparisons were made between the costs of this scheme and the one 

developed in chapter three. The use of the power spectrum was also discussed as 

. an alternative signal space in which to develop texture synthesis. For certain 

image regions, compressions of more than fifty times that available with the quad-

tree region coder were achieved. The original contributions in this chapter include 

the development of the identification scheme for the candidate rectangle, the 

scheme to identify and tile the extracted region primitive and the algorithm to 

smooth the luminance variation by bilinear interpolation. 

/ 
5.4. Distortion Measure - The MSE and Human Perception 

~ 
It was reported in the introduction that probably the most common 

distortion measure used to compare processed images is the MSE. This measure 

is used because of its mathematical tractability, despite the fact that it is unlikely 

that the visual system is capable of performing the computations involved in the 

MSE, and that a single measure over an entire image does not in general agree 
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with perceived errors, which are local phenomena. Paugeras [29] argues that 

perhaps, of the three colour primaries, the one with the largest error should be 

used, or simply the summed absolute differences. Referring to tables 2.1 and 2.2, 

which compare the Mean Square- and Mean Absolute errors for the three 

quantisation methods developed in chapter two, there is a good agreement 

between perceived reconstruction quality and these measures, but it is hard to 

state unequivocally that the relationship is strictly linear. At best it could be 

described as monotonic. Limb certainly finds this trend with the RMSE [112]. 

I reported in chapter two that the use of the MacAdam geodesic as a 

chromaticity chart permitted the use of the MSE in a perceptually meaningful 

way. In fact, to calculate the Euclidean distance, we require the square root of 

this measure. As Watson [30] points out, the human visual system is unlikely to 

be capable of computing square roots, hence there must be a suspicion that the 

use of the MacAdam chart for quantitative distortion analyses is inappropriate. A 

suggestion that of course comes to mind is to take the reconstructed image in a 

colour jspace such as UVW or XYZ and use perhaps the MAE as a distortion 

measure. 

There is another factor involved in this discussion - that of aesthetics. 

Certain intended (or unintended) distortions present in reconstructed images may 

be perceived as being more visually appealing than others. This is a complex 
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phenomenon which inevitably occurs at the man-machine interface. Because of 

this facet to the problem, any future work on automated distortion measures must 

identify how much influence our sense of aesthetism has on making objective 

measurements. The influence of this factor is likely to increase with the severity 

of the introduced distortions. 

5.5. Sensitivity to Luminance - Logarithmic Relationships 

In chapter two a number of sources were quoted, who suggested that 

the visual system exhibits a linear sensitivity to a function of the absolute 

luminance which can be approximated by that of the natural logarithm. Faugeras 

[29] goes further and assumes that all three of the visual processes exhibit a 

logarithmic sensitivity to light at an early stage in the visual pathway. Yet the 

algorithm developed in chapter two used the absolute value of the achromatic data 

as the source to the clustering process. The reason for this was empirical; there 

was an observed improvement in the output of the quantiser when log-scale data 

were replaced by their absolute equivalents. Therefore as the clustering process 

was applied to the achromatic content of each image, minimisations were being 

found, in a Euclidean sense, over a histogram of absolute values. It has already 

been mentioned that the visual system is unlikely to be able to calculate Euclidean 

distances. Therefore, there is no more basis, from the standpoint of physiological 

plausibility, for running k-means tests on histograms of logarithms than on 

histograms of absolute intensities. 
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By using as the "just noticeable contrast difference" threshold the Weber 

fraction, which was introduced in chapter three, an improvement to the clustering 

algorithm may be achieved. By using this method, the distance of any particular 

index within the gray-scale histogram will be measured from each centroid by the 

ratio of their difference to the absolute value of one or the other - normally the 

denominator is the centroid. This would bring the quantisation algorithm into the 

same framework as the other algorithms implemented throughout this thesis. Such 

a modification would involve a minor alteration to the achromatic clustering 

algorithm and hence could be easily implemented. Further improvements to the 

threshold model should be incorporation of the asymptotic behaviour exhibited at 

very high and very low background intensity values. The effect of the 

experimental equipment, such as monitor gamma - which was not investigated in 

this research - should also be considered; this may provide an explanation for the 

achromatic clustering results in chapter two and also improve the contrast 

threshold model. This model will be discussed further in the next section. 

"'\ 
5.6. The "Just Noticeable Contrast Difference" Threshold 

In chapter three, the Weber fraction was used as a simple threshold 

operator to control quad-tree encoding of region data. The results of using this 

region coding algorithm were a definite improvement over those from existing 

region coding models, but it was observed that the Weber fraction is a poor 
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measure of the true contrast in a "real" image; indeed Peli and Goldstein [108] 

point out that it is hard to define the contrast in complex images, because contrast 

is a local phenomenon. In chapter four it was shown that computing the spatial-

freq~ency content of data contained in a convoluted, polygonal region is very 

difficult. With this information, it can be expected that the inclusion of a 

frequency-dependant function, such as that shown in figure 3.5, in the threshold 

operator, is not really tractable. This is not a fatal drawback, however, if it is 

borne in mind that the thresholding measurements are made on the relationships 

between nodes in the quad-tree. What is required instead is the development of 

some measure of region activity, using the data obtained from the nodes on the 

quad-tree, which may then be used to modify the behaviour of the thresholding 

process. It is easy, for instance, to find the "energy", or variance, of any node 

given the values of its children. 

In the absence of a more suitable modification to the threshold operator, 

then, the incorporation of high- and low-intensity asymptotes, together with an 

applied increment with decreasing level on the tree (as the coder descends to the 
1 
I 
I 

leaves), are simple modifications that can be implemented quickly and may be 

expected to provide some improvement in compression ratio and/or reconstruction 

quality. Increasing the complexity of this operator should involve a note of 

caution, however. Since the segmentation process, which is computationally 

intensive, has already created the regions, this data should be almost free of 
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discontinuity or rapid change; the region coder should not be attempting to do the 

job of the segmentation algorithm. There will always competition, and hence a 

tradeoff of this nature, involved in the two-component coder. 

s. 7. Texture Synthesis - Further Developments 

The results obtained from the texture synthesis algorithm developed in 

chapter four have, arguably, a limited impact as an improvement to the region 

coding scheme developed in chapter three. Only those regions in which it is 

possible to identify a simple, regularly repeated, primitive can be used on this 

algorithm, and only in the "Trevor White" sequence do such textures exist. This 

sequence is recognised as being at the high end of the scale of "coding difficulty". 

The results shown in table 3 .1. reflect this statement. 

It is unfortunate that the regions generated as a result of segmentation in 

the spatial domain cannot be easily transformed to yield spatial-frequency domain 

information. By computing the amplitude spectrum over rectangular areas of the 
/ 
~, 

curtain in the "Trevor White" sequence, experiments demonstrated that it was 

possible to reconstruct the texture accurately with as few as eight of the largest 

spectral pairs, or about ten per cent of the original signal energy. This scheme of 

course ignores the boundaries imposed by the segmentation, hence it is not 

practical within the framework of the two-component model. 
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Any future work on texture synthesis involving the basic algorithm in 

chapter four must include the development of semi-periodic placement rules to 

cope with scaling and rotation effects. I discussed how these effects may be 

identified in chapter four. The incorporation of this behaviour into the synthesis 

algorithm will allow a much more life-like synthesis. 

5.S. The Role of the Chromatic Component 

The aim of this thesis has been to investigate the role of the chromatic 

component in colour image processing, and in our perception of image content 

modified by such processing. The results presented in chapters two, three and 

four imply that we are considerably less sensitive to errors in the chromatic 

components of the reconstructions than we are to errors in the achromatic 

component. These events are not independent however; most combinations of 

achromatic and chromatic distortions will result in a. perceived colour distortion 

which, in tum, is not simply proportional to the superposition of the one on the 

other (as~uming we can represent both as scalars). Even if the two could be 

measured on a metric perceptual scale, the sum of such distortions over an image 

is still unlikely to agree with subjective tests in every instance, for the reasons 

given in section 5.1. 

What has been achieved in this project, I feel, is the development of a 
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technique for the compression of the chromatic information in colour images that 

effectively employs perceptual criteria to minimise observed image distortions. 

The main direction for the future work in this area should be in establishing the 

dependencies between introduced achromatic distortions, chromatic distortions and 

perceived colour changes that result from one or the other. In this way, the 

achromatic quantisation and quad-tree coding algorithms will be modified to 

incorporate feedback which modifies the chromatic quantisation and coding 

algorithms, and vice versa. 

5.9. Video Communications in the 1990s 

In the 1990s, we can look forward to schemes which provide reasonable 

quality video communications at transmission rates which are fractions of what 

has been reported in this thesis [110,111], but such algorithms, which model each 

image frame as a three-dimensional scene and incorporate concepts of artificial 

intelligence and advanced computer graphics, must first overcome a series of 

technical c?allenges. The increasing availability of ISDN services to commerce 

and the domestic consumer lends the development and commercial exploitation 

of low-cost video-communications an appropriate urgency, hence we may expect 

novel technical improvements to continue to appear. Overcoming the social 

challenges imposed by this technology is, of course, another story. 

174 



References 

[1] Young, T., Lectures on Natural Philosophy, Vol. 1, p. 440, 1807. 

[2] von Helmholtz, Treatise on Physiological Optics (The Optical Society of 

America) Vol. 2, pp. 145,235,240,412, 1924. 

[3] MacAdam, D. L., "Color Essays," J. Opt. Soc. Am., Vol. 65, No.5, pp. 

483-492, May 1975. 

[4] Judd, D. B., "Fundamental Studies of Color Vision From 1860 to 1960, II 

Nat. Acad. of Sci., Vol. 55, No.6, pp. 1311-1330, June 1966. 

[5] MacAdam, D. L., Sources of Color Science, Cambridge, MA, 1970. 

[6] Konig; A, "Die Abhangigkeit der Farben- und Helligkeitsgleichen von der 

absoluten Intensitat, II Sitwer. Akad. Wiss. Berlin, p. 871, July 20, 1897. 

[7] Hering, E., Zur Lehre yom Lichtsinn, Berlin, 1878. 

175 



[8] Wald, G., "The Receptors for Human Color Vision," Science, Vol. 145, 

No. 3636, pp. 1007-1017, September 4, 1964. 

[9] CIE (Commission Intemationale de l'Eclairage), Proc. 8th Session, pp. 

19-29, Cambridge, England, 1931. 

[10] Wright, W. D., "A re-determination of the mixture curves of the 

spectrum," Trans. Opt. Soc., Vol. 31, p. 201, 1929. 

[11] Guild,J., "The colorimetric properties of the spectrum," Phil. Trans. Roy. 

Soc. London A, Vol. 230, p. 149, 1931. 

[12] Grassman, H. G., "Theory of Compound Colors," Philosophic Magazine, 

Vol. 4, No.7, pp. 254-264, 1854. 

[13] MacAdam, D. L., "On the Geometry of Color Space," J. Franklin Inst., 

Vol. ~38, pp. 195-210, 1944. 
I r, 

[14] MacAdam, D. L., "Geodesic Chromaticity Diagram Based on Variances 

of Color Matching by 14 Normal Observers," Appl. Opt., Vol. 10, No. 

1, pp. 1-7, January 1971. 
./ 

176 



[15] MacAdam, D. L., "Projective Transformations of ICI Color 

Specification," J. Opt. Soc. Am. , Vol. 27, pp. 294-299, August 1937. 

[16] Anonymous, "Technical Note: CIE Colorimetry Committee - Working 

Program on Color Differences, " J. Opt. Soc. Am., Vol. 64, pp. 896-897, 

June 1974. 

[17] Kurz, B., "Optimal Color Quantization for Color Displays," Proc. IEEE 

Computer Soc. Con/. on Compo Vis. and Patt. Rec., pp. 217-224, 

Washington DC, 19-23 June 1983. 

[18] Munsell, A. H., Color Notation, Munsell Color Company Inc., Baltimore, 

Maryland, 1946. 

[19] Hurvich, L. M., and Jameson, D., "An Opponent-Process Theory of 

Color Vision," Psych. Rev., Vol. 64, No.6, pp. 384-404, 1957. 

'\ 
I 

[20] Ohta, Y-J., Kanade, T. and Sakai, T., "Color Information for Region 

Segmentation," Compo Graph. 1m. Proc., Vol. 13, pp. 222-241, 1980. 

177 



[21] Buchsbaum, G. and Gottschalk, A., "Trichromacy, opponent colors coding 

and optimum colour information transmission in the retina," Phil. Trans. 

Roy. Soc. London B, Vol. 220, pp. 89-113, 1983. 

[22] Max, J., "Quantizing for Minimum Distortion ," IRE Trans. Info. 

Theory, Vol. IT-6, No.1, pp. 7-15, January 1960. 

[23] Linde, Y., Buzo, A., and Gray, R. M., "An Algorithm for Vector 

Quantizer Design," IEEE Trans. Commun., Vol. COM-28, No.1, pp. 84-

95, January 1980. 

[24] Stevens, R. J., and Preston, F. H., "Data Ordering and Compression of 

Multispectral Images Using the Peano Scan," lEE Int. Con/. on Electron. 

1m. Proc., pp. 194-198, York, England, July 1982. 

[25] Lehar, A. F. and Stevens, R. J., "High-Speed Manipulation of the Color 

Chromaticity of Digital Images," IEEE Compo Graph. Appl., pp. 34-39, 
I. 
" 

February 1984. 

[26] Limb, J. 0., Rubinstein, C. B. and Thompson, J. E., "Digital Coding of 

Color Video Signals - A Review," IEEE Trans. Commun., Vol COM-25, 

No. 11, pp. 1349-1384, November 1977. 

178 



[27] Kunt, M., Ikonomopoulos, A. and Kocher, M., "Second-Generation 

Image-Coding Techniques," Proc. IEEE, Vol. 73, No.4, pp. 549-574, 

April 1985. 

[28] Schreiber, W. F., Knapp, C. F. and Kay, N. D., "Synthetic highs, an 

experimental TV bandwidth reduction system," J. SMPTE, Vol. 68, pp. 

525-537, August 1959. 

[29] Faugeras, O. D., "Digital Color Image Processing Within the Framework 

of a Human Visual Model," IEEE Trans. Acoustics, Speech and Sig. 

Proc., Vol. ASSP-27, No.4, pp. 380-393, August 1979. 

[30] Watson, A. B., "Efficiency of a model human image code, " J. Opt. Soc. 

Am. A, Vol. 4, No. 12, pp. 2401-2417, December 1987. 

[31] Stockham, T. G. Jr., "Image Processing in the Context of a Visual 

Model," Proc. IEEE, Vol. 60, No.7, pp. 828-841, July 1972. 
, 

[32] Stenger, L., "Quantization of TV Chromiriance Signals Considering the 

Visibility of Small Color Differences," IEEE Trans. Commun., Vol. 

COM-25, No. 11, pp. 1393-1406, November 1977. 

179 



I 
I 
I 
I , 
I 
I 

[33] Heckbert, P., "Color Image Quantization for Frame Buffer Display," 

Computer Graphics, Vol. 16, No.3, pp. 297-307, July 1982. 

[34] Lena, M. and Mitchell, O. R., "Absolute Moment Block Truncation 

Coding and its Application to Color Images," IEEE Trans. Commun., Vol. 

COM-32, No. 10, pp. 1148-1157, October 1984. 

[35] Wyszecki, G. and Stiles, W. G., Color Science, Wiley, New York 1967. 

[36] Durret, H. J., Color and the Computer, Academic Press, Orlando, Florida 

1987. 

[37] Fink, D. G. ed, Color Television Standards: Selected Papers and Records 

o/the National Television Systems Committee, McGraw-Hill, New York 

1955. 

[38] Mac8ueen, J., "Some Methods for Classification and Analysis of 
, 

Multivariate Observations," Proc. Fifth Berkeley Symp. on Math., Stat. 

and Prob., Vol. 1, pp. 281-296, 1967. 

[39] Pratt, W. JL, Digital Image Processing, Addison Wesley, New York, 

1984. 

180 



[40] Hecht, S., "The Visual Discrimination ofIntensity and the Weber-Fechner 

Law," J. Gen. Physiol., Vol. 7, p. 241, 1924. 

[41] Com sweet, T. N., Visual Perception, Academic Press, New York 1970. 

[42] Michelson, A. A., Studies in Optics, University of Chicago Press, 

Chicago, 1927. 

[43] Hunt, "Digital Image Processing," Proc. IEEE, Vol. 63, No.4, pp. 693-

708, April 1975. 

[44] Mannos, J. L. and Sakrison, D. J., "The Effects of a Visual Fidelity 

Criterion on the Encoding of Images," IEEE Trans. Info. Theory, Vol. 

IT-20, No.4, pp. 525-536, July 1974. 

[45] Stevens, S. S., "The psychophysics of sensory function," in Sensory 

Communication, (ed. Rosenblith, W. A.), MIT Press, New York 1961. , 

[46] Pearson, D. E., Transmission and Display 0/ Pictorial Information, 

Pentech Press, 1975. 

[47] Wright, W. D., The Measurement o/Colour, Hilger, London 1969. 

181 



[48] Camt, P. G. and Townsend, G. B., Colour Television - Volume 2, Iliffe, 

London 1969. 

[49] McColl, R. W. and Martin, G. R., "Compression of colour image data 

using histogram analysis and clustering techniques," lEE Electron. 

Commun. Eng. J., Vol. 1, No.2, pp. 93-100, March/Apri11989. 

[50] Young, T. Y. and FU, K-S. (Eds.), Handbook of pattern recognition and 

image processing, Academic Press, London 1986. 

[51] Mason, J. R. M., "Texture analysis for the purpose of low bit-rate digital 

image transmission and storage," lEE Int. Con/. on Electron. 1m. Proc., 

pp. 47-50, York, England, July 1982. 

[52] Kocher, M. and Kunt, M., "Image data compression by contour texture 

modelling," Applications of Digital Image Processing, pp. 132-139, 1983. 

\ 
, 

-, 
[53] Silverman, J. and Cooper, D. B., "Bayesian Clustering for Unsupervised 

Estimation of Surface and Texture Models, " IEEE Trans. Patt. Anal. and 

Mach. Intell., Vol. PAMI-10, No.4, pp. 482-495, July 1982. 

182 



[54] Marr, D. and Hildreth, E., Theory of Edge Detection, MIT Al Memo 518, 

1979. 

[55] Canny, J., "A Computational Approach to Edge Detection," IEEE Trans. 

Pal. Rec. and Mach. Intell., Vol. PAMJ-8, No.6, pp. 679-698, 1986. 

[56] Stanger, V. J. and Symons, A. E., "The Application of Image Analysis 

Techniques to Low Bit Rate Coding of Color Video-Conferencing 

Sequences," GEC Hirst Research Centre Report, Wembley UK 1987. 

[57] Burt, P. J. and Adelson, E. H., "The Laplacian Pyramid as a Compact 

Image Code," IEEE Trans. Commun., Vol. COM-31, pp. 532-540, April 

1983. 

[58] Wilson, R. G., "Quad'-tree predictive coding: a new class of image data 

compression algorithms, " Linkoping University Internal Report Lilli-ISY-I-

0609" Linkoping, Sweden 1983. 
\ 

[59] Tanimoto, S. L. and Pavlidis, "A Hierarchical Data Structure for Picture 

Processing," Compo Graph. and 1m. Proc., Vol. 4, 1975. 

183 



[60] Papoullis, Probability, Random Variables, and Stochastic Processes, 2nd. 

Edition, McGraw-Hill, 1984. 

[61] McColl, R. W. and Martin, G. R., "Quad-Tree Modelling of Colour 

Image Regions," SPIE Vol. 1001 Vis. Commun. 1m. Proc., pp. 231-238, 

Cambridge, MA, November 1988. 

[62] Mcllwain, K., "Requisite Color Bandwidth for Simultaneous Color-

Television Systems," Proc. IRE, Vol. 40, pp. 909-921, August 1952. 

, [63] Clippingdale, S. C. and Wilson, R. G., "Quad-Tree Image Estimation: A 

New Image Model and its application to Minimum Mean Square Error 

Image Restoration," Proc. 5th Scand. Con/. on 1m. Anal. , pp. 699-

706, Stockholm, Sweden 1987. 

[64] Kelly, D. H., "Visual Contrast Sensitivity," Optica Acta, Vol. 24, pp. 

107-129, 1977. 
\ 

[65] Robson, I. G., "Spatial and Temporal Contrast Sensitivity Functions of 

the Visual System," J. Opt. Soc. Am., Vol. 56, pp. 1141-1142, August 

1966. 

184 



[66] Huffman, D. A., "A method for the construction of minimum redundancy 

codes," Proc. IRE, Vol. 40, No.9, pp. 1098-1101, September 1952. 

[67] Rissanen, I. I. and Langdon, G. G., "Arithmetic Coding," IBM J. Res. 

Develop., Vol. 23, No.2, pp. 149-162, 1979. 

[68] Mitchell, I. L. and Pennebaker, W. B., "Software Development of the Q­

Coder, " IBM Research Report RC 12660, IBM Thos. I. Watson Res. Ctr., 

New York 1987. 

[69] Mitchell, I. L. and Pennebaker, W. B., "Probability Estimation for the Q­

Coder," IBM Research Report RC 12659, mM Thos. I. Watson Res. Ctr., 

New York 1987. 

[70] Langdon, G. G., "An Introduction to Arithmetic Coding," IBM J. Res. 

Develop., Vol. 28, No.2, pp. 135-149, 1984. 

[71] Vitter, J. S., "Design and Analysis of Dynamic Huffman Codes," J. 

Assoc. CompUl. Mach., Vol. 34, No.4, pp. 825-845, October 1987. 

185 



[72] Stanger, V. J., "A comparative study of practical image segmentation 

techniques," Proc. 5th Scand. Con[. 1m. Anal., pp. 65-69, Stockholm, 

Sweden 1987. 

[73] Sheldon. K, "A Film of a Different Color," BITE, pp. 164-165, March 

1987. 

[74] Symons, A.E., GEC Hirst Research Centre, England, 

Private Communication. 

[75] Faugeras, O. D. and Pratt, W. K., "Decorrelation Methods of Texture 

Feature Extraction," IEEE Trans. Pat!. Anal. and Mach. Intell., Vol. 

PAMI-2, No.4, pp. 323-332, July 1980. 

[76] Davis, L. S., "Image Texture Analysis Techniques - A Survey, " in Digital 

Image Processing (eds. Simon, J.C. and Haralick, R. M.), pp. 189-201, 

1981. 

- ,-

[77] Julesz, B., "Visual Pattern Discrimination," IRE Trans. Info. Theory, 

Vol. IT-8, pp. 84-92, February 1962. 

186 



[78] Julesz, B., "Spatial nonlinearities in the instantaneous perception of 

textures with identical power," Phil Trans. Roy. Soc. London B, Vol. 

290, pp. 83-94, 1980. 

[79] Julesz, B., "Textons, the elements of texture perception, and their 

interaction," Nature, Vol. 290, pp. 91-97, 12th March 1981. 

[80] Voorhees, H. and Poggio, T., "Computing texture boundaries from 

images: Nature, Vol. 333, pp. 364-367, 26th May 1988. 

[81] Pratt, W. K., Faugeras, O. D. and Gagalowicz, A., "applications of 

Stochastic Texture Field Models to Image Processing," Proc. IEEE, Vol. 

69, No.5, pp. 542-551, May 1981. 

[82] Rosenfeld, A. and Kak, A. C., Digital Picture Processing (2nd Ed.), 

Academic Press, 1982. 

[83] Haralick, R. M., Shanmugan, K. and Dinstein, 1., "Textural Features for 

Image Classification, " IEEE Trans. Sys., Man, and Cybem., Vol. SMC-3, 

No.6, pp. 610-621, November 1973. 

187 



[84] Haralick, R. M. and Shanmugan, K., • Computer classification of reservoir 

sandstones," IEEE Trans. Geosci. Electron., Vol. GE-ll, pp. 171-177, 

October 1973. 

[85] Haralick, R. M., "Statistical and Structural Approaches to Texture," Proc. 

IEEE, Vol. 67, No.5, pp. 786-803, May 1979. 

[86] Modestino, J. W., Fries, R. W. and Vickers, A. L., "Texture 

Discrimination Based on an Assumed Stochastic Texture Model,· IEEE 

Trans. Patt. Anal. Mach. Intell., Vol. PAMI-3, No.5, pp. 557-580, 

September 1981. 

[87] Shen, H. C. and Wong, A. K. C., "Generalized Texture Representation 

and Metric," Compo Vis. Graph. 1m. Proc., Vol 23, pp. 187-206, 1983. 

[88] Raafat, H. M. and Wong, A. K. C., "A Texture Information-Directed 

Region Growing.- Algorithm for Image Segmentation and Region 

Classification," Compo Vis. Graph. 1m. Proc., Vol. 43, pp. 1-21, 1988. 

[89] Gagalowicz, A., "Visual Discrimination of Stochastic Color Texture 

Fields," in Signal Processing: Theories and Applications (eds. Kunt, M. 

and de Coulon, F.), pp. 289-295, 1980. 

188 



[90] Hawkins, J. K., "Textural properties for pattern recognition," in Picture 

Processing and Psychopictorics (eds. Lipkin, B. S. and Rosenfeld, A.), 

pp. 347-370, Academic Press, New York 1969. 

[91] Zucker, S. W., "Toward a Model of Texture," Compo Graph. 1m. Proc., 

Vol. 5, pp. 190-202, 1976. 

[92] Zucker, S. W., Rosenfeld, A. and Davis, L. S., "Picture segmentation by 

texture discrimination, " IEEE Trans. Comput., Vol. C-24, pp. 1228-1233, 

1975. 

[93] Ahuja, N. and Rosenfeld, A., "Mosaic Models for Textures," IEEE 

Trans. Patt. A.nal. Mach. Imell., Vol. PAMI-3, No.1, pp. 1-11, January 

1981. 

[94] Wang, S., Dias Velasco, F. R., Wu, A. and Rosenfeld, A., "Relative 

Effectiveness of Selected Texture Primitive Statistics for Texture 

Discrimination," IEEE Trans Sys. Man Cybem., Vol. SMC-ll, No.5, pp. 

360-370, May 1981. 

[95] Gonzalez, R. C. and Wintz, P., Digital Image Processing (2nd Ed.), 

Addison-Wesley, 1987. 

189 



[96] Burt, P. J., Hong, T-H. and Rosenfeld, A., "Segmentation and Estimation 

of Image Region Properties Through Cooperative Hierarchical 

Computation, " IEEE Trans. Sys. Man Cybem., Vol. SMC-11, No. 12, pp. 

802-809, December 1981. 

[97] Spann, M., "Texture Description and Segmentation in Image Processing," 

PhD. Thesis, University of Aston in Birmingham, September 1985. 

[98] Spann, M. and Wilson, R., "A Quad-Tree Approach to Image 

Segmentation which Combines Statistical and Spatial Information," Patl. 

Recog. , Vol. 18, Nos. 3/4, pp. 257-269, 1985. 

[99] Volet, P., "Analyse et Synthese D'Images de Textures Structurees," Ph.D 

Thesis, Ecole Po/ytechnique Federale de Lausanne, 1987. 

[100] Faber, T. L. and Stokely, E. M., "Orientation of 3-D Structures in 

Medical Images," IEEE Trans. Patl. Anal. Mach. In/ell., Vol. PAMI-I0, 
, 

No.5, pp. 626-633~ September 1988. 

[101] Cyganski, D. and Orr, J. A., "Applications of Tensor Theory to Object 

Recognition_ and Orientation Determination," IEEE Trans. Patt. Anal. 

Mach In/ell., Vol. PAMI-7, No.6, pp. 662-673, November 1985. 

190 



[102] Franke, U., "Selective Deconvolution: A New Approach to Extrapolation 

and Spectral Analysis of Discrete Signals," Proc. ICASSP, pp. 1300-1303, 

Dallas, TX, April 1987. 

[103] Franke, U., Meister, R. and Aach, T., "Constrained Iterative Restoration 

Techniques: A Powerful Tool in Region Oriented Texture Coding, " Proc. 

EUSIPCO, pp. 1145-1148, Grenoble, France, September 1988. 

[104] Franke, U. and Meister, R., "Region based image representation with 

variable reconstruction quality," SPIE Vol. 1001 Vzs. Commun. 1m. 

Proc., pp. 178-186, Cambridge, MA, November 1988. 

[105] Deguchi, K. and Morishta, I., "Texture Characterization and Texture-

Based Image Partitioning Using Two-Dimensional Linear Estimation 

Techniques," IEEE Trans. Comput., Vol. C-27, No.8, pp. 739-745, 

August 1978. 

[106] Stanger, V. Private Communication. 
1-

[107] Fejes Toth, L., Regular Figures, Pergammon Press, 1964. 

191 



[108] Lord, A. E. and Wilson, C. B., The Mathematical Description of Shape 

and Fonn, Ellis Horwood, Chichester 1986. 

[109] Peli, E. and Goldstein, B., "Contrast in images," SPIE Vol. 1001 Vis. 

Commun. 1m. Proc., pp. 521-528, Cambridge, MA, November 1988. 

[110] Pearson, D. E., "Model-based image coding," Proc. IEEE Conj. Global 

Telecoms., Vol. 1, pp. 554-558, Dallas, TX, November 1989. 

[111] Walsh, W. J., "Model-based coding of videophone images," lEE Electon. 

Commun. Eng, J., Vol. 3, No.1, pp. 29-36, February 1991. 

[112] Limb, J. 0., "Distortion Criteria of the Human Viewer," IEEE Trans. 

Sys. Man Cybem., Vol. SMC-9, No. 12, pp 778-793, December 1979. 

192 



Appendix A. Details of Experimental Viewing Conditions and 

Generation of the Colour Prints 

The viewing conditions under which all colour images were evaluated 

were as follows : 

1. The monitor used was a 625 line interlaced (at 50 hz), 20 inch 

diagonal RGB monitor (screen height was 11.5"; screen width was 

15"). The monitor was fed from a frame store such that a 512x512 

image occupied the entire screen. All the images shown in this 

thesis are 256x256. The monitor gamma is unknown, and was 

assumed to be between 2.6 and 2.8, i.e. approximately equal to e. 

2. The images were viewed in a large room which was normally well 

lit, but which could be darkened by the use of drawn curtains and 

turning off the lights. Viewing distance was typically four to eight 

times screen height. 

The colour photographs provided throughout this thesis were obtained 

under the following conditions, which differ slightly from those above: 
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1. Each digital colour image was photographed manually from 

the display of a Sun workstation in a darkened room. The 

video source was in fact the output from an on-board 

TAAC-1 graphics accelerator. Each displayed image 

measured approximately 3" x 3". 

2. The film used was ASA 200, colour negative, C-41 

process. The camera f-stop was set at 8 and each exposure 

lasted one second. 

3. The negatives were developed at a professional processing 

laboratory and initially contact processed for exposure 

check. Each negative was then individually custom printed, 

to obtain a good colour and density match, on 4" x 5" 

semi-matte paper. All colour and density matches were 

made by the laboratory staff. 

The resulting photographs, measuring approximately 3.5" x 3.5" after 

cropping, are similar in size to the images displayed on the workstation. It is 

recognised that with the photographic method described above, some colour 

distortion and specular artefact may be introduced into the hardcopy. Because 

these photographs are placed on a bright surround, the white paper of the thesis, 

194 



the apparent contrast will also be somewhat different from that of an image on a 

video display. However, the photographs in this thesis resemble the images 

displayed on the workstation as closely as I could achieve. The considerable cost 

of obtaining an exact colour and density match in each print prohibited the use 

of such a process. 

'. 
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