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INTERWEAVING PFASST AND PARALLEL MULTIGRID∗
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Abstract. The parallel full approximation scheme in space and time (PFASST) introduced
by Emmett and Minion in 2012 is an iterative strategy for the temporal parallelization of ODEs
and discretized PDEs. As the name suggests, PFASST is similar in spirit to a space-time full
approximation scheme multigrid method performed over multiple time steps in parallel. However,
since the original focus of PFASST was on the performance of the method in terms of time parallelism,
the solution of any spatial system arising from the use of implicit or semi-implicit temporal methods
within PFASST have simply been assumed to be solved to some desired accuracy completely at
each substep and each iteration by some unspecified procedure. It hence is natural to investigate
how iterative solvers in the spatial dimensions can be interwoven with the PFASST iterations and
whether this strategy leads to a more efficient overall approach. This paper presents an initial
investigation on the relative performance of different strategies for coupling PFASST iterations with
multigrid methods for the implicit treatment of diffusion terms in PDEs. In particular, we compare
full accuracy multigrid solves at each substep with a small fixed number of multigrid V-cycles. This
reduces the cost of each PFASST iteration at the possible expense of a corresponding increase in the
number of PFASST iterations needed for convergence. Parallel efficiency of the resulting methods is
explored through numerical examples.
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1. Introduction. The past decade has seen a growing interest in the devel-
opment of parallel methods for temporal integration of ordinary differential equa-
tions (ODEs), particularly in the context of temporal strategies for partial differential
equations (PDEs). One factor fueling this interest is related to the evolution of super-
computers during this time. Since the end of the exponential increase in individual
processors speeds, increases in supercomputer speeds have been mostly due to in-
creases in the number of computational cores, and current projections suggest that
the first exaflop computer will contain on the order of a billion cores [15]. The impli-
cation of this trend is that increasing concurrency in algorithms is essential, and in
the case of time-dependent PDE simulations, the use of space-time parallelism is an
attractive option.
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INTERWEAVING PFASST AND PARALLEL MULTIGRID S245

Time parallel methods have a long history dating back at least to the work of
Nievergelt [27]. In the context of the space-time multigrid, Hackbusch noted in 1984
that relaxation operators in a parabolic multigrid can be employed on multiple time
steps simultaneously [16]. The 1997 review article by Burrage [7] provides a summary
of early work on the subject. More recently, the parareal method proposed in 2001 [23]
has renewed interest in temporal parallelization methods. In 2012 the parallel full
approximation scheme in space and time (PFASST) was introduced by Emmett and
Minion [10], and performance results for PFASST using space-time parallelization
with hundreds of thousands of cores can be found in [32, 29].

The PFASST algorithm is based on a type of deferred corrections strategy for
ODEs [9], with corrections being applied on multiple time steps in parallel. As such,
there are similarities between parareal and PFASST (see [26, 25]). On the other hand,
the parallel efficiency of PFASST depends on the construction of a hierarchy of space-
time discretizations; hence there are also similarities between PFASST and space-
time multigrid methods. However, in the original papers on PFASST, the solution
of any spatial systems due to implicit time-stepping was assumed to be found to
full precision since the interest was in the temporal accuracy and efficiency of the
methods. From this point of view, PFASST is an iterative solver in the time direction
but not in the spatial dimensions. This is, in a sense, orthogonal to the traditional
use of multigrid solvers within PDE methods, where multigrid is used to iteratively
solve spatial equations and the time direction is not iterative. One of the main goals
of this paper is to investigate the use of both spatial and temporal iterative methods
utilizing PFASST and multigrid.

To be more specific, the iterative strategy within the PFASST algorithm is derived
from the method of spectral deferred corrections (SDCs) [9], which is a variant of
the defect and deferred correction methods developed in the 1960s [36, 28, 33, 2].
One advantage of SDC methods is that it is straightforward to construct methods
of very high order of accuracy by iteratively applying low-order methods to a series
of correction equations. This flexibility has been exploited to construct higher-order
semi-implicit (IMEX) and multi-implicit SDC methods [24, 4, 21], as well as multirate
SDC methods [5]. Such methods are very difficult to construct using traditional
Runge–Kutta or linear-multistep approaches.

The main disadvantage of SDC methods is that they have a high cost per time
step in the sense of the number of function evaluations (explicit or implicit) required
per time step. When high accuracy is desired, this cost is generally offset by the use of
relatively large time steps compared to lower-order methods for the same given accu-
racy. Nevertheless, approaches to reducing the cost of each SDC iteration have been
proposed, including those generally referred to asmulti-level SDC methods (MLSDC).
The main idea in MLSDC is to perform some SDC iterations on coarser discretiza-
tions of the problem, and methods that coarsen the temporal discretization, the spatial
discretization, and the order of the spatial approximation have recently been inves-
tigated [31]. SDC iterations are then performed on the hierarchy of levels in much
the same way as V-cycles in traditional multigrid. The PFASST algorithm can be
considered a time parallel version of MLSDC.

Using implicit SDC methods (as well as popular methods like backward Euler,
trapezoid rule, diagonally implicit Runge–Kutta, or backward difference formula) for
grid-based PDE simulations requires the solution of implicit equations in the spatial
domain. If an iterative solver is used for these equations in the context of SDC, one
advantageous result is that the initial guess for each solve becomes better as the SDC
iterations converge. This raises the possibility of reducing the cost of SDC or MLSDC
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iterations further by limiting the number of spatial iterations used for each implicit
solve rather than requiring each to be done to some specified tolerance. A recent paper
explores this possibility in the context of SDC methods [8]. We refer to variants in
which spatial solves are done only incompletely with a prepended capital “I” for
“inexact” (ISDC, IMLSDC, IPFASST), resulting in the interweaving of spatial and
temporal iterations. This paper adopts the ISDC strategy for MLSDC and PFASST
and explores the performance of both IMLSDC and IPFASST.

As a starting point, we focus here on the linear test problem resulting from a
finite-difference approximation of the heat equation. Variants of this example are con-
sidered in early papers on space-time multigrid [18, 19], waveform relaxation [34, 14],
and block-parallel methods [1], as well as more recent papers on parallel space-time
multigrid [13, 12]. In all the cases above, a second-order finite-difference approxi-
mation is employed in space and first- or second-order methods are used in time.
Although this is not the optimal setting for the PFASST algorithm, we present re-
sults using second-order space-time discretization to compare with other published
results. We also show how, for a given accuracy, using fourth-order methods in space
and/or time results in significant computational savings compared to second-order
methods.

The remainder of this paper is organized as follows. We first present the SDC
algorithm for linear problems in a compact notation that can be interpreted as matrix
iterations and highlight the similarities between SDC iterations and classical relax-
ation schemes. We then discuss how IMLSDC and IPFASST are constructed. In
section 3, we provide the relevant analysis of SDC methods as a relaxation operator
for parabolic problems. In section 4 we examine the scaling of the IPFASST method
in terms of problem size and number of parallel time steps, consider the effect of
limiting the number of multigrid V-cycles per implicit solve, and provide numerical
examples comparing PFASST with IPFASST. Finally, in section 4.2 we provide tim-
ing comparisons for three-dimensional examples scaling to hundreds of thousands of
cores.

2. Collocation and SDC. This section briefly describes the methods used later.
In section 2.1, the collocation formulation for initial value problems is first reviewed.
SDC as an iterative solver for a collocation solution is discussed briefly in section 2.2.
A compact notation of SDC for linear problems is given, and its interpretation as
relaxation is discussed. The extension of SDC to MLSDC is outlined in section 2.3,
including a number of strategies to coarsen the representation of the problem in order
to reduce the overall cost. The possibility of solving linear systems approximately on
all levels leads to ISDCs and their multi-level counterparts IMLSDC and IPFASST.

2.1. The collocation formulation. This paper concerns methods for the so-
lution of initial value ODEs, particularly those arising from the spatial discretization
of PDEs through the method of lines technique. To set notation, consider the scalar
ODE of the form

y′(t) = f(t, y(t)),(2.1)

y(t0) = y0,(2.2)

where y(t), y0 ∈ C and f : R×C → C. Similarly for systems of equations

y′(t) = f(t,y(t)),(2.3)

y(t0) = y0,(2.4)
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where y(t),y0 ∈ CD and f : R × CD → CD. An equivalent form is given by the
Picard equation, which for (2.3) is

(2.5) y(t) = y0 +

∫ t

t0

f(τ,y(τ))dτ.

Since the goal here is to describe numerical methods for a given time step, consider
the time interval t ∈ [tn, tn+1] with Δt = tn+1 − tn. Define the set of points tm for
m = 0, . . . ,M to be quadrature nodes scaled to [tn, tn+1], so that tn = t0 < t1 <
t2 < · · · < tM = tn+1. Given a scalar function g(t), define the approximations to the
integral of g(t) over the intervals [t0, tm] by choosing the coefficients qm,i such that

∫ tm

t0

g(τ)dτ ≈ Δt
M∑
i=0

qm,ig(ti).

The coefficients qm,i that give the highest order of accuracy given the points tm can be
derived using standard techniques. The quadrature rules used here have the property
that qm,0 ≡ 0 (see [22] for a discussion of different choices of quadrature rules for
SDC methods). Let the matrix Q of size (M + 1) × (M + 1) be composed of the
coefficients qm,i. The first row of Q contains only zeros. Q will be referred to here as
the integration matrix.

Considering for the time being scalar equations, the integration matrix Q can be
used to discretize (2.5) directly over the interval [tn, tn+1]. Let y0 = yn ≈ y(tn) be
the initial condition, and define ym ≈ y(tm) by

(2.6) ym = yn +Δt

M∑
i=0

qm,if(ti, yi) for m = 0, . . . ,M.

We can write this equation in a compact form by denoting the vector of unknowns by
Y = [y0 . . . yM ]T , and the vector of function values F (Y ) = [f(y0, t0) . . . f(yM , tM )]T .
Furthermore, let Y0 be the (M + 1) × 1 column vector with each entry equal to y0.
Then (2.6) is equivalent to

(2.7) Y = Y0 +ΔtQF (Y ).

This coupled (generally nonlinear) equation can be solved directly for the values Y ,
resulting in a collocation scheme for the ODE.

It should also be noted that the collocation form (2.7) corresponds to a fully
implicit Runge–Kutta (IRK) method given by the Butcher tableau

(2.8)
c A

b
,

where c are the nodes tm scaled to the unit interval, A = Q, and the vector b
corresponds to the last row of Q.

For the simplest linear scalar equation where f(y, t) = λy in (2.1), the collocation
formulation given in (2.7) becomes

(2.9) Y = Y0 + λΔtQY,

or in more standard matrix form

(2.10) (IM+1 − λΔtQ)Y = Y0,
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with IM+1 being the (M +1)× (M +1) identity matrix. In the case of a linear system
of equations f(t,y) = Ay, where A is a D ×D matrix, the Picard equation becomes

(2.11) y(t) = yn +

∫ t

tn

Ay(τ)dτ,

where the integration is done term by term. To discretize (2.11), the solution is the
vector

(2.12) Y = [y10 . . . y
D
0 . . . y1M . . . yDM ]T

of length D(M + 1). Here the subscripts m correspond to the quadrature nodes in
time and superscripts j correspond to the component of the solution vector.

To apply the numerical quadrature matrices to Y, let Q = Q ⊗ ID, where ID is
the D ×D identity matrix. Likewise let A = IM+1 ⊗ A, and let Y0 be the vector of
length (M + 1)D consisting of M copies of the y0. Then the analogous form of (2.7)
is

(2.13) Y = Y0 +ΔtQAY

or

(2.14) (I−ΔtQA)Y = Y0,

where I = IM+1 ⊗ ID.

2.2. Single level SDC. SDC can be understood as a preconditioned fixed point
iteration to solve (2.14), which avoids treating the full system directly by computing
a series of corrections node by node (see, e.g., [20, 35]). Note that originally SDC was
introduced in a different way, as a variant of earlier deferred and defect correction
schemes [36, 28] designed to achieve a fixed order of accuracy for a fixed number of
correction sweeps [9]. The MLSDC methods (and PFASST) described below move
away from the idea of a fixed number of iterations in favor of the convergence toward
the collocation (or IRK) solution.

Here we provide a short review of the SDC method. For more details see [9, 24].
Let the superscript k denote the numerical approximation at the kth SDC iteration.
Using backward Euler as the base method, one iteration of SDC can be written as a
sweep through the quadrature nodes, successively updating the solutions. In the case
of scalar equations, this takes the form

(2.15) yk+1
m+1 = yk+1

m +Δtm
(
f(tm+1, y

k+1
m+1)− f(tm+1, y

k
m+1)

)
+Qm+1

m (Y k)

for m = 0, . . . ,M − 1, where

(2.16) Qm+1
m (Y k) ≈

∫ tm+1

tm

f(τ, yk(τ))dτ.

The values of Qm+1
m (Y k) can easily be constructed using the integration matrix Q,

(2.17) Qm+1
m (Y k) = Δt

M∑
i=0

(qm+1,i − qm,i)f(ti, y
k
i ).

Here we consider only implicit SDC methods, even though one particularly attractive
feature of SDC is the flexibility to use different base methods in order to create, e.g.,
high-order implicit-explicit or multirate methods [24, 4, 17, 5].
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2.2.1. Compact notation. We will now present a compact notation of the SDC
iterations. Given the points tm ∈ [tn, tn+1] as discussed above, let Δtm = tm − tm−1,
and let γm = Δtm/Δt, where again Δt = tn+1 − tn. We begin by defining the
lower-order integration matrix that has the same dimensions as Q:

(2.18) QI =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 γ1 · · · 0 0
· · · · · 0 0
0 γ1 · · · γM−1 0
0 γ1 · · · γM−1 γM

⎤
⎥⎥⎥⎥⎦ .

Using the same notation as in section 2.1, M steps of backward Euler for (2.1) can
be written as

(2.19) Y = Y0 +ΔtQIF (Y ).

This differs from the collocation formulation (2.7) only in that QI replaces Q.
Since QI is lower triangular with nonzero diagonal entries, (2.19) can be solved

sequentially for the values ym, where each value requires an implicit equation to be
solved of the form

ym+1 = ym +Δtmf(tm+1, ym+1).

Using the matrix-vector notation above, one SDC sweep for (2.3) can be compactly
written as

(2.20) Yk+1 = Y0 +ΔtQI(F(Y
k+1)− F(Yk)) + ΔtQF(Yk)

or

(2.21) Yk+1 = Y0 +ΔtQIF(Y
k+1) + Δt(Q−QI)F(Y

k).

2.2.2. SDC for linear problems. The compact formulas derived above can be
recast as matrix-vector operations when the governing equation is linear. In the case
of the linear system, y′ = Ay, (2.20) simplifies to

(2.22) Yk+1 = Y0 +ΔtQI(AYk+1 −AYk) +QAYk

or

(2.23) (I−QIA)Yk+1 = Y0 +Δt (Q−QI)AYk.

As in the case of backward Euler, this system of equations can be solved by sub-
stepping, requiring the solution of

(2.24) (I −ΔtmA)yk+1
m+1 = y0 −ΔtmAyk

m+1 +Qm+1
m (Yk).

This equation involves the inversion of the same operator that arises from a backward
Euler method with a modified right-hand side. Note that as the SDC iterations
converge in k, an increasingly good approximation to this solution is provided by
yk
m+1. This fact has two relevant implications when iterative methods are employed

to solve the system. First, when considering the total cost of one time-step of SDC, the
reduced cost of the implicit solves as k increases should be taken into consideration.
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Second, and more relevant for this paper, is that an iterative method need not solve
(2.24) to full precision at each iteration. Instead, a fixed number of iterations could
be performed during each SDC iteration, or each could be done so that the residual
is reduced by some set tolerance. In the numerical studies presented in section 4,
multigrid methods are employed for solving (2.24) and we investigate limiting the
number of multigrid V-cycles instead of solving to full precision.

Finally, note that in the SDC iterations, it is straightforward to compute the
residual in terms of the solution to (2.13), specifically

(2.25) rk := Y0 − (I−ΔtQA)Yk.

In section 4, the norm of rk is used to monitor convergence of the different choices of
methods.

2.2.3. SDC as a relaxation. For a linear problem, it is possible to write an
SDC sweep described above as a relaxation operator applied to the linear collocation
equation

(2.26) (I−ΔtQA)Y = Y0.

As in classical iteration methods for linear systems, we look for a decomposition of
the matrix (I −ΔtQA) = M −K such that M is relatively less expensive to invert
than (I −ΔtQA). Then a classical relaxation scheme based on this splitting would
be

(2.27) Yk+1 = M−1KYk +M−1Y0.

Choosing

(2.28) M = I−ΔtQIA and K = Δt(Q−QI)A

produces the SDC sweep as given by (2.23); hence inverting M can be done by sub-
stepping on the SDC nodes solving the appropriate version of (2.24).

In the next section we carry this analogy further by introducing variants of SDC
that utilize multiple levels of resolution as in classical multigrid methods.

2.3. MLSDC. The goal of MLSDC methods is that by introducing a hierarchy
of levels from fine to coarse, some of the expensive fine level correction sweeps can be
replaced with sweeps on coarser levels, so that the runtime required for convergence of
SDC iterations is reduced (see recent results in [31]). A space-time full approximation
scheme (FAS) term is employed when forming coarser level equations, which is the
difference between the coarsening of the latest fine function values and the coarse level
function applied to a coarsening of the latest fine solution. The result of including
the FAS term is that the accuracy on the coarse level approaches that of the fine level
as the MLSDC iterations converge (see, for example, [6]). Different strategies for
reducing the cost of SDC sweeps on the coarser levels are explored in [31], including
using a lower-order spatial discretization, using a spatial mesh with fewer points,
or performing only incomplete implicit solves. The structure of an MLSDC level
hierarchy is sketched in Figure 1. For a detailed explanation of the method including
performance results we refer to [31]. MLSDC is the basic building block for the time
parallel PFASST method summarized in section 2.4.
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Fig. 1. An MLSDC level hierarchy over a time step [Tn, Tn+1]. The upper fine level (red)
uses five quadrature nodes, the medium level (blue) three, and the bottom coarsest level (black) two.
Also sketched is the possibility of using a spatial discretization with fewer degrees of freedom on the
coarser levels: Depicted is an 8× 8 point mesh on the fine level, a 4 × 4 point mesh in the middle,
and a 2× 2 point mesh on the coarse level. A detailed description of MLSDC can be found in [31].
Figure reprinted from [29].

2.3.1. Inexact MLSDC. In [8], another approach to reducing the cost of SDC
methods is discussed, ISDC. Here, implicit solves in SDC sweeps (2.15) are computed
only approximately, e.g., by a fixed small number of V-cycles of multigrid. While
this strategy makes each SDC sweep less expensive, it can increase the number of
SDC iterations required to reduce the residual to a given threshold. If the increase
in iterations is not too large, ISDC can in total be faster than SDC. In [8] it is
demonstrated that ISDC can save up to 50% of the V-cycles required by regular SDC
while converging to the same tolerance. It is also shown that the reason this strategy
works is the increasingly accurate initial guesses provided for the iterative solver by
SDC (see the discussion toward the end of section 2.2.2).

In regular MLSDC, doing incomplete solves on the coarse levels is discussed and
explored in [31] as a means to reduce the cost of coarse level sweeps. However,
the ISDC strategy can also be incorporated into MLSDC, resulting in an IMLSDC
method. Here, all implicit solves are done only approximately, including the finest
level. Ideally, IMLSDC would save on runtime compared to ISDC, just as MLSDC
does compared to SDC. However, the results presented in section 4 suggest that this is
not necessarily the case. However, MLSDC serves as the basis of the parallel-in-time
method PFASST, and hence IMLSDC could be used in parallel as well. In section 4
we demonstrate that IPFASST (see section 2.4.1) can provide a significant reduction
of runtime by exploiting temporal concurrency. A detailed description of MLSDC
including pseudo code can be found in [31], and we refer the reader there for details.

2.4. The parallel full approximation scheme in space and time. PFASST,
introduced in [25, 10], is an iterative time parallel method for PDEs that has similari-
ties to both the parareal method and space-time multigrid methods. In PFASST each
time step is assigned its own processor or, if combined with spatial parallelization,
its own communicator (for a more detailed explanation of the latter case, see [32]).
PFASST can be considered a time parallel extension of MLSDC, where after an initial-
ization procedure, MLSDC iterations are performed on multiple time steps in parallel
with updates to initial conditions being passed between processors as each SDC sweep
is completed.
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Fig. 2. PFASST performs MLSDC iterations concurrently on multiple time steps. For sim-
plicity, only two time steps [Tn, Tn+1] and [Tn+1, Tn+2] are sketched here. After each sweep, an
updated initial value on the corresponding level is sent forward to the processor handling the next
time step. In the setup above, processor Pn handles time step [Tn, Tn+1] and sends forward updates
to processor Pn+1, which handles [Tn+1, Tn+2]. Figure reprinted from [29].

PFASST typically starts by distributing the initial value over all time-ranks as an
initial guess, which is then refined by a number of sweeps on the coarse level, where
processors handling time steps later in time do more sweeps (this is usually referred
to as the predictor phase). After completing the predictor phase, each processor
starts with its own MLSDC iterations while, after each sweep, sending forward an
updated initial value for the current level to the processor handling the next time
step; cf. Figure 2. Blocking communication is required on the coarsest level only,
so that minimal synchronicity between the different MLSDC iterations is required;
see [11]. Benchmarks for PFASST in large-scale parallel simulations illustrate how
PFASST can extend strong scaling limits [32] or improve utilization of large parallel
installations in comparison to codes utilizing only spatial parallelism [29].

A detailed description of PFASST including a sketch of the algorithm in pseudo
code can be found in [10], and we refer the reader there for more details.

2.4.1. IPFASST. Just as incomplete implicit solves can be used in MLSDC,
they can also be used in PFASST. Essentially, each processor now performs IMLSDC
iterations instead of iterations with full solves on the fine level. Apart from that,
IPFASST proceeds the same as PFASST. In section 4, performance of IPFASST will
be studied through numerical examples.

3. Analysis of SDC on the linear model problem. In section 2.2.3, the
analogy between a single SDC sweep and a classical relaxation scheme derived from
a splitting of the linear system is presented. In this section we examine the effect of
a single SDC sweep on the scalar linear model problem

y′ = λy,(3.1)

y(0) = 1.(3.2)

In the context of parabolic problems, the relevant set of λ is the negative real axis,
and we are interested in how one sweep of SDC reduces the error in the discrete
approximation.

In this case, the compact form of the SDC sweep from (2.23) becomes

(3.3) (I − λΔtQI)Y
k+1 = Y0 + λΔt(Q−QI)Y

k.

The corresponding solution to the collocation equation satisfies

(3.4) (I − λΔtQ)Y = Y0,
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which implies

(3.5) (I − λΔtQI)Y = Y0 + λΔt(Q−QI)Y.

That is, the SDC sweep acts as the identity operator for the collocation solution Y .
Subtracting (3.5) from (3.3) gives

(3.6) (I − λΔtQI)(Y
k+1 − Y ) = λΔt(Q −QI)(Y

k − Y )

or

(3.7) Y k+1 − Y = (I − λΔtQI)
−1λΔt(Q−QI)(Y

k − Y ).

Hence we can study the converge properties of SDC methods for the scalar model
problem by examining the largest eigenvalue of the matrix,

(3.8) (I − λΔtQI)
−1λΔt(Q−QI).

This matrix depends in general on the form of the substepping encapsulated in the
approximate quadrature matrix (here backward Euler in QI), the number and type of
quadrature nodes, and the product λΔt. Here we examine the cases corresponding to
the second- and fourth-order methods used in the numerical results in section 4. These
correspond to uniform quadrature nodes and a quadrature rule which does not use the
left-hand endpoint in the quadrature rule (see [22] for a discussion of different quadra-
ture rules). These methods are used together in the fourth-order PFASST example
as well, where the second-order method is the time coarsened version of the fourth-
order method. This choice requires two implicit substeps for second-order and four
for fourth-order and hence is not “spectral” in the sense of using Gaussian quadra-
ture rules. This choice does, however, provide good damping factors for low-order
methods.1

Figure 3 shows the maximum magnitude of the eigenvalues for both second-
and fourth-order cases as a function of λΔt. Clearly in both limits λΔt → 0 and
λΔt → −∞, the damping factor goes to zero. This behavior differs from the tra-
ditional analysis of point relaxation for elliptic equations like the Laplace equation,
where high-frequency eigen-components are damped more rapidly than low-frequency
components for the classical relaxation schemes. This feature is the reason multigrid
methods provide a tremendous speedup compared to relaxation alone. In the context
of SDC sweeps, Figure 3 demonstrates that although MLSDC with temporal coars-
ening may provide some increase in efficiency compared to higher-order SDC, SDC
alone will still converge rapidly in the stiff limit for this problem.

For any linear problem, one can represent one iteration of PFASST or IPFASST
as a matrix vector multiplication on a vector composed of the solution at each SDC
node within each parallel time step. Examining the eigenvalues of this matrix would
then give an indication of how PFASST iterations would converge for a given choice of
parameters. One could then examine, for a given linear PDE, different numbers and
types of nodes; types of sweeps and quadrature rules; number of levels, refinement
factors in space and time, and type of interpolation and restriction between levels;
and the size and number of parallel time-steps. In the case of IPFASST, the type
of relaxation, the order of interpolation and restriction, and the number of V-cycles

1A recent paper by Weiser [35] studies the optimization of more general substepping rules for
SDC methods. These ideas are not pursued here despite their apparent promise.
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Fig. 3. Damping factors for the second- and fourth-order SDC methods used in section 4.

per implicit solve could also be varied.2 A paper presenting a systematic study of the
linear convergence of PFASST and IPFASST is in preparation.

4. Numerical results. In this section, numerical results illustrating some fea-
tures of the IPFASST method are presented on the model problem given by the linear
heat equation. First, results analyzing the convergence behavior of IPFASST are re-
ported. Strong scaling timing results for three-dimensional problems using space-time
parallelism are then presented in section 4.2.

Despite the popularity of the heat equation as a test case for space-time parallel
methods (e.g., [18, 19, 34, 14, 1, 13]), there are several reasons why it is not a par-
ticularly good test case for time parallelization. First, when considering time parallel
methods, one would like to show how the method scales as the number of parallel
time steps grows. Hence for many time steps, one must either choose a relatively long
interval of integration or a relatively small time step. If a long time interval is chosen,
the solution will decay to a value close to zero, which complicates any discussion of
accuracy and convergence. If, on the other hand, very small time steps are chosen,
then the temporal accuracy of the method will likely far exceed the spatial accuracy,
which brings into question why such a small time step is being considered. Finally, it
is important to note that the performance of parallel-in-time methods applied to the
linear heat equation may not be indicative of performance on other problems that are
not strictly parabolic, have dynamic spatial features, or have nontrivial boundary con-
ditions. Despite these drawbacks, we will investigate the performance of IPFASST
on this test case. The main motivation for doing so is to provide a comparison of
the PFASST method with other published space-time parallel methods using this
example.

4.1. One-dimensional convergence studies. In this section we consider the
accuracy and convergence of IPFASST, including the dependence on the number
of V-cycles. For reasons addressed above, we use here the simple model problem
consisting of the one-dimensional heat equation with homogeneous Dirichlet boundary

2It is also worth noting that the use of nonuniform substeps in SDC removes the equivalence
between Fourier and eigenmode decomposition in the time direction.
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conditions. The equation in a general form prescribed on the space-time domain
[0, L]× [0, T ] is given by

ut = νuxx,

u(x, 0) = u0(x),

u(0, t) = u(L, t) = 0.

Choosing the initial conditions

u0(x) = sin(kπx/L)

gives the exact solution

u(x, t) = e−ν(kπ/L)2tu0(x).

Using the method of lines and a second-order finite-difference approximation of the
spatial derivatives gives the linear system of ODEs

(4.1) u′
i(t) = ν

ui−1 − 2ui + ui+1

Δx2
,

where ui(t) ≈ u(iΔx, t) for i = 1 . . .N − 1, Δx = L/N , and u0 = uN = 0. The exact
solution of the systems of ODEs given initial conditions

ui(0) = sin(kπxi/L)

is

ui(t) = e−νd(k)tu0(xi),

where

d(k) =
−2 + 2 cos(kπΔx/L)

Δx2 .

Note that for k even moderately large, the solution decays very rapidly to zero. In
the following one-dimensional examples, we choose k = L = ν = T = 1, which means
the solution decays to approximately 5× 10−5 during the time interval.

One of the convenient features of SDC methods is that it is simple to construct
higher-order methods simply by increasing the number of quadrature nodes being
used. Even restricting the discussion to second-order spatial discretizations, using
a first-order or second-order temporal integration method is very inefficient. As a
simple demonstration of this, consider the following numerical experiment. We apply
SDC methods of different orders to (4.1) with k = ν = L = T = 1. Specifically we
consider SDC methods of order 1, 2, 4, and 8, where the number of SDC nodes per
time step corresponds to the formal order. We choose Δx = 1/128 and compute the
L∞ error of the solution at the final time T = 1 compared to the exact solution of
the PDE and the exact solution of the discrete ODE for various values of Δt = 1/Nt

for Nt = 2p with p ranging from 2 to 12. In addition, we compute the residual at the
final time step as in (2.25).

The results are displayed in Figure 4. Several comments can be made. Most
obviously, as the order of the time integration increases, the number of time steps
required to reduce the PDE error to the minimum possible given the spatial resolution

D
ow

nl
oa

de
d 

06
/0

9/
16

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S256 MINION, SPECK, BOLTEN, EMMETT, AND RUPRECHT

2 4 6 8 10 12
10

-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Log
2
(Nsteps)

Order 1

2 4 6 8 10 12
10

-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Log
2
(Nsteps)

Order 2

2 4 6 8 10 12
10

-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Log
2
(Nsteps)

Order 4

2 4 6 8 10 12
10

-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Log
2
(Nsteps)

Order 8

 

 
ODE Err
PDE Err
Residual

Fig. 4. Convergence in error and residual for serial SDC methods of different orders for the
one-dimensional heat equation.

goes down dramatically. For the eighth-order method, two time steps of size 0.5 yields
a smaller error than 128 time steps of the second-order method. Of course, higher-
order methods require more work per time step due to the increase in substeps on the
SDC nodes, but as shown in section 4.2 higher-order discretizations in space and time
lead to much reduced computational times for problems in three dimensions. Note
also that the residual and error in the discretized ODE continue to converge to zero
well past the minimum error due to the spatial discretization. This implies that a
judicious choice of residual tolerance is needed for iterative approaches like IPFASST
to avoid wasted iterations.

In the PFASST algorithm, parallel efficiency depends on the availability of a
hierarchy of space-time discretizations as in MLSDC, where coarsening in the temporal
direction is achieved by reducing the number of nodes used in the underlying SDC
method on each processor. Obviously for a second-order temporal discretization, only
one coarsening step in time is possible leading to a coarse level based on the backward
Euler method. In the spatial directions, one way to reduce the work on PFASST levels
is to reduce the order of the spatial approximation on coarser levels; however, this
is possible only when higher-order spatial approximation is being used on the finest
level. Hence the options for coarsening in PFASST when restricted to second-order
discretizations are more limited than for higher-order methods.
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Fig. 5. Comparison of the convergence of IPFASST using different numbers of V-cycles per solve.

4.1.1. Comparison of IPFASST with different numbers of V-cycles. In
this numerical experiment, we compare the convergence of IPFASST with different
numbers of prescribed V-cycles for each approximate linear solve at each substep. A
standard geometric multigrid method is used for these tests with linear interpolation,
full-weighting restriction, and two pre- and two postsmoothing sweeps using a Jacobi
smoother. IPFASST will only be more efficient than PFASST if the reduced cost of
fewer V-cycles is not offset by an increase in the number of iterations required for
convergence.

We use here Nx = Nt = 128 with 128 parallel time steps and the same parameters
as in the previous examples, namely, k = ν = L = T = 1. Figure 5 shows the
convergence of IPFASST in terms of ODE error, PDE error, and residual versus
iterations for different numbers of V-cycles used for the approximate implicit solve in
every substep. The residual decays faster as the number of V-cycles is increased from
one to three, but using more than three V-cycles does not yield further improvement.
In contrast, both the ODE and the PDE error are less affected by the number of
V-cycles. Using two V-cycles per solve gives virtually the same behavior as using 10.
We stress again that these results for linear heat equation may not hold for PDEs of
different mathematical type (see [8] for some preliminary results on advection diffusion
equations).

4.1.2. Convergence of IPFASST with weak scaling. An important motiva-
tion for the study of time parallel methods is the “trap of weak scaling” given current
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supercomputer evolution where cores counts are increasing, but processor speed is not.
For a given application, if the spatial resolution is increased as core counts increase,
the cost of spatial operators will remain close to constant assuming good weak scaling
of the spatial operations. However, the time step size will eventually need to also
be reduced, either because of stability constraints or to match the increased spatial
accuracy (depending on whether explicit or implicit methods are used). This means
that more time steps are necessary for the same simulation time, and therefore, the
total runtime will increase even with perfect spatial scaling unless some parallelism in
the time direction is employed. For time parallel methods to be effective, it is neces-
sary that the performance does not deteriorate as resolution is refined. Therefore, in
this test we consider how the convergence of the IPFASST iterations scales with the
problem size and number of parallel time steps.

Three runs are performed with Nx = Nt = 32, 64, and 128 again choosing
k = ν = L = T = 1. The number of parallel time steps in IPFASST is equal to the
number of time steps Nt. We use three levels with coarsening by a factor two in space
and second-order finite-difference approximations on all levels. On the coarsest level,
the collocation rule corresponds to first-order backward Euler. On the middle and
finest levels, we use three uniform nodes corresponding to a second-order collocation
rule. Based on the previous experiments, implicit solves are approximated by two
V-cycles with two pre- and postsmoothing steps with a Gauss–Seidel smoother.

Figure 6 shows how IPFASST converges for the different resolutions in terms of
the ODE error (left), the PDE error (middle), and the residual (right). Errors are
reported for the last time step. As the resolution increases in space or time, the
error level decreases up to some minimum level. Depending on which discretization
error is dominant, this level is either the discretization error of the collocation rule
or of the spatial discretization; cf. the discussion in [31, section 3.2]. This level is
reached at iteration 5 for N = 32 and at iteration 3 for N = 64 and N = 128.
Therefore, increasing the resolution and with it the number of parallel time steps
does not increase the number of iterations required by IPFASST. Note that this does
not cover the case where the number of concurrently computed steps is increased while
the time step size is kept constant in order to compute over a longer time interval.

4.2. Three-dimensional strong scaling studies. To compare the computa-
tional cost of IPFASST with serial methods we consider the three-dimensional heat
equation

(4.2) ut(x, t) = νΔu(x, t), x ∈ Ω, 0 ≤ t ≤ T,

on the unit cube Ω = [0, 1]3 with T = 1.0, initial conditions

(4.3) u(x, 0) = sin(πx) sin(πy) sin(πz),

and homogeneous Dirichlet boundary conditions. We choose ν = 1
3 so that the solu-

tion decays at the same rate as the previous one-dimensional tests. The Laplacian is
discretized with either a second- or a fourth-order finite-difference stencil, and either
ISDC or IPFASST is used to solve the resulting initial value problem. In all cases
an implicit Euler substepping is used for the SDC sweeps, and PMG [3] is used for
parallel multigrid V-cycles. Simulations are run on the IBM BlueGene/Q installa-
tion JUQUEEN at Jülich Supercomputing Centre. Timing results are displayed in
Figure 7, and the specifications of the different runs are provided below.
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Fig. 6. Convergence of IPFASST in terms of ODE error, PDE error, and residual in the final
time step for increasing resolution in both space and time.

4.2.1. Problem and method specifications. ISDC, IMLSDC, and IPFASST
are run in three different configurations, which all give approximately identical errors
measured in the infinity norm against the analytical solution of (4.2). The tolerance
for the residual of ISDC and IPFASST is set to 10−9, which in all three configurations
results in an error of about 1.5×10−7. PMG uses a tolerance of 10−12 whenever a full
solve is performed and a stalling criterion that stops the iteration if the new residual
is not smaller than 75% of the previous one. Two levels are used in IMLSDC and
IPFASST, with fourth-order spatial interpolation and pointwise restriction in both
space and time.

In all runs, approximate implicit solves consisting of two PMGV-cycles are used in
the SDC sweeps. PMG V-cycles use two pre- and two postsmoothing sweeps consisting
of JOR red-black smoothers. Linear interpolation and full-weighting restriction are
used in the V-cycles.

Second-order spatial and second-order temporal discretization. For these runs,
marked by circles in Figure 7, ISDC and the fine level of IMLSDC/IPFASST use two
quadrature nodes corresponding to the midpoint of the time step and the right-hand
value tn+1. Therefore the method converges to a second-order collocation scheme. The
coarse levels in IMLSDC and IPFASST correspond to backward Euler. The spatial
mesh has N = 1283 points and 128 time steps are performed. The coarse level uses a
643 point spatial mesh. For ISDC, runs are performed with the number of cores used
by PMG varying between 16 and 32,768. For IMLSDC and IPFASST, the number of
cores for PMG is fixed to 4,096 and the number of parallel time ranks varied between
1 (for IMLSDC) and 32, for a total of 4, 096× 32 = 131,072 cores. On average, ISDC
requires about 3.5 iterations and IMLSDC about 3.7 for convergence. The last time-
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Fig. 7. Runtimes for the three-dimensional heat equation depending on the total number of
cores used for different configurations of ISDC and IPFASST. The first entry for each configuration
of IPFASST corresponds to a run with only a single time-rank, that is, IMLSDC. All setups result
in an error of about 1.5× 10−7, making a comparison of their runtimes meaningful.

rank in IPFASST requires between about 3.4 (for two parallel time-ranks) and 4.0
iterations (for 32 time-ranks).

Second-order spatial and fourth-order temporal discretization. Marked by dia-
monds in Figure 7, ISDC and the fine level of IPFASST use four quadrature nodes,
corresponding to fourth-order collocation. The coarse level of IPFASST is the same
as the second-order runs above. Only 24 time steps are required to achieve the same
overall error because of the higher-order temporal discretization. The spatial mesh
remains as described above. As before, scaling of ISDC is measured using 16 up to
32,768 cores for PMG, while the number of cores for PMG in IMLSDC and IPFASST
is fixed at 4,096. Because here only 24 time steps have to be performed, the number
of time-ranks is varied only from 1 up to 24, for a total maximum number of cores of
24 × 4,096 = 98,304 cores. IMLSDC needs an average of 3.8 iterations, and the last
time-rank in IPFASST between 4.0 (for two time-ranks) up to 6.0 (for 24 time-ranks).

Fourth-order spatial and fourth-order temporal discretization. As above, 24 time-
steps are used with a fourth-order temporal discretization, marked by squares in
Figure 7. N = 323 spatial points suffice to maintain the same error as above. On the
coarse level, IPFASST uses only N = 163 points and a second-order finite-difference
stencil. Here, because many fewer spatial degrees of freedom are needed, scaling of
ISDC is measured only using 16 to 512 cores in PMG. IMLSDC and IPFASST use 64
cores for PMG and, as before, up to 24 time-ranks. The maximum total number of
cores here is therefore only 24× 64 = 1, 536.

4.2.2. Results. Figure 7 displays the runtimes for the different configurations
of ISDC and IPFASST laid out above. In addition, Table 1 lists parallel speedup and
efficiency (speedup divided by number of processors) provided by IPFASST compared
to the ISDC counterpart with the same number of spatial processors for PMG. Note
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Table 1

Additional speedup provided by IPFASST compared to the ISDC run with the same number of
spatial processors for PMG. Np indicates the number of parallel time steps.

2nd-/2nd-order
Np Speedup Efficiency
1 0.8 –
2 1.2 60.0 %
4 2.1 53.5 %
8 3.5 43.5 %
16 5.6 35.0 %
32 8.6 26.9 %

2nd-/4th-order
Np Speedup Efficiency
1 0.9 –
2 1.4 70.0 %
4 2.6 65.0 %
8 4.6 57.5 %
12 5.9 49.2 %
24 7.2 30.0 %

4th-/4th-order
Np Speedup Efficiency
1 0.7 –
2 1.0 –
4 1.9 47.5 %
8 3.2 40.0 %
12 4.6 38.3 %
24 6.6 27.5 %

that the first marker for each IPFASST line corresponds to a run with only a sin-
gle time-rank, which is IMLSDC. For each of the three setups, IMLSDC by itself is
somewhat slower than ISDC using the same number of cores for PMG due to a slight
increase in the number of iterations required by IMLSDC and the overhead of coars-
ening and interpolation between SDC levels. This is in contrast to the SDC/MLSDC
method using full solves on the fine level as studied in [31], where MLSDC could
significantly reduce runtimes compared to SDC. This means that the most efficient
parallel variant for this test case (namely, IPFASST) is not a direct parallelization of
the most efficient serial variant (namely, ISDC). Hence while the use of incomplete
solves reduces the computational cost for both ISDC and IPFASST, it actually de-
creases the parallel efficiency of IPFASST because we have to compare to ISDC. We
should also note that ISDC is not necessarily the most efficient serial method for this
problem, but we use it as a comparison to the parallel performance of IPFASST based
on ISDC sweeps.

As already observed in [30] for the PFASST method, it is more efficient to begin
space-time parallelism with IPFASST using fewer spatial cores for PMG as for when
the parallel speedup saturates. At the limit of spatial scaling, the spatial coarsening
within PFASST does not make the coarse levels sweeps much cheaper than the fine
level and therefore reduces the parallel efficiency of PFASST or IPFASST.

While the second-/second-order and the second-/fourth-order versions of ISDC
and IPFASST scale approximately equally well, the higher-order methods result in
shorter runtimes. For fully fourth-order ISDC, spatial scaling is of course significantly
worse than for the second-order spatial methods because the size of the problem is
drastically smaller. However, no matter how many processors are used for the second-
order version, the fourth-order ISDC is always significantly faster. The same is true for
IPFASST. While all three configurations of IPFASST scale approximately equally well,
the fourth-order version requires significantly fewer cores to achieve the same runtime
as the second-order version. The smallest time-to-solution is about 2.5 seconds, pro-
vided by fourth-order IPFASST using a total of 1,536 cores. While the mixed second-/
fourth-order version is only slightly slower at 2.7 seconds, it requires 98,304 cores to
achieve this runtime. We stress again that these results may not translate to other
problems, particularly where higher-order methods are not appropriate due to a lack
of smoothness in the solutions.

5. Discussion and outlook. The two main goals for this paper are (1) to inves-
tigate combining spatial and temporal iterative strategies for space-time paralleliza-
tion and (2) to provide some data on the performance of the resulting IPFASST
method applied to the linear heat equation for comparison with other published
results. The IPFASST algorithm introduced here interweaves the iterations of a
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spatial multigrid solver (PMG) with the temporal iterations in the SDC methods
to achieve space-time parallelism, where the resulting hybrid space-time iterations
are constructed by considering the spatial and temporal dimensions independently.
Numerical results suggest that reducing the number of V-cycles for implicit spatial
solves in IPFASST can be done without a significant impact on the convergence of
the time parallel iterations (see, e.g., Figure 5). The scaling results shown in Figure
7 demonstrate that incorporating temporal parallelization as in IPFASST can extend
strong scaling and further reduce the time-to-solution when spatial parallelism is close
to saturation, assuming more resources are available.

One interesting result suggested by the numerical experiments is that although
MLSDC might be more efficient than SDC for the heat equation, it seems that ISDC is
more efficient than IMLSDC. The difference between ISDC and IMLSDC is essentially
only the order in which SDC relaxation sweeps and multigrid V-cycles are performed
on various levels, and hence it is likely that even more efficient variations using a
more general ordering of space-time relaxations could be found. A careful analysis
of different variations of the methods presented here, and the extension of the linear
analysis in section 3 to PFASST and IPFASST is currently underway. As mentioned,
given the number of different options already possible, finding optimal configurations
may be difficult, and more importantly these optimal configurations are probably
problem-dependent.
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