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Abstract 

We ask whether it is possible to predict the efficiency of a new dye in dye sensitizes solar cells (DSSC) 

on the basis of the known performance of existing dyes in the same type of device. We evaluate a num-

ber of computable predictors of the efficiency for a large set of dyes whose experimental efficiency is 

known. We have then used statistical regression methods to establish the relation between the predic-

tors and the efficiency. Our predictions are associated to a rigorously determined confidence level. For 

a new dye of the same family we are able to predict the probability that its efficiency in a DSSC is larger 

than a certain threshold. This method is useful for accelerating the discovery of new dyes and estab-

lishing more rigorously the existence of specific correlations between structure and property. Within 

the properties considered we find that the dye efficiency correlates more strongly with its oxidation 

potential and reorganization energy. 
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In the development of new, more efficient dye sensitized solar cells (DSSC)1-3 an important fraction of 

the research effort is devoted to the synthesis and testing of new dyes.  The very few design rules4-7 

emerged over the past years have guided the exploration of a large set of dyes that, when tested under 

standardized conditions and fabrication methods, should inform the development of new and better 

dyes. In this paper we ask whether it is possible to predict the efficiency of a new dye on the basis of 

the known performance of existing dyes.  In particular we want to establish the degree of confidence 

of such predictions. 

In material science and physics it is very common to build models of a system under investigation start-

ing from physical principles, and this type of predictive modelling has been part of the development of 

DSSC since the early days.8-10  In other fields, like drug discovery, such modelling from first principle is 

often accompanied by statistical modelling where one looks for correlation between measurable or 

computable properties (the predictors) of a given molecule and a target property, like its  pharmaco-

logical activity. The development of such quantitative structure activity relations (QSAR) is one of the 

main approaches currently used to rationalize large medicinal chemistry data set.11-13  The identifica-

tion of correlation or lack of correlation between properties can contribute to the understanding of the 

underlying physical principles for a given problem and, in any case, it can be used to narrow down the 

exploration of new drugs or materials, when synthesis and testing constitute the slower step. 

To build a structure-property relation for dyes in DSSC, we need a sufficiently large database of dyes 

tested under similar conditions (e.g. same electrolyte, similar fabrication methods).  In any convincing 

statistical analysis the data cannot be handpicked and it is also desirable that they are derived from a 

relatively uniform set, in this case, for example, a set of dyes with related chemical characteristics.  To 

address both issues we considered 52 dyes listed in table 1 of the review by Mishra et. al., all being 

synthetic organic dyes tested in similar devices.7 In this first application we did not include new dyes 

appeared after the review was published, to avoid the risk of involuntary bias. We have excluded the 

dyes from the review which did not have the common carboxylic anchoring group, or needed more than 

760 basis functions for the electronic structure calculation (for them, a manual optimization outside 

our automatic procedure was needed). The dyes considered are a fairly representative of the chemical 

structures used for organic dyes and the experimental efficiencies are very broadly distributed (aver-

age 5.61% and standard deviation 1.95%, see also SI), suggesting that the data set is not biased toward 

high performing dyes. 

We aim to find some correlations between the properties of the dyes that can be accessed very easily 

via routine quantum chemistry calculations and experimental solar cell efficiency .  We can then com-

pute these properties for a new dye and predict the probability that its efficiency in a DSSC is larger 

than a given threshold. The calculations should be relatively inexpensive so that all the calculations can 
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be performed semi-automatically for all dyes considered, terminating successfully without user inter-

vention. More importantly, such procedure is useful only if many new potential dyes can be screened 

rapidly after the statistical regression.  Importantly, the systematic and random errors in these com-

puted properties will be fully accounted for in a statistical analysis. 

As the extremely broad range of available QSAR demonstrates, there is no best or conclusive way to 

select predictors to be included in such statistical analysis, and we expect that other improved selec-

tions of predictors may be suggested in the future. In this initial report we decided to include comput-

able predictors that are sufficiently independent from one another, easy to evaluate, and expected to 

influence the efficiency of the device from physical considerations.14  Importantly, it is not possible to 

increase the number of predictors for a given data set without risking an overfitting of the data and we 

follow the common rule-of-thumb of not having more than 1 fitting parameter per 10 data points.  A 

list of the predictors considered in this analysis with a motivation and a brief description of the com-

putational methods is given below (in the SI we provide a full description of the methodology, its justi-

fication, the complete data set and further explanation with additional analysis for preferring these 

predictors over others): 

(1) Free energy of dye oxidation in solution, G. This is clearly one of the most relevant parameters for 

the energetics of a DSSC14, 15 and it was computed at the B3LYP/3-21G* level in the presence of a 

continuum model of acetonitrile solvent. 16 

(2) Reorganization energy for oxidation, .  This parameter enters into the theory of interfacial elec-

tron transfer and it is essential in determining the rate of charge recombination to the oxidized 

dye.14, 15  It was computed at the same level used for G  following the procedure given in ref. 15.                                                                           

(3) Absorption of solar radiation, S. It is expected that a higher efficiency is associated with greater 

ability to absorb solar radiation. We have computed the absorption spectrum for each dye at the 

TDDFT/6-31G* level with the inclusion of solvent16  and evaluated the overlap between the com-

puted absorption spectrum for dye k, εk(E), and the solar spectrum, P(E), as ( ) ( )k k
S P E E dE 

.  To have convenient data we have normalized kS  to the value of one of the dyes (
0k kS S S ). 

(4) Surface dipole density, NDD.  The dipoles of the ground-state dyes are thought to affect the con-

duction band level of the semiconductor17 (if the dyes are in a similar orientation with respect to 

the surface). We have assumed that the orientation of the dye is guided by the carboxylic anchor-

ing group oriented on the surface as in a calculation of a benzoic acid on TiO2.18  We have therefore 

evaluated (i) the component of the dipole of the dye k perpendicular to the surface μk,z and (ii) 

the area of the same dye on the TiO2 surface Ak.  The normalized dipole density (NDD) for dye k 

is NDDk = μk,z / Ak . 
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(5) Orbital asymmetry, OA.  A good fraction of dyes, often referred to as donor-pi-acceptor dyes,4 are 

synthesized to have a large orbital density of the LUMO on the anchoring group and a small orbital 

density of the HOMO on the anchoring group (a carboxylic acid) so that charge injection is fa-

voured and charge recombination is prevented.  We have defined the quantity OA as the Log of 

the ratio between the orbital density of the LUMO and HOMO on carboxylic acid,19 where a high 

OA is expected to be beneficial for the cell. 

As there is expectedly little correlation between dye and open circuit voltage (determined mostly by 

the electrolyte and TiO2 electronic structure) we try to establish a relationship between the five com-

puted properties and the expected efficiency in the form of a function ηexp (G, S, NDD, OA).  A diagram 

of the measured efficiency against the computed parameters (figure 1(a-e)) immediately gives some 

useful indication.  It seems that there is an important correlation between reorganization energy and 

dye efficiency, with higher efficiencies associated with smaller reorganization energy as suggested by 

phenomenological models.20  A correlation is also evident between the computed G and the efficiency, 

i.e. it seems that higher efficiencies are found in a range of G as expected from microscopic theories 

(and also suggesting that G will affect the efficiency non-linearly).21  Maybe surprisingly, no correla-

tion is evident in the plots of measured efficiency against S, NDD and OA.  More quantitatively, Figure 

1f  shows the Spearman ρ 2 statistics22 for each predictor and suggests a higher degree of correlation 

(potentially nonlinear and non-monotonic) between η and the predictors G and . 

We build a relationship between the expected efficiency and the predictors initially by using an intuitive 

approach, and then by considering a more rigorous statistical procedure. For the intuitive approach we 

simply ignore the role of S, NDD and OA, on the basis of the visual inspection of Fig.1(c-e), and construct 

the simplest 5-parameter non-linear function of G and : 

   
2 2

exp a b G c G d e                                  (1)        

where the parameters a, b, c, d, e can be uniquely determined to minimize the squared difference be-

tween expected and measured efficiency (the resulting function is illustrated in figure 2a – the fitting 

parameters are in the SI – together with the data points used for the regression).  The residuals (differ-

ence between predicted and actual values) are normally distributed with standard deviation σn = 1.67 

% (Fig. 2b), and therefore it is possible to predict the probability that, for a dye with a computed (G, 

pair, the efficiency is higher than a given threshold  : 

       
21/2

2 2

exp( ) 2 exp 2P d 



      






             (2) 
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Figure 2c shows the probability that the efficiency is higher than 7% as a function of computed G and 

.  Interestingly, there are “accessible” regions of the map with probability higher than 60% and lower 

than 20%, i.e. the map provides a very good tool for planning the synthesis of new dyes considering it 

takes only a few minutes to set up the calculation of G and  (and few hours for their execution on a 

standard desktop computer). To further characterize the significance of this prediction we can compare 

it with the prediction of the “null model” based only on the average and standard deviation of the ex-

perimental efficiencies, which would predict 24% probability of efficiency larger than 7% for any value 

of the predictors.      

 

 

Figure 1. (a)-(e) experimental efficiency of the dyes in reference 7 against five computable parameters G, 

S, NDD, OA, defined in the text. (f) Strength of marginal relationship between predictors and efficiency 

using the Spearman ρ 2 statistic. 
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Figure 2. (a) Predicted efficiency (percent) from the fitting in eq. 2 with an indication of the data points 

included in the fitting procedure. (b) Distribution of the difference between “predicted” and actual efficiency 

values. (c) Map of the probability (percent) that the efficiency exceeds 7% as a function of the computed 

parameters G,  following the polynomial fit in eq. (1). (d) Same as (c) but using the more complex fitting 

function given in eq. (4). 
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A more rigorous procedure (described in detail in the SI) is based on the construction of a generalized 

linear model where the expected value of the efficiency is initially expressed as  

   
0 1 2 3 4 5exp ( ; ) ( ; )Gg G g S DD OA                       (3) 

The expression above is linear in S, DD, and OA and contains linear and non-linear components in G 

and  (although the overall function will still be linear in all the parameters). In particular, the functions 

gG (G; β and g(; β expand G and  into restricted cubic splines with parameter vectors β, β 

respectively.22  The spline expansions are defined uniquely from the data for G and .  This is a well-

established methodology to include non-linear terms in regression procedures where the analytical 

form of the non-linearity cannot be derived from a physical basis.  Eq. 3 contains too many fitting pa-

rameters with respect to the 52 data points available and the initial fitting was therefore performed 

using a statistical penalization procedure.22 The analysis of variance of the fitting confirms that there 

is no evidence of correlation between the predictors S, NDD, OA and the efficiency.  A reduced model 

can be built from the total model (3) by using a procedure known as “simplification by approximation”, 

22 which produces the fitting as 

   
0 1 2exp ( ; ) ( ; )Gg G g                             (4) 

The standard deviation of the residuals for this more advanced model is 1.71% and, as before, it is 

possible to predict the probability that the efficiency is higher than a given threshold for any values of 

computed G and .  Figure 2(d) shows a map with the probability of efficiency higher than 7% with 

this more accurate model.  The differences between the intuitive and the rigorous procedures are not 

large but the rigorous procedure guarantees that we have not neglected the effect of potentially more 

complex nonlinearities.  Moreover the functional form in (4) gives more conservative estimates outside 

the region where data points are present (where the prediction cannot be trusted), while the polyno-

mial fit of eq. (1) gives unphysical estimates in these regions.  In the SI we report additionally the cali-

bration graph of the model in (4) obtained by bootstrap resampling and the rationale for selecting the 

method based on Akaike’s information criterion.22   

The proposed map can be used to either direct the synthesis of new dyes where the maximum efficiency 

is predicted, or prepare dyes in the region of the map where there are few or no data points, to learn 

more about the system in these conditions.  Considering that new families of DSSC are now being used, 

e.g. with different electrolytes,23-25 we believe that the construction of a similar map should constitute 

a priority in the rational exploration of the chemical space.  The experimental efficiencies in the data 

set considered here were broadly distributed but, as the field develops in time, there will be a tendency 

to report only high performing dyes (a problem noted in other contexts26, 27) making the statistical 
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analysis of literature data more complicated, because it should consider the selection bias in the re-

ported data.28  Sharing the data also on low performing devices would be of course the most desirable 

alternative.       

It is also important to stress the difference between our approach (that looks for correlation between 

computable properties and a target experimental property) and alternative computational tools for 

material discovery that generate a large set of “theoretical” materials and directly compute the prop-

erty of interest (e.g. the band gap29, 30 or other electronic properties31, 32). The latter approach is partic-

ularly suitable when the underlying physics is relatively well understood33 and the direct computation 

of the property of interest is possible.  For DSSC it is currently not possible to compute the efficiency 

from first principles and a closer alliance between theory and experiment is therefore necessary.   

Finally, such analysis in larger and unbiased data sets offers the best opportunity to validate some hy-

potheses put forward to describe the physics of DSSC.  After considering the results, we are not too 

surprised that the overlap with the solar radiation does not correlate with the efficiency, possibly be-

cause cells with small absorptance are not even reported and beyond a threshold of absorptance the 

efficiency does not change.  On the other hand, it is quite surprising to see that there is no effect in 

having HOMO and LUMO localized in different regions of the dye, considering the enormous effort put 

into the preparation of large families of donor-pi-acceptor dyes.  We cannot exclude that designing do-

nor-pi-acceptor dye is useful but we suggest that the actual benefits of this synthetic strategy can be 

properly assessed only by a thorough statistical analysis.    

In conclusion, we have proposed a general method to predict DSSC efficiency for new dyes from easily 

computable quantities, including, for the first time, the degree of confidence of such predictions.  We 

have considered carboxylated organic dyes studied with iodide/tridiodide electrolyte but the method 

can be applied to a different family of DSSCs and the accuracy of its prediction can be improved over 

time by expanding the set of data and/or the set of predictors. 
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