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Preface 

The Yang-Mills-Higgs theory has its origins in Physics. It describes particles with 

masses via the Higgs mechanism and predicts magnetic monopoles. 

We study here the mathematical aspects of the theory following an analytical and 

geometric approach. Our motivation comes from physics and we work all the time with 

the full Lagrangian of the theory. At the same time, we are interested in it from the 

variational point of view, as a functional on an infinite dimensional space and as a 

system of non-linear equations on a non-compact manifold with finite energy as the 

only constraint. 

We are concerned mainly with the configuration space of the theory, the existence of 

solutions and their behaviour at infinity. 
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INTRODUCTION. 

1. Basic definitions. 

The natural setting for the Yang-Mills-Higgs Theory is in tenns of principal and 

associated bundles over 1R3. For that, let P be a principal G-bundle over 1R3. Since 1R3 

is contractible, the bundle will always be isomorphic to the product one 1R3 )( G, but 
1ffi"'~t ..., 

not necessarily e proouct one. In particular, there exist global sections. In general, G 

can be any compact Lie Group with a non-degenerate inner product on its Lie 

Algebra g, invariant under the Adjoint action of the group. Let L be a finite 

dimensional vector space with an inner product, so that G acts on it unitarily, i.e. there 

is a homomorphism 

T: G-Aut(L). 

This differentiates to a representation of the Lie Algebra 

t: g- End(L). 

Let E denote the associated vector bundle p)(G L. 

Example 1: Take G = SU(2), L = su(2), its Lie Algebra, and consider the adjoint 

action of SU(2) on su(2) and the Lie bracket action of su(2) on itself. An inner 

product is given by minus the Killing product. AdP denotes· the corresponding 

associated bundle. 

We shall consider connections co on Pas g-valued I-fonns. Given a connection co, 

we denote by n its curvature t 

n = dco + 1/2 [COl\co]. 

More often than not, we shall be working with the pull-back of co by a global section 

s: 

1 There are many natural operations one can perform on the sections of the various bundles, like 

laking inner products, Lie brackets, wedge products and, of course, all their combinations. We hope 

that the notation is self-explanatory. 
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and the curvature 

3 

A = s*ro = L A. dx. 
. 1 1 1 
1-

FA = ~ (a.A. -a.A.+[A.,A.]) dx. Adx .• 
~Jl IJ IJ 1 J 
I<J 

We shall also consider sections <I> of E and of the other associated bundles. The 

covariant differentiation a connection ro induces on sections of E can be defined by 

viewing a section <I> as an equivariant function from P to L. Then 

dA: nO(E) - n 1(E) 

<I> f---- d A <I> = d<I> + t(ro)<I>. (1) 

Here n P denotes the degree P forms with values in the bundle E. Notice that thanks to 

the inner products on the Lie Algebra and the representation space L, all bundles have 

natural inner products defined on them. 

The operator d A extends in two different ways to higher degree forms: 

i) By the covariant exterior derivative 

d
A

: nP(E)- nP+l(E) 

given by 

ii) By the full covariant derivative: 

VA: nP(E)- r(T*®APT*®E). 

This is defined by fonnula (1) when we view nP(E) as nO(APT*®E). 

Note that dAis the anti symmetrization of V A' The two operators clearly agree on nO, 

2 



An important ingredient of the theory is the group of gauge transfonnations of the 

bundle P. They can be realized in many different ways: 

i) as bundle isomorphisms from P to itself over the identity 

ii) as sections of the bundle AutP = p)(G G, where G acts on itself by 

conjugations. 

iii) as mappings g: 1R3_ G, once a trivialization has been chosen. 

We equip the gauge transfonnations by an inner product, too. This can be done either 

by viewing G as a group of matrices and therefore naturally sitting in some IR
n

, or by 

choosing an invariant metric on G. 

The automorphisms, viewed as G-valued functions on 1R
3

, act on A and <1>: 

g' A = AdgA + gdg-t 

and 

g'cI> = T(g)(cI». 

On L consider a G-invariant function 

V:L-IR 

with the following properties: 

i) It is smooth and G-invariant as a function defined on the representation space. 

ii) It takes only nonnegative values. 

iii) It gives symmetry breaking, that is it achieves the minimum value zero on a 

single non-trivial orbit, the vacuum. (This excludes 0 as a minimum.) 

iv) The vacuum is a non-degenerate critical manifold: the kernel of the Hessian of 

Vat a point on the vacuum orbit is exactly the tangent space to the orbit. 

v) It is of degree at most 4. When V is not given by a polynomial in I <1> I we make 

sense of this condition by asking that D (n) <l> V = 0 as an operator, for n ~ 5 and for 

any cI> in the representation space. 

These properties are far from being arbitrarily chosen. We shall explain each of them 
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in detail when we come to the physical part of the theory. We call such a V a Higgs 

Potential. 

Example 2: On su(2), consider the function V(<1» ='fl <1> 12_ 1)2, A> O. The vacuum 

is the unit sphere orbit in su(2). 

Among the aims of the Yang-Mills-Higgs Theory is to prove the existence, study the 

properties and perhaps make a use of the solutions of the Yang-Mills-Higgs 

equations: 

" A *F A = - L < t(~).<1>, V A <1»;i 
i 

(YMH1) 

(YMH2) 

Here {~i} denotes a basis of the Lie Algebra g. V A * is the formal L 2 -adjoint of V A' 

Equations (YMH1) and (YMH2) are (very formally) the variational equations of the 

Yang-Mills Higgs Lagrangian (or energy functional or action functional) 

YMH(A,ct» = J {~ 1 FA 12 + ~ 1 VA ct> 1 2 + V(ct»} d 3x 

1R3 

defined on pairs (A,ct» of connections on P and sections of E. The precise definition 

of the domain of this functional will occupy Chapter B of this thesis. 

Example 3. For the adjoint-SU(2) case with potential V(<1» = 1../2(1 ct> 12 - 1 )2 the 

variational equations become 

~ A *F A = [ ct>, VA ct>] 

A 2 
V A *V A ct> = '2(1 ct> 1 - 1)<1> . 

Recall here the Yang-Mills Lagrangian 
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and its variational equation 

V A*FA = O. 

The connection between Yang-Mills and Yang-Mills-Higgs theory will be the topic 

of Chapter D. 

2. The Physics Point of View and the Mathematical Problems. 

From a mathematical point of view, the first property one notices for the Yang­

Mills-Higgs Lagrangian is that it is bounded below by O. Second, it is gauge 

invariant. The term V(<1» in the functional is clearly invariant since V was chosen to 

be invariant. An easy calculation shows that as a gauge transformation g acts on A 

and <1>, FA transforms to AdgF A and d A 4> transforms to T(g)'(d A 4». By the 

fnvariance of the inner products the value of the functional remains unaltered. 

However, the power of the theory lies in its physical interpretations, see for example 

[G-O ], [ 0' R ], [ I ] and [ C J. We are to think of A as a (gauge) potential and its 

curvature as the field it creates. In this field we have another field 4>, usually called 

the Higgs field, created by some massive particle. Then V(<1» measures the potential, 

or self-interaction, of the <1>-field. The "coupling term" V A <1>, the only one involving 

both A and <1>, measures their interaction. YMH(A,4» is the energy of the system. 

The model has the following properties: 

1) Symmetry breaking: Apart from the gauge group G, the choice of the potential V 

introduces another group to the theory: the vacuum consists of a single orbit. Any 

point on it has (up to conjugacy) the same isotropy subgroup of G. We denote it by H 

and refer to it as the small or the unbroken group or the theory. By choosing the 

potential V carefully, we can incorporate in the same model two different groups, 

such as the electromagnetic U(1) and the SU(3) of the weak interactions. Unification 
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is served this way. 

Chapter n shows the precise manner, from a mathematical point of view, in which 

starting from a G-bundle and a G-connection we end up with an H-bundle and a 

connection on it. 

2) Massive components (Higgs Effect): It seems to be common in Physics to 

interpret as masses the positive coefficients in front of the squares of the fields. In this 

sense the Lagrangian offers masses to components of both A and <1>. The starting 

point is a fixed point on the vacuum orbit, <1>0 say. 

In an adjoint representation for example, write the coupling term as 

< d A <1>, d A <1> > = < d<1> + [A,<1> ], d<1> + [A,4.> ] > = < [ A,<1>o ], [ A,<1> 0] > + R 

2 
= < -ad 4.>0 A, A > + R , 

where R denotes the remaining terms. Since -ad
2

<1>0 is a positive operator, its kernel 

determines the zero mass components of the gauge potential. The rest of the 

components will have strictly positive masses. If we denote by h the Lie subalgebra of 

the isotropy subgroup H and its complement by h.i, we see that the h-components of 

A have zero masses, while the h .i-components acquire positive masses. 

For the <1> field, expanding Y around the vacuum <1>0' we have 

Y(<1» = Y(<1> 0) + ny <1> (<1> - <1>0) + n
2
y <1> (<1> - <1>0)2 + R. 

o 0 

By property (iii) of the potential, Y(<l>o) = 0 and since <l> 0 is a critical point ny 4.>0 = 

O. The Hessian n
2
y at the minimum <1>0 is again a positive operator. By property (iv) 

of V, we can write the Hessian as the diagonal matrix 

o 

where d is the dimension of the orbit and n the dimension of the whole group. That is, 
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only the components of cI> transversal to the vacuum orbit acquire masses. 

Example 4: Consider the case of the gauge group SU(2) acting on its Lie Algebra via 

the adjoint representation and the potential V of Example 2. Since we shall come back 

to this example again and again, we shall name it the adjoint-SU(2) case. The 

invariance of the inner product gives for an infinitesimal gauge transformation ~ 

which on differentiation gives 

i.e. cI> 0 is orthogonal to the orbit of cI> o. Since the isotropy group is U (1), cI> 0 

generates the isotropy. One expects then the fields parallel to cI>0 to be massless and 

the rest of the fields to be massive. 

We shall see in Chapter D how much of these arguments actually survive 

mathematical scrutiny. It suffices to say here that one expects the fields generated by 

massive particles to decay very fast (exponentially) as one goes away from the 

particle. On the other hand, non-massive fields should decay much slower (power 

law decay). 

3) Monopole solutions: One could argue that a "decently" behaving field cI> should 

have a limit cI> 00 as the distance from the origin tends to infinity. Then for the energy 

YMH(A,<l» to be finite, the only alternative is that cI> 00 defines a mapping from S2 to 

the vacuum orbit G/H. This in turn defines an element of 1t2(G/H). This homotopy 

class has the significance of a magnetic charge, see [ S2 ], [H-Rl ] and [ H-R2 ]. In 

this sense, the theory predicts monopole solutions. 

By "decent" field we mean a field with appropriate decay. We show in Chapter C why 

finite energy is enough to define the limit cI> 00. However, there is no guaranty that cI> 00 

is continuous for all finite energy pairs. One must assume further decay conditions, as 
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for example in [ J - T 1, section n.3. 

Example 5: The fibration 

H-G-G/H 

gives the exact homotopy sequence 

.. ·-7t2(G)-7t2(G/H)-7t1(H)-1t1(G)- ... 

For G simply co~nected, 7t2(G/H) ~ 7t1 (H). For the adjoint-SU(2) case we have that 

the magnetic charge is defined as an element of 1t1 (U(l) ~ l. The corresponding 

integer can be calculated in terms of explicit integrals, see [ S2 1, [J-T 1, [H-Rl 1 and 

[H-R2]. 

From a mathematical point of view, we are faced with a variational problem which 

leads to a system of non-linear, non-elliptic partial differential equations. The non­

linearity results from the quadratic term of the curvature in (yMH1). The non­

ellipticity is a symptom of gauge invariance in (YMH2) and can be cured by fixing 

the gauge. It is however incurable in (YMH1): d A *F A will give a top term d A *d A A 

which becomes elliptic only when working in a gauge with d * A = O. It is not known 

whether such gauges exist globally. We shall have the opportunity to comment on this 

again. 

We are also faced with the non-compact domain 1R3, This gives the rich structure to 

the theory from the physics point of view, as the discussion above shows. 

Mathematically, it gives non-trivial decay properties to the fields but also creates 

some very subtle analytic difficulties. To make things more interesting, the theory is 

not conformally invariant in three dimensions. Easy compactifications are thus 

excluded. 

Why should we insist on three dimensions? For one thing, it is the natural thing to do 

when we study a static physical theory. Further, a scaling argument, see [J-T 1, page 

32, shows that in the SU(2)-adjoint case, for example, there are non-trivial solutions 

only in dimensions 2, 3 and 4. In dimension 4 any solution is gauge equivalent to a 
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pure Yang-Mills field. The dimension 2 has been studied extensively, too, see [J-T]. 

3. The Prasad-Sommerfield Limit. 

Both mathematicians and physicists have studied the SU(2)-adjoint case. Much is 

known for the case when the parameter A. in the potential 

V(<l» = A. (I <l> 1 2_ 1)2 
2 

is zero. This is known as the Prasad·Sommerfield limit. Prasad and Sommerfield 

gave exact solutions and their name to this part of the theory. The idea here has been 

that results obtained for the Lagrangian 

f 1 2 1 2 3 
PS(A,<l» = {II FA I + II d A <l> I } d x 

IR 
3 . 

should in some way carry over to the full YMH Lagrangian. 

The PS Lagrangian is exceptional in that its minima correspond exactly to the 

solutions of the first order Bogomol'nyi equations 

±dA <l> =.F A' 

If the functional PS is viewed as the dimensional reduction of the Yang-Mills 

functional in four dimensions, then the Bogomol'nyi equations correspond to the 

(anti) self -duality equations 

±FA =.F A' 

In the full Lagrangian case there are no corresponding equations for the minima of the 

theory. 

The Prasad-Sommerfield limit has been extensively studied both by twistorial and by 

analytical means. There is no reason now for <l> to tend to any vacuum orbit at 

infinity, so this condition is added ad hoc. 

For the Bogomol'nyi case the twistorial approach has been extremely successful, see 

[A-H ], [ H1 ] and [ H2 ], for example. The complete set of solutions for the 
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Bogomol'nyi case is known, as well as the way these solutions form the moduli space, 

see [Don]. 

The analytical approach is mainly due to Taubes, see [ Tt-8 ]. The topology of the 

configuration space and the way it separates into path connected components 

according to magnetic charge is well understood. Taubes has also proved that 

infinitely many non-stable solutions exist with energy arbitrarily large, see [T4 ]. In 

the Prasad-Sommerfield limit the YMH functional" behaves like a good Morse 

function". 

It is conceivable that the technics created for the Prasad-Sommerfield limit will carry 

over to the full Lagrangian case. This has not being carried out yet, see [ 01 ] for an 

attempt. 

4. Sobolev Spaces. 

By picking a connection V, for example the canonical one, we can describe the space 

of all connections as the affine space V + 0 1 (AdP). On this space and on the 

obviously linear space of sections of an associated bundle we define natural 

generalizations of the standard Sobolev norms. Here covariant differentiation replaces 

the usual derivatives. For a section s and for a connection A define 

k 

II s II LPk(A) = ( f ?: I V A (i)s I P) tIP. 
3 J=O 

IR 

One would usually proceed by considering the completion of the compactly 

supported, smooth sections with respect to this norm. However, it is here that we have 

one of the complications of working over a non -compact domain: such a completion 

depends on the choice of the connection A. 

For that, we need to define the local Sobolev spaces LP k,loc as the set of measurable 

sections which lie in LP k(B) for any compact domain B in IR 3. This definition is 

independent of the connection used on B. For all the theorems we shall be using 
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(Sobolev, Rellich, Sobolev Inequality), see [Pal] and the last chapter of [J - T ]. 

Since the Yang-Mills-Higgs Lagrangian involves fIrst order differentiations on A 

(through the curvature) and on cl> (through the covariant derivative) it is reasonable to 

ask for A and <I> to be in the space L 2l ,IOC. By the way they act on A and <1>, it is 

reasonable to ask for the gauge transformations to have one more derivative, so they 

must be in L 2 2,loc. Standard Multiplication theorems, see [ Pal ], show that the 

integral of the Lagrangian is locally finite. Therefore, one more condition is needed: 

YMH(A,cl» must be finite. We shall study the set of all such configurations much 

more carefully in Chapter B. 

5. About this thesis. 

The purpose of this thesis has been to study Yang-Mills-Higgs Theory when the 

Lagrangian includes a Higgs potential term (not the Prasad-Sommerfield limit), this 

being the case closer to the physical theory. We have tried throughout this thesis not 

make any other assumptions on the asymptotics of the fields apart from the finite 

energy one. 

Inevitably, we learned the techniques we have used from what has already been 

studied. Hence most of the results we obtain concern the case G = SU(2), H = U(1) 

with G acting on its Lie Algebra via the adjoint representation. We understand that 

this is still far from being of any physical consequence. One has to deal with larger 

groups, the first case of some importance being H = SU(3)xU(l), see [ H-R2 ]. The 

SU(2)-adjoint case then is only a model case, something to learn the rules of the 

game from. 

Between the two mathematical trends of the theory, the twistorial and the analytical 

one, we have found ourselves following the latter. It seems to us that away from the 

self-duality Bogomol'nyi case a more variational point of view is needed. In that we 

benefited from K. Uhlenbeck's and C. Taubes' work. In fact, it is tempting to think of 

the Yang-Mills-Higgs functional as yet another example to be understood before an 

infinite-dimensional analogue of Morse Theory is developed (even when Palais­

Smale type conditions fail). 
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6. Summary. 

There are four main chapters in this thesis. In the flrst one we examine the existence 

of solutions. First we review the known ones and then we give a rigorous proof of the 

existence of spherically symmetric solutions along the lines of an argu!llent by 

Romanov, Frolov and Schwarz. We flnd that the proof easily applies to any compact 

Lie Group as gauge group. We also argue why this method gives solutions of 

arbitrary charge for H = U(1). We also take the opportunity to clarify some of the less 

obvious points of spherical symmetry as developed by the Russian school. 

In the second chapter we prove that the configuration space of the theory, as sketched 

above, has a Banach (in fact Hilbert) Manifold Structure with respect to which the 

Lagrangian is at least ct. The original motivation for this comes from the proof in the 

first chapter. One has to appeal to the Principle of Symmetric Criticality, a crucial 

ingredient of which is the Manifold Structure. If this seems overcautious, another 

justification for such a structure on the configuration space is given by the generalized 

Morse Theory plan, see [T61. The proof is based on Floer's proof of the analogous 

fact for the Prasad-Sommerfield limit. It applies to the SU(2)-adjoint case. 

The third chapter examines the asymptotics of finite energy configurations and the 

fourth the asymptotics of finite energy solutions. The mathematical meaning of 

symmetry breaking is presented in terms of reductions of bundles defined by the limit 

of the Higgs field. The main result is the proof of the fact that the limit of a non­

abelian monopole is a Dirac monopole: we find the appropriate mathematical 

formulation and prove that the connection part of the solution has a limit that reduces 

to the bundle defined by the Higgs field. The reduced connection is a pure Yang­

Mills field. 

In the final chapter we summarize some of the problems we think should be tackled 

next. 
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Throughoutthis thesis C is a generic name for constants appearing in estimates. We 

emphasize their dependence only, not their precise value. 

[B-L I, [F-U I and [La I are some of the general references for gauge theories. The 

standard reference for monopole theory is [ J - T I. 
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A. SOME REMARKS ON TIlE EXISTENCE OF SOLUTIONS. 

AO. Introduction. 

We give a rigorous proof of the existence of spherically symmetric solutions. 

Spherical symmetry here is understood in terms of fixed points of a given lifting of 

the SO(3) action on IR 3 to the bundle P. The basic ideas can be found in the papers by 

the Russian authors included in the bibliography. The main point is to minimize 

directly the functional YMH over all spherically symmetric configurations. This we 

carry out in section A4, up to a Banach Manifold structure on the space of all 

configurations. Such a structure will be the topic of the next chapter. 

A 1. The known solutions. 

Much is known about solutions in the Prasad-Sommerfield limit of the theory. There, 

we have explicit formulas and detailed knowledge of the moduli space in the 

Bogomol'nyi case. In the general case though, with self-interaction term V(<l», there 

are only some existence results. We list here the ones we know: 

1) Ansatz solutions: Starting from the original SU(2) solutions suggested by 't Hooft 

and Polyakov in [ 't H J and [ P J respectively, the fIrst rigorous proof of existence of 

solutions was given by Tyupkin, Fateev and Schwarz in [ T -F-S J. There they use an 

Ansatz describing configurations with specified angular dependence and they prove 

that the Yang-Mills-Higgs functional attains its minimum over all the configurations 

described by the Ansatz. Their solutions are for gauge group SU(2) and SU(3). 

Their techni~ave been generalized by Rawnsley in [ R J to any gauge group and 

quite general potential V. The fact that the minimizers are indeed critical points has 

been checked in [PI J. Using different techni,.~but more or less the same Ansatz, 

another proof of the existence of "dyon" solutions was given in [ S-W J. 
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When G = SU(2) all these solutions have magnetic charge 1, see [PI], page 62. 

2) Non-minimal solutions: Following Taubes' methods in [ T2 ] for the Prasad­

Sommerfield limit, Groisser has proved in [ G1 ] the existence of non-spherically 

symmetric, non-minimal solutions for gauge group SU(2) in the adjoint 

representation and for the potential V(<l» = 1../2(1 <l> 1 ~ 1) 2, A ~ 1..
0

• Notice the 

restriction on A: it is the price one pays for using the methods used for A. = 0, the 

Prasad-Sommerfield limit. Groisser's solutions have zero magnetic charge. 1 

3) General spherically symmetric solutions: these we study in this chapter, ~re we 

give a rigorous proof of their existence along the lines of [R-F-S J. They are more 

interesting than those of the first category in that they are minimizers among all 

spherically symmetric configurations. Therefore they stand a better chance of being 

stable solutions, although this we have not been able to prove yet. Furthermore, they 

are not necessarily of magnetic charge 1, see the last section of this chapter. 

A 2. The spherically symmetric case: Basic definitions and relations. 

Let 1t: P _1R
3 

be a principal G bundle over 1R3 with G a compact and non-abelian 

Lie group. For a representation T: G-Aut(L) with L a finite dimensional vector 

space with G-invariant inner product, let E _1R
3 

be the associated vector bundle. 

Let also t denote the action of g. t: g - End(L). 

The Lie group SO(3) acts on 1R3 as the usual orientation-preserving rotations. As in 

[ S 1 J, we consider liftings of this SO(3) action to bundle automorphisms of P, a 

differentiable homomorphism 

0:SO(3) - Aut (P) 

R I-- o(R) = OR 

1 The solutions in Taubes' paper also have zero magnetic charge. However, Taubes claims in his 

paper that the same method should work in any monopole sector. He also thinks, [ T8 ], that the "small 

'J,." condition in Groisser should be removable: the starting point for the construction of a non­

contractible loop in the space of all configurations should be two widely separated exact solutions as in 

(1), for example. Groisser has used two widely separated Prasad-Sommerfield solutions. 
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such that for any R in SO(3) the following diagram commutes: 

aR p----... - p 

xj Ix 
IR 3 _____ IR 3 

R 

Such liftings "exist. For example, with respect to a trivialisation P ::t: 1R3 )( G of the 

bundle, consider the lifting a R (x,g) = (Rx,g). 

Given such a lifting we have an action of SO(3) on the space of connections C by: 

2 2 
SO(3) )( L l,loc (AdP) - L l,loc (AdP) 

* (R, A) I--- (a
R

-t) A 

The connection co is spherically symmetric with respect to the lifting S if 

* (a
R

-t ) CO = CO (A2.1) 

for any R in SO(3), that is if co is a fixed point for the action of SO(3) on the 

connection fonns. 

At the same time, SO(3) acts on the Higgs sections of the associated vector bundle E 

as follows: For each automorphism a R of the bundle P there is a corresponding 

automorphism aRE of the bundle E defined by 

E 
aR:E - E 

[(p,l)] I--- [(aR(p),I)] 

for pin P and I in L. The action of SO(3) on the sections cI> is now given by: 

2 2 
SO(3»)( L l,loc (E) - L l,loc(E) 

(R,cI» I--- ai ocI>oR-t , 

Again, cI> is spherically symmetric if it is a fixed point for this action: 

(A2.2) 

for all R in SO(3). 
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From now on we are assuming that a lifting ° of the SO(3) action on IR 
3 

has been 

chosen and we shall be studying spherical symmetry with respect to this lifting. 

As in [H-S-V 1. we want to describe spherical symmetry in terms of trivialisations. 

One chooses a trivialisation 

3 
cp:P - IR xG 

of the principal bundle P with special section sex) = cp-1(x,e). For 00 a spherically 

symmetric connection form on P consider the Lie Algebra-valued l-form s*oo = A 

on 1R3. For this pulled-back form the spherical symmetry condition can be described 

as follows: 

For any R in SO(3) the section 0RosoR-1 of P is related to s in terms of the 

trivialisation cp by 

( OR osoR-1 )(x) = s(x)t
R 

(x) (A2.3) 

where 't
R

: IR 
3 

- G is the description of a gauge transformation in terms of the 

trivialisation. If the gauge transformations have smoothness properties or belong to 

Sobolev spaces then so does tR for all R. The usual law of transforming the pull­

backs of connections by (local) sections (see [K-N]) becomes over the trivial bundle 

P 

(0 osoR-1 )*00 = t -1 ( s*oo ) t + t -1 dt 
R R R R R 

or 

(R-1)*S*(OR *(0) = t
R

-1 ( s*oo) tR + t
R

-1 dt
R 

• 

Using that OR *00= 00 and that A = s*oo we have 

(R -1) * A = t -1 A 't + 't -1 d't 
R R R R 

which we finally write as 

A = t (R -1) * A t -1 + 't dt -1 
R R R R . 

This is the condition used in [R-S-T] ,[ Sl ] and [R-F-S ]. 

(A2.4) 

We can easily repeat the same for the spherically symmetric sections of the adjoint 

bundle: having fixed the section s of the bundle P, we can describe a section 

<1>: 1R3 - E 
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in tenns of a function <1>': IR 
3 

- L: 

<I>(x) = [ (s(x),<I>'(x» ] . 

The spherical symmetry condition a~ o<l>oR-t = <I> then gives: 

which finally gives 

ai (s( R-tx), <1>'( R-tx» = (s(x),<I>'(x» 

(a
R 

osoR-t (x), <I>'(R-tx» = (s(x),<I>'(x» 

(s(x)'t
R 

(x), <I>'(R-tx» = (s(x),<I>'(x» 

(s(x), T(t
R 

(x»<l>'(R-tx» = (s(x),<l>'(x» 

T(t
R 

(x»<l>'(R-tx) = <l>'(x) . (A2.S) 

Again, this is the relation used in [ R -S -T ] and [ S 1 ]. We refer to tR as the 

compensating function for the rotation R-t for the lifting a of the action with respect 

to the trivialisation cpo 

For the special section s' of some other trivialisation (Le. for some other section of the 

bundle P ) with s'(x) = s(x)k(x) we have that the compensating functions for this new 

gauge are given by 

t' R (x) = k(x) tR (x) k-t(R -tx) . 

Furthermore, for Rl and R2 rotations in SO(3) we have that in any gauge 

tR t R2 (x) = tR t (x) tR2 (Rt -tx) • 

These last two assertions are simply a matter of calculations. 

(A2.6) 

(A2.7) 

Conversely, if a family of compensating functions {t
R

; R E SO(3)} satisfying 

condition (A2.7) is given for each trivialisation and if the various families are related 

by the compatibility condition (A2.6) then there exists a unique lifting of the SO(3) 

action on IR 
3 

having these families as compensating functions. The lifting is defined 

by (A2.3). It is well defined thanks to (A2.6). 

Finally, a piece of terminology that is going to be important in what follows: we say 

that a gauge is a rigid gauge if tR is independent of x E 1R3 for each R in SO(3). We 
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shall see that rigid gauges exist as a result of the existence of finite energy 

configurations. It is immediately clear that for G = 5U(2) such a gauge cannot exist: 

if it did, (A2.6) would define a homomorphism from SO(3) to SU(2). It is well known 

no such nontrivial homomorphism exists. 

A3. Some particular gauges. 

We want to calculate the functional on a spherically symmetric configuration (A,(f). 

First observe that in any gauge the Lagrangian reduces to a one-dimensional integral: 

J 2 2 3 
{I F AI (x) + I D A (f) I (x) + V«(f)(x)} d x-

1R3 

00 

J 2 2 2 
47t r {I F AI (O,O,r) + I D A (f) I (O,O,r) + V«(f)(O,O,r)} dr 

o 
since by the Ad-invariance of the inner product in g, the G-invariance of V and the 

fact that 50(3) acts by isometries on IR 3, the integrand is constant on 52: 

I FA I (ROlo) = IF A I (Olo)' 

I D A (f) I (Rmo) = I D A cl> I (Olo)' 

V(<I»(Rmo) = V(<I»(Olo)' 

This dimensional reduction is the main reason for studying spherical symmetry. How 

desirable it is from a technical point of view to work on a I-dimensional space rather 

than 3-dimensional one will become clear in section A4. 

Remark: We shall prove that L 21,lOC functions are continuous in almost any radial 

direction, see Lemma CI. Here and in what follows we are implicitly assuming that 

the positive z-axis is one of the directions on which both A and (f) are continuous. 

When working with sequences of configurations we shall be assuming that on the z­

axis all the members of the sequence are continuous. 
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In general, the compensating functions tR (x) are not homomorphisms of SO(3) for 

fixed x. However, for x = ( O,O,r ), r > 0, a point on the z-axis2 the isotropy group 
o 

of the SO(3) action is an SO(2) subgroup and (A2.7) gives that for h t' h2 in SO(2) 

tht h2 (x) = tht (x) th2 (x) . ( A3.1 ) 

That is, for each fixed x on the z-axis t: SO(2) - G is a homomorphism. 
o 

Furthennore, using the fact that [R3, { ° } consists of orbits of points on the z-axis for 

any R in SO(3) the same relation gives: 

tR(x) = tR«R t 1x ) = (t R tl(X )t
R 

R( x ) 
x 0 x 0 x 0 

where R is such that x = (R )-lX • Therefore, it is enough to know the compensating 
x x 0 

functions on the z-axis. We shall avoid any mention of the singularity at the origin 

until the last section. 

a) A preliminary gauge: Let so(2) and so(3) denote the Lie Algebras of SO(2) and 

SO(3) respecti.vely. We then choose a basis {(Ot' (02' (O3} of so(3) so that (03 

generates so(2) as it sits in so(3). Then for R in a sufficiently small neighborhood of 

the identity in SO(3) we have that R can be decomposed in a unique way into an 

SO(2)-part heR) and a non-SO(2) part vCR): 

~ = heR) vCR) = exp(cp(03) exp(a
1 
(01+ a2(02)' 

Using (A2.7) again: 

(A3.2). 

Define 

AxO(h) = th(xo ) 

for h in the SO(2) isotropy subgroup of any element on the z-axis. We now choose 

gauges where A has a particularly simple form. 

First we need to establish that for A in the configuration space there exists a gauge 

such that L x.A. = 0, or equivalently Ar = 0. The existence of such a gauge is not 
1 1 

hard to see if A is C1
: simply solve the equation 

2From now on by z-axis we mean positive z-axis. 
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or 

A g+d g=O 
r r 

with some initial conditions. For A in L 21 ,loc we can again solve the equation for any 

initial conditions by approximating A with C 1 functions. We show how to do this in 

Lemma IT of the Appendix to this chapter. 

LEMMA A3.1:. There exists a gauge such that for all h in SO(2) 't
h 

is independent of 

x on the z-axis. 
o 

Proof: The spherical symmetry condition (A2.4) for the gauge potential A= LA dx 
J.1 J.1 

can be written as 

A (x) = 'tR(x)(R -1 ) A (R -tx) t
R

-1(x) + tR(x) d tR-t(x) 
J.1 J.1v v J.1 

where (R-t) = R is the matrix (of the differential of) the rotation R-t. In 
VJ.1 J.1v 

particular, for h in SO(2), x on the z-axis and J.1 = 3, 
o 

In a radial gauge as above and for x = (O,O,r), r > 0, the condition rA
3

(x ) = 0 gives 
o 0 

th (X
o

)d
3 
t
h

-1(x
O

) = 0 

and hence th (x
O

) is constant. 

LEMMA A3.2: There exists a gauge with the same th on the z-axis as in Lemma 

A3.1 and such that dth = 0 on the z-axis. 

, Proof: Pick a gauge as in Lemma A3.1. Define the gauge transformation k in a 

neighborhood of the z-axis as follows: for x = R -1X with x on the z-axis and R o 0 

small enough 
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Then in the new gauge we have: 

't' h (xo) = k(xo) ~h (xo) k-t(x 0) ="lh (xo) 

since the only rotation with no SO(2)-part that takes Xo to itself is the identity. 

Furthennore, 

or 

Then for x = R-txo with R having no SO(2)-part 

'th'(R-txo) = ('t' R)-t(xo) 't' Rh (xo) = 't' Rh (xo) 

= t ' hh-tRh(xo) = t' h(xo) 't'h-tRh(xo) 

= t'h(xo) 

since h-1 R h has no SO(2) part and is still close to the identity. Hence for any 

x = R-tx
o 

close to the z-axis 't'h is constant. 

Remark:The fmal calculation in Lemma 2 is exactly the one in [ R-S-T ]. Their 

claim that 'th is constant is thus true only on SO(3)-orbits and becomes globally true 

thanks to Lemma A3.1. 

In such a gauge define A to be Axo for any Xo on the z-axis and 

b) The energy expression: In such a gauge (as in Lemma A3.2) the expression of the 

energy has been calculated in [R-S-T] and [R-F-S ] to be 
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00 

t 2 2 
+ ~I K3 + [r At (r), r A 2 (r) ] I + I d r <l>(r) I 

+ 1 teAt (r)<l>(r» 1 2+ 1 t(A
2

(r)<l>(r» 1 2 + V(<l>(r» } dr . 

(A3.1) 

We have checked and completed the calculation of the energy expression in [ D ]. 

Since the main ideas are contained in [ R-S-T ] we are not going to repeat the 

calculation here. 

c) The construction of a rigid gauge: We combine here [ H-S-V ] and [ R-S-T ] to 

give a full proof of the existence of a rigid gauges. As in the construction of the 

preliminary gauges of the preceding paragraph, we shall use a finite energy 

configuration to construct such gauges. The authors in [R-F-S ] err in assuming the 

existence of a r~ial gauge before writing an expression for the energy. 

In a gauge with A3(O, 0, r) = 0 and the homomorphism A independent of the point on 

the z-axis, we write the spherical symmetry condition as 

= t exp(<P0>3) (exp(<p0>3»JlY Ay(xo)texP(<p0>3)-t. 

Differentiating with respect to <p at <p = 0 we have: 

d d o = -I t A (x ) - A (x ) -I t + (0)) A (x ) 
d<p 0 exp(<p0>3) Jl 0 Jl 0 d<p 0 exp(<pco

3
) 3 JlY Y 0 

or 

23 



Since 

o -1 0 

(03 = 1 0 0 

000 

setting Jl = 1 and Jl = 2 gives 

[K3 ' A1 (xo)] = A2 (xo) (A3.2) 

and 

(A3.3) 

respectively. 

For a finite energy configuration ( A,el> ) we have: 

r' r' r' 

f d( r A ) f f d( r A ) 
I r' A 1 ( r' ) - r A 1 ( r ) I s I dr 1 (r)1 dr S ( dr I dr 1 (r)1 2 dr ) 1 /2 

r r r 

s C (r' - r) 1/2 YMH(A,el»l/2 • (A3.4) 

Therefore 1~ r A 1(r) exists. We call it K1(A). Similarly, set K2(A) = 1~ rA2(r). 

Then taking the limits of (A3.2) and (A3.3) as r tends to 0 we have 

[K3 , K1 ] = K2 

and 

[K3 ' K2 ] = - K 1 . 

Furthermore, using once again that the energy is finite we have that the integral 

00 

J ~ I K3 + [r A1 (r), r A
2

(r)]l2 dr 
o r 

is finite, which gives that 

- K3 = [K1 ,K2 ] . 

That is, the elements Ll = K 1, L2 = K2 and L3 = -K3 satisfy the relations 

[L.,L.]=e"kL . 
1 J IJ-k 
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Since the generators 0> l' 0>2 and 0> 3 satisfy the same relations, we have an 

isomorphism of the Lie algebra of SO(3) with the subalgebra of the Lie Algebra of 

the gauge group G generated by K 1, K2 and -K3 which we want to view as a 

homomorphism 

dA: su(2) - g. 

Since SU(2) is simply connected this gives a homomorphism 

A:SU(2) - G 

satisfying 

A(-I) = exp (dA)(21t0>3) = exp21tK3 = 

d d 
= exp 21t dt I 0 'texp to> (xo) = exp dt I 0 'texp 21ttO> (xo) 

= 'texp 21t0> (xo) 
3 

= 't (x ) = e. e 0 

3 3 

Therefore we have a homomorphism dA: SO(3) - G which clearly extends the 

homomorphism A.: SO(2)- G. 

To show that such a homomorphism determines a rigid gauge we argue as follows: in 

any gauge the compensating function 'tR is characterized by 

(crRosoR -t)(x) = sex) 't
R 

(x) 

where s is the special section of the given trivialisation. 

Define a new section s' by 

s'(Rxo) = crR(s(xo» A(R-!) 

for any x = Rxxo in IR 3, { 0 }. It is clearly well defined. In the gauge which has s' as 

its special section we follow the same recipe for finding compensating functions as 

for (A2.4). For any rotation R: 

(crRos'oR-t)(x) = (crRos'oR-t)(R x ) = (crRoS')(R-1R x ) x 0 x 0 

- crRocrR-tRx (s(xo» A«Rx)-tR) 
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= O'Ros(x )A«R tt)A(R) = s'(x) A(R). o x 

Therefore in this gauge 't'R (x) = A(R), depending only on R. 

We see then that the existence of a rigid gauge is equivalent to the extension of the 

homomorphism A. to a homomorphism from SO(3) to the gauge group. The existence 

of such an extension follows from the existence of finite energy nontrivial 

configurations. Therefore, no finite energy configurations enjoying spherical 

symmetry exist when G = SU(2). However, we can replace in this case SO(3) by 

SU(2), still acting on 1R3 by rotations in the obvious way. We can then repeat the 

definition of spherical symmetry and all the results up to now word by word, 

substituting SO(3) by SU(2). Finite energy configurations with this kind of symmetry 

now exist, as the formulas in [R-S-T] show. 

A4. Minimizing over all spherically symmetric configurations. 

The method for minimizing the YMH functional we present here is the well-known 

Direct Method in the Calculus of Variations. It has been used before in the context of 

configurations described by particular Ansatze, see [ R-F-S ], [ T-F-S ] and [ R J. 

Here we wish to apply it for a minimizing sequence of spherically symmetric 

configurations as above. The fact that the technique works in this case has been 

indicated in [ R-F-S J where it has also been carried out for the Skyrmion problem. 

We carry it out here for the YMH case since some not entirely obvious technicalities 

are involved. We also find that the method applies for any gauge group. 

First notice that YMH ~ 0 on the spherically symmetric configurations. We can then 

choose a sequence (A n ,q,n) of spherically symmetric configurations such that as 

n~oo 

YMH(A n ,<1>n) ~ inf {YMH(A ,<1» : (A, <1» is spherically symmetric} • 

We want to comment on the choice of gauge since it is an important ingredient of the 

argument and one of the obscure points in [ R-F-S ]. For each n use the gauge 
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transfonnation gn solving the equation 

dr gn(r) + A3 n (r) = ° 
with initial condition 

n g (0,0,1) = e E G. 

Then we are in the situation where A3 n = 0 on the z-axis and, as proved above, A. n(<p) 

is constant on the z-axis. Notice that, although the type of symmetry is fixed once 

and for all, the description of the particular functions (like A) depends on the choice 

of gauge. At the same time, the initial condition shows that the gauge transfonnation 

from the gn_gauge to the gm_gauge at the point (0,0,r) is the identity. The way the 

compensating functions change from gauge to gauge gives 

n m 
't h (O,O,r) = 't h (O,O,r) 

and hence 

n m 
'th='t h' 
n m 

K 3=K 3· 

Further modify the gauges as in Lemma A3.2 without changing the K
3

-parts. Then 

the energy of the elements of the minimizing sequence is given by (A3.1) for a 

unifonn K
3

. Thus the elements of the minimizing sequence are described in different 

gauges. Recall that the value of YMH is gauge invariant. 

The next step is to show that A n and <l>n as functions on (0, 00) are bounded in Hilbert 

spaces that are naturally defined using the derivative tenns in the energy expression. 

They tum out to be enough to control the remaining tenns in the expression. 

Define HI to be the space of all measurable functions f that have finite H1-nonn: 

co 

II fll HI = <f I !f(r)1 2 dr+lf(1)1 2 )1/2 
o 

and H2 to be the space of all measurable functions f that have finite 11
2

- nonn: 

co 
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Note that it is not clear that these spaces are the completion spaces of smooth 

functions with compact support and therefore the constant terms in the norm are of 

importance. We now estimate II An II HI and II ~n II H2: 

Recall that for a finite energy configuration (A,~) we have by (A3.4) defined 

K1(A) = lim rAt(r), 
r-+o 

K2(A) = lim rA2(r). 
r-+o 

Using (A3.4) again, for the elements of the minimizing sequence 

1At(1)1 S C.YMH(A,~)1/2+IKtnl 

and 

I A2 n(1) I S C.YMH(A,~) t/2 + I K2 n I. 

However, because of the relations among Kt , K2 and K3 and the uniformity of K3, 

the invariance of the inner product under the adjoint action gives 

2 
1 K3 1 = < K3, K3 > = < Adexp(_tK2n) K3 • Adexp(_tK2n) K3 > 

for all t. 

Further, 

tad(-K2 ) . n n 
Adexp(_tK2n) K3 = e K3 = S10 t K1 + cos t K3 • 

Setting t = 1C/2 gives 

while for the same value of t 

n 
K t ad( - K 1 ) K . n n 

Adexp(_tKtn) 3 = e 3 = S10 t K2 + cos t K3 

gives 

l~nl=IK31. 

Since the numerical sequence YMH(An .~ n) is bounded, say by a constant M, we 

have 

and 
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Since also 

00 00 

f 1 ! rA t(r) 12 dr + f 1 ! r A2 n(r) 1 2 dr S M 
o 0 

we see that the components of rAn are bounded in H l' 

Similarly for the <1>-part of the configurations we estimate that: 

r' r' r' 

1 <1>(r') - <1>(r) 1 S J 1 ! <1>(r) 1 dr S (J 12 dr J r 21 ! <1>(r) 1 2 dr ) 1/2 
r r r r 

which gives that the limit of <1>(r) exists as r tends to infinity. By the symmetry 

breaking assumption this limit has to lie on a unique orbit in the representation space. 

Since G is compact so is the orbit and therefore bounded in the norm of the 

representation space by a constant N. We then have the uniform bound 

1 <1>n(1) 1 S C.YMH(An,<1>n)1/2+ N . 

Since by finite energy 

00 

we see that the sequence <1> n is bounded in H2. 

By the weak compactness of the Hilbert spaces 111 and H2 we obtain weak limits A 0 

and <1>0 in II 1 and 112 respectively • By rotating A 0 and <1>0 we can construct a 

spherically symmetric configuration, described in a K3-gauge. To prove that 

YMH(A 0,<1>0) = inf { YMH (A,<1»: (A,<1» spherically symmetric}, we argue as in 

[R I: 

First assume that II rAn II HI and II <1>n II 112 are convergent, by choosing a subsequence 

if necessary. 

For each closed subinterval [a,b] of (0,00) with a < 1 < b define 1I1(a,b) and 112(a,b) 

to be the spaces of measurable functions with finite norm 
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b 

II f II HI = ( f 1 ! fer) 1 2 dr + 1 f(a) 12) 1/2 
a 

and 

b 

II fll H2 = (f r 21 !f(r) 12 dr+ 1 f(a) 12) 1/2 
a 

respectively. 

Using the obvious continuity of the restriction mappings H1- HI (l,b) and 

H2 - H2(1,b) we conclude that rAn still converges weakly to r A 0 in HI (l,b) 

and elln weakly to ell° in H2(1,b). However, over compact domains finite H-nonns 

imply finite L 21 (a,b) norms. For a proof of this see Lemma I of the Appendix. We 

can therefore consider our sequences as weakly convergent sequences in L 2
1
, By 

Sobolev's Embedding Theorem in dimension 1, they are strongly convergent 

sequences in CO(a,b). This implies (uniform and hence) pointwise convergence and 

that A 0 and Cl>0 are continuous. 

In particular we have 

lim A D(t) = A(1) 
n-+oo 

and (A4.1) 

lim Cl>D(1) = Cl>(1) • 
n-+oo 

Since we are assuming II rAn II HI and II ell
n II H2 convergent we have that 

00 00 

and 

00 00 
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converge as n tends to 00. 

Notice that 

CXl CXl CXl 

YMH(An ,<l>n) = f an dr + f ~n dr+ f Y n dr, 
o 0 0 

where Y n denotes all the tenns in the energy integral that do not involve derivatives. 

CXl 

. Since YMH(An ,<l>n) converges as n --+00, so does J Y n dr. Then 
o 

b b b 

J y(r) dr = J {y(r) - Yn(r)} dr + J yn(r) dr 
1 1 1 

gives 

b b CXl 

f y(r) dr S f {y(r) - Yn(r)} dr + f y n dr. 
1 1 0 

Since the convergence on [l,b] is uniform, taking limits as n --+ 00: 

b CXl 

fy(r) dr S lim f y n(r) dr 
1 0-+00 0 

as n --+00. Now repeat the proof up to this point substituting f(1) in the nonns with any 

value f(a) and take a < b. The last inequality becomes 

b !XI 

J y(r) dr S lim J y n(r) dr 
a O-+CXl 0 

for all a and b, which finally gives: 

CXl CXl 

f y(r) dr S lim J 'Y nCr) dr . 
o O-+!XI 0 

(A4.2 ) 

Using the standard property of weak limits we have: 
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Since 

IIrA20llHl S lim OrA2
n

IlHl' 
n~oo 

1I<I>°IlH2 S lim lI<I>n ll H2 . 
n~oo 

00 

+ II <I> II H2 -I <1>(1) 1+ f y(r) dr • 
o 

adding up (A4.1), (A4.2) and (A4.3) gives 

YMH(A 0,<1>0) S lim YMH(A n,<I>n) . 
n~oo 

(A4.3 ) 

To see that YMH(A 0,<1>0) is indeed the energy of a spherically symmetric 

configuration of the same type as the configurations (An, <l>n) we argue as follows: 

choose any gauge as described in Lemma A3.1 and A3.2 and characterized by K3, for 

example any of the gn -gauges. By the Rigid Gauge Construction, we can assume that 

this gauge is rigid without changing K3, In such a gauge then we define the 

spherically symmetric configuration (A,<I» at x = Rxo for Xo on the z-axis by 

All (Rxo) = 'tR Rllv Av o(xo) 'tR-1 

and 

<I>(Rxo) = T('tR) <l>°(xo)' 

Such a configuration is well defined: for R' such that R'xo = x we have R' = Rh for 

h in the isotropy of xo' Then 

All (R' xo) = 'tRh (Rh)llv Av o(xo) 'tRh-1 

= 'tR'th (Rh)IlV Av o(xo) 'th-t'tR-t = 

= 'tR'th (Rlljhj) Av o(xo) 'th-t'tR-t 

= 'tR RJ.1.j ('th hjv Av o(xo) 'th-t) 'tR-t. 

SinceAj n(xo) = 'th hjV Av n(xo) 'th-1 by the uniformity of K3, taking pointwise limits 

we have 

32 



Hence 

Summarizing, we have proved: 

THEOREM A4.1: For any compact, semi-simple gauge group G and any symmetry 

breaking potential V the functional YMH attains its minimum over all configurations 

that are spherically symmetric with respect to a given type of spherical symmetry. 

A5. The existence of spherically symmetric solutions. 

How far is this from proving the existence of critical points among ALL 

configurations? As mentioned in [ R-S-T] and as widely accepted by physicists, see 

[Cl ], imposing a symmetry and finding a critical point among all symmetric fields 

should yield a genuine critical point. However, it has long been recognized by 

mathematicians that this is not always true and that the correct statement of this 

principle is as follows. We quote from [ Pa2 ]: 

THE PRINCIPLE OF SYMMETRIC CRITICALITY: Let K be a compact Lie 

Group acting on a smooth manifold X and on a fibre-bundle Y over X. If B is a 

Banach Manifold of sections of Y, consider the natural action of K on B. Then the set 

1: of K-equivariant sections is a smooth submanifold of B. Furthermore, if 

F: B -IR is a K-invariant smooth function the critical points of FIl: are critical 

points of FIB' 

By natural action on the space of sections we mean 

(k·s)(x) = k'(s(k-lx» 

fork in K and sin B. 

As it becomes clear to anyone who studies Palais' paper, the technical condition that 
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the space of sections fonns a Banach Manifold is very important. It is the "linearity of 

the enveloping space" implied in [ L), where another attempt for symmetric solutions 

for the Skyrme problem can be found3• The smoothness of the functional can be 

relaxed to F being C 1. The proof of the fact that the configuration space admits a 

Banach Manifold structure such that YMH is smooth for the case G = SU(2) and for 

the adjoint representation occupies the whole of the next chapter. Only then will the 

existence of spherically symmetric solutions be completed. 

In our case, of course, K = SO(3) and acts by rotations on X = 1R3 and by the 

prescribed lifting on Y = (T*®AdP ) e E. ~ then is the submanifold of spherically 

symmetric configurations and the minimizers of Theorem A4.1 are critical points of 

YMH on the full configuration space. 

However, there is no reason why these particular critical points should be stable with 

respect to variations among all configurations. So far as we know this problem 

remains open and we intend to address it in the future. Suffices to mention here that 

the Harmonic Mappings paradigm indicates that stability in Variational Problems can 

be quite unpredictable, see [E-L ], section 6.6. 

Of course, the solutions we obtained are useless unless they are non-trivial. Trivial 

solutions define trivial homotopy classes and therefore have magnetic charge O. 

However, the solutions described in this chapter have non-zero charge, they are 

genuine monopoles. To see this, consider a fixed type of spherical symmetry 

described in a rigid gauge, the corresponding A.-homomorphism and its derivative K3. 

Going back to the defining relation (A2.5) for symmetric Higgs fields. for x on the o 

z-axis 

T(A.(<p» <l>(xo) = <l>(xo) 

which gives by differentiating with respect to cp: 

t(K3)<l>(xo) I: 0 

and taking the limit as I Xo I tends to infinity 

3Ladynzeskaya refers to Coleman's paper [ C ) for the Principle. According to Palais, it is not clear 

what Coleman proves there. 
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t(K3)<l> 00 = o. 
That is, K3 lies in the isotropy subalgebra of the vacuum <l> 00' Another way of saying 

the same thing is that the type of symmetry determines the asymptotic vacuum value 

on the z-axis. For the SU(2)-adjoint case it is determined up to a one-dimensional 

subspace and the isotropy subgroup is the same for all the points on the z-axis. If we 

denote it by H we have a homomorphism 

A:U(l)- H. 

As proved in [ R-S-T ], the magnetic charge of any spherically symmetric 

configuration as an element of 1t 1 (H) is the homotopy class of A: U(1) - H.4 

Notice that the homotopy class does not change from gauge to gauge: the 

transformation rule for compensating functions gives 

A'( <p) = k(X)A( <p )k-1(x) 

for all x on the z-axis and all <po Therefore, each k(x) describes a homotopy between 

A and A'. 

There is no obstruction for such a homomorphism to be the characterizing 

homomorphism of some type of spherical symmetry when the gauge group is simply 

connected. see [ S 1 ]. In fact. [ S 1 ] refers to single orbits but the bundles he obtains are 

trivial. We can therefore take A. to be the same for all points on the z-axis and then 

the result carries over to 1R3, {O}. 

For H = U(1) the homotopy class is characterized by the degree of A.. The point then 

is that by choosing the U(1) subgroup and the homomorphism A (of arbitrary degree) 

we can determine the asymptotic values of the Higgs fields and the magnetic charge 

of the symmetric configurations. This establishes the existence of solutions of 

arbitrary magnetic charge in the case of semi-simple gauge group and small group 

U(l). 

4This is proved by considering the bundle homomorphism (t,cI» ) from the bundle (SU(2),U(t),S1 
DO 

to the bundle (G.H,G/H) and the corresponding homotopy sequences. The induced map on the fibres is 

given by i... 

35 



We need not be concerned with the regularity of the solutions. As we have argued, 

they are continuous on the z-axis and since we have used L 2 2,loc transfonnations to 

define them on the rest of the space they are definitely in L 21,IOC • By a standard 

theorem any solution is gauge equivalent to a smooth one, see [J-T], Chapter V. This 

also settles the problem of the singularity at the origin. 

Appendix: Two technical Lemmas. 

LEMMA I: On any interval [ a,b ], 

II f II 2; 1 ~ C II f II H f 

Proof: The proof consists of modifying appropriately the standard proof for the 

Poincare Inequality for functions with compact support. Since such functions are not 

dense in L 21 [ a,b ] a bit more care is needed: 

b b r 

J I f(r) I 2dr = J IJ f(t) dt + f(a)1
2ck 

a a a 

b r r 

~ J ({ JI f'(t) I dt} 2 + I f(a)1 2 + 2 JI f(a)f'(t)1 dt ) dr 

a a a 

b 

~ c JI f'(t) I 2 dt + C I f(a) I 2 + 2 C I f(a) III f 0 2 
a 

= C( I f(a) I + II f 112 ) 2 . 

LEMMA II: For each A in L 21,IOC there exists an L 22,IOC gauge transfonnation 

such that (g·A)r = O. 

Proof: We construct the gauge on closed inteIVals of the positive z-axis, as it can be 

extended on the whole space in the obvious way. Any A in L 21 [a,b] can be 

approximated in L 21 [ a,b ] by a sequence A n of C 1 functions. Let g n be the unique 

solution of the ordinary differential equation 
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a~n + Angn = 0, 

gn( a) = e. 

Then II a ~n 112 = II Angn II 2 ~ II An n 2' Since II An II 2 is bounded using Lemma 1 and 

the uniform initial condition we have that gn is bounded in L 21 and hence weakly 

convergent to g, say, Using Sobolev's Embedding again, gn converges in C[ a,b I to g 

and therefore pointwise to g. Taking limits then we have 

0rg+Ag = 0 

which also shows that o~ is in L 21 and hence g is in L 22' It is clear that we can 

choose the uniform initial condition in an arbitrary way. By pointwise convergence g 

will satisfy the same initial condition, 
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B. A BANACH MANIFOLD STRUCTURE ON THE CONFIGURATION SPACE 

OF 11IE Y ANG-MILLS-HIGGS FUNCTIONAL. 

BO. Introduction. 

In this chapter we show that the effective configuration space of the theory, the 

equivalence classes under the action of the gauge group, is a Banach manifold. It is 

clear from the previous chapter that such a structure is desirable in proving the 

existence of spherically symmetric solutions. For further evidence on the importance 

in general of such a structure on the configuration space of a variational problem, see 

[T6 ]. 

The method we are following is the more or less standard method of finding a local 

slice. The analytic difficulties were first realized by C. Taubes who tackled them in 

the case of smooth configurations, see [ T3 ], and suggested ways of overcoming them 

in the case of the general configuration space. This construction was carried out for 

the case of the Prasad-Sommerfield limit by A. Floer in [ F ]. Here we are interested 

in showing that there is a manifold structure so that the full Yang-Mills-Higgs 

functional is differentiable, something that Floer has not addressed, not even for the 

Prasad-Sommerfield case. It turns out that a small modification of the norm of the 

tangent space at each configuration is enough. Precisely, where Floer finds that the 

norm of the tangent vector (a,q» should be 

II 2 II II 2 II [ II 2 II 2 1/2 * (II V Aa 2 + V Aq> 2 + <l>,a] 2 + [<l>,cp]1I 2 ) +1I<l>·V A all 6/5 

we find that it should be 

II II 2 II II 2 II [ II 2 II II 2 1/2 * ( V A a 2 + V A q> 2 + <l>, a] 2 + cp 2) + II <l>·V A a 116/5 • 

However, in order to do this, a non-trivial step is involved: since the construction 

essentially takes place in a "regularized" configuration space CR we must find a way 

of going from the configuration space C to CR by adding an L 2 field to the original 

Higgs field. We show how to do this in section B5. 
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Although the main aim of this section is to solve the problems for the case where the 

Lagrangian has a potential term, we hope that at the same time we have managed to 

present a readable account of the original proof. 

Another attempt at a Banach manifold structure can be found in [ P J, for a similar 

functional on a four-dimensional compact manifold. There the compactness makes 

the analytic difficulties less severe. The question of smoothness of the functional has 

not been addressed there either. 

Bl. The local slice method: The Yan~-Mills analo~ue. 

The prototype for a Banach manifold structure for a configuration space of the kind 

we are studying here is the structure on the configuration space of the Yang-Mills 

functional on a compact 4-dimensional manifold M, as it appears for example in [ F­

U J. We choose to describe everything by analogy with this situation, for reasons of 

clarity. There, the the configuration space is the space of irreducible connections in 

the Sobolev space L 23(T*®Ad(P» acted upon by the gauge transformations in G = 

L 24 (Aut(P». Notice that both these spaces are themselves manifolds: 

L 23 (T*®Ad(P» is affine and L 
2

4 (Aut(p» has tangent spac~s described by the L 24 

sections of the bundle of Lie algebras. By contrast, in our situation we have only the 

Frechet spaces L 21,1OC (1R
3

;T*®Ad(P» and L 
2

2,loc(1R
3

;Aut(P» to begin with. This 

will cause the first complications. 

In the case of the Yang-Mills functional, one proceeds by constructing a slice at each 

point D in the manifold of connections. A slice S consists of an open submanifold 

containing D such that: 

(i) the restriction on S of the projection to the quotient is one to one and 

(ii) the tangent space at the point splits into the space tangent to the orbit and the 

space tangent to S. 
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This is a standard procedure on spaces with a group action on them. In any case, the 

slice is easy to imagine: we need only exploit the natural inner product on each 

tangent space and go orthogonally to the orbit directions. If ~ is a section of the 

bundle of Lie algebras, an element of the tangent space at the identity gauge 

transfonnation, it exponentiates to the path of transformations exp(t~). In the space of 

connections the corresponding tangent vector to the connection D is 

A tangent vector orthogonal to all such vectors is given by 

< a, D~ > = 0 

or 

<D*a,~> = O. 

The slice we are after then has tangent space at D given by 

TD = {ainL2
3 

withD*a=O}. 

One wants to argue that locally the configuration space is like 0 )( T D' Dividing by 

the group action only T D will survive. This will be the tangent space to the quotient 

space at the equivalence class [ D ]. To prove that locally we have a cross product we 

only need to solve for g the equation 

D*(gAg-t + gDg-f) = O. 

To do this, we need to know that the mapping 

(g,A) I-D*(gAg-t + gDg-t ) 

has nonsingular derivative with respect to g at (id,O). The Implicit Function Theorem 

will then take over. This derivative is luckily given by D*O which for irreducible 

connections has no kernel. Being also self-adjoint and elliptic it is non-singular by 

the Fredholm Alternative. 

It then becomes clear that to follow the same strategy for the Yang-Mills-Higgs 

theory we must overcome the following problems: 
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Problem 1: Try to describe the configuration space at least around a given 

configuration in terms of Banach spaces, so that we can use the Implicit Function 

Theorem. We settle this in sections B5 to B7. 

Problem 2: The operator corresponding to n *n in the above description is 

n*n + ad2
q" see below. Inverting this operator is a bit more tricky since adq, has 

non-trivial kernel. This is done in section B7. 

Sections B3 and B4 provide some motivation and discuss the differences of the case 

with a potential tenn from the Prasad-Sommerfield limit. The heuristic approach of 

section B4 comes from [ T8 ]. 

B2. The configuration space: pefinition and Tcwology. 

The configuration space is of the Yang-Mills-Higgs theory is 

c = {(A,q,): Ae L21,Ioe(T*(1R3)®AdP), cI>e L2
1

,loe(AdP) with YMH(A,q,) < oo}, 

where the functional YMH is the full Lagrangian of the physical theory: 

YMH(A,cI» = f {~ 1 FA 12 + ~ 1 d A cI> 12 + V(q,)} d 3x . 

1R3 

Here V is a Higgs interaction potential. as explained in the introduction. 

This is the configuration space as a set. As a topological space it has the intersection 

of the L 2 1,loe topologies of the corresponding Frechet spaces with the topology that 

renders continuous the following functions: 

c-L2(02(AdP») 

c = (A,cI»~ FA ' 
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c = (A,cI»1- D A cI> , 

and 

C_Ll(1R3) 

c = (A,cI»1- V(cI» . 

This is a natural adaptation of the standard configuration space used so far, see [ T3 ], 

[ F ] and [ 02 ], to the case of the full Lagrangian. Special care has to be taken so that 

the original topology used by Taubes is compatible with our presentation: it is the 

topology needed to prove one of the main results of the theory at the level of the 

Prasad- Sommerfield limit (with all the care one has to take for generalizations): the 

configuration space of smooth objects is homotopic ally equivalent to Maps (S 2; S 2) 

and there are infinitely many unstable solutions of arbitrarily large energy. Further, in 

this topology the configuration space has countable many path components, counted 

by magnetic charge, see [ 02 ]. 

The gauge transformations we are allowing in the theory are naturally in 

2 
G - L 2,locAut (P). 

Equivalently, once a trivialization has been chosen, they are the L 2 2,loc mappings 

from 1R3 to G. They act continuously on the configuration space C in the usual way: 

g' A = AdgA + gdg-I 

and 

g.cI> = T(g)(<l». 

In this chapter we consider G = SU(2) in the adjoint representation only. We sum up 

the reasons for this restriction at the end of the chapter. 

We shall exploit the group action to achieve the manifold structure. Naively speaking, 

given a configuration (A,cI», we cannot expect that every configuration in a 

neighborhood of (A,cI» has the same "decay" so that their difference is in some 

normed space. What one can prove is that any configuration sufficiently close to 
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(A,<1» can be gauge transfonned by an L 22,loc transfonnation so that this is true. 

The manifold structure then is on the quotient C/O. It follows from the definition of 

the action that the constant gauge transfonnations 1 and -1 applied on a configuration 

give the same result. It is then clear that we need to work not with 0 but rather with 

O/{-1,+U. Further, in order to achieve a Hausdorff quotient, we shall need to 

exclude the reducible parts of the theory: 

Cred = {c= (A,<1» E C such that there is g f: 1 with g'c = c} . 

We lose nothing from the physical point of view: a configuration is reducible if and 

only if its magnetic charge is zero, [ F ] Lemma 2.3. We are always interested in 

magnetic monopoles, objects with magnetic charge. 

It is then possible to prove that the quotient is in fact Hausdorff, [ F ] Lemma 3.1. This 

is done by proving that the action of O/{±t} on C\Cred has a closed graph. It 

depends entirely on the connection part of the configuration and follows in exactly the 

same way as in the Yang-Mills theory, see [F-U]. The non-compactness difficulties 

are minor here. 

We end this section with some standard technical facts. 

The linearization of the action of the gauge group at the point (A,<1» is given by 

d 
1;1--~ Oexp( t1; )(A$<l» 

d d 
= ~ 0 {exp( ts )Aexp( ts >-1 + exp( ts )dexp( ts )-1} e ~ 0 {exp( ts )<1>exp( ts t l

} 

= (sA - AS - d/;) $ (/;<1> - <%>/;) 

= - {V A S $ ad<1>(/;)}. (B3.1) 

Here and throughout this chapter we view the tangent space at (A,<%» as the direct sum 

of the tangent space at A and the tangent space at <1>. 

The formal L2 -adjoint is given by the relation 

-< a$<p, V A S e ad<1>(s) > = - {< a, V AS> + < <p,ad<1>(s) >} 
= - < V A *a, 1; > + < ad<1>(<p), 1; > 
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= - < V A *a + adet>(cp), ~). 

The corresponding operator then is 

(a,cp)1- -VA *a + adet>(cp). 

The composition of the mappings above gives the Laplacian of the theory; 

~I- V A *V A ~ - ad2et>(~) = - (V A 2~ + ad2et>(~» . 

(B3.2) 

Here V A 2 denotes the covariant Laplacian on sections. Of great use will be the 

following technical Lemmas: 

LEMMA B2.t: (Kato's inequality) The following is true pointwise almost 

everywhere: 

I dl s II (x) S I VAs I (x). 

For a proof, see [ J - T ], page 268. 

LEMMA B2.2: Let V A denote the completion of compactly supported smooth 

sections with respect to the norm 

II cp II V A = II V A cp II 2' 

Then if cp lies in V A it lies in L 6. 

Proof: Assume cp of compact support. By Kato's inequality, dl cp Ie L 2, Since it has 

compact support, by Sobolev's Inequality in three dimensions cp E L 6. 

LEMMA B2.3: Let cp have finite VA -norm, without necessarily belonging to ~ , 

Then there exists a constant M(cp)elR such that I cp 1- M(cp) e L 6. 

Proof: See [ G2 ], Lemma 1.1. 

For example, let (A,et» be a finite energy configuration. Then by Lemma B2.3 there 

exists a constant M(et» such that et> - M(Cl» E L 6, By finite energy again, Cl> - 1 e L 2. 

Hence M(et» = 1. 
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B3. Differentiating the potential tenn. 

There is no physics in the particular form of the potential V. It suffices to be chosen 

so that it satisfies properties (i) to (v) of the introduction, see page 3. 

It is property (iii) that is the crucial one here and we should comment a bit more on it. 

From the Physics point of view the Lagrangian must describe a breaking of the 

original G-invariance to an H-invariance, for H a subgroup of G. This is made more 

precise in the chapters to follow. Here we shall only say that H is the (uniquely 

determined up to conjugation) isotropy group of the vacuum. Given G and H any 

potential satisfying the conditions above and having H as isotropy group will do and 

in fact it will be of the same value as any other having the same properties. 

Having said all this let us concentrate on the SU(2) case and its adjoint representation 

on its Lie algebra. For this representation there are two sorts of orbits we can hope 

for: a) the orbit of 0, excluded by the non-triviality condition and b) the orbits of all 

other elements, all equivalent from our point of view since they all give H = U(l). 

Such orbits are spheres in the Lie algebra with respect to the standard inner product. 

Then everything depends on I cl> I and therefore we can choose V to be a fourth degree 

polynomial in I cl> 1 : 

V(<l» = a4 1<l>14 + a3 1<1>13 + a2 1<l>12 + a1 1<1>1 + aO' 

Also choose the vacuum orbit to be the sphere of radius 1. Then 1<1>1= 1 must be a root 

of V and V must be of the form: 

V(cl» = (1<1>1-'O(b3 1<l>13 + b2 1cl>12 + b1 1cl>1 + bO)' 

The positivity condition shows that for I<I>I smaller than 1 
3 2 b3 1<I>1 + b2 1cl>1 + b1 1<1>1 + bO 

. , 
• 

has to be negative and for 1 <l> 1 greater than 1 it has to be positive. Being continuous it 

has a zero at 1 and V has the form: 

V(cl» = (1<1>1- l)2(c2 1<l>12 + c l lcl>1 + cO), 

We can then dispose of the c2 1<I>12 + c 1 1<1>1 + Co part since it does not contribute 
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anything. We only need remind ourselves that physicists insist on an expression 

polynomial in <1> and then the potential takes the form: 

V(<1» = (I <1> 12_ 1)2. 

Now let us try to complement the norm of the tangent space so that the full functional 

is at least once continuously differentiable in the Gateaux (directional) sense. 

Formally differentiating 1, 

:t lof V(<1> + t<p) d
3
x = f DV <1> (<p) d3x. 

In the case that the Higgs potential V is a polynomial of I <1> I 2, this gives 

f V' (1<1>1 2) <<1>,<p> d3x. 

In the SU(2) case this is 

f (1<1>1 2 - 1) <<1>,<p> d 3x. 

Now since (1<1>1 2 - 1) is in L 2, using Holder's inequality 

f (1<1>1 2 - 1) <<1>,<p> d3x ~ 111<1>12 - 111211 <<1>,<p> 11 2, 

Hence, we need to estimate the L 2 norm of <<1>,<p>. For this notice that: 

1) <1> does not belong to any LP space since 1<1>1- 1 is in L 6. 

2) It is easy to construct a <1> in L 21,IOC which is not bounded at all and with good 

enough behavior at large distances to guaran_finite energy. Therefore we cannot 

factor <1> out of the integral and try to control some norm of <p only. 

3) Although we can prove that the limits at infinity of <1> exist for almost any radial 

direction, see chapter C, they are not achieved in a uniform way. We therefore cannot 

attempt to integrate <<1>,<p> separately over a compact and a non-compact region 

using Sobolev inequalities for the compact and an essential bound for the non­

compact region. 

We are then forced to try and control the L2 norm of <<1>,<p> directly. This we do as 

follows: 

INotice that even in this simple instance the "naturality conditions", as in [ Oi ] for example. are not 

satisfied. 
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J 1< cI>,<p > I 2 ~ J I cI> I 21 <p I 2 S J (I cI> I 2 - 1)1 <p I 2 + J I <p I 2 ~ 
1R3 1R3 1R3 1R3 

~ 1I1cI>1
2 

- 111211 <p 1142 + II <p II 22 (B3.1) 

The factthat 1I1cI>12 - 1 II 2 is finite follows from the finite energy condition. It is the 

third term in the Lagrangian. We then need to know that the L 2 and the L 4 norm of <p 

are finite and controlled by the norm in the tangent space at c. 

Suppose that we choose the tangent space (so far as the Higgs part is concerned) to be 

the completion of compactly supported, smooth sections with respect to the following 

norm: 

II V A <p II 2 + II <p II 2 (B3.2) 
6 

Then, according to Lemma B2.2. q> lies in L . By Holder's inequality and since q> is in 

L2 ... L4 
• It IS m , too: 

B4. A heuristic swproach: the mysterious nOrm 6Q.., 

The norm must also be chosen so that the following is also true: given (a,q» in some 

Banach space yet to be specified, try to solve for g the equation 

D A *( g(A + a) - A) + [cI>, [cI> • g(cI> + <p) - cI> 1 = o. 

Linearize by considering g of the form g = exp~ to get the approximating equation 

D A *D A ~ + [<1>. [ cI> • ~ ] ] = D A * a + [ cI> • <p ] (B4.1) 
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which we should solve for ~. 

The first step is to ask for the right-hand-side of the equation to be in L 2. This is a 

natural thing to do and leads to considering the Banach spaces of the completions of 

compactly supported, smooth objects with respect to the norm: 

Notice that the flrst and the last term in the norm gives the L 2 condition. In fact, this 

is the norm considered by Taubes since his early papers, as the natural norm 

associated to the configuration (A,<I», see in particular [ T5 ]. It measures, in an L 2 

way, the action of a finite energy pair (A,<I» on the sections of the associated bundles. 

However, our considerations in the previous section for controlling the interaction 

term in the Lagrangian, lead us to the norm 

Notice that we can bound the norm n [<I>,cpl II 2 in exactly the same way as we did for 

the II <<I>,<p> 112 term in (B3.t). For that use that 

I <<I>,<I» I 2 + I [<I>,cpl 12 = I <I> I 21 cp I 2, 

hence 

I [<I>,cpl I 2 s I <I> 121 cp 12. 

It is natural to assume that ~ lies in a similar space, for example the completion H A of 

compactly supported, smooth objects with respect to the norm 2 

II ~ II HA = (II V A ~ 1122 + n [<I>,~ ] 1122) 1/2. 

According to Lemma B2.2, II ~ II 6 is finite when ~ is in H A . 

A way to solve the linearized equation then is to view it as variational equation and 

try to minimize the functional 

2It turns out that this is a naive choice. This nonn will be improved on the way. 
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where q is in L 2 and ~ in H A. To minimize the functional we should at least ask that 

it is coercive on H A. One is then lel1l to ask that q is in L6/5, since we have by 

Holder's inequality that 

-I < ~,q > S II q "6/511 ~ II 6 . 

We are then forced to ask that the pairs (a,cp) are such that q = D A * a + [ <l> , cp] is in 

L 6/5. It is a matter of an easy calculation to see that it is enough to ask that <l>·D A * a 

is in L 6/5. 

Putting together the discussion of this section and the estimates of the previous one, 

the problem now is: 

Find for each configuration (A',<l>,) close to (A,<l» a gauge transformation g such that 

(a,cp) = g·(A',<l>') - (A,<l» lies in the completion of compactly supported smooth 

sections with respect to the norm: 

It is clearly a norm on compactly supported objects: By Kato's inequality and because 

of the first two terms in the norm the derivatives of the lengths have L 2 norm zero, 

hence they are zero, hence the lengths are constant. Being compactly supported)te'-
i c;le-nH(Q.U If • 

. . . .. zero. We denote the correspondmg completion by Y c. 

B5. The maLlpin~ from C to CR& 

As we shall see in Chapter C, given a finite energy pair (A,<l» the Higgs field <l> 

approaches the vacuum orbit at large distances from the origin. One of the main 

difficulties in handling a finite energy configuration is that <l> does not approach its 

asymptotic value uniformly. However, if the extra assumption 
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V A V A <l> E L2(1R3) 

is satisfied it implies that I <l> I - 1 is in L 61 (IR 3). 

Indeed, since 1 V A <l> 1 E L 2 using Lemma B2.3 there exists a constant M such that 

I <1> I - MEL 6. For the SU(2) case' and the standard potential of section B3 the 

constant M cannot be anything else but 1, as we have already argued. On the other 

hand, V A V A <l> E L 2 gives that there exists a constant M' such that 1 V A <l> 1 - M' is in 

L 6. Since V A <l> E L 2 the constant M' has to be 0 and I V A <l> 1 E L6. By the pointwise 

Kato's inequality dl <l> 1 = d(1 <l> 1-1)e L 6. Hence 1 <l> 1- 1 E L 61, Now it is well known 

that if a function is in LP 1 (IRn) for p > n then the function decays uniformly to zero. 

Therefore, in CR we have that 1 <l> 1 tends uniformly to 1. 

This leads us to consider, as in [T3 ] and [F ], the "regularized space" 

On it we consider the topology inherited by the topology on C intersected with the 

topology that renders continuous the mapping 

CR-L
2; (A,<l»1- V A V A <l>. 

The main point of this section is to show how to go from C to CR by adding an L2 

term to the Higgs field <1>. This L 2 condition is not only natural, since a JI <p I 2 term 

appears in the linearization of the potential term, but also necessary for the 

construction we are proposing, see sections B6 and B7. More specifically, we are 

proving the following: 

PROPOSITION 85.1: There exists a canonically defined continuous mapping 

C-CR ; (A,<l»1- (A,<l>R) 

with the property: <l>R - <l> e L 2. 

The proof of the proposition occupies the rest of this section. Notice that the mapping 
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does not influence the connection part of the configuration at all. Several equally . 
natural mappings from C to CR have been described in [ T3 ] but none of them serves 

us here: the L 2 condition has to be satisfied so that J V(<l>R) is finite. 

To achieve this, first consider the completion of the smooth, compactly supported 

sections of the adjoint bundle with respect to the nonn: 

On this space, which it is natural to call L 21 (A), consider the functional 

J < V A <l>,V A cP> + ~ f < V A cpS A cP> + ~ f < cp.cp> • 
1R3 1R3 1R3 

On L 21 (A) the functional has the following properties: 

1) It is coercive: 

1 2 2 f 1 2 4 11 V A cP 112 + II V A <l> II 2 + < V A <l>, V A cP> = III V A cP + V A <l> II 2 ~ 0 
1R3 

gives by adding 1/411 V A cP 1122 on both sides 

and 

which is a coercivity relation. 

2) The functional is continuous: 

;IIVACPI1 22+ f < VA<'P,VACP> + f'
cp, 2 S 

1R3 1R3 
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3) Consisting purely of linear and quadratic terms, the functional is strictly convex. 

4) Being convex and continuous, it is lower semicontinuous. 

The above four properties are enough. see [ 1-T 1. to guarant~that the functional 

attains a unique minimum on L 21 (A) which we call cp c. Then cp c satisfies the 

corresponding Euler Lagrange equation: 

2 
- VA (<1>+ cpc) + cpc = O. (B5.1) 

This follows from an easy differentiation. Our conventions are such that 

2 * -VA =VA VA· 

We want to prove that equation (BJ.1) is enough to deduce that V A V A (<1> + cpc) lies 

in L 2 and hence that (A,<1> + <p c) lies in CR. Notice that <1> + <Pc itself does not lie in 

any L 2 space since <1> does not. recall that I <t> I - 1 is in L 2. However, we can go 

round this problem using some of the standard techniques of the theory as developed 

by Taubes, c.f. [ 02 ]: 

Use the completion V A of smooth, compactly supported sections with respect to the 

norm 

LEMMA 85.2: There exists a canonically defined <1>' with <I> - <1>' in VA and such 

that -VA 
2 

<p' = 0, II <1>' n 00 < 00 and V A V A <P' in L 2. 

Proof: With <t> in L 21 ,loe and V A <P in L 
2

, consider on H A the functional 

fl V A (<I>+cp) 12 . 
1R3 

Once again, it is easy to see that it is continuous, strictly convex (and as such weakly 
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lower semicontinuous) and coercive on VA' Therefore there exists a unique 

minimizer CPo in H A' It solves the corresponding Euler-Lagrange equation which is 

easily calculated to be: 

V A *V A (<1>+CPO) = 0 • 

Set cl>' = <l>+cp. Then it is easy to see that <1>' satisfies the rest of the conditions, see 

[ 02 ]. The point is that one can use the maximum principle here, whereas one cannot 

for (B5.1). 

Note that by Lemma B2.2 and since cl> - cl>' = CPo in V A' we have that 1 <1> - cl>'1 is in 

L 6. Adding a trivial term to equation (B5:1) gives: 

-VA 2(cl> - cl>' + cpc) + CPc = 0 

with <1> - <1>' in L 6 and cp c in L 21 (A). For the rest of the argument we shall be studying 

the local behavior of this equation. 

Choose a ball of fixed radius R around a point xo' We wish to apply the following 

standard result, see [ G-T ]: 

THEOREM B5.3: Let u be a positive function over a domain 0 in 1R3, subsolution 

of 

~u~g 

with gin L q/2(O), q> 3 and u in L 21 (0). Then for any ball B2R (xo) contained in n 
and any p > 1 we have that: 

where the constant C depends only on the radius R, the values of p and q and a = 1 -

- 3/q. 

Notice that we cannot apply Theorem B5.3 directly to 1 <l>+<p 12 - 1 since it does not 

have a sign. We can however apply it for u = 1 <1> - <1>' + cp c 12. Indeed, we have: 
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1) 1<1>- <1>' + <P c 12 is in L 2(n) for any bound~d domain n since on such an n: 

III <1> - <1>' + <Pc I 2112 = II <1> - <1>' + <Pc 114 2 ~ C II <1> - <1>' + <Pc 116
2 

and both <1> - <1>' and <Pc are in L 6. 

2) VI <I> - <1>' + <P c I 2 is in L 2: For that, use that 

VI <I> - <1>' + <Pc 12 = 2 <VA (<I> - <1>' + <pc)' <I> - <1>' + <Pc > • 

Setting 'I' = <1> - <1>' + <Pc' we have by Holder's inequality (1 = 1/3 +2/3) 

f I <V A '1','1'> 12 ~ (f I V A '1'121'1'12) ~ II V A'P 113 11 'I' 11 6 , 

As remarked above, 'I' is in L 6. To see that V A 'I' is in L 3 we need the following 

lemma, which is mentioned in [ 02 ]: 

LEMMA 85.4: Let Z be in L 21oc ' A and 'I' in L 21 ,loc and such that V A 2'1' = Z. 

Then 'I' is in LP 1,loc with 2 ~ p ~ 6. 

We prove this at the end of this section. 

Now (2) follows: according to the Lemma and since 'I' is in L 21,loc' I V'I' I is in L3. 

To see that I V A'I' I is in L3 use that A and 'I' are in L 610c and hence 

II [ A, 'I' ] " 3 ~ " A II 611 'I' II 6 • 

We can now apply Theorem B5.3 to the following relation: 

fll <I> - <1>' + cp c 12 = 2< V A 2(<1> - <1>' + <pc)' <I> - <1>' + <Pc > + 21 VA (<I> - <1>' + <pc) I 2 

~ 2< V A 2(<1> - <1>' + <pc)' <1> - <1>' + <Pc > 

= 2 < <Pc' <1> - <1>' + <Pc >. 

As for the right -hand-side of the inequality, we estimate: 

n < <Pc' <1> - <1>' +<Pc > U 2,loc ~ n <Pc n 4.1oc n <I> - <1>' +<Pc 11 4,loc 

~ II <Pc "4,loc II <I> - <1>' +<Pc 11 6,loc 

~ II <Pc n 411 <1> - <1>' +q> c II 6 • 

We have seen above why <1> - <1>' +<p c is in L 6. Concerning <Pc' recall that it is in 

L 21 (A), hence in L 6 and in L 2. By Holder's inequality it is in L 4. Applying Theorem 
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B5.3 then, we get: 

sup I 'I'(x) I 2 S; C (111'1'1
2

11 2,loc + U cp II 4 11 'I'll 6) 

S; C (11'1'11 6 + II cp II 4 11 'I'll 6) . 

Now repeat this for any point in IR 3 and for the fixed ball of radius R around it. Since 

the constant C in Theorem B5.3 depends only on the radius and not on the particular 

point, we have the above estimate for any point in [R3. Since <1>' is bounded by 

construction, we have that <1> + cp c is bounded. 

Finally we can apply the inequality 

(see [J-T] and [01] for a complete proof) to deduce that V A V A (<l>+cp) is in L 2. 

The argument will be complete once we have proved Lemma B5.4. For this we need 

the following: 

THEOREM 85.5: ([ Mo ], 5.5.3): Let n be a domain and D with closure in n. Let f 

be in LP' (0) with p' = 3q'/( 3+q' ) and u in L q 1 (0). Further assume that u is a weak 

solution of 

AU+da(bau)+cadau+f= 0 

with coefficients satisfying the H 1 q and H 1 q' conditions (see below). Then u is in 
, 

L q 1 (0) where p' = 3q'/( 3+q') . 

According to Morrey (see parts (i) and (iii) of definition 5.5.2 in his book), the 

coefficients b a and c a satisfy condition HI q in a domain r 

(i) for 3/2 < q < 3: if they are measurable and they lie in L3(D 

(iii) for q > 3: if b a lies in L q and ca lies in L3. 

In our case, the diagonal system 
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-VA 2( ct> - ct>' + cp c ) + cp c = 0 

gives rise to three equations with coefficients coming from A and therefore in 

L 21,loc(1R
3

): 

L\u + ai(A) u + (A)aiu + (A)(A)u = v, 

where (A) denotes various combinations of components of A and u now is a 

component of ct> - ct>' + cp c' 

Then in a bounded domain r the coefficients are certainly in L 3(r), in fact in all 

LP (r) for 2 < P < 6. Then conditions H 1 q and H 1 q' are satisfied for q = 2 and q' = 6. 

In fact the rest of the conditions of the theorem are satisfied since the components u 

lie in L 21, We can then conclude that <I> - <I>' + CPc lies in L 61,IOC and therefore in 

LP 1 ,loc for 2 S P S 6, as claimed. 

This competes the construction of the mapping from C to CR' It is clear that (A,<I>R) 

still has finite energy. To prove the continuity of the mapping one follows [ T3 ], 

proposition B3.2, Lemma B3.7 and Corollary B3.5. The L2 norms of the Lie brackets 

there should be replaced by the L 2 norms of CPc' It is here that the topology on C and 

CR becomes important 

It should be emphasized that the continuity of all the mappings involved in the 

construction is crucial. Its role becomes clear when we try to prove the global 

effectiveness of the slice, see below. 

B6. The correct ~au~e in C RA 

It is here that all the work we did to bring our configurations to CR is justified. In the 

space CR we have the following: 

LEMMA B 6.1. (A. Floer): For each ct>R in CR there exists a neighborhood U R of 

<I>R such that for all ct>' R in U R there exists a gauge transformation g(ct>' R) such that 
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at large distances cI> and g(cI>')cI>' are parallel: 

Furthermore, the mapping 

is continuous with g(cI>R) = id. 

UR-G; 

cI>' R'- g(cI>' R) 

(B6.1) 

Notice that without uniform convergence to a non-zero constant at infinity we would 

be in trouble trying t<? explain what we mean be parallel directions. The fact that we 

are working in CR is crucial in one more way. The defining condition V A V A cI>R e 

L 2 together with the condition cI> R e L 21,lOC give that cI> R is in L 22,lOC and therefore 

continuous, by the Sobolev embedding 

LP k C. C j , k > j + nIp. 

This is used to construct an L 2 2,loc gauge transformation for each cI>' R with the 

properties of the lemma.3 It is also the reason why we put so much effort in proving 

that in our case cI>R = cI> + cp c is in CR' 

Recall that our main aim is to find a gauge so that everything lies in Y c' To that end, 

we need to observe that gcI>R' - <l>R follows the rate of decay of I cI>' I-I cI> I: 

LEMMA B6.2: For g as above and for cI>' in the same neighborhood as above, 

g(cI>')cI>' - <l> is in L2. 

Proof: Rewrite the defining relation (B6.1) of g(cI>'R) as 

-g(cI>' R) cI>' R - 1 4>' RI (<lR) - 0 . 

Here - indicates the field divided by its length, a new field of unit length.By adding 

-and subtracting 14>1 (<lR) : 

3In fact the gauge transformations of the lemma are constructed in two steps. The first is a local 

geometric construction where the continuity of the fields is used. This step heavily relies on the fact 

that we work in the Lie Algebra of SU(2). The second one, a correction to make the gauge 

transformations globally defined, does not influence the propeny described in the lemma. 
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or 

(B6.2) 

-Now (~) is bounded by the way it is defined (it is identically 1 far away and it can 

be bumped out near the origin). Whereas 

I <1>' R I - I <1> R I = I <1>' + cp c' I - I <1> + cp c I 

where cp c and cp c' come from the minimization recipe we described in the previous 

section. Since 

I <1>' + cp c' I - I <1> + cp ciS I <1>' I + I cp c' I - I <1> 1+ I cp c I = (I <1>' I - I <1> I ) + I cp' I + I cp I . 

Now notice that by definition cp c and cp c' are in L 2. <I> and <1>' are in the configuration 

space C and hence have finite energy: 

f ( I <1> 12 - 1 ) 2 = f ( I <1> 1- 1 ) 2( I <1> I + 1 ) 2 ';?f ( I <1> I - 1 ) 2, 

which proves that I <1> 1- 1 and similarly 1<1>'1- 1 are in L 2. Therefore I <1>' I-I <1> I is in 

L2 and hence g(<1>')<1>' - <1> is in L 2, by (B6.2). 

We have then achieved the first step towards bringing everything in Y c: the one but 

last term of the norm works in this gauge. 

As for the rest of the terms in the norm, one checks that V A (g(<1>')<1>' - <1» E L 2 

directly, as in FIoer. Finally we need an extra gauge transformation to bring the 

remaining terms in the appropriate norm. This transformation is of the form 

exp(f(<I>Rj) and therefore does not influence at all the Higgs part of the construction 

up to now. 

B7: Back to the configuration space C. 

What we have proved so far is that in CR we can transform any <1>' R in a 

neighborhoodof<1>R so thatg(<1>'R)'<1>'R - <1>R lies in Y c' We can now go back to the 

configuration space C and check that this is' still true if we use the gauge 
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transfonnations described by the mapping 

Uc-G 

c~ cR~ g(cR)· 

Once again, we check this for the II <p II 2 part of the Y c nonn and refer to Floer for the 

remaining parts. We have 

g(<1>' R) <1>' R - <1>R = g(<1>R') (<1>'+ <pc,)- (<1> + <P c) e L 2 

or 

g(<1>')<1>' - <l> + g(<1>,)cpc' e L 2. 

Finally notice that since g(<1>') is unitary I g(<1>')<pc,1 = I <p c,l and since <Pc' is in L 2 we 

get that g(<1>')<1>' - <1> is in L 2, as desired. 

Remark: It looks as if we simply used the <p's to go from C to CR and back again. 

The point is that we had to go to CR to construct the gauge transfonnation there in the 

class of the gauge transfonnations we have used in the theory. 

B8: Answering Problem 2: Solving the slice equation. 

What we have achieved is a Banach model in the configuration space, up to gauge 

transfonnations. That was Problem 1. In this model, we must solve the slice equation 

up to a gauge, that is we must find for each (A',<1>') a gauge transfonnation g with 

V A "'(gA' - A,<1» + [ <1>, g'<1>' - <1> ] .. O. 

As we have already argued in the Yang-Mills case, this is done by considering the 

mapping 

(g, (A',<1>'»~ VA'" (gA' - A,<l» + [<1>, g.<1>' - <1>] (B7.1) 

for g in a neighborhood of the identity and ( A',<1>' ) close to ( A,<1> ) in Y c' To apply 

the Implicit Function Theorem we need to make a good choice of gauge 

transfonnations. At this point recall the heuristic discussion of section B4 and 
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introduce the following spaces:4 

Define Zc to be the completion of the compactly supported, smooth sections of Ad(P) 

with respect to the norm: 

II ~ II Z = II ~ II 2 + ~ < <1>,~ > II 6/5 . 
c 

Define Xc to be the completion of the compactly supported, smooth sections of Ad(P) 

bundle with respect to the norm: 

II ~ II Xc = II V A V A ~ 112 + II [<1> ,~] 112 + II V A ~ 112 + n <1>. V A 2~ 11 6/ 5 . 

There is no mystery in choosing these nonns. One has to understand only the choice 

of the Zc -norm, and that we have explained in section B4. The rest are of the nonns 

are chosen so that the following mappings are continuous. They naturally appear 

when one tries to apply the Implicit Function Theorem: 

LEMMA B7.1: (i) The linearization of the gauge action mapping: 

~I-- VA ~ + [ <I> • ~ ] 

is continuous as a mapping from Xc to Y c. 

(ii) The adjoint of the linearization mapping, the slice operator 

(a,cp)1-- V A *a + [<I>. cp] 

is continuous as a mapping from Y c to Z c' 

(iii) Finally, the composition of the two mappings, the Laplacian of the system 

~I-- V A 2~ + [<1>. [<1>. ~]] 
is continuous as a mapping from Xc to Z c. 

Proof: 

(i) n ( V A ~ , [ <I> • ~ ] )11 Y c = = II V A V A ~ n 2 +II [ <I> • V A ~ ] n 2 

+ H[ <I> , ~] 112 + II V A[ <1>, ~ 1ft 2 + UV A·V A ~ D 6/5 

The ftrst, third and last tenn are included in the Xc nonn and hence are naturally 

4These norm spaces where first introduced in Floer's preprinlS. Here we have modified some of the 

terms and the proofs to suit the case of the full Lagrangian. 
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bounded by it. For the second term notice that as in (B3.1), 

II [<Il, V A;] 1122 ~ II (1<Il1- 1)21"1 A ;1 2 11 1 + II V A; U 22 

~ II (1<Il1 - 1)11 211 V A ~II 42 + II V A ~ II 2
2 

. 

Again, the fact that (A,<Il) is a pair with finite energy gives II (1<Il1- 1)11 2 finite. At the 

same time, by Sobolev's inequality 

IIvA~1I6~nvA"1A;1I2 

since ~ is in the completion of compactly supported objects. This, together with the 

fact that II V A ~ n 2 is finite bounds II V A ~1I4' 

As for the fourth tenn, use that 

But 

II [ V A <Il , ~ ] II 2~ II ~ II 00 n V A <I> II 2' 

Again, recall that II V A <Il II 2 is finite since the energy of the configuration is finite. 

That; is bounded follows from the fact that both V A; and V A V A; are in L 2 and 

hence ~ is continuous and in L 61, 

(ii) Obvious, by the definitions of the norms. 

use that 

and that 

II[ <I>, [<I>, <p llU
2
2 = n I <I> 121[ <I> , ~ JJ 12111 

~ II ( I <I> 1 -1 )1 2 [ <I> , ~ ] ] I 2111 + n [ <Il , ; ] ] I 1122. 

Once again, we need to know that n [ <Il , ; ] ] a 4 is finite. But we have just shown 

above how to control the U"1 A[ <1>,;] n 2 by the Xc norm. This gives (<1>,~ ] in L 6 and by 

the familiar argument in L 4. 
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Of course the most important property of the above spaces is the behaviour of the 

derivative of the mapping (B7.1) with respect to g , which is given by the operator 

2 2 VA +ad <1>. 

For this we have the following all-important 

THEOREM B7.2: (A. Floer). For any connection V with square integrable 

curvature, the operator 

V 2+ ad2<I> 
A 

defines a linear homeomorphism from the space Xc to the space Zc' 

Proof: The proof is essentially the heuristic argument of section B4. Technically, 

although we have slightly changed the norm of Xc' we only have to repeat (and 

complete!) the arguments of the proof in [F]. 

Therefore, the mapping 

exp(Xc) )( Y c - Zc 

(exp(~), (a,q»)t-- V A *exp(~).a + [<1>, exp(~)q>] 

has non-singular derivative with respect to ~ at the point (e, 0). By the Implicit 

function Theorem, the slice equation can be solved. 

Recall however that a slice has to be globally effective, that is it has to intersect orbits 

only once (the restriction of the projection has to be one-to-one). To be able to prove 

this Floer finds that one has to use more gauge transformations than the exponentials 

of the space Xc' 

With hindsight, this was to be expected: First, we chose the slice using a formal L 2 

adjoint but had to use a completely different inner product on the tangent space in the 

sequel. Second, the gauge transformations coming from X decay to zero at infinity. c 

This is not true for all gauge transformations in L 2 2,loc and indicates that we have 

somehow ignored too many of the original gauge transformations. 
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The space Xc has to be complemented to Xc' = Xc E:B IR~ o· Here ~ 0 is a canonically 

defined element5 and X c' is exactly the space of L 22,loc gauge transformations 

with finite Xc norm. This naturally leads to complementing Zc to Zc' = Zc E:B IR and to 

considering the mapping 

Yc-Zc' 

(a,cp)1- ( VA *a+ [~,cp], < (a,cp), V A ~0+[~'~01 >c)· 

Therefore the Laplacian must also change into 

X '-Z' c c 

( ~,t )1- ( V A 2~ + ad 2<1>(~), « V A~' [ <1>, ~ 1), V A <I> 0+[ <1>,<1>01> c). 

The~rem B7.2 is still true for Xc and Zc replaced by Xc' and Zc' respectively. This 

gives a genuine slice and, by the obvious way, coordinates for the quotient space. One 

can check that the change of coordinates is differentiable. 

To summarize, the tangent space at a given equivalence class [(A,<1»l in the quotient 

space is given by: 

T[(A,<I»]C* /0* = {(a,cp) in Y c with V A *a + [<I>,cp ] - 0 and < (a,cp), V A <I> 0> c - O}. 

As a reward to this rather technical construction, we can differentiate the Yang­

Mills-Higgs functional and find that it has a continuous derivative at each point. 

Since we have already argued for the potential term, we check here the remaining 

terms: 

For (a,cp) in the tangent space at (A,~), 

SIn Floor's construction Cl> 0 can be used as Cl>R. In fact, it is crucial to realize that in Floor's 

construction Cl> serves two purposes: Provides the passing to the regularized space and completes the 
o 

tangent space to the orbit. In our case we have to use cl>R to reach the regularized space in an L 2 

manner. 
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d J 2 2 3 dtlO {IFA+tal +IV A+ta(<1>+tcp)I }d X= 

III 
= < FA' V A a> + < V A <1>, V A cp > + < V A <1>, [ a,<1> ] > , 

which can obviously be controlled by the Y c -norm with the help of Holder's 

inequality. 

As a final remark, we would like to underline the two points of this construction that 

are particular to the SU(2)-adjoint case (or SO(3)-adjoint): First, the gauge 

transformation of Lemma B6.1 uses the geometry of the Lie Algebra su(2), viewed as 

the Lie Algebra IR 3 with the standard skew product on it. Second, we have used more 

than once gauge transformations of the form exp(f<1», which automatically assumes 

that we are in the adjoint representation case. 
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C. FINITE ENERGY CONFIGURATIONS; THE GENERAL CASE. 

We present here some preliminary results concerning the asymptotics of finite energy 

fields. In particular, we are not assuming that the fields solve any equations. We are 

assuming the structure group G to be any compact Lie group, the small group H to be 

any subgroup of G and V to be any symmetry breaking Higgs potential. It turns out 

that much more can be said about the Higgs field Cl> than the gauge potential A. In the 

next chapter, where we specialize to solutions for G = SU(2) and H = U(1), we can 

deal with the asymptotics of A using known estimates for FA' 

By configuration we mean a pair (A,Cl» with both members of the pair in the 

corresponding L
2
1,loe spaces and such that the energy is finite. We use spherical 

coordinates (r,e,q» with 0 S r, 0 S es 7t, 0 S q> S 27t on 1R3 so that 

Xl = r sine cosq>, x2 = r sine sinq>, x3 = r cose. 

Then the volume element on IR 3 is 

r2 sine dr de dq> 

and the metric is 

ds2 = dr2 + r2de2 + r2sine dq>2. 

Therefore an orthonormal basis for the cotangent space at a point is given by 

{dr, r de, r sine dq>}. 

We write dO for the volume element of the unit sphere, dn = sine de dcp. 

LEMMA Cl: If Cl> is in L 21,loe then Cl> is continuous in almost any radial direction. 1 

Proof: Since Cl> is in L 21,loe ,Cl> is in L21 on the annulus {x: IS Ixl S Rn} 'for Rn>1. 

Therefore, in spherical coordinates we have that 

~ 

J J r 2( , ~ ,2 + , d~ ,2) dr dn 

S2 1 

lWe acknowledge inspiration from [S-Y J. 

65 



is finite. This means that in almost any radial direction the integral 

and since r ~ 1 the integral 

~ 

J r 2( 1 cI> 12 + 1 dcI> 12) dr 

1 

~ 

J (I cI> 1 2 + 1 dcI> 1 2) dr 

1 

is finite, too. Hence cI> is in L 21 in almost any radial direction within the annulus. By 

Sobolev's Embedding Theorem for dimension 1, cI> is continuous in each such 

direction. Taking an increasing sequence of Rn's so as to cover the whole of 1R3 and 

forgetting each time a set of measure zero, we end up with almost all radial directions 

on each of which cI> is continuous. 

One of the major technical problems when dealing with the coupling term d A cI> of the 

Lagrangian is that it involves both the cI> and the A field and therefore in general gives 

information for none of them unless something is known about one of them. This 

difficulty can be avoided for the radial components when working in the radial gauge, 

which is characterized by the condition l:xiAi = 0 or, in terms of the spherical 

coordinates of the connection fonn, Ar = O. For the existence of such gauges see the 

next section. We use such a gauge in the following: 

PROPOSITION C2: Let (A,cI» be a finite energy configuration (not necessarily a 

solution). Then in a radial gauge cI> achieves a limit in almost any radial direction. 

Proof: The finite energy condition means that n dA cI> 112 is finite. Written out in a 

radial gauge this gives 

00 

f f {r 21 ar <I> 12+ 1 ae<l> + [Ae,<I>1I 2 + sine-21 a <p <I> + [A<p,<l>] 12 } dr dO < co • 

S20 
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Then for almost any radial direction 

00 

is finite. 

Pick a generic radial direction ( ., roo) in 1R3 for which this integral is finite and the 

previous lemma is true and two points (Rl , roo) and (R2' roo) with Rl < R2. On such a 

direction, using Holder's inequality and the continuity of <1>, we have 

R2 

I <1>(Rl , roo) - <l>(R2, roo) I ~ f I dr<l>(r, roo) I dr 
Rl 

R2 R2 

~( f 12dr ) 1/2( f r2 Id
r
<1>(r,ro

o
)12 dr) 1/2 

Rtr Rl 

Therefore, for each such radial direction the Higgs field has a limit as the distance from 

the origin tends to infinity. 

Notice that the constant M in the proof of the Proposition depends on the direction and 

hence the estimate is not unifonn. 

Let <l> co ( ro ) denote the limit on the radial direction (r, (0) ofthe Higgs field <1> as r tends 

to infinity whenever this limit exists. Exploiting the finite energy condition through the 

third term in the Lagrangian gives that 

Therefore 

00 

f f r 2sin9 V ( <1> ( r,ro ) ) dr dro < 00 • 

S20 
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co 

is finite for almost any radial direction co. 

Since cD (r, co) has a limit as r tends to infinity and V is at least continuous, V(cl>(r,co» 

must go to zero as r tends to infinity, for the last integral to be finite. But V achieves the 

value 0 only on the vacuum orbit, therefore cD 00 defines a map 

cD 00: S2 - G/H. 

Such a map defines a reduction of any trivial G-bundle over S2 to an H-subbundle in 

the following way: 

It is well known that reductions of a G-bundle P to H-subbundles are in one to one 

correspondence with sections of the associated bundle 

Q= PXGG/H~P/H. 

Here G acts on the quotient space by left multiplication, see [ K-N J. In our case P is 

trivial and hence isomorphic to S2 x G. Using this identification, the bundle Q is 

isomorphic to S2 x G/H via the following isomorphism: 

[ ( co,g ) , g'H ] t--- ( CO , gg'H ) . 

It is then clear that a map like <I> 00 defines a section of S2 x G/H, hence a section of Q 

and therefore a reduction ofP to an H-bundle. 

We have deliberately avoided any adjectives like smooth, continuous and the similar. 

As we are going to prove in the next section, cD 00 is continuous when dealing with 

solutions and therefore the reduction will be within the known framework. We just 

mention here that measurable reductions of bundles have been studied, see [ Z ]. This 

kind of analysis together with the methods of [ U 2 ] for Sobolev connections should 

give a way of defining a magnetic charge in the general setting as a generalized 

characteristic class of some measurable reduction. 

Notice that by lemma B2.2, there exists a constant M(<I» such that I <I> I-M(cl»eL 6. 

Since we prove that <I> tends to the vacuum as I x I tends to infinity we have that 
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M(<1» = I <1>0 I , 

for <1>0 any point on the vacuum orbit. That is, the asymptotics for the case with a 

potential tenn in the Lagrangian have more rigidity than the Prasad-Sommerfield limit. 
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D. G-SU(2)' ADJOINT REPRESENTATION: mE ASYMPTOTIC BEHAVIOUR 

OF A FINITE ENERGY SOLUTION. 

DO. Introduction. 

We give a detailed proof of a fact long conjectured by physicists, see [G-N-O 1, and 

often referred to, see [ H - R 1 ] and [ H - R 3 ]: 

Given any finite energy solution (A,<l» of the Yang-Mills-Higgs equations on 1R3, A 

becomes a pure U(t)-Yang-Mills connection at the "sphere at infinity " . 
. 

For a physicist this means that at large scales compared to the atom all that is left from a 

non-abelian t'Hooft-Polyakov monopole is an abelian Dirac monopole. This was one 

of the main reasons for introducing the theory. after all. 

Now it is well known that the holonomy of a Yang-Mills field on the sphere is either 

IR or U(1), see [A-B ] and [F-H]. Starting with a compact gauge group immediately 

excludes IR. On the other hand a connection always reduces to its holonomy bundle. 

The conjecture then is that any finite energy monopole becomes a pure Yang-Mills 

field at infinity. (In the case we study here, G=SU(2). H=(t). The above complication 

is not apparent since we prove directly that the limit is a U(t)-Yang-Mills field.) 

Notice that although <l> does not appear in the final statement, it influences A through 

, the coupling tenn d A <l> in the Lagrangian. 

A number of points should be emphasized: 

Of course, the first thing one has to make sense of is what exactly is meant by "sphere 

at infinity". Since 1R3\{0} is S2)«0,00) only topologically but not metrically, some care 

has to be taken. In fact, we have found this point to be a major step in the proof. 

The idea is that the "sphere at infinity" should be interpreted as a family of 

configurations on the fixed unit sphere S2 in 1R3 with its standard Riemannian metric. 

This family is parametrized by r, the distance from the origin in 1R3. The limits at 

infinity are nothing but the limits of the family as the parameter tends to infinity. This 

does not influence the calculations for the Higgs field at all, since we deal with limits of 
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functions. It does however clarify the form part of the configuration, where the 

Riemannian structure comes to the fore. 

Recall that in the adjoint-SU(2) case a monopole solves the equations 

d A *F A = [V A <1>, <I> ] 

A 2 
VA *V A <I> = '2 (I <I> 1 - 1)<1> • 

Morally speaking then, if V A <I> decays to zero the first equation should give the Yang­

Mills equation: 

V A*FA = O. 

It is this observation one has to make sense of. For this, we have found that the 

Sobolev spaces of fields over S2 are the appropriate setting: although one starts with 

solutions, therefore smooth objects, some differentiability is lost by passing to the limit. 

Such a limit can be realized only in a Sobolev space. 

Having realized these two points, the rest of the proof relies on Taubes' estimates in 

[T 1 ], Uhlenbeck's Weak Compactness theorem, see [Ul ], and a formula by Taubes as 

it appears here2• The rest consists of analytic pleasantries. 

Finally, viewing the problem as the behaviour of solutions to a system of partial 

differential equations, with the finite energy condition replacing boundary values, we 

see that monopoles behave quite differently than harmonic functions, see [ A-S ]. 

However, for the Bogomol'nyi case with hyperbolic metric the conjecture is no longer 

true, see [ B-A ]. 

Throughout this chapter, G=SU(2), V(<J)) = A/2d <I> 12 - 1 )2 and the representation is 

the adjoint one. The method we present here also applies to any solution in the Prasad­

Somerfield limit A=O, see below. (A,<%» will always be a solution configuration. 

D 1. Taubes' estimates. 

In [T 1] and [J - T] Taubes proves the following for the adjoint-SUe 2 ) case: 

2Taubes' formula proves the conjecture in an asymptotic manner. We Jearned of it towards the end 

of our study on the problem. 
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THEOREM Dt.t: Let (A,<l» be a smooth finite energy solution of the Yang-Mills­

Higgs equations. Then we have the following a priori estimates: 

Coupling term estimate: there exists a positive constant m and for any positive e there 

exists a positive real number M(e) such that: 

IdA <l> I(x) ~ M(e) e-(1-e)mI x I 

and 

Higgs field estimate: 

o ~ 1 -1<l>1 ~ M(e) e-(l-e)mI x I. 

Curvature estimate: there exists a constant M such that for x with Ixl sufficiently large 

I FA I(x) ~ M ( 1 + 1 x 12 rt . 
In particular, we have for the transverse to <l> components: 

1 [F A,<l> ] 1 ~ M(e)e -(1-e)1 x I. 

Comments on the proof: The proof occupies almost the whole of chapter 4 in [J­

T ] and the estimates for the coupling term and the curvature term appear as Theorem 

10.2. In fact, this Theorem is the answer to the problem of the masses as we discussed 

it in the introduction. Here the relevant decomposition to massless and massive 

components is given by the projections of the fields onto <l> (long ituil components) and 

the components orthogonal to <l> (transverse components) respectively. This is best 

described by the following decomposition in su(2) with respect to any unit vector 11 of 

any vector ~: 

~ = < ~,11 > 11 + [ 11, [ 11. ~ ] ]. 

In our case, 11 is the Higgs field <l> divided by its length. Notice that this makes sense in 

large distances thanks to the Higgs field estimate. 

Observe that in a radial gauge the exponential convergence of the lengths implies the 

exponential convergence of the fields themselves: 
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LEMMA D1.2: In a radial gauge <1> tends to its limit exponentially in any radial 

direction where it does have a limit 

Proof: Using the coupling tenn estimate we can write the inequality in the proof of 

PropositionQ in a stronger way: 

R2 R2 

1<1>( Rl' 0)0) - <1>(Rz, 0)0) I ~ f I 0r<1>(r, 0)0) I dr ~ f e -Mr dr. 
Rl R 1 

Letting ~ tend to infinity, 

1<1>(R 0) )-<1> (0) )I~M-fe-MRI l' 0 00 0 • 

D2. The limit of A at infinity. 

We start in a gauge where the configuration (A,<l» is smooth on 1R3. Such a gauge 

exists, see [ 1.-T. ], section V. Gauge transfonn to a radial gauge using a smooth gauge 

transfonnation, which we can obtain by solving the following ordinary differential 

equation for g(.,cp,e): 

g -f(r,cp,e) Ar(r,cp,e) g(r,cp,e) + g -f(r,cp,e) 0rS(r,cp,e) III 0, 

with some initial conditions. We are then in a gauge where A and <1> are smooth and 

A = L x.A. = O. r 1 1 

We shall now see how the connection part of the configuration behaves in this gauge. 

Let 

i
R

: s2 ~1R3 

be the family of embeddings that send the point (cp,e) of the sphere to (r,cp,e) in 1R3, 

U sing them to pull back the bundle P and the connection A we have the one parameter 

family iR *(P) of bundles over S2, all equivalent to the trivial one, each supplied with 

the connection i R * (A), Since we are in a radial gauge and we can write A over 1R3 as 

A(r,cp,S) = A<p(r,<p,S)d<p + As(r,<p,S)dS , 

on the sphere we have that 
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iR *(A)(cp,8) = Acp(R,cp,8)dcp + A8(R,cp,8)d8. 

From now on we write AR for i R * (A) when there is no confusion and 

AR = (AR)cp(cp,8)dcp + (AR)8(CP,8)d8. 

That is, we want to view the r-variable in 1R3 as a parameter for S2. We can start now 

seeing why there is a limit for the AR's as R tends to infinity: 

The respective curvatures FA on S2 are 
R 

F AR(CP,8) = Fcp8(R,cp,8) dCPAd8, 

where 

F A(r,cp,8) = Fcp8(r,cp,8) dCPAd8 + Fre(r,cp,8) drAde + Frcp(r,cp,8) drAdcp 

3 on IR . 

The Curvature estimate of Theorem D1 then gives that 

I Fcp8(r,cp,8) dCPAd8 I ~ M ( 1 + r 2 rt. 
An orthonormal basis for the cotangent space of 1R3 at the point (r,cp,8) is given by 

{dr, rsin8dcp, rd8}. 

Therefore, 

I r 2FI\ cp,e)1 = I r-2 sin8-t Fcp8(r,CP,e) (rsin8) dcpl\r de I 

~ M (1 +r 2 rt
, 

which gives that 

for all R. 

That is, the AR's are connections with uniform bounds on the curvature in the sense of 

Uhlenbeck, see [ U 1 ]. This provides us with an elegant, if somewhat sophisticated, 

way of finding the limit of {AR}. We know of no other way. 

The main result in [U 1 ] is: 

THEOREM D2.1: Let M be a compact manifold of dimension M and {An} a 

sequence of connections on a bundle P over M, in LP 1 (M) with 2p > n. If there exists a 

constant B such that 

74 



II FAn IILP ~B 

then there exists a subsequence {Ani} of {An} and a sequence {gni} of gauge 

transfonnations in LP 2(M) with the property: gnf Ani converges weakly to a 

connection A in LP 1 (M). 

It is part of the proof of the Theorem that A defines a connection on a bundle 

isomorphic to the original P. For p = 2n this is no longer the case, see [ Sed ]. 

In our case, we have that M = S2 and then n = 2. The family of connections is smooth 

and therefore each of them is in the LP 1 (S2) Sobolev space required by the theorem, for 

any p. To avoid any ambiguity concerning the limit connection we take the sequence on 

which to apply the theorem to be fAR} for all positive integers R. Then the AR'S live 

on bundles that are equivalent to the trivial one and the theorem applies with B = M. 

We call the weak limit connection Aoo. It lives on the trivial bundle over S2 and is in 

LP 1 (S2), forp > 1. Of course, we rename the subsequences to {AR} and {g R}' 

To make sure that we are still within the configuration space we have chosen, we want 

to realize the corresponding gauge in 1R3. Define g: 1R3 - G by: 

g(r,cp,9) = g R (cp,9) 

when r is in the strip 

(R -1) + R (R + 1) + R 
2 <r< 2 • 

If we taIce p = 2, each gR is L 
2

2 on the sphere and g is L 2 2 on the strips. Using a 

bump function identically 1 on the narrower strips 

4R - 1 4R+ 1 
4 <r< 4 

it is clear that we can join things together so that g is L 22,loc. The resulting 

configuration then on 1R3 is gauge equivalent to the original one via one of the gauge 

transfonnations of the theory. This is the gauge we wish to work in. 
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D3. The Finite Enert:;y Condition: Aoo Reduces. 

In this section we prove that the limit of the Higgs field in the final gauge is continuous 

and therefore defines a reduction to a U(l)-subbundle as explained in Chapter C. We 

also prove that the limit connection reduces to this subbundle. or. to use a piece of 

terminology from Physics. the Finite Energy Condition is satisfied. 

(It is well known that in a radial gauge <l> has a continuous limit at infinity. see [J-T] 

page 38. The problem here is that since the gauge transformations gR in LP 2 do not 

necessarily have a limit we cannot conclude immediately that the limit of <l> in the final 

gauge exists.) 

We claim that <l>R has a pointwise limit <l> 00 in the gauge where Aoo exists. To prove 

this. first notice that since I <l> I ~ 1. {<l>R1 is bounded in any LP(S2). for any p: 

II <l>R II p~ (vol(S2) ) lIP. 

This is true for any gauge. since 1 <l> I is a gauge invariant quantity. Now it is a standard 

fact that in a reflexive space bounded sets are weakly compact. Therefore. in any gauge 

<l>R has a subsequence that converges weakly in LP, for any p C! 2. 

We also have that AR converge weakly to Aoo in LP 1 for all p. By the RelIich­

Kondrachov Theorem. they converge strongly in L q for q C! 1, and therefore (up to 

subsequences) pointwise. In particular. AR is bounded in L q. q C! 1. 

Then [AR .<l>R ] is bounded in L q. too: using the elementary inequality 

1 [AR .<l>R ] 12 + 1 <AR .<l>R> 1 2 = 1 A 1 21 <l>R 12 

we see that 

1 [ AR .<l>R ] I ~ I AR II <l>R I ~ 1 AR I . 

Applying this for p = 2 we have that [AR ,<l>R ] converges weakly to a limit Boo in LP. 

(We shall prove in a while that this limit is independent ofp.) 

Now use the coupling tenn estimate of Theorem 1: the exponential decay of IdA <I> I on 
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1R3 means that I dAR <l>R I ~ 0 on S2, much faster 3 than R -to Hence dAR <l>R ~ 0 in 

any LP strongly. 

Then 

and 

[ AR ,<l>R ] ~ Boo weakly 

give that 

(D3.1) 

in LP, weakly. Notice that <l>R are differentiable since we started from a smooth gauge 

and transformed by LP 2' that is Ct if P > 2, transformations. This means that <l>R has a 

weak limit in LP t (S2). Let <l> 00 denote this limit. 

(Naive proof: For a smooth function f on the sphere we have that 

while 

which gives that 

f < <l> 00' d<p,9 f> = -I < (B00)<p,9 ,f > .) 

Since <l>R converges weakly in LP 1 for p ~ 2, it converges strongly in L q for q ~ 1. In 

particular, its weak limits in LP for P ~ 2 are its pointwise limit and the weak limit Boo 

of [AR, «l>R] is nothing but the pointwise limit [Aoo,<l> 00 ]. 

This has the following two consequences: 

First, the limit of the Higgs field in the final gauge is continuous: Taking P - 3 in 

equation (D3.t), for example, we have that <l> 00 lies in L3
1 and hence is continuous. 

Second, equation (03.1) shows that d<l> 00 is -[ Aoo ' <l> 00 ]. That is, we have the 

3This is similar to the way the global estimates on the 3-space give estimates for FR on the sphere. 

The only difference is that when dealing with l-forms we lose only one power of r. Therefore the 

argument is still valid for the Prasad-Sommerfield limit where we have that the coupling term on the 
-2 3-space decays like r ,see[]-T1. 
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Reduction (Finite Energy) Condition 

As an elementary instance of bootstrapping, notice that by Embedding Theorems again 

Aoo is continuous and since we just proved that <l> 00 is continuous we have that the 

derivatives of <1>00 are continuous, therefore <l> 00 is ct. Therefore the finite energy 

condition holds in a strong sense. Summarizing,we have the following: 

THEOREM D3.2: Every finite energy solution is gauge equivalent to a smooth 

solution (A,<I» with the following properties: 

a) The connections AR on the trivial bundle over S2 converge to a connection Aoo on 

the same bundle. The convergence is strong in LP(S2) and weak in LP (S2). In any 
1 

case Aoo is continuous. 

b) The Higgs fields converge pointwise to <1>00 and weakly in LP 1 (S2) and <1>00 is at 

least ct. 
c) A and <I> satisfy the Finite Energy Condition dA <I> = O. 

00 00 00 00 

Recall now the discussion on the reduction of the previous section. Since in the case we 

are studying the Higgs potential is given by V(<I» - ~ <I> 12 - 1) 2, the small group of 

the theory is U(l). Therefore, <l> 00 defines a reduction of the trivial bundle over S2 on 

which Aoo is defined, to a U(1) subbundle. The meaning of the finite energy condition 

is that Aoo reduces on this subbundle. That is, its restriction on the subbundle is a U(1) 

connection. (Recall from [ K-N ] that, given a section s of the associated bundle 

PxOO/H defining a reduction of the O-bundle P to an H-bundle S, a given 

connection A on P reduces to S if and only if s is parallel with respect to A.) 

We would like to remark here that the finite energy condition is a geometrical way of 

proving something that ought to be provable using analysis: Since Aoo reduces to a 

U(t) connection only the corresponding U(1) components of A on 1R3 survive and the 
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rest fade away. Referring back to our discussion on massive and massless components, 

one should be able to fonn appropriate equations that would give exponential decay to 

all the components but the ones corresponding to the U(1) subgroup. A considerable 

amount of effort has been made to this direction without any success until now. The 

major technical problem we have is that we do not know of any global gauge on 1R3 in 

which the Yang-Mills-Higgs equations are elliptic for A.4 Only local gauges are 

known to exist in which the extra condition d* A is satisfied. In fact, these are the 

gauges used by Uhlenbeck in her Weak Compactness Theorem. 

D4. A is Yang-Mills. 00 

We shall now show that the reduced connection is Yang-Mills. 

First recall that the curvature fonn for the connection induced by Aoo on the subbundle 

defined by the 4>00 section is given (up to a multiple of..J( -1) by 

<FA ,4>oo>+<[dA 4>oo,dA 4>ooJ,4>oo> , 
00 00 00 

see for example [ M J. The same fonnula appears also in [ S t J. By the finite energy 

condition we are left with 

< FA ,4>00 >. 
00 

This is the curvature of the reduced connection since by definition a connection that 

reduces equals its induced connection. To prove that on the abelian U(1) bundle this is 

the curvature of a Yang-Mills field we only need to know that 

where now * denotes the Hodge star operator on the 2-sphere. 

To see why this is true, one might suppose for the moment that d* < FA ,cl> 00 > can be 
00 

approximated by d* < FA ' cl>R > and calculate: 
R 

4 The well-known result for the impossibility of an existence of a global gauge, Gribov's 

ambiguity, refers to fields with asymptotic conditions that guaranty compactification. It is basically a 
result for the 4-dimensional sphere, see [ Si I. 
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d* < FA ,<I>R> = *d< *F A ,<l>R> 
R R 

= *<dA *F A ,<l>R> + *< *F A ,dA <I>R> 
R R R R 

= < *dA *F A ,<l>R> + < *F A ,*dA <I>R>' 
R R R R 

The exponential decay of IdA <l> I on 1R3 means that we have only the term 

< *d A *F A ,<l>R> to worry about. Using *E to denote the Hodge star operator on 
R R 

1R3, we calculate 

2 2 
*dA *F A = {R (*EdA *EF A )cp - R drFrcp(R,.)} dcp + 

R R R R 
2 2 + {R (*EdAR*EF AR)e - R drF re(R,.)} de. 

Now from the first Yang-Mills-Higgs equation we have that 

< *Ed A *EF A ,<I>R > = 0 
R R 

Le. we only need to know that dr<Frcp(R,. ),<I>R> decays at least like r -3. 

At this point we learned of the following formula by Taubes, which provides us with 

the desirable decay: 

3 Taubes' formula: On IR , 
2 

< FA' <I> > = CdS + 0), 

where dS2 is the area element of the unit sphere in 1R3 and CO is a real valued 2-form on 

1R3 with I (dr)k 0) I ~ r -3-k. 

We give a proof of this in the Appendix. Notice that the fonnula proves much more 

than the decay we were asking: every constant multiple of dS2 is a Yang-Mills 

curvature. Since 0) decays to zero, at large distances we are left only with a Yang-Mills 

field. However, the formula does not explain why only the < FAt <I> > part is relevant,. 

or why this limit is actually realized on a bundle "at infinity". 

Using the formula, we finally prove: 
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~tl.J,.Ho", 

Theorem D4.1: < FA ,<1>00> is a pure Yang-Millston the sphere. 
00 

Proof: From Taubes' fonnula we see that < FA ,<1>R> converges to CdS2 strongly in 
R 

on 1R3, gives that 

2 < F A
R

,<1>R > = CdS + Cllq>S(R,. ) dq>l\dS. 

Since I Cll I ~ I x r3 on 1R3,I Cllq>S(R,.) I ~ R-1 on S2. Hence < F A
R

,<1>R > - CdS2 

tends to zero in any LP nonn. Notice that this is a gauge invariant statement. 

We want to argue that in our gauge the limit of < FA ,<1>R> is actually < FA ,<1>00>' 
R 00 

Since AR converges weakly to Aoo in LP 1 it follows that FA converges weakly to 
R 

FA in LP. but this does not seem to be enough to prove that < FA .<1>R> converges 
00 R 

in any sense to < FA .el>oo>' We present here a somewhat indirect argument: 
00 

As argued above. < FA ,el>R> has a pointwise limit and. in the gauge we are working 
R 

in. so does <1>R' see above. Therefore. I <1>R r 2 < FA ,<1>R> <1>R has a pointwise limit. ( 
R 

We also use the fact that I <1>R I tends to 1. another gauge invariant argument.) Similarly. 

from the estimate on the transverse components of Theorem 1,1 <1>R 1-2 [<1>R ' [<1>R ' 

FA ] ] has pointwise limit zero. Since this accounts for the whole of the curvature, 
R 

FA has a pointwise limit which of course has to be equal to its weak: LP limit, FA ' 
R 00 

by the uniqueness of a weak: limit. Here we use the standard fact that a bounded 

sequence in LP with pointwise limit converges weakly..., this limit for P ~ 2, see [ A ]. 

Then < FA ,<1>R> converges pointwise to < FA ,el> 00> (therefore also weakly and 
R 00 

2 strongly) and hence < FA ,<1>00> = CdS • 
00 

Remark: Had we chosen some other sequence of AR's they would still have the same 

curvature on the reduced bundle, as the Theorem shows. Then their limits on the 
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reduced bundle would be gauge equivalent: for any two connections A1 and A2 on the 

sphere with dA1 = dA2 we have A1 = A2 + gdg-t , g = expf with df = A1 - A2· 

Appendix: The founula. 

We describe how one proves the fonnula as we learned it from [ T8 J. Basic ideas of the 

estimates for a slightly more complicated situation in the Prasad-Sommerfield limit can 

be found also in [T4 J. 

One starts with the real valued 1-fonn a = <(J)'*EF A> on 1R3, The Bianchi identity 

and the first Yang-Mills-Higgs equation give 

and 

d*Ea = d*E<<l>'*EF A> = d<<l>,F A> = < dA <l>I\F A> + < <l>,dAF A> 

= < dA <l>AF A> =: p 

*Eda = *Ed<(J)'*EF A> = *E<d A <l>A*EF A> + *E<(J),d A *EF A> 

= *E<d A (J)A*EF A> + <(J)'*Ed A *EF A> 

= *E<dA <l>A*EF A> =: q 

respectively. Note that once again the coupling tenn estimate and the curvature estimate 

give that both p and q have exponentially decaying lengths. 

We now define the operator 

L: nO(1R3)en1(1R3) ~ nO(1R3)en1(1R3) 

by 

* L(f,~) = (d ~,df + *Edl3) 

In Taubes' quaternionic notation, if 

'P = (f,l3) = 'P + L 'P. t. o 1 1 

with'P = f and 'P. = ~., the fonnula for L becomes 
o 1 1 

L('P) = 1: (O.'P) t. , 
1 1 

where quaternionic multiplication is meant 

We can then write the equations above in a compact fonn as 
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L( O,a) = (*EP, q) • 

The main point now is that L is in a sense the square root of the Laplacian on 

nO(1R3)$n1(1R3): 

2 * * * L (f,P) = L( d p, df + *Ed~ ) = (d df, dd ~ + *Ed*EdJ3 ) 

* * * = (d df, dd 13 + d d~) 

= (- ~f , -~J3) . 

3 
Here we have used that on 2-forms over IR 

* *Ed*E = d 

and A denotes the Laplacian both on functions and forms. 

One uses this observation to write a Green's function for L and therefore a formula for 

a. Following the quatemionic notation, since L (O,a) = ( *p , q ) and since Green's 

function for the Laplacian on 1R3 is I x - y I-t, 

(O,a)(x) = I a.(x)t. = - f L( I x - y 1-1,0) (*p + I q.t.) 
. 1 1 . 1 1 
13 1 

IR 

f ~ x.~. ~ 
= - ( 0 , kJ 1 13 t. ) ( *p + kJ q. t. ) 

. I I 1 . 1 1 

IR 
3 1 X ~ 1 

_ f ~ Xi ~i _ ~ xi ~i ~ xi -Yi 
- (~ 3 ~'kJ 3 *p ti - 4 I 13 ti qjtj) (05.1) 

3 i I x ~ I i I x ~ I 1.J x ~ 
IR 

where quatemionic multiplication is implied. 

The way to prove this is similar to the way one proves that the unique solution that 

vanishes at infinity for the equation 

is given by the formula: 

~u = Vf 

u (x) = f d I x - Y 1-1 f(y) dy, 

1R3 

83 



see the last chapter of [ J - T ]. The decay of the fields guaranties that the integrals are 

finite. 

The first thing that equation (D5.1) implies is that 

f ~ xi - Yi 
LJ --~3 q.(y )dy = O. 

3 i Ix-yl 1 
IR 

Now use the multipole expansion 

xi - Yi Xi Yi xi I 1-3 
--~3=--3---3+"'=--3+0(x ). 
Ix-yl Ixl Ixl Ixl 

We then have that for all x in 1R3 

~ f xi 3 qi( y ) dy - Od x r3
) ~ f F(y) qi( y ) dy = O. (D5.2) 

1 31xl 1 3 
IR R 

Notice that we have enough decay on q so that the last integral is finite no matter what 

power of y appears in the integrand. Now choose x = (t,O,O), t > O. Then (D5.2) 

becomes 

f -2 -3 ~f I t I ql ( y ) dy + 0(1 t I ) ~ F(y) ~( Y ) dy = 0 . 

~ 1~ 

Multiplying by I t 12 and letting t tend to infinity we have 

Treatq2 and q3 similarly. 

The second thing that equation (05.1) implies is that 

f x. - y. f ~ x· -y. 
a=- L 1 13 *pt.- LJ 1 13t,q,t .. 

3 I x - y I 1 3 i.j I x _y I 1 J J 
R IR 
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Using again the multipole expansion 

xi ""Yi xi Yi xi -3 
3 - --3 - --3 + ... = --3 +O(lxl ) 

Ix -yl Ixl Ixl Ixl 

and the fact that the decay conditions on p and q give bounded integrals, 

a= - L~f*Pt'+~3L JYi*Pt.+ ... 
. I 13 1 1 I' 1 1 X 3 X 1 3 

IR IR 

~ xi J 1 ~ J -3 ... - .L..J --3 t. q.t. +--3 .L..J Yit . q.t. + 0(1 xl) . 
htj 1 xl 3 1 J J 1 x 1 i~j 3 1 J J 

IR IR 

Finally, using that 

f qi( Y) dy = 0 

1R3 

we can write, going back to the differential fonns notation: 

f ~ x. 3 
a = - ( *p(y)dy).L..J ~ dx. + O( 1 xl - ) 

3 i I x I 1 
IR 

N6w notice that in polar coordinates 

hence 

~ x· .!..J_I_dx. = rdr 
i 1 x 13 

1 

a = C r - 2dr + O( 1 x 1-3 ) . 

Since we had set a = <(f)'*EF A>' we have on JR3: 

< (f),F A> = C sine dq> 1\ de + O( 1 x 1-3). 

Since we have not presented any formulas for the magnetic charge of a monopole 

solution, we do it here. Notice that by definition 
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C = J *p(y)dy = J < dA <l>t\F A>· 

1R3 1R3 

Now the first Chern class of the reduced bundle over S2 is given by 

c1 = _1_ J< FA ,<1> > = ~ vol(S2) = c. 
41t 2 00 00 41t 

S 

Since the reduced bundle is nothing but the pull-back bundle via <l> 00 of the Hopf 

fibration U(l) - SU(2) - S2 we have that c1 = deg(<l> (0). That is, we recover 

the well-known formula for magnetic charge 

Magnetic charge 5! deg(<1> 00) = f < d A <1>t\F A>· 

1R3 

Or, as physicists argue, see [ S2 ], I the magnetic field is the projection of the 

electromagnetic field on the Higgs direction and the magnetic charge is obtained by 

integrating the magnetic flux. 
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E. THE NEXT STEPS. 

We summarize here some questions arising from this thesis and some of the problems 

we have not addressed at all. 

1) By now it is standard in variational problems to ask the following: To what extent 

do the critical points of the theory capture the topology of the relative configuration 

space? In trying to answer this question for the Yang-Mills-Higgs functional one has 

the help of the work already done by Taubes for the Prasad-Sommerfield limit. 

2) Are the spherically symmetric solutions described in Chapter A stable with respect to 

any variation in the configuration space as described in Chapter B? 

3) Compare the solutions of Chapter A to the Ansatz solutions as in [R]. Use this as a 

first step for understanding the moduli space of the full Lagrangian. 

4) Prove that the configuration space is a Banach manifold for groups other than SU(2) 

breaking to U(1). 

5) Repeat Chapter D for other groups. Notice that the proof for the existence of the 

limits carries over to any group given the estimates of Theorem 01.1. The problem then 

is to obtain similar estimates in general. In fact, Taubes can obtain exactly the same 

estimates for the case of "maximal symmetry breaking", i.e. for a group G breaking to 

an abelian H (unpublished). However, the proof does not apply to the case of a non­

abelian small group. The conjecture here is that at large distances only abelian 

components survive in any case. For supporting topological evidence see [H-R1 ] 

6) If the situation of Chapter D carries over to any gauge group and any small group, 

we are faced with two theories: the Yang-Mills-Higgs theory over 1R3 and the Yang-

2 
Mills theory over S . Is there a deep relation between them? In particular, is the stability 

of the Yang-Mills-Higgs pair (A,<l» reflected in the stability of Aoo? See [H-o'R-R] 

for arguments about this. 

7) We hope that the reader has been convinced that the natural setting for a Yang­

Mils-Higgs theory is a non-compact three dimensional manifold, possibly with many 
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ends. Apart from IR 
3

, the parts the theory that have been developed on such manifolds 

seem to indicate that the Analysis easily carries over, see [ F ]. The question then is 

whether one can use the moduli space of monopoles to study such manifolds the way 

the four-dimensional Yang-Mills theory has been used by S. Donaldson. The direct 

analogue of his work would be to use the Bogomol'nyi solutions, see [ B ] for 

Riemannian manifolds with nice compactifications. 
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