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, Abstract

We first consider an interacting two-dimensional electron gas in a ballistic quan-

tum wire in an external magnetic field. Self-consistent calculations are made of

the electrostatic Hall potential (EHP), the local chemical potential (LCP), and

current density in a uniform ballistic quantum wire containing two-dimensional

electrons in a perpendicular magnetic field B when either one or two subbands

are occupied. The corresponding Hall resistances, REHP and RLCP, are also cal-

culated. The former is nearly linear in B in spite of subband depopulation. The

latter is quantised but the quantisation steps are rounded because of overlap of

the forward and backward going wave functions. Secondly, self-consistent calcu-

lations are also made of wave functions and the two kinds of Hall resistances for

the same system in a weak perpendicular magnetic field when several subbands

are occupied. We find intermittent quenching of the Hall resistance associated

with the local chemical potential as the electron density varies. The quenching

is due to the overlap of opposite-going wave functions in the same subband,

which is enhanced significantly by the singularity of the density of states at

the subband minima aa well as by Coulomb interactions between the electrons.

Finally, with a, model calculation, we demonstrate that a non-invasive measure-

ment of intrinsic quantum Hall effect defined by the local chemical potential in

a ballistic quantum wire can be achieved with the aid of a pair of voltage leads

which are separated 9Y potential barriers from the wire. Biittiker's formula

is used to determine the chemical potential being measured and is shown to

reduce exactly to the local chemical potential in the limit of strong potential

I confinement in the voltage leads. Conditions for quantisation of Hall resistance

and measuring local chemical potential are given.
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Preface

In this thesis, we are going to discuss the intrinsic quantum Hall effect. By

"intrinsic" we mean the results of noninvasive measurements of a system. We

choose a two-dimensional electron gas (2DEG) confined in a ballistic quantum

wire (BQW) and study its magnetic response when there is a current flowing

through the wire.

The thesis is arranged as follows. It begins with the introductions to the ex-

perimental and theoretical backgrounds of the problem. Ideas, definitions and

physical pictures of a 2DEG, microstructures, resistance, chemical potential

and measurement effects are taken from the level of their definition to a form

suitable to the problem which we are going to study. The relationship between

the chemical potential in an equilibrium system and the current driving force

in a transport system is carefully examined. We present a new definition of

the so-called local chemical potential (LCP), which extends the original idea to

general situations and gives the LCP a new physical interpretation. Previous

experimental and theoretical work in relevant fields are described. The deriva-

tions of the key formulae which we use are included as well as some relevant

matters which are important but are not usually mentioned in 'general review

articles. The details which are not mentioned here can be easily found in the

references. When we turn to our work we again give the essential steps and the

results. Detailed derivations are included as appendices. The three chapters

before the final Conclusion give our main results which are also described in the

Abstract. Our results and discussions are all for the case of the temperature

T = 0 K unless we indicate eitherwise. Finally, we summarise what we have

contributed to the understanding of the intrinsic quantum Hall effect.
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'Chapter 1

Two-Dimensional Mesoscopic

Systems

1.1 Introduction

The real world we live -in is three-dimensional (3D) and objects in it are de-

scribed by three lengths: width, height and length. Usually the length scale of

each dimension is many orders larger than the microscopic characteristic lengths

associated with electrons, such as de Broglie wavelength, lattice constants, etc.

Then, the object is macroscopically 3D and we can employ translation invari-

ance in all three dimensions when we study its electronic properties. Boundaries

do not have any particular effect on the results but merely tell us how far the

object extends.

Obviously, it is possible to reduce anyone of these three lengths to a very-
small value so that translational invariance does not apply in the corresponding

direction. The dimensionality of the object is thus reduced. At the same time,
•
the energy difference between the electron ground state and the first excited

state associated with that direction increases and can become much larger than

energy differences associated with other directions. The electron momentum

along this special direction is then no longer a good quantum number. The

'electronic properties of such an object show two-dimensional (2D) macroscopic

character, which are drastically different from its 3D counterparts. Similar

1



further reductions oflength in other two directions will result in one-dimensional

(ID) and zero-dimensional (OD) systems.

If we only decrease the lengths in the other two directions to such a size

which is comparable with some ofthe microscopic electron characteristic lengths

, without destroying translation invariance, many new and novel phenomena have

been observed in such two-dimensional mesoscopic systems. This is an

exceedingly rich field. The ability to vary different variables results in nearly

limitless possibilities for creating different structures for researches and appli-

cations.

In this introductory chapter, we will briefly introduce the relevant physics

of 2D mesoscopic systems and the techniques for making them. We concentrate

on heterostructures and the two-dimensional electron gas (2DEG), the split-

gate technique, and the basic concepts of mesoscopic and ballistic systems. At

the end, the quantum Hall effect (QHE) and measurement procedure will be

discussed.

1.2 Heterostructures and the 2DEG

The ability to study a low-dimensional solid state system has been longed for

by condensed matter physicists for decades. The attraction of this field is their

potential for exhibiting macroscopic quantum size effects and the problems

associated with how to observe and control the system parameters to study

them.

In 1957 J. R. Schrieffer suaested that the narrow confinement potential of

aarinveralon layer may lead to the observation of non-classical electron transport

behaviour [1]. This was demonstrated in 1966 by measuring the low temper-

ature magnetotransport properties of a 2DEG In a silicon inversion layer [2].

Since then, mtensive efforts have been made in the exploration of 2DEG sys-

tems.

Inversion layers are formed a.t the interface between a semiconductor and an

"Insulator or between two semiconductors with one of them acting as an msula-

tor. As always, basic research in condensed matter physics has greatly benefited

2



from the rapid development of industrial technology. Ultra-thin epitaxial film

growth techniques have made it possible for scientists to make a multilayered

thin wafer, i.e. a heterostructure, with different materials in different layers.

The first quantum well [3] was successfully made in 1974.

A Nobel Prize was awarded in this field in 1985for the discovery of the QHE

[4]: the quantisation of the Hall resistance of high mobility 2DEGs in a high

perpendicular magnetic field. The system used was a 8i/8i02 heterostructure.

Si and Si02 are for the semiconductor and insulator respectively. Because of

the roughness of the crystal discontinuity at the interface as well as trapped

impurities in the 8i02 and Si layers, scattering of electrons is strong and limits

the mobility of electrons to '" 4 m2/Vs or less. Further researches in this

system are therefore restricted.

In 1978, a technique for creating an exceptionally pure 2DEG was invented

which is known as modulation doping [5]. It spatially separates the charge

carriers in a conduction band from the impurity atoms which they come. The

electron mobility is then improved dramatically. This method has opened a

door for the researchers to study electronic transport in ultra-high mobility

carrier systems.

Recently, modulation-doped GaAs/ AlxGat-xAs heterostructures [5], with

AlxGal_xAs playing the role of insulator, has been intensively studied because

of its extraordinary high electron mobility. A schematic plot of a typical layer

structure and the corresponding band-bending diagram is shown in Figs. 1.1(a)

and 1.1(b) respectively. Molecular-beam epitaxy is used to fabricate such struc-

tures, because it produces the highest quality structures in the terms of purity,

interface sharpness and crystalline perfection. The growth of thin layers can be

controlled with extreme precision, approaching the scale of single atomic layer.

The relative smooth interfaces ensure only moderate scattering by interface

roughness. The scattering of electrons is further largely reduced by modula-

tion doping in which the conduction electrons are separated from the ionised

"donors in the doped AlxGal-xAs layer. More reduction is achieved by insert-

ing an un-doped AlxGal_xAs "spacer layer" to keep the doped layer from the

3



heterointerface. Record low temperature mobility up to 103 m2 IV s has been

reported [6J. This corresponds to electron elastic mean free path exceeding

0.1 mm. In Fig. 1.1(b), we can see the conduction electrons supplied by the

donors in the AlxGal_xAs layer are confined in a very narrow potential well

the the interface of GaAs and AlxGal-xAs. This confinement potential well is

formed by the competition between the repulsive potential barrier due to the

band offset at the interface of GaAs and AlxGat_xAs and the attractive elec-

trostatic potential resulted by the positively charged donors in the AlxGal-xAs

layer.

(a) (b) energy __.,..

17 nm GaAs

38 nm AIQ,33Gao.67As

1.33 • 1o~8cm-3Si

t 20nm Alo.33Gaa.67As
c:
.2

i
'6
s:
i 4IJm GaAse
Cl

I

super lattice I

valence : conduction
band

I
band

semi insulating GaAs substrate

Figure 1.1: Layers of a modulation doped GaAsl AlxGal-xAs heterostructure

(a) and the corresponding band-bending diagram and 2DEG (b). The numbers

here are typical. The band offset between GaAs and AlxGal_xAs is about

0.3 eV when x = 0.33. (From Ref. (7])

I

The electrons in the confinement potential well can move freely parallel to

the interface and are confined with confinement energy levels in the perpen-
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dicular direction. This results in the formation of 2D subbands in the well.

Because the wavelength of these conduction electrons at the Fermi energy is

much larger than the GaAs lattice constants, we can use the effective mass ap-

proximation and treat the electrons collectively as a gas with a certain density

, moving in a continuous background. (The Fermi wavenumber kF = (21t'ns)1/2

and typically the sheet electron density is ns "" 1015 m-2 the Fermi wavelength

is AF = 21t'/ kF rv 80 nm.) We can further just concern ourselves with the 2D

behaviour of the electron gas since only the lowest subband is usually populated

in typical experimental situations. Based on the above understandings, it will

be sensible to model these confined conduction electrons as a 2DEG in the

heterostructure when we calculate its electronic properties.

1.3 Split-gate Technique and Microstructures

One of the most important feature of a 2DEG is that we can shape it into

any desired ultra-small geometry. There are two approaches, etching a pattern

which results in permanent removal of parts of the 2DEG, or using a patterned

gate electrode to deplete parts of the 2DEG electrostatically and reversibly. The

later is known as split-gate technique [8]. By applying a negative voltage to

the split-gate. the 2DEG immediately beneath the gate electrodes is depleted

and the 2DEG is laterally constrained within the area between the electrodes.

A microstructure is such a patterned 2DEG.

Lithographic techniques are used in creating the gate. Because of the very

high spatial resolution needed « 10 nm), both X-ray and electron beams

are employed to generate the photo-lithographic masks which are essential in

producing patterned gates. Electron beam which can be focussed into spot sizes

less than 1 nm,

A sketch of a quantum point contact [9, 10]made by the split-gate technique

is shown in .Fig. 1.2. The 2DEG underneath of the split-gate electrodes is

p~tterned by applying the gate voltage on the electrodes. Similarly, quantum

wire [8, 11] and quantum dot [12] can also be made. The dimenslonsof such a

semiconductor microstructure can be as small as the electron Fermi wavelength
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--+-- potential-
barrier

Figure 1.2: A quantum point contact shaped by split-gate technique. (From

Ref. [7])

.
[13). Recently, microstructures have been fabricated for which the presence or

absence of a single electron affects the transport properties [14, 15]. This effect

is known as Coulomb blockade which is beyond the range of this thesis.

An additional gate electrode is often put on the top of a microstructure

to change the sheet electron density n, under it as the electric field applied

on the electrode varies. Alternatively, split-gate electrodes can be used to do

the same thing. This enables us not only to study the density dependence of

the electronic transport properties of a 2DEG but also to explore the limit of

electronic conduction when the number of the conducting electrons is small.

The sheet density of electrons under a large gate electrode depends linearly

on the electrostatic gate voltage according to the formula for a parallel plate

capacitor Llns = ELlVg/eD, where the static dielectric constant of GaAs is

E= 12.8Eoand D is the distance between the gate electrode and the 2DEG.

/

6



1.4 Characteristic Lengths and Ballistic Systems

The dramatic improvement in the fabrication of ultra-small conducting devices

(microstructures) has greatly increased interest in the novel electron transport

phenomena because of the quantum interference which occurs in such systems.

A microstructure is called mesoscopic as if it shows quantum size effects

which can be measured macroscopically but de not have a macroscopic explana-

tion. Mesoscopic systems occupy the area between the microscopic world which

requires a quantum mechanical description and the macroscopic world where

we believe classical physics are normally adequate. Many different quantum

interference behaviours have been observed and predicted. There are a lot of

parameters involved, such as composition, band offset, dimensions, impurities

(density and distribution), etc. It is very helpful that we can use some simple

quantities as the criteria for classifying mesoscopic systems according to their

electronic characteristics. The most convenient and most often used are ratios

of the spatial dimensions of a system to its electronic characteristic lengths.

Typical characteristic lengths associated with electronic transport prop-

erties are elastic and inelastic mean free paths, the phase coherence length, the

magnetic length and lattice constants. Most of them are system dependent.

The elastic (inelastic) mean free path is the average distance between two elas-

tic (inelastic) scatterings of an electron. The phase coherence length measures

how long an electron travels without the phase memory of its wavefunction

changing.

The ratios of these. lengths to the system dimensions are crucial. For exam-

ple, quantum interference effects in a system, e.g. the Aharonov-Bohm effect

[16] in the magnetoresistanceof a mesoscopic ring, are found to disappear ex-

ponentially when the relevant space dimension becomes large compare to its

phase coherence length.

A system with a size much larger than its inelastic mean free path is dif-

fusive and phase random and can be treated classically. Then, random phase
'"averagea are made in calculations and resistances are local and additive. While

a system with dimensions about in the order of its inelastic mean free path and
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larger than its elastic mean free path is diffusive but quantum coherent. It is

interesting to notice that an inelastic scattering is not necessarily a dephasing

scattering because phase coherence has been observed in the presence of finite

energy transfer [17].

Quantum coherent diffusive systems are divided into three classes. The

first class shows weak localisation effects in the average conductance [18]. This

effect arises from the coherent back-scattering of diffusing electrons, which is

sensitive to a weak magnetic field. The behaviour of this effect depends on

dimensionality but not the system size as long as it is about or smaller than

the inelastic mean free path. The second class shows reproducible conductance

fluctuations in a changing magnetic field [19]. The relation of the conductance

to the magnitude of an applied magnetic field is system dependent while the

amplitude of the fluctuation is universal. The universality arises because the

maximum sensitivity of conductance to the change of magnetic field is e2 / hand

is independent to the average conductance itself. This effect depends on the

ratio of the inelastic mean free path to the system size. Unlike the first two

classes which are defined by their low temperature properties, the third class is

determined to the thermodynamic properties of quantum coherent mesoscopic

system, such as the persistent current [20, 21] and orbital magnetic response

[22, 23]. The origin of this class is not clear. Theoretical prediction shows

that there should be an average effect due to the constraint of fixed particle

number in a mesoscopic system [24]. All these three interference effects involve

diffusing electrons and have their mathematical origin in the properties of the

disorder-averaged two-particle Green function. More details can be found in

Ref. [25].
When the size of a mesoscopic system is less than the inelastic mean free

path but larger than or about the elastic mean free path, there will still be diffu-

sion but the phase of electron wave functions are fixed. The electrons in such a

system can be described by 'electron modes: Despite of the changes of the elec-

tron distributions between the modes, which are caused by elastic scatterings,

the' system is still phase-deterministic. Quantum interference of electron wave-
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functions without randomness can be observed, such as the Aharonov-Bohm

oscillations of the resistance in small metallic ring structures [26].

Furthermore, the phase-preserving properties of electron wavefunctions will

be ensured if the dimensions of a system is smaller than both the elastic and

inelastic mean free path. This kind of quantum coherent system is known as

ballistic system. In this regime, quantum transport becomes dominant and

the wave nature of the electrons becomes apparent. The motion of electrons in a

ballistic system is of course coherent and the energy and momenta are quantised.

The resistance is non-local and has a quantum mechanical aspect. The average

velocity is not an appropriate basis for a description of the resistance.

An electron waveguide [27] is a ballistic quantum wire (BQW) made of a

2DEG, which is so clean and so small that electron waves can propagate in

guided modes without loss of phase coherence. The propagating modes of elec-

trons are characterised by its quasi-one-dimensional (QID) geometry. Atomic

precision of lithography and crystal growth is needed in fabricating a ballis-

tic quantum wire demonstrating the transport characteristics of an electron

waveguide.

There are obvious differences between an optical or microwave waveguide

and an electron waveguide. The guided mode of electron is sensitive to an

applied electric or magnetic field because it possesses a charge. Moreover, the

number of electrons in a specific mode of the waveguide is limited by the Pauli

principle due to the fermion feature of electrons.

1.5 Four-leadMeasurement and the QHE

Conductance and resistance, as .well as conductivity and resistivity, are the most

frequently used quantities in characterising the electronic transport properties

of a system. The "ances" represent the global features of the system being

studied, while the "ivities" are used torefer the local properties; Exp,er:~Jjl1e:p...

talists usually use the "ances" because they measure them directly. While,
'"theoreticians normally prefer to calculate the "ivities" since they are size inde-

pendent. However, if a system is a quantum coherent one, only the "ances" are
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the suitable quantities in describing the system because these quantities are not

additive any more. For the same reason, in this thesis, we concern the "ances"

rather than the "ivities".

For a steady transport system, the resistance is defined as the electrostatic

voltage difference applied on the system divided by the amount of the current

driven through it (or. equivalently using electrostatic voltage difference induced

in the system divided by the amount of the current injected into it). The elec-

trostatic voltage drop on a system comes from the electrochemical potential

difference between two voltaic electron reservoirs which are connected to the

system as current source and drain respectively. The electrostatic voltage dif-

ference is normally different from the electrochemical potential difference when

the internal resistance between the current source and drain is finite. How-

ever; these two differences become one if the internal resistance between the

two reservoirs is much larger than the resistance of the system. This is usually

true in high accuracy resistance measurements. We assume that this is also the

case in our calculations.

The primary resistance measurement uses a pair of leads connected at the

two sides a system. The current flowing through and the voltage drop on the

system are measured with the same pair of leads. The problem of this method

is that the contact resistances at the two sides of the system becomes parts of

the measured resistance of the system, so that the final results can be signifi-

cantly distorted if the system resistance itself is smaller than or comparable to

the contact resistance. For excluding this extra part of resistance, four-lead

measurement is introduced. Two pairs of leads are used to measure current

and voltage drop separately. Each of the two voltage leads and the two current

leads are connected at each side of the system with the voltage contacts being

put closer to the system than the current contacts. Therefore, the voltage drops

on the current contacts are not included in what being measured by the voltage

leads. While, the amount of current traversing through the voltage contaCts are

ver/y small because the internal resistance of the voltage measurement circuit

is very large. (Sometimes, current-stop procedure is applied in voltage leads in
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high precision measurement.) For the same reason, the current in the current

leads is equal to the current traversing through the system. Consequently, we

can use four-lead configuration to measure the electrochemical potential differ-

ence applied on a system and the induced current traversing it and exclude the

potential drops on the voltage contacts.

The Hall effect was discovered in metal wires in 1879 by E. H. Hall [28].

He observed "the state of stress in the conductor" in the case that "the magnet

may tend to deflect the current ... ". This state of stress appears as transverse

voltage (known nowadays as the Hall voltage) [29]. Generally speaking, the Hall

effect is that the current in a conductor or semiconductor under a perpendicular

magnetic field will induce a potential difference in the third direction which is

perpendicular to both the current and the magnetic field. In an electric field

E, the induced current density j has a linear relationship with it: E = po,j. The

normal longitudinal resistivity for a homogeneous electron gas system with the

charge of electron -e is Po = m" /nse2To, where m" is electron effective mass,

ns is density of electrons ~nd To = lo/vF is relaxation time and is the ratio of

electron mean free path to electron Fermi velocity. When a magnetic field B is

applied, an additional bending field j X B/ns( -e) affects the moving electrons

due to the existence of the Lorentz force. Hence, E + j X B/ns( -e) = poj. In

3D case, the resistivity has the form of a rank 3 tensor. For a 2DEG, which is

put in x-y plan under a magnetic field B in z direction, the resistivity reduces

to a rank 2 tensor with the diagonal terms Pxx = Pyy = Po for the longitu-

dinal resistivity and the off-diagonal terms Pxy = -Pyx = B/ nse for the Hall

resistivity. Similarly, the longitudinal resistance and the Hall resistance for a

system can be defined. Usually, the Hall resistivity is a property of the material

which a system is made of while the Hall resistance is a character of a system.

Four-lead measurement is essential in measuring the Hall resistance because of

its off-diagonal nature. Very often six leads are used in a real experiment to

measure the longitudinal resistance and the Hall resistance at the same time. A

s}(~)tchof experiment is shown in Fig. 1.3, which is known as a Hall bar measure-

.ment. The shape of a system in the Hall measurement is normally rectangular
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in order to avoid the complexity caused by system geometry.

s o

Figure 1.13: A diagram of experimental arrangement in the Hall measurement.

Sand D stand for electron source and drain. VL and VH are the longitudinal

voltage drop and the Hall voltage respectively. (From Ref. [30))

The Hall resistance normally increases smoothly when the magnitude of the

applied magnetic field increases. In 1980, von Klitzing, Dorda and Pepper ob-

served the integer QHE (IQHE) [4]. They found that the Hall resistance of

the 2DEG in a Si/Si02 inversion layer was fully quantised as the unit of hi e2 di-

vided by integers at helium temperature and in a strong magnetic field of order

15 T. The accuracy of the quantisation is exceptionally high: about one tenth

ppm. A typical experiment result of Hall resistance Rxy and longitudinal resis-

tance Rxx is shown in Fig. 1.4. Two years later, the fractional QHE (FQHE)

was also observed for which the quantisation is a rational fraction of hje2 [32].

Both the IQHE and the FQHE have attracted intensive research efforts since

the time of discovering, trying to understand the mechanisms from both the

experimental and the theoretical angles. Reviews can be found in Refs. [33]

and [34]. Most of the previous works studying the IQHE have their emphasises

on either the 2DEG itself or the terminal feature of microstructure. Is there a

kind of IIQHE for a microstructure itself? Can this intrinsic IQHE (IIQHE) be

measured? We will give positive answers to both of the two questions in this
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Figure 1.4: The Hall resistance R:cy and the longitudinal resistance R:c:c of the

2DEG in a. Si/Si02 inversion layer as a function of applied gate voltage Vg.

(From Ref. [31])
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Chapter 2

The electrons in the 2D

microstructures

2.1 Introduction

As we already have seen in.the previous chapter, a system can be characterised

by its dimensions compared with some relevant length scales. In this chapter,

we are mainly concerned with the Fermi wavtength AF = 21rjkF where kF is

the electron wavevector at the Fermi surface. Reduced dimensionality arises

when at least one dimension of a system is comparable to AF. A system is dy-

namically 2D when only one dimension is small. The motion of electrons in the

corresponding direction is quantised which is known as spatial quantisation.

As a simple model, the 2DEG has proved to be very successful as a starting

point to discuss the physics of real microstructures [35]. The reason is that it

retains the most important feature of the electrons: that they are dynamically

free to move in only two dimensions. The details left out of this simple model,

which are associated with the confinement in the third direction, are not very

important for studying transport properties. Of course, there are some partic-

ular situations where a many-body description is necessary which we do not

discuss in this thesis.

'Some basic concepts associated with 2DEG are presented here. We find out

what the peculiar features the electrons have due to the reduced dimensionality
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and the geometrical confinement of microstructures. Particular attention will be

payed to a simple example, i.e. the quasi-one-dimensional (QID) BQW which is

dynamically ID with the length shorter than the electron mean free path. The

BQW will be used later as the system in which we study the IIQHE. Different

~ypes of electric confinement, as well as the Coulomb interactions between the

electrons, will be briefly discussed. At the end, further confinement produced

by an external perpendicular magnetic field will also be considered.

2.2 The effective mass approximation and 2D fea-

tures of a 2DEG

It is convenient to describe some of the characteristics of quantum mechanical

wavefunctions in the terms of classical mechanics. Some classical concepts, such

as group velocity and mass, can be extended. To build up the relationships be-

tween these quantities in the two pictures, we normally use de Broglie waves

of electron to construct a quantum wave packet which behaves like a classical

particle. In a lattice, Bloch waves are used instead of de Broglie waves. Cor-

respondingly, some classical concepts are therefore meaningful in the quantum

case. The group velocity of a wave packet v and its effective mass m* are

(2.1)

and
112

mj = --;(-:o2-E--),
Okj2

where E(k) is the energy of a packet with momentum k. Since these results

j = X,y,z (2.2)

do not contain any restrictions on the construction of the wave packet, they

can further be extended into general situations. In the effective mass ap-

proximation, the effective mass mj in Eq. (2.2) is assumed to be constant.

If a lattice has cubic symmetry, the effective mass is isotropic. It is noticed

that this approximation suits the situations where there is only one conduction

band. Otherwise, different effective masses should be used for each conduction
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band. It may be questionable whether this approximation is appropriate in the

case when there are only a few atomic layers in one or more directions. As is

often the case, the approximation turns out to be rather good. Nevertheless,

it loses validity for monolayer structures. Approximations that take account of

the discrete atomic structures are then required [38J. In this thesis, the effec-

tive mass approximation will be used because it has been proven to be a good

approximation to 2DEGs [35].

The one-electron Hamiltonian for a 2DEG which is dynamically free in the

x-v plane is
2

H = 2P + V(z)m*
(2.3)

where P = -in" and V(z) is the confinement potential in the z direction. To

determine the eigenfunctions of 1i, we consider a macroscopic square of side L

in the x-v plane and apply periodic boundary conditions in both the x and y

directions. Since the 1i.is independent of x and y, the eigenfunctions take the

plane-wave form

(2.4)

where r = (x, y) and k = (k:c, ky) with both k:c and ky equal to integer multiples

of 211"/ L. By substituting the Eq. (2.4) into the Eq. (2.3), we find that the

eigenvalue associated with '!/Yak is

(2.5)

where Ea and <Pa(z) are determined by the 1D Schrodinger equation

(2.6)

and k2 = k; + k;. In general, the value of k may be taken to be continuous,

reflecting the macroscopic size of the 2DEG in the x-v plane. The index a

which labels the solutions of Eq. (2.6) takes positive integer values.

,We see clearly from Eq, (2.5) that the energy spectrum of the ,2DEG consists

of,,2D subbands which are distinguished by the index a. Each Ea defines
/;

the minimum of a subband upon which a continuous parabola is built from

the z and y components of the 2D wavevector k. This is different from the
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familiar 3D energy spectrum where there is only one continuous parabola from

E = 0 upwards. The gaps between the subband minima increase when the

confinement potential V(z) is narrowed. As an example, let us consider a

square well potential of width Lz

V(z) = { : 0< z < Lz,

otherwise.
(2.7)

Solving Eq. (2.6), <Pa(z) and Ea are

(
2)1/2 (0:1I"Z)

<Pa(Z)= t... sin Lz ' "(2.8)

_ 11,2 (0:11")2Ea - -- -- •2m* L,
(2.9)

When the width Lz is of the order of the electron Fermi wavelength AF = 1/kF,

the Fermi energy EF N Ea=l. The effect of the energy quantisation then

becomes important and the system will have distinguishable 2D features as

we will see later. On the other hand, when Lz - 00, the 3D features of the

wavefunctions and the energy spectrum are restored, as Ea in Eq. (2.9) becomes

quasi-continuous.

In addition to the energy quantisation, the density of states of the 2DEG,

which is shown in Fig. 2.1, has the unique "stair-case" structure

peE) = 2L:Na(E)

a (L)'f dl= 2 ~ fJ(E - Ea) 211" IVkEa(k)1 (2.10)

= L2 Nuh L: fJ(E - Ea)
<. a

where the factor 2 is for electron spin degeneracy, fJ(E) is the unit step function

and NBsh= m*/1r1i2 is the density of states for a single subband perunit area.

When only the lowest subband is occupied, as is usually the case for a real

2DEG, the density of states is constant which the behaviour normally associates

with a strictly 2D system. As the width of the confinement at the Z direction
-

beeomes larger, the energy gaps between the 2D subbands are decreased and

more and more subbands are occupied. When the L, ::> AF, many subbands
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are occupied. Therefore, the 3D character of the density of states, peE) "" E1/2,

is observable as the envelope of p( E) because EQ '" a2• In the limit L, _ 00,

peE) will return to the familiar 3D continuous form >- E1/2.

peE)

Figure 2.1: Quasi-2D density of states peE) as a function of energy with only

the lowest 2D subband occupied (hatched). Insert: Confinement potential per-

pendicular to the plane of the 2DEG. (From Ref. [39])

2.3 A 2DEG in a BQW and Coulomb interactions

between the electrons

In aBQW, a 2DEG in the x-y plane is further dimensionally reduced to a

QID-EG. A lateral confinement potential, which is normally applied by split-

gate electrodes, shapes the 2DEG into a desired geometry. Assuming that this

new confinement is in the y direction and is described by a potential function

U(y), the electrons are only free to move in the x direction. The electron

wAvefunction tPQk in Eq, (2.4) becomes
!

( ) 1 ik:r; ( )tPQk:r: X,y,Z = Ll/2e :r: CPa y,Z (2.11)
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and the corresponding eigenvalue is
n,2k2

Ecx(kx) == Ea + __ a:
2m*

where i.pa(Y, z) and Ea are determined by the 2D Schrodinger equation

, - 2~* (:;2 + ::2) i.pa(Y, z) + [U(y) + V(Z)]i.pa(Z) == Eai.pa(Y, z).

(2.12)

(2.13)

Since the confinement potentials U(y) and V(z) are independent to each other,

the eigenfunction i.pa(Y, z) may take the form

(2.14)

and correspondingly

(2.15)

where a == (/3, I) with /3, I == 1,2,···. Et3 and E'Y are normally discrete and

are determined by U(y) and V(z) respectively. When U(y) takes the form

shown in Eq. (2.7), Et3 will have the same form as in Eq. (2.9) and depends on

the size of the microstructure. We see that a BQW with a different size will

have a different set of the electron energy levels. This phenomena is known as

the quantum size effect which has the same physical origin as the spatial

quantisation effect which we mentioned before. The eigenvalues in Eq. (2.12)

can still be classified as subbands labelled by an index a with a minimum energy

Ea for each subband. Because the size of the confinement in the Y direction is

normally much larger than that in the z direction, the number of the discrete

levels Et3 is much bigger than the number of E'Y in any energy range. To be

clear, we refer to the parts associated with Et3 as iD suhhands which are

normally formed within one 2D subband (E'Y=1 in real experimental situations

when Lz '" AF). In addition, the pattern of the density of states has another

qualitative change associated with the further reduction of dimensionality. By

using the same method lnEq. (2.10), the Q1D density of states is

(2.16)
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as shown in Fig. 2.2. The most noticeable feature here is that there is a square

root singularity at the bottom of each ID subband. It is expected that much

sharper discontinuities will be associated with the ID case than with the 2DEG

and that the quantum size effect will increase the number of these discontinu-

ities.

P(E)

E
1-- .....

Figure 2.2: QID density of states peE) as a function of energy with four ID

subbands occupied (hatched). Insert: Square well lateral confinement potential

with discrete energy levels indicating the bottoms of the ID subbands. (From

Ref. [39.])

Once we leave the- above over-simplified models and begin to study the

electron energy spectrum in a real microstructure, calculations become more

complicated. Because there are carriers present, the description of the poten-

tial and the calculations of the energy level as well as other properties are

coupled and must be solved self-consistently. Coulomb interaction between the

electrons should be included in order to find out what the charge and potential

di1'ltributions are. In this case, we should solve the Schrodinger and Poisson
r.

. equations together. Due to the technical difficulties in solving the non-linear

second order partial differential equations, only a few circumstances with sim-
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ple geometries can be solved exactly [36]. Variational approximations are the

simplest way to obtain approximate solutions, especially for the ground state.

The Fang-Howard trial function [37] was widely used. Nowadays, as full nu-

merical solutions become more easily accessible, especially for the 2DEG where

equations only involve one space dimension, it is less necessary to rely on vari-

ational functions. A brief review of energy level calculations for 2D interacting

electrons can be found in Ref. [40].

In a BQW, Schrodinger's equation must be solved in two dimensions with

free electron motion only in the third dimension. This problem have been formu-

lated as a set of coupled 1D equations in treating a rectangular GaAsj AlxGal-xAs

wire [41]. Full numerical self-consistent calculations have been done for the

electrons in silicon [42] and in GaAs [43, 44]. Normally, only the Hartree ap-

proximation is used, the exchange-correlation and image effects are expected to

change the results slightly [43]. The calculated confinement potential profiles

[43] across a 400 nm BQW along a line 5.6 nm from the GaAsj AlxGal-xAs

interface at 4.2 K are shown in Fig. (2.3). We see from this figure that when the

gate voltage Vg = -1.30 V(ns rv 2 X 1015m-2) the effective one-electron con-

finement potential when Coulomb interaction is taken into account is somewhat

like a hard wall square well. While, when Vg = -1.52 V (11-srv 5 X 1014 m-2)

the confinement potential behaves rather like a parabolic potential. These nu-

merical simulations for quantum wires in GaAs agree qualitatively with the

capacitance experiments [45, 46]. While the external magnetic field have dom-

inant effects on the electron transport properties, it will not change the con-

finement potential profiles qualitatively [47]. Based on these results, we believe

that it is reasonable to use one electron approximation in a hard wall square

well as a starting point for our calculations for the IIQHE in a BQW with a

certain density of electrons. The parabolic type of confinement potential is an

alternative when the electron density is very low.
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Figure 2.3: Calculated potential profiles at 4.2 K along aline 5.6 nm from the

GaAsj AlxGal_xAs (x = 0.26) interface for four values of gate voltage. (From

Ref. [43])

2.4 Parabolic potential with magnetic confinement

Let us consider a BQW with the 2DEG in the x-y plane and laterally confined

in the y direction by a parabolic potential U(y). This is one of the few models

which can be solved exactly. The Hamiltonian for motion in the plane of the

2DEG is
2

tc = 2~* + U(y)

(p; + p~) 1 m* 2 2
= 2m* + Q2' (_e)wpY

P2 p2 1= _x_ + _y_ + _m*w2y2
2m* 2m* 2 p

w~,ereQ :::: ( -e) for electrons and the frequency wp is used to refer the strength of

the lateral confinement. Because the momentum Px along the BQW commutes

(2.17)
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with 11., i.e. [Px,11.] = 0, we can diagonalise both of them simultaneously. For

each eigenvalue likx of Px, the Hamiltonian has discrete energy levels En(kx)

(n = 0,1, ... ) with the corresponding wavefunctions taking the form

.1. 1 ik x ()'f'n,kx = L1/2 e :r Xn,kx Y (2.18)

In. waveguide terminology, the index n labels the modes (or the channels

as in the language of electronic transport) and the dependence of the energy

En(kx) on the wave number kx is the dispersion curve of the n-th mode. The

wavefunction 1/Jn,kx is the product of a transverse profile Xn,kx (y) and a longi-

tudinal plane wave eikxx. Xn,kx(Y) and En(kx) are determined by the following

Schrodinger equation

(2.19)

The eigenfunctions of the Eq. (2.18) are

(2.20)

with the eigenvalues

(2.21)

where Hn is the n-th order Hermite polynomial and e = (m*wp/Ii)1/2y. From

Eq, (2.21), we see the familiar ID subbands again with the spacing liwp. The

group velocity defined in Eq. (2.1) is equal to the velocity likx/m* obtained

from the, momentum, and the effective mass is simply m* for the free 2DEG.

Next, we look at the effect of a perpendicular magnetic field B in z direction

on a free 2DEG. Again only equilibrium state is concerned. In the Landau gauge

A = (- By, 0, 0), the Hamiltonian has the form

11. = _1_(p _ qA)2 + U(y)
2m*

1 )2 P~= 2m* Cpx - eBy + 2m*

forA single spin component. Still we have [PX111.] = 0 and the wavefunctions
I

has the same form of Eq. (2.18). After we put the wavefunctions into the

(2.22)
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Eq. (2.17), we get the differential equation which is mathematically equivalent

to the Eq. (2.19). This tells us that the magnetic field provides a special type

of parabolic confinement (with different potential minima for electrons with

different momenta). The solution Xn,kx(Y) has the same form as in Eq. (2.20)

with ~ = Ylle -lekx and En(kx) = En = fiwe(n + 1/2). Here, Ie = (fileB)1/2 is

the magnetic length and We = eHf m" is the cyclotron frequency. In this

particular case, En(kx) does not depend on kx and we only have the Landau

levels En instead of the ID subbands. Because there is only magnetic con-

finement, the group velocity is zero and all the electrons are localised with an

infinite effective mass.

The mathematical similarity between parabolic and magnetic confinement

allows us to get an exact solution for the parabolic confined BQW in a per-

pendicular magnetic field B [48]. Using the same gauge, coordinates and no-

tations, we have the same solutions for Xn,k",(y) as in the Eq. (2.20) with the

~= (1+,)1/4YIle-1ekxl(I+,)3/4, where, = (wplwe)2. While En(kx) has the

similar fo~m to that in the ~q. (2.21)

( 1) fi2k2
En (kx) = lu» n + 2 + 2M (2.23)

where w2 = w; + w; and M = (1 + , )m* II. The effective mass M here

is (1 + ,) II times heavier and the group velocity fikx 1M is then, 1(1 + ,)
smaller than that in the free 2DEG case. The electrons no longer behave in

the same way as they do when there is only electrostatic parabolic confinement,

because the momentum contains an extra contribution from the magnetic vector

potential. On the other. hand, unlike the case when there is only magnetic field,

the electrons are no longer localised since they are delocalised from their static

cyclotron motions when they are scattered by the confinement potential.

The correspondence between the electron wavefunction in a magnetic field

and its classical trajectory may help us to understand more about the nature

of the quantum wavefunction [49]. It is less confusing to look .at a 2DEG in a

magnetic field confined by a hard wall square well because the edges are well

defined. We will follow Ref. [39] to demonstrate this correspondence and more
I,·

details can be found there.
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Let us assume the edges of a square well confined BQW are at y = ±lV/2.

An exact quantum mechanical solution of this problem is given in Appendix A.

In the classical picture, the electron position (x, y) is on a circle with centre

coordinates (X, Y) can be expressed in terms of its velocity v by

v
x = X + .J!.,

We

Vx
y=Y--

We
(2.24)

and the electron energy E = m*v2/2 = m*w;r;/2 with the cyclotron radius

re = (2m*E)1/2/eB. Both the electron energy E and the shift Y of the orbit

centre from the edges of the wire are constants of the motion. The shift Y is

related to the electron momentum kx, the constant of motion in the quantum

mechanical description, as Y = l;kx = nkx/eB (which is identical to the average

position of a free 2DEG wavefunction in the magnetic field B with the gauge

we choose). On the other hand, the coordinate X along the wire changes

on each reflection when the electron is scattered by one of the edges. The

trajectory (x, y) can be classified as a cyclotron orbit, a skipping orbit, or a

traversin_g trajectory, depending on whether the trajectory collides with zero,

one, or both of the edges of the wire. Using the conditions (Y ± W/2) = rc,

we can separate these three types of trajectories in the space (Y, E) by two

parabolas (Y ± W/2)2 = 2m* E( eB)-2 as shown in Fig. 2:4.

The quantum mechanical dispersion curves En(kx) can then be fitted into

the above classical picture by the correspondence kx = Y eB [h, We may apply

the Bohr-Sommerfeld quantisation rule to the classical motion in the y direction,

s.e.

k f pydy + ; = 21m, n = 1,2" .. (2.25)

to find out the dispersion curve with sufficient accuracy for our purpose here.

The phase shift; is the sum of the phase shift at the two turning points of the

projected motion along the y direction. The phase shift is 1!' when "» changes

sign by the reflection at the edge and -1!' /2 when Vy changes sign continuously.

Consequently, ; is -1!' /2 - 1!'/2 = 1!' (mod 21!') for a cyclotron, 1!' - 1!'/2 = 1!'/2

for a skipping orbit, and 1!'+ 1!' = 0 (mod 21!')for a traversing trajectory. By
",:

f;
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Figure 2.4: Energy-orbit centre phase diagram. Different types of classical

trajectories in a magnetic field are shown (clockwise from the left: skipping

orbits on one edge, traversing trajectories (only one direction is drawn here),

skipping orbits on the other edge and cyclotron orbits). The hatched region is

forbidden. (From Ref. [39])

using Eq. (2.24), py = m*vy = eB(x - X) and Eq. (2.25) takes the form

B j(x - Y)dy = ~ (n - 2:) . (2.26)

This quantisation condition has a geometrical interpretation: n - ,121r flux

quanta hie are contained in the area bounded by the wire edges and a cy-

clotron circle centred at Y with radius (2m· E)1/2IeB. The electron energy

E = m·v2/2 will be calculated with the aid of Eqs. (2.24) and (2.26). The

dispersion curve for En.(kx) can then be carried out straight forwardly for each

integer n and momentum Y by using the relation kx = Y eB In. The results

are shown in Fig. 2.5. The regions occupied by the classical skipping orbits
~;"

are-shaded, which are bounded by the two parabolas shown in Fig. 2.4. The

unshaded regions contain cyclotron orbits at small E and traversing trajecto-
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ries at larger E. From Fig. 2.5, we can easily see the correspondences between

these classical trajectories and the parts on the quantum dispersion curves. The

cyclotron orbits correspond to the Landau levels which are the flat portions of

the dispersion curve at En = (n - 1/2)11;.;;c. The group velocity is zero for a

Landau level, which is identified with a circular orbit. The traversing trajec-

tories, which interact with both the opposite edges and have a nonzero group

velocity, correspond to the lD subbands where both the electrostatic confine-

ment and the magnetic field are present. The skipping orbits correspond to the

edge states [50], which interact with a single edge only. The two sets of the

edge states (one for each edge) are separated in the (k, E) space. Edge states

at opposite boundaries move in opposite directions, which is the same as for

the skipping orbits. Finally, the critical field Bcrit = 21ikF/eW in Fig. 2.5 is

obtained from the requirement of having the BQW width equal to the classical

cyclotron diameter. There are traversing trajectories only when B < Bcrit.
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B>But

Figure 2.5: Dispersion curves En(k:c). (a) W = 100 nm, B = 1 T; (b) W =

200 nm, B = 1.5 T. The shaded area is the region of classical skipping orbits

and Berit = 2hkF/eW. (From Ref. [39])
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Chapter 3

Electronic transport:

Landauer-Buttiker formulae

3.1 Introduction

Transport in a system is a phenomenon associated with a non-equilibrium state.

A system- is in a non-equilibrium state if there are any kind of "potential"

differences between any two spatial points in it so that a "flow" is built up from

a source to a drain which are associated with the high and low "potentials"

respectively. The dependence of the amount of the "flow" on the "potential"

difference is generally nonlinear. Because of the difficulty of dealing with the

nonlinearity there is no unified theoretical approach to non-equilibrium systems.

Only the so-called near-equilibrium systems have been systematically studied

in a unified picture [51]. In a near-equilibrium system, the difference between

the "potential" /-Ls at the source and the "potential" /-Ld at the drain is so small

that the "flow" can be treated as a linear response of it. We would like to

use 2(/-Ls - /-Ld)/(/-Ls + /-Ld) 0 as the criterion of near-equilibrium instead of the

conventional (/-La - /-Ld) 0, since we believe any system in which /-Ls > /-Ld = 0

is far. from equilibrium. In fact, a system is in a near-equilibrium state only

if the amount of net current is much smaller than both of the currents from

source and drain.

There are different kinds of flows, such as charge, heat, mass, etc., corre-
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sponding to different kinds of potential differences. Current, i.e. the charge

flow, is induced by the electrochemical potential differences in a system. The

ratio of the potential difference to the current is defined as the resistance be-

tween the two corresponding points in the system as in the well known Ohm's

law. While the ratio of the change of the potential difference to the change of

the current is known as the differential resistance. It is understandable that

these two kinds of resistances are generally not equal to each other and that

both of their magnitudes depend not only on the average chemical potential

in a system but also on the potential difference. If a system is in the near-

equilibrium regime, the linearity of electronic transport will merge these two

resistances into one constant which depends only on the chemical potential of

the system and can be used to characterise the system response. This is the

resistance we are going to study in 2DEG microstructures in this thesis.

Resistance comes from the disturbance produced by different kinds of "im-

purities" on the directed motion of the charge carriers which are the electrons

in solid state materials. We can see this from a simple classical example. In

a 2D infinite space without any impurities the current density j will approach

infinity because the infinite velocity of free electrons which are accelerated by

a constant electric field E. Hence, the resistivity p defined by E = pj must

approach zero. On the other hand, the electron velocity and the correspond-

ing current density cannot be arbitrarily large as long as there is an impurity

distribution in the system because there is always some momentum loss asso-

ciated with scattering. It is very obvious that a classical resistance problem is

very similar to a classical diffusion problem. The concepts of the mean free

path I and the relaxation time r have been borrowed from there. They refer

to the average distance and time respectively between two electron-impurity

scattering events. The resistivity may be found easily [52] as p = m*/ ne2r,

where m" is the electron mass and n is the density of electrons. More detail

calculations can be performed by using a distribution function f(r, p, t) which

expresses the fraction of states occupied and its time dependence, where r and
,"

k a:re the electron position and momentum respectively. If we imagine f as the
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density of a fluid in 6-dimensional (r, p) space, the equation of continuity has

the form

(3.1)

where V is a 6-dimensional velocity composed of the electron velocity v =

O~/Ot and the force on electrons F = Op/Ot. Because rand p are conjugate

coordinates and the Hamiltonian equations held for them, we will have V'.V = 0

and

(3.2)

by the Liouville's theorem [53]. In the presence of impurities, electrons being

scattered in the p-space can not be fully described by the force F and a sup-

plement term to include the effect of scatterings is needed. Using the relation

p = tik, we have the Boltzmann equation in the form

df = Of + v. V'rf + Ok . V'kf = (df)
dt at at dt scatterings

where the right-hand side is the time rate of change due to the scattering by

(3.3)

impurities. To solve Eq. (3.3), a relaxation time approximation is often

used [55], which is

(dt) scatterings = - f ~ fo (3.4)

where fo is the equilibrium distribution function. For a simple homogeneous

system at low temperatures with randomly located impurities: f = f(k) for the

steady state. Then we have the resistivity in the same form, p = m*/ ne2r( kF),

for a free EG [36], where r(kF) is the relaxation time for the electron at the

Fermi level. The Boltzmann equation is derived from the classical point of view

[54]. In principle, the Boltzmann equation may only be used when wave packets

can be constructed. Nevertheless, it sometimes produces similar answers as a

quantum calculation even when this criterion is not satisfied.

Electronic transport in microstructures is a kind of quantum transport be-

cause the Fermi wavelength is of the order of the microstructure dimensions.

Furthermore, the time for electrons traversing the system is equal or less than
",."

the (relaxation time in common semiconductors (typical values are velocity

for electrons in semiconductors 105 m/s [39], the relaxation relaxation time

31



10-13 -10-11 s [39]and size of microstructures 10-8 _10-7 m). For such cases,

we need quantum mechanics to discuss near-equilibrium systems. A general for-

mula for the quantum mechanical linear response was first derived in 1957 [56],

which is known as the Kubo formula. The great generality of this approach

makes specific calculations very difficult even in the cases which are easily han-

dled by means of the Boltzmann equation [57]. To use this formula to calculate

the resistivity, various techniques based on density matrix, Wigner functions,

Feynman path integrals and Green's functions have been developed for differ-

ent applications. All these techniques have their computational strengths and

weaknesses, and all are equivalent representations of the quantum transport. A

brief review for each of these techniques can be found in Ref. [58]. To study

quantum electronic transport in microstructures, the Landauer-Biittiker formu-

lae (L-B formulae) are the most frequently used because they directly give the

quantities measured at the terminal of the structure. These formulae express

the relations between the resistance and the scattering matrix of a microstruc-

ture. In :he following sections, we will look at the original classical Landauer

formula, its quantum form, the quantum L-B formulae and, finally, a special

feature associated with the L-B formulae - contact resistance. A detailed re-

view about the Landauer formula, the L-B formulae and relevant problems is

in Ref. [59], where a derivation of the L-B formula from linear response theory

is also included.

3.2Classical and quantum forms of the Landauer

formula

The original Landauer formula [60]was introduced in the same year as the Kubo

formula was obtained. It took a novel point of view that transport should be

viewed as a consequence of incident carrier flux [61]. This made it the most

useful formalism for the study of the electronic resistance in microstructures for

which the system size is comparable with the electron Fermi wavelength. The
(,

Landauer formula was first derived by using the analogue to a classical diffusion
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problem. Although this formula has a classical origin, the nonlinearity and

irreversibility associated with the electron wave character and phase coherence

of electrons were discussed by analysing the relation between the transmission

probabilities of the whole system and its individual parts. Below we give a

derivation of the Landauer formula based on his 1970's paper [62].

Landauer considered electrons incident on an array of obstacles. The length

of the array is L and the transmission and reflection probabilities for the whole

array are T and R = 1 - T respectively. Hence, the density gradient across

the array is V'n = -2R/ L for a unit incident flux. The current of particles

associated with this gradient is j = vT, where v is the electron velocity in the

absence of scatterers. Using the diffusion equation j = -DV'n, the diffusion

coefficient D is
D = vLT.

2 R
(3.5)

Then, the corresponding resistivity p can be carried out through the Einstein

relation [63]:
1

(3.6)

where J1. is the chemical potential for a density of n electrons. The total resis-

tance of the array, n, is:

(3.7)

Eq, (3.7) is known as the Landauer formula. There is no contradiction to our

naive understanding of resistance, for a perfect conductor R -+ 0 and n -+ 0

while for an insulator-T -+ 0 and n -+ 00. Resistance additivity is retained in

classical situation. If the whole array consists of N identical classical obstacles,

we will have R/T = Nr/t [62]where rand t are the transmission and reflection

probabilities for one obstacle. But, the resistance of the system can be expressed

in the terms of the transmission and reflection probabilities of the whole system

and does not depend directly on the length of the system. If electrons can

keep their phase memory when they traverse between two adjacent obstacles,
/,

the ratio of the total reflection and transmission probabilities is not a linear
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combination of the individual ratios. This is the case when system dimensions

are smaller than the phase coherence length of the system. The resistance

of such a system is nonlocal because of both the electron wave character and

phase memory. From this point, wemay realise that the global "ances" are more

fundamental than the local "ivities" in phase coherent systems. Moreover, the

resistance of a phase coherent system has generally no irreversibility unless the

system itself has some kinds of intrinsic symmetries.

In 1980, the Landauer formula was obtained again through quantum me-

chanics approach [64]. The system is the same, an 1D obstacles array with its

two ends connected with two electron reservoirs. The chemical potential differ-

ence between the two reservoirs is op.. The phases of the electrons coming out

of the reservoirs are randomised. The incoming current from the source (drain)

to the system is Is (Id), and the reflected current from the system to the source

(drain) is I! (I~). We can use the transmission and the reflection probabilities,

T and R, to express the reflected currents in terms of the incoming currents

(3.8)

The extra density of electrons in the energy space near the Fermi surface is

(3.9)on = (dE)
dn EF

which is equal to

(3.10)

where the electron group velocities from the source and drain, Vs and Vd, are

equal to the electron Fermi velocity VF because the chemical potential difference

op. is very small. The net current traversing the system is

I = Is - I~= -(Id - I~) = T(Is - Id). (3.11)

A very important and unique quantum feature of a dynamically 1D-EG is that

the product of its Fermi velocity and the density of states at the Fermi energy

is a constant which is

(3.12)
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with spin degeneracy included. With the aid of this relation, the conductance

of the system can be written in the form

G = I

T

2 (dE) R
dn EF

2e2 T
= hR'

(3.13)

Now, we may look back to Eq. (3.7) and find that we can directly use the

quantum relation between the 1D group velocity and density of states and get

the identical final result.

Eq, (3.13) was employed in a rigorous formulation of a new scaling theory

of localisation [64, 65]. However, this approach was a complete success only in

the strictly 1D case and had little impact on experimental work on quantum

transport phenomena. To calculate the conductance of a real system, we should

generalise it to higher dimensions where more than one lateral conducting chan-

nels are involved. Many attempts were made to reestablish Eq. (3.13) and pro-

pose the multi-channel generalisations of it in either approximated or rigorous

manner by different approaches (including the sophisticated self-consistent lin-

ear response theory) [64, 66, 67, 68, 69]. But, there appeared to be no unique

generalisation and the final form depended entirely on the assumption made

deliberately, or used unconsciously, about the nature of the measurement leads.

What kind of role these leads played in the experimental resistance measure-

ments remained a problem. There was a detailed examination of the effect of

the measurement methods [70]. Four-lead configurations and current-stop pro-

cedures for measuring voltage were both simulated by using a scattering matrix.

This work recognises the importance of considering the actual physical condi-

tions corresponding to a measurement and is vital to the study of the transport

properties of microstructures. The authors rederived Eq. (3.13) but missed a

new formula which will be given in the next section. This was partly because

the voltage leads were assumed to couple to the system very weakly and partly

because the Landauer formula was apparently and essentially correct so that

everybody wanted to keep it.
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3.3 The single-channel and multi-channel L-B for-

mulae

In 1981, another form of conductance formula in strictly 1D quantum limit [71]

was obtained:

G = 2e
2
T.

h
(3.14)

A short time later, a generalisation of Eq. (3.14) into the N-channel case was

derived exactly for the linear response of a system to an applied field which

only varies within the obstacle region [72]. The result is

2e2
G=-;;LTmn

m,n
(3.15)

where the subscripts m and n run over all the N -channels on the two sides

of a system respectively. Tmn = Itmnl2 is the transmission probability of an

incoming electron wave from the n-th channel of one side into the m-th channel

of the other side and tmn is the corresponding element of the system transmis-

sion matrix. It is obvious that Eq, (3.14) contradicts the Landauer formula

Eq. (3.13). From the former equation, we will find that the resistance of any

system is not zero even for a "perfect" conductor (T = 1 for a complete trans-

mission). This. feature was considered to be very puzzling and suspicious by

many researchers. But, the only quantitative application of a Landauer-type

formula to multi-channel transport at that time was using Eq. (3.15) to test

the scaling theory of localisation in 2D and 3D and good agreement with the

expected behaviour of scaling function was obtained [73].

The dispute was settled by the work of Biittiker et al. [69]. They used a

simple 1D picture to show that Eq, (3.13) and Eq. (3.14) have difference phys-

ical correspondences. The model they used is shown in Fig. 3.1. The chemical

potentials in the reservoirs J.l.l and J.L2 are fixed. However, the chemical poten-

tial difference between the. two sides of the obstacle array is smaller than the

chemical potential difference between the reservoirs due to the non-equilibrium

distribution of electrons in the leads. The chemical potential in the lead is

defined as the chemical potential that would correspond to the same density of
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Figure 3.1: (a) An array of obstacles connected to two incoherent reservoirs by
~

ideal 1D conductors. The obstacle array is represented by a potential barrier

characterised by transmission and reflection probabilities T and R. (b) The

chemical potentials in the single-channel case. The chemical potentials for the

source and drain are ~1 and JL2 respectively. JLA and JLB are two chemical

potentials which characterise the electron densities in the two ideal leads. (From

Ref. [69])
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electrons if they were in equilibrium. IlA (IlB) can be determined by equalising

the number of electron energy states above and below IlA(IlB) for the states

between III and 112 at the left( right )-hand side of the obstacle array. When the

system is in the near-equilibrium state, with the aid of the very helpful relation

Eq. (3.12) the total net current I has the form

2( -e)
1=-h-T(1l1 - 112) (3.16)

and the chemical potential difference at the two sides of the obstacle array is

(3.17)

where T and R are the transmission and reflection probabilities of the obstacle

array. Therefore, the conductance of the obstacle array itself is determined by

the Landauer formula Eq, (3.13) while the conductance of the whole system

has the form of Eq. (3.14). Generalisation to the multi-channel cases is made

by assuming that all the electrons in different channels arriving from the source

and drain to the corresponding leads are characterised by one single chemical.
potential III and 112 respectively. The chemical potentials in the leads, IlA and

llB, are determined through the same procedure as for the single-channel case.

The N -channel conductance associated with IlA - IlB is

G = 2e
2
I:Tm _;'Em v;l

h m 'Em Vm (1 + Rm - Tm)
(3.18)

where Rm = Ln Rmn, Tm = Ln Tmn = 1 - Rm and Vm is the Fermi velocity

for the moth channel. The subscripts m and n run over all the N -channels on

the two sides of the s¥stem respectively. This formula was also obtained in

Ref. [68]. While the multi-channel conductance associated with III - 112 has the

form as in Eq. (3.15).

The difference between Eq. (3.13) and Eq, (3.14) can be understood in

this way: even in the strictly 1D situation measurement does have significant

effect on the final resul~~. These two kinds of formulae will merge into one

at the limit of R ~ 1 (Rmn ~ 1 for the multi-channel case) because the

eleetrons in the leads will approach equilibrium state at this limit. In fact, the
IJ

convergence can be much more rapid [74] and the condition is G ~ N(2e2)jh
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or equivalently 1/ L ~ 1 where N is the number of conducting channels, 1 is

the elastic mean free path and L is the length of a microstructure. In another

particular situation, these two formulae will also merge when one of the channel

velocity vanishes as the Fermi energy approaches the corresponding channel

energy. For example, when EF approaches EN+l at which the (N + 1)-th

channel becomes conducting, both the corresponding channel velocity VN+1 and

transmission probability TN+l will approach zero, and Eq, (3.18) for (N + 1)

channels will reduce to the form of Eq. (3.15) for N channels.

At about the same time, a series of fundamental experiments on the con-

ductance of ultra-small metallic rings revealed the presence of a normal metal

Aharonov-Bohm effect [26]and system-specific time-independent magnetoresis-

tance fluctuations [19]. These experiments were primarily carried out in multi-

lead configurations and the magnetic asymmetry in the conductance fluctua-

tions due to the phase coherence of electrons completely ruled out the possibility

of using the two-lead formula Eq. (3.14) or its multi-channel form Eq. (3.15).

The point. is that in the two-lead phase coherent system the phase of electrons

will be randomised after the electrons traverse the system, so that the length

of the system is very similar to the inelastic mean free path in other systems.

The two-lead formula can be applied only when the lead spacing is about the

inelastic mean free path which is normally not the case in the above multi-lead

experiments. A multi-lead multi-channel generalisation is needed. Biittiker

extended the scattering matrix description used in Ref. [70] and considered a

four-lead system in terms of its transmission and reflection matrices [75]. This

four-lead 2DEG system is shown in Fig. 3.2 with an external magnetic field B

applied in the direction perpendicular to the plane of the system (which is rep-

resented by the magnetic flux ~ in the figure). The chemical potentials of each

reservoirs were assumed to be so close that the electrons in the microstructure

are in a near-equilibrium state. The important thing is that Biittiker assumed

that the voltage leads and the current leads are qualitatively the same as in

a real four-lead configuration experiments. The only difference is that they

ju~~thappen to be used for measuring the voltage and the current respectively.
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Figure 3.2: A four-lead system connected to four reservoirs via four perfect

leads (unshaded). An external magnetic field is applied as represented by the

magnetic flux e. (From Ref. [75])

Then he evaluated the current flowing into or out each reservoir in the terms of

the corresponding chemical potential difference by using the same procedure in

two-lead case. For an M-lead system we can write the current in the i-th lead

in the terms of the chemical potentials of each reservoirs as

(3.19)

with

Tij = l:Tij,mn
m,n

(3.20)

and

Rii = .2: Rii,mn
m,n

(3.21)

where Tij,mn is the transmission probability of a unit incident current in the

n-th channel of the j-the lead to the m-th channel of the i-th lead, Rii,mn is the

reflection probability in the m-th channel of the i-th lead due to a unit incident

current in the n-th channel of the same lead. The subscripts i, j, m and n run

fr~m 0 to M, M, Ni and N, respectively, where M is the total number of leads

and Ni(Nj) is the total number of conducting channels in the lead i(j). Using
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the current conservation condition

s, = s; + LTij,
j#i

(3.22)

we can express Eq. (3.19) in the form

L /1' 2e2 (H' - H')I·= G··_J - -"T .. ,..,1 ,..,J
1 . I) (-e), - h f: I) (-e)

) Jr'

(3.23)

where Gij is the conductance between the i-th and the j-th leads. If the system

is connected only to two reservoirs, Eq, (3.23) yields the two-lead multi-channel

conductance G12 as in Eq. (3.15). A multi-lead generalisation of Eq. (3.15) can

be obtained directly from Eq, (3.23) as

{

2~2Tij, i =f: i.
Gij =

2e2
T(Ni - Rii), i = j.

Eqs. (3.22) and (3.23) represent a quantum version of the Kirchhoff's law

(3.24)

[33, 76].. These equations provide a linear response relationship between the

chemical potentials of the electron reservoirs connected to the system and the

currents at the connections of the system and the reservoirs. The linear response

coefficients in Eq. (3.19), i.e. the transmission and reflection probabilities, are

evaluated at equilibrium at the Fermi energy and have the Onsager-Casimir

symmetry under magnetic field reversal [77, 78]. The diagonal Rii are symmet-

ric under B reversal and the off-diagonal Tij obey a reciprocity relation [75, 80]

which is based on the symmetry of the scattering matrix [79],

(3.25)

Now, consider a four-lead configuration of conductance measurement. Let

the leads k and I be the current source and drain and the leads m and n

be the voltage leads. The voltmeter connected to the voltage leads is taken

to have infinite impedance. Hence, the voltage measured at a voltage lead is

obtained by adjusting the chemical potential of the reservoir connected to this

leaf! such that the net current through the measurement lead is zero. After
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solving Eq. (3.19) with the conditions 1= Ik = -II and 1m = In = 0, we find

the four-lead conductance [75]

(3.26)

where Dkn is a rank 3 subdeterminant of the matrix of transport probabilities

in Eq (3.22) with row k and column n deleted from the full matrix. Actually,

all these subdeterminants are equal, Dkn = D, as a consequence of current

conservation [33]. The kind of formulae given in Eqs. (3.14), (3.15), (3.24)

and (3.26) are known as the Landauer-Biittiker formulae. The important

symmetry of the four-lead conductance Eq. (3.26) is the reciprocity relation

[75, 80],

(3.27)

andD(B) = D( -B), which can be easily verified by applying the reciprocity

relations in Eq. (3.25) onto Eqs, (3.22) and (3.26). A derivation of the L-B

formula, Eq. (3.24), and the Onsager-Casimir relations Eq, (3.25) can be found

in Ref. [81]. (Actually, reciprocity of current sources and voltage sources has

been understood for a long time, well before the Onsager-Casimlr symmetry

was found. As being pointed out by Biittiker [80], Searle presented a derivation

of Eq, (3.27) in 1911 [82], which he attributed to Heaviside.)

We see clearly from above that the form of conductance formula has been

changed several times to suit different situations. From Eq. (3.7), Eq. (3.13),

Eq. (3.18), Eq. (3.15), Eq. (3.24) and, finally, to Eq. (3.26), the correspond-

ing physical backgrou:r:d varies in turn from classical ID system, quantum 1D

system, quantum multi-channel system (which dimension is higher than 1D),

quantum ID system with two measurement leads, quantum multi-channel sys-

tem with multi-leads to quantum multi-channel multi-lead system with the cur-

rent and voltage leads fixed. In addition to what we have discussed about the

electronic transport at zero temperature, we would like to mention that an ex-

tension of the L-B formulae has been made to account for temperature changes

in-the reservoirs and heat flows in the leads [81]. It describes the linear electri-
I,'

.cal, thermal and thermoelectric transport properties of a microstructure at low
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temperatures and near-equilibrium state. Onsager-Casimir symmetry relations

and reciprocity theorems are given for all the electrical, thermal and thermo-

electric configurations. The advantage of the formalism is that the theory puts

the formulae for the thermal and thermoelectric matrices of a multi-lead mi-

crostructure on the same footing as those for the conductance matrix.

3.4 Contact resistance

Before we end this chapter, let us explore a special feature associated with the

L-B formulae in more detail. For simplicity, we only discuss a two-lead system

which is physically the same to a multi-lead case for what concerns us. It is

about the finite conductance at the ballistic transport regime for which the

transmission probability Tm = En Tmn ~ 1 in Eq. (3.15) for every conducting

channel m. At this limit, the conductance is finite, G = 2e2N / h, where N

is the number of conducting channels. When there is only one conducting

channel involved, the conductance of the system becomes a universal constant

2e2 / h. There are various ways of giving a qualitative or even semi-quantitative

explanation of this result, emphasising on either the effect of system boundaries

or the contact resistance at the contacts between leads and reservoirs.

From what we have discussed in the last section, we understand that the

quantised finite conductance of a perfect lead - a BQW - is a kind of phe-

nomena associated with the fact of non-equilibrium in the leads connecting the

reservoirs and the obstacle array. Due to the finite width of a BQW, there are

only limited conducting channels involved in a finite range of chemical poten-

tial differences. In this ballistic transport regime, it is the boundaries which

limits the current rather than the obstacles. Quantised finite conductance in a

BQW is a result of the quantum size effect associated with the finite width of

the wire. If we could make an infinite wide BQW, the number of conducting

channels N would approach infinity as well as the conductance; The infinite

conductance of a system is associated with its infinite cross section which is

alVyaysassumed in macroscopic calculations. At this limit, we may restore our

classical picture that a perfect conductor has zero resistance. On the other
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Figure 3.3: A configuration for calculating contact resistance.

hand, the narrower a BQW is, the fewer the conducting channels are and the

more obvi~us the conductance quantisation is. Eventually, the conductance

will be zero when there is no conducting channel involved. This naturally leads

to an area of interest at the limit of electrical conduction, such as the recent

discovery of quantised conductance in a ballistic quantum point contact [9, 10].

Furthermore, another explanation is needed for the observation of the universal

conductance G = 2e2 / h when N = 1 and T = 1. It is obvious that the 1D quan-

tum relation between the Fermi velocity and the density of states at the Fermi

energy, Eq. (3.12), makes this simple and unique formula Eq. (3.15) possible.

Because this relation arises only in 1D case, it is reasonable to attribute this

universal constant conductance partly to the effect of system dimensionality -

quaai-ID or 2D with finite boundaries. However, the constant conductance of

a BQW is only associated with the L-B formulae rather than the Landauer for-

mula. For such a uniform perfect wire coupled without scattering to reservoirs,

a connection has been made between the universal constant 2e2 / h and contact

re~jstance [83]. It would be helpful and illuminating to understand this connec-

. tion by recalling the calculation of contact resistance [84]. As we know, contact
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resistance is caused by the geometrical shape of a narrow lead connected to a

large electrode. Let us consider the configuration shown in Fig. 3.3, where a

narrow perfect conductor with cross section A is connected to two large con-

ductors which have chemical potentials 11-1 and 11-2 respectively. Two contacts

are formed at the two ends of the narrow conductor. Because ofthe perfectness

of the narrow conductor, the resistance of this system can be completely at-

tributed to the two contacts for which the same contact resistances are assumed

[85]. We first calculate the current injected from the left-hand side conductor

with chemical potential 11-1 to the narrow region, which is

(3.28)

(-e)Am* 2

411"2 li3 11-1,

where 11-1 ~ EFl = (likFl)2 /2m*. Hence, the net current traversing the contacts

=

and the system is

(-e)A m*
= ~fi3(11-1 - 11-2)(11-1 + 11-2).

Ifwe define bl1- = 11-1-11-2 and 11-= (11-1+11-2)/2 as well as the number of conducting

channels in the cross section A as NJ. = (4/411"2)A1I"k} = (A/1I")(2m*/li2)11-, we

(3.29)

finally have the net current in the form

(-e) e2 bl1-
I = 411"li N J.bl1- = 2h N J. (-e)' (3.30)

When there is only one channel involved, i.e. NJ. = 1, the contact resistance for

each conducting channel at each contact is universal as we have found before:

h
Rcontact = e2 (3.31)

which is only two times the universal resistance which we have obtained from
r,

, the L-B formula Eq. (3.14) for a single-channel BQW.
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Chapter 4

The chemical potential in a

transport system

4.1 Introduction

Before we start talking about the chemical potential in a transport system, let

us first make a brief review about the concept of chemical potential itself and

some relevant features of it. When a system is in an equilibrium state, the

second law of thermodynamics requires the entropy of the system approaches

its possible maximum value in a given environment. Under this condition, a

distribution function can be defined to describe the probability of each mi-

crostate being occupied. The environment of such a system can be changed in

a so-called quasi-static adiabatic way so that the system undergoes a reversible

process from one equilibrium state to another provided that its entropy re-

mains at the same value. Such a system is normally not isolated any more

and the number of particles in it may be indeterminate, such is the case in a

grand canonical ensemble. When the interactions between the system and its

environment are defined, there is a corresponding thermodynamic function to

describe the relation between the changes of the system and the work that th,~

environment has done to the system during the process. The amount of work

as'~?ciated with the addition of one particle to such an equilibrium system is

defined as thechemieal potential of the system.
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The form of distribution function for an equilibrium system depends on the

nature of the particles and so does the chemical potential if the system has

indeterminate number of particles. Often we can treat the particles as classical

particles and use classical Boltzmann statistics to describe them. However,

the distribution function will depart from its classical form when the following

'condition is fulfilled [86]

h2 (N)2/3kBT<- -- 21l"m V ' (4.1)

where m is the mass of particle, N is the number of particles and V is the. vol--.
ume of system. Under this condition, the thermal energy which each particle

has on average is smaller than its kinetic energy. So that the degeneracy of

the microstates will affect the particle distributions and quantum effects will

appear. The reason for this is simple. Let us consider a system of N particles

ofa certain kind. If the interactions between the particles are weak enough, the

single-particle approximation works and we can treat the motion of each

particle as to be independent of all the others. This is the case for the 2DEG

systems. The quantum states allowed for these individual motions - single-

particle states - are determined by a single-particle Schrodinger equation and

are described by the energies of these states and the wave functions associated

with them. However, the occupation number of each of these quantum states

is restricted by a general principle of quantum mechanics: the wave function

of a system of identical particles must be either symmetrical or antisymmet-

rical under the permutations of the particle coordinates. These two kinds of

particles are known as bosons and fermions respectively. Unlimited number of

bosons can be in the same quantum state while only one fermion per state is

allowed at any time. Quantum statistics are needed to include the effects of

these two kinds of microstate degeneracy when the condition in Eq, (4.1) is ful-

filled. Correspondingly, there are two types of quantum distribution functions,

the Bose-Einstein distribution function [87, 88] and the Fermi-Dirac distribu-

tion function [89, 90]. Particularly important applications of these quantum

-distributions are those involving phonons and electrons in solids.
Ii

It is necessary to use the Fermi distribution function in our calculations.
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The phenomena which we are going to study in the 2DEG microstructures have

their origin in quantum size effects and the effects of an applied magnetic field.

The energy scales associated with these two effect are Ea = h2/211"m*(2W)2 and

EB = lieB /m* respectively, where W is a length associated with the size of a

microstructure, e is the absolute value of electron charge, and m* is the particle

mass. For a system of free electrons with W N 100 nm in a magnetic field

B rv 10 T, the energy scales, E, and EB, in the unit of temperature are about

0.38 K and 13 K respectively. Since the electron in the GaAs microstructures

has an effective mass m* rv 0.067 me [39], the corresponding Es and EB

are about 5.5 K and 190 K respectively. In other words, the temperatures

in the GaAs system we study should be lower than 5 K in order to observe

the quantum phenomena associated with Es. It is clear that the quantum

effects which are observed in the temperatures below several Kelvins in GaAs

microstructures are mainly due to the quantum size effect which is enhanced

by the reduction of the electron effective mass. To observe quantum size effects

in a Si m.icrostructure, we need to be in even lower temperatures under the

same conditions because the effective mass of electrons in Si is 0.19me [39].

However, in these 2DEG systems, the ratio N/V is normally about 1023 m-3 for

a standard electron sheet density n, rv 1015 m-2 with a typical layer thickness

'" 10-8 m [91]. Hence, the condition in Eq. (4.1) will be fulfilled when T < 12 K.

Ifwe put the electron effective mass in GaAs, m* '" 0.067 me, into Eq. (4.1), the

temperature satisfying the condition can be as high as two hundred Kelvins.

Hence; we should treat a 2DEG system at low temperatures as a quantum

system of fermions ana consider the chemical potential which is associated

with the Fermi-Dirac distribution function. The average occupation number of

a single-particle state a in our system will be given by

(4.2)

where Ea is the energy of the quantum state a and 11 is the chemical potential

which is sometimes called the Fermi energy in semiconductor physics.

I In a fermion system, the chemical potential has some distinct properties.

It can be either positive or negative but is normally larger than the energy of
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the ground single-particle state in the systems discussed here (when /l is much

smaller than the ground state energy, the system reaches its classical limit

and the Fermi distribution can be replaced by the Boltzmann distribution). If

the energies of the single-particle states are independent of temperature T, /l

becomes smaller when T is lowered. When T -;. 0, /l tends to a finite limit

which is the average free energy per fermion. The last and the most useful

property of /l is that at low temperatures the number of the occupied states

with their energies larger than /l equals to the number of the unoccupied states

with their energies smaller than it. At T = 0, there is no unoccupied states

below /l and no occupied states above it. Consequently, we find out that /l

plays a dual role in Fermi statistics: it not only characterises the free energy of

fermions but also determines their distributions in energy.

4.2 The chemical potential in the Landauerand L-

B formulae

It is obvious from the above discussion of the nature of the chemical potential

that, in a transport system, we cannot define a chemical potential because of

the non-equilibrium condition of the system. In principle, we may talk about

the chemical potential of a system only if there are no potential differences

or associated particle flows. In that case, the chemical potential in Eq, (4.2)

is the same for any particle in any part of the system. Because of this, we

cannot use a global chemical potential to describe a non-equilibrium system

which is intrinsically non-uniform. However, it would be very inconvenient to

study electronic transport in a system without using an appropriate quantity to

describe the driving force in it. There are other potentials, such as electrostatic

potential. While, the quantity associated with resistance could be nothing but

chemical potential as has been stressed in Ref. [70],

There are two ways to escape from this dilemma. One is the approach used
iI} the derivation of the L-B formula [75]. It takes the advantage of the pres-

I

. ence of terminals in microstructures and uses the chemical potentials of the
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equilibrium reservoirs connected to the leads and the net currents in the leads

to define the conductance between different parts of a system. This method

require neither a specific arrangement of the contact configurations nor par-

ticular kinds of voltage contacts. It avoids the difficulty of defining chemical

potential in a non-equilibrium system. However, we may only calculate the

total conductance contributed by the system and the leads. It is difficult to

use this method to present a detailed picture inside a microstructure and dis-

tinguish the contributions from different parts of a system to the final results.

Moreover, a microstructure with a lead attached to it is not the same as the

microstructure without the lead. Therefore, if we want to look at details, a

local parameter is needed. This leads to the other way, defining "chemical po-

tential" in a transport system. Obviously this parameter cannot be uniform for

a system in a non-equilibrium state but it should become the global chemical

potential when the system is in an equilibrium state. The very definition of

"chemical potential" away from equilibrium permits some exercise of taste and

choice. The chemical potential which Biittiker et al. used in rederiving the

Landauer formula is one of them [69]. As being pointed out by Landauer [92],

the definition should be the quantity which in an equilibrium system will take

us to the same average electron occupation. In other words, it should measure

the electron density [93].

Biittiker et al. suggested, in 1985, a method to define a chemical potential

in a uniform perfect measurement lead connecting a reservoir to an obstacle in

the presence of transport in a near-equilibrium state at all temperatures [69].

The chemical potentia! is determined by equalising the number of unoccupied

states below it to the number of occupied states above it. This is similar to

the situation for the real chemical potential in equilibrium system at finite tern-
-

peratures, but this time the redistribution of the occupied states is due to the

near-equilibrium status of the system since the other side of the obstacle is con-

nected to 'another reservoir. This parameter satisfies the Landauer cond.ition

and gives the true chemical potential and electron density when the system is_.

iri' equilibrium. Using this definition, Biittiker et al. regained the Landauer

50



formula and revealed the relationship between the Landauer formula and the

L-B formula. This definition of chemical potential can also be established by

using a weakly coupled voltage lead through a current-stop measurement pro-

cedure [70]. Many quantum effects, such as the quantum oscillations of the

transmission probability through a ID normal-metal ring to a voltage lead [79]

and the role of quantum coherence in series resistors [94] as well as the chem-

ical potential oscillations in a perfect lead near an obstacle in the presence of

transport [95,96] have been discussed in terms of this parameter. However, this

definition of chemical potential is intrinsically quasi-ID and can only be used

in studying longitudinal resistance, because it merely concerns changes along a

measurement lead and pays no attention to the cross section of the lead. Special

arrangements for the configuration of leads can be made to measure off-diagonal

resistance, such as in a Hall bar system. However, the result describes the Hall

bar rather than a microstructure itself. If we want to investigate the Hall effect

thoroughly, we need a 2D "chemical potential".

4.3 Local chemical potential

A 2D form of the "chemical potential" in transport microstructures at zero

temperature was proposed in 1986 for two-lead single-channel case [97] and was

generalised to two-lead multi-channel situation three years later [98]. The ap-

proach is based on the same measurement reservoir idea [70]which was adopted

by Biittiker et al. [69], using a current-stop procedure to determine the chem-

ical potential in a measurement reservoir which is connected weakly to the

microstructure being measured by a voltage lead. The value of the determined

chemical potential for the measurement reservoir is defined as the "local chem-

ical potential" (LCP) at the site where the voltage lead is connected. It is

obvious that the LCP is merely a parameter and it stands for a real chemical

potential only when the syatem is in equilibrium. However, the LCP has the

character of a chemical potential and is the driving force of current in resistance

measurement.

To determine the LCP on the site r = (x, y) in a uniform two-lead system,
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we connect the site to a measurement reservoir with chemical potential P,r which

satisfies the condition P,s ~ P,r ~ P,d, where P,s and P,d are the chemical poten-

tials in the source and drain reservoirs respectively. By assuming that there

is only one conducting channel in the measurement lead, the coupling matrix

elements squared are £tkl1/{~(rW and £}~I'¢{~(r)12for the states coming from

the source and drain respectively, where £~1(£~~) is the modulus squared scat-

tering matrix element for the state in the i-th channel with energy E from the

source (drain) and '¢{~(r) Cl/{~(r)) is the magnitude of the wavefunction for

this state at the site r. The total number of conducting states contributed by

the electrons from the source to the measurement lead is

N(s) = i:' dE 2; ni(E)£~~kl'lj{~(rW
I

(4.3)

where niCE) is the density of states for the channel i at energy E and the

subscript i runs over all the conducting channels. Furthermore, we assume that

the system is in a near-equilibrium state, i.e. (p's - P,d)/(P,s + P,d) ~ 1, and

the scattering matrix elements are the same for different channels. With the

aid of the ID quantum relation of the density of state and the corresponding

group velocity, the kernel of the integral in Eq, (4.3) can now be replaced by

the quantities at the Fermi energy. Hence, we have

(4.4)

where .v~lis the group velocity for the i-th channel at the Fermi energy. Simi-

larly, the total number of conducting states contributed by the electrons from

the drain to the measurement lead is

(4.5)

The elements of scattering matrix have been proved to be the same for the states

in the same channels coming from two opposite directions [79] (this means that

the direction of the current in the measurement lead is perpendicular to both the
"
opposite going currents), and the corresponding group velocities of the electrons

for the same ~hannel are approximately equal to each other because the system
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being measured is in the near-equilibrium state. Hence, the net current in the

lead will be zero when the following condition is fulfilled

(4.6)

This current-stop procedure determines the LCP at the site r, which has the

form
Li [1¢;s)(r)l2Jls + 1¢;d)(r)l2Jld] /Vi

Jlr(r) = Li [1¢Ia)(r)j2 + 1¢~d)(r)12] /Vi

where all the quantities are at the Fermi energy and the corresponding sub-

(4.7)

scripts are omitted.

The definition of the LCP is based on many assumptions about an idealised

isotropic noninvasive contact and is only for a uniform two-lead system. Nev-

ertheless, Eq, (4.7) provides with a way of looking at the spatial variation of

the current driving force in a microstructure and enables studies to be made of

the off-diagonal response of the system itself in an external field. Moreover, the

wavefunctions in Eq. (4.7) are for the eigenstates of the system being studied .
.

The quantum phase relations between the injected and reflected electron wave-

functions are included and the LCP gives phase sensitive results unless there

are other approximations on the squared wavefunctionshaving been made. In

fact, if we apply Eq, (4.7) to the ID problem which Biittiker has studied with

the weakly coupled voltage lead [95, 96], we can get exactly the same result for

the chemical potential oscillations which are due to the coherent interference

between the incident electron wavefunctions and the reflected ones. The phase

average and phase insensitive results can also be obtained by using different

approximations. In the equilibrium state of a system, the quantum interfer-

ence still exits. Despite the oscillations in the density of electrons caused by

the reflections, the local chemical potential will be constant throughout the

real space because Jla =.Jld. This is consistent with the definition of the true

chemical potential.

In the following chapters we will use the LCP to calculate some intrinsic

p'toperties of the BQWs in an external magnetic field. However, one may well

ask that whether the LCP is real, i.e. whether it can be measured or not.
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We believe there should be a way which can be applied practically to measure

this LCP no matter what assumptions we have made in its definition since it

is defined by a measurement procedure. We will come back to this in detail

later. Here, it should be mentioned that Biittiker has examined the induced

local electric fields in the presence of current flow [80]. With the assumption

that the wavefunctions vary slowly on the scale of the screening length, both

the two-lead single-channel and multi-channel forms of Eq. (4.7) are obtained

for the electrostatic potential from the Poisson equation at the strong screening

limit.

4.4 A new definition of the LCP

The derivation of Eq, (4.7) rests on a particular view of the behaviour of non-

invasive voltage leads [70, 97]. The equation is justified by envisaging a non-

invasive lead which removes an infinitesimal current proportional to the local

electron density in the channel considered. Some calculations [99, 100, 101]

have been made for the LCP from Eq. (4.7) with the group velocity factors

omitted (Eq, (4.7) itself is also used in [101]). In this case the lead is envisaged

as removing an infinitesimal current which is proportional to the local current

density in the channel considered. Both these hypothetical leads fit well into

the single-particle formalism but it is not clear how either of them could be fab-

ricated so as to behave in the manner assumed. We believe Eq. (4.7) is closer

to the, reality. Later in this thesis we will use a model calculation to prove that

the chemical potential.determined by the L-B formula at noninvasive limit have

the exactly form as in Eq. (4.7) under certain conditions.

Biittiker has calculated the self-consistent electrostatic potential in a mi-

crostructure when currents are transmitted [80]. He uses the Thomas-Fermi

approximation and assumes strong screening. The physics behind the calcu-

lation is completely different from that used in the calculation of the LCP
s, ....

described above. The same form as in Eq. (4.7) is obtained but with the LCP
...,"'

replaced by the electrostatic potential. Neither of the approximations made

in his calculation are very appropriate to the single-particle formalism which
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is usually employed to describe the electronic behaviour of semiconductor mi-

crostructures [80, 81]. Moreover, we discuss in the following chapter the Hall

resistance derived from the numerically determined self-consistent electrostatic

Hall potential which arises when current flows in the presence of a magnetic

field. It behaves completely differently from the Hall resistance calculated from

the LCP and, in particular, it does not exhibit the expected quantisation.

All these derivation of Eq. (4.7) are restricted to the linear response regime

at zero temperature and several approximations are involved. Here, we will give

a precise definition of the LCP in a multi-lead multi-channel microstructure

described in the single-particle picture. It avoids any reference to noninvasive

voltage leads and any assumptions as well as any approximations apart from

those which are involved in the L-B formalism. The definition is valid in the

nonlinear transport regime at all temperatures. In linear response regime at

low temperatures it immediately reduces to Eq. (4.7) for a two-lead system.

We consider an arbitrary microstructure in two different situations. Firstly,

a non-equilibrium situation in which the chemical potential in the reservoir

feeding lead I takes an arbitrary value J.tl. We write n( r, J.tb J.t2, ... ) for the

electron density at r in this case. Secondly, we consider an equilibrium situation

in which J.tl = J.to for all I. The electron density at r in this case is simply

n(r,J.to,J.to,"·) which we abbreviate to ne[r,J.to].

We now define the LCP at the point r by the equation

(4.8)

s.e. J.t(r) is the chemical potential in the equilibrium system which creates the

same electron density at r as that which is actually found there in the non-

equilibrium system. In other words, we may really know the distribution of

the LCP in a microstructure if the density of electrons at any site in it can be

measured.

Eq. (4.8) applies at all temperatures and all values of J.tl. It is easily solved

fer J.t(r) in the linear, low temperature regime assumed in Eq, (4.7). Since the
{,
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reservoirs are phase randomising, we have

where fleE) is a Fermi-Dirac function with chemical potential fll and nli(E) =

A/hvli is the density of states for channel i in lead t. To obtain ne[r'fl(r)], we

have only to replace every fleE) in Eq, (4.9) by the Fermi-Dirac function fl'-(E)

which involves the LCP fl( r). According to Eq, (4.8), the difference between

these two quantities must vanish. The integrals in the difference involve

(4.10)

Here fo(E) is the Fermi-Dirac function involving the original chemical potential

Ep of the microstructure before it was perturbed. The first approximation in

Eq. (4.10) is valid in the linear regime because both fll and fl(r) remain close

to flo. The second approximation is standard at low temperatures. With the

aid of Eq, (4.10), we find immediately that Eq. (4.8) have the form

s:»
It(r) = I: '

PI
I

(4.11)

where L 1'l/Jli(r)12
PI = __1,-' ---

Vii
(4.12)

For a two-lead uniform wire, it reduces to Eq, (4.7).

The advantage of tne new definition of fl( r) is that it involves no assumptions

or approximations which are not already involved in the Landauer-Biittiker

formalism. No appeal is made to self-consistent fields, screening, or non-invasive

probes of any sort. Moreover, the general formula Eq. (4.8) for fl( r) is valid at

high temperatures and in nonlinear regime, and it can be directly used in the

dimensions higher than 2D if necessary.

r.
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Chapter 5

Intrinsic quantum Hall effect

in a BQW

5.1 Introduction

Since the discovery of the IQHE by von Klitzing, Dorda, and Pepper in 1980

[4], much attention has been devoted to the transport properties of a 2DEG in

a magnetic field [103]. Two years later, the FQHE was observed [32], where the

quantisation of the Hall resistance is a rational fraction of the universal constant

hje2 with normally odd number denominators. During the continuous advance

in understanding the mechanism of the IQHE and FQHE, much theoretical

progress has been made [104]. In 1981 Laughlin used an ideal experiment to

demonstrate the possibility of the existence of integer quantised Hall resistance

[105]. Halperin in 1982 pointed out that the Landau levels of a 2DEG rise as the

edge of the system is approached and form quasi-continuous delocalised edge

states in which the main part of the current and the Hall voltage drop are lo-

cated [50]. Two opposite-going currents propagate along two opposite sides of a

2DEG respectively. The same kind of physical picture as described by Teller in

1931 [106]was reproduced. The IQHE is attributed to the existence of energy

gaps between the bulk Landau levels, and the vanishing of the diagonal elements

pf resistivity tensor in the middle of each Hall plateau is due to the vanishing

of the diagonal elements of conductivity tensor when the Fermi energy is in
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between the bulk Landau levels. In 1983, Laughlin constructed the renowned

Laughlin wavefunction to describe the behaviour of 2D interacting electrons in

a symmetric gauge and attributed the FQHE to the many-body energy gap

[107J. However, Laughlin's ground and excited quasi-particle wavefunctions

can only explain the 11M-type FQHE. Haldane used them to construct new

quasi-particles which form a hierarchy for the whole range of the FQHE [108J.

Because the accuracy of the observed Hall resistance quantisations is very high,

in the order of one tenth ppm, independent of the shape of the conductor and

microscopic details, the IQHE is adopted as a resistance standard. Such high

accuracy as a general feature of this effect leads to the belief that there must

exist a fundamental explanation of it. Naturally, some topological considera-

tions are introduced to examine closed conductors in which exact quantisations

are. shown [109, 110J. Despite of all these successes, people pursue their studies

for finding a way which can deal with both the IQHE and FQHE on the same

footing. In 1989, Jain suggested a so-called composite fermion picture which is

understood as fermions interacting with a Chern-Simona gauge field and gave

a unified explanation to the IQHE and FQHE as well as the construction of a

hierarchy [l11J. Four years later, by using the same picture, Halperin et al. suc-

cessfully transformed a 2DEG in an external magnetic field with Landau level

half filled to a mathematically equivalent system of fermions with zero average

effective magnetic field acting on the fermions [112Jand explained why no one

half quantisation has been found. Further developments along these lines are

in progress [34J.

All the approaches" mentioned above concern closed conductors. The elec-

tron .reservoirs connected onto the conductors and the effect of measurement

procedures are not included. The Hall resistance there is assumed to be additive

because only the Hall resistivity is considered. Actually, the conductor in real

situations is an open conductor which connects several electron reservoirs at

the same time. Experiment results show clearly that if the source and drain are

slose enough the quantisation of the Hall resistance is not generally maintained
Ii

[113, 114]. This reminds us that we cannot fully describe the QHE without con-
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sidering the effect of current source and drain. Moreover, the quantised Hall

resistance is nonlocal because of the long-range nature of electron transport in

high magnetic field as shown by experiments [118]. In such a quantum coherent

system, resistivity is not a very suitable quantity to use in describing electron

transport. Therefore, a new approach is needed to deal with the quantised Hall

resistance in open conductors. A 2DEG should be examined together with the

measurement leads. Furthermore, the fact that a real 2DEG has a finite size

has also to be taken into account. This is a very different picture from an exact

2D case. For an exact 2D system there are energy gaps between the Landau

levels. When its Landau levels are completely filled the system appears as an

insulator in a weak electric field. While for a finite 2DEG, the the Landau

levels overlap because of the effect of the edges and there is no energy gaps

between them. Moreover, each Landau level can only be partially occupied to

form a conducting channel, and and the system always appears as a conductor.

However, the conductance between a source and drain keeps finite due to the

finite size .of the system even when there is no impurities in it.

In 1988, Biittiker successfully described a picture for the IQHE in the terms

of the properties of measurement leads [115, 116, 95]. As in the case of typical

experiments, current leads are considered together with voltage leads on the

same footing. The Hall resistance is calculated by using the L-B formulae with

the aid of the concept of edge states. Exact quantisations of the Hall resistance

are obtained under certain conditions as the results of counting conduction

channels, while the longitudinal resistance approaching zero is the result of

equalisation of chemical potentials in two measurement reservoirs connected to

the same edge of the system in the absence of backscattering. Generalisation

of this picture to the FQHE· regime was made two years later by Beenakker

[117]. We understand from the L-B formulae that quantisation of resistance

can be maintained only when there is no backscattering of electrons. In other

words, the absence of the inter-edge state scattering is essential for perfect

quantisation of resistance in the QHE. Biittiker carefully examined this problem
r.
and concluded that there is no scattering backwards against the flow of carriers
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over distances which are large compared to the cyclotron radius [115]. Both

elastic and inelastic backscattering in 2D conductors are suppressed significantly

by high magnetic field. Later on, this theoretical consideration was confirmed

by experiments [119]. More detailed calculations have been done for the inter-

edge state scattering rate for elastic scattering and for acoustic phonons and

exponential reductions are found for both these scattering rates in high fields

[120]. Another important problem has also arisen from experiments: edge states

which initially have been populated unequally do not equilibrate even over

a very long distance [118]. This result shows again the crucial role of the

contacts for high precision measurement of the QHE. It is necessary to inject

and detect electrons in an equilibrium way to observe quantised resistance.

Further experimental results show that the outermost edge states equilibrate

over a long distance with each other but not with the innermost edge state

[121]. It is worth mentioning that, although the inter-edge state scatterings are

suppressed, the intra-edge state scatterings are probably not suppressed [33].

Therefore) the high field-phase coherence length which is limited by intra-edge

state scattering is not longer than the one in zero field. Consequently, the

QHEs in 2DEGs can be explained in the framework of the L-B formulae and

the quantisation of the Hall resistance is attributed to the measurement effect

of the measurement leads on the edge states. Numerical calculations have been

done for the QHE for a four-lead junction [124, 125, 126]. A detailed review of

this approach can be found in Ref. [33].

The investigations of the QHE do not stop here. We may go further and ask

what the intrinsic Han resistance of a microstructure is. In the other words,

how such a system itself, apart from the measurement leads, responds to an

external magnetic field and how will this intrinsic Hall resistance differ from

what is measured when four conventional leads are used. Furthermore, other

questions arise concerning the behaviour in a magnetic field: the LCP, the

electrostatic Hall' potential (EHP) and the resistances associated with them.

.Hcre, we consider intrinsic resistance rather than intrinsic resistivity because
Ii

the former is a global quantity which is suitable for describing finite quantum

60



coherent systems. Naturally, noninvasive voltage contacts should be used for

measuring both the LCP and the EHP. We suppose that it is possible to achieve

such a measurement as discussed by Engquist and Anderson [70] and Landauer

[122]. Recently, for example, Shepard, Roukes, and van der Gaag have mea-

sured quantum Hall resistance behaviour in this limit [123]. In this chapter,

we are going to study the intrinsic integer quantum Hall effect (IIQHE)

in microstructures. The absence of backscattering in high magnetic field is

assumed so that we can treat these systems as ballistic, even they may not

be intrinsically so. The Coulomb interactions between electrons are included

self-consistently. Both the EHP and the LCP and the corresponding Hall re-

sistances, REHP and RLCP, are calculated. Calculations are carried out in a

BQW when up to three Landau levels are occupied. We find that the former

resistance is nearly linear in magnetic field in spite of Landau level depopulation

but the latter is quantised.

5.2 Previous theoretical works on the IIQHE

The first calculation of intrinsic Hall field distribution for a 2DEG with the

Hall bar geometry is a classical one by Rendell and Girvin [127] which uses a

local conductivity tensor. However, as we know, both of the Hall field distribu-

tion and the current are nonuniform even in this idealised geometry and they

cannot be described by uniform local quantities. After that, the behaviour

of a interacting 2DEG was calculated quantum mechanically by MacDonald,

Rice, and Brinkman with the assumption of a slowly varying potential which is

appropriate to high magnetic fields [128]. By using a Hartree approximation,

a self-consistent (SC) equation is derive for calculating the redistribution of

charge in real space, which generates the EHP, as well as the current density

distribution. The tendency toward the system edges is found for all these distri-

butions and is attributed by the authors to the electron-electron interactions.

The size of the system is introduced in the calculation, however, the system

lIS intrinsically 2D since no partially occupied Landau levels are considered. In

fact, the IIQHE of a 2DEG confined in a BQW is quite different from that of its
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unconfined counterpart. As we know from the general case, there is no energy

gap and each Landau level is always only partially occupied. The rise of the

Landau levels as an edge is approached is mainly due to the potential confine-

ment at the edges. The longitudinal conductance is finite instead of infinite in

such a ballistic system since the wire has finite width. Li and Thouless study

this problem for the interacting electrons in a GaAs wire in a weak magnetic

field when only the lowest Landau level is occupied and give results for the EHP

[129]. The electrostatic interactions between the electrons in a certain magnetic

field are considered properly, using a square well potential confinement as an

effective single electron potential for a 2DEG in a BQW at zero magnetic field

[43]. Only the potential due to the redistribution of the electron density in a

magnetic field should be taken into account. Unfortunately, they do not in-

clude more Landau levels because of a numerical instability which they argue

is due to the assumed hard-wall confining potential. Their calculations do not

yield a quantised integer Hall resistance. This is not only because the Fermi

level lies below the excited Landau levels. More importantly, these authors

concentrate on the EHP and, as we show later, the corresponding Hall resis-

tance is always nearly linear in the magnetic field. The electrostatic theory of a

2DEG in a BQW is also studied by Chklovskii, Shklovskii, and Glazman [132].

They find that the SC electrostatic potential in the region occupied by 2DEG

changes in a step-like manner and forms alternating strips of compressible and

incompressible electron liquids along the wire. However, the authors start their

calculations with the assumption that there exists a square well potential con-

finement and then, in addition, consider the Coulomb interactions between the

electrons. This procedure introduces a large additional electrostatic potential

into the calculation and makes the system very different from what we usually

believe to exist in real experimental situations as described in Ref. [43].

The QHEs associated with the chemical potential in some BQWs have been

studied by using the so-called weak-link model [99, 130, 100, 101, 131]. Two

.yoltage leads are placed on the two sides of the wire. One end of each lead
1/

connects to an electron reservoir and the other end contacts one edge of the wire
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in a weakly coupled manner. The chemical potentials in the reservoir as well as

the Hall resistance are calculated by the L-B formula. A typical result is shown

in Fig. 5.1. However, there are three things which are not very clear in these

,~--------------~~'
.>-: .......

.:»:" CIa_cal

Figure 5.1: The Hall resistance (solid curve) for a three Landau level situation.

The results from simple channel-counting arguments (dashed curve) and the

classical result (straight dashed line) are also given as reference. (From Ref. [99])

calculations. First of all, there are no features of the measurement lead involved

so that it is not clear what kind of measurement situation the calculations

correspond to. Ideal voltage leads with different potential confinement give

different results. The measured Hall resistance depend strongly on the characters

of the measurement leads even in the case of a noninvasive measurement. We

will show this in detail later in this thesis. Hence, the physics behind these

calculated resistance is not well defined. Secondly, the infinitesimal current

leaking from the wire is assumed to be proportional to the local current density

in the channel considered. While, from what we have discussed in the last

chapter, we know that the infinitesimal current removed by a noninvasive lead is

-proportional to local electron density. Therefore, the chemical potential used in
I

these calculations does not include the effect of electron density of states and is
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different from the LCP. Finally, none of these calculations consider the Coulomb

interactions between electrons. How much this interaction would effect the Hall

resistance is not known. Because of these problems, there is a need to calculate

the Hall resistance of the IIQHE with the Coulomb interaction included. Before

we end this section, it should be mentioned that there is one paragraph in

Ref. [101] where the Hall resistance is calculated with the density of states

factor included. However, the original form of the transmission coefficients used

in calculating the Hall resistance in that paper is not, as the authors believed,

the fraction of current, and there is no obvious physical reason for them to add

the density of states factor into it.

5.3 The IIQHE for an interacting 2DEG in a BQW

In this section we present numerical IIQHE results for an interacting 2DEG

in a BQW subjected to a perpendicular magnetic field when up to three sub-

bands are occupied [133]. Electrostatic interactions between electrons within

the same subband and among different subbands are included self-consistently.

The same problem for non-interactiing electrons can be solved analytically in a

non-SC manner as shown in Appendixe A. Spin degeneracy is also taken into

account. We distinguish two kinds of intrinsic Hall potential, the EHP and the

LCP, which depend differently on magnetic field and correspond to different

measurements. Both the EHP and LCP differences and the two kinds of intrin-

sic Hall resistance associated with them are investigated. We demonstrate that

quantisation occurs only for the Hall resistance connected with the LCP. We

also find that the leading edges of the quantisation steps are rounded off at low

B because of the overlap of wave functions propagating in opposite directions

along the wire. Furthermore, we show that the resistance associated with the

EHP retains the classical.linear dependence on the magnetic field. Distributions

of EHP, LCP and current density across the wire when one or two subbands

are occupied are also calculated and shown ..~'\
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5.3.1 The model

Let us consider a 2DEG with an electron density n, which is confined in a space

of width W in the X-v plane by infinite potential barriers at y = ±W/2, as shown

in Fig. 5.2. A uniform magnetic field B is applied in the z direction and describe

y

W/2

J.ll
B
o 1.- X J.l2

o

-W/2

Resevoir 1 BQW Resevoir 2

Figure 5.2: A sketch of our system.

it in the Landau gauge be writing the vector potential as A = (-By, 0, 0).

Following previous authors [128, 129], we introduce an EHP V(y) which is

induced by the external magnetic field. The electron wave function tPn(x, y)

satisfies the Schrodinger equation

[2~*(p - ~_e)A)2 + (-e)v(y)] tPn(x, y) = EntPn(x, y) (5.1)

where m* is the effective mass and n is the index of the subbands (n = 0,1,2,'"

refers to the lowest, the second, the third, ... subbands), The normalised

eigenfunctions are then of the form 'ifJn(x, y) = r;1/2eik:£xXn,k:£(y), where Lx is

the length of the wire. The EHP, which must be determined self-consistently,

can be expressed as

/; {-4 1 jW/2 dy'( -21nly - y'1)80"(y'), -Wj2::; y::; W/2;
V(y) = . 1I'€Ot -W/2

-00, otherwise,
(5.2)
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where we consider the electrostatic interactions between electrons as homoge-

neous in the x direction. The redistribution of the electron charge density as a

result of the external magnetic field is

ken)
fJO'( ) = _.!_ "" f x,EF+t>./2 dk [I ()12 _ 1 (0) ( )12]

Y 21l" L..J ik(n) x Xn,kx Y Xn,kx Y .
n,(7 -x,E F -t>./2

(5.3)

where k~lF+A/2 and k~n2,EF_A/2 are the Fermi wave numbers of subband n for

the positive and the negative x directions respectively, ~ is the chemical po-

tential difference between the two terminals, and 0' is the spin label. We make

~ small enough to ensure that we stay in the linear transport regime. The

functions x~~lJY)are the eigenfunctions of the Schrodinger equation Eq. (5.1)

in the absence of a magnetic field. With these definitions, we know that the

EHP is related to the applied magnetic field and describes a kind of Hall effect

and we have hard-wall, square-well confinement when B = O. Furthermore,

from Eqs. (5.2) and (5.3), we can see the spin degeneracy is important. The

up- and down-spins give the same contribution to the EHP if we ignore the

Zeeman splitting which is a reasonable first approximation in a model calcu-

lation for a GaAs system. In fact, the ratio of the Zeeman splitting to the

Landau level splitting is geJ."BB /nwe '" m* [m; '" 0.067, where ge = 2 is the

Lande g-factor for electron, J."B = ne/2me is the Bohr magneton, We = eB/m*

is the cyclotron frequency, and m* and me are the effective and real masses of

electron respectively. To complete the calculation, it is important to constrain

EF in the Fermi wave numbers so as to yield the given electron density n; for

fixed ~, i.e.
- 1 ""[k(n) k(n) ]

ns = 21l"W L..J X,EF+A/2 _ -X,EF-A/2'
n,(7

(5.4)

Then charge neutrality is ensured by the normalisation of the wave functions.

Solving the Eqs. (5.1)-(5.3) self-consistently with the constraint Eq. (5.4),

we obtain the wave functions and the charge density redistribution as well as the

se EHP. The currentdensity distribution across the wire can also be calculated

from
t,

ken) ( ). en. x,EF+t>./2 1 2
Jx(Y) = _ 21l"mL l(n) a; kx _ rY Xn,kx(Y)

n,(7 '-x,EF-t>./2 B
(5.5)
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'where lB = (Ii/ eB)I/2 is the magnetic length. Since the total current is Ix =

f dyjx(Y), the longitudinal resistance can be calculated straightforwardly as

RL = ~/(-e)Ix'

In addition to the EHP we may also calculate the LCP J.L(Y) using the form

, which we derived in the last chapter, which is

( ) _ 2:n,,,.[J.LIIXn,kx,EF+A/2(y)12 + J.L2IXn,k_x,EF_A/2(y)12]/vn
J.L y - 2:n,u[lXn,kx,EF+A/2(y)12 + IXn,k_x,EF_A/2(y)12]/vn

(5.6)

where J.LI (J.L2) is the chemical potential of the reservoir connected at the left

(right) end of the wire, Xn,kx,E (y) and Xn,Lx,E (y) are the right- and left-going

electron wave functions respectively, and Vn is the velocity at Fermi level. When

the external magnetic field vanishes we may use the symmetry of the electron

wave functions to show that the LCP is a constant everywhere. The difference

of the LCP across the wire when B ::f. 0 gives another kind of Hall effect.

The EHP is the electrostatic potential response when the electron density

redistributes to balance the Lorentz force. It describes the real space potential

which the- electrons in the wire experience. One the other hand, the LCP char-

acterises the local electron energy distribution and is determined by the overlap

of wave functions propagating in opposite directions along the wire. By using

Eqs. (5.2), (5.6) and (5.5), we can calculate both these potential distributions

and current density distribution in the wire. We can also calculate two kinds

of intrinsic Hall resistance from the EHP and the LCP respectively, which are

REHI:' = (V(W/2) - V( -W/2»/ Ix and RLCP = (J.L(W/2) - J.L(-W/2»/( -e)Ix

Previous authors have suggested ways to simulate [100]or measure [129] intrin-
~

sic Hall potentials. We believe that contacted-probes give the LCP differences

in the weak coupling limit (when the measurement does not change the detected

system) while the non-contacted probe method proposed by Li and Thouless

[129] gives the EHP differences across the wire.

5.3.2 Numerical results about the IIQHE

In this subsection, we use the parameters of a GaAs wire, m* = 0.067me and

€ = 13.1 [39], with W = 100 nm and ns = 2 x 1014 m-2 and 4 X 1014 m-2• Our
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results are very sensitive to the accuracy of the SC EHP and the Fermi wave

numbers and, contrary to the experience of Li and Thouless [129], we get stable

solutions for multi-subband occupancy in a hard-wall, square-well confining

potential. The three-point Anderson-Pulay prediction method [134, 135], is

used for accelerating the convergence of the SC process. A description of this

, method can be found in Appendix B.

Fig. 5.3(a) shows the current density distribution when B = 0.25 T and ns =
4 X 1014 m-2 and two subbands are occupied, Fig. 5.3(b) is the corresponding

result when B = 1.25T and only one subband is occupied. Figs.5.3( c) and 5.3(d)

show the distributions of the EHP when B = 0.25 T and 1.25 T respectively

and Figs. 5.3(e) and 5.3(f) show the corresponding distributions of the LCP in

the unit of volt. The LCP in Fig. 5.3(f) is shifted down for convenience. The

offset is 0.458 mV as marked in the picture. Comparing Figs. 5.3(a) and 5.3(b),

we can see that the current density of the two occupied subband case spreads

in the wire more than that of one occupied subband since B is increased and

the Fermi wave numbers of each occupied subband in the former case are both

smaller than the one in later. For the same reason, the amplitude of the EHP,

V(y), in Fig. 5.3(d) and the difference ofthe LCP across the wire in Fig. 5.3(f)

are larger than that in Figs. 5.3(c) and 5.3(e) respectively. We note that there

is a kink of the LCP in Fig. 5.3(e) because there are two occupied subbands

and no such a kink in Fig. 5.3(f) for one occupied subband.

Fig. 5.4 exhibits the different behaviour of the two kinds of intrinsic Hall

resistance. In Fig. 5.4(b), the RLCP (circles) shows the step-like behaviour which

is characteristic of theIQHE and the value of resistance at the N-th plateau

is h/2e2 N except on the "last plateau" (0 < B < 0.5 T). This quenching

behaviour of the IQHE is due to the overlap of opposite-going wave functions

of the same subband and we will discuss in detail in the next chapter. We note

that the leading edge of the RLCP step is not sharp as that of the longitudinal

resistance (crosses). The curvature arises from the overlap between the right-

and left-going waves in our 100 nm wire. Calculations for larger values of B

'show that the higher quantisation steps in the RLCP are sharper because the
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Figure 5.3: Current density ix(Y): (a) B = 0.25 T and lixCY)lmax = 0.3354 A/m

and (b) B = 1.25 T .and lix(Y)lmax = 1.6968 A/m; EHP V(y): Cc) B = 0.25 T

and (d] B = 1.25 T; and U(y) = J.t(y)/( -e): (e) B = 0.25 T and (f) B = 1.25 T .

• The offset to the LCP in (f) is 0,458 mV. Wire width is W = 100 nm and
r.

electron charge density is n, = 4 X 1014 m-2•
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Figure 5.4: Plots versus B of the two kinds of intrinsic Hall resistance, REHP

(squares) and RLCP (circles), and the longitudinal resistance (crosses) for a

quantum wire of width 100 nm with the electron densities (a) ns = 2 X 1014 m-2

'}nd (b) ns = 4X 1014 m~2. The dashed lines in (a) and (b) are the corresponding

Hall resistances for an unconfined 2DEG.
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Figure 5.5: Plots versus B of the intrinsic Hall resistances, se REHP (squares)

0.0 0.5 1.0
B (T)

1.5

-
and non-Se REHP (dotted squares) as well as non-Se RLCP (circles), and the

longitudinal resistance (triangles) for a quantum wire of width 100 nm with the

electron density ns = 4 X 1014 m -2. The dashed line is the corresponding Hall

resistances for an unconfined 2DEG.
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opposite-going waves are more separated. We can easily show from Eq, (5.6)

that, if there is no overlap, then the LCP between the two edges is equal to

that between the two terminals of the wire and the quantisation steps of RLCP

become identical to those of the longitudinal resistance. Overlap is significant

when the fiux through an area W2 is in the order of, or less than, hie. In

, Fig. 5.4(b), the results for REHP (squares) show, in complete contrast to RLCP,

nearly linear dependence on B despite the subband depopulation which occurs

at B = 0.5 T. The slope of the line delineated by these squares is less than that

appropriate to an unconfined 2DEG (dashed line) because of the finite width

of the wire and the electrostatic interactions between electrons.

We see that quantisation of the IIQHE is seen only when differences of

chemical potential are measured. The longitudinal resistance is exhibited by

the crosses in Fig. 5.4. It is exactly quantised because it is again the result of

measuring differences of chemical potential. Further calculations have shown

that failure to achieve self-consistency leads to spurious jumps in REHP associ-

ated with_the subband depopulation and a larger slope which increases when

the number of occupied subband decreases. while the RLCP in non-SC calcula-

tions behaves in almost exactly the same way as the SC result. An example is

shown in Fig. 5.5 for the case of n, = 4 X 1014 m-2•

5.3.3 Further comparisons of the se and non-se results

First of all, let us show a schematic figure of dispersion curves with three sub-

bands occupied and the corresponding distributions of electron wave functions

associated with positive kx for transport in a BQW in an external magnetic

field. The results is shown in Fig. 5.6. The energy unit used for the top figure

is liwc, and in the bottom figure each wave function, F(y), is normalised by

dividing by its maximum absolute value in the cross section of the wire. There

is almost no fiat part of the dispersion curves because the half width of the wire

in our calculations is always smaller than or at the same order of the magnetic

length. Clearly, we can see that the wave functions are spatially asymmetric

'due to the Lorenz force. A more important thing is that in the top figure the
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corresponding distributions of electron wave functions, F(y), (bottom). Each

of them is normalised by dividing by its maximum absolute value across the

wire.
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bottom of each subband is not an integer times of nwc and the gap between

adjacent subbands increases as the subband index increases. This is an effect

of the hard wall confinement. In the next schematic figure, Fig. 5.7, we show

the current density, I(y), and the EHP, V(y), distributions for the same sys-

tem. The results in the top figure is for a strong magnetic field and only one

subband is occupied, while in the bottom figure the magnetic field is weak and

there are three subbands occupied. Each of the curve in Fig. 5.7 is normalised

by dividing by its maximum absolute value across the wire. From these two

figures, we can have a qualitative picture of a system with a fixed density of

electrons. The parameters in the calculations are not important and exclusion

of the Coulomb interaction only changes the results quantitatively.

We show the calculated electron wave functions, <Pi(y), in Fig. 5.8; the

change of electron density in an applied magnetic field, d(y), in Fig. 5.9; the

EHP, v(y), in Fig. 5.10; the LCP, p.(y), in Fig. 5.11; and current density, j(y),

in Fig. 5.12. The parameters we use here are W = 100 nm and ns = 4 X

1014 m-2_for a GaAs BQW. The solid line and the dashed line are the results

for the SC (interacting electrons) and the non-SC (non-interacting electrons)

cases respectively. The top parts in each figure are for B = 0.025 T when there

are two subbands occupied, while the bottom parts are for B = 1.0 T and there

is only one subband occupied. There is no much difference for the electron wave

functions between the two cases, as shown in Fig. 5.8. Only when B = 1.0 T

the SC wave function spreads a little bit more than the non-SC one due to the

Coulomb interactions between electrons. This confirms that the effect of an

external magnetic field"on the total SC effective single electron potential can be

treated as a perturbation [47]. From Fig. 5.9 we see that the change of electron

density in a magnetic field does show the difference between the SC and the

non-SC cases. The magnitude in the non-SC case is nearly two times of the SC

case. Consequently, the non-SC EHP difference between the two edges of the

wire is larger than the SC difference of the EHP, as shown in Fig. 5.10, so does

,.,the corresponding REHP. It should be pointed out that the EHP takes different
I,

values at the two edges of the wire when B = 1.0 T, and the reason that we
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Figure 5.9: The se (solid line) and the non-Se (dashed line) changes of electron

density, dey), for a BQW with W = 100 nm and ns == 4 X 1014 m-2• There

are two subbands occupied when B = 0.025 T (top), while there is only one

subband occupied when B = 1.0 T (bottom).

77



-1

1 B= 1.000 T,
I ,

I ,
\

)( I

" IE::=::::
>..__. I \>. I \

"-.,.. 0--..
>.
'-' ~> - -

)(
e
E

::=::::
>.
'-'
>

"-.,.. 0--..
>.
'-'
>

i

B=0.025Tt
/

I
\

\

/
I \

\

\

\

/

/

-1

-0.5 0.0 0.5

y/W

Figure 5.10: The se (solid line) and the non-Se (dashed line) EHPs, v(y), for

a BQW with W = 100 nm and n, = 4 x 1014 m-2• There are two subbands

occupied when B == 0.025 T (top), while there is only one subband occupied

when B = 1.0 T (bottom).

78



-1

I
I

B=0.025T +

B= 1.000 T

0.0

y/W

-1

79

-0.5 0.5

Figure 5.11: The se (solid line) and the non-Se (dashed line) LCPs, p,(y), for

a BQW with W ::;100 nm and ns = 4 X 1014 m-2• There are two subbands

occupied when B = 0.025 T (top), while there is only one subband occupied

when B = 1.0 T (bottom).



\.. \..e
;:::::::
>..---....."'-._0.-..
>..._,.....

..
1 1

cc
E

;:::::::
>..._,.....

"'-._ 0.-..
>..._,.....

B=0.025T+

1

I

-1 I

-1 , /

1 / B= 1.000 T
I \

I ,

\

\
I
t.;.

-0.5 0.0 0.5

y/W

Figure 5.12: The se (solid line) and the non-Se (dashed line) current densities,

j(y), for a BQW with W ::::;100 nm and n, ::::;4 X 1014 m-2• There are two

subbands occupied when B ::::;0.025 T (top), while there is only one subband

occupied when B ::::;1.0 T (bottom).

80



1

..
IIe

:;::::::::
>.--.....
" 0-e-,--.....

. -1

-0.5 0.0 0.5

y/W

Figure 5.13: The net current density associated with the case of Fig. 5.12. The

solid curve with two minima is the se and non-Se results at.B = 0.025 T, while

the solid and dashed curves with only one minimum are the se and non-Se

results at B = 1.0 T respectively.

/,

81



cannot see this very clearly in the bottom part of Fig. 5.10 is that the size of

the figure is too small. As for the LCPs in Fig. 5.11, we can expect that there

would no much difference between the SC and the non-SC cases because there

is not much difference between the corresponding wave functions. However,

the SC current density at B = 1.0 T is about 10 per cent smaller than the

, non-SC one as shown in Fig. 5.12. Again, we attribute this reduction to the

wave function broadening due to the Coulomb interactions between electrons.

From the bottom figure in Fig. 5.12, we see that the current density does show

the same pattern as predicated in Ref. [136] although there are no flat parts in

between the current density peaks because of the narrow width of our wire.

Finally, we take away the anti-symmetric parts in Fig. 5.12 and plot the

remaining symmetric current densities. As shown in Fig. 5.13, the solid line

with two minima is the SC result at B = 0.025 T with two subbands occupied,
and the non-SC result is the same. The solid and dashed lines with only one

minimum are the SC and the non-SC results at B = 1.0 T with only one

subband occupied. Careful calculations show that the net current with two

subbands occupied is just twice the net current when there is only one subband

occupied. In the other words, each conducting channel contributes the same

amount to the total net current as we expect.

5.3.4 Scaling behaviour of the Hall resistances

From Eq. (5.4), we know that the same set of Fermi wave numbers in a given

magnetic field can be obtained either by changing the width of a BQW, W,

with fixed electron de~sity, ns, or by changing n, with fixed W. First, we fix

B = 0.5 T for a GaAs BQW and plot the SC resistances versus ns in Fig. 5.14(a),

the SC resistances versus W in Fig. 5.14(b) and the non-SC resistances versus

W in Fig. 5.14(c). The circles, squares and crosses refer to RLCP, REHP and

the longitudinal resistances in each situations. The fixed ns in Fig. 5.14(a) and

the fixed W in Figs. 5.14(b) and (c) are 100 nm and 2 X 1015 m-2 respectively.

Again, we see that there are jumps for the non-SC REHP when a subband

~depopulates, while the SC REHP changes smoothly in all the range.
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Now we are going to plot the SC resistances versus ns against the SC resis-

tances versus W. For comparison, we also plot the non-SC resistances versus W

against the SC resistances versus W. The results are shown in Fig. 5.15( a) and

(b) respectively, with the circles for RLCP, the squares for REHP and the crosses

for the longitudinal resistance along the wire. If these two procedures are equiv-

alent, all the points should be in a line with a slope of 1. From Fig. 5.15( a), we

can see that none of these SC resistances can be scaled by each other. This re-

veals that even for a transport system with the same set of Fermi wave numbers

but with different pairs of Wand ns, the electron-electron interactions can be

very different. Moreover, Fig. 5.15(b) tells us that RLCP and the longitudinal

resistance for the SC and non-SC system with the same W and ns are, within

our calculation accuracy, on the line with a slope of 1, i.e. the Coulomb inter-

actions do not affect RLCP and the longitudinal resistance very much in this

situation. However, REHP cannot be simply scaled in this case and the non-SC

REHP increases, rather than decreases as in Fig. 5.15(a), when the SC REHP

increases.

5.3.5 A remark on edge channels

Halperin showed that the Landau levels increase and form the so-called edge

states wheri. they approach the edge of a microstructure in an external mag-

netic field B [50]. Based on this picture, Chklovskii, Shklovskii and Glazman

further developed a theory for the edge channels in real space, classifying these

channels as compressible or non-compressible [132]. As we have pointed out,

the' authors did not start from the real self-consistent electrostatic potential as

calculated before [43], instead they inserted a hard wall confinement potential

and then, based on that, calculated the EHP in the system. This procedure

artificially introduces an additional very large amount of Coulomb interactions

into a system. Therefore, their picture of the edge channels as due to the effect

of self-consistent electrostatic potential is not very convincing. How to describe

edge channels in real space remains a problem.

Naturally, we first look the distributions of electron wave functions in real
I
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space. We plot our results in Fig. 5.16 for a GaAs BQW with W = 100 nm and

ns = 14.45 X 1014 m-2• There are three subbands occupied when B approaches

zero and we index them from the ground subband as 0, 1 and 2 respectively. To

represent these wave functions we define a convenient mean position (Yn) and

a half-width (~y;))1/2 in subband n. The up- and down-triangles refer to the

mean positions of the wave functions propagating in the positive and negative

directions of the .x-axis which is parallel to the wire. Furthermore, for n = 0, we

cross hatch the region lying between (Yn) - (~y;))1/2 and (Yn) + (~y;))1/2 to

indicate the spread of wave functions. While for n > 0, we use a renormalised

part of the wave function lying between one edge and the node closest to it

to calculate the half-width. This gives a better pictorial representations of the

electron wave function in the excited subbands near the edges. The calculations

here are non-Se because we know the shape of electron wave functions is very

close to the se results. We see clearly from Figs. 5.16(a) and (b) that the

mean positions of electron wave function in a BQW does not always tend to

the system's edges. It first departs from the centre of the wire as the magnitude

of an external magnetic field increases and then comes back towards the centre

when the magnitude of the magnetic field is larger than a certain value. There

are two main reasons for this kind of behaviour of the mean positions. Firstly,

there are two edges in our system. In a one edge system, the mean positions

always go towards the edge as the magnetic field increases. Secondly, we fix

ns in our calculations. If we fix the Fermi energy instead of ns, we will have

different results.

Now, we show that the Lep distribution provides a useful description of edge

states in real space. Fig. 5.17 shows the distributions of the se Lep across the

wire W = 100 nm versus B. In Fig. 5.17, (a), (b) and (c) are for ns = 2, 4 and

8 X 1014 m-2 respectively. The Lep in the figure is represented by ~J.L(Y)/ ~J.L =
(J.L(Y) - J.L(W/2))/(J.L( -W/2) - Jt(W/2)). The isothermal compressibility, K" is

defined as K, = -(8V/8P)T,N/V, where V is the volume of a system, P is

the pressure applied on the system, T is the system temperature and N is the

'" number of particles in the system. For such a system with its temperature
I.
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and number of particles fixed, in our case T = 0 K, we have N d/L = V dP so

that K, = - (aV/a /L)T,N /N. If we consider every site in the system to be in a

local quasi-equilibrium state which is described by the LCP, the compressibility

across the wire can be express as K, = - (ay / a/L(y) )T,N / N . Hence, the flat

parts of /L(Y) are compressible while the parts where /L(Y) rapidly varies are

incompressible. Combining with the current density distributions in Fig. 5.12,

we find that compressible parts are current-carrying parts and they give us a

picture of edge channels.

5.3.6 The case of two parallel BQWs

Before we end this chapter, we would like to present the SC results for the re-

sistances of a transport GaAs BQW when there is another identical transport

GaAs BQW lying parallel in a distance in the same magnetic field. The amount

·ofcurrent is the same in each wire, but the currents can be in the same direction

or the other. There is no hopping between these two wires, and the only interac-

tion between them is via the EHP which is calculated self-consistently for both

wires. Change of relative direction of the currents results different EHP, and

because of this, we expect to see some differences between the two cases which

are individually different from the single wire case. The resistances versus B

are shown in Fig. 5.18. The width of the wires and the nearest distance between

them are all set to be 100 nm. In Fig. 5.l8(a) and (b), ns = 2.0 X 1014 m-2;

while in Fig. 5.l8( c) and (d), ns = 4.0 X 1014 m -2. The currents are in the same

direction in Fig. 5.l8(a) and (c), and in the opposite directions in Fig. 5.l8(b)

and (d). The circles, ~squares and crosses refer to RLCP, REHP and the lon-

gitudinal resistance. As shown in Fig. 5.18, the change of current direction

does not affect RLCP and the longitudinal resistance very much, but we can

see that REHP changes significantly, as we expect. It decreases rapidly when

B becomes large in the cases where the currents are in the same direction, as

shown in Fig. 5.l8(a) and (c). On the other hand, REHP increases rapidly when

B becomes large in the cases where the currents are in the opposite directions,

. as shown in Fig. 5.l8(b) and (d). In the region 0 < B < 1.2 T, REHP also
t,
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behaves quite different from the weak linear dependence on B in the case there

is only one BQW, and it changes rapidly rather smoothly when a subband is

depopulated.
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Chapter 6

Quenching of the IIHQE

6.1 Introduction

Recently, particular attention has been given to the behaviour of the QHE in

. weak magnetic fields, e.q. quenching of the quantum Hall resistance and the

last Hall plateau [137, 138, 139, 140] as well as the bend resistance in a four

terminal-case [141, 142, 143]. Much theoretical effort has been devoted to un-

derstanding these phenomena. Microscopic calculations of a Q1D electron gas

model which ignore significant density of states and Coulomb interaction effects

in the weak-coupling limit failed to show quenching [99, 100]. SC calculations

of the QHR associated with the electrostatic potential gave only a linear de-

pendence on magnetic field as in the classical case [129]. In the strong coupling

regime, quenching of the QHR has been obtained theoretically when there are

resonant states involved [124, 144]. Other investigations suggest that quench-
~

ing is due to a geometrical property of the structure and is not intrinsic to the

Q1D limit even with strongly coupled probes [145]. They also demonstrate that

smoothing the corners of the structure suppresses the QHR [146]. Assuming

a realistic confining potential with soft boundaries provides a detailed expla-

nation of many experimental results via classical trajectories [126]. However,

very recent experimental results show that there is quenching of the QHR of a

quantum wire in the weak coupling limit [123].
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6.2 Our results

We present SC calculations of RLCP in a uniform ballistic wire [147]. The fol-

lowing specific results are obtained: (1) quenching of the RLCP is intrinsic in

the weak coupling limit, (2) it is due to the overlap of opposite-going wave func-

tions, (3) quenching happens intermittently as the electron density increases,

and (4) REHP is closely linear in the magnetic field B in spite of subband

depopulation effects.

Before we go into details, let us first distinguish two kinds of intrinsic Hall

resistance in a quantum wire. One is REHP, defined as the EHP difference

between the two edges of a wire divided by the total current passing through

the two terminals. The other, RLCP, is obtained by using the LCP difference

across the wire instead of electrostatic Hall potential. The EHP is the poten-

tial induced by the electrons in the wire to balance the Lorentz force while the

LCP is defined as the chemical potential of a reservoir which is connected non-

invasively at a particular point in the wire when no net current flows through

the contact. We believe that the potential difference measured by conventional

weak-coupling current-stopping procedures, as discussed by Engquist and An-

derson [70]and Landauer [122], is the LCP difference. We show in the following

that it is RLCP which is quenched in a weak magnetic field. REHP retains the

linear dependence on magnetic field which occurs in classical theory.

The system to be considered is the same as we have used in the last chapter,

a 2DEG with electron density ns which is confined in a space of width W in the

x-y" plane by infinite potential barriers at y = ±W/2. A uniform magnetic field

B is applied in the z direction and described in the Landau gauge by writing

the vector potential as A = (-By, 0, 0). Following previous authors [128, 129]

and a recent paper by the present authors [133], we introduce an EHP V(y)

which is induced by the external magnetic field. We use the same Schrodinger

equation and same form for the EHP and LCP as in the last chapter. We

notice that there is a difference between the formula of LCP given above and

the formula used in Refs. [99, 100]where the factor v~l for the density of states

-, at Fermi level is not included. This difference is the primary reason why there
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is no quenching in their results.

When the above equations are solved we obtain self-consistent electron wave

functions, the distributions of the EHP and the LCP across the wire and two

kinds of intrinsic Hall resistance, REHP and RLCP. To interpret the physics

which is revealed in the results it is useful to have representations of the elec-

tron distributions in the subband wave functions. As we have described in

the last chapter, we therefore define a convenient mean position (Un) and a

half-width (LlU~»)1/2 in subband n and cross hatch the region lying between

(Un) - (LlU~»)1/2 and (Un) + (LlU~»)1/2 to indicate the spread of wave func-

tions. We take (Yn) = (nIYln) and (Lly~») = (nly2In) - (Yn)2. However, when

n > 0, in evaluating (Yn) and (Lly;») we keep only the renormalised part of the

wave function lying between a side wall and the node closest to it. This proce-

dure has the merit of producing useful pictorial representations of the electron

.distributions in the excited subband wave functions while avoiding unhelpful

complications due to the nodes and gives a better description of the behaviour

of the electron wave functions near the edges which is what determines RLCP.

In our numerical calculations, we always use the parameters of a GaAs wire [39]

of width w = 100 nm and we ignore the Zeeman splitting which is a reasonable

first approximation in a model calculation for a GaAs system.

Fig. 6.1(a) shows plots against B which indicate the degree of overlap of

the oppositely propagating wave functions in the ground subband when ns =

2 x 1014m -2. For this electron density only the ground subband is occupied.

In this case, the formula for the local chemical potential becomes very simple

and the density of states factor cancels out. The departure of the QHR from

its quantised value is therefore, entirely due to the overlap of opposite-going

wave functions. Data for (yo) and the wave function spread is given by the

up(down) triangles and the cross-hatch lines sloping down to the right(left)

for right (left ) going wave function respectively. Fig. 6.1(b) gives data for RL

(crosses), REHP (squares), and RLCP (circles) for the same value of ns. We

see that RLCP increases rapidly as the opposite-going wave functions begin to

~ separate and stays at the quanti sed value when they are well separated at the

94



0.5 (a) 0.5 (c)
~
<,
/\ 0.0

~ ~
<, V
/\ 0.0
~ -0.5
v 0.5 (d)

~
-0.5 ~ 0.0

<,
~(b) /\ ...

~1.0 v -0.5
I (e)I1.0 I-.. mJlICl!

OJ I

C\l I.- I<, Cl! I

..c: 0.5 OJ x I
C\l I- <, I

P:: ..c:: 0.5 ~--
P::

0.0 0.0
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

B (T) B (T)

Figure 6.1: Plots showing overlap of the opposite-going wave functions in dif-

ferent subbands as a function of B and the corresponding RL (crosses) and

Hall resistances: REHP (squares) and RLCP (circles). Up(down)-triangle refers

the average position of right (left )-going wave functions and the cross hatch

lines sloping down to the right (left ) mark the corresponding wave function

spread. The width of wire is W = 100 nm and the electron densities are

ns = 2 X 1014 m-2 in (a) and (b) and ns = 4 X 1014 m-2 in (c), (d), and (e).

Ii The dashed lines show the classical Hall resistances.
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two edges of the wire.

Figs. 6.l(c) to (e) show corresponding plots when n, = 4 X 1014 m-2• For

this density two subbands are occupied when B < 0.5 T but only the ground

subband is occupied when B > 0.5 T. We chose this ti, to make the Fermi wave

number of the uppermost occupied subband much smaller than the others when

B -+ 0 so that the Fermi level is very close to the bottom of it which is flat.

Consequently, the closer the Fermi level is to the bottom of a subband the larger

is the density of states of that subband at the Fermi level. In this situation,

the local chemical potential difference between the two edges of wire is greatly

reduced by both the large overlap of the opposite-going wave functions at low B

and the significant increase of the density of states of the uppermost occupied

subband. Figs. 6.l(c) and (d) show the degree of overlap in the n = 0 and

n = 1 subbands respectively. Fig. 6.l( e) shows that RLCP is quenched when

B < 0.5 T and Figs. 6.l(c) and (d) confirm that the quenching is associated

with severe overlap of the n = 1 wave functions while the n = 0 wave functions

are separating as they did in Fig. 6.l( a). The dashed lines in Figs. 6.l(b)

and (e) show the behaviour of the classical Hall resistance. As soon as the

second subband is depopulated, RLCP jumps to the quantised value because

the opposite-going n = 0 wave functions are separated at the two edges.

We see that the LCP at a wire edge is determined by the values there

of the opposite-going electron wave functions of all of the occupied subbands.

Increasing the overlap at the edges decreases the LCP difference between the

edges. The singularity of density of states at the bottom of a subband enhances

this effect enormously" In the limit, B -+ 0, the left- and right-going wave

functions coincide and the LCP difference across the wire is zero. For small

B, there will consequently be almost complete quenching of RLCP because the

opposite-going wave functions of all the occupied subbands overlap heavily at

the edges. When the opposite-going wave functions of anyone subband are

separated, the level of quenching of RLCP is reduced. Finally, when every

pair of opposite-going wave functions are well separated, the LCP difference

approaches the chemical potential difference between the two ends of wire and
II
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the RLCP is almost exactly quantised.

We always suppose in the calculations described above that ns is fixed.

Consequently, when only the ground subband is occupied, the corresponding

Fermi wave number kFO is also fixed. In that case, increasing B from zero

simply separates the wave functions. On the other hand, when two subbands

are occupied, increasing B increases kFO but reduces the Fermi wave number

kF1 in the second subband. For ns = 4 X 1014 m~Z, kF1 ~ kFO. Hence, when

B is increased the n = 0 wave functions separate quickly but the n = 1 wave

functions do not with the result that RLCP is quenched.

The behaviour when B is fixed and ns is changed is also interesting. Results

are shown in Fig. 6.2 for B = 0.1 T and B = 0.5 T in Figs. 6.2 (a)-(d)

and Figs. 6.2(e)-(h) respectively. When B = 0.1 T the opposite-going wave

functions of every occupied subband overlap heavily as shown in Figs. 6.2(a)-

(c). Consequently, in Fig. 6.2(d) RLCP is always small. When B = 0.5 T

we see from Figs. 6.2(e)-(g) that the overlap between the opposite-going wave

functions in each occupied subband is reduced and the wave functions separate

as ns (and consequently kFn) increases. Consequently, RLCP in Fig. 6.2(h)

increases quickly with n, as each subband is traversed.

We see from Fig. 6.2 that RLCP is quenched intermittently as ns varies.

This effect has been seen experimentally [140] and theoretically in a strong-

coupling case [144]. To investigate it in more detail we show in Fig. 3 plots of

the various Hall resistances against B for several different values of ns. The

graphical notation is the same as in Figs. 6.1 and 6.2. In Fig. 6.3(a) ns =

1.0 X 1014 m -2. Only 'the ground subband is occupied and kFO is large enough

to prevent overlap so that there is no quenching. This is also true in Fig. 6.3(b)

for which ns = 3.0 X 1014 m-2• However, because kFO is now larger, RLCP

increases more rapidly towards h/2e2• In Fig. 6.3(c) ns = 4.5 X 1014 m-2• Only

the ground subband is occupied when B > 0.7 T but ns is now large enough

for the n = 1 subband to be occupied as well when B < 0.7 T. We see that

quenching sets in this regime because kF1 is small and the wave functions in

the n = 1 subband overlap. In Fig. 3(d) we have increased ti; to 9.5 X 1014 m-2
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to ensure that both subbands remain occupied for all B and both kFO and

kFl are large enough to prevent significant overlap. Consequently, RLCP is not

quenched. In Fig. 6.3(e) ns = 10.8 X 1014 m -2 and three subbands are occupied

when B < 0.5 T. As would be expected, the quenching behaviour is similar

to that shown in Fig. 6.2(c). Finally, in Fig. 6.3(f), we have increased ti; to

19.8 X 1014 m-2 so that all three subbands remain occupied for all B with

relatively large Fermi wave numbers. The situation is similar to that shown in

Fig. 3(d) and quenching is suppressed.
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Chapter 7

Noninvasive measurement of

the IIQHE

7.1 Introduction

To study the electronic transport properties of a system, it is normal to use

at least four leads, attaching two pairs of leads to the system to measure the

current passing through it and the voltage drop across it. In the macroscopic

regime, the scale of system is much larger than the scale of the measurement

leads. Consequently, this approach has very little effect on the system being

measured and the measurement results can be used to fully characterise the

system itself. This desirable situation has changed with the rapid development

of semiconductor fabrication techniques which make it possible to investigate

2DEG microstructures. In this case both current and voltage leads become an

inseparable part of the system being measured. Moreover, the dimensions of

the part being measured and the measurement leads are of the same order and

can be comparable with the de Broglie wavelength of the electron propagating

in the system. Many novel phenomena are observed in this situation. They

are attributed to this new partnership between the system being measured and

the leads and are explained successfully by using L-B formulae which reveal

the relationship of resistance to transmission coefficient between leads [62, 75].

Biittiker has proposed a general formula to determine the chemical potential
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measured by a voltage lead through a current-stop procedure [75,80]:

TlsJ..Ls + TldJ..LdJ..LI= ---:=----:::-'--
Tis + Tid

where TIs(T/d) is the sum of all the transmission coefficients for a carrier incident

(7.1)

in lead sed) to be transmitted to lead I and the subscripts I, s, and d denote

voltage, source, and drain leads respectively.

A problem arises when one asks how to determine the intrinsic resistance

of such a microstructure system, i.e. its own response to the change of envi-

ronment [133]. To do this, it is necessary to study the effect of the leads on the

resistance measurement in detail. The two kinds of leads (current and voltage)

have different interactions with the system. Current leads function as sources

and drains which respectively inject electrons into and collect them from the

system being measured. Voltage leads do not have any net electron exchange

with the system; they determine the potential being measured by a current-stop

procedure. Furthermore, different shapes of leads give different results. To be

definite we consider ideal current leads, i.e. hard wall ballistic electron waveg-

uides which become an integral part of a system. (They are used as filters [148]

to get rid of fluctuations, evanescent modes, etc. coming from the reservoirs

and introduce standard propagating modes of electrons into the system.) The

injection modes are determined by the character of the ideal leads only. If the

shape of the current leads are fixed we have only to consider the effect of the

voltage leads.

There is no confusion when we use just one pair of leads to measure both

the current passing t4rough a system and the "voltage drop" across it. The

result of such measurements is a conventional longitudinal resistance. When we

have separate pairs of leads to measure current and "voltage drop" , which is es-

sential in studies of the QHE, the resistance measured reflects the behaviour of

the original system plus a pair of voltage leads and is voltage-lead dependent.

We are not able to isolate the contribution from the system being measured

in the total signal. The only way to solve this problem is to reduce the cou-

pling between the system to be measured and the voltage leads. The weaker

the coupling, the less the measurement result is effected by the measurement
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process. However, we know that there is no way to measure a system without

some perturbation of the system being measured. What we must do, then, is

to make the coupling small enough so that the measured resistance does not

change within the accuracy of the measurement instrument when the coupling

decreases further. Then, in this sense, the measurement is non-invasive and

the measured resistance can be regarded as intrinsic to the system which we

measure.

Many papers discuss methods of making non-invasive voltage leads. For

technical reasons, most of the studies concentrate on the geometrical edge of

a 2DEG microstructure. Li and Thouless suggest using a scanning-tunnelling-

microscope tip as a weakly coupled voltage lead to detect the electrostatic

potential response in the QHE at an etched edge [129]. Field et al. use a

separate quantum point contact sited at the side of a gated edge to achieve

non-invasive measurement of electrostatic potential [149]. When we work out

the resistance of a system, however, we need to know the chemical potential

difference. rather the electrostatic potential difference between two points, as

is stressed by Engquist and Anderson [70]. Experimental attempts to measure

resistance in the weak coupling limit have been made recently by Shepard et al.

[123]. It is much more difficult to determine the chemical potential at a certain

point of a transport system. The main reason is that the chemical potential in a

system is normally not well defined when there is a net current flowing through

it. Many suggestions have been made about how to define this quantity locally

in a system away from thermal equilibrium [70, 97, 102]. They all lead to

the same chemical potential and average electron occupation in an equilibrium

system as has been pointed out by Landauer [93, 92]. Different procedures for

non-invasive measurement have been suggested, e.g. phase-insensitive [70] and

phase-sensitive [150]. They give different results when there is a net current

passing through the system with reflections.

To avoid of these problems, a particular formula has been introduced through

an assumption of a virtual contact measurement procedure for both single and

multi-mode two-terminal cases by Entin- Wohlman et al. [97] and Imry [98]
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respectively. The advantage of this formula is that it defines a local chemical

potential (LCP) in a non-equilibrium system so that we can calculate the re-

sistance between any two points in a system in which net currents are flowing

without introducing voltage leads. Biittiker derives a similar expression for a

self-consistent electrostatic potential [80]. The same formula for the LCP is

obtained in a general multi-mode and multi-terminal case by using only the

assumptions inherent in L-B formulas [102]. It is

LPtJ.tt
J.t(r) = I: (7.2)

Pt

where Pt = Em ItPtm(rW /Vtm. Here t labels the leads feeding the microstruc-

ture, Vtm is the group velocity of mode m in lead t and tPtm(r) is the total wave

function generated by an incident wave of unit amplitude in mode m in lead

t. We would like to stress that the LCP is phase-sensitive. The phase relation

between the incident wave and the reflected wave is fully considered in the cal-

culation of the wave function for the whole system. Moreover, the resistance

determined by the LCP is non-local resistance which is not normally additive.

7.2 Our model calculations: analytical results

We model a non-invasive measurement procedure in a system consisting of a

quasi-one-dimensional ballistic quantum wire (BQW) and two voltage leads

[151]. The current leads are part of the BQW. Transmission coefficients are

calculated and the chemical potential as well as the Hall resistance associated

with it are obtained using Biittiker's formula, Eq. (7.1). In the strong confine-

ment limit, we prove analytically that Biittiker's formula is equivalent to the

formula for the LCf, Eq. (7.2), and the Hall resistance approaches the intrinsic

Hall resistance defined by the LCP [133]. Numerical results are given to show

how the character of the voltage leads affects the Hall resistance and to which

every mode therein makes a non-negligible contribution.

The main part of our model system is a non-interacting 2DEG with electron

density ti, which is confined in a space of width W in the x-y plane by infinite
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potential barriers at y = ±W/2. The two ends of the BQW are connected to

the electron reservoirs with chemical potential J.ts (at the end where x < 0) and

J.td (at the end where x > 0) respectively. When J.ts =f. J.td, there is a net current

traversing the BQW. To model a four-terminal measurement of the Hall resis-

tance, we use the weak-link model studied by Peeters [99] and later by Akera

and Ando [100] to put two voltage leads on the two sides of the wire in the x-y

plane and parallel to the y-axis. The confinement potential in the voltage leads

has the form of m*w;x2/2 and is characterised by an equivalent magnetic field

Bp = m*wp/ e where m* is the effective mass of electron. We assume these two

types of confinements for the BQW and the voltage leads respectively because

they are mathematically simple and are close to the calculated self-consistent

potential profiles for the relatively wide and narrow BQWs in which the Fermi

energy is the same [43] which is the case when we explore the strong confine-

ment limit in the voltage leads. Moreover, two identical tunnelling barriers with

heights Vb and widths b are symmetrically placed between the wire and the ends

of the voltage leads. The amount of current leaking into the voltage leads can

be made very small by increasing the product Vbb so that we can approach

the non-invasive limit defined above. For convenience in the calculations, delta

functions of area Vbb are located at y = ±W/2 to describe potential energies of

the tunnelling barriers as Vbb6(y 1= W/2).
A magnetic field B is applied in the direction perpendicular to the x-y

plane and is described in the Landau gauge by writing the vector potential as

A = (-By, 0, 0) for the BQW and as A = (0, Bx, 0) for the voltage leads.

Taking account of the gauge difference between the two regions, the tunnelling

wave function of an electron from the BQW to the voltage lead at y = W/2 + €

(€ ~ 0+) is

(7.3)

with

(7.4)

y=W/2

where we write l~ = 1i/eB, and X(n) for the n-th eigenfunction for an electron
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in the BQW. The Fermi wave vector k1n) is real and positive and determined

with the Fermi energy EF by a sum constrained to keep ns fixed [133}.The ±
sign refers to modes propagating along the ±x direction.

The eigenfunction of electron in the voltage lead at y > W/2 is
1 2

</>(m)(x,y) = C~m)e -"21]m Hm(1]m) (7.5)

with

(7.6)

and

(7.7)

where m is the mode index, Hm is Hermite polynomial, ktm) is the Fermi wave

number of the electron, and I = Bp/B. The Fermi wave number ktm) is either

real or imaginary (corresponding to propagating and evanescent mode) due to

the parabolic potential confinement.

We choose the ktm),s so that the electron energy in the voltage lead is EF

when we expand the tunnelling electron wave function in Eq. (7.3) in the terms

of the eigenfunction of electron in the voltage lead at y = W/2

1/J(n±)(x, ~) = L9}:±)1)m)(x, ~ )
m "

(7.8)

The wave functions </>(m)(x,W/2) are normalised but they are not orthogonal.

Consequently, the 9~±) are determined by using the following equations:

L lim9}:±) = h)n±)
m

(7.9)

with ~

lim =1:dx</>(i)(x, W/2)</>(m)(x, W/2) (7.10)

and

(7.11)

After solving Eq. (7.9), we can directly calculate the transmission coefficients

from their definitions:

(7.12)
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where the summations over n and m include all the values for which {nIEF =

E(k1n»)} and {mlkLm) E R} respectively. Here, the subscripts have the same

meaning as in Eq. (7.1) and Vm 2:: 0 (vn 2:: 0) is the group velocity of electron of

the m-th (n-th) propagating mode in the voltage lead (BQW) with its energy

equals EF.

The chemical potential defined by Biittiker's formula, Eq. (7.1), can be

calculated easily from Tis and Tid in Eq. (7.12). If we have strong potential

confinement in the voltage lead, i.e. Bp ~ B, the leading term of the coefficients

lim and h)n±) are

J 1: h(n±) '" (211" )1/21c·jC(i)C(n±)n.(O)
[m ~ Vjm, J - 1/2 Z t/> 1/J J •

'Y
(7.13)

Consequently, we can easily show that

2: Vm Ih~±) 12
m

= const. X 'Y-l/2IC~n±) 12 .
(7.14)

Hence, the chemical potential measured by the voltage lead attached to the

BQWat the edge y = W/2, which is defined by Eq, (7.1), reduces to

Itl =
~ ~ (lp(n+)1

2
Its + Ip(n-)1

2
ltd)

~ :n (lp(n+)12 + Ip(n-)12
)

(7.15)

where

p(n±) = fJ¢(n±)(x, y)/fJyl .
y=W/2

(7.16)

We see by inspection of Eq. (7.15) that Biittiker's chemical potential is

identical to the LCP at y = W/2 defined by Eq, (7.2) in a BQW with no

voltage probes attached. Normal derivatives of the wave functions in the BQW

replace the wave functions themselves in Eq. (7.15) because the latter vanish

and a limiting procedure is necessary to evaluate the LCP at the boundary. It

is important 14> note that the eigenfunctions of electrons in the voltage lead do

not change significantly as we change B when Bp ~ B. In this situation, the

coupling strength of each mode in the BQW to the voltage lead will depend

only on the character of the mode itself and nothing else. As long as these
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electron modes are undisturbed by the voltage lead, we can make noninvasive

measurements and the LCP defined by Eq, (7.2) which determines the intrinsic

Hall resistance.

7.3 Model calculations: numerical results

The Hall resistance RH associated with the chemical potential ILL defined by

Biittiker's formula, Eq. (7.1), is obtained by solving Eq, (7.9) with m* =

0.067me for GaAs [39], W = 100 nm, and », = 1.1 X 1015 m-2 so that three

subbands are populated when B = O. We include the necessary number of

evanescent modes in the voltage leads, such that no change of the expansion

coefficient g!:±) (for the ktm) E R) occurs when we take more evanescent modes

into account. The same zero point of potential is used in both the BQW and

the voltage leads.

Fig. 7.1 shows the changes of the dependence of RH on B from Bp I"V B to

Bp ~ B. The solid line is the result of RH associated with the LCP of Eq. (7.2)

as studied in Refs. [133, 147], while the dashed line and the dot-and-dash line

are the results for RH calculated by Biittiker's formula Eq. (7.1) for Bp = 1 T

and 11 T respectively. The dotted line is for the longitudinal resistance which is

perfectly quantised because there are no reflections in the BQW. We verify from

Fig. 7.1 that the RH derived from Biittiker's formula does approach the intrinsic

Hall resistance derived from the LCP when we increase Bp and has it as its limit

when Bp ~ B. In the range of 0 < B < 0.6 T, there is a quenching of RH for

both Bp = 1 T and B.".= 11 T as we have found for the intrinsic quantum Hall

resistance in the BQW with interacting electrons in the last chapter and the

magnitude of RH reduces when Bp increases. The dips of RH are deeper than

those displayed in the last chapter because only one electron state is used here

to calculate RH rather than the SC electron states in a small but finite range of

energy due to the chemical potential difference between source and drain. We

also notice from Fig. 7.1 is that there is a quantised plateau on the RH curve

around B f'V 2.2 T when Bp = 1 T instead of the dip found when Bp = 11 T.

This implies that measurements of RH made with two weakly confined voltage
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Figure 7.1: Hall resistance RH calculated from Eq, (7.1) when Bp = 1 T (dashed

line) and 11 T (dot-and-dash line). The RH associated with LCP and the longi-

tudinal resistance of BQW are shown by solid line and dotted line respectively.
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leads give results which are similar to those found using a Hall bar geometry.

On the other hand. we have confirmed both analytically and numerically, that

strongly confined voltage leads give the RH values predicted by the LCP given

in Eq. (7.2).
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Figure 7.2: The total form factor F (solid line) with three single mode form

factor F(l) (dotted line), F(2) (dashed line), and F(3) (dot-and-dash line) for

(a) Bp = 1 T and (b) Bp = 11 T.

In Fig. 7.2, we present results for the single mode form factor F(n) = (Tl~n)-

Tl~n»)/(TI~n)+ TI~») as defined in Ref. [99] for propagating modes. Figs. 7.2{a)
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and (b) are for Bp = 1 T and 11 T respectively. The dotted, dashed, dot-

and-dash, and solid lines are for F(l), F(2), F(3), and the total form factor

F = "i:,n(Tl~n) - Tl~n)/ Ln(Tl~n) + Tl~n) respectively. Each mode (not only the

one closest to the edge of the BQW) makes a contribution to the total form

factor. Quantisation of RH can be reached when every single mode form factor

F(n) = 1. Comparing Figs. 7.2(a) and (b), we can see that F(n) is closer to 1

when Bp "" B than when Bp ~ B. In other words, better quantisation plateaus

of RH can be observed by using more loosely confined voltage leads.

7.4 Some remarks

We make some remarks here, which are inspired by discussions about the con-

tents in this chapter with Markus Biittiker [152].

The aim of this chapter is to demonstrate that the so-called local chemical

potential can be measured by a voltage lead in some circumstances. Conse-

quently, the intrinsic quantum Hall effect can also be understood in the lan-

guage of voltage leads instead of virtual contacts. Eq, (7.15) is the result of the

special situation which we discuss here. It is valid, we believe, when two nec-

essary conditions are fulfilled: (1) there is such a voltage lead in which energy

levels and wavefunctions do not change significantly when the applied magnetic

field changes, e.q. as a strongly confined lead for which Bp ~ B; (2) such a

probe does not have any observable effect on the system to be measured, e.g.

the tunnelling through a high barrier, or an artificial atom [153], or even a

remote quantum pain! contact [152]. In this formula, a conducting channel is

dominant only if the ratio of the squared wave function of that channel and the

corresponding velocity is much larger than the other ratios. This means that a

channel near depopulation gives the largest contribution. The situation in our

calculation is different from the experiments of detecting innermost channels by

Faist, Gureret, and Meier [154] and Faist [155]. First, in the experiments they

use Hall bar geometry rather than a wire and the size of the system is in the

order of 10 JLmjsecond, the current they measure is a part of the main system

so that the measurement is invasive and the direction of the measurement lead
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is along the direction of the current. Moreover, in many cases, the outermost

edge channel may play the main role. Our loose confinement probe favours the

outermost one even when there is a hard wall.

The voltage lead in our case can support more than one conducting channel.

We show our calculated results in Figs. 7.3 and 7.4. The systems used in these

two figures are the same except that the confinement potential reference in

Fig. 7.4 is lowered by 5nwp. This difference makes the number of conducting

channels different in these two situations. There are ten energy levels involved

in the measurement lead when Bp = 1 T, some of them are propagating modes

(dots in the top parts of each figure) and some of them are evanescent modes

(circles in the top parts of each figure). In Fig. 7.3, the number of conducting

channels varies from three to one as we increase the applied magnetic field B,

while in Fig. 7.4 it varies from eight to three in the same range of B. The

Fermi energy levels versus B in the system being measured, a GaAs BQW with

W = 100 nm and ns = 4 X 1014 m -2, are also plotted as solid lines in the top

parts of both figures. The Hall resistances in both cases are shown in the bottom

parts in both figures, where the solid lines refer to the Hall resistance calculated

from Biittiker's formula, Eq, (7.1), the dashed lines refer to the Hall resistance

associated with the LCP and the dotted lines refer to the longitudinal resistance

in the main BQW. Comparing the bottom parts of Figs. 7.3 and 7.4, we find

that they are identical. This fact confirms that the measurement procedure in

our model is noninvasive. While the two kinds of the Hall resistances in both

figures do not coincide because here Bp '" B.
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Figure 7.3: The ten energy levels in the measurement with Bp = 1 T versus

B (top) and the corresponding resistance curves (bottom). In the top figure,

the dots refer to propagating modes, the circles refer to evanescent modes and

the solid line refers to Fermi energy in the main BQW with W = 100 nm and

n, = 4 x 1014m -2. In the bottom figure, the solid line, dashed line and dotted

line refer to the Hall resistances calculated from L-B formula,LCP and the

longitudinal resistance respectively.
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Chapter 8

Conclusions

We have shown that the local chemical potential is a suitable parameter to de-

scribe the current driving force in a transport microstructure. Its physical na-

ture is discussed in detail. A new definition of local chemical potential is given,

which involves only the approximations underlying the Landauer-Biittiker for-

mulae and includes the original formula as its two-lead limit at zero tempera-

ture.

The results for the intrinsic quantum Hall effect are presented. We distin-

guish two kinds of potential responses to a. magnetic field and find that they

reveal different aspects of the intrinsic quantum Hall effect in a quantum wire.

The two corresponding intrinsic Hall resistances are calculated when one or two

subbands are occupied. Quantisation is found for the Hall resistance associated

with local chemical potential in a large magnetic field. The overlap of oppo-

sitely propagating wave functions rounds off the front edge of the quantisation

steps at low fields. To a very good approximation the Hall resistance associated

with the electrostatic potential is linearly proportional to the magnetic field (as

in classical systems) despite of the occurrence of subband depopulation. Dis-

tributions of electrostatic Hall potential, local chemical potential, and current

density are given.

We find intermittent quenching of the quantum Hall resistance associated

with local chemical potential in a uniform ballistic quantum wire as ns varies.

The quenching is intrinsic and produced by overlap near the edges of the wire
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of opposite-going wave functions in the same excited subband. The overlap is

strong at low B when ns has a value which yields a small Fermi wave number

in the uppermost occupied subband. The singularity of the density of states at

the bottom of the subband greatly enhances this effect. No quenching is found

when this singularity is omitted from the local chemical potential formula. The

calculations presented here are self-consistent. We find that both the intra-

and inter-sub band couplings produced by the Coulomb interaction playa part

in determining the quenching behaviour of the quantum Hall resistance. Cal-

culations which do not include Coulomb interaction show less overlap, weaker

quenching, and reduced widths of the ranges of ns in which quenching occurs.

The uniform quantum wire has a geometry which is simple enough to allow

self-consistent calculations to be carried out relatively easily. However, mea-

surements of the intrinsic quantum Hall resistance of a wire are difficult because

they require the insertion of non-invasive probes. For this reason the quantum

Hall resistance is usually measured in (at least) a cross with four terminals.

The funda~ental reason for quenching in the cross is similar to that discussed

here: mixing in the Hall voltage probes of the wave functions for electrons

emerging from the current source and the current drain. In both cases it is

geometry which produces the overlap or mixing: the narrowness of the wire

in our calculations and, for example, rounded corners in a cross. In a wire we

find that Coulomb interaction is an important factor in determining quenching

behaviour. It is expected that this is also true in a cross and the implemen-

tation of self-consistent calculations in a cross geometry presents a challenging

problem.

We also investigate the possibility of making non-invasive measurement of

the local chemical potential and the intrinsic quantum Hall resistance. A model

procedure is used for calculation. We show that the chemical potential described

by Biittiker's formula has the so-called local chemical potential as its limit

when the potential confinement parameter Bp in the voltage leads increases

indefinitely. Numerical calculations are carried out, which confirm the limiting

behaviour of the quantum Hall resistance RH. Quenching of RH is seen over a
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broad range of Bp. Our calculations indicate that it is possible to measure the

local chemical potential and the intrinsic quantum Hall effect non-invasively

in some circumstances. It is hoped that further experimental studies of this

problem will be made.
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Appendix A

Exact solutions for a 2DEG

in a BQW in a magnetic field

A.1 Hard wall confinement case

A.I.1 Equation

Consider a 2DEG in a BQW lying in x-y plane along z-axis under an external

magnetic field B at z-direction. The origin of the y-axis is set at the centre

of the wire, and the two edges of the wire are at y = ±W/2 respectively. The

electron sheet density and effective mass are ns and m" respectively. Here, we

ignore the spin of electrons, which does not affect our solutions and can be

easily included when it is needed. The Hamiltonian of the system is

1 )2H = 2m* (p - qA + q</>, (A.1)

where
p = -ihV,

q = -e,

A = (-By,O,O),

{
0,

</>=
-00, y s -W/2, y ~ W/2.

(A.2)

-W/2 < y < W/2,

The 2D form of the Hamiltonian is:

1 212'H = -(Px - eBy) + -2 -Py - e</>.
2m* m*

(A.3)
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Because

[rt,px] = 0, (A.4)

the corresponding single electron wave function can be expressed in the form:

{
eikxxx(y), -W12 < y < W12,

7jJ(x, y) =
0, y s -WI2, Y ~ Wj2,

(A.5)

where kx is the electron wave number at the x direction.

A.1.2 Dimensionless equation

From Schrodinger equation rt7jJ = E7jJ, we have:

(A.6)

for the electrons in the wire when B > 0, where le = (lil eB)1/2. By defining

~ = y I le - lekx, We = eB Im* and A = 2E lliwe, we finally get a dimensionless

second-order ordinary differential equation for the function x:

X"(~) + (A - e)x(~) = 0 (A.7)

with the boundary conditions

(A.8)

A.1.3 Solutions

Let

(A.9)

Eq. (A.7) becomes

(A.lO)

where v = (A - 1)/2. After expanding f(~) by a Taylor series:

00

f(~) = 2: anC,
n=O

(A.H)
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we have
00

f'(~) = L nan~n-\
n=l (A.12)
00 00

f"(~) = L n(n -1)an~n-2 = L(n + 2)(n + 1)an+2~n.
n=2 n=O

Hence, Eq. (A.10) becomes:

00L [en + 2)(n + l)an+2 - 2nan + 2van] ~n = O.
n=O

(A.13)

Therefore, we have the following relation for the coefficients an:

2(n- v)
an+2 = (n + 2)(n + l)an.

By using this relation, the general solution of Eq. (A.10), f(~), can be rewrit-

ten as a linear combination of two linear independent solutions, H~~)(~) and

H~~)(~):

(A.14)

(A.15)

where
(v) _ ~ nrr-l 2(2k - v) 2n

Hel (~) - 1+ ~ k=O(2k + 2)(2k + 1)~ ,

H(v)(~) = ~(1 + f:IT 2((2k + 1)- v) en)
e2 n=l k=O(2k + 3)(2k + 2) .

(A.16)

A.1.4 Linear independence of H~~)(e) and H~~)(e)

Multiply Eq, (A.10) by e-e2 and rewrite it as:

(A.17)

We use H~~)(~)and H~~)(~)in turn to substitute f(~) in Eq. (A.17) and multiply

the equation by' H~~)(~) and H~~)(~) respectively. Then, we have:

(A.18) .

and

(A.19)
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Subtracting Eq. (A.18) from Eq, (A.19) gives the result:

d~ [e-e ( H~~)(e) :eH~~)(e) - H~~)(e) :eH~~)(O)]

= d~ [e-eW{H~~)(O,H~~)(e)}] (A.20)

= o.

This implies that the Wronskian, W{H~~>Ce),H~~)(e)}, is

(A.2I)

Because

(A.22)

we have C = 1 and W{H~;)(e), H~~)(e)} :f:. 0, i.e. H~;)(e) and HJ~)(e) are

linear independent.

A.1.5 Convergence radius of Ht)(e) and H~;)(e)

From Eq, (A.16), we know that

H~~)(e) = ]_f a2nen,
ao n=O

H~;)(e) = : f a2n+1en+1,
1 n=O

(A.23)

where the coefficients can be expressed by the same formula:

2(m - v)
(A.24)

Hence, the convergence radius which is the same for both the H~;)(e) and

H~~)(e) is

(A.25)

i.e. HJ~)(e) and H~;)(e) are convergent when \:Ie E C.

A.1.6 Asymptotic behaviour of H~~)(e) and H~;)(e)

For both of H~;)(e) and H~~)(e)/e, we have

li
1
am+21 21m---+-

m-co am m m-co
(A.26)
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if v t- integers. Similarly, we find that for

e2 _ 2:00b t"2n _ Loo 2ne - m<, - -n'm=O m=O •
(A.27)

the limiting behaviour of the ratio of the two adjacent coefficients is

(A.28)

Therefore, for non-integer v, we have

(A.29)

when ~ -+ 00. In fact, because H!~)(~) and H!~)(~) are convergent, we can

compare the each term of H!~)(~) and H!~)(~) with the corresponding terms of

ee/e and ee and obtain that ee/e < H~~)(~),H~~)(~)< ee2 when ~ -+ 00.

A.I. 7 Differential and recurrence relations for H!~)(e) and H~~)(e)

Differentiating H~~)(~)and H~:)(~) in Eq. (A.16) and rearranging the results,

we get the following differential relations for H~~)(~)and H!~)(~):

~H!~)(e) = -2vH!:-1)(~),

(A.30)

Furthermore, by using HJ~)(~)and H!:)(~) in turn to substitute f(~) in Eq. (A.10),

we can have the recurrence relations:

'.,

eH~~)(e)= (v + l)H~:+l)(e) + vH~:-l)(~),

eH~:)(e) = ~ (H!~+l)(e) - vH!~-l)(e)) .
(A.31)

Finally, we would like to mention that by multiplying different coefficients to

H~~)(e) and HJ~)(e), we can define two new functions, H~v)(e) and H~v)(e),

which are equivalent to the well known Hermite functions:

(A.32)
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for which the following symmetric differential and recurrence relations are ob-

tained:
~Hill)(~) = 2vHJII)(~),

d~HJII)(~) = 2vHJII)(~),

~Hill)(~) = ~ (HJII+1)(~) - 2vHJII-I)(~») ,

~HJII)(~) = ~ (Hill+1)(~) - 2vHill-I)(~») .

(A.33)

A.1.8 Boundary conditions and secular equation

The hard well boundary conditions,

'IjJ(x, y)ly=±W/2 = 0, (A.34)

result a set of equation:

{
aoH~~)(~+) + aIH~~)(~+) = 0

aoH~~)(~_) + aIH~~)(~_) = 0
(A.35)

To get the non-zero solutions of ao and at from the above equations, the secular

equation should be satisfied:

(A.36)

which determines the eigenvalues, t/, Then, for each u, the ratio of al to ao is

al H~~)(~+) H!~)(~_)
ao = - H~~)(~+) = - H~~)(~_)'

(A.37)

Now, only one coefficient hasn't been fixed, and it has to be determined through
~

the procedure of wave function normalisation which we are not going to mention

here.

A.2 Parabolic confinement case

We can use the same steps as in the previous section to calculate this problem.

The confinement potential, </>, is now read as:

1m* 2 2
</> = -2-;-WpY . (A.38)
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Moreover, we would like to change the Landau gauge chosen previously a little

bit by adding a constant, Yo. This should not affect our final results. We are

going to see what the effect of this change. The vector potential, A, is chosen

as:

A = (-B(y + Yo), 0, 0). (A.39)

Dimensionless equation, Eq. (A. 7), can be obtained with exactly the same

form with new parameters:

(AAO)

where y = wp/we•

The two linear independent solutions are, therefore, the same as in Eq. (A.16).

Applying the natural boundary conditions, ¢(x, y)ly .....±oo = 0, we have the

eigenvalue v = (>. - 1)/2 = 0,1,2,···. Hence, the corresponding energy is

.' (2 2) 1/2 ( 1) 1'1,2 ( yo) 2 w;
E = n We + Wp v + '2 + 2m* k:c - l~ (w; +w;)"

We see that changing one coordinate of the gauge by a constant is equivalent

(AA1)

, to shifting the zero point of system momentum at the corresponding direction.

Calculations of other physical quantities confirm this conclusion.

124



Appendix B

The three-point

Anderson-Pulay prediction

method

In our self-consistent calculations, we need to determine the self-consistent po-

tential f~nction and to choose a optimum trial function for each round. The

three-point Anderson-Pulay prediction method [134, 135] is what we use to

accelerate the convergence of the self-consistent potential.

Suppose we already know the m-th round input function as f~m), the cor-

responding output functions as f!:'>, the difference between them is d(m) =
fi~m)- f!:) and the same kind of quantities for the the (m - 1)-th and (m - 2)-

th rounds as well. Then, the (m + l)-th round input function fi~m+1) can be

determined by the functions in the previous three rounds through the following

way:
f.(m+1) = (1 _ a)g~m) + ag(m)
Jin In out' (B.1)

with
(m) _ (1 _ a _ f.1 ) t.(m) + f.1 (m-I) + f.1 (m-2)

gin - fJl fJ2 Jin fJIJin fJ2Jin'

(m) ( f.1 f.1 )t.(m) f.1 t.(m-l) f.1 t.(m-2)
gout = 1- fJl - fJ2 out + fJl out + fJ2 out (B.2)

where 0 < a < 1 is chosen artificially and is fixed during the whole calculation,

while (31 and (32 are calculated separately for each round.
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The departure of the function g(m) can be defined as:

Jj = D [gi~m),g~:/]
= (m) (m)1 (m) (m»)1/2

gin - gout gin - gout

[(d(m)ld(m») - 2111(d(m)ld(m) _ d(m-l»)

-2112(d(m)ld(m) - d(m-2») + 2111112(d(m) - d(m-l)ld(m) _ d(m-2»)

+11? D2[d(m), d(m-l)] + l1iD2[d(m), d(m-2)]] 1/2 .

(B.3)

The partial derivatives of jj are

~ [_(d(m)ld(m) _ d(m-l»)

+112(d(m) - d(m-l) Id(m) - d(m-2») + 111D2[d(m), d(m-l)]] ,

= ~[_(d(m)ld(m) _ d(m-2»)

+l1dd(m) - d(m-l)ld(m) - d(m-2») +t32D2[d(m),d(m-2)]].

(B.4)

Let these two first-order derivatives be zero, i.e.

.. (B.5)

we determine 111and 112and give the prediction for the (m + 1)-th round input

function fi~m+1) though Eqs. (B.l) and (B..2).

The coefficients, 111and 112, determined by Eq. (B.5) assures the convergence

of the self-consistent potential. This is because

~ [D2[d(m), d(m-l)]D2[d(m), d(m-2)]

_(d(m) - d(m-l)ld(m) - d(m-2»)2] ~ 0

(B.6)

when Eq. (B.5) is satisfied. The last inequality in Eq, (B.6) is obtained with

the help of Cauchy inequality.
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