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Abstract

The basic building blocks of all biomembranes are lipid molecules, which

self-assemble to form a very thin and stable barrier, where a variety of proteins

can be incorporated into its structure. These two-dimensional systems exhibit a

plethora of physical phenomena, which are an abundant source of inspiration for a

physicist. The physical aspects of biomembranes are described within a phenomeno-

logical model, the so-called Canhan–Helfrich theory, which relies primarily on the

geometrical aspects of the membrane surface at large scales.

Using this theory, we study the response of a membrane to the inclusion of a

transmembrane protein or a protein coat by coupling the composition to the mean

curvature. A transition is found from an overdamped to an underdamped regime for

the membrane shape and its compositional variation. This leads to large membrane

undulations near the inclusion, resulting in the activity suppression of mechanosen-

sitive channels and a preference for the formation of protein coats.

We also re-examine the methodology for inferring the bending modulus of

membranes from their observed thermal fluctuations. Particularly, we analyse the

effect due to the optical projection of such shape undulations across the focal depth

of the microscope. A comparison of this with the literature approaches reveals a

systematic decrease in the value of the bending modulus, resolving a previously

recognised discrepancy between shape measurements and other known techniques.

Lastly, we investigate an non-equilibrium model for the formation of mem-

brane domains that also involves membrane recycling. The dynamics and the steady-

state features of the domain size distribution are analytically revealed and the im-

plication to the heterogeneity observed in biomembranes is discussed.

x



Chapter 1

Introduction

The research area of biomembranes has become an important interdisciplinary meet-

ing point for various fields of science and technology ranging from applied mathe-

matics to nano-medicine. There are very good reasons for its wide appeal and in-

terest. Firstly, its biological significance: each living cell, including their organelles,

is bounded by a sac-like membrane that plays an active and crucial role in almost

every cellular process. Membranes spatially separate intracellular compartments

and define a boundary with the extracellular medium [1]. This compartmental-

ization is fundamental for an organism, allowing highly specialised functions [2].

Hence, a complete knowledge of membrane phisicochemical properties is essential

for understanding the diverse phenomena observed in cells, which are the building

blocks of all living matter. A few examples include the selective transport of ions

across membranes through protein channels [3], regulation of the response to osmotic

shock [4–6], cellular transport, signal transduction, cell adhesion, DNA replication,

protein biosythesis [7], and the flow of red blood cells through narrow capillarities [8].

Many important medical problems also involve membranes, such as understanding

the nerve pulse conduction and the mechanism of general anaesthesia [9]. Moreover,

much of the recent effort in drug development concerns with the design of specific

molecules that target the activity of proteins present in membranes. Approximately

one third of all proteins are membrane resident, and these are the targets of about

60% of all currently approved drugs [10]. Another motivation is biomimetics and

the use of membranes for constructing biotechnological applications, including drug-

delivery systems [11], miniature chemical reaction vessels [12], and biosensors that

combine electronic devices with membranes [13]. Biomembranes are therefore of

central interest to the biochemical, life, and medical sciences.
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The reasons for studying biomembranes from a purely physical point of view

are that living systems, such as cell membranes, have to abide by the same laws

of physics as inanimate objects. However, biological materials are extremely com-

plex systems (usually, out of equilibrium), with non-trivial properties that are often

specific rather than generic [14]. Despite this complexity the physical properties

of biomembranes can be studied within a thermodynamic framework using course-

grained models that span specific spatial and temporal scales [15]. Interestingly,

the characteristic energies identified in biomembranes (for example, the aggregation

energy per monomeric constituent) are typically an order of magnitude larger than

the thermal energy (namely kB T , where kB is Boltzmann’s constant and T ≈ 300 K

is the room temperature). As a result, biological membranes are usually found to be

stable against thermal fluctuations at physiological relevant temperatures, but also

sufficiently soft so that they can be readily deformed by membrane proteins or other

biochemical processes [14–16], e.g. ATP hydrolysis [1,2]. Their ability to bend under

very low stress is one of the main mechanical properties of membranes. This feature

can be easily observed under an optical microscope, where the thin wall of cells is

found to fluctuate (the so-called flicker phenomenon) [14]. Another attractive reason

for a physicist to study biomembranes is because of the separation of scales, that is,

the thickness of membranes is much smaller than their lateral extent. This allows

us to model membranes as two-dimensional systems, reducing the dimensionality of

the problem in the limit of large scales (see [15] and [16] for a detailed review). By

exploring biomembranes in this way, we can attain general insights into the physical

properties of cell membranes and their associated phenomena, such as scaling laws,

and more importantly how these findings may couple to particular biological func-

tions. Therefore, biological membranes provide an abundant source of inspiration

to both physicists and applied mathematicians.

1.1 Historical Perspective

The current picture of biological membranes is a legacy of nearly a century of scien-

tific research. Thus, in order to introduce the basic constituents of a membrane, as

well as the orders of magnitude of the relevant physical quantities, a short history

about the discovery of the membrane structure and its composition is presented in

this section (see [7], [9], [14], and [17], where a number of reviews on the history of

biological membranes is discussed in great detail).

Arguably, the physics and chemistry of biological membranes began with

the experiments performed in the late nineteenth century by Ernest Overton, who

2



Figure 1.1: (a) Schematic diagram of lipids (amphiphilic molecules) which form a
Langmuir monolayer at a water-air interface, and (b) the structural formula of a
single lipid shown above as a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine molecule
(abbreviated DPPC) with two hydrocarbon chains linked via a glycerol moiety to
a negatively charged phosphate group. Most lipids in biological membranes posses
a hydrophilic head group (depicted in (a) by the yellow spheres) that is in direct
contact with an aqueous solution and a nonpolar chain region (represented in (a)
by the various brown strings or tails) forming the basic interior of membranes.
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investigated the permeability of cell membranes for various compounds [18]. It was

observed that cells are enclosed in a selectively permeable barrier, and fat-soluble

molecules are more likely to penetrate it than water-solvable molecules or ions [17].

Overton’s findings led to the speculation that membranes have similar properties to

oils, being a lipid of some sort, which nowadays is known to be rich in cholesterol

and phospholipids [2] (their composition is discussed in more details in Section 1.2).

Figure 1.2: Diagram of the lipid bilayer

structure according to the model pro-

posed by Gorter and Grendel [20].

In a seminal paper published in

1917, Irving Langmuir provided a sim-

ple technique for measuring the lateral

pressure exerted by a lipid membrane as

it spreads at a water-air interface [19].

Using the proposed apparatus, which is

known as the Langmuir trough, he was

able to show that lipids form a closely

packed mono-molecular layer on the sur-

face of water, where the area per lipid

was found to be about Alipid = 0.7 nm2.

Langmuir also suggested the amphiphilic

nature of these molecules, as shown in

Figure 1.1 (a). Amphiphiles are molecules

made of a polar hydrophilic head group,

possessing high affinity for water, and one (or two) hydrophobic hydrocarbon tail(s),

which has (have) a low affinity for water – see Figure 1.1 (b).

In 1925, using Langmuir’s methods, E. Gorter and F. Grendel revealed that

the membrane structure of erythrocytes (or red blood cells) is a lipid bilayer [20],

where the hydrophobic part of the molecules is isolated from water by the layers

of hydrophilic heads (see Figure 1.2). This was achieved by dissolving the lipids

using acetone, then measuring the surface area of the extracted lipids in a Langmuir

trough, and lastly comparing this value with the area of dried red blood cells. How-

ever, their studies included two errors: acetone does not extract all the lipids, but

this error was compensated by their error in measuring the surface area of erythro-

cytes [7, 9]. Nonetheless, their experiment concluded that the ratio of surface area

occupied by lipids to the area of the cell is approximately two, a number consistent

with the theory that cells are enveloped by a lipid bilayer structure [17]. Or, in the

words of the pioneering study [20]:

“ [...] all our results fit well with the supposition that the chromocytes

are covered by a layer of fatty substances that is two molecules thick. ”

4



This bimolecular configuration forms the basic structure of all biomembranes, and

represents the predominant structure out of the large conformational polymor-

phism exhibited by amphiphiles [14]. Namely, a mixture of water and amphiphilic

molecules can generate a broad diversity of thermodynamically stable phases besides

the lamellar phase illustrated in Figure 1.2 (see Section 1.3 for further details).

In the 1930s, H. Davson and J. F. Danielli [21] elaborated a new membrane

model, where both sides of the lipid bilayer are coated by a layer of proteins, in

order to explain the measured differences in the permeability (of ions or other apo-

lar molecules) between an artificial membrane and the plasma membrane found in

cells [14]. This selective permeability was hypothesised to be governed by electro-

static interactions and membrane potential. The Dawson–Danielli unit membrane

model was the first commonly accepted model, dominating the membrane research

in the subsequent years, and undergoing only minor changes in the 1950s due to

the advent of electron microscopy [17]. The latter allowed the structure of mem-

branes to be directly imaged, primarily through the works of J. D. Robertson [22],

who discovered that the plasma membrane and all cell-organelle membranes (e.g.

membrane of the cell nucleus, the Golgi apparatus, and the double layers of mito-

chondria) have a common construction principle, supporting the previous models

introduced by Gorter and Grendel, in 1925, and Davson and Danielli, in 1935 [9].

Moreover, direct and indirect measurements of the membrane thickness (through

electron micrographs and X-ray diffraction techniques, respectively) yield a value

on the order of 5–8 nm, with a hydrophobic core of about 3–4 nm [14].

The next major phase in biomembrane research arrived in the late 1960s,

when numerous studies [23], involving freeze-fracture electron microscopy methods,

determined that proteins do not cover the bilayers, but they form globular particles,

which are embedded within the membrane [7]. At the same time, with the rapid

development of magnetic resonance methods (such as, nuclear magnetic resonance

and electron spin resonance), many experiments showed that lipids can move lat-

erally in the plane of the membrane [24], with a characteristic diffusion constant

given by Dlipids ∼ 10−8 cm2/s ≈ 106Alipid/s [14], revealing the fluid nature of

biomembranes [17]. Some proteins were also found to freely diffuse in the lipid bi-

layer, with a diffusion constant that is much smaller than that of lipids: typically,

Dproteins ∼ 10−10 cm2/s = 10−2Dlipids [14]. Furthermore, the asymmetry between

the inner and outer layer of membranes was established, and the notion of trans-

membrane proteins was confirmed, being firstly observed on red blood cells, where

the same protein was successfully labelled from both sides of the membrane [25].

5



Figure 1.3: A three-dimensional representation and cross-sectional views of a biolog-
ical membrane in a modern perspective of the fluid mosaic model originally proposed
by Singer and Nicolson [26] in 1972. The lipid molecules (with the lipid species not
distinguishable in this sketch) are arranged in a bilayer structure that is highly
heterogeneous and dynamic. The polar heads are exposed to the aqueous environ-
ment, while the region of hydrocarbon chains forms the interior of the membrane. Its
thickness near membrane proteins is commensurate with the hydrophobic belt of the
corresponding protein. Also, the proteins (illustrated as the coloured ellipsoidal-like
objects) can be partially or completely embedded into the lipid bilayer.
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This research culminated in the fluid mosaic model of biomembranes (1972),

also known as the Singer–Nicolson model [26], which describes a membrane as a

fluid (that is, the lipidic bilayer made of various phospholipids and cholesterol) in

which other macromolecules are incorporated, such as peripheral (adsorbed on the

membrane surface) and integral (embedded in the bilayer) membrane proteins, as

shown in Figure 1.3. The proteins act as active components and provide a variety of

biological functions, including cellular transport, adhesion and signalling [1, 2]. As

a loose comparison, the lipid bilayer became the arctic sea in which various icebergs

(proteins) can float freely. Interestingly, the lipid-to-protein ratio varies significantly

across different biological membranes; for example, the inner mitochondrial mem-

brane is approximately 76% protein, while the myelin membrane is only 18% [7].

Although the Singer–Nicolson model is a major influential step in the study of

biomembranes, integrating various experimental findings from the preceding decade

on the physics and chemistry of membranes, many refinements have been amended

over the past years [17,27]. We now know that the bilayer is a highly dynamic sys-

tem, where the lipids and proteins are not homogeneously distributed, but they form

domains and clusters [9]. In particular, intermediate-sized domains with a diameter

between 10–100 nm (and rich in sphingolipids and cholesterol) have been proposed

in biomembranes – the so-called lipid raft hypothesis – to explain the problem of

sorting and trafficking lipids and lipid-anchored proteins [28, 29]. This phenomena

is discussed in much more detail in Chapter 5. Another amendment is due to the

hydrophobic matching: if the hydrophobic core of the membrane is longer or shorter

than the hydrophobic belt of the embedded protein, this leads to membrane thick-

ness deformations [30]. Either the protein deforms to the match the thickness of the

bilayer or the adjacent lipids stretch to compensate for this hydrophobic mismatch,

or both. This effect results in non-trivial protein-lipid interactions as well as lipid-

lipid interactions [31–35]. Membrane curvature is also an important key concept,

which can drive lipid sorting and membrane mediated interactions [36, 37]. This is

explored in more details in Chapter 3. Lastly, another interesting aspect concerns

the presence of specific lipids in the vicinity of proteins in order to regulate their

biological function. Arguably, this might be one of the reasons for the very large

number of lipid species present in biological membranes (on the order of thousands);

however, the reasons for this diversity remain an open question in cell biology [9].
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Figure 1.4: The chemical structure of some common membrane lipids. Three phos-
pholipids with two palmitic chains are shown, where the head groups are given
by phosphatidylcholine (DPPC), phosphatidylethanolamine (DPPE), phosphatidyl-
glycerol (DPPG), as well as a phospholipid with two oleic chains and a phosphatidyl-
choline head group (DOPC). Some lipids without phosphate groups are also shown,
such as sphingomyelin (SM), ceramide, and cholesterol.

1.2 Membrane Lipids

The macromolecules found in biological systems can be classified in four main classes:

the carbohydrates, the fats, the proteins, and the nucleic acids [1]. Out of all these

types, the fats (e.g. lipids) are the only one that do not form polymers, but instead

they self-assemble into aggregates in an aqueous solution (e.g. water), leading to a

variety of structural phases [7]. This behaviour is due to their amphiphilic nature,

namely they are made up of a hydrophilic head group and a hydrophobic region [14].

Despite this simple construction principle, the compositions of both the hydrophilic

groups and the hydrocarbon chains display a large variation, giving raise to a zoo

of numerous types of lipid species (several thousands) [9]. To put this number into

a biological perspective, the alphabet of possible lipid mixtures in biomembranes

hugely exceed the 4-letter alphabet used to identify the nuclei acids, as well as the

20-letter alphabet of the amino acids that describe proteins [38].

Out of this plethora of lipid species, phospholipids are the most abundant

type [2, 7]. Their molecular structure consist of two fatty acids that are covalently

bounded to a glycerol group (esterified in its first and second position), which, in
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Name
Chain length:

number of double bonds
Position of unsaturations

Lauric 12:0 –

Myristic 14:0 –

Myristoleic 14:1 –

Palmitic 16:0 –

Palmitoleic 16:1 9-cis

Stearic 18:0 –

Oleic 18:1 9-cis

Linoleic 18:3 6-cis, 9-cis, 12-cis

Arachidic 20:0 –

Aracidonic 20:4 5-cis, 8-cis, 11-cis, 14-cis

Table 1.1: A selection of common saturated and unsaturated fatty acids that form
the hydrocarbon chains of lipids. Adapted from [9].

turn, is linked (through the third position) to a negatively charged phosphate group

that carries the terminal polar head [7]. The latter group can be composed by

various organic compounds, such as choline, ethanolamine, serine, inositol, or even

glycerol (see Figure 1.4 for some examples of their chemical structure) [7]. There

is also an enormous range of possible fatty acids, which can vary by chain length

and degree of saturation [9] (see Table 1.1 for the most common fatty acids found in

nature). The typical hydrocarbon chain length is most frequently an even number

between 12–20, but chains as short as 8 carbon atoms have also been found in some

bacteria [39]. Furthermore, most of the hydrocarbon chains are unsaturated, where

several double bonds between the carbon atoms are present along the chain. This

number represents the degree of saturation, and it is typically between 1–3 (see

Table 1.1). Lipid molecules that have only single bonds are known to be saturated.

As a consequence, a sophisticated (and also relatively intimidating) termi-

nology has been developed to efficiently describe the structural form of phospho-

lipids [7]. For example, the lipid molecule shown in Figure 1.1 (b), which has a

choline head group and two palmitic chains, is named 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine. This is usually abbreviated as DPPC, using a common four-letter

convention of the form DT PH, where DT stands for the double hydrocarbon chain

groups, P for the phosphate group, and H for the polar head group. If the hydro-

carbon chains are different, then the form T1T2PH is adopted, where T1 and T2

represent the corresponding hydrophobic chain-types, e.g. 1-palmitoyl-2-oleoyl-sn-
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glycero-3-phosphoethanolamine is shortened as POPE.

There are many other ways of making lipids: for example, the glycerol back-

bone can be replaced by a sphingosine, which belongs to the family of amines [38].

The simplest version of this molecule is ceramide, as shown in Figure 1.4. Since this

is a purely hydrophobic compound, a hydrophilic head can be attached in principle,

which leads to variety of other lipids, e.g. sphingomyelin, if the head group is a phos-

phatidylcholine [38]. These lipids often occur with long saturated tails (24 carbons)

and they are believed to play a role in the formation of microdomains (or rafts) in

biomembranes [9]. Another important example is cholesterol, which is a member

of the steriod family and it is ubiquitous in the membrane of eukaryotic cells [39].

Instead of a fatty-acid chain as its hydrophobic region, the cholesterol has a steriod

ring structure, and its hydrophilic polar head is simply given by a small hydroxyl

group -OH [7], see Figure 1.4. Interestingly, the cholesterol is known to influence

the membrane fluidity [14], increasing the viscosity in the fluid phase (where the

lipids diffuse freely and their hydrocarbon tails are disordered), while decreasing

the melting temperature (we shall discuss this in more details in Section 1.4).

Not surprisingly, this chemical variability makes lipids the most diverse group

of molecules found in cells. The reason for this striking feature is still an open ques-

tion, although there is an increasing understanding of the collective and functional

role of lipids in biomembranes [38, 39]. For a fuller account on the classification of

the membrane lipids, the reader is referred to [2] and [7].

1.3 Self-assembly of Lipids

Due to the hydrophilic effect, the lipid molecules self-assemble into many possible

super-molecular structures [2], see Figures 1.5–1.7 for a few examples. In other

words, in a mixture of water and lipid molecules, the system tends to minimise the

free-energy by shielding the hydrocarbon chains from the water, with larger assem-

blies more favourable at higher lipid concentrations [2,9]. The self-assembly process

also depends on the other intensive thermodynamic variables of the system, such as

the temperature, the ambient pressure, or the chemical potentials of solvents [9].

Micelles occur when the solution is sufficiently dilute, such that the concen-

tration of lipids is above some critical value that is known as the critical micelle

concentration [9]. In a micelle, all the hydrophobic tails point radially towards

each other, and their hydrophilic parts form a sphere-like surface, as shown in Fig-

ure 1.5 (a). Inverted micelles can also be generated where the hydrocarbon chains

radiate away from the centrally assembled head groups that surround the water,
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Figure 1.5: Structures of micelles formed by amphiphilic molecules. Equatorial
cross-sections (on left-hand-side) and three-dimensional views (on right-hand-side)
of a spherical micelle, see (a), and an inverted spherical micelle, as shown in (b).
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Figure 1.6: (a) Schematic picture of a lipid hexagonal phase, namely cylinders of
indefinite length packed in a hexagonal arrangement. (b) Cross-sectional view of a
lipid aggregate in the inverted hexagonal phase, where the water is contained within
the inverted micellar cylinders, whilst the outside is filled by the hydrocarbon tails.
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Figure 1.7: (a) Schematic illustration of lipid molecules forming a lamellar phase,
namely a stack of bilayer units which are seperated by a water layer. (b) Diagram
of a uni-lamellar liposome, also known as a lipid vesicle.

see Figure 1.5 (b). The formation of inverted micelles occurs at very low water

concentrations, or in an oil-water mixture when the amount of water is small [2].

If the lipid concentration is increased even more, there is generally a transi-

tion from the configuration of spherical micelles to other geometries, such as cylindri-

cal aggregates ordered in a hexagonal arrangement (known as the hexagonal phase),

see Figure 1.6 (a), where the spacing between the micellar cylinders varies between

1–5 nm depending on the relative concentration [2]. An inverted hexagonal phase

can exist, which is exactly the same as the hexagonal phase, but with the apolar

chains radiating outwards from the cylinders that enclose the water. Typically, the

diameter of these inner cylinders is about 1–2 nm [2]. However, the exterior space

is completely filled by the hydrophobic chains, as shown in Figure 1.6 (b), and thus

the spacing between cylinders is much smaller than in the hexagonal phase.

Moreover, a range of cubic crystal phases with a periodic three-dimensional

order are possible, which can be formed, as before, in a water-continuous manner

or in a hydrocarbon-chain-continuous manner [2]. The simplest cubic phase is given

by a cubic arrangement of small aggregates, such as spherical micelles or inverted

micelles. Other possible cubic phases are bicontinuous, where the cubic arrange-
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ments are composed by a large continuous network of channels, which can be either

water continuous or apolar chain continuous [2]. Another interesting phase, which is

usually found in detergent systems and possibly in some lipid systems, is the sponge

phase. This topologically mimics a bicontinuous cubic phase, but it does not display

any periodic three- or two-dimensional structure [9].

Lastly, the simplest and also the most ubiquitous lipid phase found in nature

is the lamellar phase, see Figure 1.7 (a), which includes single bilayers or multi-

layered arrangements of bilayers that are stacked on top of each other, and spaced

by a water layer with a thickness of about 1–10 nm [2,39]. Evidently, open ends are

energetically very costly due to the exposure to water, and hence the bilayers and

multi-lamellar bilayers normally close onto themselves, forming closed structures,

see Figure 1.7 (b), which are typically referred as uni-lamellar and multi-lamellar

liposomes (or lipid vesicles) [39], respectively. Vesicles, either uni-lamellar or multi-

lamellar, are stable on a time-scale of days [15] and they can be artificially produced

in the laboratory (a review of the preparation techniques can be found in [40]).

These vesicles, which can be made from a few lipids and membrane proteins, are

essential for the physical, life, and biochemical sciences as they represent a simplified

model of a cell membrane, where specific biological functions of the membrane can

be investigated on a molecular level [39].

Although we introduced the various aggregate structures as a function of the

lipid concentration, this is by no means the only control parameter that determines

the equilibrium phase and its stability. As previously mentioned, the self-assembly

mechanism into different aggregates depends sensitively on temperature, chemical

structure and other environmental conditions [9] (e.g. a temperature increase can

lead to a crossover transition from a lamellar structure into an inverted hexagonal

or cubic structure [39]). This leads to a high dimensional phase space with a very

complex phase diagram, where different regions support a particular structure of

lipid assemblies (see [2] for a complete review).

Remarkably, many of these factors can be described qualitatively within a

very simple framework that involves only the effective molecular shape of a lipid

molecule [38]. However, it is important to emphasise that a lipid incorporated into

an aggregate does not occupy a well-defined volume, as there are no hard edges on

this length scale [39]. This effective molecular shape can be related to the mean

cross-sectional area a and the volume v that a lipid would occupy on average, and

also how deeply it is embedded in the lipid aggregate, say `. These parameters are

influenced by numerous geometrical constraints, such as the size of the polar head,

the length of the fatty acid chains, and their degree of saturation [39]. The latter
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affects the configuration of the hydrocarbon chains, as the presence of double bonds

causes kinks in the usual linear arrangement of the carbon atoms (that is, all-trans,

see Section 1.4). Moreover, the temperature leads to rotational excitations around

the C–C bonds and, as a result, increases the area occupied by the hydrocarbon

tails [7]. This effect causes membrane melting transitions [9], which are discussed

in more details the following section. In addition, the charge and the hydration of

the head groups can also contribute to the phase preference [41] and hence to the

effective shape of the lipid molecule [39].

The consequences of the effective molecular shape of a lipid has been stud-

ied by Israelachvili, Mitchell, and Ninham in a famous paper from 1976 [42], which

to a physicist it is a marvellous example of the power of simple geometrical argu-

ments. The ability of a lipid to fit into a specific aggregate is described by a packing

parameter P , which is given by

P =
v

a `
, (1.1)

where a, v, and ` are defined above. Since micelles are spherical aggregates, their

total area and volume can by computed through the equations Na = 4πR2
m and

Nv = 4πR3
m/3, respectively, where Rm is the radius of the micelle and N is the

number of lipid molecules in that spherical aggregate. Since the length ` of the

individual lipids needs to be at least greater than the radius Rm for packing reasons,

namely ` ≥ Rm, we find that the parameter P must be smaller than 1/3 in order to

produce stable spherical aggregates. For a cylindrical aggregate of radius Rc and a

very long length L� Rc, we have two similar equations for their area and volume,

that is, Na = 2πLRc and Nv = πLR2
c, which yields that P ≤ 1/2 since ` ≥ Rc

must hold as before for closed packing. However, we already know that if P ≤ 1/3

this leads to the formation of micelles. Thus, the stability condition for cylindrical

aggregates is given by 1/3 ≤ P ≤ 1/2. By repeating the same argument for planar

or lamellar structures, the condition required for stable lipid bilayers can easily be

derived, namely 1/2 ≤ P ≤ 1. Moreover, as the volume v of a cylindrical-shaped

lipid is exactly a`, then values of P > 1 suggest an effective molecular shape in form

of an inverted cone, and cubic and inverted non-lamellar phases can be expected [39].

Interestingly, lipids extracted experimentally from real biological membranes,

which are typically multi-component systems and appear to be in the lamellar phase,

often self-aggregate into non-lamellar structures when suspended in water, regardless

of whether they were removed from various different organisms or different types of

cells from the same organism [38,39]. This suggests that many of the lipids present in

cells are non-lamellar-forming lipids, resulting therefore in several curvature stresses

within the lipid bilayer [38]. This local stress can be released by the insertion of
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membrane proteins, local membrane composition, or by budding of the membrane

in exocytosis and endocytosis processes [38]. The former two examples are explored

in more details in Chapter 3, where the role of membrane compositional asymmetry

near a trasmembrane protein is analysed within a continuum model.

1.4 Membrane Melting

Throughout the rest this thesis, we study only one of the phases mentioned above,

namely membranes in the lamellar phase and formed by a single bilayer. However,

the lipid order within a bilayer passes as well through different states, which depend

primarily on the temperature [9]. The following lipid phases can be found in bilayers

and they are listed below in terms of their occurrence at decreasing temperature:

• Fluid phase (Lα): This phase occurs at high temperature [2], where the lateral

distribution of lipids is rather random, and all their hydrocarbon tails are

rather disordered (fluid-like). This phase is believed to represent the typical

bulk of biological membranes.

• Ripple phase (Pβ′): The surface of the bilayer displays ripples, or wave-like

structures, which can be observed in electron micrographs [7]. This phase

consists of a binary mixture of lipids in Lα and Lβ′ phases (see below) that

are most often arranged in an one-dimensional periodic structure [9].

• Gel phase (Lβ′): The lateral distribution of lipids shows a two-dimensional

triangular lattice, and their fatty acid chains are mainly ordered in the all-trans

configuration (see Figure 1.9) and tilted with respect to the membrane normal

(hence, use of the prime symbol in its short notation) [9]. This tilt is due steric

effects, that is, a mismatch between the head groups and hydrophobic tails,

which does not allow the lipids to be stacked parallel to the normal [43].

• Crystalline phase (Lc): This occurs at much lower temperatures, and it is sim-

ilar to the gel phase, expect there is no tilt angle [9]. Moreover, this is usually

characterised by a three-dimensional order of a multi-lamellar configuration of

lipids, where the water layer is completely absent [2].

These phases are illustrated in Figure 1.8. The crossover transition between these

four phases occurs at well-defined transition temperatures, which mostly depend on

the length of the chains and their degree of saturation, but also on other ambient

conditions (e.g. pressure), and the addition of detergents, peptides, or cholesterol [9].
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Figure 1.8: Schematic diagram of the phases within a lipid bilayer, where the temper-
ature decreases from (a) to (d). Namely, the fluid phase (Lα), the ripple phase (Pβ′),
the gel phase (Lβ′), and the crystalline phase (Lc), respectively. The conformational
ordering of the hydrocarbon chains increases as the temperature drops.

The transitions Lβ′ ↔ Pβ′ and Pβ′ ↔ Lα are known in the biomembranes

literature as the pre-transition and main-transition [2], respectively. They are both

fundamentally controlled by the hydrocarbon chain melting process. Namely, rota-

tions about C–C bonds in a saturated chain result in three distinct energy minima

that correspond to different conformations (or isomerisations), so-called gauche−,

trans, and gauche+ [7], as illustrated in Figure 1.9. The trans isomer is the most

stable, being the global energy minimum, and a chain configuration with all sin-

gle carbon–carbon bonds in this state (i.e. all-trans) yields a hydrocarbon tail that

is maximally extended [39]. At high temperatures every isomer is equally proba-

ble, and therefore the chain conformation becomes more disordered, disrupting the

crystalline structure of the lipid bilayer. The melting temperatures (namely, the

temperatures at the pre-transition and main-transition) are higher as the length of

the chain is longer [9]. However, the presence of double cis bonds∗ greatly reduces

the melting point [9]. As an example, the melting temperature (of the main tran-

sition) of DSPC is around 53o C, whilst DOPC has a much lower melting point,

about −20o C, although the difference between the lipids is only an extra double

bond in DOPC [9]. Therefore, saturated lipids melt at considerably higher tem-

peratures (i.e. they are easier to order) than lipids with unsaturated chains which

have permanent kinks. This effect is used by a variety of organisms that adjust

their membranes to function at lower or higher temperatures (or even at different

ambient pressures) [9].

∗A cis–trans isomerism exists in the case of a C=C bond [7]; however, nature usually makes cis-
bonds, and a transition between the isomers occurs only through chemical reactions [39]. Typically,
the trans-double bonds have a significant ordering effect – they do not cause kinks as the cis-bonds.
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Figure 1.9: Rotations about a C–C bond in a fatty acid chain produce different
conformations, the so-called trans-gauche isomerisations. This leads to three local
minima seperated by 120o, namely gauche−, trans, and gauche+, which correspond
to the orientations shown above each minimum in a Newman projection diagram.
The chain configuration with all of its C–C bonds arranged in the trans isomer
has the lowest energy state, corresponding to a zig-zag arrangement of the carbon
atoms. The other two gauche configurations are mirror images of each other, and
they have a higher potential energy than the trans isomer. Adapted from [7].

The addition of cholesterol in lipid bilayers has a dual effect, namely, it en-

courages the close packing of the hydrocarbon tails in the Lα phase, while it disturbs

the chain ordering in the Lβ′ phase [39]. Thus, in a mixture of lipid molecules and

cholesterol, a liquid-ordered phase (Lo) and a liquid-disordered phase (Ld) appear

when the concentration of cholesterol is found in large (& 40%) and moderate

amounts [44], respectively. In the former phase, the hydrophobic tails are relatively

ordered, but the membrane still preserves its fluidity. Thus, a membrane in the

liquid-ordered phase behaves as a fluid with translational disorder and high lat-

eral mobility, decreasing as a result the melting temperature [2]. Furthermore, the

high concentration of cholesterol makes the thickness of the membrane larger and

also less flexible [39]. On the other hand, the Ld phase is equivalent, in fact, with

the previously introduced Lα phase, where its fatty acid chains are less ordered in

comparison with the Lo phase (in terms of both translational and conformational

degrees of freedom) [2, 39]. In a binary mixture of Lo and Ld phases, the minority

phase normally forms domains due to phase separation [45]. The phenomena asso-

ciated with this lateral phase separation in multi-component membranes has been

widely studied from both theoretical and experimental perspectives [45]. This great
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interest is motivated by the appealing theoretical challenges that are ingrained in

this system, but also by the aspiration to gain physical insights into the nature of

lipid rafts observed in membrane cells. This is discussed more in Chapter 5.

1.5 Outlook

The fundamental building blocks of all cell membranes are lipid molecules, which

self-assemble to form a very thin and stable barrier where a multitude of proteins

can be incorporated. In addition, they exhibit a wealth of physical phenomena

including self-assembly, phase transitions, domain formation, and many other dy-

namical processes. For a physicist, the challenges are to understand and model these

phenomena, and to generate testable predictions which can be then compared with

data from biological experiments.

In this thesis, we focus on a number of problems concerning the mechanical

and dynamical properties of fluid membranes, namely lipids organised in a bilayer

that display a liquid-crystalline phase. On length scales larger than the membrane

thickness, they can be treated as two-dimensional elastic sheets whose equilibrium

shape and thermal fluctuations are only controlled by a handful of coarse-grained

material parameters. The physical and mathematical aspects of this description are

presented in Chapter 2, which is structured as follows: firstly, we present the essen-

tial differential geometry of two-dimensional surfaces; secondly, we show how these

geometrical tools can be used to describe a fluid membrane through the so-called

Canhan–Helfrich theory; and, lastly, we review some of the experimental studies

carried out to estimate the phenomenological parameters in this model. Using this

theory, in Chapter 3, we develop a model for the response of a fluid membrane, in

terms of composition and shape, to the inclusion of a rigid transmembrane protein or

a protein coat. In Chapter 4, we re-examine the methodology for inferring mechan-

ical information about membranes from their observed fluctuations and dynamics.

Particularly, we analyse, within a Gaussian approximation, the effect produced by

the optical projection of surface modes across the focal depth of the microscope. In

Chapter 5, we study an out of equilibrium model for the kinetics of the spontaneous

membrane raft formation via membrane recycling. Finally, Chapter 6 summarises

the work carried out in the thesis, highlighting any possible future refinements of

the analysis, and also discusses other possible avenues of future research.
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Chapter 2

From Differential Geometry to

Fluid Membranes

Fluid membranes have a clear separation of scales, namely the thickness of lipid

bilayers (about 5 nm thick) is typically several orders of magnitude smaller than

their lateral extent (e.g. the diameter of liposomes and lipid vesicles is typically in

the range of 50 nm to 100 µm). This suggests that some generic properties of fluid

membranes may be adequately described by two-dimensional objects embedded into

a three-dimensional space. Later we discuss what exactly this may entail, but first

we summarise some of the key mathematical concepts of differential geometry that

apply to two-dimensional surfaces.

2.1 Two-dimensional Surfaces

Although there is an extensive literature on differential geometry, with emphasis on

both mathematics (e.g. see [46]) and applications in physics (e.g. see [47]), herein,

we outline only a few of the important concepts out of this wide mathematical field,

focusing primarily on the practical aspects rather than mathematical rigour.

2.1.1 Coordinate Systems and Area Elements

A two-dimensional surface, sayM, embedded in the three-dimensional space R3 can

be uniquely determined by a three-dimensional vector R = (X, Y, Z)T, where X, Y ,

and Z are the Cartesian coordinates, and T denotes a transpose [48]. However, these

coordinates are not independent, but they satisfy a constraint condition that dictates

the actual form of the surface. Thus, the choice of two coordinates determines

exactly the value of the third. This means that a point on a surface in R3 can be
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Figure 2.1: Sketch of the surface parametrisation, where a region in the q1q2-plane
is mapped to a two-dimensional surface embedded in a three-dimensional space R3

through a real vector function R(q1, q2). Here, the vectors e1 and e2 depict the
tangent vectors along the constant lines of q1 and q2, respectively, whereas n is
the normal vector that is perpendicular to both e1 and e2.

represented by a pair of two real variables, say (q1, q2). In other words, q1 and q2

parametrise, in some arbitrary way, all the points on the surface, namely

M =

{
R(q1, q2) =

(
X(q1, q2), Y (q1, q2), Z(q1, q2)

)T ∣∣∣ (q1, q2) ∈ B ⊂ R2

}
, (2.1)

where B is a bounded subset of the q1q2-plane. By (2.1), to any point (q1, q2) of B
there is associated a point of R3 with position vector R(q1, q2) [48], as illustrated

in Figure 2.1. Although the choice of the parametric representation is completely

arbitrary, in practice, we choose the parametrisation that is best adapted to the

particular problem at hand. Furthermore, in order to apply differential calculus

to geometric problems, the existence of certain partial derivatives of R(q1, q2) with

respect to coordinates q1 and q2 are therefore assumed [48].

Hence, given a choice of parametrisation, we can form a coordinate system at

every point on the surface by constructing the tangent vectors and their associated

normal vector (see Figure 2.1), which are usually defined by

eµ :=
∂R

∂qµ
= ∂µR, with µ ∈ {1, 2}, and n :=

e1 × e2

‖e1 × e2‖
, (2.2)

respectively. Provided that vectors e1 and e2 are linearly independent everywhere,

the mapping (q1, q2) 7→ R(q1, q2) defines a smooth surface embedded in R3 [48].

The tangent vectors eµ also allows us to compute the infinitesimal area ele-

ment at every point on the surface. The area dS of a small patch of M is simply
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the area of a parallelogram spanned by the vectors e1 dq1 and e2 dq2, which can be

written in terms of the magnitude of their cross product [47], namely

dS = ‖e1 × e2‖ dq1dq2 =

√
‖e1‖2 ‖e2‖2 − (e1 · e2)2 dq1dq2, (2.3)

where a vector calculus identity is used in the last step. The total area A of the

surface M is simply the double integral of (2.3), which is required to be invariant

under our choice of coordinates (q1, q2). This can be shown by rewriting (2.3) in

terms of the metric tensor (or the first fundamental form) [16], which is defined by

gµν := eµ · eν , (2.4)

and it can also be represented by the following 2× 2 symmetric matrix:

G
(
q1, q2

)
=


∂R

∂q1
· ∂R

∂q1

∂R

∂q1
· ∂R

∂q2

∂R

∂q2
· ∂R

∂q1

∂R

∂q2
· ∂R

∂q2

. (2.5)

Since the expression under the square root of equation (2.3) is exactly the determi-

nant of the matrix G
(
q1, q2

)
, we have that

A =

∫∫
M

√
det G

(
q1, q2

)
dq1dq2. (2.6)

Under a change of coordinates from (q1, q2) to (p1, p2), the new tangent vectors are

given by

ẽα =
∂R

∂pα
=
∂qµ

∂pα
eµ, (2.7)

where we apply the chain rule and implicitly sum over the repeated index µ (that

is, we employ the Einstein index convention) [48]. Furthermore, under this change

of parametrisation, the new metric tensor is found to be

g̃αβ := ẽα · ẽβ =
∂qµ

∂pα
∂qν

∂pβ
gµν , (2.8)

where (2.4) and (2.7) are used to obtain the expression in the final step. If we define

the transformation matrix J (the so-called Jacobian matrix) by Jαµ = ∂qµ/∂pα,

then the metric tensor in (2.8) can be written in a matrix form as follows:

G̃
(
p1, p2

)
= J T G

(
q1, q2

)
J, (2.9)
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Figure 2.2: Illustration of a saddle surface embedded in R3. The thick blue and
green lines indicate the principal directions of a point on the surface, where ê1 and
ê2 are the corresponding tangent vectors that are orthogonal to each other. The two
circles illustrate the principal curvatures (herein, denoted by k1 and k2) associated
to each principal direction, where the diameters D1 = 2k−1

1 and D2 = 2k−1
2 .

where J T denotes the matrix transpose of J . Therefore, by employing some ba-

sic properties of determinants, we can show that det
(
J TGJ

)
= (detJ )2 (det G).

By using this result and the fact that J is the Jacobian of the transformation [49],

that is, dq1dq2 = |detJ |dp1dp2, we find that the total area A remains unchanged

under coordinate transformations:

A =

∫∫
M

√
det G

(
q1, q2

)
dq1dq2 =

∫∫
M

√
det G̃

(
p1, p2

)
dp1dp2. (2.10)

2.1.2 Mean and Gaussian Curvatures

Intuitively, the notion of curvature of a surface embedded in a three-dimensional

space quantifies how much its normal vector changes as we move along that surface,

or, colloquially, how curved is the neighbourhood of a point on the surface as we

step towards a chosen direction. Since there are many ways to move on a surface,

this object must involve derivatives of the surface normal along every tangent di-

rection. Using the specific parametrisation introduced previously in (2.2), this can
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be constructed by taking directional derivatives of n along each eµ which are then

projected onto each tangent vector eν . This forms a tensor that is known as the

second fundamental form, or the extrinsic curvature tensor, and it is defined by

cµν := eµ · (eν · ∇) n, (2.11)

which, as analogous to the metric tensor, can also be represented as a matrix:

C
(
q1, q2

)
=

e1 · (e1 · ∇) n e2 · (e1 · ∇) n

e1 · (e2 · ∇) n e2 · (e2 · ∇) n

. (2.12)

where ∇ is the gradient operator. However, since the normal vector n is a function

of the surface parameters qµ, then ∂νn = (eν · ∇) n using the chain rule. Moreover,

by differentiating the identity eµ · n = 0 with respect to the coordinate qν , we find

that ∂ν eµ · n + eµ · ∂νn = 0, which in turn allows us to rewrite (2.11) as

cµν = −n · ∂ν eµ, (2.13)

showing that cµν is a symmetric tensor since ∂ν eµ = ∂µeν . The usual convention of

differential geometry is to define (2.11) with the opposite minus sign, in contrast to

the majority of membrane related literature. However, this sign ambiguity is simply

a convention of whether we decide to call a curvature away from the surface normal

as negative or positive. Hereinafter, we choose the latter so that the curvature of a

sphere with outward pointing normal has a positive value.

As alluded previously, there is nothing special with our selection of tangent

directions and clearly the precise form of (2.11) depends on the particular choice of

coordinates (q1, q2). However, using a similarity transformation [49], it is possible

to diagonalise the matrix (2.12), that is, D
(
q1, q2

)
= Λ−1 C

(
q1, q2

)
Λ, in order to

obtain the extremal curvatures and their corresponding directions. In this diagonal

basis, the non-zero elements of D (i.e. eigenvalues) are known as the principal cur-

vatures, say k1 and k2, and their associated eigenvectors are the principal directions,

which we denote here by ê1 and ê2. Thus, k1 and k2 are purely determined by a

derivative of the surface normal along the directions ê1 and ê2, respectively, without

any contribution along the other orthonormal directions (see Figure 2.2).

Once, the principal curvatures and their associated directions are found, then

the curvature∗, kn, in every other direction, say along t = ê1 cosϕ + ê2 sinϕ, can

∗In fact, this is the normal curvature of an embedded curve on the surface, which is solely due
to shape of that surface. Another curvature can be constructed, known as the geodesic curvature,
which is exclusively due to the conformation of the curve alone. More details can be found in [48].
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be determined through a simple formula which was originally derived by Euler [48],

namely

kn = k1 cos2 ϕ+ k2 sin2 ϕ, (2.14)

where ϕ is the angle between the principal direction ê1 and the chosen direction t.

Although, by construction, the principal curvatures are independent of our

choice of parametrisation, in practice, they are not the most advantageous mathe-

matical quantities to work with. Instead, the arithmetic mean and the product of

k1 and k2 are typically used, which are known as the mean curvature, H, and the

Gaussian curvature, K, respectively. Interestingly, as the matrix D is diagonal, we

find that det D = k1k2 and Tr D = k1 + k2. On the other hand, since the trace

and determinant of a matrix are similarity invariant [49], that is, det C = det D and

Tr C = Tr D†, then we can easily extract the curvatures H and K from the extrinsic

curvature tensor in any given parametrisation [47], namely

H
(
q1, q2

)
=

1

2
Tr C

(
q1, q2

)
and K

(
q1, q2

)
= det C

(
q1, q2

)
. (2.15)

As a consequence, the mean and Gaussian curvature are surface intrinsic properties,

encapsulating all the information required to quantify the curvature of a surface [47].

Another alternative formula for the mean curvature H, which also shows its

coordinate invariance, can be found in terms of the gradient of the surface normal.

By using the definition (2.11), the principal curvatures kµ can be re-expressed in the

tangent basis êµ, namely k1 = ê1 · ∂1n and k2 = ê2 · ∂2n. For the mean curvature,

this yields

H =
1

2
(ê1 · ∂1n + ê2 · ∂2n) =

1

2
∇ · n, (2.16)

where the last result is found by employing the orthogonality of the basis (ê1, ê2,n).

2.1.3 Monge Parametrisation

The coordinate invariance of the total area, the mean and Gaussian curvature is an

extremely valuable property, as it gives us the freedom to describe a surface in the

parametrisation that is the best suited to the problem at hand. There are many

possible avenues that one can take in order to describe a surface embedded in R3,

for example, by exploiting the symmetries of the problem. The most simple choice

of coordinates is the so-called Monge parametrisation, where a surface is determined

by its height from a flat reference plane, as illustrated in Figure 2.3. In other words,

† This can be proven by employing the product identity det (AB) = detA detB, and the cyclic
property of the trace, namely Tr (ABC) = Tr (BCA) = Tr (CAB), for any matrix A, B, and C.
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Figure 2.3: The Monge parametrisation of a two-dimensional surface (coloured here
as grey), namely, a surface described by a height function u(x, y) above the xy-plane.
The blue region depicts the projection of this surface onto the xy-plane. Note that
it would not be possible to capture features such as folding with a single-valued
function u(x, y).

the position vector R is given by

R (x, y) =
(
x, y, u (x, y)

)T
, (2.17)

where u(x, y) is a height function, with x and y being the parametric variables which

form the reference plane. A corollary shortcoming of this description consists in the

requirement that, for each x and y, there exists only a single height, and therefore

this parametrisation is unable to describe overhangs. Nonetheless, it is very useful

in describing surfaces that weakly deviate from the reference plane, that is, a nearly

flat surface with the magnitude of the gradient being small (see below).

Using the equations (2.2) and (2.17), the local tangent vectors, ex and ey,

and their associated normal unit vector n are given by

ex =

 1

0

ux

, ey =

 0

1

uy

, and n =
1√

1 +
(
∇‖ u

)2
−ux−uy

1

, (2.18)

respectively, where∇‖ = (∂x, ∂y)
T is the two-dimensional gradient operator, and the
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subscript notation for partial derivatives is used, namely ux = ∂xu and uy = ∂yu.

Thus, the metric tensor, or the first fundamental form, written in a matrix

form is found to be

G (x, y) =

 1 + u2
x ux uy

ux uy 1 + u2
y

, (2.19)

and its corresponding determinant is given by g := det G = 1+
(
∇‖ u

)2
. As a result,

the infinitesimal area element in the Monge representation is dS =
√
g dxdy.

Using the form of basis vectors (2.18), the extrinsic curvature tensor can be

written in the matrix form as follows:

C (x, y) =
1
√
g

uxx
(
1 + u2

y

)
− uxyuxuy uxy

(
1 + u2

x

)
− uxxuxuy

uxy
(
1 + u2

y

)
− uyyuxuy uyy

(
1 + u2

x

)
− uxyuxuy

, (2.20)

where uxx = ∂xxu, uyy = ∂yyu, and uxy = ∂xyu. Consequently, this allows us to

find the expressions for the mean and Gaussian curvature through (2.15), namely

H = −1

2
∇‖ ·

 ∇‖ u√
1 +

(
∇‖ u

)2
, and K =

1

g2

(
uxxuyy − u2

xy

)
, (2.21)

respectively. An interesting case occurs when the surface gradients ux and uy are

assumed to be small, that is, the absolute magnitude |∇‖ u | � 1. In this limiting

case, the mean and Gaussian curvature simplify to

H = −1

2
(uxx + uyy) + O

(
|∇‖ u |2

)
= −1

2
∇2
‖ u + O

(
|∇‖ u |2

)
, (2.22)

and

K = uxxuyy − u2
xy + O

(
|∇‖ u |2

)
(2.23)

where ∇2
‖ := ∇‖ · ∇‖ is the two-dimensional version the Laplacian operator. Also,

the area element dS reduces to

dS =

[
1 +

1

2

(
∇‖ u

)2]
dxdy + O

(
|∇‖ u |3

)
. (2.24)

This approximation is employed in Chapter 3 to study the weak deformations in

the shape and composition of membrane due to the trans-membrane inclusion of a

rigid object (e.g. integral proteins, or protein coats).
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2.2 Canham–Helfrinch Theory

In this section, we apply the geometric concepts presented previously to describe the

energetics of a fluid membrane at large scales. We introduce the modern quantitative

description of biological and biomimetic membranes, which began in the 1970s with

the pioneering studies of Canham [50], Helfrich [51], and Evans [52].

2.2.1 Free-energy Functional

As described in Chapter 1, biomembranes are large aggregates of lipid molecules

with many degrees of freedom, and there are various ways to physically characterise

their local behaviour within the bilayer. However, due to the separation of scales,

the description of membranes on scales larger than its thickness is, to a great extent,

insensitive to their detailed microscopic physics and chemistry (even though their

actual existence and stability on macroscopic scales is a result of the latter). As

a result, we can usually construct a large-scale theory of membranes through an

effective energy functional that depends solely on the macroscopic observables [16].

This gives rise to a number of phenomenological constants which cannot be predicted

a priori at that scale. Namely, they are considered as fixed material parameters,

and their values can be estimated only through experiments (see Section 2.3) or

molecular dynamics simulations [16].

In order to construct such a continuum theory for fluid membranes, we need

to firstly identify the relevant local parameters that couple to the macroscopic ob-

servables. The fast lateral diffusion of lipids in the fluid phase (see Chapter 1)

guarantees that a membrane cannot support long-lived in-plane shear stresses or

deformations [14]. Moreover, this positional fluidity implies that the memory time

of any previous conformational changes is extremely short, and as a result the effec-

tive energy functional depends only on its current two-dimensional geometry [16].

Thus, the related free-energy is a purely geometrical quantity, which can be build

as an expansion in its surface invariants, such as the area
∫

dS, the mean curva-

ture H, the Gaussian curvature K, and other higher order derivatives that define

an independent surface scalar [53]. This free-energy expansion is usually truncated

to second order [16], that is,

F =

∫
dS
[
C0 + C1H + C2H

2 + C3K
]
, (2.25)

which is primarily motivated by the smallness of the membrane curvature in com-

parison to its inverse thickness. The phenomenological constants C0, C1, C2, and C3
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are commonly written as

C0 = σ + 2κH2
0 , C1 = −2κH0, C2 = 2κ, and C3 = κ̄, (2.26)

which allows us to recast the free-energy (2.25) in its standard form that is usually

found in the membrane literature [14,15], namely

F =

∫
dS
[
σ + 2κ (H −H0)2 + κ̄K

]
, (2.27)

where σ is the surface tension, H0 is the spontaneous curvature, and the curvature

parameters κ and κ̄ are the bending and Gaussian moduli, respectively. The physical

meaning of these phenomenological constants is discussed in the next section. This

free-energy functional represents the key ingredient of the Canham–Helfrinch theory,

describing a fluid membrane as a two-dimensional surface embedded in R3.

A few other examples of microscopic parameters that may also contribute

to the large-scale theory of fluid membranes include the tilt angle of lipids, and

whether the membrane is a simply a monolayer or a bilayer [16]. The latter leads to

a global conserved quantity given by the area difference between the two monolay-

ers, provided that the exchange of lipids between the two leaflets occurs very slowly.

This area difference of monolayers can be included in (2.27) through a Lagrange

multiplier, yielding important physical implications that have been extensively in-

vestigated [54–57]. However, on larger scales than the membrane thickness, the

exact form of (2.27) remains unchanged regardedless of whether the membrane is

seen as a bilayer or a monolayer, with the corresponding parameters (2.26) being

only renormalised (as described in Section 2.2.3). On the other hand, the local tilt

of lipids can be included as a vector-field that lives on the curved surface, coupling

therefore to the geometry of the membrane [58–61]. Since these two aspects are

secondary to our work, they are not discussed hereinafter and the reader is referred

to [14,15] for a fuller account.

2.2.2 Phenomenological Parameters

The first parameter in the free-energy (2.27) is the surface tension σ, which re-

flects the energy cost of creating an interface. The area energy associated with this

constant, FA = σ
∫

dS, can be interpreted in two ways: either σ is regarded as a

Lagrange multiplier conjugate to the total area, or it is viewed as an independent

thermodynamic variable that is linear in the membrane area [14, 16]. Moreover,

in the latter case, if we assume that the membrane is incompressible (that is, the
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area-per-lipid is fixed), then the total area of the membrane is proportional to the

total number of lipids. Thus, the surface tension can also be considered (in a grand

canonical ensemble) as an analogue of the chemical potential of the external lipid

reservoir [14]. As a consequence, in this scenario, if we pull in N times the lipid

area from some reservoir of lipids, we need to pay N times the energetic cost [16]. It

is worth noting that this energetic contribution is somewhat different to the defor-

mation energy due to stretching the membrane, where the area-per-lipid is actually

varied. Finally, it is also important to mention that the surface tension σ does not

represent a material parameter of the bilayer, since it usually depends on the me-

chanical constraints to which the membrane is exposed, e.g. an osmotic pressure

difference in case of a lipid vesicle [16].

The second term in (2.27) is the curvature energy that measures the local

elastic response of the mean curvature H from the spontaneous curvature H0
‡. Since

the latter arises from the linear order terms in the expansion (2.25), then a non-zero

value of H0 corresponds to a membrane with a broken up-down symmetry, reflecting

therefore the possibility of a physical asymmetry between the two lipid layers of the

membrane. For example, one of the leaflets can be enriched by a certain lipid, or

the aqueous environment is different on the two sides of the membrane [16, 36].

Conversely, for membranes where both leaflets cannot be distinguished, we require

that H0 = 0. This is due to the up-down symmetry, which means that the energy

must be invariant under a sign change of the normal unit vector n, implying that

linear terms in H are not permissible – see equation (2.16).

If we assume that the membrane is up-down symmetric, then the two curva-

ture moduli κ and κ̄ (which are known as the bending rigidity, or bending modu-

lus, and Gaussian curvature modulus, respectively) couple only to two independent

quadratic surface scalars H2 and K, respectively. Although H2 is always positive,

the Gaussian curvature K has no definitive sign. However, the energy-per-unit-area

due to curvature alone needs to be positive at quadratic order§, namely

2κH2 + κ̄K =
1

2

(
k1

k2

)T κ κ+ κ̄

κ+ κ̄ κ

( k1

k2

)
≥ 0, (2.28)

where k1 and k2 are the principal curvatures. In order to satisfy the above inequality,

the eigenvalues of the matrix in (2.28) are required to be non-negative, which leads

‡H0 is usually known as the mean spontaneous curvature. Note that a spontaneous Gaussian
curvature is also possible, but this term comes in only at quartic order in the expansion [16].
§This condition can be violated but the system is then unstable to lowest order.
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to the following condition between the curvature moduli:

0 ≤ (−κ̄) ≤ 2κ, (2.29)

showing that the bending modulus κ is always positive, whilst the Gaussian curva-

ture modulus κ̄ is negative but larger than −2κ [16]. Despite that κ and |κ̄| are

usually comparable in magnitude [62–65], the associated energy to the the Gaus-

sian term contributes to the overall energy only through changes in the topology

of the membrane and the geodesic curvature of its boundaries [14]. This result is

commonly known as the Gauss–Bonnet theorem [48], and it implies that no smooth

deformations can lead to a change in the energy κ̄
∫

dS K. As a result, the shape of

membranes and the mechanical stresses carried through them are usually insensitive

to κ̄, which makes it extremely difficult to estimate its value in both experiments

and simulations [16]. Nevertheless, there are many biological processes where the

Gaussian modulus may play an important role, such as the membrane fusion and

fission which are ubiquitous in the biomembranes of cells [2].

Thus, for many applications the Gaussian modulus can be neglected and we

adopt that approximation in what follows. If the bending rigidity κ is also negli-

gibly small, then the membrane is described by the surface tension term FA alone

(soup films are a common example of such a system). On the other hand, without

the surface tension σ, the membrane is purely characterized by the bending term,

namely FH = 2κ
∫

dS H2 (ignoring the spontaneous curvature). However, if both

energetic contributions are relatively important, then the problem becomes slightly

more interesting, where the pure-tension and pure-bending limits are typically re-

covered at length scales larger and smaller, respectively, than a typical crossover

length λ, which on dimensional grounds is found to be

λ =

√
κ

σ
. (2.30)

In other words, on length scales larger than λ the energy associated with the bending

deformation mode becomes negligible in comparison to the tension term, whereas

on length scales smaller than λ the bending contribution dominates throughout.

Interestingly, the typical value of the surface tension for biomembranes is

about σ ∼ 10−5 N/m [66], and κ ∼ 10 kBT [67], which yields λ ∼ 70 nm. This

suggests that the bending terms are significant on the length scales at which the

cellular processes such as budding, endocytosis, or exocytosis, occur (i.e. on the

order of 50 nm [2]), but on larger scales than λ (say, the size of the cell, a few µm)

the biomembrane physics is mainly dominated by the surface tension.
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2.2.3 Bilayer-monolayer Renormalisation

By treating each monolayer as an individual structure, we can apply the same rea-

soning, as in Section 2.2.1, in order to construct an effective free-energy functional

of a lipid monolayer, namely

Fm =

∫
dSm

[
σm + 2κm (Hm −Hm, 0)2 + κ̄mKm

]
, (2.31)

which is identical to equation (2.27) apart from the superscript that indicates that

each quantity corresponds now to a single monolayer rather than a bilayer. Notice

that the monolayer spontaneous curvature Hm, 0 is closely related to the effective

molecular shape of a lipid (that is, its packing parameter P discussed in Section 1.3),

which in monolayer assemblies results in an intrinsic tendency to relax into a state

of finite curvature if the shape of the lipid constituents are non-cylindrical (P 6= 1).

As a consequence, the parameter Hm, 0 is usually referred to as the lipid curvature,

with the sign convention as positive if the lipid has a larger hydrophilic head group

compared to the shape of its hydrophobic tails, that is, P < 1 [16].

In order to find the relationship between the monolayer free-energy (2.31)

and its bilayer counterpart (2.27), we need to firstly understand how a membrane

slab of finite thickness is idealised to a mathematical surface. In the case of a

bilayer, the common choice is to adopt the mid-plane between the two leaflets as

the two-dimensional surface, sayM. However, in the case of a monolayer, there is no

obvious choice on symmetry grounds, and the usual method (in the elastic theory) is

to consider a surface where neither stretching nor compression occurs upon bending,

which is known as the pivotal plane [16], and it is denoted here by Mm. Hence,

if we assume a constant distance z0 between the mid-plane of the bilayer and the

pivotal plane of one of its monolayers, then we have that

Mm(q1, q2) =M(q1, q2) + z0 n(q1, q2) (2.32)

where n is the normal unit vector of the surface M (as well as Mm as the surfaces

are assumed to be parallel), and the variables q1 and q2 parametrise these two

surfaces. The exact relationships between their area elements, mean, and Gaussian

curvatures are given by following expressions [46]:

dSm =
(
1 + 2z0H + z2

0K
)

dS, (2.33)

Hm =
H + z0K

1 + 2z0H + z2
0K

, and Km =
K

1 + 2z0H + z2
0K

, (2.34)
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respectively. Therefore, using the above identities, we can re-write Fm in terms of

the geometric scalars of the bilayer, which to first order in z0 yields

Fm =

∫
dS
{(
σm + 2κmH

2
m, 0

)
+ 2H

[(
σm + 2κmH

2
m, 0

)
z0 − 2κmHm, 0

]
+ 2κmH

2 +K (κ̄m − 4z0κmHm, 0)
}

+ O
(
z2

0

)
. (2.35)

Since a bilayer consists of two monolayers, then the total effective free-energy is

given by Fb = Fm + Fm′ , where Fm′ is the energy contribution due to the other

monolayer with the pivotal surface Mm′(q
1, q2) = M(q1, q2) − z0 n(q1, q2). Thus,

if we assume that both monolayers are identical, then by comparing the resulting

terms in Fb with the coefficients of (2.27), we have that H0 = 0, as expected, and

σ = 2
(
σm + 2κmH

2
m, 0

)
, κ = 2κm, and κ̄ = 2 (κ̄m − 4z0κmHm, 0). (2.36)

This shows that the large-scale theory of either monolayers or bilayers reduces to the

same physics, with the phenomenological coefficients of the membrane being renor-

malised. Namely, the bending rigidity of the bilayer is twice the monolayer bending

modulus (or, in general, it is the sum of the bending rigidities of each monolayer).

On the other hand, the membrane surface tension is twice the monolayer surface

tension, as anticipated, but with an additional term that reflects the internal stress

generated by the non-zero intrinsic curvatures of each lipid monolayer [16] (this term

is usually known as the spontaneous tension [68, 69]). Finally, the Gaussian curva-

ture modulus acquires, as well, a small correction due to the monolayer spontaneous

curvature, which interestingly it can increase or decrease its value depending on the

sign of the lipid curvature Hm, 0.

2.3 Model Membrane Systems and Experiments

As detailed in Section 2.2.2, the membrane surface tension σ is not a material depen-

dent parameter, the spontaneous curvature H0 vanishes, in general, for symmetry

arguments, and the Gaussian curvature modulus κ̄ is mostly limited to topological

effects [14]. As a result, the bending rigidity κ is essentially the most fundamental

phenomenological constant in the Canham–Helfrinch theory, controlling and charac-

terising the shape and the mechanical properties of fluid membranes on large scales.

The bending modulus is an intrinsic property of the membrane, which primarily

depends on its lipid composition, such as the degree of saturation and the length of

the fatty acid chains [70–72]. For fluid membranes, its estimated value ranges from
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about 10 kBT (or 4 × 10−20 J) to rather less than 100 kBT (or 4 × 10−19 J), with

kBT the thermal energy at room temperature [70]. In this section, we briefly review

some of the different techniques which have been used to experimentally verify the

Canham–Helfrinch theory and to estimate the value of the bending modulus.

2.3.1 Spherical and Planar Geometries as Model Systems

To investigate the mechanics of biological membranes and to study the theoretical

model presented in Section 2.2, various minimal model systems of lipid membranes

have been developed, which can accommodate both a single lipid species or a mixture

of many types of lipids (see [70] for a detailed review). In addition, these model

systems can also be used to mimic a plethora of different biological processes that

involve lipid membranes [73]. In particular, the effect of proteins on membranes

can be examined by reconstituting a number of transmembrane proteins [74], or by

binding proteins to membranes through their receptors [75]. Typically, these model

systems can be classified in terms of the geometries employed in the experimental

methods, predominantly consisting of spherical and planar lipid assemblies [70].

Lipid membranes of spherical geometry, such as lipid vesicles or liposomes,

as shown in Figure 1.7 (b), are widely used in experiments [70]. Their size usually

ranges a from about 50 nm (e.g. small unilamellar vesicles, or SUVs) to a few 10 µm

(e.g. giant unilamellar vesicles, or GUVs). Because of the relatively large sizes of

the GUVs, they can be studied under an optical microscope, being a suitable system

to observe membrane deformations. The GUVs represent the simplest model of a

cell membrane, and they are extensively used to analyse the mechanical properties

of membranes, the demixing phenomena of lipid mixtures, and the interaction with

membrane proteins or peptides [70, 73, 76]. This is one of the most common meth-

ods to estimate the bending rigidity of membranes, and the different experimental

techniques of extracting κ is discussed in the next section.

However, for a large number of other experimental methods (such as X-ray or

neutron techniques), the spherical vesicles are not the most appropriate model sys-

tems, and membranes of planar geometries are used instead. They generally consist

of a single bilayer supported on a solid substrate, which may incorporate, as before,

many types of lipids and a multitude of different reconstituted proteins [77–79].

However, the mechanical and chemical properties of membranes are dramatically

affected by the rather short distance between the solid substrate and the bilayer,

which is typically around 2 nm [70]. As a consequence, the bilayer is usually anchored

to the substrate through polymer chains or it is rested on a polymer cushion [80–82].

Another way to resolve this technical issue is to consider a stack of various bilayers,
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as illustrated in Figure 1.7 (a), which are arranged parallel to the substrate [83–85].

These planar systems are widely used in X-ray or neutron experiments to

investigate the membrane structure and the lipid organisation within the membrane

(which goes beyond the spatial resolution provided by optical microscopy), and

moreover to measure their fluctuation spectrum [86–88]. The latter allows us to ob-

tain mechanical information about membranes, particularly yielding an estimate of

the bending modulus [88–90]. For more details, the reader is referred to [70] and [88].

2.3.2 Techniques to Estimate the Bending Modulus

The model systems discussed in Section 2.3.1 have been widely used to measure the

membrane elastic constants in the framework of the Canham–Helfrich theory [70].

In particular, the bending rigidity has been estimated through numerous techniques,

which are mainly based on the membrane response to thermal fluctuations or applied

external stresses. Although a comprehensive list of its measured values for different

lipid compositions can be found in [67,72,87], hereinafter, we discuss only the exper-

imental methods that are in realm of optical microscopy: by measuring the shape

fluctuations, micropipette aspiration techniques, by pulling membrane nanotubes,

and by weakly deforming the shape of GUVs through external fields [70].

Flickering spectroscopy

Since fluid membranes are exceptionally soft materials, with a small value of the

bending modulus, on the order of few kBT , the membrane shape exhibits fluctua-

tions, or undulations, induced by the thermal agitation [14]. It is important to note

that the effective free-energy of the Canham–Helfrinch theory already includes, in a

way, various thermal fluctuations in the internal degrees of freedom of the bilayer.

However, they are coarse-grained out on large scales, and therefore the phenomeno-

logical parameters (2.26) are functions of the ambient temperature. Consequently,

the shape undulations mentioned above are, in fact, fluctuations of the membrane

geometry, and not of its underlying microscopic components [14]. This compelling

notion was firstly explored, in 1975, by F. Brochard and J. F. Lennon, in order

to explain the flickering phenomenon observed in red blood cells [91]. The mean

squared amplitude of these undulation modes was later computed in a planar ge-

ometry [92], yielding the following simple expression for the fluctuation spectrum or

the static structure factor of a membrane:

〈
|uq|2

〉
=

kBT

A (σq2 + κq4)
, (2.37)
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whereA is the area of a membrane patch, u(r) is the local deviation of this membrane

from its average position along the normal direction, with uq as its Fourier transform.

Here, q is the magnitude of the Fourier wave vector q associated to r = (x, y)T, that

is, the position vector in the mean-plane of the membrane. This shows that a simple

analysis of the mode structure of the membrane thermal fluctuations can be used

to measure the bending rigidity κ, but also its surface tension σ.

The method is usually referred to as flicker spectroscopy, and its been widely

used in video-microscopy experiments to estimate κ of red blood cells [93, 94] and

GUVs of various lipid compositions [95–107]. The common theoretical framework

includes, as well, the dynamical effects due to the camera integration time [103]

and other dissipative processes [108], but also the specific geometry used in the

experiments, which usually involves a quasi-spherical approximation of GUVs [97].

The measured values of the bending rigidity determined by this method tend to be

significantly and systematically larger than those obtained through X-ray scattering

and micromechanical manipulation techniques [67] (which are presented next).

This methodology is discussed in more details in Chapter 4, where we investi-

gate the effect due to the projection of quasi-spherical modes onto the focal plane of

the microscope on the estimates of the elastic constants. The primary motivation of

this work is the unresolved puzzle in the literature where the flicker experiments give

κ too high compare to the other methods. By taking into account this correction

due to the projection of thermal fluctuations, we find that the estimated values of κ

by means of flicker spectroscopy are now in good agreement with the other methods.

Micropipette aspiration technique

This method was originally used by E. Evans to measure the mechanical proper-

ties of red blood cells and GUVs [109–111]. By partially aspirating (or sucking) a

vesicle into a small pipette with a diameter of about 10 µm or smaller, the pres-

sure difference ∆p between the interior of the vesicle and its surrounding medium

can controlled experimentally. If we assume a Young-Laplace relation across both

spherical caps found inside and outside of the micropipette, with a radius Rin and

Rout, respectively, then the membrane tension σ is given by

∆p = 2σ

(
1

Rin
− 1

Rout

)
, (2.38)

and, therefore, it can be obtained through simple geometric measurements [16].

Moreover, the difference between the actual membrane area (i.e. given by the total

number of lipids in the vesicle) and the observed area of the membrane outside the
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micropipette is known as the excess area, and it is usually denoted by α [111]. By

assuming that volume enclosed by the vesicle remains constant, the excess area α

can be determined by measuring the projected length of the vesicle that is par-

tially aspirated into the micropipette [111]. The variation of the excess area as the

membrane surface tension is changed from σ0 to σ is found to be [70,111]:

∆α =
kBT

8πκ
ln

(
σ

σ0

)
. (2.39)

At low membrane tensions, the excess area α arises mainly from the shape undu-

lations of the vesicle, and a crossover transition is therefore observed between an

enthalpic regime, where the membrane is only stretched elastically, and an entropic

regime, which is primarily dominated by thermal fluctuations in the shape [70].

By restricting to membrane surface tensions below this crossover transition (lower

than 10−5 N/m), then (2.39) provides a viable method to extract the bending mod-

ulus κ and to study other mechanical properties of lipid membranes [71,111–114].

Membrane pulling

Another method that allows us to deduce the bending rigidity involves the direct

measurement of a point-force that is required to extract a long thin tether (namely,

a membrane nanotube) out of the membranes of GUVs [70]. There is a large number

of experimental techniques that can be used to achieve the membrane tube-pulling,

for example, through hydrodynamic flows [115], electroporation [116], or using an

optically trapped bead [117–121]. The extraction of a cylindrical membrane tube

leads to an energy cost that is given by

Ftube =

∫
dS
(
σ + 2κH2

)
− fL = 2πRL

(
σ +

κ

2R2

)
− fL (2.40)

where f is the applied point-force, L is the displacement of that point, which corre-

sponds to the length of the membrane tube, and R represents its radius [122, 123].

Interestingly, the equation (2.40) exhibits an energetic competition between two

effects: the bending energy term favours a larger tube radius, whilst the surface

tension term tends to reduce it, preferring smaller tubes. Thus, the equilibrium

radius R0 for a given applied force f0 can be determined by minimising (2.40),

namely

R0 =

√
κ

2σ
and f0 = 2π

√
2κσ, (2.41)
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respectively. Since f0 only depends on the elastic constants of the membrane, this

reveals that a measurement of the applied force necessary for pulling a tether from

a membrane can be used to estimate κ [115–121], provided that surface tension is

known, e.g. through a micropipette aspiration technique [111].

External fields

Lastly, the mechanical response of a lipid vesicle to an external field (either an

electric or a magnetic field) have been used to measure the bending modulus for

different lipid compositions [70]. By exposing a lipid vesicle to an alternative electric

field, the induced transmembrane potential yields an effective electric tension, which

in turn deforms its spherical shape into an ellipsoid. The total lateral tension can

be computed from the Maxwell stress tensor and the eccentricity of this ellipsoid,

see [124] for more details. By measuring the apparent variation of membrane area as

a function of the lateral tension, which is due to a flattening of thermal fluctuations,

it allows us, through a relation similar to equation (2.39), to compute the bending

rigidity of the membrane [124–128]. An analogous procedure can be performed by

using a magnetic field instead if the GUVs are filled with a ferrofluid [129].

2.4 Summary

Fluid membranes are incredibly soft materials characterised a very small value of

the bending rigidity. One of the most remarkable aspects of fluid membranes is

the separation of scales due to the large aspect ratio between the thickness of the

bilayer and its lateral dimension. Thus, a fluid membrane can be regarded on

large scales as an incompressible elastic sheet, controlled primarily by the bending

rigidity but also by its surface tension. The appropriate language to mathematically

describe these objects is the beautiful subject of differential geometry and statistical

mechanics, which forms the basis of the Canham-Helfrich theory. This was proposed

independently by Canham, Helfrich and Evans in the early 1970s.

Since their pioneering works, a tremendous effort has been devoted to study

both theoretically and experimentally [16,45,70] many of the problems ingrained in

this model. Through various model systems, many in vitro membrane processes can

be experimentally studied to a great extent, and numerous theoretical predictions

can be tested against the experimental data. The success of this theory to prescribe

a theoretical foundation of biomembranes and their associated properties highlights

its physical and biological importance, representing a marvellous example where

physics can shed light on the understanding of biological systems.
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Chapter 3

Compositional Variation near

Membrane Inclusions

Biological membranes possess a considerably complicated architecture, including a

large number of heterogeneities in their composition, such as a myriad of different

membrane proteins which can be either absorbed on the surface or embedded in the

membrane [26,27]. These proteins act as active constituents and contribute to a va-

riety of biological functions, including cellular transport, signal transduction and cell

adhesion [1]. Moreover, various experimental studies have shown that the interaction

with the neighbouring lipid molecules can regulate the function of many membrane

proteins [130–133]. Although this regulation may depend on specific chemical inter-

actions, a large number of transmembrane proteins are modulated by non-specific

lipid-protein interactions that arise solely from the coupling of their hydrophobic

regions (namely, between the hydrophobic core of the membrane and the hydropho-

bic belt of the protein) [134–137]. This indicates that, in many circumstances, the

dominant effects are purely mechanical and caused by protein-induced perturbations

of the surrounding lipid structure, which incur an energetic cost [138–140]. In this

chapter, the mechanical deformations of the lipid environment in the vicinity of a

rigid membrane inclusion is analysed by modelling the membrane as a continuous

elastic medium, based on the Canham-Helfrich theory introduced in Chapter 2.

3.1 Introduction

The basic structure of biomembranes comprises of a large number of discrete lipid

molecules, which move laterally in the plane of the membrane, with a diffusion

constant, Dlipids ∼ 10−8 cm2/s, that is larger by nearly two orders of magnitude than
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the diffusion of transmembrane proteins, namely Dproteins ∼ 10−10 cm2/s [141–143].

As a consequence, during the time that a membrane protein diffuses an average

distance of one lipid diameter, many lipid molecules will interchange places near

the protein, coarse-graining out the lipidic discreteness of the membrane. Moreover,

the typical transition time for conformational changes of the protein (about 5 µs)

is much slower than the characteristic diffusion time of the lipids. This gives us a

strong indication that a lipid bilayer can be effectively approximated as a continuous

medium in the vicinity of a membrane protein (see Section 2.2.2). In addition, the

transmembrane proteins can be regarded as rigid inclusions and embedded into

the bilayer, such that their hydrophobic and hydrophilic parts match with those of

the adjacent lipids. This fitting usually disturbs the equilibrium configuration of the

protein-free membrane and changes the free energy of the lipid bilayer [139].

As a result, the mechanical deformations of the lipid environment in the

vicinity of a transmembrane protein can be quantitatively described by local field

variables, such as the height and/or the thickness of the bilayer [31–35, 144–154].

These examples of structural variables correspond to the two main classes of defor-

mations induced by transmembrane proteins, namely the mid-plane bending and the

hydrophobic mismatch, respectively [139,148]. The free-energy cost associated with

these deformation modes are completely decoupled on symmetry grounds and they

can be independently analysed provided that the perturbations are small [146–148].

Furthermore, the deformation fields of neighbouring proteins can overlap and in-

duce membrane-mediated interactions between the proteins, which may be either

attractive or repulsive depending on their shape and orientation [31–35, 144–154].

The characteristic length scale of the mid-plane bending interactions is generally

longer than the length scale of the deformations in the membrane thickness, but

the interaction strength of the former deformation mode is typically much weaker

than the latter [147,148]. Consequently, many theoretical studies have been devoted

to understand how membrane-mediated interactions may affect the spatial organi-

zation of proteins, and their ability to respond and communicate conformational

changes to each other [34,151–157].

Here, we consider an additional deformation mode that results from the

enrichment of curvature sensitive inclusions in the vicinity of a membrane protein,

such as non-lamellar-forming lipids or any kind of molecules smaller than the typical

size of a protein. The addition of these molecular particles is usually characterized

by a spontaneous curvature. This is a thermodynamic property of lipid monolayers

that is operationally defined as their preferred mean curvature in the absence of

external mechanical stresses [36, 42]. As discussed in Section 2.2.3, two opposed
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monolayers that have the same lipid curvature will always form a planar bilayer,

even though the monolayers may have a non-zero intrinsic curvature [138, 140].

Hence, in the context of bilayers, it is more appropriate to consider a composite

spontaneous curvature given by the difference between the monolayer spontaneous

curvature of each leaflet [51]. This suggests that asymmetrically doped bilayers

generate a non-zero mean curvature by bending the membrane away from one of

the aqueous surroundings. As a result, the spontaneous curvature can be used to

quantitatively describe the asymmetry in the distribution of molecular inclusions

between the two lipid layers of the membrane [138,140].

Irrespective of its microscopic origin, the spontaneous curvature is normally

treated as a well-defined global property, where a uniform distribution is assumed

across the different leaflets of the bilayer. However, this assumption is not generally

valid and consequently a local description is needed to account for non-homogeneous

regions of membranes. This is particularly the case for the environment around

transmembrane proteins, where the membrane-induced deformation fields provide

the possibility of selection and enrichment of certain lipids, or surfactants, near the

protein faces. As an illustrative example, cone-shaped molecules (such as lysophos-

pholipids) can laterally and transversely diffuse within the bilayer, and localise to

energetically favourable regions near proteins, where the membrane has complemen-

tary curvature [36, 158]. Because of their curvature preference, this leads to a local

compositional asymmetry in the vicinity of the membrane protein, which subse-

quently generates a local spontaneous curvature, as shown in Figure 3.1. The main

purpose of this study is to investigate such situations within a continuum theory of

membranes, where the transmembrane proteins are treated as rigid inclusions.

In the next section, an analytic methodology is described which can be used

for estimating the membrane energy, their shape, and the local phase behaviour,

near a transmembrane protein. Subsequently, in Section 3.3, we apply this model

to a number of biologically relevant problems. In particular, in Section 3.3.1, we

examine the regime in which the membrane can become unstable and how this may

be used to estimate the unknown parameters in our framework. In Section 3.3.2, the

methodology is applied to a simple model of transmembrane proteins which display

an asymmetrical shape. Lastly, in the final sections, we show how this model can be

used to extend the gating-by-tilt mechanism for mechanosensitive channels of large

conductance [159], and, furthermore, we investigate the effect due to the membrane

compositional asymmetry on the early stages of protein coat assembly [160].
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Figure 3.1: Schematic diagrams of a single transmembrane protein embedded into
a two-component fluid membrane composed by lysophospholipids (red) and bilayer-
forming lipids (blue). By assuming no hydrophobic mismatch, the deformation is
characterised by the functions u(r) and ϕ(r), which are the deviation from flatness
of the mid-plane of the bilayer, and its local leaflet asymmetry, respectively. The
radial distance r is measured from the centre of the protein. Here, (a) depicts one
extreme possibility, where the cone-shaped protein induces a mid-plane bending
of the bilayer without any changes in the compositional asymmetry between the
leaflets. (b) shows another extreme possibility, where the membrane only locally
demixes to accommodate the membrane protein, leading to a non-zero ϕ near the
inclusion (namely, a local spontaneous curvature). In practice, the membrane is
expected to partially bend and partially demix, as illustrated in (c).
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3.2 Theoretical Model

The bilayer in the vicinity of a membrane inclusion may be treated as a continuous

elastic medium (as described in Section 2.2). By including a rigid object into the

membrane, such as a transmembrane protein, this results in mechanical perturba-

tions about its free equilibrium configuration [139]. In order to analytically compute

the deformation energy due to a single membrane protein, we consider an asymp-

totically flat membrane (see Section 2.1.3). Hence, the Monge parametrisation can

be used to describe the mid-plane of the bilayer as a small deviation from flatness

of magnitude u(r), where r is a position vector that lies within a plane normal to

the membrane displacement, as illustrated in Figure 3.2.

Thus, in the framework of the Canham–Helfrich theory, the free-energy cost

associated with this deformation mode can be written in the linearised Monge rep-

resentation [14] by employing results derived in (2.22) and (2.24), which gives

Fu =
1

2

∫
M

[
σ
(
∇‖ u

)2
+ κ

(
∇2
‖ u
)2 ]

d2r, (3.1)

where κ is the bending rigidity of the membrane, σ is the surface tension, andM is

the region of integration, namely a Cartesian plane without the cross-sectional area

of the inclusion. Also, the operators ∇‖ and ∇2
‖ are defined by the two-dimensional

versions of the usual gradient and Laplacian operator, respectively, see Section 2.1.3.

Furthermore, the energetic contribution due to the Gaussian bending modulus is

neglected throughout this study. Nevertheless, its associated energy contributes, in

general, to the overall deformation energy through the topology of the membrane

and the geodesic curvature of its boundaries [147,161].

The addition of curvature sensitive inclusions can lead to a local composi-

tional asymmetry around a transmembrane protein due to their affinity for specific

curvature signs (see Figure 3.1). In order to model this, we restrict for simplicity to

a two-component fluid membrane given by a mixture of two types of lipids, which

has a vanishing composite spontaneous curvature far away from the inclusion. As

shown in Figure 3.1, this can be viewed as a mixture of cylindrical and cone-shaped

lipids (with zero and non-zero intrinsic monolayer curvature, respectively) in the

uniformly mixed phase. The membrane is assumed to have an internal degree of

freedom, an order parameter ϕ(r), which is a scalar field defined on M that quan-

tifies the difference in compositions between the two leaflets (e.g. the local relative

concentration of the two types of amphiphiles). By considering small compositional

variations, then an effective free-energy for the in-plane ordering can be written as
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Figure 3.2: The surface of the membrane (blue line) is described in the Monge
parametrisation by u(r, θ), where r is the radial distance from the center of the
protein, and θ is the azimuthal angle. Although the protein inclusion is illustrated
here as a three-dimensional object, its surface variation along ẑ direction is coarse-
grained out, so that its geometry is described by only three parameters, namely
the radius r0, the height U(θ), and the contact angle U ′(θ). These functions pa-
rameterize the interface between the inclusion and the mid-plane of the bilayer (red
curved line), and define the boundary conditions in this model, i.e. u(r0, θ) = U(θ)
and n̂ · ∇u(r0, θ) = U ′(θ), with n̂ as the inward unit normal vector. Besides the
invariance under the vertical translations, the membrane energy at equilibrium is
also required to be invariant under a small tilt angle ψ, where the rotation axis is
specified by ε, such that the net torque on the inclusion is zero.
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a Landau-Ginzburg expansion, namely

Fϕ =
1

2

∫
M

[
aϕ2 + b

(
∇‖ ϕ

)2
+ 2 cϕ

(
∇2
‖ u
) ]

d2r, (3.2)

where only the lowest-order terms are retained, with a, b, and c phenomenological

coefficients [162]. The first term in the integrand is assumed to be positive, which

tends to keep ϕ at its equilibrium value, the well-mixed state ϕ = 0, whereas the

gradient term captures the energy cost for changes in the compositional variation.

The last term linearly couples the local compositional difference to the mean cur-

vature of the membrane. This interaction term has initially been proposed in the

seminal work of S. Leibler [163] and it is a generalization of the spontaneous curva-

ture energy [164–166]. Therefore, the total free-energy functional that defines our

model is given by F = Fu + Fϕ, which is essentially the lowest order expansion in

both scalar fields u and ϕ that is allowed by the symmetries of the system∗.

3.2.1 Euler-Lagrange Equations

By rescaling the local compositional asymmetry as φ(r) = (b/c)ϕ(r) and, moreover,

by setting α2 = σ/κ, β2 = a/b and γ2 = c2/κb, the total free-energy F can be

rewritten as a dimensionless quantity, namely

F̂ =
1

2π

∫
M

d2r
{
α2 (∇‖ u)2 + (∇2

‖ u)2 + γ2
[
β2 φ2 + (∇‖ φ)2 + 2φ (∇2

‖ u)
]}
, (3.3)

where F̂ = F/ (πκ). Here, the free parameters α, β and γ have dimensions of

inverse length and they represent the characteristic length scales within our model.

In order to determine the Euler-Lagrange equations for u(r) and φ(r), we

consider the one-parameter family of maps

u(r)→ u?(r) ≡ u(r) + εu δu(r) and φ(r)→ φ?(r) ≡ φ(r) + εφ δφ(r), (3.4)

where δu(r) and δφ(r) are test functions, which are completely arbitrary on M,

but fixed on the boundaries of the domain ∂M. Thus, a new functional can be

constructed by applying these transformations, say F̂?(εu, εφ). Without any loss of

generality, by setting εu = εφ = 0 to be the point in the εuεφ-space that labels the

corresponding minimised functions of (3.3), then F̂? is required to be a minimum

∗F is invariant under the simultaneous transformations u 7→ −u and ϕ 7→ −ϕ as required by
simple symmetry arguments: if the membrane is inverted, no change in energy should occur.
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with respect to both εu and εφ at this point, that is,

lim
εu→ 0

lim
εφ→ 0

F̂?(εu, εφ)− F̂
εu

= lim
εu→ 0

lim
εφ→ 0

F̂?(εu, εφ)− F̂
εφ

= 0. (3.5)

Since the explicit form of F̂? to lowest order in εu and εφ is found to be

F̂?(εu, εφ) = F̂ +
εu
π

∫
M

d2r
(
∇2
‖ u ∇

2
‖ δu+ α2 ∇‖ u · ∇‖ δu+ γ2 φ ∇2

‖ δu
)

+O(ε2u)

+
εφ
π

∫
M

d2r γ2
(
β2φ δφ+∇‖ φ · ∇‖ δφ+ δφ ∇2

‖ u
)

+O(ε2φ), (3.6)

then equation (3.5) yields that both integrals shown in (3.6) must vanish. Hence,

by employing the divergence theorem and the method of integration by parts [49],

these integrals can be reduced to∮
∂M

δφ(r)
∂φ

∂n
−
∫
M

d2r
[
(∇2
‖−β

2)φ−∇2
‖ u
]
δφ(r) = 0 (3.7)

and ∮
∂M

δu(r)
∂

∂n

(
α2 u− γ2 φ−∇2

‖ u
)

+
(
∇2
‖ u+ γ2 φ

) ∂

∂n
δu(r)

+

∫
M

d2r
[
∇2
‖ (∇2

‖−α
2)u+ γ2 ∇2

‖ φ
]
δu(r) = 0, (3.8)

where we assume that u(r) and φ(r) vanish in the far-field limit, and ∂
∂n := n̂ · ∇‖

denotes the normal derivative, with n̂ as the unit vector normal to the boundary of

the domain ∂M, pointing toward the centre of the inclusion (see Figure 3.2).

To obtain the Euler-Lagrange equations, the boundary terms in both (3.7)

and (3.8) are required to cancel out [167]. In the latter case, this can be achieved

by demanding that both δu and the normal component of its gradient, ∂
∂nδu, vanish

everywhere on ∂M. However, from (3.4), this is equivalent to fixing the field u(r)

and its normal derivative on the boundary. In the same way, the vanishing of the

boundary terms in (3.7) can be obtained by setting the normal derivative ∂
∂nφ = 0

everywhere on ∂M (Neumann condition), or by requiring that δφ = 0, namely the

compositional asymmetry field φ is fixed on the boundary (Dirichlet condition).

As a consequence, the requirements of vanishing boundary terms provide the

appropriate choices of boundary conditions at the protein-membrane interface ∂M.
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Hereinafter, we choose the following boundary conditions:

u(r)
∣∣∣
∂M

= U , and n̂ · ∇‖ u
∣∣∣
∂M

= U ′, (3.9)

where the functions U and U ′ describe the height and the contact angle at which

the mid-plane of the membrane meets the rigid inclusion, respectively, as illustrated

in Figure 3.2, which may be obtained from the protein crystallographic data (ap-

propriately coarse-grained). This choice of boundary conditions is motivated by the

strong coupling between the transmembrane domain of the rigid inclusion and the

hydrophobic core of the membrane [162]. Since δu(r) and δφ(r) are (by definition)

completely arbitrary in the bulk, then (3.7) and (3.8) can be reduced to

∇2
‖ u = (∇2

‖−β
2)φ and ∇2

‖(∇
2
‖−α

2)u + γ2 ∇2
‖ φ = 0, (3.10)

respectively, which are obtained regardless of the choice of boundary conditions on

the compositional asymmetry φ(r). These are the Euler-Lagrange equations that

both scalar fields u(r) and φ(r) must satisfy in the lowest energy state of the system.

3.2.2 General Solutions

The Euler-Lagrange equations (3.10) can be combined to obtain a fourth order

differential equation in terms of φ(r) only, that is,

(
∇‖2−k2

+

)(
∇‖2−k2

−
)
φ = 0, (3.11)

where k2
± depends solely on α, β and γ, namely

k2
± =

1

2

(
α2 + β2 − γ2

)
± 1

2

√(
α2 + β2 − γ2

)2 − 4α2β2 . (3.12)

It can be shown that k2
± > 0 if and only if γ ≤ |α− β| and that k2

± < 0 if and only

if γ ≥ α+ β, where γ is strictly positive† Furthermore, they become complex if the

coupling constant γ ∈ ( |α− β|, |α+ β| ), as illustrated in Figure 3.3. The physical

significance of these complex (and purely imaginary) solutions for k± is discussed in

Section 3.3.1. We restrict for now to the case when the coupling term γ < |α − β|,
which implies that the values of k± are strictly positive and k− 6= k+. Accordingly,

a solution of the partial differential equation (3.11) that vanishes in the far-field can

†Although both scalar fields u and φ are invariant under γ 7→ −γ, the sign choice of γ is purely
a convention of whether we refer to the enrichment of a membrane leaflet that couples to positive
curvature, or the depletion of one that couples to negative curvature.
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Figure 3.3: Plot of k2
± against the coupling constant γ, with α r0 = 0.1 and β r0 =

1.0, where r0 is the radius of the protein. This shows that both k+ (red line) and
k− (blue line) are real for γ < |α − β|, and purely imaginary for γ > α + β. The
grey shaded area illustrates the region where k2

± are complex, while the green line
is the projection of these solutions onto the real space.

be expressed in the following form:

φ(r, θ) = φ+(r, θ) + φ−(r, θ), (3.13)

where r and θ are the polar coordinates, with the origin chosen in the centre of the

membrane inclusion, and the functions φ± are defined by

φ±(r, θ) =
k2
±

k2
± − β2

∞∑
n=0

V±n (θ)Kn(k±r), (3.14)

where V±n (θ) = A±n cos(nθ) + B±n sin(nθ), with A±n and B±n as arbitrary constants,

and Kn are the modified Bessel functions of the second kind of integer order n.

As a result, this solution can now be used to find the membrane shape u(r, θ)

by direct substitution into the first Euler-Lagrange equation in (3.10), which yields

u(r, θ) = u+(r, θ) + u−(r, θ) + uh(r, θ), (3.15)

where uh is the associated homogeneous solution that solves the two-dimensional

version of the Laplace equation, ∇2
‖ uh = 0, namely

uh(r, θ) =
∞∑
n=0

Wn(θ) r−n, (3.16)

in which Wn(θ) = Xn cos(nθ) + Yn sin(nθ), with Xn and Yn as arbitrary constants.
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This expression is obtained by excluding the solutions that diverge at infinity, i.e. u

must remain finite far way from the membrane inclusion. The other two functions

in (3.15) are the corresponding inhomogeneous solutions, which are found to be

u±(r, θ) =

∞∑
n=0

V±n (θ)Kn(k±r). (3.17)

Therefore, the deformation profile u(r, θ) contains six arbitrary constants for

each Bessel-Fourier mode, which can be determined by employing the boundary con-

ditions at the interface between the inclusion and the membrane. Here, we consider

rigid inclusions with radial symmetry along a central axis ẑ normal to the surface

M, as depicted in Figure 3.2. This constraints the shape ∂M of the membrane in-

clusion to be at a fixed radius r0, which allows us to express the boundary conditions

in cylindrical coordinates, as presented in the next section.

3.2.3 Neumann Boundary Condition

By choosing a Neumann condition for the local compositional asymmetry φ(r) on

the boundary ∂M (later, the Dirichlet condition will be examined as well), the

unknown functions V±n and Wn can be determined from the boundary conditions

n̂ · ∇‖ φ (r0, θ) = 0, (3.18)

u (r0, θ) = U(θ) := z0 +

∞∑
n=1

zn cos(nθ − ξn), (3.19)

and

n̂ · ∇‖ u (r0, θ) = U ′(θ) := δ0 +
∞∑
n=1

δn cos(nθ − χn), (3.20)

where the functions U(θ) and U ′(θ) are written in terms of a Fourier series [49], so

that each V±n (θ) and Wn(θ) can be evaluated (individually) at every order in the

series. Moreover, these conditions can be re-written in a matrix form as follows:
Kn(k+r0) Kn(k−r0) 1

L+
nKn(k+r0) L−nKn(k−r0) n

f+Kn(k+r0) f−Kn(k−r0) 0



V+
n (θ)

V−n (θ)

W(θ) r−n0

 =


zn cos(nθ − ξn)

r0 δn cos(nθ − χn)

0

, (3.21)

with the phases χ0 = ξ0 = 0, the coefficients f± = k2
± /
(
k2
± − β2

)
, and

L±n = −k±r0K
′
n(k±r0)

Kn(k±r0)
= n+

k±r0Kn−1(k±r0)

Kn(k±r0)
, (3.22)

49



where the last step is found by using a recurrence relation of the modified Bessel

functions of the second kind [168,169]:

K ′n(x) = −Kn−1(x)− n

x
Kn(x), (3.23)

for any real number x, where the prime symbol denotes here a derivative with

respect to the argument of the function. To find V±n (θ) and Wn(θ), the matrix in

equation (3.21), say M, must be invertible, namely its determinant is required to

be non-zero [49]. This implies that

Nn := f−L−n (n− L+
n )− f+L+

n (n− L−n ) 6= 0, (3.24)

which allows us to obtain a unique solution. By multiplying (3.21) by the inverse

matrix of M, this gives

V±n (θ) = ± f∓L∓n
NnKn(k±r0)

[nzn cos(nθ − ξn)− r0δn cos(nθ − χn)], (3.25)

and

Wn(θ) =
1

r−n0 Nn

[
L+
nL−n (f+ − f−) zn cos(nθ − ξn)

−
(
f+L+

n − f−L−n
)
r0δn cos(nθ − χn)

]
. (3.26)

As a result, the height profile of the membrane u(r, θ), and its compositional

asymmetry φ(r, θ) are completely determined by the boundary conditions (3.18 –

3.20). However, U(θ) and U ′(θ) are not entirely arbitrary, as the height z0 is set

by the minimisation of the free-energy (3.3), which gives the balance of normal

forces on any infinitesimal patch of the membrane. Thus, using the explicit form of

(3.15), (3.25) and (3.26), and the requirement that u(r, θ) vanishes in the far-field,

we obtain

z0 = r0 δ0
f+L+

0 − f−L
−
0

L+
0 L
−
0 (f+ − f−)

. (3.27)

Also, since the membrane inclusion is assumed to be free to tilt about the central

axis ẑ, another equilibrium condition that the system must fulfil is the balance of

torques on the rigid inclusion, which is detailed in the next section.

3.2.4 Torque Balance and Deformation Energy

The system must satisfy the equilibrium requirements of zero net torques and van-

ishing normal forces on the membrane inclusion. The latter yields the condition
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given by (3.27). On the other hand, the torque balance requires the effective free-

energy (3.3) to be invariant under the transformations

U(θ) 7→ U(θ)− r0ψ cos(θ − ε) and U ′(θ) 7→ U ′(θ) + ψ cos(θ − ε), (3.28)

where ψ is a small tilt angle about the central axis ẑ, and the azimuthal angle ε

specifies the orientation of this tilt (see Figure 3.2). The small angle approximation

on ψ is enforced so that the projected area enclosed by ∂M remains circular under

such transformations. It is noteworthy to mention that the transformations in (3.28)

only affect the corresponding first-order Fourier modes of U(θ) and U ′(θ). To find

the effect due to this tilt balance, we need to first compute the deformation energy.

Interestingly, the free-energy functional (3.3) can be reduced to a line integral

over the boundary at the inclusion-membrane interface ∂M. Using the divergence

theorem and the vector identity ∇‖A ·∇‖ B = ∇‖ ·
(
A∇‖ B

)
−A∇2

‖ B, with A and

B as scalar fields, then∫
M

d2r (∇‖ u)2 =

∮
∂M

u
∂u

∂n
−
∫
M

d2r
(
u∇2

‖ u
)
, (3.29)

where ∂
∂n = n̂ · ∇‖ denotes the normal derivative. Similarly, an identical expression

can be found for φ(r). Thus, the free-energy (3.3) can be written as

F̂ =
1

2π

∮
∂M

(
α2u

∂u

∂n
+ γ2φ

∂φ

∂n

)
+

1

2π

∫
M

d2r (∇2
‖ u)

[
(∇2
‖−α

2)u + γ2φ
]
, (3.30)

where the last term is simplified to this form by using the first Euler-Lagrange

equation in (3.10). Furthermore, by denoting the term in square brackets by w and

using the identity ∇‖
(
w∇‖ u− u∇‖w

)
= w∇2

‖ u− u∇
2
‖w, we find

F̂ =
1

2π

∮
∂M

(
α2u

∂u

∂n
+ γ2φ

∂φ

∂n
+ w

∂u

∂n
− u ∂w

∂n

)
, (3.31)

where the second Euler-Lagrange equation (that is, ∇2
‖w = 0) is used to remove the

bulk terms and rewrite the total free-energy as a line integral over ∂M.

Also, since the solutions uh and u± satisfy ∇2
‖ uh = 0 and (∇2

‖− k
2
±)u± = 0,

respectively, w is found to be

w(r, θ) = −α2uh(r, θ) = −α2
∞∑
n=0

Wn(θ) r−n, (3.32)

where the final step is derived by using the explicit form of uh(r, θ). As a result,
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this gives that

F̂ =
α2

2π

∮
∂M

(
u
∂u

∂n
+ u

∂uh
∂n
− uh

∂u

∂n

)
+
γ2

2π

∮
∂M

φ
∂φ

∂n
, (3.33)

which can be simplified further, by employing the boundary conditions (3.18 – 3.20),

F̂ =
α2

2π

2π∫
0

dθ

[
r0 U ′(θ)U(θ) +

∞∑
n=0

Wn(θ) r−n0

(
nU(θ)− r0 U ′(θ)

)]
. (3.34)

In this form, we can easily apply the transformations (3.28), which couple

only to the first Fourier modes of (3.19) and (3.20). By using the orthogonality

relationships of the Fourier modes, the membrane deformation energy, in terms of

the series (3.19) and (3.20), becomes F̂ =
∑∞

n=0 F̂n + F̂tilt, where F̂n is defined by

F̂n =
α2

Nn ϑn

[(
f+L+

n − f−L−n
)
r2

0 δ
2
n − 2nzn r0 δn

(
f+L+

n − f−L−n
)

cos(ξn − χn)

+ nL+
nL−n (f+ − f−) z2

n

]
, (3.35)

with ϑ0 = 1 and ϑn = 2 for any n > 0. This term represents the energy associated to

each Fourier-Bessel mode, whereas the term given by F̂tilt is the energy contribution

that accounts for the torque balance, namely

F̂tilt =
α2
(
z2

tilt − 2 ztilt r0δtilt cos(ξ1 − χ1) + r2
0δ

2
tilt

)
2N1

[
f−L−1 (3 + L+

1 )− f+L+
1 (3 + L−1 )

]−1 , (3.36)

which is found by minimising the total deformation energy of the membrane with

respect to ψ and ε, where their minimum values obey the simultaneous equations: r0ψ cos(ε) = ztilt cos ξ1 + r0δtilt cosχ1

r0ψ sin(ε) = ztilt sin ξ1 + r0δtilt sinχ1.
(3.37)

Here, the tilt coefficients δtilt and ztilt are defined by

δtilt = δ1
2
(
f+L+

1 − f−L
−
1

)
f+L+

1

(
3 + L−1

)
− f−L−1

(
3 + L+

1

) , (3.38)

and

ztilt = z1
f+L+

1

(
1 + L−1

)
− f−L−1

(
1 + L+

1

)
f+L+

1

(
3 + L−1

)
− f−L−1

(
3 + L+

1

) . (3.39)
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Hence, the contributions to u(r) and φ(r) due to the torque balance can be

found as well by applying (3.28) to the matrix equation (3.21), namely

utilt(r, θ) = V+
tilt(θ)K1(k+r) + V−tilt(θ)K1(k−r) +Wtilt(θ) r

−1 (3.40)

and

φtilt(r, θ) = f+V+
tilt(θ)K1(k+r) + f−V−tilt(θ)K1(k−r), (3.41)

respectively, where the azimuthal functions V±tilt(θ) and Wtilt(θ) are given by

V±tilt(θ) = ∓ 2 f∓L∓1
N1K1 (k±r0)

[
ztilt cos(θ − ξ1)− r0δtilt cos(θ − χ1)

]
, (3.42)

and

Wtilt(θ) =
ztilt cos(θ − ξ1)− r0δtilt cos(θ − χ1)

r−1
0 N1

[
f−L−1

(
1 + L+

1

)
− f+L+

1

(
1 + L−1

)]−1 . (3.43)

As a result, the general solutions of the membrane profile u(r, θ) and its as-

sociated compositional variation φ(r, θ) that satisfy the boundary conditions (3.18 –

3.20), together with the requirements of vanishing normal forces and zero net torques,

are given by

u(r, θ) = utilt(r, θ) +

∞∑
n=0

V+
n (θ)Kn(k+r) + V−n (θ)Kn(k−r) +Wn(θ) r−n, (3.44)

and

φ(r, θ) = φtilt(r, θ) +

∞∑
n=0

f+V+
n (θ)Kn(k+r) + f−V−n (θ)Kn(k−r), (3.45)

respectively, where utilt and φtilt are the contributions due to the torque balance, as

given in (3.40) and (3.41), and V±n (θ) andWn(θ) are prescribed by (3.25) and (3.26).

3.2.5 Dirichlet Boundary Condition

Herein, we consider the same boundary conditions on the membrane height u(r) as

before, but a Dirichlet boundary condition is used for φ(r) on ∂M, namely

φ(r0, θ) = Φ(θ) ≡
∞∑
n=0

ϕn cos(nθ − νn), (3.46)

where ν0 = 0. The function Φ(θ) gives the compositional asymmetry field at the

interface between the membrane and the rigid inclusion (of radius r0), which together
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with the other boundary conditions completely determine V±n (θ) andWn(θ) in (3.15)

and (3.13). As before, these conditions can written as a matrix equation:
Kn(k+r0) Kn(k−r0) 1

L+
nKn(k+r0) L−nKn(k−r0) n

f+Kn(k+r0) f−Kn(k−r0) 0



V+
n (θ)

V−n (θ)

W(θ) r−n0

 =


zn cos(nθ − ξn)

r0 δn cos(nθ − χn)

ϕn cos(nθ − νn)

, (3.47)

with n ≥ 0 and L±n as defined by equation (3.22). By assuming that the square

matrix in equation (3.47) is nonsingular, that is,

Pn := f−(n− L+
n )− f+(n− L−n ) 6= 0, (3.48)

this allows us to find the azimuthal functions as follows:

V±n (θ) = ± f∓L∓n [nzn cos(nθ − ξn)− r0δn cos(nθ − χn)]− (n− L∓n )ϕn cos(nθ − νn)

PnKn(k±r0)
(3.49)

and

Wn(θ) =
1

r−n0 Pn

[
zn
(
f+L−n − f−L+

n

)
cos(nθ − ξn)− (f+ − f−) r0 δn cos(nθ − χn)

+
(
L+
n − L−n

)
ϕn cos(nθ − νn)

]
. (3.50)

Moreover, as the membrane profile u(r, θ) must vanishes in the far-field limit,

then the height z0 is found to be

z0 =
(f+ − f−) r0 δ0 −

(
L+

0 − L
−
0

)
ϕ0

f+L−0 − f−L
+
0

. (3.51)

Through the functions u(r, θ) and φ(r, θ), the total deformation energy of the

membrane, as given in equation (3.34), can be now computed as a Fourier series,

F̂ =
∑∞

n=0 F̂n+F̂tilt, where F̂n is the energy associated to each Fourier-Bessel mode:

F̂n =
γ2ϕ2

n

Pn ϑn
[
f−L−n (n− L+

n )− f+L+
n (n− L−n )

]
+

α2

Pn ϑn

{
n z2

n (f+L−n − f−L+
n )

+ (f+ − f−) r2
0δ

2
n − 2n znr0δn (f+ − f−) cos(ξn − χn)

+ 2ϕn (L+
n − L−n ) [nzn cos(νn − ξn)− r0δn cos(νn − χn)]

}
, (3.52)

with ϑ0 = 1 and ϑn = 2 for any n > 0. The second term is the additional energetic

contribution due to the balance of torques on the rigid inclusion, which requires
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that the total energy to be invariant under a tilt transformation of the form (3.28).

Thus, the explicit expression of F̂tilt can be determined as follows:

F̂tilt =
α2

2P1

[
f−L−1 (3 + L+

1 )− f+L+
1 (3 + L−1 )

][
z2

tilt − 2 ztilt r0δtilt cos(ξ1 − χ1)

+ r2
0δ

2
tilt − 2ϕtilt r0δtilt cos(ν1 − χ1) + 2 ztilt ϕtilt cos(ξ1 − ν1) + ϕ2

tilt

]
, (3.53)

where the tilt coefficients ztilt, δtilt and ϕtilt are given by

δtilt =
2δ1 (f+ − f−)

f+

(
3 + L−1

)
− f−

(
3 + L+

1

) , ztilt = z1
f+

(
1 + L−1

)
− f−

(
1 + L+

1

)
f+

(
3 + L−1

)
− f−

(
3 + L+

1

) ,
(3.54)

and

ϕtilt =
2ϕ1

(
L+

1 − L
−
1

)
f+

(
3 + L−1

)
− f−

(
3 + L+

1

) , (3.55)

respectively. Moreover, this leads to the additional fields utilt(r, θ) and φtilt(r, θ),

which yield the corresponding contributions to u(r, θ) and φ(r, θ) that allow for a

vanishing net torque. They can also be written in terms of the functions V±tilt(θ) and

Wtilt(θ), which are found to be

V±tilt(θ) = ∓
f∓ [z1 cos(θ − ξ1) + r0δ1 cos(θ − χ1)] +

(
3 + L∓1

)
ϕ1 cos(θ − ν1)[

f+ (3 + L−1 )− f− (3 + L+
1 )
]
K1(k±r0)

,

(3.56)

and

Wtilt(θ) =
(f+ − f−) [z1 cos(θ − ξ1) + r0δ1 cos(θ − χ1)]−

(
L+

1 − L
−
1

)
ϕ1 cos(θ − ν1)[

f+ (3 + L−1 )− f− (3 + L+
1 )
]
r−1

0

.

(3.57)

Interestingly, if the total deformation energy is minimised with respect to ϕn

and νn, then we retrieve the same solutions as found for the Neumann boundary case.

Thus, in the absence of any constrains on φ at the inclusion-membrane interface,

the Neumann boundary condition gives the most energetically favourable states.

3.3 Applications and Specific Solutions

In this section, we apply this methodology to a number of specific problems of bio-

logical relevance. In particular, we discuss the consequences of curvature instability,

which notably gives rise to a crossover transition between an overdamped to an

underdamped regime of the membrane and composition profiles. Furthermore, we

use this model to study the effects of asymmetric membrane inclusions, the role of

composition in channel gating, and lastly the deformations due to a protein coat.
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3.3.1 Curvature Instability

Although the equilibrium solutions (derived in Section 3.2) were restricted to the

parameter space given by k2
± > 0, as shown in Figure 3.3, the expressions of u and

φ are still valid in the region where the coefficients k2
± are complex, namely when

the coupling constant γ ∈ I := [ |α− β|, α+ β ). The equation (3.12) can be used

to derive that

k± =
1

2

[√
(α+ β)2 − γ2 ±

√
(α− β)2 − γ2

]
, (3.58)

which shows that k− and k+ are complex conjugates of each other in I. This guar-

antees that (3.13) and (3.15) are still real solutions within this parameter region.

In order to understand the physical significance of these complex terms,

a specific model of a membrane inclusion is chosen. Here, we describe the rigid

inclusion as a highly wedge-shaped protein, where the height U(θ) and the contact

angle U ′(θ) are taken to be some constants z0 and δ0, respectively. As described

in Section 3.2, the value of z0 is not entirely arbitrary, being set by the balance of

normal forces on the membrane. On the other hand, δ0 is chosen to be a typical

angle found from crystal structures of integral membrane proteins that display a

conical shape, such as the transmembrane domain of a voltage-dependent potassium

channel [170], or, of a nicotinic acetylcholine receptor [171]. Hereinafter, a contact

angle δ0 = 15◦ is used as the characteristic value of such membrane proteins.

Therefore, using these boundary conditions, the mid-plane of the bilayer u(r)

and the compositional asymmetry field φ(r) are found to be‡

u(r) =
r0 δ0

f+ − f−

[
f+K0(k−r)

k−r0K1(k−r0)
− f−K0(k+r)

k+r0K1(k+r0)

]
, (3.59)

and

φ(r) = r0 δ0
f+f−
f+ − f−

[
K0(k−r)

k−r0K1(k−r0)
− K0(k+r)

k+r0K1(k+r0)

]
, (3.60)

respectively. By approximating the modified Bessel functions by Kn(ρ) ∼ e−ρ
√

2
πρ

for some ρ� n [168], and by rewriting k± = Q± iω, with

Q =
1

2

√
(α+ β)2 − γ2 and ω =

1

2

√
γ2 − (α− β)2, (3.61)

‡Notice that the tilt contributions (3.40) and (3.41), which guarantee the overall torque balance,
are identically zero, which is due to the symmetry of the rigid inclusion.
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Figure 3.4: Radial profiles of the the mid-plane of the bilayer u(r) and the compo-
sitional asymmetry φ(r) for several values of the coupling term γ, where α r0 = 0.1
and β r0 = 1.0. The membrane deformation profiles are induced by a conical rigid
inclusion of radius r0 (depicted here as the grey region) and a small contact angle
δ0 = 15◦. For values of γ > |α− β| the both radial profiles display an underdamped
behaviour.

then the asymptotic form of (3.59) and (3.60) when γ ∈ I can be written as

u(r) ' γ C0 e
−Q(r−r0)√
r/r0

cos [ω (r − r0) + ϑ ] , (3.62)

and

φ(r) ' αC0 e
−Q(r−r0)√
r/r0

cos [ω (r − r0) + ζ ] , (3.63)

respectively, with C0 = δ0
2ωQ

√
α/β , and the phase angles ϑ and ζ are given by

ϑ = arctan

[
Q
(
β (α− β) + γ2

)
ω (β (α+ β)− γ2)

]
, and ζ = π − arctan (Q/ω) . (3.64)

The radial profiles of (3.59) and (3.60) as function of the coupling term γ

are shown in Figure 3.4. For values of γ less than γd = |α − β|, the solutions
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are found to be monotonically decreasing. However, as γ is increased above this

value, the solutions show an underdamped behaviour, with the amplitude of the

radial profile gradually decreasing to zero [162]. Moreover, the decay length of these

amplitudes, namely 1/Q, becomes very large as γ approaches γc = α + β, which

suggests the presence of an instability [162]. In fact, the parameter space restricted

to γ > γc corresponds to the region given by Leibler’s criterion for curvature-induced

instabilities in the bulk of membranes [163,164]. On the other hand, the point given

by γ = γd coincides to a critically damped system (that is, ω = 0), where the profile

of the membrane decays to zero as fast as possible without any undulations.

Although α =
√
σ/κ can be measured using various experimental techniques,

as described in Section 2.3, the values of the phenomenological parameters β and

γ are more elusive. However, by controlling the surface tension σ, the system can

be tuned near the instability point σc = κ (γ − β)2, where the amplitude of the

membrane undulations are large and long-ranged. This suggests that the decay

constant and frequency of these shape undulations may be experimentally accessible.

Thus, if this may be the case, then the values of β and γ can be experimentally

estimated by using the expressions of Q and ω in (3.61), with α as an independently

determined variable, e.g. measured by a micropipette aspiration technique [111].

This illustrates the predictive power of our model, which allows us to estimate

biological parameters that are otherwise hard to measure.

3.3.2 Asymmetric Membrane Inclusions

Using the methodology developed in Section 3.2, the lowest order estimates to the

membrane configuration, its compositional asymmetry, and the total deformation

energy can be found, given a model for the shape of the transmembrane protein,

through U(θ) and U ′(θ). These functions characterise the geometry of the protein

inclusion, namely the surface of its hydrophobic transmembrane domain.

Here, for the sake of simplicity, but also to study the effect due to the asym-

metries in the structure of a membrane inclusion, the height U(θ) is chosen to be a

constant, whereas the contact angle is given by

U ′(θ) = δ0

[
H
(
θ − ζ +

w

2

)
−H

(
θ − ζ − w

2

)]
. (3.65)

where the Heaviside function H(x) = 1 if x ≥ 0 and vanishing otherwise. The

parameter w measures the width of an angular interval centred around the phase

angle θ = ζ, where the magnitude of the contact angle is non-zero and given by δ0.

This corresponds to a membrane protein that induces a local deformation only within
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Figure 3.5: Membrane deformation profiles induced by an asymmetrical inclusion
(e.g. LeuT). The surface heights represent the mid-plane of the bilayer for different
values of the width w, which gives the asymmetry in the contact angle at the protein-
membrane interface, namely U ′(θ) = δ0 [H (θ − ζ + w/2)−H (θ − ζ − w/2)], with
ζ = 0 and δ0 = 15◦. Here, the parameters α r0 = 0.1, β r0 = 1.0 and γ r0 = 0.5,
where r0 is the radius of the membrane inclusion (which is depicted by the excluded
region in these plots). Also, the compositional asymmetry field φ(r) is shown by the
colour function of these surface plots. This displays a rich variability as the width
w is varied between 0 and 2π, that is, the extreme points associated to an inclusion
with a cylindrical and conical shape, respectively.
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Figure 3.6: Total membrane deformation energy, for various values of the coupling
term γ, against the width w, where the phase ζ = 0 and the magnitude of the
contact angle is set to be δ0 = 15◦. Also, α r0 = 0.1 and β r0 = 1.0, with r0 as the
radius of the inclusion, and the bending rigidity is chosen to be κ = 20 kBT .

a specific region along its hydrophobic surface, with the remaining part preferring a

flat mid-plane. This is biologically of great relevance, e.g. the Connolly surface of a

leucine transporter (LeuT) – a common protein model for human neurotransmitter

transporters – exhibits such features [172, 173]. Therefore, the unknown boundary

terms in (3.19) and (3.20) can be obtained by expressing (3.65) in its Fourier series,

namely

U ′(θ) =
wδ0

2π
+
∞∑
n=1

2δ0

nπ
sin
(nw

2

)
cos(nθ − nζ). (3.66)

For some fixed values of α, β, γ, and δ0, this allows us to determine the

membrane profile and its corresponding compositional asymmetry field as a function

of w. A typical example is shown in Figure 3.5, where φ(r, θ) is given by the colour-

maps of the three-dimensional plots of u(r, θ). For w < π, the local compositional

asymmetry is found to be negative within the non-zero range of the contact angle,

whereas in the regions near the discontinuity jumps it is positive. However, as the

width approaches w = π, the picture changes dramatically, with the compositional

asymmetry field exhibiting a three-fold symmetry. For angular widths w > π, the

field φ displays a similar pattern as in the case of w < π, but with its sign switched

everywhere. Moreover, the magnitude of the induced deviations from flatness, u,

is found to be increasing with w, as shown in Figure 3.5.

This methodology also allows us to compute the total energy (3.34), which

vanishes for w = 0 and retrieves the case of conical inclusions when w = 2π (if γ = 0

as well, then we recover the energy found in the previous works [146,149,159]). For

intermediate values, the dependence of energy on w and γ is shown in Figure 3.6.
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Figure 3.7: Diagrams of two idealised gating schemes for mechanosensitive channels,
namely (a) the dilational gating model, and (b) the gating-by-tilt model. The bilayer
is depicted here by the blue thick line. Under both schemes the tension does work
by increasing the projected area of the membrane-channel system.

3.3.3 Mechanosensitive Membrane Channels

Mechanically-gated membrane channels are a widely examined class of transmem-

brane proteins, which provide a vital mechanism in living cells to withstand any

rapid changes in the physical and chemical properties of their surrounding environ-

ment [4–6, 174]. Through protein conformational changes, from a closed state to

an open state that allows the passage of solvent through the membrane, they can

equilibrate an osmotic imbalance between the interior and exterior of the cell [4].

Although many examples of mechanosensitive channels are found in nature, the

bacterial mechanosensitive channel of large conductance (MscL) and of small con-

ductance (MscS) are typically used as the prototype of such proteins, for which

various experimental studies have been performed, revealing their strong membrane

tension dependence on the channel opening probability [174–179].

One simple mechanism proposes that the channel simply dilates at high ten-

sion giving rise to an open pore, as shown in Figure 3.7 (a). Another possibility is a

gating-by-tilt mechanism [159], where the transition between the closed to open state

is entirely driven by changes in slope at the protein-membrane interface (say, δ0),

as illustrated in Figure 3.7 (b).

In a two-component membrane, this couples to the lipid asymmetry field

φ, which contributes to the change in the conformational energy of the channel-

membrane system. Herein, the effect due to this mechanism is investigated by

comparing the membrane deformation energy F (only the lowest order term n = 0

in the free-energy (3.34) is considered) to the experimentally measured energy for

channel opening in the absence of tension, which is inferred by assuming a pore

opening through the dilation mechanism [177,178].

Interestingly, Figure 3.8 shows that the even small changes in the tilt angle

at the channel-membrane interface can lead to a significant thermodynamic energy

change under gating-by-tilt [162]. Furthermore, we find a regime in which the mem-

brane can act to close, rather than open, the membrane channel, where the total

energy F is negative and thus less than the conformational energy of the open state.
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Figure 3.8: The estimated angle for the gating-by tilt that accounts for the total
conformational energy change, say F , as measured for MscL and MscS [177,178].
The dashed line represents F = 0 dividing the phase space into two domains where
the membrane acts to open (F > 0), or close (F < 0), the channel. The uncoloured
region corresponds to angles greater than 60◦, which are likely unphysical and where
our small-angle approximation is therefore inadequate.

As a result, this reveals that local composition variation, and its coupling to

membrane curvature, might have an important role in modulating the function of

mechanosensitive channels, in particular, the MscS and MscL proteins.

3.3.4 Protein Coat Deformations

Another interesting application of our model is the study of protein coat formation

in its early stages [160]. Such protein coats play an important role in the regulation

of biomembranes (e.g. membrane trafficking using clathrin coats), or in cell infection,

where viral coats assemble at the plasma membrane [1].

Figure 3.9: Sketch of a biomembrane

(the blue thick line) deformed by the

assembly of a protein coat.

Herein, a protein coat is described

as a spherical rigid object that adheres to

the lipid bilayer, inducing membrane defor-

mations (see Figure 3.9). The membrane

shape on which the protein coat adheres

is assumed to be commensurate with the

conformation of the coat, which has a con-

stant intrinsic curvature 1/Rc. In the early

stages of growth, the formation of this spherical cap (say, of radius r0) only weakly

perturbs the membrane outside the coat, with a contact angle given by δ0 ≈ r0/Rc.
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Consequently, the outer membrane can be described using the methodology

developed in Section 3.2, where the membrane region that covers the protein coat

acts as a cone-shaped rigid inclusion (denoted here by Mc). However, the local

compositional asymmetry is no longer free at the boundary, and consequently the

Dirichlet condition is enforced instead, namely φ(r0) = ϕ0. Thus, the outer mem-

brane profile u(r) and its associated local compositional field φ(r) are found to be

u(r) = r0 δ0

[
f+L+

0 K0(k−r)

P0K0(k−r0)
− f−L−0 K0(k+r)

P0K0(k+r0)

]

− ϕ0

[
L+

0 K0(k−r)

P0K0(k−r0)
− L

−
0 K0(k+r)

P0K0(k+r0)

]
, (3.67)

and

φ(r) = r0 δ0

[
f−f+L+

0 K0(k−r)

P0K0(k−r0)
− f−f+L−0 K0(k+r)

P0K0(k+r0)

]

− ϕ0

[
f−L+

0 K0(k−r)

P0K0(k−r0)
− f+L−0 K0(k+r)

P0K0(k+r0)

]
, (3.68)

respectively, where the radial distance r ≥ r0. However, ϕ0 is not arbitrary, being

set by the value which minimises the total membrane energy inside and outside of

the protein coat. The deformation energy of the outer membrane can be derived

through (3.52), namely

F̂out =
α2
[
(f+ − f−) r2

0 δ
2
0 − 2ϕ0

(
L+

0 − L
−
0

)
r0 δ0

]
− L−0 L

+
0

(
k2

+ − k2
−
)
ϕ2

0

f+L−0 − f−L
+
0

. (3.69)

Analogous to equation (3.3), the nondimensionalised free-energy functional

of the membrane within the region Mc can be written as [162]:

F̂in = 4 (1− cos δ0) + α2R2
c (1− cos δ0)2 +

γ2

2π

∫
Mc

(
β2φ2 + (∇φ)2 +

4φ

Rc

)
, (3.70)

where the first and second term represent the free-energy associated to bending and

stretching the membrane from a flat state to a spherical cap shape. This functional

admits the following Euler-Lagrange equation:

(
∇2 − β2

)
φ− 2/Rc = 0. (3.71)

63



Figure 3.10: The free-energy per unit area of coat monomers ∆fc (that is purely due
to the curvature coupling to the compositional variations) as a function of the radius
of the projected coat area, r0, and various values of α in the underdamped regime.
The intrinsic curvature radius of the protein coat is chosen to be Rc = 50 nm, and
the parameters β = 1.0 nm−1 and γ = 1.1 nm−1. The energy ∆fc displays an initial
decrease and a local minimum as r0 is varied.

By assuming that the local compositional field φ remains finite everywhere

in Mc and using the same Dirichlet boundary condition, φ(r0) = ϕ0, (3.71) yields

φ(r) = − 2

β2Rc
+

(
ϕ0 +

2

β2Rc

)
I0(β r)

I0(β r0)
, (3.72)

where r ≤ r0 and I0 is the modified Bessel function of the first kind of order zero.

As a result, the energy (3.70) to lowest order in δ0 becomes

F̂in = 2 δ2
0

(
1− γ2

β2

)
+
r0 γ

2
(
2 + ϕ0 β

2Rc

)2
I1(β r0)

β3R2
c I0(β r0)

, (3.73)

where I1 is the first order modified Bessel function of the first kind. Hence, ϕ0

can be determined by minimising the total deformation energy F̂total = F̂in + F̂out,
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which gives that

ϕ0 = r0 δ0
f−f+

(
L+

0 − L
−
0

)
β r0 I0 (β r0) + 2

(
f−L+

0 − f+L−0
)
I1 (β r0)

β r0

[
L−0 L

+
0 (f+ − f−)I0 (β r0) +

(
f+L−0 − f−L

+
0

)
β r0 I1 (β r0)

] , (3.74)

where r0 = δ0Rc is used to simplify the expression. This allows us to compute the

total deformation energy F̂total due to a protein coat in its early stages of growth

as a function of the inclusion radius r0. Furthermore, the membrane energy change

due to coupling to φ alone, and scaled by the projected coat area, namely

∆fc =
1

πr2
0

(
F̂total − lim

γ→ 0
F̂total

)
, (3.75)

can be computed to second order in the angle δ0 (by carefully noting that r0 and

δ0 are not independent variables). This energy-per-area renormalises the chemical

potential for binding of early coat monomers to the membrane and yields a mea-

sure of the energy landscape purely induced by φ and its coupling to the membrane

curvature. Figure 3.10 shows the variation of ∆fc with the coat radius r0, which

displays an initial energetic decrease with r0 in the underdamped regime. This sug-

gests that the deformation of the membrane (with its corresponding compositional

variation) is energetically favourable in that case. As a result, this can be used as a

mechanism for controlling, or driving, coat formation in biomembranes [162].

3.4 Summary

An analytic model based on the Canham–Helfrich theory is presented in Section 3.2,

which describes the response of a fluid membrane to the insertion of a single rigid

inclusion, when the mean curvature of the membrane is phenomenologically coupled

to its local compositional variations. The ground state solutions to the membrane

profile and its corresponding compositional asymmetry are derived in the Monge rep-

resentation, and their associated deformation energy is determined. In Section 3.3,

we show how the model can be used to calculate properties of biological relevance,

such as the membrane shape and its composition near a protein of non-trivial struc-

ture, and the regulation of channel gating by protein tilt or composition asymmetry.

A particularly interesting finding is the possibility to promote protein coat forma-

tion towards budding by compositional variations. Moreover, when the curvature-

composition coupling is strong enough, the membrane undergoes a transition from

an overdamped to an underdamped regime, which can be used to estimate the free

phenomenological parameters in our model, illustrating its predictive power.
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Chapter 4

Optical Projection of Thermal

Shape Fluctuations

The optical spectroscopy of thermally induced shape fluctuations of vesicles has been

widely used as a method to extract mechanical information about fluid membranes,

particularly yielding an estimate of the bending modulus [97–106]. As discussed in

Section 2.3.2, this method is commonly known as flicker spectroscopy, and involves a

comparison of the experimental data to the predicted statistics of the thermal shape

undulations [70]. The appropriate language to discuss the latter is the subject of

statistical field theory [180], which typically requires a calculation of the partition

function Z over all possible configurations of the membrane geometry. However, Z
is highly non-trivial to compute in general, and it is usually evaluated by restricting

to quadratic fluctuations about the equilibrium state of the fluid membrane [14].

This framework is used to describe the statistics of the shape undulations of giant

unilamellar vesicles (GUVs) induced by thermal agitation.

4.1 Introduction

In this section, we review the theoretical framework discussed above, which allows

us to determine the fluctuation spectrum of vesicle shape undulations. By using the

latter, the elastic constants of fluid membranes can be estimated if this spectrum is

compared with experimental data. Subsequently, we discuss some of the limitations

encountered in this methodology and also how they may affect the inferred measure-

ments of the bending modulus. In particular, we emphasise that optical microscopy

of GUVs can only provide partial information in the sense that it only gives a two-

dimensional projection of a three-dimensional fluctuating surface. As a result, the
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Figure 4.1: Schematic diagram of a three-dimensional membrane patch of a quasi-
spherical lipid vesicle (depicted here by the blue region), and a two-dimensional
cross-section along the xz-plane. The latter illustrates the shape fluctuations of the
vesicle about a fixed radius R, which are given by u(θ, ϕ), with ϕ = 0 in this case.

experimental data has typically been compared to the predicted statistics on the

intersection of the vesicle with the focal plane of the microscope, ignoring the effect

due to fluctuations out of this plane. Later in this chapter (see Section 4.2), we de-

velop an analytical model that includes the projection of shape fluctuations within

the focal depth of the microscope. Moreover, the consequences of this theoretical

amendment is studied against experimental data∗ in Section 4.3, and the results

of the analysis suggest that the current methodology used in flicker spectroscopy

experiments may overestimate the value of the bending modulus by a significant

factor. The results are now found to be in good agreement with the values obtained

through other techniques, such as X-ray scattering and micromechanical manipula-

tion methods, which have previously been estimated to be systematically larger [67].

4.1.1 Thermal Undulations of Quasi-spherical Vesicles

The usual theoretical description of GUVs is treated within a quasi-spherical ap-

proximation, where the membrane surface, say S, is parametrised by the spherical

∗The experimental data (unpublished) has been provided by our experimental collaborators,
Dr. Pietro Cicuta, from the University of Cambridge, and Dr. Davide Orsi, from the University of
Parma. See Section 4.3 for more details.
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angular coordinates (θ, ϕ), with the surface positional vector given by

R (θ, ϕ) = R [1 + u(θ, ϕ)] er(θ, ϕ) , (4.1)

where u(θ, ϕ) is a local deviation about a reference sphere of radius R in a Monge-

type representation (as shown Figure 4.1), and er(θ, ϕ) is the radial unit vector nor-

mal to this sphere. The volume V0 enclosed by the membrane of GUVs is considered

to be constant, which in turn defines the radius R := (3V0/4π)1/3. Furthermore,

the fluctuations about the reference sphere are assumed to be small and slowly vary-

ing (that is, the magnitude |u(θ, ϕ)| � 1 and the gradient |∇u(θ, ϕ)| � 1), so that

the free-energy in the Canham–Helfrinch theory (2.27) can be written as a quadratic

expansion in u(θ, ϕ). To obtain this expansion, we follow the works of [97] and [108],

where the area of the vesicle A :=
∫
S dS, its volume V := 1

3

∫
S dS (n ·R), with n

as its surface normal, the integrated mean-curvature term Q1 :=
∫
S dS H, and also

the bending term Q2 :=
∫
S dS H2 can be approximated by a second-order Taylor

expansion in u as follows:

A = 4πR2 +R2

∫ π

0

∫ 2π

0

[
2u+ u2 +

1

2
(∇u)2

]
sin(θ) dθdϕ, (4.2)

V = V0 +R3

∫ π

0

∫ 2π

0

(
u+ u2

)
sin(θ) dθdϕ, (4.3)

Q1 = 4πR+R
∫ π

0

∫ 2π

0

[
u+

1

2
(∇u)2 − 1

2

(
∇2u

)]
sin(θ) dθdϕ, (4.4)

and

Q2 = 4π +

∫ π

0

∫ 2π

0

[
u
(
∇2u

)
−
(
∇2u

)
+

1

2
(∇u)2 +

1

4

(
∇2u

)2]
sin(θ) dθdϕ, (4.5)

respectively, where the differential operators ∇ and ∇2 are defined with respect to

the metric of a unit sphere [49], that is,

∇ := eθ
∂

∂θ
+

eϕ
sin(θ)

∂

∂ϕ
, and ∇2 :=

1

sin(θ)

∂

∂ϕ

[
sin(θ)

∂

∂ϕ

]
+

1

sin2(θ)

∂2

∂ϕ2
, (4.6)

with eθ and eϕ as the unit vectors associated to the spherical angular coordinates.

Therefore, by ignoring the Gaussian curvature term in (2.25) due to the

constrained topology of GUVs, the effective free-energy of the fluid membrane S is

given by F = C0A+ C1Q1 + C2Q2, where C0, C1, and C2 are defined in (2.26). Also,
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by expressing u(θ, ϕ) in the basis of spherical harmonics Y m
n [168], namely

u(θ, ϕ) =

n∞∑
n= 0

n∑
m=−n

Un,m Y m
n (θ, ϕ), (4.7)

where Un,m is the amplitude associated to each spherical harmonic mode (n,m),

with n∞ as an ultraviolet cutoff†, then the effective free-energy F can be written in

the following diagonalised form (a full derivation can be found in [108]):

F = 4πκ (2 + σ̄) +
1

2

n∞∑
n= 2

H(n)

n∑
m=−n

| Un,m|2, (4.8)

where | Un,m| is the complex modulus of the harmonic amplitude Un,m, the func-

tion H(n) is defined by

H(n) = κ (n− 1)(n+ 2) [ σ̄ + n(n+ 1)], (4.9)

and σ̄ is the reduced surface tension, namely

σ̄ =
σR2

κ
− 2H0R+ 2H2

0R2. (4.10)

The zeroth order coefficient U0,0 in equation (4.7) can be fixed by employing the

constraint that the volume V of the GUVs remains unchanged under a small local

deformation u(θ, ϕ), that is, V = V0 in (4.3). This implies the following condition:

U 0
0 = − 1√

4π

n∞∑
n= 0

n∑
m=−n

| Un,m|2 , (4.11)

which essentially corresponds to a rescaling of the frame radius [97]. Thus, its contri-

bution to the free-energy (4.8) can be omitted without loss of generality. It is note-

worthy to mention that the three spherical harmonic modes given by n = 1 do not

affect the area A and the effective free-energy F , as they correspond to pure trans-

lations of the vesicle, which incur no energetic cost since H(n = 1) = 0. As a result,

the summation in equation (4.8) can be restricted solely to modes n ≥ 2 [108].

By introducing a fictitious external field in the effective free-energy (4.8), as

a vector J := {Jn,m}, that linearly couples to the amplitude vector U := {Un,m},
where the integers n ≥ 2 and |m| ≤ n, then equation (4.8) can be concisely rewritten

†The upper mode cutoff n∞ ' R/ξ, where ξ is on the order of the membrane thickness. Thus,
using a typical radius of GUVs, say R ∼ 25 µm, and a value of ξ ∼ 5 nm, then n∞ ∼ 5× 103.
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in terms of the following functional form:

F [J,U] = 4πκ (2 + σ̄) +
1

2
UTH U∗ − JTU, (4.12)

where H is a diagonal matrix whose components are given by H(n), and the sym-

bols ∗ and T denote a complex conjugate and a transpose, respectively. As a con-

sequence, the thermodynamic properties of the model can be obtained from the

partition function [180]:

Z[J] =

∫
DU exp

(
−F [J,U]

kBT

)
, (4.13)

where the integration measure DU :=
∏n∞
n=2{

∏n
m=0 d<[Un,m]}{

∏n
m=1 d=[Un,m]},

with < [Un,m] and = [Un,m] being the real and imaginary parts of Un,m.

Due to the quadratic nature of (4.12), the partition function in (4.13) can be

analytically computed, up to an unimportant prefactor, as follows [14,180]:

Z[J] ∝ exp

(
JTH−1J∗

2kBT

)
, (4.14)

where H−1 is the inverse matrix of H. Hence, the thermodynamic average of the

flickering amplitudes Un,m and their correlation functions can be determined by

using the derivatives of lnZ with respect to the fictitious external fields Jn,m [180],

namely

〈 Un,m〉 =
∂

∂Jn,m

(
kBT lnZ[J]

)∣∣∣∣
J= 0

= 0 (4.15)

and

〈
Un,m U∗k,`

〉
=

∂2

∂Jn,m ∂J ∗k,`

(
kBT lnZ[J]

)∣∣∣∣∣
J= 0

=
kBT

H(n)
δnk δm`, (4.16)

where δnm is the Kronecker delta function, which equals one if n = m and vanish-

ing otherwise. Hence, the equation (4.16) shows that the harmonic amplitudes are

completely uncorrelated if the spherical modes n 6= k, and the mean-squared devi-

ations
〈
|Un,m|2

〉
are independent of m and also a function of the membrane elastic

constants, i.e. the bending modulus κ and the reduced surface tension σ̄. Thus, they

can be experimentally measured if the local variations in the three-dimensional shape

of the GUVs can be observed and recorded over a sufficiently long time span.

70



4.1.2 Comparing the Model to Experiments

A lipid vesicle observed using light microscopy yields only a two-dimensional pro-

jection of its membrane onto the focal plane of the microscope. As a result, the

contact between the experimentally measured contours (which are determined by

an edge-detection algorithm, as discussed in [103], where the membrane position

is usually assigned to be the extremum of the observed intensity profile) and the

three-dimensional model of the membrane surface, as given by (4.16), has typically

been established by focussing on the two-dimensional contours obtained through the

intersection of the vesicle with the focal plane of the objective.

This cross-sectional plane is usually chosen to be at the equator of the lipid

vesicle (θ = π/2), where the diameter of the contours is found to be the largest,

and also where the contrast is typically maximal‡. Thus, the radial position of the

membrane in the equatorial plane of the vesicle, ρ0(ϕ, t) := ‖R(θ = π/2, ϕ, t)‖, can

be used as an experimental observable, which has now an explicit time t dependence.

The time-average of the squared deviations in ρ0(ϕ, t) about the mean radius R can

be related to (4.16) by assuming the ergodic hypothesis (namely, a long time-average

of a macroscopic variable is equivalent to its thermal average [180]). In other words,

the Fourier transform of the variations in ρ0(ϕ, t) about its mean value, that is,

uq(t) :=
1

2π

∫ +π

−π
dϕ e−iqϕ u

(
θ =

π

2
, ϕ
)
, (4.17)

which is non-dimensionalised by R, can be used to obtain a fluctuation spectrum in

terms of the integer Fourier modes q, which is defined by the following autocorrela-

tion function: 〈
uq(t)u

∗
q(t)
〉
t

=
∑
n≥ q

E2
n,q

〈
|Un,q|2

〉
, (4.18)

where the coefficients En,q = Y q
n (θ = π/2, ϕ = 0), and 〈·〉t denotes a time-average

over the total duration of the experiment (which is identical to the thermal average

as the system is ergodic). The result in (4.18) can be derived by employing the

equations (4.7) and (4.16), together with the orthogonality of the spherical harmonic

‡In the case of lipid vesicles which enclose a fluid that has the same density as the bulk solvent,
the maximum contrast and the largest diameter of the contours are indeed found at θ = π/2.
However, the interior fluid is typically of a different density to ensure sedimentation of the vesicles
to a substrate. In this case, the shape of vesicles is perturbed due to gravitational effects [181],
which means that the position of the plane with the maximum diameter is no longer located at the
equator of GUVs. However, such gravity effects are negligible if ∆ρgR4 . κ (12 + σ̄), as calculated
in [181], where g = 9.81 m/s2 and ∆ρ is the density difference between the inside and the outside
of the vesicle. Typically, this condition is readily satisfied in flicker spectroscopy experiments [103]
and thus the gravitational effects are ignored throughout this study.
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functions Y m
n , and the summation identity

∑∞
k=0

∑+`
k=−` Bk,` =

∑∞
`=−∞

∑∞
k=` Bk,`.

Another experimental issue, which further complicates the comparison of the

experimental data with the fluctuation spectrum (4.18), is that the observed two-

dimensional contours are, in practice, averaged over the integration time τ of the

camera [99]. This introduces an experimental limitation that results in significant

averaging effects of the shape fluctuations when their characteristic life-times are

shorter than the acquisition time of the camera. Hence, its consequences on the

fluctuation spectrum have been widely studied [103]. To quantitatively account

for this averaging, the relaxation times τn,m associated to each spherical harmonic

mode needs to be adequately determined. By using a simple viscoelastic theory of a

spherical vesicle, as derived in [108], we find that Un,m(t) = Un,m(0) e−t/τn,m , where

the mono-exponential decay time of each mode are found to be

τn,m =
R3

H(n)

[
ηin

(n+ 2)(2n− 1)

n+ 1
+ ηout

(n− 1)(2n+ 3)

n

]
, (4.19)

with ηin and ηout as the viscosities of the surrounding fluid found in the inside and

the outside of the vesicle, respectively. As a result, due to the finite acquisition time

τ of the camera (which is usually on the order of microseconds), the time correlation

function of the equatorial fluctuations in (4.18) becomes [108]:

〈
ūq(t) ū

∗
q(t)
〉
t

=
∑
n≥ q

E2
n,q

〈
|Un,q|2

〉 τ 2
n,q

τ 2

(
1− e−τ/τn,q

)2
, (4.20)

where we define ūq(t) := τ−1
∫ τ

0 dt′ uq(t+ t′). Thus, the methodology involves relat-

ing (4.20) to the spectrum computed from the experimentally observed contours§,

which allows us to estimate the membrane bending modulus and its surface tension.

Although this approach of projecting the fluctuations onto the equatorial

plane may appear to be a reasonable approximation, we maintain that the equatorial

plane of the GUVs is not what is actually observed under an optical microscope.

Strictly speaking, the equator of the vesicle contains a vanishing area in projection,

and it is therefore invisible to the usual video-microscopy techniques. Thus, we

assume that what is observed is a projection over a strip of membrane material

within a small region in the vicinity of the equator, as shown in Figure 4.2. This

§The fluctuation spectrum of a flat membrane patch is numerically found to be very close to
the spectrum given by (4.20) for high q modes [103]. As a result, the planar spectrum in (2.37)
is usually preferred for its simplicity and it is used instead of (4.20) by discarding a few of the
lower modes and also including the average over the acquisition time. This excellent agreement for
higher q modes suggests that the statistics of membrane fluctuations are not affected by the radius
of curvature of the vesicle if their wavelengths are much shorter than length scale of the system.
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Figure 4.2: Schematic diagram of a fluctuating vesicle, where the light-blue plane
illustrates the focal plane of the microscope, whilst the green slab depicts the region
within the focal depth ∆ of the objective, where the surface modes of the vesicle are
averaged out in projection.

strip can support a spectrum of surface modes, which are averaged out in projection.

As a consequence, this effect may be expected to be particularly strong when the

focal depth of the microscope is much larger than the membrane correlation length

λ =
√
κ/σ, namely

∆ &
λ

R
=

1√
σ̄
, (4.21)

where ∆ is the ratio of the focal depth to R, and the final equality holds if the

mean spontaneous curvature H0 = 0 in the equation (4.10). On a heuristic level,

the criterion (4.21) is justified by the fact that one is then measuring an average

over a strip of many correlation lengths in size and thus one would expect a reduced

average membrane displacement as a result. Also, the characteristic values of ∆ are

found to be between 0.01 − 0.2 in the flicker spectroscopy experiments, which are

comparable to the typical values of λ/R. Thus, the estimation of the parameters κ

and σ̄ is expected to be notably sensitive to this projection, since a large number of

fluctuation modes are averaged out within the focal depth of the microscope.

4.2 Projection of Surface Fluctuations

In order to examine the effect due to the projection of the shape undulations onto

the focal plane of the microscope, we need to understand how the averaging of
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fluctuations out of this plane affects the light intensity entering the camera. How-

ever, since the latter usually depends on the specific imaging technique used in the

experiments and various other optical considerations, the full analysis is a highly

non-trivial task. Thus, in this section, we introduce an approach, which allows

us to construct an intensity field that mimics closely some of the features of its

experimental counterpart.

4.2.1 Intensity of Quasi-spherical Vesicles

Firstly, we consider that light arriving from a point on the membrane surface that is

located at a height z above, or below, the focal plane (or equivalently, the equatorial

plane of the vesicle, as discussed in Section 4.1.2) has an intensity which is scaled

by a Gaussian kernel G(z), namely

G(z) = exp

[
− 1

2∆2

( z
R

)2
]
, (4.22)

where R is the mean radius of the vesicle, and ∆ is a dimensionless parameter that

characterises the focal depth of the microscope, as shown in Figure 4.2.

Secondly, we assume that the vesicle radiates light isotropically (e.g. its mem-

brane is uniformly fluorescent), and furthermore there is no refraction or absorption,

which implies that the infinitesimal radiant power dA emanated by a small mem-

brane patch dA is given by dA = Î0 dA, where Î0 is the intensity detected at z = 0.

As a result, the observed intensity field in the focal plane, say Î(r, ϕ), is proportional

to the projected mass density of membrane, since dA = I0 dA = Î(r, ϕ) dAp, where

Ap is the surface element given by the projection of the membrane patch dA onto

the focal plane. This means that Î(r, ϕ) is purely a geometrical object that only

depends on the three-dimensional configuration of the vesicle.

By taking into account the Gaussian scaling in (4.22), we can construct an

intensity field of the light entering the camera, analogous to Î(r, ϕ), as follows:

I(r, ϕ) ∝
∫∫∫

dΩ G
(
r′cos θ′

)
δ
(
r − r′ sin θ′

)
δ
(
r′ϕ′ sin θ′ − rϕ

)
δ
(
r′ −

∥∥R(θ′, ϕ′)
∥∥) , (4.23)

where the volume integral
∫∫∫

dΩ :=
∫∞

0 dr′ r′2
∫ π

0 dθ′ sin θ′
∫ 2π

0 dϕ′, δ represents a

Dirac delta function, and the position vector R(θ′, ϕ′) is defined by equation (4.1).

Here, r′ measures the radial distance from the centre of the vesicle, and (θ′, ϕ′) are

the usual spherical angular coordinates, with θ′ = 0 (or π) indicating the normal

direction of a point above (or below) the focal plane of the objective. On the other
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Figure 4.3: Schematic diagram of the intensity field I(r, ϕ) at the focal plane, which
corresponds to the projected membrane surface within the focal depth of the objec-
tive (red indicates high intensity, while blue is low). The solid black line represents
the first radial moment of the intensity, namely ρ∆(ϕ) ∝

∫∞
0 r I(r, ϕ) dr.

hand, the variables r and ϕ are the polar coordinates in the equatorial plane, with

the origin chosen to be at the centre of the vesicle. Moreover, the first delta function

in (4.23) gives the projection of radial distances onto the focal plane, the second one

specifies that the azimuthal angles are equivalent in both three-dimensional and

two-dimensional reference frames, and the third one is a constraint that locates the

position of the membrane surface relative to the centre of the vesicle. Thus, by using

a quasi-spherical representation, as described in Section 4.1.1, the volume integral

over these Dirac delta functions yields the projected shape of the vesicle for a given

realisation of the local field u(θ′, ϕ′), as illustrated in Figure 4.3.

4.2.2 Lowest-order Radial Moment

Although the intensity field in (4.23) is strictly not a direct experimental observable,

its statistical moments are in principle measurable quantities. Thus, the simplest

way of extracting information from (4.23) is to analyse the first radial moment of

the intensity field (see Figure 4.3), which is defined by

ρ∆(ϕ) =

∞∫
0

r I(r, ϕ) dr

∞∫
0

I(r, ϕ) dr

. (4.24)

Reassuringly, this object recovers in the limit of ∆ → 0 the experimental observ-

able ρ0(ϕ), namely the radial position of the membrane in the equatorial plane of
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the vesicle, which is used in Section 4.1.2 to describe the shape fluctuations.

By integrating over the angular variables θ′ and ϕ′ in (4.23), the intensity

field I(r, ϕ) can be reduced to a single integral, namely

I ∝
∞∫
r

dr′
G(r′cos Θ)

R cos Θ

{
δ

[
r′

R
− 1− u(Θ, ϕ)

]
+ δ

[
r′

R
− 1− u(π −Θ, ϕ)

]}
, (4.25)

where Θ = arcsin (r/r′) is introduced as a shorthand notation for the sake of clarity.

Hence, using the substitutions r = ξR and r′ = ξR cosh(ψ) in the equation (4.25),

then the expression of the first moment (4.24) is given by

ρ∆(ϕ) =

R
∞∫
0

ξdξ
∞∫
0

dψ ξ cosh(ψ) [D(ψ, ξ,Θ) + D(ψ, ξ, π −Θ)] e−
ξ2 sinh2 ψ

2 ∆2

∞∫
0

dξ
∞∫
0

dψ ξ cosh(ψ) [D(ψ, ξ,Θ) + D(ψ, ξ, π −Θ)] e−
ξ2 sinh2 ψ

2 ∆2

, (4.26)

where the function D is defined by

D(ψ, ξ, Θ̂) := δ
[
ξ coshψ − 1− u(Θ̂, ϕ)

]
. (4.27)

Moreover, the delta functions in (4.26) can be eliminated by changing the order of

integration and then evaluating the integrals over the variable ξ, which yields

µ(ϕ) =

1∫
0

dω (1 + uN)2 exp
(
− (1+uN)2

2 ∆2 ω2
)

+ (1 + uS)2 exp
(
− (1+uS)2

2 ∆2 ω2
)

1∫
0

dω (1+uN)√
1−ω2

exp
(
− (1+uN)2

2 ∆2 ω2
)

+ (1+uS)√
1−ω2

exp
(
− (1+uS)2

2 ∆2 ω2
) , (4.28)

where we define µ(ϕ) := ρ∆(ϕ)/R, uN := u(Θ, ϕ) and uS := u(π − Θ, ϕ), and a

change of variables ω = tanh(ψ) is used to further simplify the expression.

Since the shape undulations are assumed to be small compared to the mean

radius of the quasi-sphere, namely |u| � 1, the equation (4.28) can be expanded to

first order in uN and uS, and found to be a function of only ũ := uN +uS, as follows:

µ(ϕ) = µ0 +

1∫
0

dω
(

2∆2+ω2

∆2 − µ0
∆2+ω2

∆2
√

1−ω2

)
ũ(ω, ϕ) e−

ω2

2 ∆2

2
1∫
0

dω√
1−ω2

e−
ω2

2 ∆2

+ O
(
ũ2
)
, (4.29)

where the coefficient µ0 is the zeroth order term in the expansion of µ(ϕ), which is
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given by

µ0 =

1∫
0

dω e−
ω2

2 ∆2

1∫
0

dω√
1−ω2

e−
ω2

2 ∆2

=

∆
√
π√

2
erf
(

1
∆
√

2

)
π
2 I0

(
1

4∆2

)
e−

1
4∆2

∆→0
= 1, (4.30)

with erf as the error function and I0 as the modified Bessel function of the first kind

of order zero [168]. Thus, equation (4.29) gives the first order perturbation about

the spherical configuration, µ̂(ϕ) := µ(ϕ)− µ0, namely

µ̂(ϕ) =
exp

(
1

4∆2

)
πI0

(
1

4∆2

) ∫ 1

0
dω

(
2∆2 + ω2

∆2
− µ0

∆2 + ω2

∆2
√

1− ω2

)
ũ(ω, ϕ) e−

ω2

2 ∆2 . (4.31)

Analogous to the calculation of the equatorial fluctuations in Section 4.1.2,

this azimuthal function can now be used to obtain a fluctuation spectrum by Fourier

transforming it in the angle ϕ, yielding µ̂q, and subsequently by computing the ther-

mal ensemble average of |µ̂q|2. As mentioned before, in the limit of ∆→ 0, this mode

spectrum is identically equivalent to (4.18). However, for finite ∆, this contains a

correction due to the finite size of the focal depth. As a result, the effect induced

by the projection of shape fluctuations out of the focal plane can be studied within

this simple model, where the details are given in the next section. In Section 4.3,

this is further analysed and compared to experimental data and its consequences on

the inferred values of the membrane elastic constants is discussed.

4.2.3 Calculation of the Fourier Spectrum

By Fourier transforming equation (4.31) with respect to the angle ϕ, this yields

µ̂q :=
1

2π

∫ +π

−π
dϕ µ̂(ϕ) eiqϕ =

∫ 1

0
dω N (ω,∆) ũq(ω), (4.32)

where in the last step we use the explicit form of (4.31) and then interchange the

order of integration. Hence, by defining the Fourier transform of ũ(ω, ϕ) as ũq(ω),

and also by absorbing the other remaining terms in a new function N (ω,∆), then

the final result in equation (4.32) can be obtained.

By using the basis representation in (4.7) and by rewriting the spherical

harmonics as Y m
n (θ, ϕ) = eimϕ Pmn (cos θ), where

Pmn (cos θ′) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pmn (cos θ′), (4.33)

with Pmn being the associated Legendre polynomials [168], then the Fourier trans-
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Figure 4.4: Log-log plot of the mean squared amplitudes
〈
| µ̂q|2

〉
as a function of the

azimuthal mode number q for some values of the focal depth ∆. Here, κ = 20 kBT
and σ̄ = 100, and a straight line interpolation is used between the points.

form of ũ(ω, ϕ) is found to be

ũq(ω) =
∑
n≥ q

Un,q [Pqn(ω) + Pqn(−ω)] =
∑
n≥ q

Un,q Pqn(ω)
[
1 + (−1)n+q

]
, (4.34)

where the identity Pqn(−ω) = (−1)n+q Pqn(ω) is used in the last step [49]. As a result,

using (4.32), the mean squared amplitude of each Fourier mode can be determined

as follows (see Figure 4.4):

〈
| µ̂q|2

〉
=
∑
n≥ q

〈
|Un,q|2

〉{[
1 + (−1)n+q

]∫ 1

0
dω N (ω,∆)Pqn(ω)

}2

, (4.35)

where the orthogonality of the flickering amplitudes in (4.16) is employed. Moreover,

using the explicit form of N (ω,∆), the term in the curly brackets, say Ln,q, can be

written as

Ln,q =
1 + (−1)n+q

πI0

(
1

4∆2

)
e−

1
4∆2

∫ 1

0
dω Pqn(ω)

[
2∆2 + ω2

∆2
−
µ0

(
∆2 + ω2

)
∆2
√

1− ω2

]
e−

ω2

2 ∆2 , (4.36)

which recovers the coefficients En,q of (4.18) in the limit of ∆→ 0 as expected. This

can be shown by a method of steepest descent. Namely, when ∆ goes to zero, the

exponential term within the integrand of (4.36) vanishes unless ω = 0. Therefore,
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the term in the square brackets of (4.36) tends to unity, and the integral reduces to

lim
∆→ 0

Ln,q = lim
∆→ 0

1 + (−1)n+q

πI0

(
1

4∆2

)
e−

1
4∆2

∫ 1

0
dω Pqn(0) e−

ω2

2 ∆2 (4.37)

= lim
∆→ 0

µ0

2

[
1 + (−1)n+q

]
Pqn(0), (4.38)

which indeed leads to En,q by using (4.33), (4.30), and the property that Pmn (0) = 0

when n+m is an odd integer number [49].

Although it is possible to find a closed form expression for Ln,q by performing

the integral exactly, the general result involves two finite sums over four confluent

hypergeometric functions of the first kind [168], and thus it is not any more en-

lightening than the result given in equation (4.36). However, this means that on

a practical level Ln,q can be tabulated for some fixed values of n and q, instead of

numerically evaluating the integral (see Table 4.1 for a few of such examples).

4.3 Experimental Analysis

As discussed in Section 4.1.2, the existing approach to determine the bending modu-

lus in flicker spectroscopy experiments involves relating the time correlation function

of the equatorial fluctuations, as given (4.20), to the fluctuation spectrum measured

from the observed contours [103]. Analogous to the spectrum (4.20), we can con-

struct a time correlation function for the fluctuations in the first radial moment of

the intensity field (4.23), namely

〈
µ̄q(t) µ̄

∗
q(t)
〉
t

=
∑
n≥ q
L2
n,q

〈 ∣∣Un,q∣∣2〉 τ 2
n,q

τ 2

(
1− e−τ/τn,q

)2
, (4.39)

where the time-average µ̄q(t) := τ−1
∫ τ

0 dt′ µ̂q(t + t′), τ is the acquisition time of

the camera, τn,q is the characteristic relaxation time associated to each spherical

harmonic mode, as given by (4.19), and the functions Ln,q and
〈 ∣∣Un,q∣∣2〉 are defined

by the equations (4.36) and (4.16), respectively.

In general, a point source observed under a microscope suffers by in-plane

blurring in the focal plane of the objective, which is usually described by a two-

dimensional convolution over a kernel that is commonly referred to as the point

spread function [182]. By assuming a Gaussian point spread function of width Σw,

it can be shown that the first radial moment of the intensity in equation (4.26)

remains unchanged to first-order corrections in Σw. Moreover, since Σw is measured

to be an order of magnitude smaller than the focal depth ∆R, we neglect the effect of
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Figure 4.5: The fluctuation spectrum for a GUV of mean radius R ≈ 23 µm, which
is imaged by using a confocal fluorescence technique, where τ = 1 ms and ∆ = 0.03.
The error-bars represent the corresponding standard errors in the mean, which are
scaled by a factor of 10 to make them for visible on the plot. The spectrum is plotted
on a log-log scale and their best-fit lines for the models (4.20), explicitly ∆ = 0, and
(4.39), ∆ = 0.03, are shown by the red and blue curves, respectively. Although both
fitting curves are of similar quality, importantly, their best-fit parameters are found
to be: κ = 19.1± 0.2 kBT and σ̄ = 119± 3 for ∆ = 0, and κ = 14.8± 0.2 kBT and
σ̄ = 176 ± 4 for the blue line with ∆ = 0.03. The inset plot shows the normalised
residuals, Rε(q), by their corresponding standard deviation for each q-mode.

the point spread function on the intensity moment ρ∆ . In addition, Σw can be used

as an indicator of the optical resolution of our microscope, yielding as a result an

optical cutoff for the fluctuation spectrum (4.39), namely q . qw := R/Σw, beyond

which we expect the spectrum to be highly dominated by white noise associated

with the imaging system (e.g. electronic noise related to the video-camera).

By comparing with a number of experiments on GUVs carried out by our

collaborators, Dr. Pietro Cicuta and Dr. Davide Orsi, which are prepared by means

of electroformation [183] with DOPC and the fluorescent labeled lipid Texas Red

DHPE in proportions of 99.2% and 0.8%, respectively, the model (4.39) can be

used to estimate the values of κ and σ̄. Moreover, the interior of vesicles is filled

with a 197 mM sucrose solution, whilst their exterior comprises of a 200 mM glucose

solution. Hence, this gives rise to a density difference of about 0.05 g/mol, which

leads to the sedimentation of GUVs onto the bottom of the object glass, conveniently

reducing their diffusive motion in suspension¶. The sample preparation of the GUVs

and the experimental measurements of their observed fluctuation spectrum were

¶Furthermore, this sucrose–glucose mixture provides a non-zero refractive index difference, which
is required if one wants to image the vesicles by a phase-contrast technique.
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performed entirely by Dr. Pietro Cicuta and Dr. Davide Orsi in the Cavendish

Laboratory at the University of Cambridge (United Kingdom).

The microscopy experiments have been carried out on a Leica TCS SP5

confocal scanning inverted microscope, where each individual vesicle is imaged in a

confocal fluorescence mode. Consequently, this allows control of the focal depth ∆

by varying the pin-hole size of the microscope. The fluctuation spectrum is obtained

from short-exposure time videos of the GUVs (with τ ∼ 1–10 ms), where the position

of each contour in every frame is determined by using the maximum of the observed

radial intensity. The analysis and detection of the contours (performed by Cicuta

and Orsi) follows a procedure similar to one described in [103], which allows us to

obtain the time-dependent position of the membrane and the corresponding mean-

squared deviations in the Fourier space, which we denote here by F (q,∆), where q

is the Fourier mode number and ∆ is the focal depth at which the measurements

have been performed (see Figure 4.5 for a example).

The best-fit parameters to the experimental data are found by means of a

maximum likelihood estimate [184] for the model (4.39), namely we seek to minimise

the following function:

χ2
` (κ, σ̄) =

qmax∑
q= qmin

(
F (q,∆`)−

〈
µ̄q(t) µ̄

∗
q(t)
〉
t

Σ(q,∆`)

)2

, (4.40)

where Σ(q,∆`) is the standard error in the mean associated to F (q,∆`), and ` labels

the data measured at different focal depths on the same vesicle. Here, qmin and qmax

define the upper and lower bounds of the q-mode fitting range, respectively, as well

as the statistical degrees of freedom of χ2
` (that is, df := qmax−qmin +1). The lower

bound is typically chosen to be qmin = 3, because of the poor statistics of the second

q-mode. Due to the rapid convergence to zero of L2
n,q, the summation in (4.39) is

truncated at a mode number n = q+20. In addition, the upper bound of the fitting

range qmax is selected such that the exponential decay term in (4.39) only weakly

affects each term in the sum, namely we choose qmax such that τ ' τnmax, qmax ln 2

(half-life time), where nmax = qmax + 20. However, the relaxation time τn,q is a

function of κ and σ̄ whose values are determined by the fitting procedure itself.

Thus, we need to solve for qmax recursively, where we additionally impose that its

value is less or equal to twice the value of the crossover mode qc := R/λ =
√
σ̄,

where λ =
√
κ/σ is the membrane correlation length, and the final equality holds

as the mean spontaneous curvature H0 = 0 in our experiments. As discussed in

Section 2.2.2, this crossover q-mode separates the regimes in which the membrane is
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Method Bending modulus (κ/kBT )

X-ray scattering on bilayer stacks 17± 2 (from [85,185–188])

Micropipette aspiration of GUVs 19± 2 (from [71])

Pulling membrane tethers 19± 2 (from [189,190])

Flicker spectroscopy of GUVs 27± 3 (from [67,191])

Table 4.2: The measured values of the bending modulus κ of a DOPC membrane
using different experimental techniques (at room temperature). The values of κ
represent the mean estimates from each given citation. Adapted from [67].

mainly dominated by the surface tension term (when q . qc) and the bending rigidity

term (when q & qc). Since the fluctuation spectrum in these limits is characterised

by different functional forms (particularly, from equation (2.37), we find the power-

laws q−2 and q−4 if the modes q . qc and q & qc, respectively), this crossover mode

is required to lie in the middle of the fitting range for q, leading therefore to the

following condition qw & qmax ≈ 2qc, with qw the optical cutoff discussed above.

A systematic decrease in the estimated value of the bending modulus κ is

found when the experimental data is fitted with the non-zero ∆-model (4.39) in com-

parison with the common approach given by (4.20), e.g. see the best-fit parameters

in Figure 4.5. By imaging a relatively small GUV of radius R ≈ 10 µm at different

pin-hole sizes, the fluctuation spectrum associated to each ∆` gives a number of `

individual estimates for the bending rigidity, as shown in Figure 4.6. Also, using

a maximum likelihood estimate over all the spectra at different values of the focal

depth ∆`, namely we minimise the function

χ2(κ, σ̄) =
∑
`

χ2
` (κ, σ̄), (4.41)

this yields κ = 17 ± 1 kBT
‖. However, if all the spectra is fitted instead with the

standard model in (4.20), then we obtain κ = 27 ± 1 kBT , which is considerably

larger than the value one would obtain with ∆ 6= 0. To illustrate the dependence of

the inferred values of κ with the focal depth ∆, the previous fitting procedure (4.41)

used over all the spectra is repeated at arbitrary non-zero values of ∆ in order to

‖It is noteworthy to mention that the estimation of the confidence interval is computed through
the covariance matrix (or Hessian matrix) of the maximum likelihood function, which depends on the
rather tight error-bars used in the spectra, that is, the standard error in the mean associated to each
q mode. In addition to this statistical estimate, other systematic errors related to the experimental
and imaging set-up can be included to obtain a more reliable measure of the confidence interval.
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Figure 4.6: Data representation of a single GUV of mean radius R = 10.2 µm,
which is observed under a confocal microscope (with τ ' 1 ms the inverse scanning
rate). (a) The inferred values of the bending modulus κ from the fluctuation spec-
tra of the vesicle individually measured at different focal depths ∆ (black points).
The error-bars represent the 95% confidence interval that are measured from the co-
variance matrix (or Hessian matrix) of χ2

`(κ, σ̄) in equation (4.40). The dash red line
represents a mean estimate of κ over all ∆ measurements, whereas the blue curve
illustrates the value of the bending rigidity one would find if the whole data is fitted
at a fixed value of ∆. In particular, the estimate of κ = 27 kBT at ∆ = 0 represents
the value that one would obtain if the standard model in (4.20) is used to fit the data.
Here, the shaded region around the red dashed line indicates the 95% confidence
bands. (b) One of the spectra from figure (a), where ∆ = 0.107. The error-bars
represent the standard error in the mean of each corresponding measurement, but
scaled by a factor of 10 for clarity, and their best-fit lines for the models (4.20) and
(4.39) are shown by the red and blue curves, respectively. Furthermore, the inset
plot shows the normalised residuals Rε for each q-mode (same colour convention).
Since the optical resolution cut-off is found to be qw ≈ 25, this may explain the
flatting of the spectrum for q & 20, being a regime mainly dominated by noise.
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construct an interpolation curve, which is depicted in Figure 4.6 as the blue line.

This shows that the effect of non-zero focal depth leads to a significant decrease in

the estimated value of the bending modulus.

It is a primary result of the present work that this correction reveals that the

flickering experiments are now in good agreement with the other methods, such as X-

ray scattering on membrane stacks, the micropipette aspiration technique, and the

method of pulling tethers from GUVs [67], as shown in Table 4.2. This disagreement

has previously been noted in the literature: the values for κ determined from the

shape analysis of giant unilamellar vesicles have previously been larger than those

obtained from micromechanical manipulation methods [67]. Thus, the correction

due to the projection of thermal shape fluctuations out of the focal plane of the

microscope seems to represent a pivotal ingredient in the estimation of the membrane

elastic constants by flicker spectroscopy experiments.

4.4 Summary

In this chapter we present the theoretical methodology necessary to obtain the

bending rigidity of membranes by studying the thermal shape fluctuations of vesi-

cles. The framework of quasi-spherical vesicles is discussed in Section 4.1.1, where

the calculation of the partition function (over all possible shapes induced by ther-

mal fluctuations) is analytically computed by restricting our analysis to quadratic

fluctuations about a spherical configuration. In Section 4.1.2, we discuss the current

approach to relate the theoretical model to the experimental data, which consists

of an analysis of the equatorial fluctuations. This method neglects the fluctuations

out of this plane. As a consequence, in Section 4.2, we develop a simple model to

account for the correct projection of thermal shape undulations onto the equatorial

plane. This involves an idealisation of the imaging system, in which we impose a

Gaussian filter on the intensity of light arriving from membrane elements above or

below the focal plane. This approach allows us to extract material information by

comparing the statistics of the first radial moment of the projected intensity with

the experimental data. This is detailed in Section 4.3, where a comparison of our

model with the existing approach (that uses only equatorial fluctuations without

averaging out of this plane) shows a systematic decrease in the value of the bending

modulus by nearly a factor of two. Therefore, the correction due to the projection

of shape fluctuations plays a crucial role in the estimation of the membrane rigidity

by means of flicker spectroscopy experiments.
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Chapter 5

Role of Recycling in

Non-equilibrium Membranes

Biological membranes are highly dynamic two-dimensional systems, consisting of a

multitude of different lipids and proteins, which are continuously exchanged with rest

of the living cell by the secretion and absorption of small vesicles which are on the

order of 100 nm in diameter [1]. This constant recycling of the cell membranes leads

to a complete turnover of its constituents in about 12 minutes [192]. Furthermore,

the membrane components are observed to be inhomogeneously distributed within

the bilayer, where some of the lipids and proteins cluster into small-scale lateral

domains with a diameter of few tens of nanometers, which are commonly referred

to as lipid rafts [28, 29]. Although there is a growing evidence of their existence

and biological significance to living cells, there are still many unanswered questions

that concerns their origin and nature both in vivo and in vitro [45,193–197]. Here,

we explore the possibility of regulating the formation of stable nano-scale domains

by recycling, where their size is controlled by the permanent exchange rates of

membrane components with an external reservoir. Within a mean-field description

of the domain kinetics, we show how a continuous recycling can provide a mechanism

for the formation of raft-like structures in non-equilibrium fluid membranes.

5.1 Introduction

The presence of distinct nano-scale domains in biomembranes has been confirmed by

numerous experiments. However, this evidence is based on indirect measurements,

such as the diffusive trajectories of labelled lipids or proteins which show a temporary

confinement to a small region of the cell membrane [198–201]. Further supporting
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evidence is captured by the biochemical experiments on membrane samples which

are dissolved in specific detergents. Since a significant portion of the biomembranes

has been found to be resistant to the detergent, it has been hypothesised that this

membrane fraction corresponds to some supermolecular structures (raft-like) that

move within the membrane [39,202]. There is also a body of accumulated evidence

that certain proteins have high affinity to lipid rafts, which can be recruited to (or

removed from) the rafts through the attachment (or the enzymatic cleavage) of their

hydrocarbon anchors [39]. As a consequence, this protein–raft affiliation results in

various membrane functions that can be associated with lipid rafts [203].

As discussed in Section 1.2, the characteristic features of lipid rafts are their

average size and composition. Namely, they are small membrane domains with a

typical size in the range of 10–200 nm, which are highly enriched in cholesterol, sph-

ingolipids (e.g. sphingomyelin, abbreviated by SM, as shown in Figure 1.4), and sat-

urated phospholipids [193]. As sphingolipids have a high melting temperature [39],

together with the high concentration of cholesterol (which encourages the ordering

of the hydrocarbon chains), this suggests than lipid rafts are membrane patches in a

liquid-order phase (as discussed in Section 1.4). Because of this, many mixtures of

few lipid species have been widely investigated using fluorescence microscopy (e.g.

a mixture of DOPC, SM, and cholesterol), which show that lipid phase separation

can occur in model membrane systems, giving rise to raft-like structures that re-

semble a liquid-order phase [196]. Nonetheless, the size of these domains are much

larger than those observed in cells. This is expected as the phase separation in

a two-component mixture manifests itself by the appearance of separated domains

(below a critical temperature), which then grow until they reach the size of the sys-

tem [204]. However, this separation occurs without any intermediate stable sizes,

such as the nano-scale length of lipid rafts. This simple argument makes the exis-

tence of lipid rafts somewhat surprising from a physical point of view, as they posses

a characteristic size that is much smaller than the typical diameter of cells.

A number of explanations have been put forth [45]. One simple solution relies

on the observation that mixtures of cholesterol and saturated and unsaturated lipid

molecules can undergo phase separation into two phases, namely, a phase in which

the first two membrane components prevail, whereas the other phase is rich only in

the third one [196]. As a result, raft-like structures can be obtained in this two-phase

region as the domains of the minority phase which are completely enclosed by the

other. The relatively small size of the domains can be attributed to the effects due

to cytoskeleton pinning, binding of cross-linkers (such as Shiga toxin), extracellular

adhesion (e.g. cell-cell junctions, or interactions with the extracellular matrix), or
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membrane curvature [205] – just to name a few. The physical and biological aspects

of these effects are beyond the scope of this study and thus the reader is referred to

the interesting reviews in [45] and [205] for a fuller account.

Here we study the role of membrane recycling, which is ubiquitous in liv-

ing cells, and its contribution to the stability of the membrane nano-domains. The

small size of the latter emergences in this case from the non-equilibrium nature of

biomembranes [206, 207], where its constituents are constantly brought to and re-

moved from the membrane through a variety of biological processes that involve the

transport of endosomes (that is, vesicles with a diameter on the order of tens of

nanometers) within the interior of cells [208]. In the next section, using a planar

two-component fluid membrane, we develop an out-of-equilibrium model for the ag-

gregation and kinetics of lipid domains via membrane recycling and intramembrane

dynamics. The interplay between the in-plane phase separation of the binary mix-

ture and the constant exchange of membrane components leads to the formation of

stable raft-like entities. A comparison of this model with experiments may allow

the verification of the recycling mechanism as a regulator of domain size, and also

the estimation of our parameters that control membrane recycling.

5.2 Membrane Domains under Recycling

In this section, we examine the dynamics and steady-state distribution of the domain

sizes within a continuum theory of non-equilibrium phase separation under mem-

brane recycling, which is based on a discrete model previously introduced by [206].

We consider an infinite planar membrane that is populated by two lipid species,

where one of them undergoes a phase separation, giving rise to domains of various

sizes, say a (and measured in area units), which are surrounded by the other mem-

brane component. Under a continuous recycling, the dynamics of the domain size

distribution is governed by the following master equation:

dP
dt

= R(a, t)−D
∫ ∞

0
P(a, t)P(a′, t) da′ +

D

2

∫ a

0
P(a′, t)P(a− a′, t) da′, (5.1)

where P(a, t) represents a density function at time t for the number-per-area of

domains of size a. Here, the domain scission events are assumed to be rare and thus

neglected in this model. As discussed in [206], this approximation corresponds to

the asymptotic regime of large line tension. This parameter characterises the energy

cost for having a finite boundary between the different phases. Since the lipids are

assumed to phase separate, our regime of interest is high line tension. The low
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Figure 5.1: Raft removal rate in the recycling scheme (5.2) for various values of
λc, where the dimensionless size s = aω, and the rescaled outward fluxes Joff =
joff/(ωD) = 1 and Foff = foff/(ωD) = −0.95 (dashed lines) and +0.95 (solid lines),
with the same colour convention. This illustrates that the model (5.2), depending
on the sign of Foff, can account for both recycling at small and large scales.

tension case simply resembles a gas of non-interacting (mostly monomeric) domains.

As a result, the in-plane diffusive dynamics of domains is primarily dominated by

the aggregation events, where we assume that two domains fuse whenever they come

into contact through diffusion. Hence, the fusion rate can be regarded as a constant

proportional to the characteristic diffusion coefficient D of the lipid rafts∗. Since

this is the only parameter that describes the intramembrane dynamics, the fusion

rate can be chosen to be identically D, corresponding to a simple rescaling which

fixes the relevant time scale in our model. Furthermore, R(a, t) is a function that

controls the lipid recycling and its explicit form is given by

R(a, t) = jon ω exp(−aω)− joff P(a, t)− foff [1− exp (−aωλc)]P(a, t), (5.2)

where single domains are brought to the membrane at random with a rate jon (in

units of number-per-area-and-per-time) and with a size drawn from an exponen-

∗Due to the logarithmic dependence of the diffusion coefficient on the size of the membrane
domains, namely D ∼ log(1/a), according to Saffman-Delbruck theory [209], we thus neglect any
size-dependence of the fusion rate as result.
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tial distribution for convenience. Here, ω > 0 is the exponential decay constant,

representing the characteristic inverse size of domains which are injected into the

membrane. In addition to this, entire rafts are stochastically removed from the mem-

brane with a constant rate joff (a number-per-time) irrespective of their size, together

with an explicit size-dependent outward flux, where the raft removal rate foff is ex-

ponentially small for domains of size less than a characteristic area ac := (ωλc)
−1.

Thus, this size dependence dictates whether one recycles only at large or small scales

through the sign choice of foff, as shown in Figure 5.1 (the former scenario is perhaps

of greater biological relevance, due to the typical size associated with the endosomes,

which are mainly enriched in the phase separated component [203]).

In the next section, to gain some familiarity with the solution of the master

equation (5.1), first we focus on size-independent recycling schemes, namely foff = 0,

or equivalently, the critical size ac → ∞ (later, in Section 5.3, we explore the size-

dependent case).

5.2.1 Scale-free Recycling Scheme

Here, we consider a recycling scheme of the form (5.2) with a vanishing size-dependent

flux. Therefore, the recycling term R(a, t) in the master equation (5.1) reduces to

R(a, t) = jon ω exp(−aω)− joff P(a, t), (5.3)

which allows us to rewrite the governing equation as follows:

dP̃
dτ

= Jon exp(−s)− Joff P̃(s, τ)− P̃(s, τ)

∫ ∞
0
P̃
(
s′, τ

)
ds′

+
1

2

∫ s

0
P̃
(
s′, τ

)
P̃
(
s− s′, τ

)
ds′, (5.4)

where we define the following non-dimensionalised quantities: s = aω, τ = t ωD,

Jon = jon/
(
ω2D

)
, Joff = joff/(ωD), and P̃(s, τ) = P(s, τ) /ω2.

This integro-differential equation can be analytically solved in the Laplace

transform space [49], namely

P̂(λ, τ) = Ls{P̃(s, τ)} =

∫ ∞
0
P̃(s, τ) e−sλ ds, (5.5)

which yields that

dP̂
dτ

=
Jon

1 + λ
− Joff P̂(λ, τ)− ρ (τ) P̂(λ, τ) +

1

2
P̂2(λ, τ) , (5.6)
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where the function ρ(τ) := P̂(λ = 0, τ) is the total number-per-area of domains

(that is rescaled by ω). Thus, by evaluating (5.6) at λ = 0, we have that

dρ

dτ
= Jon − Joff ρ(τ)− 1

2
ρ2(τ), (5.7)

which can be solved by identifying the right-hand side of the equation as a quadratic

form in ρ (τ), that is,
dρ

dτ
= −1

2
(ρ− ρ+)(ρ− ρ−) , (5.8)

where the constants ρ± are given by ρ± = −Joff ±
√
J 2

off + 2Jon .

In order to find P̂(λ, τ), we define a new function ψ(λ, τ) = ρ(τ) − P̂(λ, τ),

which by direct substitution into (5.6) gives the following differential equation:

dψ

dτ
=

Jonλ

1 + λ
− Joff ψ(λ, τ)− 1

2
ψ2(λ, τ), (5.9)

which depends only on ψ and has the same form as equation (5.7). Consequently,

using ρ0 = ρ(τ = 0) and ψ0(λ) = ψ(λ, τ = 0) as boundary conditions, the solutions

to (5.7) and (5.9) are found to be

ρ(τ) = Q∞
(ρ0 + Joff) +Q∞ tanh

[
τQ∞

2

]
(ρ0 + Joff) tanh

[
τQ∞

2

]
+Q∞

− Joff, (5.10)

and

ψ(λ, τ) = Q(λ)

(ψ0(λ) + Joff) +Q(λ) tanh

[
τQ(λ)

2

]
(ψ0(λ) + Joff) tanh

[
τQ(λ)

2

]
+Q(λ)

− Joff, (5.11)

respectively, where Q∞ =
√
J 2

off + 2Jon and the function Q(λ) is defined by

Q(λ) =

√
J 2

off +
2λJon

1 + λ
. (5.12)

Hence, the exact form of the solutions (5.10) and (5.11) in the steady state

regime (or, equivalently, in the large time limit) are given by

ρ∞ := lim
τ→∞

ρ(τ) = Q∞ − Joff, and ψ∞(λ) := lim
τ→∞

ψ(λ, τ) = Q(λ)− Joff, (5.13)

respectively. Moreover, the inverse Laplace transform of P̂(λ, τ) = ρ(τ) − ψ(λ, τ)

91



yields the domain size distribution function P̃(s, τ); however, a closed-form solution

to this is not generally easy to calculate and therefore numerical methods would need

to be employed. Instead, we consider the limiting case τ → ∞, namely the steady

state distribution P̃∞(s), where an exact solution can be obtained. Using (5.13), we

have that

P̃∞(s) = L−1
λ {Q∞ −Q(λ)} , (5.14)

where L−1
λ {·} is the inverse Laplace transform with λ as the transform variable,

namely

L−1
λ {F (λ)} =

1

2πi

∫ c+ i∞

c− i∞
esλF (λ) dλ, (5.15)

where the integration is evaluated along the line < [s] = c in the complex plane such

that c is greater than the real part of all singularities of F (λ) [49]. However, this

Bromwich integration can be avoided by rewriting the expression inside the curly

brackets of (5.14) as a product of two new functions given by

f̄(λ) =

√
Jon

(1 + λ) Ω
and ḡ(λ) =

√
1 + λ −

√
1 + λ− 2 Ω (5.16)

where Ω is defined by

Ω =
Jon

J 2
off + 2Jon

, (5.17)

and their inverse Laplace transforms f(s) := L−1
λ

{
f̄(λ)

}
and g(s) := L−1

λ {ḡ(λ)} are

known to be

f(s) = e−s
√

Jon

s πΩ
and g(s) =

e−s
(
e2sΩ − 1

)
2
√
π s3/2

, (5.18)

respectively. By employing the convolution theorem [49], we have that the inverse

Laplace transform L−1
λ

{
f̄(λ) ḡ(λ)

}
= (f ? g) (s), where the convolution (f ? g) is

defined by the integral

(f ? g) (s) =

∫ s

0
f
(
s− s′

)
g
(
s′
)

ds′. (5.19)

By substituting (5.18) into equation (5.19), a closed-form solution to the steady-

state distribution P̃∞(s) can be derived, namely

P̃∞(s) =
Jon

Q∞
e−s(1−Ω)

[
I0 (sΩ)− I1 (sΩ)

]
∼ e−s(Joff/Q∞)2

s3/2

√
Jon

8πΩ2
, (5.20)
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Figure 5.2: Plots of the total number-per-area of domains ρ(τ) and their area frac-
tion φ(τ), where we choose Jon = 10−3 and Joff = 10−1. The initial boundary
conditions at τ = 0 are given by the following step-like changes: 50% decrease in
Joff (blue); 50% decrease in Jon (red); and 50% decrease in both Jon and Joff (green).

where I1 and I0 are the modified Bessel functions of the first kind of order one and

zero, respectively. Also, the second expression in (5.20) represents the lowest order

term in the asymptotic expansion as the domain size s → ∞. Furthermore, in the

opposite limit, when s→ 0, we have that P∞(0) = Jon/Q∞.

5.2.2 Dynamics of Lowest Moments

Though it has not been possible to find a simple form for the time dependence of

P̃(s, τ), its lowest (central) moments are readily obtained. The expressions for the

first and second moment of P̃(s, τ) can be found by differentiating P̂(λ, τ) with

respect to λ under the integral sign and then evaluating the expression at λ = 0,

that is,

φ(τ) :=

∫ ∞
0
s P̃(s, τ) ds = − dP̂

dλ

∣∣∣∣∣
λ=0

, (5.21)

σ(τ) :=

∫ ∞
0
s2 P̃(s, τ) ds =

d2P̂
dλ2

∣∣∣∣∣
λ=0

. (5.22)

Therefore, by substituting the expression of P̂(λ, τ) as given by the difference

of (5.10) and (5.11) into the above equations, the total area fraction of domains φ(τ)

is found to be

φ(τ) =
Jon

Joff

[
1− e−τJoff

(
1− Joff

Jon
φ0

)]
, (5.23)
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Figure 5.3: Log-log plot of the the steady state value of the dimensionless mean do-
main size A := φ∞/ρ∞, and its associated average domain radius Rraft in nanome-
ters, as a function of the recycling strength at a fixed area coverage: 10% (blue);
20% (red); and 50% (green). Here, the red dashed lines represent the upper and
lower bounds of the physiological values of Joff and Rraft, which shows that the mean
domain size is intermediate for a large interval of recycling removal rates.

where φ0 = d
dλψ0(λ = 0), while the second moment σ(τ) is given by

σ(t) =
Jon

(
Jon + 2J 2

off

)
J 3

off

− e−2τJoff (Jon − φ0 Joff)2

J 3
off

+
e−τJoff

J 2
off

[
Joff

(
2Jon(τ φ0 − 1) + φ2

0

)
− 2Jon(τJon + φ0)

]
− σ0 e

−τJoff , (5.24)

where we define σ0 = d2

dλ2ψ0(λ = 0). As the time τ →∞ the area fraction φ decays

exponentially to its steady-state value φ∞ = Jon/Joff with a constant rate Joff.

Similarly, the second moment σ exhibits an exponential decrease (with Joff as the

longest decay constant) that tends to a constant σ∞ given by the first term in (5.24).

Although the time evolution of the central moments ρ, φ and σ are given in

terms of the initial arbitrary parameters ρ0, φ0 and σ0, these boundary terms can

be fixed by considering a scenario where a step-change at t = 0 is made in either

Jon or Joff after the system has reached its steady state configuration (such an assay

could plausibility be performed experimentally by up-regulating or knocking down

key elements of the synthesis or endocytic pathway). This corresponds to an initial-
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value problem where {ρ0, φ0, σ0} 7→ {ρ∞, φ∞, σ∞}, while the coefficients Jon and

Joff are rescaled by a constant factor, namely

Jon 7→ β Jon and Joff 7→ αJoff, (5.25)

where α and β are some positive real numbers, leading to a reduction or an increase

in the recycling rates if they are less or greater than one, respectively (see Figure 5.2).

Moreover, from these central moments the average domain size can be com-

puted from the ratio φ(τ)/ρ(τ), and its steady state value at fixed area coverage

is shown in Figure 5.3 as a function the recycling removal rate Joff. This shows

that small finite size domains can be obtained within this model as non-equilibrium

steady state structures which are stabilised by membrane recycling.

5.3 Size-dependent Membrane Recycling

We now consider the size-dependent recycling scheme given by (5.2) with foff 6= 0,

so that the raft removal rate is exponentially small for domains of size less than a

characteristic area ac = (ωλc)
−1, namely

R(a, t) = jon ω exp(−aω)− joff P(a, t)− foff [1− exp (−aωλc)]P(a, t), (5.26)

which reduces to the previous size-independent scheme (5.3) in the limit of λc →∞.

Therefore, by Laplace transforming the governing equation (5.1) and non-

dimensionalising as done in equation (5.6), explicitly s = aω, τ = t ωD, and

P̃(s, τ) = P(s, τ) /ω2, then we have that

dP̂
dτ

=
Jon

1 + λ
−Foff

[
P̂(λ, τ)− P̂(λc + λ, τ)

]
−
[
Joff+ρ (τ)

]
P̂(λ, τ)+

P̂2(λ, τ)

2
, (5.27)

where ρ(τ) := P̂(λ = 0, τ) and P̂(λ, τ) := Ls{P̃(s, τ)} as before. Moreover, we set

the coefficients Jon = jon/
(
ω2D

)
, Joff = joff/(ωD), and Foff = foff/(ωD).

Unlike the previous results obtained for the size-independent case, the time

evolution even of the central moments is more difficult to determine analytically

from the governing equation (5.27). Thus, we first obtain an analytic solution for the

steady state distribution P̂∞ (λ) := lim
τ→∞

P̂(λ, τ) and its associated lowest moments,

and then study the time dependence of small perturbation about these solutions.
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5.3.1 Steady State Solutions

First, we consider the steady-state distribution P̂∞ (λ), which is found to satisfy the

following equation:

Jon

1 + λ
− Foff

[
P̂∞(λ)− P̂∞(λc + λ)

]
− (ρ∞ + Joff) P̂∞(λ) +

1

2
P̂ 2
∞(λ) = 0, (5.28)

where ρ∞ is the corresponding steady-state value for the total number of domains

per unit area. In order to self-consistently solve for both ρ∞ and P̂∞(λ), we assume

that the rate λc is small, that is, λc � 1. This allows us to rewrite (5.28) as

Koff
d

dλ
P̂∞(λ)− (ρ∞ + Joff) P̂∞(λ) +

1

2
P̂ 2
∞(λ) +

Jon

1 + λ
= 0, (5.29)

which is the lowest order in a Taylor expansion in λc, and Koff = λcJoff. Thus, by

evaluating equation (5.29) at λ = 0, the total number of domains ρ∞ is found to

satisfy the following equation:

1

2
ρ2
∞ = Jon − Joff ρ∞ +Koff

dP̂∞
dλ

∣∣∣∣∣
λ=0

. (5.30)

By setting P̂∞(λ) = 2KoffF ′(λ)/F(λ) in equation (5.29), with F(λ) some

function to be determined subsequently, we have

F ′′(λ)− ρ∞ + Joff

Koff
F ′(λ) +

Jon

2K2
off (1 + λ)

F(λ) = 0, (5.31)

where the (double) prime symbol represents a (second) derivative with respect to

the argument of the function. By defining

κ :=
Jon

2 (ρ∞ + Joff)Koff
and z :=

(1 + λ)(ρ∞ + Joff)

Koff
, (5.32)

equation (5.31) reduces to

zF ′′(z) + (ν + 1− z)F ′(z) + κF(z) = 0, (5.33)

which is a special case of the more general associated Laguerre differential equation

with ν = −1 [168], and its solution is given in terms of the confluent hypergeometric

function of the second kind U(−κ; 1 + ν; z), also known as a Tricomi function, and
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the generalized Laguerre function L(κ; ν; z) [168], namely

F(z) = C1 U(−κ; 0; z) + C2 L (κ; −1; z), (5.34)

where C1 and C2 are arbitrary constants, and the corresponding Wronskian is given

by W = ez sin(πκ) Γ(κ)/π, with Γ as the gamma function. By using the derivative

identities ∂
∂zL (κ; −1; z) = −L (κ− 1; 0; z) and ∂

∂zU(−κ; 0; z) = κU(1− κ; 1; z),

the solution to (5.29) is found to be

P̂∞(λ) =
Jon

κKoff

C1 κU(1− κ; 1; z)− C2 L (κ− 1; 0; z)

C1 U(−κ; 0; z) + C2 L (κ; −1; z)
. (5.35)

To find a unique solution, we impose the condition that lim
λ→∞

P̂∞(λ) = 0,

which is a de facto condition for the existence of the Laplace transform. This yields

P̂∞(λ) =
Jon U

(
1− κ; 1; (1 + λ)(ρ∞ + Joff) /Koff

)
Koff U

(
− κ; 0; (1 + λ)(ρ∞ + Joff) /Koff

) , (5.36)

where we assume that κ /∈ Z and C2 = 0 is used to remove the divergent terms when

λ tends to infinity. Figure 5.4 shows a comparison between the steady-state distribu-

tion in (5.36) and the distribution computed in the size-independent case. Although

this solution is written in terms of the (undetermined) constant ρ∞, its value can

be obtained by using the boundary condition ρ∞ = P̂∞(λ = 0), or equivalently, by

substituting (5.36) into (5.30), leading to the following characteristic equation:

V (κ) :=
1

2
+ κK − U(−κ; 1; J /κ )

U(−κ; 0; J /κ )
= 0, (5.37)

where the contiguous relations of the confluent hypergeometric function of the sec-

ond kind are employed [168] and the constants J and K are defined by

J =
Jon

2K2
off

and K =
JoffKoff

Jon
, (5.38)

respectively. This allows us to determine the total number-per-area of domains

through the equation ρ∞ = Jon/ (2κKoff)−Joff, where κ is given by the positive zeros

of V (κ). Although (5.37) has an infinite number of real roots, the first positive zero

yields the physically relevant solution that is commensurate with the approximation

λc � 1. This can be shown by expressing the function V (κ) as a power series in

the parameter ε = κ2/J (which is independent of λc to lowest order) and using the

97



asymptotic expansion of the confluent hypergeometric function U to give

V(κ) =
1

2
+

∞∑
n=0

Cn ε
n+1 − Joff√

2Jon
ε1/2 + O

[
λc
]
, (5.39)

where Cn are the Catalan numbers [210]. Hence, using the generating function for

the Catalan numbers, namely
∑∞

n=0Cnε
n =

(
1−
√

1− 4ε
)
/ (2ε), (5.39) reduces to

1

2

√
1− 2Jon

(ρ∞ + Joff)2 −
Joff

2 (ρ∞ + Joff)
+ O

[
λc
]

= 0, (5.40)

which implies that the total number-per-area of domains ρ(0)
∞ =

√
J2

off + 2Jon − Joff

by solving the quadratic-like equation from above, or equivalently,

κ(0) =
1

2

(
K2 +

1

J

)−1/2

(5.41)

using the definition of κ as given by (5.32). This value corresponds to the case

where the size-dependent raft removal rate foff vanishes, and it is consistent with

the solution of (5.28) when λ = λc = 0 (as given by equation (5.13) in the previous

section). As a result, κ(0) provides an order of magnitude estimate to the physical

value of κ (that solves exactly the characteristic equation V(κ) = 0), which is found

to be in the vicinity of the first positive zero of V (κ) for small values of λc.

The equations (5.36) and (5.37) determine entirely the steady-state distri-

bution P∞(s) which can be obtained by numerically inverse Laplace transforming

P̂∞(λ). As analogous to the expansion in (5.39), an approximate solution to P̂∞(λ)

can be found by expanding (5.36) to first order in λc. Thus, by noting that ρ∞ is

itself a function of λc at this order of the expansion, we find that

P̂∞(λ) = 2
(
ρ(0)
∞ + Joff

) ∞∑
n=0

Cn

(
ε(0)

1 + λ

)n+1

− λcFoff

4Jon

(
ρ(0)
∞ + Joff

)2
∞∑
n=0

(
4ε(0)

1 + λ

)n+2

− λc
∞∑
n=0

(n+ 2)Cn+1

(
ε(0)

1 + λ

)n+1
dρ∞
dλc

∣∣∣∣
λc=0

+ O
[
λ2
c

]
, (5.42)

where we define ε(0) =
[
κ(0)

]2
/J . Each sum can be computed exactly and the deriva-

tive of ρ∞ with respect to λc in (5.42) can be obtained by applying the boundary
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condition that ρ∞ = P̂∞(λ = 0), which yields that

P̂∞(λ) = Q∞ −Q(λ) +
JonKoff

JoffQ(λ)

[
Q∞ −Q(λ)

Q(λ)Q∞
− Joff

(1 + λ)2Q(λ)

]
+ O

[
λ2
c

]
, (5.43)

where Q∞ and Q(λ) are given by

Q∞ =
√
J 2

off + 2Jon and Q(λ) =

√
J 2

off +
2λJon

1 + λ
, (5.44)

respectively, as previously defined in (5.12). Therefore, the total number-per-area

of rafts within this approximation can be written as

ρ∞ ≈
√
J 2

off + 2Jon − Joff −
JonKoff

Joff

√
J 2

off + 2Jon

. (5.45)

Moreover, using that L−1
λ {(1 + λ)−n} = sn−1e−s/(n − 1)! and the series

representation of the modified Bessel functions of the first kind I0 and I1 [168],

namely
∞∑
n=0

Cnx
n

n!
= e2x [I0(2x)− I1(2x)] , (5.46)

the approximate solution in (5.42) can be inverse Laplace transformed to give

P̃∞(s) =
Jon

Q∞
e−s(1−Ω)

[(
1 +

JonKoff

JoffQ2
∞

)
I0 (sΩ)−

(
1− JonKoff

JoffQ2
∞

)
I1 (sΩ)

]

−Koff e
−s(1−Ω) sinh (sΩ) + O

[
λ2
c

]
, (5.47)

where the parameter Ω is defined by equation (5.17) in the preceding section.

The steady-state values of the first and second (central) moment of the distri-

bution P̃(s, τ) can be determined by substituting (5.36) into their definitions (5.21).

This gives the steady-state area fraction of domains as

φ∞ =
2Jon − 2ρ∞Joff − ρ2

∞
2Koff

≈ Jon

Joff
−
JonKoff

(
Jon + 2J 2

off

)
J 4

off

, (5.48)

which is consistent with (5.30), while the second moment σ∞ is found to be

σ∞ =
Jon − φ∞Joff

Koff
≈
Jon

(
Jon + 2J 2

off

)
J 3

off

−
JonKoff

(
6J 4

off + 10JonJ
2
off + 5J 2

on

)
J 6

off

,

(5.49)

which can also be derived by differentiating (5.29) with respect to λ and subsequently
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evaluating at λ = 0. In addition, the approximations in (5.48) and (5.49) are

computed, respectively, through the first and second derivatives (at λ = 0) of the

approximate distribution P̂∞(λ) as given by equation (5.43). These low moments

are in principle experimentally measurable, and therefore it allows us to estimate the

values of the parameters Jon, Joff, and Koff by simultaneously solving (5.45), (5.48),

and (5.49). Other measurable quantities are the relaxation times of the moments,

which can be estimated, in principle, by comparison with the experiments. Thus,

in the next section, we study the linearised dynamics about the steady state.

5.3.2 Linearised Dynamics

In contrast to the size-independent case, the dynamics of the central moments with

size-dependent recycling is more difficult to determine analytically from the master

equation (5.27). However, the long-time evolution can be obtained by employing a

perturbation theory about the steady-state solutions – namely, we assume that

ρ(τ) = ρ∞ + ε δρ(τ) and P̂(λ, τ) = P̂∞(λ) + ε δP̂(λ, τ), (5.50)

with δρ(τ) = δP̂(λ = 0, τ), which by direct substitution into (5.27) yields that

d

dτ
δP̂(λ, τ) = Koff

d

dλ
δP̂(λ, τ)− (ρ∞ + Joff) δP̂(λ, τ)

− δρ(τ)P̂∞(λ) + δP̂(λ, τ)P̂∞(λ) (5.51)

to lowest order in the (small) perturbation parameter ε (neglecting the quadratic

terms). This equation can be solved by Laplace transforming in time, that is,

ϕ(λ, µ) =
∫∞

0 δP̂(λ, τ) e−µτ dτ , which gives

Koff
d

dλ
ϕ(λ, µ)−

[
µ+ ρ∞ + Joff − P̂∞(λ)

]
ϕ(λ, µ) = P̂∞(λ)ϕ(0, µ)−δP̂0(λ), (5.52)

where µ is the transform variable and we define that δP̂0(λ) = δP̂(λ, 0) for brevity.

By using the method of integrating factors, we find that (5.52) admits the following

solution:

ϕ(λ, µ) = eγ(λ, µ)

∫ ∞
λ

e−γ(λ′, µ)

Koff

[
δP̂0(λ′)− P̂∞(λ′)ϕ(0, µ)

]
dλ′, (5.53)
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where the boundary condition lim
λ→∞

ϕ(λ, µ) = 0 is used to fix the integration con-

stant, and γ(λ, µ) is given by

γ(λ, µ) =
1

Koff

∫ λ

0

[
µ+ ρ∞ + Joff − P̂∞

(
λ′
)]

dλ′. (5.54)

Equation (5.53) can be inverse Laplace transformed by exploiting the identity

L−1
µ

{
A(µ) exp

(
µ
λ− λ′

Koff

)}
= L−1

µ {A(µ)} ? δ
(
τ +

λ− λ′

Koff

)
, (5.55)

which is the convolution of the Dirac delta function δ with the inverse Laplace

transform of an arbitrary function A(µ). Consequently, by employing this result

with A(µ) = 1 or A(µ) = ϕ(0, µ), we find

δP̂(λ, τ) = e−H(λ, τ) δP̂0(λ+ τKoff)

−
∫ τ

0
e−H(λ, τ ′) P̂∞

(
λ+ τ ′Koff

)
δρ
(
τ − τ ′

)
dτ ′, (5.56)

where we made the substitution τ ′ = (λ′ − λ)/Koff and define the new function

H(λ, τ) = γ(0, λ)− γ(0, λ+ τKoff), or equivalently,

H(λ, τ) = (ρ∞ + Joff) τ −
∫ τ

0
P̂∞
(
λ+ τ ′Koff

)
dτ ′. (5.57)

Because of the initial condition δρ(τ) = δP̂(λ = 0, τ), the solution shown in

equation (5.56) reduces, as a result, to a Volterra integral equation of second kind

at λ = 0, namely

δρ(τ) = e−h(τ) δP̂0(τKoff)−
∫ τ

0
e−h(τ ′) P̂∞

(
τ ′Koff

)
δρ
(
τ − τ ′

)
dτ ′, (5.58)

where the function h(τ) = H(λ = 0, τ). Since the kernel of the integral equation

depends only on the difference τ−τ ′, this can be solved (in principle) using a Laplace

method transform, which yields in its full glory the following solution:

δρ(τ) =
1

2πi

∫ c−i∞

c+i∞
eκτ

[ ∫∞
0 e−κτ

′−h(τ ′) δP̂0(τ ′Koff) dτ ′

1 +
∫∞

0 e−κτ ′−h(τ ′) P̂∞(τ ′Koff) dτ ′

]
dκ. (5.59)

This includes a Bromwich integral over κ with c chosen such that it is greater than

the real part of all the singularities of the function within the square brackets. By

absorbing the small amplitude ε into the initial constants (in other words, assum-
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ing that δP̂0 (λ) is of order ε for all values of λ), then the time evolution of the

distribution P̂(λ, τ) in the vicinity of its steady-state is described by

P̂(λ, τ) = P̂∞(λ) + e−H(λ, τ) δP̂0(λ+ τKoff)

−
∫ τ

0
e−H(λ, τ ′) P̂∞

(
λ+ τ ′Koff

)
δρ
(
τ − τ ′

)
dτ ′, (5.60)

where the boundary term δP̂0(λ′) is found to be

δP̂0(λ′) = P̂(λ′, τ = 0)− P̂∞(λ′), (5.61)

by imposing the boundary condition at τ = 0, which can be chosen as the steady-

state distribution (5.36) with the coefficients Jon, Joff, or/and Koff being rescaled by

a constant factor. Using (5.21), this linearised solution (5.60) can now be used to at-

tain the dynamics of the first and second moment by differentiating it with respect

to λ and then setting λ = 0; however, their explicit expressions are cumbersome

and for brevity they are not shown here. Instead, we study the Padé approximant

solutions of the central moments, which give exact analytical results of the charac-

teristic relaxation times when the dynamics of the system is linearised as in (5.50).

This study is motivated by the numerical results obtained when comparing the ex-

act steady state distribution in Laplace space given by (5.36) with its lowest Padé

approximant solution (as shown in equation (5.67) of the next section) for some

values of the free parameters (see Figure 5.4).

5.3.3 Padé Approximant Solutions

A Padé approximant of a function f(z) is an approximation of that function by a

fraction where its numerator and denominator are both expressed by polynomials

in z, so that the power series expansion of this ratio about z = z0 agrees with the

power series of f(z) at that point [211]. In general, the Padé approximant provides

a much better approximation of the function than its truncated Taylor expansion,

and it may work even when the Taylor series divergences [211].

Here, we consider a first order Padé approximant of the distribution P̂(λ, τ),

such that it agrees with the power series expansion of the function in both limits

of λ → 0 and λ → ∞. Since the total number-per-area of domains is given by

ρ(τ) = P̂(λ = 0, τ), and P̂(λ, τ) vanishes in limit of large λ, the Padé approximant
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Figure 5.4: Log-log plot of the domain size distribution in Laplace space for the
size-independent case (green curve) and the size-dependent case (blue curve), where
the parameters λc = 0.01, Jon = 10−5, Joff = 10−4, and Foff = 10−1. The red dashed
line shows the steady-state solution of the Padé approximant in equation (5.67).
The inset plot displays the magnitude ε(λ) of the fractional error between the blue
curve and the red dashed line as function of the transform variable λ. The Padé
approximant is seen to be extremely precise.
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of the distribution P̂(λ, τ) can be written as the following rational approximation:

P̂(λ, τ) =
ρ(τ)

1 + λη(τ)
, (5.62)

which automatically satisfies the boundary conditions. By substitution into the

governing equation (5.27), two coupled differential equations in terms of ρ(τ) and

η(τ) are obtained by requiring that the leading coefficients in a series expansion

as λ → 0 and λ → ∞ vanish identically. In other words, we impose that the

distribution (5.62) is a solution to (5.27) as λ tends to either infinity or zero, which

leads to

ρ′(τ) + ρ(τ)

[
Joff +

Koff η(τ)

1 + λcη(τ)

]
+
ρ2(τ)

2
= Jon, (5.63)

and

Jonη(τ) + ρ(τ)
η′(τ)

η(τ)
= ρ′(τ) + ρ(τ)

[
ρ(τ) + Joff

]
, (5.64)

respectively, where Koff = λcJoff. This allows us to find the central moments of the

distribution for any value of λc (note that in this case there is no restriction on λc, as

opposed to the previous section where we studied only the limiting case λc � 1). By

linearizing the dynamics about the steady-state solutions, the system of equations

given by (5.63) and (5.64) can be solved exactly. Therefore, we consider that

ρ(τ) = ρ∞ + ε δρ(τ), and η(τ) = η∞ + ε δη(τ), (5.65)

where ε is a small perturbation parameter. At the steady-state, we have that

η∞ =
ρ∞(Joff + ρ∞)

Jon
, (5.66)

which consequently yields the following distribution (5.62) as time τ → ∞ (its

steady-state):

P̂∞(λ) =
ρ∞Jon

Jon + λ ρ∞(Joff + ρ∞)
, (5.67)

where ρ∞ is the steady-state value of the total number-per-area of rafts, which must

satisfy the following characteristic equation:

ρ∞

[
Joff +

ρ∞
2

+
ρ∞λc (Joff + ρ∞)Foff

Jon + ρ∞λc (Joff + ρ∞)

]
= Jon. (5.68)

The stationary solutions of the first and second moment of the distribution

(5.67) can be determined by evaluating the first and second derivative of equation
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(5.67) at λ = 0, which give

φ∞ =
ρ2
∞(Joff + ρ∞)

Jon
, and σ∞ =

2ρ3
∞(Joff + ρ∞)2

J 2
on

, (5.69)

respectively. Using equation (5.66), we find that φ∞ = ρ∞η∞ and σ∞ = 2ρ∞η
2
∞,

which implies that the ratio of the central moments σ∞/φ∞ = 2η∞.

To first-order in the (small) perturbation parameter ε, the system of coupled

equations (5.63) and (5.64) reduce to

δρ′(τ) +

(
Joff + ρ∞ +

Koff η∞
1 + λc η∞

)
δρ(τ) +

Koff η∞

(1 + λc η∞)2 δη(τ) = 0, (5.70)

and

Jon δη(τ) +
ρ∞
η∞

δη′(τ) = δρ′(τ) + (Joff + 2ρ∞) δρ(τ). (5.71)

These can be solved by differentiating (5.70) once with respect to τ , then substi-

tuting the form of δη′(τ) from equation (5.71) in terms of δη(τ) and δρ(τ), and

lastly eliminating δη(τ) through (5.70), which yields a homogeneous second-order

differential equation with constant coefficients for δρ(τ), namely

δρ′′(τ) + 2ϕδρ′(τ) +
(
ϕ2 − ϑ2

)
δρ(τ) = 0, (5.72)

where ϑ and ϕ are given by

ϑ2 =
(Koff η∞)2

(1 + λc η∞)4

(
1 +

λc η∞
2

)2

− Koff η∞ρ∞

(1 + λc η∞)2 , (5.73)

and

ϕ = ρ∞ + Joff +
Koff η∞

(1 + λc η∞)2

(
1 +

λc η∞
2

)
, (5.74)

respectively. Thus, equation (5.72) admits the following general solution:

δρ(τ) = e−ϕτ
[
C1 sinh (τϑ) + C2 cosh (τϑ)

]
, (5.75)

where C1 and C2 are arbitrary constants. From the above solution, the expression

of δη(τ) can be obtained through substitution into (5.70). Moreover, the unknown

constants C1 and C2 can be fixed by imposing the conditions δρ0 = δρ(τ = 0) and

δη0 = δη(τ = 0). These constants can be chosen as the difference between the

steady-state values of ρ(τ) and η(τ) after and before a reduction/increase in the

phenomenological parameters of the model. If we absorb the small perturbation
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parameter ε into δρ0 and δη0, then we have that time evolution of the total number-

per-area of rafts is

ρ(τ) = ρ∞ + δρ0 e
−τϕ

[
sinh (τϑ)− λcKoff η

2
∞ cosh (τϑ)

2ϑ (1 + η∞λc)
2

]

+ δη0 e
−τϕ Koff ρ∞ cosh (τϑ)

ϑ (1 + η∞λc)
2 , (5.76)

while the function η(τ) is found to be

η(τ) = η∞ + δη0 e
−τϕ

[
sinh (τϑ) +

λcKoff η
2
∞ cosh (τϑ)

2ϑ (1 + η∞λc)
2

]

+ δρ0 e
−τϕ

[
λ2
cK

2
off η

4
∞ − 4ϑ2 (1 + η∞λc)

4
]

cosh (τϑ)

4Koff ρ∞ϑ (1 + η∞λc)
2 . (5.77)

Analogous to the steady-state results of the first and second moment shown

in (5.69), we find from equation (5.62) that the linearised dynamics of these central

moments is given by

φ(τ) = ρ(τ)η(τ), and σ(τ) = 2ρ(τ)η2(τ), (5.78)

where both the quadratic and cross terms in δρ0 and δη0 are neglected as they

correspond to higher-order terms in the perturbative expansion. This implies that

the asymptotic behavior of ρ(τ), φ(τ), and σ(τ) as time τ tends to infinity, shows

an exponential decay with a rate given by the real part of ϕ− ϑ.

5.4 Summary

In this chapter, we theoretically study an out-of-equilibrium model for the in-plane

membrane dynamics of raft-like structures, where their stability and characteristic

sizes are mediated by the exchange of components with an external reservoir. Thus,

the formation of intermediate-scale domains in this model is a consequence of the

non-equilibrium nature of biomembranes which are subjected to a continuous re-

cycling through the transport of vesicles within the living cell. Using a mean-field

approximation, the dynamics of the distribution of domain sizes is examined in a sim-

ple aggregation model which can accommodate both scale-free and size-dependent

recycling schemes. Closed form solutions to the steady state distributions and its

associated central moments are obtained for both types of schemes. Since these
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moments are (in principle) measurable quantities, the free parameters in our model

can be determined through comparison with experimental data. Moreover, for the

size-independent case, the time evolution of the moments is analytically calculated,

which provide us with exact results to their corresponding relaxation times. How-

ever, the theoretical study of the dynamics in the size-dependent case is found to

be a very challenging task even in the linearised approximation. As a result, the

Padé approximant solutions to the central moments of the domain size distribution

are investigated as well, which allows us to obtain their steady-states and linearised

dynamics. Moreover, this also allows the determination of the unknown biophys-

ical parameters controlling recycling by comparing experimental measurements of

the moments and their relaxation times with our theoretical predictions. The re-

cycling mechanism studied in this chapter is of biological significance, representing

a possible candidate which may contribute to the regulation of lateral membrane

heterogeneity and perhaps the stability of lipid rafts observed in cells.
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Chapter 6

Conclusions

Every living cell is bounded by a sac-like membrane that plays a central role in

almost every cellular process. The fundamental architecture of all cell membranes

consist of self-assemblies of lipid molecules which are driven by thermodynamics to

the formation of a very thin and stable barrier. In its most basic form, a membrane

is represented by a bilayer structure, which acts as a platform for a myriad of other

biological entities. A multitude of proteins can be incorporated within the bilayer,

with approximately one third of all proteins being membrane resident, and these

representing the targets of most of the currently approved drugs. Consequently,

biomembranes are of central interest to the physical, life, and medical sciences,

which is also reflected by the large research community of scientists interested in

their properties and applications.

Beside their biological significance, lipid membranes represent an abundant

source of inspiration for physicists and applied mathematicians. In particular, one

remarkable aspect which has been widely exploited is the separation of scales (due

to the large difference between the membrane thickness and its lateral extent). In

Chapter 2, we introduced the key concepts that lead to the formulation of the

Canham–Helfinch theory. This is a phenomenological model proposed by Canham,

Helfinch, and Evans in the early 1970s, where a fluid membrane is described by a thin

elastic sheet and controlled by a handful of course-grained material parameters. The

natural language to characterise the surface of the membrane is the framework of

differential geometry, so that its effective free-energy can be constructed purely out

of geometric invariants, such as the area of the membrane, its mean and Gaussian

curvature. This physical description of membranes has been incredibly successful

in the understanding of numerous mechanical and dynamical phenomena involving

membranes from both theoretical and experimental perspectives. However, there
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are still many unanswered questions and problems which have not been entirely

elucidated or even considered. A number of problems, which are also of biolog-

ical relevance, have been explored in this thesis. Namely, the role of membrane

shape deformations and composition near transmembrane proteins is investigated

in Chapter 3, the methodology of estimating the membrane rigidity from its ther-

mal fluctuations is studied in Chapter 4, and lastly the non-equilibrium effects due

to membrane recycling on the lipid phase separation is discussed in Chapter 5.

Although the first two studies are concerned with the equilibrium properties of bi-

ological membranes, the latter explores aspects of their out-of-equilibrium nature,

which is a key signature of biological systems.

In Chapter 3, we study a theoretical model based on the Canham–Helfrich

theory, which describes the deformations of a fluid membrane due to the presence of

a rigid membrane inclusion. Here, we phenomenologically couple the mean curva-

ture of the membrane to the local compositional asymmetry between the two lipid

layers. This allows us compute several properties of biological relevance, in particu-

lar, the membrane shape and its composition near a protein of non-trivial structure,

and the total deformation energy in the ground state. Moreover, we study the pos-

sible effect on mechanosensitive channels that gate by protein tilt or composition

variation. We find a crossover of the membrane shape (and its composition) from an

overdamped to an underdamped regime driven by the curvature-composition cou-

pling. When the strength of this coupling is strong enough, the system is found in

the underdamped regime, which displays spatial undulations in the vicinity of the

inclusion. In this scenario, we find that the membrane may suppress the activity

of mechanosensitive channels and furthermore it promotes the early formation of

protein coats. Importantly, the large shape undulations in the underdamped regime

can be used to determine the phenomenological parameters in our model, which

shows its predictive power and suggests a novel experimental approach. Other in-

teresting aspects which can be investigated in the future concern the possibility of

membrane-mediated interactions due to presence of two (or more) membrane rigid

inclusions. Is the interaction attractive or repulsive, and how does it depend on the

local compositional variations? Furthermore, another intriguing question is whether

the present model can be generalised to many compositional fields in order to study

the physics of multi-component membrane systems.

In Chapter 4, we re-examine the theoretical approach used to determine the

bending rigidity of membranes, through the statistics of the thermal shape fluc-

tuations of vesicles (particularly, the membrane undulations of GUVs), which is

commonly referred to as flicker spectroscopy. We discuss the current methodology
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that consists primarily of an analysis of the equatorial fluctuations of vesicles, ne-

glecting as a result the shape undulations out of this plane. We then develop an

improved model to account for the projection of thermal fluctuations onto the focal

plane from within a finite focal depth associated to any microscope. We impose a

Gaussian filter to describe the intensity of light arriving from membrane elements

above or below the focal plane, idealising the optical considerations of the imaging

system. However, this then allows us to estimate the elastic properties of membranes

by comparing the statistics of the first radial moment of the projected intensity with

the experimental data. A comparison of our model with the existing approach finds

a systematic and significant decrease in the value of the bending rigidity, resolving

a previously recognised discrepancy: the bending modulus obtained through shape

measurements is significantly larger compare to the values found by other methods

(e.g. X-ray scattering and micromechanical manipulation techniques). As a result,

our improved analysis may play a pivotal role in the estimation of the membrane

elastic constants by means of flicker spectroscopy experiments. Our approach also

suggests the possibility of a new method that allows us to estimate the mechanical

properties of membranes from the long time-average of the intensity of a fluorescent

vesicle, which will be explored in the future. Here, the intensity profile can be the-

oretically computed, and its width can be found in terms of the membrane elastic

constants. By measuring this width as a function of the membrane surface tension,

we can determine the bending modulus. This can be achieved experimentally by

controlling the surface tension through a micropipette aspiration technique.

In Chapter 5, we study the role of membrane recycling and how it controls

the size and life-time of raft-like structures on the membrane. The size of these

membrane domains is controlled by the permanent exchange rates of membrane

constituents with an external reservoir, which occurs due to numerous processes in-

volving the transport of endosomes within the interior of cells. Within a mean-field

model of the domain kinetics, we show how a continuous recycling can provide a

mechanism for the formation of raft-like entities in a non-equilibrium fluid mem-

brane composed of two characteristic lipid species. Here, closed form solutions to

the steady state distribution of the domain size and its associated central moments

are determined for a certain recycling scheme. The latter includes both scale-free

and size-dependent recycling processes. Since the total-number-per-area and the

area fraction of domains (namely, the lowest moments of the distribution) are ex-

perimentally measurable quantities, the phenomenological parameters in our model

can be obtained by comparing against experimental data. In addition, the time

evolution of the lowest moments has been studied and exact analytic results are
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derived for specific cases. Measurements of their relaxation times can constitute

another way of experimentally testing and analysing this non-equilibrium model.

The theoretical results may have important biological and physical consequences to

the modulation of lateral heterogeneity in biomembranes and perhaps it may shed

light on the understanding of nano-membrane domains (or lipid rafts) which are

indirectly observed in cells.

In conclusion, we have developed a number of theoretical models to study

both the equilibrium and non-equilibrium properties of biomembranes, which may

be further applied to a wide range of other applications. However, there are various

other unanswered questions that require a full theoretical and experimental analysis,

and a great deal of research still has to be done in this exciting field.
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[211] Baker, G. A. & Graves-Morris, P. Padé Approximants (Cambridge University Press,

Cambridge, 1996), 2nd edn.

125


