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Abstract

This paper discusses the mechanism of generation of free charges in organic photo-

voltaic cells (OPV) from electrostatically bound electron-hole pairs. The efficiency of

this process is explained when interfacial charge-transfer (CT) states are generated by

direct optical excitation. We used semiclassical quantum dynamics at short timescale

(∼100 fs) and Redfield theory at relatively long timescale (∼10-100 ps) to cover both the

process of dissociation and the relaxation to the lowest energy state. Our calculations

suggest that a CT state with an intermediate electron-hole separation can evolve into

a charge-separated (CS) state on ultrafast timescales (∼100 fs) as a result of quantum

diffusion. On long timescales, however, the CS states ultimately relax to the low-energy

CT states due to the interaction with the thermal bath, indicating that the yield of

free charge carrier generation is determined by the interplay between ultrafast charge

separation, due to quantum diffusion, and the much slower quantum relaxation process.

Keywords: Charge separation, Organic photovoltaics, Ehrenfest dynamics, Redfield

theory
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1 Introduction

Light absorption in donor/acceptor (D/A) heterojunction organic photovoltaic (OPV) mate-

rials leads to the formation of spatially localized electron-hole pairs (Frenkel excitons) rather

than creating free charge carriers as in inorganic PV materials.1–3 Photocurrent generation

in OPV devices, therefore, requires first the dissociation of Coulombically bound Frenkel

excitons into interfacial charge transfer (CT) state excitons (D+A−) and then the separa-

tion of electron-hole pairs into free electron and hole carriers (D++A−). Because of the low

dielectric constant, the binding energy of CT excitons in organic materials is typically an or-

der of magnitude larger than the thermal energy. However, experimental evidences indicate

unequivocally that the charge generation process occurs on ultrafast timescale within a few

hundred femtoseconds in OPV cells.4–8 Understanding how the tightly bound electron-hole

pair overcomes the Coulomb barrier and dissociates into free charge carriers is therefore one

of the long-standing questions in OPV and is crucial for the design of new devices with

improved efficiency.

Recent experiments using time-resolved two-photon photoemission (TR-2PPE) spectroscopy

and transient absorption spectroscopy suggest that efficient CS is assisted by the hot charge-

transfer (CT) state with excess photon energy.4,6,9 However, other experimental evidences

indicate that the internal quantum efficiency is independent of whether or not initially gener-

ated excited states have higher energy than the thermally relaxed CT states.10,11 Therefore,

the relevant question about what drives ultrafast CS in OPV cells is still open.12

A good number of theoretical studies have been performed to provide a quantitative descrip-

tion of the ultrafast CS in OPV cells.13–22 For example, Tamura and Burghardt13 attributed

fast CS to the two main factors, (i) electron delocalization within the fullerene condensate

and (ii) the role of vibronically hot CT states, by carrying out a combined approach of elec-

tronic structure calculations and quantum dynamical analysis. Sun and Stafström14 showed,

using nonadiabatic Ehrenfest dynamics, that intermolecular interactions strong enough to

delocalize the wavefunctions on the acceptor side are crucial to overcome the Coulomb at-
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traction. Similar conclusions have been obtained with a very elementary treatment of the

electron-phonon coupling in Ref. 23. Smith and Chin15 suggested that delocalized electronic

eigenstates of the acceptor crystallite can account for both ultrafast CS that occurs on short

timescales after exciton dissociation and the separation of the relaxed CT state formed on

long timescales before nongeminate recombination takes place. Vázquez and Troisi16 sug-

gested that Frenkel excitons on donor material dissociate into partially charge-separated

states, i.e., hot CT states in nature, which can explain efficient charge generation in OPV

materials. All of these studies describe the formation of delocalized, higher energy CT states

from the Frenkel excitonic states, which are easily transformed into free charges without en-

ergy penalty. In other words, it is the resonant coupling of photogenerated singlet excitons to

a high-energy manifold of fullerene electronic states that enables efficient charge generation,

bypassing localized CT states.

However, it was recently shown experimentally11 that CS can occur very efficiently via an

optically generated CT state. The theoretical studies so far, identifying a CS mechanism via

the direct formation of higher energy and more delocalized CT states, are therefore unable

to explain this new evidence. In Ref. 11, the lowest energy emissive interfacial CT state

was directly and exclusively generated from the ground state via optical excitation and the

internal quantum efficiency (IQE, or the fraction of photons transformed into charges that are

collected at the electrodes) was essentially similar to the IQE measured for incident radiation

populating the exciton on the donor material. Direct photoexcitation of the thermally relaxed

CT states has been previously carried out by other experimental groups,10,24,25 and the

conclusion was, similarly, that the CT states with excess energy are not required for the free

charge carrier generation.

Herein we consider a scenario where the CT states are generated by direct optical excita-

tion with an intermediate electron-hole separation and energy lower than the energy of free

charges. Recently, Barker et al.26 showed that such CT states with the intermediate-range

electron-hole separation exist by measuring distance distributions of photogenerated charge
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pairs for the wide range of OPV blends. They estimated that electron-hole separation in

the range of 3-4 nm is critical for the CT states to yield free charge carriers, depending

on the tunneling attenuation factor β. The possibility of generating charges in a range of

distances near the interface is easily explained by theoretical modeling.27 CT states with a

small hole-electron separation have larger oscillator strength but smaller density, while CT

states at intermediate hole-electron separation are more easily formed because their higher

density more than compensates for their weaker oscillator strengths.

In this work we aim at finding out whether CT states at intermediate hole-electron separation

can still separate into free holes and electrons as a result of quantum diffusion in the short

timescale (∼100 fs). Even if charges can be separated on short timescales, the relaxation

process of the CS states to low-lying CT states is expected to take place at relatively long

timescales (∼10-100 ps). The same relaxation mechanism can be thought to play a role when

free hole and electron are trapped in a CT state, which can be considered as an intermediate

state for nongeminate charge recombination.

To obtain a complete description of charge dynamics it is therefore important to model the

charge dynamics of both processes, “low-energy CT to CS states” and “CS to low-energy

CT states”, which would occur on two different timescales. To this end, we build a model

Hamiltonian of the D/A interface and employ two different quantum dynamics methods

(Ehrenfest dynamics and Redfield theory) that are expected to properly describe charge

dynamics for each regime. We suggest that the competition between the ultrafast charge

separation and comparatively slower relaxation determines ultimately the yield of free charge

carrier generation.
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2 Methods

2.1 Purely electronic dynamics

To build a model Hamiltonian we treat the acceptor crystal as a finite one-dimensional lat-

tice, where each acceptor molecule occupies each lattice point, while a hole on the donor

molecule is treated as a point charge fixed in space (see Figure 1). Similar type of model

Hamiltonians has been widely used to describe Frenkel exciton dissociation and charge dy-

namics in D/A heterojunctions.7,14–17,22,23,27,28 By considering a single electronic state per

acceptor site and only the nearest-neighbor interaction between these electronic states the

electronic Hamiltonian can be written as

Ĥel =
N∑
i=1

[
εi|i〉〈i|+

∑
j=i±1

τ |i〉〈j|

]
, (1)

where |i〉 is an electronic state localized on molecule (site) i; N is the total number of sites;

L is the distance between adjacent sites (this is also assumed to be the distance between the

hole and electron nearest to the interface); εi = − e2

4πεLi
is the on-site energy determined by

Coulomb interaction of an electron with a hole separated by distance L × i in a dielectric

medium with a dielectric constant ε/ε0; and τ is the electronic coupling between adjacent

states that is assumed to be the same for all adjacent pairs.

Realistic charge dynamics is influenced by the electron-phonon coupling at short time and the

coupling with the thermal bath at longer time, as discussed in the following sections. Nev-

ertheless, it is also useful to consider the charge dynamics within the simplified Hamiltonian

presented above to determine the features of quantum diffusion in the absence of coupling

with other degrees of freedom. Charge dynamics governed by Eq. 1 can be described in two

different ways. One is to obtain the time evolution of the wavefunction |ψ(t)〉 =
∑

iCi(t)|i〉

by solving the time-dependent Schrödinger equation i~ ∂
∂t
|ψ(t)〉 = Ĥel|ψ(t)〉 and the other is

to obtain time-evolution of the density matrix ρ̂(t) by solving the quantum Liouville equation
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Figure 1: Top panel: Schematic of a one-dimensional acceptor lattice model. Central panel:
corresponding on-site energy εi (L=13 Å and ε/ε0=3.5). The arrows indicate the short time
quantum diffusion and the long time relaxation toward the lowest energy site. Bottom panel:
Schematics of the time evolution of charge density along the acceptor sites.

∂
∂t
ρ̂(t) = − i

~ [Ĥel, ρ̂(t)]. Population of charges on each site can be obtained by computing

|Ci(t)|2 and ρii(t), respectively, which produces identical results in a closed system.

In what follows, we set the electronic Hamiltonian parameters to N=20, L=13 Å, ε/ε0=3.5,

and τ=0.08 eV unless otherwise noted. (L=13 Å is used to model fullerene derivatives

as an acceptor molecule.) Permittivity of a dielectric medium ε is close to the reported

experimental value29,30 and τ is an intermediate value encountered in computational stud-

ies.7,14,15,23,27,31,32 Charge is initially localized on the second nearest site to the interface

(|ψ(t=0)〉 = |2〉), which corresponds to the electron-hole separation of 2.6 nm.

7



2.2 Ehrenfest dynamics

Thermal fluctuation of nuclei from their equilibrium position leads to modulation of the

electronic energy levels and their couplings. In the presence of electron-phonon coupling, the

total Hamiltonian can be written as

Ĥtot = Ĥel + Ĥel−ph + Ĥph, (2)

where

Ĥel−ph =
∑
k

N∑
i=1

[
λ(k)u

(k)
i |i〉〈i|+

∑
j=i±1

α(k)(u
(k)
i − u

(k)
j )|i〉〈j|

]
, (3)

Ĥph =
∑
k

N∑
i=1

[
1

2
m(k)(u̇

(k)
i )2 +

1

2
m(k)(ω(k)u

(k)
i )2

]
, (4)

and Ĥel is given by Eq. 1. Here, {λ(k)} and {α(k)} are the local (or Holstein) and non-local

(or Peierls) electron-phonon coupling constants, respectively, and {u(k)i } is the displacement

of an atom on site i of the nuclear mode k. The first and the second term on the right-hand

side of Eq. 3 represents the modulation of the on-site energy εi due to the displacement of the

nuclei from their equilibrium position and the modulation of the intermolecular electronic

coupling τ due to the displacement of the adjacent nuclei relative to each other, respectively.

Within an Ehrenfest scheme the phonons are treated as classical harmonic oscillators as

described in Eq. 4. Then, the equation of motion for the nuclei position can be written as

m(k)ü
(k)
i = −m(k)(ω(k))2u

(k)
i −

∂

∂u
(k)
i

〈ψ(t)|(Ĥel + Ĥel−ph)|ψ(t)〉. (5)

The last term in Eq. 5 represents the effect of electronic Hamiltonian coupled with the

phonons on the nuclear degrees of freedom. Here, initial positions, {u(k)i (0)}, and velocities,

{u̇(k)i (0)}, of the nuclei are selected from the Boltzmann distribution at the room temperature.

Details of numerical integration are provided in Ref. 33.
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Table 1: Parameter values used in the model Hamiltonian unless otherwise noted. Parameter
range used to see its effect on charge dynamics is listed in parentheses. (m(2)=392 amu, which
corresponds to the mass of a perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), is used
when L=5 Å.)

Value Description
Ĥel L (Å) 13 (5) lattice spacing

N 20 (10, 30, 50) number of acceptor sites
ε/ε0 3.5 dielectric constant
τ (eV) 0.08 (0.04, 0.16) electronic coupling

Ĥel−ph m(1) (amu) 6 mass of phonon mode (1)
ω(1) (cm−1) 1500 frequency of phonon mode (1)
Λ (eV) (0.01-0.4) reorganization energy
λ (eV/Å) (0.71-4.48) local electron-phonon coupling
m(2) (amu) 910 (392) mass of phonon mode (2)
ω(2) (cm−1) 50 frequency of phonon mode (2)
α (eV/Å) 0.34 (0.03-1.36) non-local electron-phonon coupling

Ĥph γ−1 (fs) 50 (100) characteristic timescale of phonon spectral density

The model parameters can be obtained by quantum chemistry calculations and classical

molecular dynamics simulations for realistic molecular systems. As in this work we are

trying to establish the basic physical principles, we will set the parameters to previously

determined literature values and study their effect on the results. The Holstein coupling

constant λ is associated with the reorganization energy Λ. Employing a single effective high

frequency mode (k=1) for λ is proven to be valid for organic chromophores in charge transfer

reactions.34 In this case, λ(k) can be written as λ(1) = ω(1)
√
m(1)Λ and λ(k) = 0 for k 6= 1. We

set ω(1) = 1500 cm−1 and m(1) = 6 amu, which corresponds to C-C/C=C stretching normal

mode throughout the simulations.35

In general, low frequency modes are responsible for modulating the intermolecular elec-

tronic coupling.36 We assume that this modulation can be represented by a single effective

low frequency mode ω(2) on the basis of previous computational work.35,37 Here, we set

ω(2) = 50 cm−1, which was obtained from the spectral density of τ for organic system,35,38

and m(2) = 910 amu, which corresponds to the total mass of phenyl-C61-butyric acid methyl

9



ester (PCBM). Reference value of α(2) is set to 0.34 eV/Å, which was determined from the re-

lationship στ = α(2)

√
2kBT/m(2)(ω(2))

2, where στ is the standard deviation of τ distribution

and approximated to στ ≈ τ/333 for τ=0.08 eV. Table 1 summarizes the parameters used in

this work. In the following we investigate the effect of τ , λ, and α on charge dynamics. (We

omit the superscripts in λ(k) and α(k), since we consider only one effective mode for each

type of electron-phonon coupling).

2.3 Reduced density matrix dynamics

Relaxation process is expected to dominate charge dynamics on long timescales due to the

interaction with the thermal bath, resulting in the relaxation of the CS states to the lower-

lying CT states. A major drawback of Ehrenfest dynamics is that it fails to achieve thermal

equilibrium,39,40 e.g., non-Boltzmann distribution of equilibrium state population, and does

not properly account for decoherence.41–43 Several approaches are being debated in the litera-

ture to improve long-time behavior44–46 and incorporate decoherence effects41,47 in Ehrenfest

dynamics, but they are outside the scope of our analysis.

Alternative way to study the system relaxation process is to employ the density matrix

approach where relaxation dynamics is described in terms of the reduced density operator:

ρ̂ ≡ TrB{ρ̂tot} =
∑
b

〈b|ρ̂tot|b〉, (6)

where ρ̂tot is the density operator of the “system+bath”; TrB{ } represents the partial trace

over the bath degrees of freedom; and {|b〉} denotes the eigenstates of the bath Hamiltonian.

We assume that the system-bath coupling is weak and the bath dynamics is much faster

than the system dynamics and therefore memory effects in the reduced density dynamics

can be ignored (Markov approximation). It should be noted that Markov approximation is

not valid at short times (∼fs) when the characteristic timescales of the system is faster than

the timescales on which bath correlation function decays. On these timescales, however,
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we do not expect any significant relaxation/dephasing to take place. As we will see, the

CS process with reasonable system parameters cannot be possibly Markovian while the

relaxation process probably satisfies the Markovian limit. The transition between the two

regimes is in general complicated and will not be studied in detail in this work. We, however,

discuss the possible interpolation between the two regimes in the results section.

In the Markovian limit the equation of motion for the reduced density operator can be

described by the Redfield equation:48–50

∂

∂t
ρµν(t) = −iωµνρµν(t) +

∑
µ′ν′

Rµν,µ′ν′ρµ′ν′(t), (7)

where µ, ν stand for eigenstates of the system Hamiltonian and ωµν ≡ (Eµ − Eν)/~, where

Eµ, Eν are the corresponding eigenvalues. The first term on the right-hand side of Eq. 7

describes system dynamics in the absence of dissipation. System relaxation due to the

interaction with the thermal bath is described by the second term via the Redfield tensor

Rµν,µ′ν′ , which can be expressed in terms of the damping matrix:

Rµν,µ′ν′ ≡ Γν′ν,µµ′ + Γ∗µ′µ,νν′ − δνν′
∑
κ

Γµκ,κµ′ − δµµ′
∑
κ

Γ∗νκ,κν′ , (8)

where the damping matrix Γµν,µ′ν′ is given by Fourier-Laplace transforms of the coupling

correlation function50 and mainly determined by the bath correlation functions C(t).49,50

For the system-bath interaction that is linear in the displacement of the bath oscillators,

Ĥel−ph =
∑

k

∑N
i=1 λ

(k)
i u

(k)
i |i〉〈i|, the damping matrix can be written as51,52

Γµν,µ′ν′ ≡
1

~2
∑
i,j

〈eµ|i〉〈i|eν〉〈eµ′|j〉〈j|eν′〉Cij[ων′µ′ ], (9)

where the Cij[ω] is the Fourier transform of the Cij(t), Cij[ω] ≡
∫∞
0
dteiωtCij(t), and expressed

in terms of bath spectral density Jij(ω). The imaginary parts of C[ω] represent bath-induced

shift of the transition frequency and do not lead to relaxation. Therefore, we only consider
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the real parts of C[ω] that are relevant to the system relaxation and given by51

Re Cij[ω] = ~Jij(ω)[nBE(ω) + 1], (10)

where nBE(ω) ≡ [eβ~ω − 1]−1 is the Bose-Einstein distribution function. In this work we

employ Drude-Lorentz bath spectral density J(ω) = 2Λ ωγ
ω2+γ2

53,54 and assume Jij(ω) =

δijJ(ω).51 Here, the damping constant γ determines the width and peak position of the

spectral density (Λ is the reorganization energy as defined in section 2.2). It should be noted

that while only a few local phonon modes are selected when employing Ehrenfest dynamics

to describe CS dynamics, continuous spectrum of phonon modes, J(ω), is employed when

using Redfield theory and only the local electron-phonon coupling is considered. Once ρµν

is obtained from Eq. 7, it can be transformed to the site representation by ρ̂site = Û ρ̂Û−1,

where Û is the unitary operator that diagonalizes Ĥel via Û−1ĤelÛ .

Despite the restrictive assumptions described above, Redfield theory has been shown to

provide a simple, computationally efficient, and valuable way to study dissipation due to

a thermal environment for a variety of problems.52,55–58 Recently, Kelly et al.59 proposed

a method that combines Ehrenfest mean field theory with the reduced density matrix for-

malism, which is a non-perturbative, non-Markovian, and non-restrictive on the form of the

Hamiltonian with a much lower computational cost than mean-field theory. In this work we

choose two different approaches, Ehrenfest dynamics in short times and Redfield theory in

long times, which are known to be well-suited in each regime.

3 Results and discussion

3.1 Charge dynamics in the absence of electron-phonon coupling

It is instructive to analyze charge dynamics in the absence of electron-phonon coupling. In

fact, while the latter has been proven essential for the quantitative description of exciton dis-
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Figure 2: Time evolution of site population in the absence of electron-phonon coupling. On
the right panel color-mapped population (white to red when going from ρii=0 to ρii=1) is
plotted where vertical axis denotes a site index. Charge is initially localized on the site i=2
in the upper panel and i=1 in the lower panel, respectively.
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sociation,18,21,60 many qualitative features are present in the simplest possible model without

electron-phonon coupling23 and it is convenient to isolate the phenomenology of a simple,

purely electronic Hamiltonian.

Figure 2 (upper panel) shows the time evolution of population ρii(t) of several sites (i=1-5,

20) when charge is localized on the site i=2 at t=0. Here, we analyze charge dynamics

until the outgoing wavepacket reaches the boundary (set by N=20). Charge propagates

with time along the acceptor sites, leaving the D/A interface, and reaches i=20, which

corresponds to the electron-hole separation of 26 nm, after 90 fs with population ∼0.35.

Note that the population at the lowest energy CT state, ρ11, does not decay to zero. Instead,

it fluctuates around 0.1-0.2 with time. This bifurcation behavior of the wavefunction can

be more easily seen by plotting the population density map (upper-right panel of Figure 2),

where population of each site is color-mapped (red for ρ̂ii=1 and white for ρ̂ii=0) in the

two-dimensional plot (site index on the vertical axis and time on the horizontal axis). It

illustrates that the charge population follows two different paths: one propagates outward

from the D/A interface and the other is relaxed to the lowest energy CT state. We note in

passing that the outgoing wavepacket spreads over a few sites and shows slight increase in

the spread as time goes on whereas the charge density relaxed to the lowest energy CT state

is more or less localized on i=1.

On the other hand, when the initial state is localized on the lowest energy CT state (i=1), the

propagation of the wavefunction away from the interface becomes much weaker. In the lower

panel of Figure 2 site population exhibits sign of charge propagation in early times but it fades

away with time (ρii decreases fast as i increases) while the population at the lowest energy

CT state remains high (ρ11=0.5-0.7). Significantly weakened charge propagation behavior is

also illustrated by the population density map plotted in the lower-right panel of Figure 2,

where the majority of the charge population remains at the lowest energy CT state (i=1) and

population at the sites far from the interface is almost negligible. This result indicates that

the CS process is not likely to be initiated by a charge located at the shortest possible distance
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from the interface but, as long as the initial state possesses an intermediate-range electron-

hole separation (e.g., a CT state with 2.6 nm electron-hole separation), the generation of

free charge due to quantum diffusion becomes possible. Electron-hole separation of 2.6 nm

that is required for efficient CS to occur is close to the lower bound of the critical distance

of the charge pairs (3-4 nm) to generate free charges found in Ref. 26.

The expectation value of the energy is constant and below the energy of free charges. How-

ever, as the system evolves quantum mechanically, it will have finite probability to be found

at higher (or lower) energy sites. In this case, the fast propagation toward higher energy

states is facilitated by their higher density. This quantum diffusion process (which as we

will see in the next section is slowed down by electron-phonon coupling) cannot take place

indefinitely and, at some point, the interaction with the thermal bath will induce dephasing

and thermal relaxation toward the lowest energy state as discussed in section 2.3.

Before we proceed to analyze the effect of the electronic Hamiltonian parameters on charge

dynamics, we define a few physical quantities for the quantitative analysis of charge dynam-

ics. One simple way to analyze charge dynamics is to obtain the expectation value of the

position 〈x〉 as a function of time. By assuming 〈i|x|i′〉 = xiδi,i′ = iLδi,i′ , 〈x〉 can be simply

obtained by

〈x〉 =
N∑
i=1

iLρii(t). (11)

However, this definition can give misleading information if the distribution of ρii(t) is multi-

modal, as seen in Figure 2. Therefore, to monitor the propagation of wavepacket leaving the

D/A interface, we additionally define the expectation value of the position of the outgoing

wavefunction as follows:

〈x〉outgoing ≡
∑

i≥i0 iLρii(t)∑
i≥i0 ρii(t)

, (12)

where i0 denotes the site where the charge is initially localized. Note that i0 is included in

the summation of Eq. 12, so that 〈x〉outgoing at t=0 gives the initial charge position. The

expectation value of the position provides an estimate of electron-hole pair distance as a
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function of time, but it does not provide the information of what fraction of charge is leaving

the interface. For instance, a small charge at large distances is equivalent to a large charge

at small distances. Therefore, we obtain the fraction of outgoing charge η defined as:

η ≡
∑
i>i0

ρii(t), (13)

which also provides the probability of the wavefunction to be found in the higher-lying states

than the initial state.

Figure 3a shows the 〈x〉outgoing as a function of time for different intermolecular electronic

couplings τ . To avoid the boundary reflection during charge propagation, arising from the

finite size of acceptor lattice model when τ is large, we increase the number of lattice points

to N=50 in this case. As expected, the charge leaves the interface at shorter times as τ

increases. For instance, it takes 12 fs to reach the site i=5 when τ=0.16 eV whereas it takes

20 fs when τ=0.08 eV and 70 fs when τ=0.04 eV. When τ is very small (=0.04 eV), the CS

process becomes very inefficient. It occurs much more slowly and almost stops after 40 fs.

Our result that sufficient intermolecular electronic coupling is necessary for CS to occur is in

line with other studies14,15,32 where the increase of intermolecular interactions leads to more

delocalization of the acceptor sites and therefore facilitates CS.

We also analyzed charge dynamics for L=5 Å to model flat acceptor molecules (results

not shown). As expected, CS dynamics is similar regardless of L if the charge is initially

localized with similar electron-hole separation (e.g. we find similar CS dynamics when charge

is localized on the site i=4 for L=5 Å and when localized on i=2 for L=13 Å).

3.2 Charge dynamics on short timescales using Ehrenfest scheme

Now we introduce the electron-phonon coupling in the model Hamiltonian to see its effect

on charge dynamics. First, we investigate the effect of local electron-phonon coupling λ

on charge dynamics. To this end, we set non-local electron-phonon coupling α to zero
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Figure 3: (a) Expectation value of position 〈x〉outgoing/L (L=13 Å) for N=50 in the absence
of electron-phonon coupling (α=λ=0). (b) 〈x〉outgoing/L, averaged over 300 trajectories,
for different reorganization energies Λ with α=0, τ=0.08 eV and N=20. (c) 〈x〉outgoing/L,
averaged over 300 trajectories, for different non-local electron-phonon coupling constants α
with λ=0, τ=0.08 eV and N=20. (d) Fraction of outgoing charge η for different λ and α
with τ=0.08 eV and N=20. Each line corresponds to different values of Λ (varying from 0
to 0.4 eV as in (b)).
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Charge is initially localized on the site i=2 and α is set to zero in all cases.
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and vary only reorganization energy Λ, which determines electron-phonon coupling λ by

the relationship λ = ω
√
mΛ. The charge population density map obtained for different Λ

(Figure 4) shows that charge propagation feature becomes weaker as Λ increases and as a

result the fraction of charge density at site i=1 (ρ11) increases with Λ. Slowing down of the

CS process can be quantitatively analyzed by plotting 〈x〉outgoing/L as shown in Figure 3b.

For instance, as Λ increases from 0 to 0.4 eV, 〈x〉outgoing/L at t=85 fs decreases from 16 to

5.4, which corresponds to an electron-hole separation of 21 nm and 7 nm, respectively. Next,

we increase α from 0.03 eV/Å to 1.36 eV/Å while keeping λ=0. We find a similar trend of

〈x〉outgoing/L in Figure 3c that the CS process slows down as α increases. Note that as α

increases to 0.68 eV/Å or above, CS becomes so slow that increasing α hardly affects charge

dynamics any more.

We now vary both λ and α, and plot η at t=80 fs in Figure 3d. Note that η is as high

as 0.7-0.8 when both Λ and α remain relatively small. As electron-phonon coupling further

increases, η decreases. However, we find η ≥ 0.4 even for the largest electron-phonon coupling

constants considered here. Considering the range of reorganization energies (Λ=0.05-0.3

eV)31,61–64 and the distribution of intermolecular electron-phonon couplings33,35 in organic

semiconducting materials, we can conclude that the CS process can be quite efficient in

typical OPV materials. For instance, for the system parameters typical for organic materials

(Λ=0.2 eV, α=0.34 eV/Å) we find η=0.51. This represents one of our main results, suggesting

that CS can be achieved with a ∼50% probability in the presence of realistic electron-phonon

couplings, if the initial CT state can be generated with an intermediate-range electron-hole

separation.

3.3 Charge dynamics on long timescales using Redfield equation

We now present charge dynamics on long timescales obtained by Redfield equation. It should

be noted that short time dynamics is also correct in this case because the effect of bath is

insignificant at very short times. Figure 5a shows the population (diagonal elements of ρ̂site)
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for the five sites near the D/A interface using the parameters γ−1=50 fs and Λ=0.05 eV.

There are comparatively fewer information on γ and therefore we try a plausible range of γ

values as discussed below. We expect that system relaxation occurs much more slowly than

the correlation time of the bath fluctuation, γ−1=50 fs, and therefore Markov approximation

is valid in this regime. Time evolution of the site population exhibits outgoing charge

propagation on short timescales (less than 100 fs), as seen in the previous section using the

Ehrenfest method. However, after CS takes place on a short timescale, lower-lying CT states

begin to gain population as the quantum relaxation process dominates system dynamics. Site

population eventually reaches a plateau after ∼4 ps where ρ11 and ρ22 are largest and the

population of the higher-lying CT states are negligible.
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Figure 5: (a) Population of the five sites near the D/A interface. (b) Expectation value of
the position 〈x〉/L for different values of Λ with γ−1=50 fs. Dashed curve is for γ−1=100 fs
and Λ=0.02 eV. Shaded region corresponds to the regime where the charge dynamics cannot
be accurately described by the employed quantum dynamics scheme.

Two different processes governing charge dynamics on two different timescales (quantum

diffusion on short timescales and quantum relaxation on long timescales) can be easily seen by

examining the expectation value of the position. Since we expect charge to relax eventually

to the lowest-lying CT states, we evaluate the expectation value of position 〈x〉 instead of

evaluating the position of outgoing charge 〈x〉outgoing. Figure 5b shows 〈x〉/L for different

reorganization energies Λ. It starts from 〈x〉/L=2, where charge is initially populated,
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increases until it reaches the largest electron-hole separation on a timescale of ∼100 fs, and

then decreases until it reaches an equilibrium value (〈x〉EQ/L=1.3) on a timescale of ∼10 ps.1

It should be noted that Markov approximation employed here is valid when the timescale

of bath correlation function is faster than that of system dynamics. Since the relaxation

process will not take effect at very short times, the shaded region in Figure 5b approximately

represents the intermediate regime where the quantum dynamics scheme employed in this

work may not be valid. We speculate, however, that qualitative picture of charge dynamics

in this regime would not significantly deviate from what is described here except for possible

variations in CS distances and timescales, based on charge dynamics on long timescales. We

note in passing that Ehrenfest dynamics does not reach correct equilibrium as described in

section 2.3. For instance, we obtain ρ11=0.1 and 〈x〉/L ∼10 at equilibrium.

Figure 5b also shows how parameters Λ and γ affect charge dynamics. As reorganization

energy Λ increases, charge propagation occurs more slowly and therefore electron is separated

from the hole by shorter distance as seen in the previous section. Timescale on which charge

relaxation occurs, on the other hand, is only slightly affected, and the overall behavior of

charge dynamics does not critically change with the reorganization energy. We point out

that Eq. 7 holds only in the limit of weak system-bath coupling and therefore we keep the

value of Λ smaller than τ(=0.08 eV).

Black dashed curve in Figure 5b shows the 〈x〉/L for γ−1=100 fs, which is the typical value

in photosynthetic excitation energy transfer processes.51,54,66 When compared with the black

solid curve with γ−1=50 fs, system relaxation occurs on slightly longer timescale as the

damping constant γ decreases, as expected. On the other hand, charge dynamics on short

timescales is hardly affected by γ because the system dynamics in this regime is mostly

dominated by the quantum diffusion process rather than quantum relaxation. We found a

similar trend of charge dynamics except for a slight increase in the maximal value of 〈x〉 by

1-2 nm when varying γ−1 from 50 fs to 100 fs for larger values of Λ (=0.04 eV and 0.06 eV).
1An observation similar to that of Figure 5b was very recently reported by Prof. Xiaoyang Zhu’s group

on a related system.65
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Therefore, we conclude that although the distance of separated charge pairs can vary within

a few nanometers depending on the system-bath or bath parameters, the overall behavior of

charge dynamics does not significantly change and charge relaxation occurs on a timescale

of ∼10 ps.

We additionally performed quantum dynamics calculation for different system parameters,

such as varying the D-A distance from 9 Å to 19 Å while keeping lattice spacing the same

(L=13 Å), increasing the number of sites from N=10 to N=30, and extending the acceptor

model from one-dimensional lattice to two-dimensional lattice for different number of sites

along the interface. In all cases, we found similar trend of charge dynamics that charges can

separate on ultrafast timescale on the order of tens of femtoseconds due to quantum diffusion

and they eventually relax to the lowest-energy CT state on a longer timescale on the order

of 1-10 ps due to the interaction with the thermal bath.

In our model the only possible fate for the electron carrier is to relax to a bound CT state,

from which hole-electron annihilation – and therefore efficiency loss – is the most likely

outcome. In a real open system, within the few picosecond of relatively large hole-electron

separation, the hole can diffuse away from the interface and the electron can diffuse to a

distance where it becomes equilibrated with the quasi-fermi level of the electron acceptor.

The picosecond timescale is the one appropriate for device modeling via kinetic Monte Carlo

techniques,67–69 which take into consideration the charge extraction from the electrodes.

Conversely, the ultrafast timescale is not suitably described by kinetic methodologies be-

cause the charge diffusion takes place coherently for the first hundreds of femtoseconds. Our

model accounts for both coherent charge dynamics occurring on a timescale of hundreds of

femtoseconds that can be detected by ultrafast spectroscopy measurements and charge re-

laxation to an equilibrium where standard device modeling techniques (kinetic Monte Carlo,

drift-diffusion equations) can be applied to predict microscopic properties of OPV devices.

Therefore, the phenomenology described here offers a possible link between the observations

in ultrafast pump-probe laser experiments and the electrical measurements of the devices.
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Finally, one can note that the methodology used to describe the process of relaxation to a

bound CT state from a quasi-CS state can be also used to describe the formation of bound

CT state from non-geminate hole-electron pairs.

4 Conclusion

In this paper we modeled charge dynamics in OPV materials for both short (∼fs) and

relatively long timescales (∼100 ps) using a simple acceptor lattice model combined with the

mixed quantum-classical/quantum dynamics methods in each regime. We have shown that

CT states optically generated with intermediate electron-hole distance can separate into CS

states (free electrons and holes) on ultrafast timescale without the need for the formation

of hot/delocalized CT states, which can explain recent experimental findings that CT states

with excess energy are not required for the free charge carrier generation in OPV materials.

In the presence of both local and non-local electron-phonon couplings, charge separation is

slowed down but still achieved with ∼50 % probability. On long timescales, however, the

quantum relaxation process eventually governs charge dynamics and CS states relax to the

lowest energy CT states, which can form a bound polaron pair with a hole and undergo

non-geminate charge recombination process. Our findings, therefore, suggest that the yield

of free charge carrier generation in OPV devices may result from the interplay between the

two competing processes: ultrafast charge separation resulting from quantum diffusion and

much slower quantum relaxation arising from the interaction with the environment, thereby

offering a new insight into the mechanism of free charge carrier generation in OPV materials.

We have verified that the results are not qualitatively influenced by the choice of the system

parameter. On the other hand, we have noted that a number of simplifications are necessary

to achieve a description of the quantum relaxation in the model system. For example, the

weak system-bath coupling limit might not be fully valid for OPV materials and, in any

case, it is essential to predict the characteristic timescale for quantum relaxation from the
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material characteristics rather than phenomenological models. Employing quantum dynam-

ics methods that are less restrictive and material specific appears to be essential to describe

accurately the dynamics of charge generation.
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