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Summary 

A non-proportional hazards model is developed. The model can 

accommodate right censored, interval censored and double interval 

censored data sets. There is also an extension of the model to include 

multiplicative gamma frailties. 

The basic model is an extension of the dynamic Bayesian survival 

model developed by Gamerman (1987), but with some alterations and 

using a different method of model fitting. The model developed here, 

the Normal Dynamic Survival Model, models both the log-baseline 

hazard and covariate effects by a piecewise constant and correlated 

process, based on some division of the time axis. Neighbouring piece­

wise constant parameters are related by a simple evolution equation: 

normal with mean zero and unknown variance to be estimated. 

The method of estimation is to use Markov chain Monte Carlo simu­

lations: Gibbs sampling with a Metropolis-Hastings step. For double 

interval censored data an iterative data augmentation procedure is 

considered: exploiting the comparative ease at which interval cen­

sored observations may be modelled. 

The model is applied within a range of well known, and illustrative 

data sets, with convincing results. In addition the impact of censoring 

is investigated by a simulation study. 
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General Notation 

D Data including observations and priors. 

i = 1, ... , rvr Subscript for individuals. 

i = 1, ... , ns Subscript for individuals in data set for S. 

K Number of observed covariates. 

k = 1, ... , K Subscript for covariates. 

ns 

rvr 

T 

Number of individuals in the initiating study population. 

Number of individuals in the study population. 

Survival times. 

T = X - S Survival time based on observing X and S. 

t Observed value of T. 

S 

s 

X 

Survival or censoring time for individual i. 

Survival time for the initiating event. 

Observed value of S. 

Calendar time of terminating event. 

Covariate value k. 
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Time Axis Notation 

(3j 

Dj 

Dynamic parameter for model. 

Information observed up to time tj. 

Gs = {so, sI, ... , SNs} Time axis division for initiating model. 

GT = {to, tl, ... , tNT } Time axis division for survival model. 

I j = (Sj-17 Sj] Interval on the initiating time axis. 

I j = (tj-t, tj] Interval on the time axis. 

j = 1, ... ,Ns 

j = 1, ... ,NT 

Ns 

NT 

Sj 

tj 

Subscript for interval points on the initiating time axis. 

Subscript for interval points on the time axis. 

Number of intervals on initiating time axis. 

N umber of intervals on time axis. 

Point on the initiating time axis. 

Point on the time axis. 
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1 Introduction 

Cox's proportional hazards model permits the impact of covariates on sur­

vival to be estimated, and using the partial or marginal likelihood approaches 

as in Cox (1972) and Kalbefieisch and Prentice (1980), estimates for the 

model parameters have been shown to have the same asymptotic properties 

as the maximum likelihood estimates (Tsiatis, 1981). Over the last three 

decades the model has been heavily used: it has formed a large part of the 

basis of statistical research in survival analysis, and has become probably the 

most commonly used multivariate survival model in medical applications. Its 

major drawback is the constraint of proportional hazards: an assumption 

which is not always appropriate. The consequences of using such a model 

when the assumption is not appropriate can be high, and for instance may 

result in the conclusion of a single superior treatment, when infact this may 

not be the case (Carter et al., 1983). Aware of the constraints of the propor­

tional hazards model, Gore et al. (1984) fitted several proportional hazards 

models in consecutive intervals (being careful to ensure an adequate amount 

of data within each of the intervals), thus avoiding an overall proportional 

hazards assumption. The method is not ideal; will only work with large data 

sets; and is very sensitive to the number and location of the intervals. Carter 

et al. (1983) included treatment multiplied by time as a time dependent co­

variate, thereby modelling a linear change in the treatment effect (the model 
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can be extended to model other polynomial changes). Gamerman (1987) 

used a piecewise constant baseline hazard and covariate effect, relating inter­

val estimates by a simple semi-parametric relationship. Parameter estimates 

are sequentially updated as additional data are received, using conjugate and 

linear Bayes approximations, finally sequencing backwards through the in­

tervals to obtain smoothed retrospective estimates. The piecewise constant 

correlated process (often abbreviated to piecewise correlated process), is an 

attractive way to model both the baseline hazard and covariate effects. Gray 

(1992), amongst others, used cubic splines to model both the baseline hazard 

and covariate effects over time. Apart from the quoted alternatives above, 

there exist few other survival models which are not based on the proportional 

hazards assumption. 

For interval censoring, double interval censoring and frailty models (non­

independent observations), similar constraints exist in that the majority, if 

not all, of the multivariate models are again based on Cox's proportional 

hazards model. Piecewise correlated functions have been used to model the 

baseline hazard for more complicated censoring types (Ghosh and Sinha, 

1995), but the method has never been extended to modelling dynamic co­

variate effects. One of the main reasons for this has been the difficulty in 

estimating so many model parameters. 
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In this thesis a Markov chain will be constructed with a posterior distri­

bution which models the data by piecewise correlated functions for both the 

baseline and covariate effects: thus avoiding the constraints of proportional 

hazards, and at the same time overcoming the usual difficulty of estimating 

model parameters. The model will be applied to standard right censored 

data, and also to additional types of censoring such as interval censoring, 

double interval censoring, and frailties. For right censored data the method 

will be an alternative to that proposed by Gamerman (1987). For more com­

plicated data types, a non-proportional hazards model will thus have been 

developed. 

In Chapter 2, many of the standard survival analysis methods are introduced 

(including both frequentist and Bayesian methods). A discussion is given as 

to why proportional hazards may sometimes be an unreasonable assump­

tion to make, and some alternative methods are suggested. Recent advances 

in model fitting techniques are explained, and the method of Markov chain 

Monte Carlo (MCMC), including Gibbs sampling and Metropolis-Hastings, 

are described. Additional types of censoring (interval censoring, double inter­

val censoring, and also non-independent observations), the problems which 

they bring, and methods which exist to deal with them are then discussed. 
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In Chapter 3, Gamerman's model (Gamerman, 1987) is introduced, and the 

method for estimating model parameters outlined. It is firstly noted how the 

paramater which determines the amount of evolution from interval to interval 

(the evolution variance) must be specified prior to model fitting. Secondly it 

is observed that the method used by Gamerman to fit the model could not 

be extended to accommodate interval, double interval censoring, or frailty 

models. For these reasons, a parametric version of Gamerman's model is 

introduced, called the Normal Dynamic Survival Model (NDSM). The model 

has the same basic structure as in Gamerman (1987) but assumes that the 

evolution of the parameters follows a normal distribution (it also models 

the evolution variance as a hyper-parameter). It is a parametric model, but 

only weakly so, and the model remains sufficiently flexible to accommodate a 

wide range of both proportional and non-proportional hazard functions. The 

model does however have one disadvantage, and that is no smooth estimates 

of covariate effects and baseline hazard exist, although survival estimates are 

smooth. To estimate model parameters, Gibbs sampling with a Metropolis­

Hastings step is used. It is noted how Gibbs sampling could not be used in 

the semi-parametric model developed in Gamerman (1987), as without mod­

elling the evolution by some parametric distribution, the full conditionals 

could not be computed. To improve the efficiency of the Gibbs sampler, a 
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reparametrisation is introduced, and the likelihoods are based on a temporal 

factorisation. The method is illustrated on a set of gastric cancer survival 

times (Gamerman, 1987). The development of the NDSM, and data appli­

cations using this model are new developments. 

In Chapter 4, likelihoods are developed under the same Normal Dynamic 

Survival Model, for extended censoring types (including interval censoring, 

double interval censoring, and frailties). For interval censoring, the likelihood 

is fairly straightforward, and uses only a slight extension of the conditional 

survival functions (developed in Chapter 3 and which were used within the 

construction of the likelihood for the right censored model). For double inter­

val censoring, it is observed that the exact likelihood can not be derived, and 

so an approximation is given in its place. For both interval censoring and dou­

ble interval censoring, it is not possible to create a temporal factorisation of 

the likelihood and so a factorisation over each observation (individual factori­

sation) is derived as an alternative. For the right censored frailty model, the 

likelihood is first given as a temporal factorisation, and secondly as a factori­

sation over the groups: so that the most efficient factorisations may be used 

to compute different full conditionals. Likelihoods are similarly developed for 

the interval censored frailty models (it is also described how the likelihood 

could be constructed for the double interval censored frailty model). Finally 
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a small discussion is given on the concept and use of individual frailties. All of 

the work within Chapter 4 is new work, although some similarities may exist 

between likelihoods of others, and where this is the case it will be made clear. 

In Chapter 5, it is shown how Gibbs sampling can be used to estimate the 

model parameters using the likelihoods developed in Chapter 4. For double 

interval censoring it is explained how either the approximate likelihood could 

be used in a full likelihood analysis using Gibbs sampling; or as an alterna­

tive, a method using imputation is outlined, where the data is augmented 

to interval or right censored data as appropriate. Applying MCMC tech­

niques to survival data is by now a common feature. The techniques within 

this Chapter are not original, but applying them to the NDSM is. As with 

the right censored model, a reparmeterisation is used: finding an effective 

reparmeterisation is quite a common procedure, Gamerman (1998) also sug­

gested it within the context of a dynamic generalised linear model, although 

work here was completely independent. Aslanidou et al. (1998) have con­

structed full conditionals for the frailty parameters in a similar model, and 

those full conditionals do bare some similarity to those constructed here, al­

though their model is a proportional hazards model. To examine the impact 

that the degree of censoring has on the model, data sets will be simulated 

with increasing degrees of censoring. Survival estimates using the NDSM 

6 



will then be compared to the relevant non-parametric technique. 

In Chapter 6, the methods are applied to some real data applications: in­

cluding a set of breast cancer survival times, generating an interval censored 

data set (Finkelstein, 1986); a group of haemophiliacs infected with HIV 

and AIDS resulting in an incubation time which is double interval censored 

(Kim et al., 1993); and some kidney infection times (McGilchrist and Ais­

bett, 1991) with non-independent observations. The data sets within this 

Chapter arise frequently in papers within the particular field. Although to 

knowledge they have never been analysed using a dynamic Bayesian survival 

model. 

In any analysis of data throughout this thesis, assumptions will be made 

based on the dosage of the treatment, the nature of combination, and the 

ordering of the treatment, to name but a few. It will also be assumed, unless 

otherwise stated, random allocation of treatment, controlled clinical trials 

and independent censoring (Chapter 2, section 2.1). So when interpreting 

results from fitted models, caution must be exercised, not to come to medical 

conclusions which are not appropriate to the nature of the data. Reference 

will often be made to treatment effects, and treatment differences, but may 

be extended to cover all covariate effects (dependent upon the nature of the 
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study). 

Very general terms and concepts commonly used in Bayesian statistics and 

survival analysis are not defined, although two very good reference for both 

basic and in depth concepts and methods are Carlin and Lewis (1998) and 

Collett (1994), with the latter being particularly relevant to survival analysis 

and the former for methods involving Markov chain Monte Carlo simulations. 

When terms are introduced for the first time, they will be highlighted by the 

use of italics. 

All of the standard calculations are carried out using S-PLUS (S-PLUS, 

1999). More complicated models were programed in C, on a sun-sparc ultra 

250. 
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2 Survival Analysis 

A brief and concise summary of survival analysis is given below. In the rest 

of this Chapter, and those that follow, the topic will be introduced in greater 

depth, where terms and phrases used in this initial brief summary will be 

properly defined. 

Survival analysis is the term used to describe the analysis of the time between 

some defined time origin and a pre-defined failure event. There are several 

reasons why survival analysis differs from standard statistical data analysis. 

These include lack of symmetry (we often observe many short survival times 

and few long observations), restriction to positive outcomes (survival times 

can not be negative, which rules out using the normal distribution), and lack 

of observing all end points (censoring). Probably the main reason why sur­

vival analysis is so distinct is because of the censoring. Reasons for censoring 

include an individual withdrawing from the study early, still being alive at 

the end of the study, being lost to follow up, or dying from another cause. In 

such cases the survival time is known only to be greater than the time that 

the individual was last known to be alive, called the right censoring time. 

Even more complicated types of censoring arise when the failure is known 

only to have occurred within some interval of time, often due to the detec­

tion of the failure via a medical test, giving rise to interval censoring (section 
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2.8}. Survival analysis is used in a complete range of applications, and the 

term failure does not always have to be associated with death. It could for 

instance denote the time from manufacture to breakdown of some mechan­

ical component, or the time from prison release to date of reconviction, in 

the study of reconviction rates. In this thesis the term death is taken to in­

corporate both death in the usual sense, and failure of the more general kind. 

Bayesian analysis of survival data consists of a survival model, with priors 

and possibly hyper-priors for the parameters (Sweeting, 1987). Estimates for 

model parameters are evaluated using both the data and the priors. Compli­

cations arise when the prior distributions are not conjugate to the likelihood, 

making the model intractable (section 2.4). Intractable models arise ei­

ther because a conjugate prior (Carlin and Lewis, 1998) is not appropriate, 

or because the likelihood is too complicated to have an associated conju­

gate distribution. Until quite recently many Bayesian models were often 

either unrealistically constrained to conjugate priors; likelihoods simplified; 

approximation methods used; or otherwise were subject to difficult numerical 

integration. However with the development of the Expectation Maximisation 

(EM) algorithm; imputation methods; Markov chain Monte Carlo simulation 

techniques (section 2.7); along with the general increase in computational 

power; survival models have become much more realistic and at the same 

10 



time achievable. 

Definition 2.1 The Survival Time 

The 8unJival time, T, is defined to be the time between the initiating event 

S, and the time of the terminating event X. So that 

T=X-S. 

In birth - death processes, the initiating event time is zero, and the terminat­

ing event time is the age at death. For the incubation period of the Acquired 

Immune Deficiency Syndrome (AIDS), the initiating event time is the time 

of infection with the Human Immunodeficiency Virus (HIV); and the termi­

nating event time is the time of progression from HIV to AIDS. In clinical 

trials, the initiating event time is the time of randomisation to treatment; 

and the terminating time will be the time of death, censoring, or remission 

(dependent upon the study). 

Definition 2.2 The Time Azi, 

As the majority of sunJival models to be considered in detail within this 

thesis are based on the evolution of the parameters over time, it is necessary 

to create a division of the time axis. The division of the time axis will be 

defined as: 
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and intervals within this division will be referred to by the notation I; = 

(tj - b tj] for j = 1, .. " N, and tN should be greater than the last observation 

time. 

2.1 Censoring and Truncation 

A fundamental feature of survival analysis is that the failure time may not 

always be observed; in addition it is possible that only a subset of survival 

times are observed due to the nature of sampling involved in the data collec­

tion methods. In survival analysis this is known as censoring and truncation. 

An observation is said to be right censored if it is observed only that the 

survival time is greater than some observed time point, called the right cen­

soring time. In any analysis of survival data in this thesis, the assumption 

will be made that the probability of an observation being censored, does not 

depend on the survival time that would have been observed, had the obser­

vation not been censored (conditional on observed covariates), such types of 

censoring will be refered to as independent censoring, 

As right censoring is the most common type of censoring, it is usual to 
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define a right censoring indicator for each observation: 

{ 

1 death, 
6-

D censored. 
(1) 

An observation may also be left censored. Left censoring occurs when it 

is known only that the survival time is smaller than the left censoring time 

(when an individual contracts HIV, it is usually only known that the time of 

infection is prior to the first positive test). 

Left truncation arises when an individual is included in the study only if 

the individual has a survival time which is greater than the so called left 

truncation time. Right truncated data arise when the individual is included 

in the observed data set only if the event of interest is experienced prior to 

the chronological time of data ascertainment. 

IntenJal censored data arise when the survival time t is observed only to 

lie within some interval, commonly referred to as (R, L], but the precise time 

of death is not known. The observed data therefore consists of t E (R, L]. 

Doubly censored data arise when the time of the initiating event, S, is o~ 

served to lie within an interval, so that 8 E (M, P]. It is possible that data are 

censored on both the left and right, hence the term doubly censored. Double 

intenJal censored data arise when both the initiating and terminating event 
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are observed up to an interval only. 

It is usual within a survival analysis, in addition to observing survival times, 

to also observe covariates. To make accurate inferences, it must be the case 

that conditional on all of the observed covariates, all observations are ind~ 

pendent. Later within this thesis, non-independent observations will be con­

sidered, and the method of accounting for such dependences, called frailty 

modelling will be investigated. 

2.2 The Survival and Hazard Functions 

T is the random variable representing the survival time of an individual. 

The survival function, S(t), refers to the probability that an individual has 

a survival time T which is greater than t: 

S(t) = P(T > t). 

The corresponding probability density function for T is f(t), with the distri­

bution function of T given by: 

F(t) = p(T ~ t) = lot f(u)du. 

The hazard rate, h(t), or the instantaneous death rate, is the conditional 

probability that an individual having survived to time t, will die at time 
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t + at. More formally: 

h(t) = lim P(t < T < t + at IT> t). 
t-+O at 

From the above definitions it is easy to verify the following relationships 

between the survival function and the hazard rate: 

h(t) = ~~!~. 

The cumulative hazard 

H(t) = fot h(s)ds, 

is such that: 

H(t) = -log(S(t». 

Unless otherwise stated the continuous distributions will be used to model 

the survival distribution S(t). 

2.3 The Likelihood 

The likelihood function will be defined throughout by L. The notation L(8Ix) 

will be used to emphasise the likelihood as a function of the parameters and 

data, but this will often be abbreviated to L(x) (where x denotes the data and 

8 the parameters). Li will denote the likelihood contribution for an individual 

i, and similarly Lj will denote the likelihood contribution from an interval I j • 
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From an exact observation, the contribution to the likelihood will consist 

of f(ti}, from a right censored observation the contribution will be S(ti}' 

The likelihood accommodating exact and right censored data, may then be 

written as: 
R 

L = IT S(ti}I-6, f(ti}~' 
i=1 

Using relationships between the hazard and density function: 

R 

L = IT S(ti}h(ti}6, 
.=1 
RI R2 (2) 

= IT S(t.} IT f(t.} . 
• =1 i=1 

Here nl is the number of right censored observations, ~ is the number of 

exact observations, and n = nl + n2. 

2.4 The Bayesian Approach 

A Bayesian analysis uses both observed data and priors to make estimates 

for model parameters in a given model (classical statistical methods use the 

data only). The posterior may be obtained from the likelihood and priors by 

using Bayes' Theorem (Carlin and Lewis, 199B): 

L(9Ix}p(9) 
p(9Ix) = J L(9Ix)p(9)d9' 

Up to a constant of proportionality this is: 

p(9Ix) ex: L(9Ix)p(9). 
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Priors for the parameters may come from previous similar studies, or they 

may be based on expert opinions. Where there is no such detailed informa-

tion then vague priors may be used. Sinha (1997) argues that priors should 

be based on expert opinions or be based on stage zero studies, however it 

is also acknowledged in that same paper that this may not always be possible. 

Where the prior is conjugate to the likelihood, then the posterior will be 

tractable. Essentially this means that for any observed data, the likelihood 

is such that the posterior will belong to the same family as the prior. Exam-

pIes of practical Bayesian survival analysis are given in Raftery et al. (1996) 

and Oellaportas and Smith (1993). A very simple example is given below, 

which will form the basis of some calculations later in the thesis. 

Definition 2.3 The Gamma Distribution 

A random variable is said to have a gamma distribution: 

8"-J G(a, -y), 

when its probability density function takes the form: 

with mean and variance: 

Cl! a 
E(8) = - and V(8) = 2' 

-y -y 
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where r(-) is the Gamma function and is defined by r(x) = Jooo u%-le-udu. 

Example 2.4 Constant Hazard - Gamma Prior 

The survival is modelled using the constant and proportional hazards model: 

h(t) = Ae".\, 

using the notation (J = Ae".\. The chosen conjugate prior for (J is the gamma 

distribution, with suitably chosen parameters: 

(J '" G(a, 'Y). 

The sUnJival function for a set of exact and right censored data, with hazard 

(J is: 

S(t) = exp( - fot h(u)du) 

= exp( -fJt). 

The likelihood (using equation 2) is therefore: 

n 
L(T) = IT S(ti)h(ti)" 

i=l 
n 

= exp( -(J ~ ti)(JE~_1 6 •• 
i=l 

Using Bayes' Theorem, the updated distribution is obtained: 

p((Jlx) ex L((Jlx)p((J) 
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which is proportional to a gamma density, 80 that: 

91x f'V G(o:', 'Y'), 

where 
n n 

0:' = 0: + E 6i and 'Y' = E ti + 'Y. 
i=l i=l 

2.5 Survival Models 

There exist many methods for modelling survival data. The methods may 

be roughly broken down into three groups: non-parametric, semi-parametric, 

and parametric. Each of these three groups may be sulKlivided into Bayesian 

and classical type approaches. 

Probably the most commonly used non-parametric model is the Kaplan­

Meier estimate (Kaplan and Meier, 1958). The Kaplan-Meier model is for a 

single sample only, as it does not incorporate covariates. Strictly speaking 

the Kaplan-Meier curve is not defined at the exact observation points, and 

is also not defined after the last observation point (if the last observation is 

a censored observation). 

Proportional hazards is another common method for modelling survival data, 

and may either be of a semi-parametric or non-parametric form. The semi-
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parametric version was first introduced by Cox (Cox, 1972). For an individ­

ual with covariate vector z, the hazard is the product of the baseline hazard 

Ao(t), multiplied by a function of the covariates: 

h(t) = ,xo(t) exp(z,B). 

The baseline hazard represents the hazard of an individual with all covariates 

at the baseline, i.e. zero. The part of the hazard ~/J is known as the relative 

hazard. Cox's proportional hazards model is a semi-parametric model and 

without some parametric form assumed for the baseline hazard, maximum 

likelihood estimates for the parameters can not be derived. Cox's approach 

was to use a conditional likelihood, which depended only on the observed 

death times. Kalbfleisch and Prentice (1980) claimed that the conditional 

likelihood needed additional justification, and derived a marginal likelihood 

(for the case of no ties the marginal and partiallikelihoods are equivalent). 

In Cox (1975) the condition likelihood was renamed the partial likelihood 

and Efron (1977) showed that inferences based on Cox's partiallike1ihood 

are asymptotically equivalent to those based on all of the data. 

One method for modelling the baseline hazard in a proportional hazards 

model, was introduced by Breslow (1974), and is called the piecewise con­

stant baseline hazard model. In this model the baseline is modelled as a 
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series of constants spanning the time axis, so that for t El;: 

Ao(t) = A; for j = 1, ... , N, 

where the time axis is divided into N intervals. This form of baseline hazard 

has been used in several applications in the statistical literature. The piece­

wise correlated baseline hazard, has the additional feature that the piecewise 

baseline hazards are related across intervals. This relationship, which may 

either be modelled parametrically or non-parametrically, is often referred to 

as the evolution equation. Usually either the evolution of the baseline hazard 

is modelled by a gamma distribution (Aslanidou, Dey and Sinha, 1995), or 

the log of the evolution of the baseline is modelled, this time following a nor­

mal distribution (Ghosh and Sinha, 1995). Other commonly used processes 

for modelling the baseline hazard are Levy processes (KalbHeisch, 1978), al­

though the independence assumption involved within this process has been 

criticised (Arjas and Gasbarra, 1994). 

Widely used parametric proportional hazards model include modelling the 

baseline hazard using the Weibull (Aitkin and Clayton, 1980) or exponential 

distribution. These are parametric analogues of Cox's proportional hazards 

model. Although restricted by their parametric nature, these models do have 

the added advantage of tractable maximum likelihood estimates. 
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There exist both graphical and non-graphical methods for testing the va­

lidity of the assumption of proportional hazards, a detailed account may be 

found in Anderson et al. (1992). Further theoretical work on testing the as­

sumption of proportional hazards may be found in Grambsch and Themeau 

(1994). Their method is based on using a weighted function of the Schoen­

feld residuals (Schoenfeld, 1982), estimating how the covariate effects may 

change over time. They further develop a chi-squared test statistic with pro­

portional hazards being the null hypothesis. One of the main drawbacks of 

this method is that no survival prediction is established based on the alter­

native estimate for the covariate effect. Within Splus a graphical estimate 

of the covariate effect over time is produced along with confidence intervals, 

and observed Schoenfeld residuals. 

2.6 Non-proportional Hazards 

Within a proportional hazards analysis, there is an assumption that the 

effects of covariates are constant over time. Constant coefficients are essential 

to the idea of proportional hazards. An extension of the proportional hazards 

model is to make the relative hazard function a function of both the covariates 

and time (denoted here by g(z, t)): 

h(t) = AO(t) exp(g(z, t)). 
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Various forms of the relative hazard function g(z, t) will be discussed, and 

those of particular interest are those which result in non-proportionality. 

In the treatment of some illnesses by surgery, the initial hazard may be 

very high, much larger than under any other non-surgical treatment. Once 

the patient has passed through this initial critical stage, the hazard may 

decrease far below that of the non-surgical alternatives: and so treatments 

will not have proportional hazards. Another example of non-proportional 

hazards occurs in the analysis of breast cancer patients by stage. Here late 

staged individuals have a comparatively high hazard during the first 10-20 

months after diagnosis, but then in relation to early staged cases, the high 

hazard drops considerably. 

Gore et al. (1984) fitted a survival model to a data set of breast cancer 

patients. They found that the effect of the treatment diminished over time, 

contrary to the usual proportional hazards assumption. AB an alternative, 

a stepwise proportional hazards model was fitted. That is, within several 

different divisions of the time axis, separate, unrelated proportional hazards 

models were used. The model identifies the need for dynamic covariate ef­

fects, but is limited to large data sets and a small number of intervals (so 

as to ensure that there is sufficient data in each interval to provide accurate 

23 



estimates) . 

Carter et al. (1983) fitted a survival model to a set of gastric cancer data, 

and examined the possibility of covariates varying over time. In preference 

to estimating the effects of the covariates independently, over different divi­

sions of the time axis, they instead included as an additional parameter: the 

covariate as a function of time, and estimated its effect. The method models 

a linear change in the covariate effect over time, and may be extended to 

include other polynomial changes. Unfortunately linear order polynomials 

are seldom appropriate for modelling. 

Gamerman (1987) also considered an analysis of this same gastric cancer 

data set, using a dynamic Bayesian survival model. The dynamic Bayesian 

survival model, models both the log of the baseline hazard and the covariate 

effects by a piecewise correlated process, using a non-parametric evolution 

distribution. Using some conjugate assumptions, parameters are estimated 

using a linear Bages approximation (section 3.1). The model developed in 

Gamerman (1987) is considered in detail in the follOwing Chapter. 

A further group of models which include non-proportionality are those where 

the covariate effect is modeled by a spline function. Gray (1992) considered 
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modelling both the baseline hazard and covariate effects by cublic splines. 

Although noted that for modelling the covaraite effects, due to instability 

in the right tails of the distribution, piecewise constant splines were used 

instead of cubic. 

2.7 Methods for Model Fitting 

So far most of the discussion has concentrated on models that may be solved 

using maximum likelihood estimates, conjugate Bayesian methods, or some 

other relatively standard and straightforward technique. However in the 

following Chapters and the rest of this one, survival models will be introduced 

that are increasingly flexible, not only in the types of hazards which they 

incorporate, but also in the types of data that they can accommodate. In 

order to estimate parameters for such models, the methods for model fitting 

need to generally be more powerful: conjugacy and maximum likelihood 

estimation are no longer adequate. Dellaportas and Smith (1993, page 443) 

are also of this opinion: 

" .. a major impediment of the routine Bayesian implementation 

in this large class of models (referring to survival analysis) has 

certainly been the difficulty of evaluating the integrals required." 

An example of a conjugate / tractable analysis was given in section 2.4, un­

fortunately, most analysises are not this simple: likelihoods are often much 
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too complicated to have an associated conjugate distribution. Approximate 

normality could be used, but there are many instances when this will not 

be appropriate. Numerical integration (Reilly, 1976) is another possible al­

ternative, which although a useful approach, and one which has been used 

within Bayesian survival analysis (Greive, 1987), can only really be consid­

ered in applications of up to around twenty dimensions. The Expectation­

Maximisation (EM) algorithm, Dempster, Laird and Rubin (1977), is an 

iterative extension of the maximum likelihood technique, ideally suited for 

missing data applications; but is a frequentist approach and does not acco­

mod ate prior distributions (although there do exist Bayesian variations on 

this technique). Multiple imputation, again a technique for dealing with 

missing data, iteratively replaces the missing data values with appropriately 

simulated values. It is ideal for use when conditional on the missing data 

the model is in some sense tractable (as is the EM algorithm). Data aug­

mentation (Tanner, 1996) has some similar properties to the EM algorithm: 

it exploits properties of the likelihood (or posterior) for an agumented data 

set. 

Monte Carlo simulations are useful when trying to find the expected value 

of some function 9 (x): 

E[g(x)] = L g(x)f(x)dx. 
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IT this integration cannot be solved analytically, then an approximation may 

be obtained by repeatedly simulating from f(x), and estimating the expec­

tation, as the mean of the corresponding simulated g(x). Where direct sim­

ulations from f(x) are not possible (for example in high dimensions), then 

simulations may be taken by observing a Markov chain which has f(x) as 

its equilibrium distribution. This method is known as taking Markov chain 

Monte Carlo (MeMC) simulations and is becoming ever increasingly popu­

lar, not only in Bayesian survival analysis but also more generally in Bayesian 

statistics. This is because to construct a Markov chain which has the distri­

bution f(x) as its posterior, it is only necessary to know f(x) up to a constant 

of proportionality: thus avoiding the difficult integration problem involved 

in computing the constant of proportionality within a Bayesian analysis. 

Definition 2.5 A Markov chain Monte Carlo Simulation 

• Find a Markov chain with the target posterior as its unique equilibrium 

distribution. 

• Simulate from the Markov chain, until the chain is at the equilibrium, 

and disregard all sampled values prior to this point. 

• Take repeated samples from the equilibrium distribution to obtain many 

Monte Carlo samples. 
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Clearly the difficulty consists of finding an appropriate Markov chain which 

has the posterior as its equilibrium distribution. Several possible well estab­

lished algorithms, which do just this, are described below. 

The Metropolis and Hastings samplers, Metropolis et al. (1953) and Hast­

ings (1970), iteratively propose possible parameter values, each of which are 

in turn accepted or rejected. Roberts and Smith (1994) and Tierney (1994) 

describe the conditions under which the sampling algorithms will converge to 

the posterior. All of these sampling algorithms have the same basic structure 

but variations exist in terms of the proposals and acceptance probabilities. 

The algorithms were first introduced by Metropolis et al. (1953), but af­

ter some alterations by Hastings (1970), they are often referred to as the 

Metropolis-Hasting algorithms. As mentioned there exists various forms of 

these samplers, and the one that has been used in this thesis is the Hastings 

sampler. The reason why this sampler has been chosen is that the values that 

are proposed are dependent on the chain's current position (the proposal is 

a sensibly chosen distribution with mean at the current value and appropri­

ately chosen variance). So in some sense the proposal may be thought of as 

dynamic with respect to the chain. The choice of the proposal distribution 

is important, and proposals which are close to the posterior distribution will 

result in gains in efficiency. 
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The Hastings Sampler 

• Sample a value 9' from the proposal q(9'19) conditional on the current 

value 9 . 

• Accept the sampled value with probability 0:(9',9), where: 

, . ( p(9'19)q(919')) 
0:(9,9) = mm 1, p(919')q(9'19) , 

where p(.) represents the posterior; q(.) the proposal density function; 9 rep­

resents the current value of the parameter; and 9' the proposed value. 

Another Markov chain which will allow samples to be taken from the pos­

terior distribution is the Gibbs sampler. The Gibbs sampler, not without 

reason, has become probably the most used form of MCMC in Bayesian sur-

vival analysis. Its popularity is based on its ease of handling multivariate 

parameters. Suppose that the object of the analysis is to provide estimates 

for N parameters: 

Gibbs sampling repeatedly samples from the full conditionals: 

replacing the current estimate 9i by the sampled value. Writing 9 = (911 ••• , 9N ), 

the Gibbs sampler takes the following form: 
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Definition 2.6 The Gibbs Sampler 

1. A starting value 00 = (Of., ... , ~) is chosen for the complete multivariate 

parameter space. 

2. 01 is sampled from its full conditional, conditional on the initial esti­

mates for all of the other parameters. 

9. 00 is updated in place 1 with the sampled value for 01 to obtain (Of, ~ .•• , f1k. ) . 

./.. The process is repeated for each parameter, and many iterations are 

carried out 

Gemen and Gemen (1984) showed that, under weak conditions, repeated 

samples as described above converge in distribution to the marginal distri­

bution of the parameters. Gelfand and Smith (1990) amongst others have 

applied Gibbs sampling to general Bayesian statistics. 

Gibbs sampling requires samples to be taken at each iteration from the 

full conditional distribution. In practice the full conditionals will rarely 

be well known distributions (which would allow sampling to be via stan­

dard techniques). Where the full conditional is not of standard from, then 

some form of sampling technique must be used. Devroye (1986) provides 

an excellent account of many of the current sampling techniques: examples 
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include sampling-resampling (Gelfand and Smith, 1990) and rejection sam­

pling. Most of these sampling techniques are very dependent upon the distri­

bution to be sampled from (the full conditional in this application). Because 

Gibbs sampling involves generating samples from many different densities, a 

method is needed that not only provides a sample from the correct distribu­

tion, but which is also efficient and generally applicable. Two of the most 

frequently used methods in Gibbs sampling, which do just this are adaptive 

rejection sampling, and a Metropolis-Hastings step. 

Gilks and Wild (1992) proposed the method of adaptive rejection sampling 

for cases where the full conditional is log-concave (Devroye, 1986), and an ex­

tension was given in Gilks et al. (1996) for cases where the full conditional is 

almost log concave. The technique uses the fact that a log-concave distribu­

tion may be bounded above and below by piecewise constant hulls, allowing a 

rejection sample to be easily implemented (without having to know the loca­

tion of the modes of the distribution). Dellaportas and Smith (1993) applied 

Gibbs sampling, with adaptive rejection sampling, to a Bayesian survival 

problem. Although the method is time consuming to programme in compar­

ison to the Metropolis-Hastings step (below), it does have the advantage of 

always providing a sample from the current full conditional. 
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A Metropolis-Hastings step could also be used to sample from the full condi­

tional, see Tierney (1991) and Gelman and Rubin (1993). A value is sampled 

from the full conditional by sampling a possible value from a proposal and 

accepting it with an acceptance / rejection criteria. Being easy to implement, 

the method does not necessarily provide a sample from the full conditional 

until the chain has reached equilibrium, although good choices of proposals 

can improve this. Sargent (1998) considered such a technique in a survival 

analysis application. 

Mter implementing an MCMC simulation, checks should be made to en­

sure that the chain has reached the equilibrium distribution, and that only 

those values sampled after reaching equilibrium are used in any subsequent 

analysis (some chains may converge very slowly). Only in very limited cir­

cumstances do there exist exact checks on convergence. More generally a 

range of convergence diagnostics are used. These convergence diagnostics 

are an aid only and do not provide a definitive answer as to whether con­

vergence has occurred or not. Indeed many of the convergence diagnostics 

themselves rely on a range of assumptions and approximations. There ex­

ists a complete range of published and unpublished material on convergence 

diagnostics, and an excellent review of the current methods is provided by 

Cowles and Carlin (1996). These methods range from the theoretical to very 
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intuitive: for example Arjas and Gasbarra, (1994) are confident that their 

model has converged when the resulting survival curves for a large data set 

are similar to the Kaplan-Meier curves. In this thesis the convergence diag­

nostics provided by the package CODA (Best et al., 1993) are used to assess 

convergence, and to determine the required length of the "burn in" . 

Further methods which are related to MCMC include the MCEM algorithm 

(Wei and Tanner, 1990) where the E step in the EM algorithm is replaced by 

Monte Carlo simulations, and data augmentation (Tanner and Wong, 1987) 

which is an iterative method for finding the posterior distribution (rather 

than just the mode as the MCEM algorithm does), data augmentation may 

be used in conjunction with Gibbs sampling (Tanner, 1996). 

Now that some advanced methods of model fitting have been introduced, 

it is possible to consider some of the current methods for dealing with more 

complicated censoring types within a survival analysis. 

2.8 Interval Censoring 

Interval censored data, initially defined in section 2.1, arise when the survival 

time is observed to lie within an interval of time, called the censoring inter­

val. When monitoring the occurrence of some disease which may be identified 
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only by a medical test, then the observed failure time will be known to lie 

between the last negative examination and the first positive examination, re­

sulting in interval censored observations. An example of an interval censored 

data set is given in example 2.7. 

Grouped data are related to interval censored data: all that is known about 

the survival time of an individual, is that their survival time lies within some 

interval. However with grouped data, at every censoring or survival time, it 

is possible to determine a risk set: it is known exactly how many patients are 

at risk and how many have died since the last observation point. Risk sets 

are known with grouped data as the censoring intervals do not overlap: this 

enables the data to be ranked. Prentice and Gloecker (1978) give a detailed 

account of an extension of Cox's proportional hazards model for grouped 

data. Thrnbull (1976) extends the Kaplan-Meier estimate to accommodate 

grouped data. 

As interval censored data can not be ranked, the usual survival methods, 

such as Cox's proportional hazards, or the Kaplain-Meier curve are not im­

mediately adaptable. Peto (1973) developed life table techniques for in­

terval censored data. Thrnbull (1976) constructed a Non-Parametric Max­

imum Likelihood Estimate (NPMLE), based on a "self consistency" alg<r 
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rithm. Frydman (1994) and Alioum and Commenges (1996) later extended 

and amended Turnbull's method to be applicable for both interval censoring 

and truncation. Pan and Chapell (1998) show that Turnbull's estimate can 

underestimate survival at early times for left truncation (due to small risk 

sets). Under a non decreasing hazards assumption, and using a gradient pr~ 

jection algorithm, they provide an alternative estimate which they claim has 

a superior performance (in terms of both bias and variance). 

Finkelstein (1986), extended Cox's proportional hazards model for both right 

censoring and interval censoring, based on an extension of Turnbull's self 

consistency algorithm. Unlike Cox's original model, in Finkelstein's exten­

sion, the baseline needs to be estimated. Satten (1996) has developed a 

proportional hazards model which not only does not require the baseline 

to be estimated, but has the additional feature that the model reduces to 

the usual proportional hazards assumption as the length of the censoring 

intervals shrink to zero (unlike Finkelstein's model). More recently, Gog­

gins et al. (1998) developed an EM algorithm (where the E step is replaced 

by MCMC simulations), again for the analysis of interval censored data un­

der the assumption of proportional hazards. Finkelstein and Wolfe (1985) 

develop a semi-parametric regression survival model, using maximum likeli­

hood techniques. 
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Ghosh and Shin a (1995) have developed a semi-parametric model for interval 

censored data, based on an piecewise correlated baseline hazard process (no 

covariates were included): using a posterior likelihood approach they advo­

cate that the method may be used to check the assumption of proportional 

hazards. Sinha (1997) modelled the baseline hazard by a discrete version of a 

beta Levy process, and used Markov chain Monte Carlo simulations to esti­

mate the parameters. More generally Sinha and Dey (1996) give a review of 

Bayesian survival analysis, and include interval censoring. Pan (2000) uses a 

form of data augmentation to model interval censored survival data by Cox's 

proportional hazards model. 

There are alternative methods for dealing with interval censored data, such 

as substituting interval midpoints as exact survival times, or by using some 

other estimate of what the true survival time may have been. Using mid­

points or right end points may give biased results, especially when the censor­

ing intervals are large. Estimates for the precision of the estimates will also 

be overestimated, as the uncertainty associated with the substituted values 

will not be accounted for. Using a Weibull based accelerated failure time 

model, Odell et al. (1992) compared a midpoint analysis with that based 

on maximum likelihood estimates of the real interval censored data. Their 
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conclusions were that that the maximum likelihood method generally gave 

a better fit, especially where hazards were not constant, censoring intervals 

were long, and there was a large percentage of interval censored data. 

With interval censored data, it may be less clear (compared with right cen­

sored data) whether the censoring mechanism is independent. If for example 

the interval censoring mechanism is generated by patients visiting a doctor, 

it may be possible that the onset of symptoms may make it more likely that 

a patient will either keep an appointment or make an earlier one. Similarly 

if a patient feels healthy they may be more inclined to miss an appoint­

ment. Extra care should be taken to be sure that the interval censored data 

are censored in an independent way. Farrington and Gay (1999) offer an 

approach for dealing with interval censored data where the censoring is in­

formative. But the approach does rely on detailed information of all visits 

to the clinician, which will often be unavailable. As previously mentioned, 

in this thesis the assumption of an uninformative censoring mechanism will 

always be made. 

Example 2.7 Breast Cancer and Cosmetic Outcome 

Breast cancer patients monitored every .j. to 6 months for cosmetic dete­

rioration following the treatment of either chemotherapy or chemotherapy 

combined with radiotherapy, generate a 8et of inte",al censored data which 
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were studied in Finkelstein and Wolfe (1985). Standard independence as­

sumptions of the censoring mechanism were assumed. Justification for these 

assumptions were as follows: 

"According to the medical investigator, the cosmetic deterioration 

did not affect the patients' return to the clinic, and thus necessary 

assumptions of independence of the censoring and failure distri­

butions are satisfied". 

This data set may be found in table 7 (page 198), and will be examined in 

more detail in Chapter 6. 

2.9 Double Interval Censoring 

Double interval censoring, explained within this thesis in section 2.1, occurs 

when each of the initiating event and terminating event are observed only to 

lie within some interval. In effect the data are interval censored on both the 

left and right. For individual i the interval for the initiating event is denoted 

by (Mi' ~l, and the censoring interval for the terminating event is (~, Lil. 

This is a generalisation of where the data are doubly censored: implying 

that the data are censored on the left, usually interval censored; and censored 

also on the right, but usually right censored. 

One of the reasons why data analysis that a.ccommodates doubly censored 
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data has become increasing interesting, is due to the study of HIV and AIDS. 

Infection with HIV can only be ascertained by a screening test. If a series 

of such screening tests were available, along with the corresponding negative 

and positive outcomes, then the date of HIV infection could be identified 

to lie within the interval of the most recent negative and first positive test 

dates. The Center for Disease Control, has defined a set of AIDS defining 

conditions (including wasting, dementia and Kaposi's sarcoma): so that an 

individual moves from being HIV positive to having AIDS, when they have 

one or more of these conditions. The surveillance definition has changed 

over time, with more recent additions including invasive cervical cancer and 

CD4+ counts below 200 units (CD4+ cells are depleted as the mv spreads 

through the body). Some of the defining conditions are in some sense subjec­

tive (wasting), and others such as Kaposi's sarcoma are evaluated by medical 

screening: progression to AIDS is much less clearly defined than time of HIV 

infection, and the time of progression of AIDS varies from being tabulated as 

exact, to interval censored. Where data are tabulated on the right as interval 

censored, then that is how they will be analysed; similarly where they are 

tabulated as exact or right censored then that is also how they will be anal­

ysed. A fuller discussion of the AIDS virus is given in Chapter 6, section 6.3. 

After using this example as an illustration, it is noted that doubly censored 
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data sets do not frequently arise within the analysis of the AIDS incubation 

distribution. It is only in special circumstances that the time of mv infection 

can be determined to lie within some censoring interval as described above. 

Usually it is observed only that the time of mv infection occurred before 

the patient tested positive for HIV (left censoring). This type of information 

is not very informative for prediction of the AIDS incubation distribution. 

There are generally two circumstances where such censoring occurs in AIDS 

studies. The first is where partners of HIV infected individuals are monitored 

over time by regular checks for HIV. The second type of data situation, which 

is the type of application which will be used in this thesis, is illustrated via 

an example below. 

Example 2.8 Doubly Intert1al Censored. AIDS Data 

An example of doubly intenJal censored data (Brookmeyer and Goedert, 

1989), concerns the study of haemophiliacs receiving replacement blood clot­

ting factor at three different treatment centres during the 1980's. Blood sam­

ples were stored and subsequently tested for HIV infection, so that the date 

of infection can be determined up to an intenJal of time. The subjects were 

followed up and times at which they progressed to AIDS are also recorded. 

This data set is intenJal censored on the left and exact or right censored on 

the right. 
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Doubly censored data is not limited to AIDS cases, but may also arise in 

completely different, medical or non-medical applications. One possible ap­

plication is in the analysis of the survival times of patients diagnosed with 

breast cancer after having taken part in a screening programme. H the time 

of developing a tumour is known to lie between two screening visits, then the 

initiating event will be interval censored. If the women are subsequently 

followed until death, the time of the terminating event will be exact or 

right censored. Problems do arise when considering tumours detected at 

non screening visits (lack of uninformative censoring) and questions as to 

whether the tumour was missed at the last screen, or whether it really is a 

new growth. 

In the AIDS example described within example 2.8, it is clear that the 

censoring mechanism for the infection time is independent of the survival 

event of interest. This is because the serum samples were stored for reasons 

completely independent of the HIV virus (any lost serum samples were due 

to events such as freezer malfunctions). With other AIDS data sets, patients 

may be more likely to be make frequent visits to be tested for HIV infection 

when they have reason to suspect that they may be infected, and so the inde­

pendence of the censoring mechanism can no longer be assumed. It is much 

less certain, whether the censoring interval for the time of AIDS progression 
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is independently censored. These patients were followed up after it had been 

identified that they were HIV positive, and visits to the clinician are likely 

to become more frequent when CD4+ cell counts are low. This problem is 

acknowledged, but not considered further. 

Brookmeyer and Goedert (1989) have developed a model which accomm~ 

dates interval censoring on the left and right censoring on the right. For the 

time of UIV infection, the log-baseline hazard is modelled by a piecewise­

constant hazard, with constant covariate effects. The Weibull model is used 

to model the incubation distribution. The decision to use the Weibull distri­

bution was based on previous studies cited in their paper (Hessol et al., 1987), 

which suggested that the hazard for developing AIDS increased continuously 

after diagnosis (although Bacchetti (1990) estimates that the hazard will flat­

ten out after around seven years). The model is a two stage model, which first 

estimates the parameters in the infection model, and subsequently estimates 

the parameters in the incubation model. The model used is a continuous 

model, and for an individual with left censoring interval (M, P], and AIDS 

diagnosis time t, has a likelihood contribution: 

f: h (s)f2(t - s)ds, 

where f1(s) is the distribution of the HIV infection times, and f2(t) is the 

distribution function for the AIDS incubation times. The Newton-Rapson 
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algorithm was used to find the maximum likelihood estimates. 

DeGruttola and Lagakos (1989) develop an extension of Turnbull's model 

(using the "self consistency algorithm") for double interval censoring. It is a 

non-parametric model, which does not include covariates, and has some simi-

lar properties to the Kaplan-Meier curve (non unique after the last censoring 

time). The model may be used to check any future parametric assumptions. 

Again assuming that an individual has initiating censoring interval (M, P) 

and terminating censoring interval (R, L), the likelihood contribution for such 

an individual is: 

p 

E Pl(S = 8)P2(R - 8 < T :5 L - 8) . 
• =M 

Where PI(.) is the discrete distribution modelling the infection times Sj P2(.) 

is the discrete distribution modelling the incubation times Tj and 8 runs over 

the discrete set of admissible initiating event times within the interval (M, P). 

Kim et al. (1993) furthered the work of the above two cited references, 

by developing a proportional hazards model for double interval censored 

data, again based on an iterative method using the self consistency alga-

rithm (Turnbull, 1976). As already noted under interval censoring, Turn­

bull's self consistency algorithm is highly dependent on the starting value 

(Sinha, 1997), and this will also be true when applying the method to double 
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interval censoring. Bacchetti (1990) comments that incubation estimates are 

either based on strong parametric assumptions, or if they are non-parametric 

then they may be unstable, and so proposes a method which does not use 

individual level data, but rather is based on aggregate data, and is similar 

to the method of back calculation (Brookmeyer and Gail, 1994). 

Law and Brookmeyer (1992) show how wrong inferences can be drawn when 

using a midpoint imputation approach, as did Odell et al. (1992) for interval 

censored data. DeGruttola and Lagakos (1989) note that midpoint imputa-

tion will only be appropriate where the density for infection is uniform in 

chronological time (imputation can also underestimate the standard error of 

the coefficients). 

Other data sets which arise in the study of the incubation period of the AIDS 

virus, are transfusion related data sets. Such data sets arise when individu-

als who have undergone blood transfusions, later develop AIDS. The time of 

HIV infection can often be linked to the date of the transfusion. Although 

such data sets will not necessarily be double interval censored, they do fall 

under the wide heading of estimating the incubation distribution. However 

such data sets will often be right truncated, and so will lead to biased re­

sults towards shorter incubation periods if the truncation is not accounted 
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for. What is more, the estimate of the incubation distribution may not be 

representative of the population as a whole, as transfusion patients are often 

elderly and frail, again biasing estimates towards shorter incubation periods 

(although similarly a cohort of haemophiliacs cannot be assumed to be repre­

sentative of the population as a whole). Truncation is not considered further 

within this thesis, although applications may be found within Kalbfleisch 

and Lawless (1996) and Finkelstein et al. (1993). 

2.10 Frailty 

Suppose we are interested in modelling the survival time of breast cancer pa­

tients where the study population consists of some genetically related women 

(mothers and daughters, sisters etc.). It is now well known that some cancers 

have a genetics basis: with this knowledge it is expected that some of the 

survival times (which could include both time to onset of the disease and the 

time of diagnosis till death) may be related. 

Within any standard survival analysis, a fundamental assumption is that 

conditional on observed covariates, the survival times are independent. In 

some studies the data may be grouped: in the above example the groups rep­

resent family relationships; in other examples the groups may represent such 

things as geographical location, genetic traits, or treatment centres. Within 
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groups, it may be the case that the survival times are positively related to 

each other. By conditioning on the groups, as with conditioning on covari­

ates, the survival times become independent. Dummy covariates could be 

assigned, but the model will almost certainly be required to make general 

predictions for the whole population: interest focuses on the marginal distri­

bution, and not the conditional. 

In another example, suppose the effects of two treatments are to be com­

pared across several different hospitals. An observational study is carried 

out, and two covariates defined, one for treatment indicator, and the second 

for treatment centre. A survival model, possibly Cox's model (assuming the 

proportional hazards assumption is valid), could be fitted to the data, and 

evaluations could then be made as to which treatment, within each different 

treatment center, produces the better survival rates. This method of analy­

sis, will not tell us which treatment is best across all treatment centres. On 

the other hand, if we were to ignore the treatment center, and include as the 

only covariate the treatment indicator, then the survival times conditional 

on covariates, may no longer be independent. Again as interest lies in the 

marginal distributions, standard survival models are not appropriate. 

One solution to this problem is to assign a grouping effect, called a frailty, 
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to each cluster or group. Estimates for each grouping effect are made, and 

the unconditional distribution, that is the marginal survival distribution, is 

used to make general population survival estimates. Frailty, or heterogeneity, 

models were first introduced into demography by Vaupel et al. (1979). They 

have subsequently evolved in both frequentist and Bayesian statistics. There 

are many variations of the frailty model (some of which will be discussed), 

and the basic, conditional proportional hazards model, with gamma frailties 

is introduced below. But first an example of a data set which has appeared 

in several papers with a frailty interpretation, and which will also be referred 

to several times in this thesis. 

Example 2.9 Kidney Patient Infection Times 

98 patients are monitored for kidney infection whilst undergoing dialysis. 

Infection times for each individual are recorded, as the time from insertion 

of a catheter until infection. After the infection has healed, another catheter 

is inserted and the time until infection is recorded again. For each patient 

up to two survival times were recorded. The object of the study is to compare 

the survival times across a variety of covariates. As observations for each 

individual are expected to be related, this could be accounted for by using 

frailties. This is the approach that has indeed been taken first by McGilchrist 

and Aisbett (1991) and later by Asalnidou et al. (1998), amongst others. 

This data set may be found in table 10 (page B05) of this thesis, and again 
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will be discussed in greater depth in Chapter 6. 

The Gamma Frailty Model 

• The conditional proportional hazard at time t, for individual i in group 

g, with frailty ug acting multiplicatively, is: 

that is the product of the baseline hazard, the relative hazard, and the 

multiplicative frailty ug • 

• The frailties follow independent gamma distributions, with unit mean 

(ensures identifiability) and variance JJ-1: 

• Conditional on the frailty, Ug , the model is defined to be a proportional 

hazards model, although this relationship does not hold marginally. 

The marginal hazard is: 

where Ao(t) is the integrated baseline hazard. 

The marginal hazard will be derived in full, for the Normal Dynamic Survival 

Model in Chapter 4, section 4.4: the method there is a generalisation of the 
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proportional hazards frailty model which is being described here, and so the 

marginal hazard is not derived here, merely given. 

Marginally for the gamma frailty model, there will be a convergence of haz­

ards, the rate of which will depend on the parameter of the gamma distri­

bution JJ (Clayton, 1991). It may be argued that long term survivors will 

all have approximately the same hazard, irrespective of treatment and other 

covariates, indicating a convergence of hazards. However this will not always 

be the case, and especially may be untrue where the data are not long term 

observations. To avoid marginal convergence of hazards Hougaard (1986) 

considered using the positive stable distribution: a one parameter distri­

bution, characterised by its Laplace transform. The positive stable frailty 

distribution is the only distribution which models a proportional hazards 

model both conditionally and marginally. Sinha (1998) points out that the 

positive stable distribution assumes that the frailty paramater has an infi­

nite variance, and so implicitly assumes the possibility of an infinite number 

of infections: it should therefore be avoided in data applications like the 

kidney infection data, where there are just two infections per group. After 

saying this, it is noted that Qiou (1997) compares the gamma frailty with the 

positive stable frailty and conclude that for the kidney infection data the pos­

itive stable frailty model performs better, in terms of predictive distributions. 
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Another popular method for modelling the frailties is to use the log-normal 

distribution, as in Gray (1994) and McGilchrist and Aisbett (1991). 

Frailties are unobservable random variables, and there exist only limited ways 

of checking the appropriateness of model assumptions. Hougaard (1986), 

demonstrated how important the choice of the frailty distribution is, and 

how different choices can lead to remarkably differing results. Sargent (1998) 

comments how most choices for frailty distributions are restricted so as to 

obtain closed form full conditionals. A comparison was made in the same 

paper between various different distributions for the frailties, and in that 

particular application little difference was observed between any of the mod­

els. Paik et al. (1994), modeling the baseline hazard by a piecewise constant 

process, discuss the impact of the chosen frailty distribution on the marginal, 

and consider the case of a time dependent, rather than constant frailty effect. 

In the above example of the basic frailty model, the baseline hazards was 

left unspecified, as in Cox's proportional hazards model. Depending on the 

type of model fitting technique that is to be used, some parametric assump­

tions for the distribution of the baseline may have to be made. Clayton 

(1991) amongst others used a Levy process, where increments in the cumu­

lative baseline were assumed to be independent gamma variables. As previ-
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ously remarked for the non frailty model, increments in neighbouring inter­

vals could be related. An alternative parametric distribution is the Weibull 

proportional hazards model, used for example by Aalen (1988), again the 

appropriateness of this distribution will depend on the nature of the data, as 

it will only model (conditional) hazards which are monotonica1ly increasing 

or decreasing. 

Since Clayton (1991) first applied Bayesian methods to frailty models, by 

extending the freqentist approach of Clayton and Cuzick (1985), Bayesian 

frailty models have received a fair amount of interest. A general review 

is given by Sinha and Dey (1996). Sinha (1998) develops a gamma frailty 

model, with a piecewise correlated baseline hazard for right censored data us­

ing the posterior likelihood approach. Aslanidou and Dey (1996) compare the 

gamma frailty model with a piecewise correlated baseline (gamma) hazard 

against a model with the Weibull baseline hazard (also with gamma frail­

ties). Using Gibbs sampling with Metropolis-Hastings, again for the kidney 

data set, they found that the piecewise correlated baseline hazard method 

provided a much better fit. 
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2.11 Summary 

A broad discussion of survival analysis has now been given. Both general and 

more complicated types of data have been discussed. It has been noted that 

one of the major constraints of survival models for more complicated data 

types, is the assumption of proportional hazards. Various forms of model 

fitting techniques have also been considered, with the intention of being used 

with the development of a non-proportional hazards model for complicated 

types of censoring (interval censoring, double interval censoring, and frailty 

applications) . 
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3 Dynamic Survival Models 

It has already been noted that misleading, or incorrect, conclusions could be 

drawn when fitting a proportional hazards model, where the assumption of 

proportional hazards is not appropriate. On the other hand, in every day 

applications of medical statistics, it is important to be able to carry out a 

multivariate analysis. These were probably the reasons which lead Gamer­

man (1987) to develop a multivariate, non-proportional hazards, survival 

model. Gamerman's model is a very effective way of avoiding the assump­

tions involved within the usual multivariate models. But for reasons which 

will be explained later, it is not possible to incorporate both interval and 

double interval censored data sets into this model. It is for this reason that 

after introducing Gamerman's model, the model will be changed slightly, and 

a different method of model fitting used, in a way which will make the model 

more easily adaptable to an extended range of data types. Comparisons will 

be made with the results obtained using this new approach with those ob­

tained by Gamerman (1987). In the following Chapters, this adapted model 

will then be applied in a range of interval censored and double interval cen­

sored data sets. 

Gamennan (Gamerman 1991, and Gamerman 1987) called his model a dy­

namic Bayesian model for survival data: both the log-baseline hazard and 
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covariate effects are modelled by the piecewise correlated process. In this 

thesis all of the non-proportional hazards models based on the piecewise cor­

related process will fall under the broad heading of Dynamic Survival Models 

(DSM). The adapted model is based on a normal parameterisation, and will 

be called the Normal Dynamic Survival Model (NDSM). 

3.1 The Dynamic Bayesian Model for Survival Data 

In this first section the original model, developed by Gamerman (1987), will 

be introduced, and the method of model fitting used in Gamerman (1987) 

outlined. It will be shown how the method relies on being able to establish 

a risk set at each point on the time axis. Details will not be given as to 

why this restricts the model to right censored data (this will be left until 

the model is extended in the following section); here the restriction will be 

merely noted. The model will then be discussed, and any weak points of the 

model highlighted, with a view to possibly being rectified when the model is 

~defined in section 3.2. Some of the notation used in this first section is 

slightly different to that used by Gamerman (1987), but it is on the other 

hand consistent with the notation used within this thesis. 

Gamerman's model is an adaptation of a set of models known as the Dy­

namic Linear Models (West and Harrison, 1997). These time series models 
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allow the covariate effects to vary over time. The model fitting techniques 

are based on a Bayesian methodology, which sequentially updates priors into 

posteriors, 88 observations are received. Within a proportional hazards sur-

viva! model the impact of introducing a dynamic covariate effect is to create a 

non-proportional hazards model. Again using the notation ZI: for k = I, ... , K 

to represent covariates, and a division of the time axis with intervals referred 

to by the notation I j = (tj-lt tj]. 

De8n1tion S.l The DJlRGmic Survitlal Model 

The model is defined via its hazard function, which at time t is defined as: 

K 

h(t) = exp(,8o(t) + E ZI:,8I:(t», 
1:=1 

where 

,8o(t) = fJoj for t El;, 

Parameters are related across intervals by an evolution equation: 

,80; = fJo;-l + wOJ, where wo; f'oJ [0, Wo], 

with priors .Boo f'oJ [mo, Co], and ,81:0 f'oJ [ml:, Ct ], for k = 1, ... , K. Information 

about survival times, censoring indicators, and covariates is denoted by D, 
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and Di,j denote8 information from all ob8enJations in intenJals 1, .... , j 1 and 

the fir8t i ob8enJations in intenJal 1;+1' 

For notational convenience the hazard may also be written in the abbreviated 

form: 

h(t) = exp(z,B(t», 

where 

Within interval 1;, for a given covariate, the hazard will be constant: 

h(t) = A; for t El;, 

where A; = exp(,Bo; + '2::=1 ,B1c;ZIc). Similarly within any interval the covari­

ate effect will also be constant. The model will approximate a continuous 

function, the true yet unknown hazard, by a piecewise constant one, and by 

including a sufficient number of intervals on the time axis, the model should 

provide a good approximation to all hazard functions. The greater the num­

ber of divisions on the time axis, the greater the potential is to create a very 

good approximation, although increasing the number of intervals increases 

the number of parameters to be estimated. A balance must be drawn. 
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The Linear Bayes Method 

The method of ~timating parameters described here and used by Gamerman 

(1987), is based on a linear Bayes approximation (West and Harrison, 1997). 

This estimate is a linear estimate of the parameter, whose value minimises 

a loss function (where the loss function will represent the accuracy of the 

~timate). The estimate may be compared to the non-Bayesian estimation 

techniques of minimum variance and least squares. 

At the start of each interval a prior is defined for the parameters of the cur­

rent interval (where the current interval is the first interval then this prior 

relates to initial prior beliefs, otherwise it is based on parameter estimates 

from the previous interval). As information is received within the interval, 

the priors are updated into posteriors. Since the parameters are dynamic, at 

each change of interval, the posterior for the current interval is transformed 

into a prior for the upcoming interval. Sequencing through all observations in 

all intervals results in the estimation of 9j 1Dj _ 1 (9j is a general representation 

for some parameter at time tii and D;-l represents observed information, up 

to and prior to, time t;-l)' Once information from all N intervals has been 

incorporated, it is then necessary to sequence back through the intervals and 

update the estimates from the form 9j ID;_1 to 9;IDN, these are often referred 

to as the smoothed or retrospective estimates. 
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The number of observations at risk (Le. still alive) at the beginning of inter­

val I j is denoted by rj. Every observation within the risk set for a particular 

interval, is given a modified survival and censoring indicator, for that inter-

val. This will represent whether an observation was observed (Le. through 

failure or right censoring), or whether that observation survived through the 

interval, and so with respect to the interval under question, is right censored 

at the end of the interval. For interval I j , the modified censoring indicator, 

and survival time are: 

= 0 if~ > tj, 

t.·,· = t· if t· < t· . . - , 
= tj if ti > tj, 

(3) 

(4) 

where ~ represents the survival or censoring time for individual i, and the 

standard censoring indicator 6. was defined on page 12. 

Method Outline 

So as to keep the notation simple, in this following section {3j will be used to 

refer to the vector ({30j, {31j, ... , {31c;)' 

1. Given information Di-l,j-l (Le. all information from the first 1j-l 

intervals and the first i - 1 observations in interval 1j ), suppose the 
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current estimate for P; is: 

Note PolDo ~ [mo, Co], and Do = Do•o represents prior information at 

time zero. 

2. Let Ai;, be the hazard for individual i in interval I;, where: 

3. The joint distribution for P; and log Ai;, conditional on Di-1';-bis: 

where 

4. It is assumed that Ai;IDi-l';-h has a gamma distribution, which will 

provide a partially tractable analysis: 

59 



To ensure consistency between the first two moments under the gamma 

distribution and those from the joint distribution: 

5. On receiving information from observation i in interval I;, the distri-

bution for ~; is updated by Bayes rule as: 

where L(ti;IDj - 1} represents the likelihood contribution from obser-

vation i in interval Ij, at time tij, conditional on survival up to the 

beginning of the interval: 

Likelihood contributions similar to the one above will be derived under 

a more general setting later in this Chapter (section 3.2.1), and of 

course for this specific model the complete derivation may be found in 

Gamerman (1987). 

FollOwing the method used in the conjugate gamma example (section 

2.4), the updated distribution is: 
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6. The distribution for /3; must then be updated. Writing the updated 

distribution as: 

where 

and 

updating is obtained using a linear Bayes approximation: full details 

of which may be found in West and Harrison (1997) and Gamennan 

(1987). Gamerman (1987), showed that the updated moments for the 

distribution of /3; are: 

Si; ( 1 + qi;6i; ) 
111i";-1 = mi-1";-1 + -log , 

qi; 1 + Qi;(ti";-1 - t;-1) exp(Ji;) 

and 
r··s··ST " _. _u""i; C.,,-1 - C'-1";-1 1 . 

+Qi; 

This method is used to sequentially update paramater estimates for 

interval I; as observations are received. Steps 1 to 6 are repeated until 

all information from interval I; has been incorporated. 

7. After receiving all information within interval I;, the current posterior 

for /3;, is: 
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which is equivalent to: 

,8;ID; '" [m;, C;]. 

As there are no more observations within interval I;, the current pos­

terior is updated into a prior for the next interval: 

where a;+! = m; and R;+! = C; + W (following the definition of the 

evolution of the parameters across intervals). 

8. Once all the data has been sequentially imputed, the next step is to find 

the retrospective estimates: that is the estimates based on the complete 

data set. This is not shown here, but may be found in Gamerman 

(1987), and is a very similar procedure to that developed in West and 

Hamson (1997) for the Dynamic Linear Model. 

Other forms of the basic evolution {3; = ,8;-1 + w; were considered in Gamer­

man (1987), and consisted of the form ,8; = G(,8;-l) + w; for some function 

G(·). Gamerman (1987) used this form of evolution to include linear growth 

of the treatment effect, within the analysis of the gastric cancer data set (sec­

tion 3.3). This is helpful when interest lies in modelling the rate of change 

of the treatment effect, and also more generally increases the flexibility of 

the model. 
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Apart from the initial priors (which can be left vague), two of the main 

uncertainties within the model, are the time axis division and the evolution 

variances. Both of these have a fairly large impact on the inferences obtained, 

yet both must be specified by the user. Kalbfleisch and Prentice (1973) ar­

gued that the division of the time axis should be determined independently 

of the data, although Breslow (1974) used a division based on the observa­

tions. Both of these papers use a piecewise correlated baseline hazard only, 

although the arguments should equally apply to dynamic covariates. Gamer­

man (1987) determined a "best" division by comparing Bayes factors under 

different divisions, and found for his application, that one of the divisions 

which worked well was a division based on the observed death times. Arjas 

and Gasbarra (1994) included the time axis division as an unknown quantity 

within their model, and estimated along with the other model parameters, 

where and how many divisions on the time axis there should be. This ap­

proach certainly avoids many of the uncertainties involved in choosing the 

time axis, but may be costly in terms of computational time. 

Another very important feature of the Dynamic Survival Model, is the evo­

lution variance. This parameter can have a very large effect on the estimated 

parameters: with a small evolution variance, the parameters will be restricted 
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to small changes over time; the opposite effect will occur if the evolution vari­

ance is large. The linear Bayes approximation method provides no way of 

estimating this parameter. Values could be chosen by comparing Bayes fac­

tors, although this would time consuming, and it would be more appealing if 

this parameter could be estimated within the model. It may also be realistic 

to model an evolution variance which changes over time (and indeed the~ 

retically the above model can accommodate this). This would be especially 

useful if expert knowledge suggested a time when the series moved from be­

ing fairly static to volatile (or vise versa). Gamerman (1987) used dynamic 

evolution variances which are a function of the length of the interval: 

WO; = (t; - t;-l)WO' 

A dynamic evolution variance becomes more important when the intervals 

of the time axis are of varying length, although where the intervals are suf­

ficiently small, then it may be reasonable to assume a constant evolution 

variance (Sinha, 1998). 

3.2 Parametric Dynamic Survival Models 

In section 3.1, a non-proportional, semi-parametric survival model was de­

scribed, that was first introduced in Gamerman (1987). Perhaps the major 

shortcoming of the model, is that in its current form it can not easily be 
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adapted to accommodate alternative types of censoring, such as interval and 

double interval censoring. This is because when data are interval censored, 

it is not possible to create a rank ordering. This in turn means that it is 

not possible to identify a risk set at each point on the time axis. Without 

this, parameter estimates can not be sequentially updated as under the lin­

ear Bayes method. It will be explained in Chapter 4 (section 4.4), why the 

model is also not immediately adaptable to frailty models. 

With this in mind the Dynamic Survival Model, as introduced by Gamerman 

(1987), is reanalysed, this time using Markov chain Monte Carlo simulations. 

By using MCMC, the likelihood will not be restricted to a factorisation over 

the time axis, and instead the more standard likelihood factorised over each 

individual contribution may be used. The estimates obtained using the ap­

proach of Gamerman (1987) were smooth, although this is not possible with 

the method proposed here. 

The hazard function is as given in section 3.1 and in Gamerman (1987), 

although in contrast to Gamerman, in this approach the evolution distribu­

tions must be modelled parametrically. Without this parametric assumption, 

the full conditionals for the Gibbs sampler would not exist. The evolution 

variances on the other hand, need not be known in advance, and may be 
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treated 88 hyper-parameters to be estimated along with the other parame-

ters. 

Definition 3.2 The Normal DflRamic SUrt1il1al Model (NDSM) 

Introducing the notation T ~ N DSM({3, N, W) (where {3 represents the dy-

namic set oJ parameters, N the number oJ divisions on the time axis, and W 

the evolution tJariances), the Normal Dynamic Survival Model is defined via 

the Jollowing hazard Junction: 

K 

h(t) = exp({3o(t) + L ZIc{3Ic(t)), 
1c=1 

where 

f30(t) = 130; Jor t E Ij , 

I3Ic(t) = I3Ic; Jor t E Ij. 

EtJolution oJ parameters takes the Jorm: 

{30j = {30j-l + WOj where WOj ~ N[O, Wo]. 

The final stage in the hierarchy is to model the evolution tJariances, with 

h1JPer-priors: 
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Priors f300 I'V N[mo, 0o], fJlcO I'V N[mt,Ot] for k = 1, .. , K, and (0, 7]0, ~, 1Jt 

must be specified in order to complete this Bayesian model. Dynamic covari­

ates can readily be incorporated into the model. 

The model could be extended to incorporate a dynamic evolution variance, 

although this would be at the expense of increasing the number of param-

eters to be estimated. As an effective alternative, where the intervals are 

not of equal length, then the evolution variance can easily be modelled as a 

function of the length of the interval. 

Although the model provides a flexible approach, it is a parametric model, 

and so some distribution assumptions have to be made. In this thesis the nor-

mal and gamma distributions have been chosen to model the evolution and 

inverse of the variance of the evolution respectively. The method proposed to 

estimate the model parameters, will be able to accommodate any appropriate 

choice of distribution. Indeed for the multiplicative baseline model: 

K 

h(t) = fJ~; exp(L ZtfJt;) for t El;, 
t=l 

an alternative, positive distribution would be required for modelling the evo-

lution of the baseline, for instance the gamma distribution. 

Motivation for choosing the normal distribution is mainly underlined by the 
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work by West and Harrison (1997). In Dynamic Linear Models, the normal 

distribution should, for the most part, provide an adequate representation of 

the evolution. IT there exists a sudden change in the effect, intervention plays 

an important role (these are after all Bayesian models). In survival analysis, 

it may also be possible to incorporate intervention and model monitoring, al­

though these would be more complicated due to censoring, and residuals not 

being so well defined (this approach is not investigated in this thesis). The 

t-distribution has wider tails, and could be useful in medical applications, 

where patients may follow periods of stability, intermingled with periods of 

being unwell. There clearly exist many possibilities for modelling the evolu­

tion. For simplicity, and also because for the most part normality is expected 

to be more than adequate, the normal distribution has been chosen, but this 

is not to say that in other applications some other distribution could not be 

used. 

The gamma distribution has been chosen to model the inverse of the evo­

lution variance. This will provide full conditional distributions for these 

hyper-parameters which are also gamma, thus allowing sampling within the 

Gibbs sampler to be of a standard form. Furthermore, the gamma distribu­

tion is very flexible in that it will model a variety of shapes. After saying 

this the method is by no means constrained to the gamma distribution, and 
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any other reasonable distribution could be used at little extra computational 

expense (simply by inserting an additional Metropolis-Hastings step). 

For the Normal Dynamic Survival Model, two different interpretations of 

the likelihood will be considered, both of which are defined below. The first 

is the temporal factorisation, as derived in Gamerman (1987), and defined 

within definition 3.3; and the second is what has been labelled the ''indi­

vidual" factorisation (definition 3.4). The temporal factorisation turns out 

to be the more efficient likelihood when carrying out a Gibbs sample (sec­

tion 3.2.6). The individual factorisation is also introduced, as it will be this 

likelihood which must be used in later Chapters of this thesis, where under 

more complicated censoring mechanisms it will no longer be possible to cre­

ate a temporal factorisation. The reason for not being able to construct a 

temporal factorisation, is exactly why the linear Bayes method could not be 

used: both rely on identifying risk sets, and establishing rank orders. 

Definition S.S The Temporal Factorisation 

A temporal/actorisation 0/ the likelihood consists 0/ contributions from each 

0/ the separate intervals on the time axis. Within each interval contribution, 

there is a factorisation over all 0/ the individuals who are still alive at the 

beginning 0/ the interval. The individual contribution within a particular 

interval will either consist 0/ the probability that the individual died (or was 
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right censored) within the internal, given that they were alive at the beginning 

of the interval; or the probability that they survived through the interval, 

again conditional on survival at the beginning of the internal. The temporal 

factorisation is dependent on the ranking of the data. 

Definition 3.4 The Individual Factorisation 

A n individual factorisation of the likelihood, factorises the likelihood into 

contributions from every individual. Each individual contribution is then 

factorised over the time axis. 

Before either of the likelihoods are derived, several basic conditional survival 

functions are developed. Further, more complicated, conditional survival 

functions will be developed throughout this thesis, as and when required. 

3.2.1 Conditional Survival Functions (1) 

Considering the general case of T f"oJ N DSM({3, N, W), with j = 1, ... , N, the 

probability of surviving past some t, for t E I;, conditional on survival the 

beginning of the time interval (i.e. at t;-l) is: 

where 

S(tl1J-l) = p(T > tiT> t;-l) 

= exp(-e'*'J(t - t;-l», 

T; = Event[T > t;]. 
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So as to emphasise the model parameter {J, this conditional probability will 

be often written as: 

S(tIT;_l) = C(t, t;-l, {J). 

Proof 

Firstly we observe: 

Then: 

S(tlv) = ~ 

= exp(- f: h(u)du). 

S(tlT;-l) = exp( - fJ h(u)du + f:J-
1 h(u)du) 

= exp( - ft~_l h(u)du) 

= exp( -~~J (t - t;-l)). 

3.2.2 The Temporal Factorisation 

(6) 

Let r; represent all individuals who are yet to be observed at the beginning of 

interval I;; T; may be thought of as a risk set at time t;. Modified censoring 

indicators and survival times (equations 3 and 4, page 58) were introduced 

under the linear Bayes approximation and will again be used within this 

factorisation. Although the linear Bayes method will not be used here, the 

likelihood is in fact the same as that required under the linear Bayes method: 

both relying on the temporal factorisation (although within this thesis, the 

full likelihood was not derived under the linear Bayes method ). The form of 
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the temporal likelihood differs to that derived in Gamerman (1987), as the 

models are slightly different. 

The likelihood is factorised over the N intervals: 

N 

L = rr L;, 
;=1 

where the likelihood contribution in interval I j is: 

rJ 

L; = rr S(ti;IT > t;_I)h(ti;IT > t;_1)6iJ. 

i=1 

The likelihood factorises each interval contribution by considering all those 

who survive through the interval, and all those who fail within the interval, 

all conditional on survival at the beginning of the interval. The conditional 

survival function, S(tIT) was derived in section 3.2.1 (page 70)j and h(tlT) 

is simply h(t)j the full form of the temporal factorisation is: 

N rJ 

L = rr rr exp( _e%iJfJJ (ti; - t;_I))e%ifJj6
iJ• (7) 

;=li=1 

Before the individual factorisation is developed, it is necessary to introduce 

two further sets of conditional survival functions. 
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3.2.3 Conditional Survival Functions (2) 

The probability of survival past some point tm on the time axis, conditional 

on survival at time t, on the time axis is: 

p(T > tmlT > t,) = S(tmIT,) 
m 

= exp( - L e.clJJ (t; - t;-I»' 
;=,+1 

Throughout the rest of this thesis the above probability will be referred to 

by the notation: 

b 

A(a, b, {3) = exp( - E eZ~1 (t; - t;-I». (8) 
;=0. 

So that: 

S(tmIT,) = A(g + 1, rn, {3). 

Proof 

Following the method used in the derivation of the first conditional survival 

function: 

p(T > t,ITm) = exp(- {tm h(u)du) 

= exp( - t [Cl eZ~(U)du) 
;=,+1 '1-1 

m 

= exp(- E e·~I(t; - t;-I»' 
;=,+1 
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Alternatively the probability may be derived from a factorisation over the 

time axis: 
m 

p(T > t,ITm) - IT S(t;IT;_I) 
;=,+1 

m 

= IT exp( -e·~J (tj - t;-I)) 
;=,+1 

m 

=exp(- E e·~J(tj-tj_l»' 
j=,+1 

3.2.4 Conditional Survival Functions (2B) 

Using the conditional survival functions which were developed in the previous 

two sections, it is now straightforward to calculate f(t) for any t. Suppose 

f(t) = S(t)h(t) 

= p(T > tm)p(T > tiT> tm)h(t). 

The first conditional survival function (equation 5), is the second part of 

this probability; and the second conditional survival function (equation 8), 

allows us to compute the first part of the probability: 

f(t) = p(T > tm)p(T > tiT> tm)h(t) 

= A(l, rn, f3)C(t, tm, f3)h(t) 
m 

= exp( - E e·~J(tJ-tJ-d) exp( -e·~"'+l (t - tm»e·~"'+l. 
j=l 

74 

(9) 



3.2.5 The Individual Factorisation 

It has already been noted (and will be demonstrated in section 3.2.6) that 

the temporal factorisation is more efficient with respect to Gibbs sampling; 

and so the individual factorisation will not actually be used within any anal­

ysis of right censored data. The individuallike1ihood is still derived however, 

for consistency with other censoring types which will be discussed in later 

Chapters. Furthermore the individual factorisation is often the clearest way 

to think about the likelihood, and does not require specification of the mod­

ified censoring and survival times (as does the temporal factorisation). 

For individual i, with observation time ti, t"" E GT (recall that GT denotes 

the set of division points on the time axis), is found such that: 

That is, it is identified within which interval every observation lies, with the 

notation that t, E 1""+1' 

The individual likelihood, is taken as the product of each of the n individual 

contributions: 
n 

L = IT S(~)h(ti)6,. 
i=l 
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Each individual contribution is the product of conditional survival functions 

(this consists of the product of conditional survival functions over each com­

plete interval of survival and the conditional survival function over the partial 

interval in which failure or censoring occurs): 

n ~ 
L = IT IT S(t;IT;_I)S(tiIT~)h(tilti E I~+1)6,. 

i=1 ;=1 

Using the notation introduced in section 3.2.3: 

n 

L = IT A(l, 7'Tli, fj)C(ti' t~, fj)e"~"''+16,. 
i=1 

Written out in full: 

n "" 
L = IT exp( - L e.,fJJ (t; - t;-I» exp( -e"~"'Hl (~ - t",,»e"~+16,. (10) 

i=1 ;=1 

3.2.6 MO MO Implementation 

As previously mentioned MeMO will be used as the method of model fitting. 

As this will involve estimating a set of multivariate parameters, Gibbs sam-

pling will be used. Some of the full conditionals turn out to be of standard 

form, but for the majority a Metropolis-Hastings step is inserted. Before 

evaluating the full conditionals, a reparameterisation is introduced, and var-

ious other methods for improving the efficiency of the Gibbs sampler are 

discussed. 

76 



Improving Efficiency 

The ultimate object of the analysis is to provide estimates for: 

where each {3j (j = 1, ... , N), represents the value of the parameter within I j 

(in the current application this is either the baseline or covariate effect param­

eter). When the parameters are highly correlated Gibbs sampling may run 

into problems, which may slow convergence; and in some circumstances the 

chain may fail to converge at all. Suppose that the Markov chain happens to 

be in a position where one of the parameters is assigned to a poor value. The 

chain attempts to sample a second parameter, which we suppose is highly 

correlated with the first. In such circumstances the full conditional will give 

very little weight to values of the parameter which under the marginal dis­

tribution would be highly weighted. The chain will move very slowly, if at 

all, to the target distribution. 

To avoid such problems, one method is to consider a reparameterisation 

to a set of parameters which are not so highly correlated. For the applica­

tion considered in this thesis, there turns out to be a very easy and effective 

reparameterisation. Instead of sampling the paramater effects directly, it is 
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noted that these effects can be derived entirely from: 

This is true by noting that any paramater {3j (j = 1, ... , N), may be re-written 

as: 
j 

{3j = {3i + L Wj'. 
j'=2 

The parameters, Wj, which represent evolution, will not be as highly corre­

lated as the untransformed parameters {3j. We may think of the correlation 

between two parameters {3j and {3j+1 as having two parts: the first the cor­

relation which exists due to the baseline of the parameter; and the second 

due to the increment of the parameter. Using the above reparameterisation 

the first part of the correlation will be eliminated. For the Dynamic Survival 

Model experience proved that this parameterisation provided an immense 

improvement. 

Gamerman (1998) compared alternative Gibbs sampling schemes for a re­

lated model (the Dynamic Generalised Linear Model). Amongst the schemes 

considered in that paper, was a reparameterisation (similar to the one de­

scribed above); multi-move samplers (where the parameters are blocked in 

non-correlated groups); and also a Metropolis-Hastings step for a set of ad­

justed full conditionals (Gamerman, 1998), which are always normal. Under 
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the Metropolis-Hastings step, proposals based on a normal distribution with 

mean at the current value of the parameter and variance at the current esti­

mate of the evolution variance were used. Gamerman found that the method 

based on the adjusted full conditionals worked best, but also stressed the 

importance of the reparameterisation. Unfortunately survival models do not 

have such nice properties, as generalised linear models, and the full condi­

tionals are far from normal. 

It is also observed that in some applications of the piecewise correlated base­

line hazard (with no dynamic covariate effect), a reparmeterisation was not 

used within the Gibbs sampler (Aslanidou et al., 1995), with the chain ap­

parently converging nontheless. In all of the applications considered in this 

thesis, the parameterisation was essential, and without it the chain very 

clearly failed to converge. 

The reparmeterisation described above does not solve any of the potential 

problems which may arise due to the high correlation which may exist be­

tween the parameter effects and the corresponding evolution variance. This 

is a problem which could potentially arise in any model with a hyper-prior. 

There exists what could possibly be a serious problem: the Markov chain 

may get stuck in a place of very high or very small evolution variance; this 
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will result in the acceptance of either very smooth or dispersed estimates 

for the covariate effects over time. Clayton (1991) and Tanner and Wong 

(1987), suggested that this problem may be improved if the Markov chain is 

sampled in blocks: all of the uncorrelated parameters are blocked together 

and sampled as in a usual Gibbs sampler, and after a number of iterations 

the corresponding correlated parameters (in this instance the evolution vari­

ance) are sampled. The method may avoid the high correlation problem, 

but is very costly in terms of disregarded samples. Raftery and Lewis (1992) 

discuss this problem, and acknowledging that it can be a very fundamental 

problem, suggest using simultaneous updating: although it has been shown, 

by Gamerman (1998), that when used in conjunction with a Metropolis­

Hastings step, the method can lead to very low acceptance rates. Experience 

showed that applying the Gibbs sampling without resorting to sampling in 

blocks, worked well in the applications required in this thesis. 

The Full Conditionals 

Using the reparmeterisation described above, the first set of parameters which 

must be estimated, and which will be referred to as the main paramaters, 

are: 
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and 

for k = 1, ... , K. The second set of paramaters are the hyper-paramaters: 

Wo, Wh ... , W&:. 

The full conditionals for the main parameters, reduce to the likelihood multi­

plied by any initial prior for the parameter of concern. Suppose that K = 1, 

then the full conditional for flu is: 

ex Lp(flll). 

When using the temporal factorisation, the full conditionals for the main 

parameters reduce to functions of the data from that particular interval only, 

contributions from other intervals are constants of proportionality: 

N 

[flu H oc IT L;p(flll) 
;=1 

where Lj was derived at equation 7 (page 72). Under the individual fac­

torisation, each part of the factorisation could potentially contribute to each 

of the full conditionals. When using a Gibbs sampler, at each separate itera­

tion, the full conditionals must be re-calculated. Even apparently small gains 

in efficiency, as exists between the individual and temporal factorisation, can 
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lead to considerable decreases in computational time. This is why the tempo-

ral factorisation of the likelihood has been labelled here as the more efficient 

factorisation. It is therefore the factorisation which will be used to compute 

the full conditionals under the right censored model. 

The full conditionals derived here are all based on the standard model out-

lined in definition 3.2. Aslanidou and Dey (1996) computed some similar 

full conditionals, for a model which although models proportional hazards, 

is not so dissimilar to the model being developed here. 

It has been mentioned that there exist variations on this model, in terms 

of the parametric distributions assumed in modelling the evolution. For al­

ternative distributions similar forms of the full conditionals may be derived; 

and whenever the full conditional is not of standard form then a Metropolis­

Hastings step can be inserted (section 3.2.6). The full conditionals are: 

• For /301, the baseline effect parameter: 

[,801 H ex: L1P(!301) 

ex: L exp(- (P01 - POO)2) 
1 2Co ' 

where L; (j = 1, ... , N) was defined at equation 7 (page 72). 
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• For the evolution of the baseline effect: 

p(WOj) was defined within the model definition page 66, so that: 

• For the evolution variance of the log-baseline effect: 

N 

log[WoI-J ex E logp(wojIWo) + logp(Wo) 
j=~ 

This is proportional to a gamma density and so: 

(11) 

where 

, I" N - 1 d' ~ W~j 
(0 = ':to + 2 an 110 = 1/0 + ~ T" 

,=~ 

• For the parameter PAll! for k = 1, """' K: 

83 



• For the evolution of the covariate effect parameters, for k = 1, ... , K: 

2 

( WA:.) ex L; exp -2W; . 

• For the evolution variance of the covariate effects, again k = 1, ... , K: 

N 

log[W.H ex Elogp(wA:;IWA:) + logp(WA:) 
;=2 

so that: 

(12) 

where 

The Metropolis-Hasting Step 

With the parameterisations and distributions specified it is necessary to insert 

a Metropolis-Hastings step to sample from some of the full conditionals. 

Within this application, normal proposals were chosen, with mean set to 

the current value of the parameter and variance chosen to ensure acceptance 

rates of around 50 percent (this avoids the danger of accepting all values 

and of accepting almost none, both of which can be indicative of lack of 

convergence) . 
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3.2.7 Convergence Diagnostics 

After each set of simulations a range of convergence diagnostics were carried 

out, some very intuitive, and others more formal. Within most of the data 

applications non-parametric techniques were investigated prior to fitting the 

NDSM, so as the resulting estimates could be compared with the more stan­

dard techniques. Then an initial Gibbs sampler was performed, based on a 

small number of iterations (say 1000); and then the Raftery and Lewis (1992) 

diagnostic carried out in CODA (Best et al., 1997), obtaining an initial es­

timate of how many iterations would be required and how many should be 

disregarded as "burn in". This statistic typically returned a very low burn 

in number and a moderate number of iterations (usually less than 10,000). 

To be cautious the bum in was increased to at least one tenth of the total 

number of iterations. Finally simulated values were plotted and convergence 

visually inspected. Occasionally when the chain did not converge (perhaps 

because of coding error), this method proved to be effective. 

Although results quoted are based on a single run of the Gibbs sampler, 

within the investigation and development of the models, many more runs 

were considered (from a variety of starting points) and it was checked that 

all converged to the same posterior. 
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3.3 Gastric Cancer Data Analysis 

Gamennan (1987) used the Dynamic Survival Model to estimate the survival 

(or a group of gastric cancer patients (the data set was initially analysed by 

Carter et al. (1983), and was introduced in this thesis in section 2.6). This 

data set will also be modelled by the Normal Dynamic Survival Model, firstly 

(or consistency and comparison with Gamermanj and also because the data 

set illustrates very nicely the advantages of the dynamic modelling technique. 

To compare the effect of radiotherapy and the combined treatment of ra­

diotherapy and chemotherapy, in the treatment o( gastric cancer, 90 patients 

were randomly allocated into two equal sized treatment groups, in this con­

trolled clinical trial. Within the analysis in this thesis, the covariate value 0 

is assigned to the treatment group of chemotherapy and 1 to the combined 

treatment of chemotherapy and radiation. The data set and Kaplan-Meier 

curve may be found in the appendix (table A.l and figure 27, page 192), 

with the data being recorded in days. Survival estimated under the prer 

portional hazards assumption using Cox's method (figure 28, page 193) 

is also presented as it shows the extent of the incorrect inferences which 

would be drawn from fitting a proportional hazards model. In this particular 

data set the incorrect conclusion of no treatment difference would be drawn 

from Cox's model. The Kaplan-Meier curve indicates a clear lack of propor-
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tionality, as does the Grambsch and Therneau (1994) tt>St of proportionality 

illustrated in figure 29 (page 194), which has a chi-squared value of 11.1 on 1 

degree of fredom. The plot produced by the Grambsch and Themeau (1994) 

function (cox.zph) in Splus, shows the estimated treatment effect to decrease 

over time. From the Kaplan-Meier curve the indication is that survival un­

der chemotherapy is better up until 1000 days, when the treatment curvt>S 

cross and the combined treatment appears to become more effective. From a 

medical point of view there does not appear to be a single superior treatment. 

In Chapter 2 it was described how Carter et al. (1983) fitted Cox's pro­

portional hazards model to the data, but included two covariatt>S: the first 

being the treatment indicator and the second the treatment indicator mul­

tiplied by time (allowing for a linear change in the treatment effect). Using 

the linear Bayee approximation and the Dynamic Survival Model (section 

3.1), Gamerman (1987) came to similar conclusions to the analysis of Carter 

et al. (1983), showing that the treatment effect varied over time. Within the 

analysis, Gamerman (1987) compared the log-likelihoods for three models: 

the first being the exponential proportional hazards model (with Chemother­

apyas the baseline parameter); the second, an exponential baseline with dy­

namic treatment effect; and the third a non-exponential, proportional haz­

ards model. He observed little difference in the log-likelihoods between the 
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first and third model, concluding that the baseline W88 exponential. He fur­

ther observed a difference between the log-likelihoods under models 1 and 

2, and hence modelled the data via a non-proportional hazards model with 

exponential baseline. After deciding on the model, and fixing the evolution 

variances, various divisions of the time axes were compared. The time axis 

which performed best in terms of log-likelihoods, were a division based on 30 

points: (20,40, .. ,200,250,300, ... ,600,700, ... , 1800); and a division based on 

the observed death times. 

Analysis Using the NDSM 

Vague priors were used for all parameters. For the treatment effect the cho­

sen prior was N[O, 1000]; for the log-baseline hazard N[-3, 1000]; and for the 

evolution variances G(0.001, 0.001). 

So as to minimise the computational time involved within the estimation 

of the paramaters, it was desirable to keep the number of intervals to a min­

imum. As Gamerman (1987) found that two divisions worked particularly 

well, these divisions were compared with a shorter one: (100,200, ... ,1800). 

The divisions will be labelled division 1 to 3, from shortest to largest. The 

observed log-likelihoods for the three divisions after 100,000 iterations are 

presented in table 1, and a comparision of the numerical output under all 
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Figure 1: Gastric Cancer: A comparision of the estimated survival using 3 

divisions of the time axis. Survival under chemotherapy is better than under 

radiation, up until 1000 days when the effect is reversed. 
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Figure 2: Gastric Cancer: A comparision of the estimated log-baseline haz­

ard using 3 divisions of the time axis. The estimated log-baseline hazard 

decreases rapidly over the first 500 days, and then remains quite steady. 
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Figure 3: Gastric Cancer: A comparision of the estimated treatment effect 

using 3 divisions of the time axis. The treatment effect decreases over time. 

Chemotherapy is initially the most benificial treatment, but after 1000 days 

the combined treatment takes over. 
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Figure 4: Gastric Cancer: Estimated survival using the Normal Dynamic 

Survival Model, constrained to return proportional hazards. 
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I Division I log-likelihood I 
Division 1 -585.23 

Division 2 -581.08 

Division 3 -581.00 

Table 1: Gastric Cancer: Estimated log-likelihoods under various different 

divisions of the time axis. Division one refers to the shortest division and 

division three to the longest (see text for exact definitions). 

models is presented in table 6 (page 196). The longer time axis divisions 

appear to provide a slightly better fit, in terms of a smaller log-likelihood, 

although the difference between survival and covariate estimates was slight 

(figures 1 to 3). The shorter division was used for the rest of the analysis, 

as the savings in computational time far outweigh the gains in the reduction 

of the log-likelihoods. 

Again to keep computational time to a minimum, it was desirable to carry 

out the minimum number of iterations necessary, whilst of course insuring 

convergence. For the gastric cancer data analysis, very good estimates for 

the parameters already exist (Gamerman, 1987). The similarity between 

estimates obtained after just 1000 or even 500 simulations was remarkable. 

The results obtained after carrying out 1,000, 10,000 and 100,000 iterations 
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Number of Iterations log-likelihood 

1,000 -587.90 

10,000 -585.67 

100,000 -585.23 

Table 2: Gastric Cancer: Estimated log-likelihoods under different numbers 

of iterations carried out in the Gibbs sampler. All have a ten percent bum 

in. 

are compared (disregarding the first 1,000 (or first 100) values, and saving 

every subsequent sampled value). The numerical results obtained under all 

sets of simulations were extremely similar, and this is reflected in compar­

isons between the log-likelihoods (table 2). 

The estimated survival curve (comparing the three time axis divisions) is 

given in figure 1, the hazards in figure 2, and the treatment effect in figure 

3. Full numerical results are given in the appendix (table 5, page 195). The 

estimated treatment parameter compares very well with that estimated by 

Gamerman (1987). Final estimates for the evolution variances were 0.155345 

and 0.463127 (variances 0.02 and 0.45) for the baseline and treatment effect 

respectively. Gamennan (1987) argued that evolution variances other than 

zero for the baseline performed unfavourably in terms of their Bayes factors; 
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zero variance for the baseline is within two standard deviations of the mean, 

although it appears, from the plot of the baseline hazard (figure 2), that 

there is a sharp decrease in this parameter over early days. The simulated 

values of a selection of parameters, plotted against the iteration number are 

presented in figure 30 (page 197). The Raftery and Lewis (1992) diagnostic 

typically recommend that between 3000 to 7000 iterations should be carried 

out, although visual inspection after 1000 iterations showed that the chain 

appeared to have converged. 

The results obtained by constraining the NDSM to a proportional hazards 

model were compared with the estimates obtained using Cox's proportional 

hazards model in Splus. In Splus the treatment effect is estimated to be 0.164 

(standard error 0.225), and the NDSM (constrained to return proportional 

hazards) estimated the treatment effect to be 0.172 (standard error 0.223) . 

The plot of the estimated survival curve, using the NDSM, may be found in 

figure 4. 

3.4 Summary 

Within this Chapter the model developed by Gamerman (1987), has been 

adapted slightly, and model parameters estimated using the method of MC MC. 

Care was taken to ensure convergence of the Gibbs sampler: a reparameteri-
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sation was used, and various converegence diagnostics employed. The model 

developed was subsequently applied to the same set of gastric cancer survival 

times as analysised in Gamerman {1987}, with convincing results. 
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4 Flexible Dynamic Survival Models 

The focus of this Chapter will be on extending the Normal Dynamic Survival 

Model (Chapter 3, definition 3.2), to accommodate a wider range of data 

types. The types of data which will be incorporated, are interval censor­

ing, double interval censoring, and non-independent observations (frailties). 

The need for non-proportional hazard models has been clearly demonstrated 

throughout this thesis. So far however much of this discussion has concen­

trated on right censored observations only, although there is no reason why 

all of this should not equally apply to the data types which will be con­

sidered in this Chapter. In Chapter 2 existing methods for modelling data 

more complicated than right censoring were discussed. Some of these models 

were non-parametric, some semi-parametric, and some parametric. None of 

the models however were capable of accommodating a semi-parametric but 

non-proportional hazards model. By extending the Normal Dynamic Sur­

vival Model, a method will exist whereby such data types may be modelled 

using multivariate techniques, whilst not being constrained by the propor­

tional hazards assumption. An additional advantage of a model which is not 

constrained by proportional hazards, is that the model itself could be used as 

a test for proportional hazards (constant covariate effects would be indicative 

of proportional hazards). 

97 



The piecewise correlated process is not a new concept for modelling the 

baseline hazard in such types of data applications (Ghosh and Sinha, 1995), 

but taking the process one step further, and modelling one or more dynamic 

covariate effects is. In a frailty model, using a piecewise correlated baseline 

hazard function, Sinha (1998) discussed extending the model to include dy­

namic covariate effects: but commented that it would be unreasonable to 

maximise the likelihood with so many parameters in their data application 

(90 observations). Using MCMC will avoid the maximisation problem (al­

though care should still be taken when estimating so many parameters and 

convergence should be checked). Furthermore the approach worked well for 

the right censored model, and it seems that this should not be much different 

for more complicated censoring types. Again any potential high correlation 

problems will be reduced by using a reparametisation. 

It was demonstrated in Chapter 3, section 3.2.6, that the temporal factori­

sation is more efficient when it comes to Gibbs sampling than the individual 

factorisation is. Unfortunately it is not possible to create a temporal fac­

torisation for interval censored and double interval censored data, a point 

already discussed in section 3.2. The main reason for extending the Dy­

namic Survival Model, by using MCMC and parametric modelling, was after 

all the inability to use the linear Bayes method within data sets where it was 
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not possible to identify a rank ordering: where it is not possible to identify 

a rank ordering, it is also not possible to create a temporal factorisation. 

To accommodate numerous types of censoring, either all of the observations 

should be written as double and interval censored, or the likelihood should 

be factorised over contributions from all of the different types of censoring; 

it will be shown within each section how to do this. In this Chapter the 

emphasis will be on introducing the models and deriving the likelihoods, and 

various methods of model fitting techniques (including MCMC and missing 

data methods) will be explored in the following Chapter. 

4.1 Conditional Survival Functions (3) 

Consider the probability of failure in the interval (~, Lil, where ~ E [rHI 

and Li E ['HI: 
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The probability is evaluated using the notation and conditional survival func­

tions which were developed in Chapter 3 (equation 9, page 74). 

r, 
= exp( - L e~fJJ (t; - t;-I» exp( _elSifJ"i+l (~ - tr,» 

;=1 

" - exp( - L e~fJJ (t; - t;-l» exp( -e%,fJ'i+l (Li - t,,» 
;=1 

= A(l, ri, {3)C(~, trp {3) - A(l, li' {3)C(Li' till {3). 

4.2 Interval Censoring 

(13) 

Interval censoring was introduced in Chapter 2, section 2.8 of this thesis. 

To recap, interval censored observations take the form (R, L], where it is 

observed only that failure occurred within this censoring interval, but not 

precisely when. 

When considering data with interval censoring, right censoring, and exact 

data, option one is to consider contributions from all right censored observa­

tions; followed by contributions from all exact observations; and then finally 

from all interval censored observations: 

RI R2 Ra 

L = IT S(ti) IT !(ti) ITp(~ < T < Li), 
i=l i=l i=l 
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where nl and 712 are the number of right censored and exact observations 

respectively, and n3 is the number of interval censored observations. Alter­

natively all observations could be written as interval censored. If an obser­

vation is observed right censored at R;, then it may be thought of as interval 

censored at (R;,oo]. Similarly an exact observation R;, may be thought of 

as interval censored at (R;, R;]. 

Since the Normal Dynamic Survival Model is being used to model the data, 

a division of the time axis must be created. As under the right censored 

model, the division of the time axis for a set of interval censored data will 

be denoted by GT , and points in GT will be indexed by t;, for j = 1, ... , NT . 

4.2.1 The Likelihood 

For each observation (R;, Li ], it is necessary to find points on the time axis 

4, and t", such that: 

and 

101 



Assuming that all observations are interval censored then the likelihood taken 

as a factorisation over all observations is: 

"T 

L(T) = ITp(~ < T ~ L i ) 
i=1 
"T 

= IT {peT > ~) - peT > Li)}' 
;=1 

Using the interval probability developed in equation 13 (page 100): 

RT 

L = IT {A(I, ri, ,8)C(~, t ro ,8) - A(l, ,;, ,8)C(Li' tit, ,8)}. (14) 
;=1 

This likelihood is not written out in full, as it would look too cumbersome, 

but the analytical forms of the relevant functions are easily extracted from 

equation 13. 

Gh08h and Sinha (1995) developed a likelihood for interval censored data, un-

der the piecewise correlated baseline hazard. There exist several differences 

between the likelihoods developed under their model and the one developed 

here: firstly their likelihood construction is based on grouped data; and sec­

ondly the model developed here includes dynamic covariate effects. 

4.3 Double Interval Censoring 

Where data are double interval censored, then both the initiating event time 

and terminating event time, are observed to lie within an interval. The inter-

vals, for the calendar time of the occurrence of the initiating and terminating 
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event, are defined as (M, P] and (R, L] respectively. S is defined to be the 

calendar time of the initiating event, X the calendar time of the terminating 

event, and T the survival time, or the difference between the initiating and 

terminating event, which will usually be referred to in this thesis as the in­

cubation period. 

Both S and T are modelled using the Normal Dynamic Survival distribu­

tions, using notation previously introduced: S '" N DSM(>', Ns , V) and 

T", NDSM(fj,NT , W). For double interval censoring, Gs = {Slt ... ,SNs} 

will denote the time axis division for the initiating event, with the subscript 

s; referring to points in this division, and intervals within this division will 

be referred to by 1;. Similarly GT = {tl, ... , tNT} will denote the time axis 

division for the incubation or survival time, and t; will once again refer to 

points within this division, with I; referring to intervals within the time axis 

division GT. For the data sets used in this application some of the initiating 

event times will be right censored, resulting in possibly fewer observations, 

71T, of terminating event times, than initiating event times ns. Because the 

nature of a double interval censored model is slightly more complicated than 

the other censoring types considered, a brief outline of the main points in­

volved within any analysis of this type is given. 
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Summary 

• The object is to make inferences about T = X - S. These inferences 

will depend on the model parameters for S, so firstly inferences must 

be made about S. 

• As each initiating event is observed up to an interval only, making 

inferences for S involves estimating the survival of an interval censored 

data set. Using the likelihood for interval censored data developed in 

the previous section, estimates are obtained for the parameters of the 

distribution for S. 

• Using inferences about the distribution of S across the interval (M, P], 

it will be possible to make inferences about the incubation distribution 

forT. 

Where the data set contains several types of censoring, the likelihood should 

be factorised over all censoring types (as described for the interval censored 

approach in section 4.2). Letting nl represent the number of right censored 

observations (t.,6i = 0); 112 the number of exact observations (ti,6i = 1); n3 

the number of interval censored observations «R; - B;, Li - Bi]); and n4 the 
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number of double interval censored observations ((Mi'~] and (~, Li)): 
"I "2 

L = IT 8(~) IT f(~) X 
i=l i=l 
"3 

ITp(R. - 8 < T S Li - 818 = Si)X 
i=l 
ft4 

IT p(R. - 8 < T < Li - 81si E (Mi, ~)). 
;=1 

4.3.1 The Initiating Event 

The likelihood for the incubation times T, in a double interval censored 

model, as previously stated, will depend on the parameters in the model 

for S. The first step is to construct the likelihood for the initiating event 

times S, and estimate all parameters within the initiating model. Modelling 

the initiating event consists of modelling an interval censored data set. The 

construction ofthe likelihood is therefore exactly as in section 4.2.1, although 

it is redefined here so as to highlight the differences in the notation when the 

interval censored data set consists of initiating observations. Firstly it is 

identified within which interval each observation lies: 

Using this notation, and the likelihood for interval censored data as was 

defined in equation 14 (page 102), the likelihood for the initiating event is: 

"8 

L(8) = IT {A(l, m;, "\)C(Mi' Sfni,..\) - A(l,pi' ..\)C(I';, 8Pil ..\)}. (15) 
i=l 
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4.3.2 The Terminating Event 

The initiating time and incubation period, S and T, are both being modelled 

by continuous distributions. The correct likelihood for T is therefore obtained 

by integrating over all possible values for the initiating event: 

,..,. 
L(T) = rrl !(aIM, < S < P.)p(R. - a < T < Li - a)ds. 

i=1 .e(MhPd 

Because the model is dynamic, this integration is written as a summation of 

integrals across the time axis: 

where 

g(a) = !(aIMi < S ~ P.)p(R. - a < T < Li - a). 

For a E (Mi , P'], and if a E Ii+l, then it is straightforward to evaluate the 

first part of this function. First of all it is noted that: 

!(a) 
!(aIMi < S < P.) = p(Mi < S ~ P.)" 

Using the conditional survival functions which were developed in this and 

earlier Chapters (equation 9, page 74): 

and (derived in equation 13, page 100): 

p(Mi < S ~ P.) = A(I, 1'ni, A)C(Mh afn(, A) - A(l,pi, A)C(P', aPi , A). 
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So that: 

/(sl') = A(l,j, .\)C(s, s;, .\)ezi~J+! . (16) 
A(1, Tni, '\)C(Mi' sm;,.\) - A(l,pi, A)C(P;, sp.,.\) 

The next part of the integral to evaluate, is p( ~ - s < T ~ Li - s). Suppose 

that it can be identified that ~ - s E 1ri,.+l and Li - s E 1,.,.+1, then this 

probability is easily extracted from equation 13 (page 100): 

p(~ - s < T S Li - s) = {A(l, ri." ,8)C(~ - s, tr ... ,,8) 

-A(l, li •• , ,8)C(Li - S, tr.,., ,8)}. 

Considering the integration over one interval, say Ij+l: 

1 g(s)ds, 
.eIJ+! 

(17) 

for a given ri,l and li •• , this will clearly reduce to the integral of an expo­

nential (the multiple of equation 16 with equation 17). The integration 

is clearly tractable, even if slightly complicated. However ri.. and li.. are 

not known, and must be calculated for each value of s. This complicates 

the integration considerably: the integral goes from being the integral of an 

exponential, to an integral of several complicated functions. To avoid this 

difficulty an approximation has been developed. 

In this approximation, it is assumed that the initiating event, S, could have 

only occurred at a finite number of points. It will become clear as the like-

lihood is developed why it will then be possible to compute the likelihood, 
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where it was not possible in the exact case. A set G is created, which spans 

the time axis, and some new notation is introduced: 

G(M,P) = G n (M,P]. 

The set G must be at least as fine as G s, and the finer the set G, the more 

accurate the approximation will be. However at the same time the computa-

tional intensity of the model will increase, as G(M, P) becomes increasingly 

continuous. Choosing the set G will be discussed within a practical applica-

tion of the model in Chapter 6, section 6.3. 

The likelihood is once again taken as the product over all observations, with 

each observation consisting of contributions from each possible 8 within the 

RT 

L(T) = IT E p(S = slM. < S :5 ~)p(R; - 8 < T < L. - 8). 
i=l.eG(M"P,) 

Considering the summation over G(M., 1';) as summations over the separate 

intervals from the time axis: 

RT 

L(T) = IT E g(s,Ra,L.,l1Ri+1)+ 
i=l.eG(Mi'·""+l ) 

"'-1 E E g(8, R;, Li , 1;+1)+ 
;=1Ri+1.eG(li +1) 

E g(s, Ra, L., 1"'+1)' 
.eG('Pi IP,) 
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where 

g(8,~, Li, 1;+1) = p(8 = 81M. < 8 ~ 1'.)p(~ - 8 < T < Li - s) for s E 1;+1' 

To evaluate this probability, firstly it is necessary to evaluate: 

p(8 = slM. < 8 ~ 1'.) = !(sIM; <, 8 ~ Pa) , 
n 

where n' represents the number of points within the set G(M, P). The con­

ditional density function !(sIM; < 8 ~ 1'.), was developed in equation 16 

(page 107), so that: 

(8 I) 
A(1,j,,x)C(s,sj,,x)e.li.\J+l 

p -s,-
- - n'{A(I,miJ,x)C(M;,8~,,x) - A(1,Pi',x)C(P;,s".,,x)}' 

(19) 

Next it is necessary to evaluate p(R.; - s < T ~ L; - s) for s E 1;+1' To 

evaluate this probability, it must be known within which intervals on the 

times axis, GT , these two observations fall. Using similar notation to that 

which has already been used: 

and 

Because s only takes a finite number of values, for each s it is possible 

to evaluate the above (it was at this point that the exact version of the 
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likelihood became too complex). For a given s this probability reduces to a 

regular interval censored data evaluation: 

p(R; - s < T $ L, - s) = {A(l, Ti,.,,8)C(R; - S, Sri •• ',8) 
(20) 

-A(l, li,,, ,8)C(L, - s, Sri,., ,8)}. 

It has been established that g(s, R;, L i , 1;+1) is the product of equation 19 

with equation 20. Substituting p(.) into the likelihood developed at equation 

18, produces the full form for the approximated likelihood for the incubation 

period. 

It is noted that exact inferences for double interval censored data have been 

obtained (Kim et al., 1993), under parametric assumptions. The difficulty of 

the model developed within this thesis stems from the model being based on 

a division of the time axis. 

4.4 Frailty 

There have been many applications of various forms of the frailty model in 

the statistical literature (Chapter 2, section 2.10). Most of these approaches 

have focused on the conditional proportional hazards. Some of the existing 

frailty models do however use the piecewise correlated baseline hazard func­

tion, although as in the case of the other data types, all model the baseline 

only by this dynamic process, and not the covariate effects. As previously 
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mentioned, using a posterior likelihood approach, Sinha (1998) discussed ex­

tending the conditional proportional hazards model to one with dynamic 

covariate effects (section 4). A natural extension of current frailty models, 

and the models developed in this thesis, is a conditional Nonnal Dynamic 

Survival Model. The piecewise correlated conditional proportional hazards 

model does have some similar features to the those models developed here, 

and so naturally the likelihoods developed within this section will have some 

similarities to those developed for example in Sinha (1998). 

4.4.1 The Normal Dynamic Frailty Model (NDFM) 

Definition 4.1 The Normal Dynamic Frailty Model has a hazard at time t, 

for an obsenJation with covariate vector z, in group g, defined by: 

K 

h(tlz, Ug) = exp(.80(t) + E ZlePle(t»Ug, 
le=l 

where 

tJo(t) = Po; for t El;, 

for k = 1, ... , K. Evolution of the parameters is defined by the evolution 

equations: 

.80; = .80;-1 + WO; where wo; "'-I N[O, Wo], 
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Hwer-priorsJor the evolution variances are: 

The frailties u, are distributed as gamma random variables with unit mean 

(this ensures identifiability) and variance JJ-1: 

u, '" G(JJ, JJ). 

The hyper-prior Jor the precision JJ is: 

For ease of computation, the whole term within the exponential part, is re­

written in terms of a covariate vector multiplied by a covariate effect vector. 

h(tlz, u,) = exp(z,8(t»ug , 

where the notation z,8(t) was introduced in Chapter 3, section 3.1. 

The Marginal Distribution 

The hazard has been defined in terms of the conditional hazard (conditional 

on the frailties). As the frailty will generally be unknown, interest often 

focuses on the marginal distribution. The marginal distribution function is 

obtained by integrating out the frailty from the joint distribution J(t, JJg). 

Thus for t e Im+l: 

J(t) = 10
00 

J(tlu,)p(u,)dug, 
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where 
JJIJuIJ-le-IJUII 

p(U,) = ~(JJ) , 

and (adapted from equation 9, page 74): 

f(tlu,) = S(tlu,)h(tlu,) 
m 

= exp( - E e·~J (tj - tj-1)U,) exp{ _e·~m+1 (t - tm)u,)e·~m+1Ug, 
;=1 

which is re-written as: 

where: 
m 

B{t,m) = E~~J{tj - t;-1) + e·~+1{t - tm ). (21) 
;=1 

So that: 

JJIJe-~m+1 1000 
I{t) = uIJe-u,,(I'+B(t,m»du . 

r(JJ) 0 9 , 

The integration is proportional to the integral of a gamma density, and so 

by finding the appropriate constant: 

e·~m+1 JJIJ+1 
f(t) = (JJ + B(t, m))IJ+1 • 

Within most applications, interest often centres around the survival or hazard 

function. It is therefore necessary to first calculate the distribution function 

F(t): 
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Noting that 1;B(x, m) = e-~+l: 

F(t) = 1 - IJIA(JJ + B(t, m»-IA. 

Using relations between the survival and hazard functions (h(t) = ~~!~): 
JJe-~m+l 

h(t) = )' 
IJ + B(t, m 

The gamma distribution was chosen to model the frailties primarily because 

of its conjugacy (enabling the marginal distributions to be computed straight­

forwardly). Other distributions could have been chosen, and a discussion of 

some other common distributions was given in section 2.10. It is noted how-

ever that choosing a distribution for the frailties which was not conjugate to 

the conditional density function, would result in further computational diffi­

culties. These difficulties could perhaps be overcome by using Monte Carlo 

simulations, but this of course would increase the computation involved, in 

what is already a computational intensive model. 

At this point there exist several possible options of how to fit the Normal Dy­

namic Survival Model, to what essentially is a right censored data set. Firstly 

we might consider carrying out a linear Bayes approximation, treating the 

frailty groups as dummy variables. However it would then not be possible 

(as no distribution would have been assumed for the frailty) to calculate the 

marginal distribution, which is in fact the primary goal. The linear Bayes ap-
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proximation is therefore not an option under the frailty model. A frequentist 

method would be to use the EM algorithm or the MC EM algorithm (treating 

the frailties as missing data). The Bayesian approach is the preferred method 

of analysis in this thesis, and so continuing with the approach which is to be 

used in the other data types, MCMC will be used. 

The LikeUhood 

It has already been mentioned in Chapter 3 that the temporal factorisation 

is more efficient when using MC MC simulations, for right censored data. 

By the same reasoning, the temporal factorisation is also the most efficient 

factorisation for the right censored frailty model. But this is only so for the 

temporal parameters, and not for the grouping parameters. For the grouping 

parameters, the most efficient factorisation is a factorisation over the groups 

(a fuller discussion on this is given in Chapter 5, section 5.1.1). So for 

the frailty model two likelihoods are constructed: the first based on a tem­

poral factorisation; and the second based on a factorisation across the groups. 

Again let rj represent all individuals who fall into the risk set at the be­

ginning of interval Ij; tij is a modified survival time; 6ij is a modified right 

censoring indicator; and Zij and Uij are the covariate and grouping indica­

tor for individual i in interval j (Uij must be one of the grouping effects ug 
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for 9 = 1, ... , G). All of the modified variables were defined at equations 3 

and 4 (page 58). Using the temporal factorisation, the likelihood may be 

factorised into a product of contributions from each interval: 

The likelihood contribution for interval Ij is simply a slight adaptation of the 

likelihood contribution Lj from a right censored data set (section 3.2.2), the 

modification arises as a result of the frailties: 

rJ 

L; = IT ~/~/lt/u:r exp(-e~J~J(tij - t;-dUij). (22) 
i=1 

When evaluating the full conditionals for the frailties, it is preferable (for 

reasons already mentioned) to consider the likelihood as a factorisation over 

each of the groUpsj and within each group, over all of the individuals who 

belong in that particular group: 

G 

L = II Lg 
g=1 
G R, 

= II IT S(tig)h(~9)1t" 
g=1 i=1 

where n, denotes the number of individuals within group gj tig the survival 

time for individual i in group g, is such that tig E Im;,+lj 6ig is the right 

censoring indicator for observation i in group gj and Lg denotes the likeli­

hood contribution for group g. Using conditional survival functions, each 
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individual likelihood contribution L, is factorised over the time axis: 

n. "'" 
L, = IT exp( -u, E e·i'~J (t; - t;-1» 

.=1 ;=1 (23) 

x exp( _e~.6...i'+l (~g - t"",)u,)e~'~"'i'+16i9u:i', 

since all individuals in group 9 share the same hazard 'Ug• Using the notation 

introduced in the previous section, this may be re- written in the abbreviated 

form as: 
n, 

L, = IT exp( -U,B(tig, mig))e·i'~"'i'+l6i9'U:i', 
.=1 

4.4.2 Interval Censoring and Frailty 

(24) 

The conditional non-proportional hazards frailty model (above) may be read­

ily extended to incorporate interval censored data. The model definition does 

not change and neither does the resulting marginal distribution. However 

when the data are interval censored, the temporal factorisation is no longer 

an option (for the same reasons as under the interval censored model, sec-

tion 4). Because the factorisation over the groups is more efficient when it 

comes to computing the full conditionals for the frailty parameters, this is 

the factorisation which will be used to compute all of the full conditionals 

under this model. 

Interval censored observations once again take on the form (Rtg , Lig ], for 

an observation i in group g. Assuming that Rt, E 1ri,+1 and Lig E 1'i,+1, and 
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using a similar form of the likelihood used in the interval censoring model in 

section 4.2.1 (but this time with a factorisation over the groups): 

G R, 
L(T) = II IIA'(1,rig,g,p)C'(Rsg,t,.."g,P) - A'(l,lig,g,P)C'(Li,t,."g,P). 

,=1 ;=1 
(25) 

The functions A'(-) and C'(,) represent the modified conditional survival 

function (modified by incorporating frailties): 

and 

b 

A'(a, b, g, P) = exp( - E e.ltJJ (t; - t;_l)'Ug ), 

;=0 

C'(t, t;, g, P) = exp( _e.ltJi+l (t - t;)ug). 

Double Interval Censoring and Frailty 

It is possible to extend the above frailty model to cater for double interval 

censored data. The likelihoods may be easily adapted, and in the following 

Chapter it will become evident that the MCMC method used, could in theory 

be extended to the double interval censored frailty model. The resulting 

MCMC simulations, for the double interval censoring model, with frailties, 

could be very computationally intensive, and convergence may be difficult to 

determine. For these reasons the double interval censored frailty model is not 

considered as an application in this thesis. However simply by substituting 

the modified survival functions A'(,) and C'(,) into the Iikelihoods developed 
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in section 4.3.2, the likelihood for the terminating event may be 'obtained 

(the likelihood for the initiating event would be the same as that derived 

above for the interval censored case). 

4.4.3 Individual Frailties 

It has been suggested that a frailty model may be used to avoid the assump­

tions of proportional hazards (Clayton and Cuzick, 1995): each individual 

is assigned to an individual frailty group, and an individual frailty included 

within a conditional proportional hazards frailty model. As the marginal 

hazards will not be proportional, it is clear that the proportional hazards as­

sumption will have been avoided. But it must be considered whether firstly 

it is appropriate to model frailties with just one member within each fam­

ily (Vaupel et al., 1979); and secondly what are the marginal assumptions 

involved with the conditional proportional hazards frailty model (for the 

Gamma frailty model these are a convergence of hazards). 

Such a model was fitted to the gastric cancer data. Clearly demonstrated 

within Chapter 3, proportional hazards is not an appropriate model for this 

data set. The estimated survival using the conditional proportional haz­

ards frailty model is presented in figure 5. The true estimate of survival is 

known to cross at around 1000 months. This feature is not reflected within 
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the estimate using the conditional frailty model. Clearly although avoiding 

the proportional hazards assumption, the model includes other assumptions 

which are once again not representative of the data set. Also plotted within 

figure 5 is the survival estimate obtained using the Normal Dynamic Sur­

vival Model, again with individual frailties. The dynamic covariate effect 

structure of the model once again alows the interesting feature of crossing 

survival curves. As an additional comparision, figure 6 compares the sur­

vival estimated using the NDSM, with that obtained from the NDSM with 

frailties. The two survival curves are similar, with the frailty model estimat­

ing a slightly greater survival proportion throughout. Figure 8, shows how 

similar the estimated treatment effect is between the two models, although 

the difference between the estimated baseline hazards is greater (figure 7). 

The estimated frailty varibables are skewed to the left, thus pertaining a 

population which is on the whole less frail than the mean: resulting in an 

estimated survival slightly better than that estimated without accounting for 

heterogeneity. 

A sample of estimated frailties are presented within the table 3. The frail­

ties clearly decease with a later observed survival time. It is known (from 

the analysis within Chapter 3), that chemotherapy and radiation is the most 

hazardous treatment up until around 1000 days. The mean frailty under the 
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combined treatment, over the first 1000 months, is 1.21 compared with 1.12 

under chemotherapy alone, again over the same time period; over the last 

BOO days the mean frailty under the combined treatment is 0.43 compared 

to 0.60 under chemotherapy. This simple analysis appears to confirm that 

the frailties have incorporated this interesting feature of the data. The es­

timated frailties obtained under the proportional hazards and NDSM both 

with individual frailties, are very similar. 

Using the conditional proportional hazards model as a way of avoiding the 

proportional hazards assumption, is clearly not as effective at predicting sur­

vival, when compared with using the very flexible Normal Dynamic Survival 

Model. 
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I Survival I Censor I covariate I u, I Yaru, 

17 1 1 1.495373 0.861244 

42 1 1 1.462847 0.784244 

44 1 1 1.471534 0.847566 

1622 0 1 0.406339 0.100519 

1626 0 1 0.554389 0.126074 

1736 0 1 0.372066 0.086371 

1 1 0 1.527972 0.915784 

63 1 0 1.463782 0.817383 

105 1 0 1.423087 0.795385 

1511 1 0 0.614840 0.142355 

1690 0 0 0.407004 0.098125 

1694 1 0 0.591110 0.132237 

Table 3: Gastric Cancer with Individual Frailties: A selection of frailties 

estimated for various individuals. 
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Figure 5: Gastric Cancer with Individual Frailties: Estimated survival using 

individual frailties. The conditional NDSM estimates survival curves to cross 

with chemotherapy the initial superior treatment. The conditional propor-

tional hazards model estimates chemotherapy to be the superior treatment 

throughout. 
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Figure 6: Gastric Cancer with Individual Frailties: A comparision of survival 

using the NDSM and the conditional NDSM with individual frailties. Sur­

vival under the conditional NDSM is estimated to be slightly better than that 

obtained by the NDSM. Those treated with chemotherapy have an estimated 

better prognosis throughout. 
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Figure 7: Gastric Cancer with Individual Frailties: The estimated log­

baseline hazard is estimated to decrease and then level off after around 500 

days. This pattern is fairly consistent between both the NDSM and the 

NDSM with individual frailties. 
125 



I 

I 

11'1 
cS 

; 

~ 
":" 

Conditional NDSM 
NDSM (no frailties) 

00-

1000 H500 

Time in Days 

Figure 8: Gastric Cancer with Individual Frailties: The estimated treatment 

effect is very similar between both the NDSM and the NDSM with individual 

frailties: a decreasing effect with chemotherapy the initial superior treatment. 
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4.5 Summary 

Likelihoods have now been developed under the Normal Dynamic Survival 

Model so as the model can accomodate interval censoring, double interval 

censoring and non-independent observations. The likelihood developed un­

der the interval censored and frailty models were straightforward to derive. 

For the double interval censored model, integration complications resulted 

in an approximation being developed. The frailty model was then applied 

to the gastric cancer data set, with each individual assigned an individual 

frailty. Although the model appeared to capture well those individuals who 

were frail, it was still essential to use a dynamic covariate effect to represent 

accurately how the effect of treatment changes over time. 
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5 Model Fitting 

It has been proposed throughout this thesis, that the method to estimate the 

model parameters will be by Markov chain Monte Carlo simulations: this will 

be the focus of this current Chapter. In Chapter 3, MCMC was used in an 

application of the right censored Normal Dynamic Survival Model. Here the 

same basic principals established in Chapter 3, will be used in the analysis of 

the Normal Dynamic Survival Model when applied to interval censored, dou­

ble interval censored, and frailty data sets. For interval censoring the form of 

the full conditionals changes only slightly; for double interval censoring there 

exists a choice of augmenting the data to either interval or right censored 

data, or performing a full MCMC analysis on the approximate likelihood 

(section 4.3.2); for frailty models various factorisations are used with the 

aim of creating the most computationally efficient full conditionals. At the 

end of this Chapter, the methods will be applied to a data set simulated from 

a known survival distribution, and the impact of various degrees of censoring 

investigated. 

5.1 Gibbs Sampling 

All of the models considered in this thesis are Dynamic Survival Models, 

and consequently they all have in common the same basic structure. For 
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the Gibbs sampler, this results in the same basic set of parameters which 

must be estimated. This basic set of parameters may further be subdivided 

into two groups, the main parameters and the evolution variances. If T '" 

N DS M (/J, N, W) I then the main set of parameters are (all for k = 1, ... , K): 

and the evolution variances are: 

5.1.1 The Full Conditionals 

The full conditionals for the main and hyper-parameters, assuming a like­

lihood L are all derived below. These full conditionals differ somewhat to 

those derived under the right censored model (Chapter 3). This is because 

under the right censored model, the likelihood was constructed using a tem­

poral factorisation; for interval and double interval censoring, the individual 

factorisation has been used instead: this means that the full conditionals do 

not reduce to the same format as in the right censored model. Where the 

full conditionals reduce to a standard distribution form then this is derived. 

Where the full conditionals do not reduce to a standard distribution, then 
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it will be described within the next section how Metropolis-Hastings will be 

used to sample from the relevant distribution. 

• For the paramater !JoI: 

[!JoII·] ex Lp(tJcn}. 

• For the evolution of the log of the baseline hazard: 

[Wo; I·] ex Lp(wo;} for j = 2, ... , N. 

• The full conditional for the inverse of the evolution variance of the log­

baseline, is exactly as under the right censored model (equation 11, 

page 83). Without deriving this distribution again, the full conditional 

is of a standard gamma form: 

where 

, N -1 , ~ w~; 
Co = Co + 2 and 770 = '10 + ?-t 2"" . 

.7=2 

• For the parameter Pill: 

• For the evolution of the covariate effect parameters: 

[WA:il·] ex Lp(wA:;} for j = 2, ... , N. 
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• Once again the full conditional for the inverse of the evolution variance 

of the covariate effects is (derived at equation 12, page 84): 

where 

Where different distributions are used within the dynamic model (Le. other 

than normal and gamma), naturally the form of the full conditionals will 

change, although the same basic structure outlined will always hold. 

The Full Conditionals for the Interval Censored Model 

The likelihood L, for a set of interval censored data is given in section 4.2 

(equation 14, page 102), and simply by SUbstituting the likelihood into the 

above, all of the relevant full conditionals may be derived. 

The Full Conditionals for the Double Interval Censored Model 

To recap the initiating times, S, are modelled via S f">J N DSM()", Ns, V), and 

the terminating event times, T, are modelled via T f">J N DSM(/3, NT , W). 

Using a Gibbs sampling approach essentially two analyses must be performed: 

• Using Gibbs sampling obtain final estimates for the parameters for the 

initiating event S. 
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• Using the estimates for the parameters in the initiating time model, 

establish the log-likelihood for the incubation time (using the likelihood 

developed for the terminating event in section 4.3.2, equation 18). 

By substituting this log-likelihood into the full conditionals outlined 

above, estimates for the model parameters may then be made using 

Gibbs sampling. 

Alternative methods for estimating the parameters in a double interval cen­

sored model will be outlined in section 5.2 of this Chapter. 

Full Conditionals for the Frailty Model 

The parameters which must be estimated within this model, may be divided 

into three groups. These consist of the main paramaters, hyper-parameters 

(as under the interval censored and double interval censored models), and 

in addition the frailty parameters: the grouping effects Uh .•.. , UG,j and the 

hyper-paramater for the frailty distribution, JJ. For the basic set of parame­

ters it is most efficient in terms of computing the full conditionals to use a 

factorisation across the time axis (section 4.4). For parameters in interval I;, 

the only part of the likelihood which is not a constant of proportionality, is 

the likelihood contribution for that particular interval. For the first group of 

parameters, the full conditionals are therefore as in the right censored model 

(Chapter 3, section 3.2.6), with the one difference being L; (the contribution 
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to the likelihood from interval j), which must be adapted to account for the 

frailties. The contribution to the likelihood in interval I j , denoted here by 

Lj , was defined in equation 22 (page 116): 

rJ 

L · - IT exp(-e~J~iJ (t·· - t· l)u .. )e·;ifJj6;iu~~j J - 'J J-'J 'J . 
i=1 

The full conditionals for the evolution variances do not change, and therefore 

may be found on page 84 (equation 12). The full conditionals for the frailties 

are based on a factorisation over the groups (essentially for the same reasons 

as why the interval parameters were based on a factorisation over the time 

axis). Using this factorisation the full conditionals for the frailty parameters 

are as follows: 

[ugl'] ex Lgp(ug) 

The likelihood contribution Lg was derived in equation 24 (page 117), and 

p(u,) was defined within the model definition 4.1 (page 111). So that: 

where B(tig,1njg) was defined in section 4.4, equation 21. This density is 

proportional to a gamma density, 80 that: 

(26) 

where 
ft, ft, 

1'1 = I' + E Oig and IJ2 = I' + E B(tig, 1njg). 
i=l i=1 
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The full conditional for the frailty hyper-paramater I" is: 

G 

fJJl-] ex IT p(ugll")p(l") 
,=1 

Using model definitions (definition 4.1, page 111): 

r "I,] I"Gp+IC-l exp( -1"(11 + E~=II"')) n~=II":-1 
VA ex r(I")G ' 

unfortunately this density is not of a standard form, and so a Metropolis­

Hastings step will be used to take samples from this full conditional (the 

proposals will be discussed in the following section). 

Using a proportional hazards model based on a piecewise correlated base­

line hazard, Aslanidou and Dey (1996) developed full conditionals similar to 

those developed here for the frailty paramaters. 

The Full Conditionals for an Interval Censored Frailty Model 

For the interval censored frailty model, it is not possible to use the temporal 

factorisation (as was possible for the right censored frailty model). The 

alternative individual factorisation, derived in section 4.4.2, must be used 

instead. The full conditionals for the main and hyper-parameters therefore 

follow the forms given on page 83, with the likelihood L as defined in section 

4.4.2, equation 25. For the frailty parameters the full conditionals are similar 

to those in the right censored frailty model (above), although with a slight 
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modification (to account for the interval censoring), and are again based on 

a factorisation over the groups. As in the right censored frailty case, the full 

conditional for the frailty parameters u, reduce to the likelihood contribution 

for that particular group multiplied by the prior for the frailty paramater u,: 

[u,1-] ex L,p( u,). 

By substituting the form of L, for the interval censored frailty model (section 

4.4.2, equation 24), as in the right censored frailty model (above), the full 

conditional is proportional to a gamma density so that: 

where 

and 

,.. 
1-'1 = I-' + L 6i" 

i=1 

ft. 
1-'2 = I-' + L {B(~" Ti,) - B(Li" li,)}, 

1=1 

and where the function B(·) was defined at equation 21 (page 113). The 

full conditional for the hyper-parameter I-' does not change and is as defined 

in equation 26. 

5.1.2 MetropoUs-Hastings 

The same basic format for the Metropolis-Hastings proposals will be used 

88 were used in the right censored model (Chapter 3, section 3.2.6). For 
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the hyper-parameters of the frailty distribution (which are positive random 

variables), a gamma proposal was used, with similar features as described 

under the normal proposal. That is, if the current value of the parameter is 

u:' (where the m refers to the iteration number), then the proposal is: 

G(a, -y), 

where a = cu:' and -y = CI-':'u:', and where the parameter c will control 

the variance of the proposal (whilst constraining the mean of the proposal 

to the current value of the parameter). The variance paramater was chosen 

to provide roughly forty to sixty percent acceptance rates. Combining this 

method with vague hyper-priors, along with checks on convergence, proposals 

based on this form fared well. 

5.2 Imputation Methods 

The analysis proposed 80 far for double interval censored data sets, is based 

on a computationally intensive approximation to the likelihood. Experience 

showed that the computation time to estimate model paramaters in such a 

data set, was substantially more than that involved within the analysis of 

interval censored and right censored data sets. This is the motivation be­

hind the alternative method of model fitting described here. The method 

suggested is based on iteratively augmenting the double interval censored 
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data set into an interval censored one, and analysing this interval censored 

data set using the MC MC techniques proposed within this thesis. Experience 

proved that not only does the proposed method reduce the computation time 

involved, but also provides estimates very close to those obtained using the 

approximate likelihood. The method proposed has some similarities to, the 

data augmentation method of Tanner and Wong (1987). The main difference 

is that here at each iteration there exists only one augmented data set; the 

method proposed by Tanner and Wong (1987) samples several. Pan (2000) 

used a similar form of augmentation when analysising interval censored data 

using Cox's proportional hazards model. 

We start by considering augmenting an interval censored data set. Not b~ 

cause it is expected that the computation time will be reduced by much: it 

will not be as the computation involved within the analysis of interval cen­

sored and right censored data sets are similar, and using the augmentation 

method will involve the additional computation involved of.. the imputation 

procedure itself. But the approach will identify the impact of augmentation 

on the resulting estimates, before the method is applied to double interval 

censored data. 
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5.2.1 Interval Censoring 

The survival times T are again assumed to follow the Normal Dynamic Sur­

vival distribution: T '" NDSM(fJ, N, W), and the proposed augmentation 

method takes the following form: 

1. Obtain initial estimates for all parameters (these may be obtained as 

either subjective estimates or they may be based on a midpoint anal­

ysis). 

2. For each observation, augment the interval censored data (R, L], by 

sampling a survival time, t, from the conditional survival function 

S(tIR < T ~ L). The interval censored observation is replaced by 

an exact or right censored survival time. 

3. Based on the augmented data set, use right censoring methods to esti­

mate the parameters in the survival model. 

4. Steps 2 and 3 are iteratively repeated. 

The Conditional distribution 

For each interval censored observation an estimated failure time must be 

sampled from the interval (R, L]. The conditional survival distribution from 
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which samples must be taken is (for t in(R, L): 

p(T > tlR < T < L) - p(T>C,R<T<L) 
- p(R<TsLl 

_ p(t<T<L) 
- p(R<TSL)' 

For t E 11+17 R E Ir+lJ and L E 11+17 then using equation 4.1 (page 99): 

p(t < T ~ L) = A(I,j,fj)C(t,t;,{3) - A(I,l,{3)C(L,t"fj), 

and 

p(R < T < L) = A(I, r, {3)C(R, tr , {3) - A(I, l, {3)C(L, t" f3). 

SampUng for Multiple Imputation 

• Generate a uniform random variable u with the aim of solving for t: 

S(tIR < T ~ L) = u where T fV NDSM(fj,N, W). 

• To establish within which interval t lies compute: 

Ai = p(T > tilR < T < L) 
A(l,j, fj) - A(l, l, ,8)C(L, t" {3) 

= {A(l, r, f3)C(R, tr, fj) - A(I, l, {3)C(L, t" f3)}' 

The Ai's are a series of non-increasing cumulative probabilities: 
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so find j such that 

concluding that t E 1;+1. 

• Solving for t: 

u = p(T > tlR < T ~ L) for t E IHl 

A(I,j, (J)C(t, t;, (J) - A(I, I, (J)C(L, t" (J) 
= A(I, r, (J)C(R, tr , (J) - A(I, I, (J)C(L, T" (J)' 

gives the generated failure time as: 

t = t. __ 1_10 Up(R < T ~ L) + A(I, I, (J)C(L, t" (J) 
J e./JJ+l g A(I, j, (J) 

5.2.2 Double Interval Censoring 

For double interval censored data sets, there are essentially two ways in which 

the data set may be augmented: either to an interval censored data set, or 

to a right censored one. Firstly the data set must be augmented on the left 

(Le. by substituting a time of the initiating event), with the resulting data 

being either interval censored or right censored (this will depend on whether 

the initial data was doubly censored or double interval censored). When 

the augmented data set is interval censored then either the data set may be 

analysed as such (using the techniques developed for interval censoring), or 

alternatively the data may be augmented once more to create a right cen-

sored data set. 
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The method is very similar to modifying an interval censored data set by 

augmentation, and so is described only briefly here: 

1. For each observation which is interval censored on the left, an initiating 

event time is sampled from the conditional survival function: 

S(sIM < S ~ P), 

where S f"oJ NDSM()', Ns, V), and where the parameters for S will have 

already been estimated. 

2. The doubly censored data is augmented to (R - s, L - s] using the 

current sampled value s. 

3. The parameters in the model T f"oJ N DSM(fJ, NT , W) are estimated 

using interval censored techniques. 

4. Steps 2 to 3 are iteratively repeated. 

A modification exists where at step 2 the data are augmented to a right 

censored data set (this will be based on the methods described above for 

augmenting an interval censored data set). 

Sinha (1998) applied a very similar approach, modelling a set of double in-
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terval censored data, although the data were augmented to grouped data, 

and advantages taken of tractable methods using a beta Levy process. 

5.3 Simulation Study 

Within this next section, for each type of censoring, data sets will be sim­

ulated with increasing degrees of censoring, so that impact of the degree of 

censoring may be studied. For each data set a survival time is simulated 

from a specified survival distribution. The method used to generate the 

failure times is very similar to the procedure used to impute death times 

in the previous section, simulating from the distribution S(t) rather than 

S(tIR < T ~ L). 

When the data set which is to be generated involves right censoring, then 

for each observation a right censoring indicator must be generated. In this 

thesis this will be done very simply by specifying a cut-off date (TMAX), 

and generating a uniform variable on the interval [0, TMAX]. This will then 

represent the censoring time, and observations will become right censored 

where the censoring time is greater than the simulated survival time. Other 

more complicated (and also more realistic) censoring schemes could easily be 

incorporated, where perhaps the proportion of observations which are right 

censored increases overtime. 
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For interval censored data a censoring mechanism could be based on pa­

tients being requested to attend a series of examination times, at which time 

failure may be detected. For each observation the censoring interval could 

be identified as the two examination times within which the failure time lies. 

A simple version which would generate such a process could be based on a 

series of Bernoulli random variables: a finite series of possible examination 

times is specified, and at each time a Bemoulli random variable is generated, 

which will represent whether or not the individual attended the examination 

time. 

For double interval censored data it is necessary to simulate two survival 

times: the first for the time of the initiating event; and the second for the 

survival time of the terminating event. From this the calendar time of the 

terminating event may be obtained as the sum of the two survival times. A 

series of examination times may then be generated as in the interval cen­

soring case, with two intervals identified: containing firstly the time of the 

initiating event; and secondly the time of the terminating event. 

Each data set consisted of 90 observations, equally divided by treatment 

group. The estimated survival under each data set is compared to the ob-
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Figure 9: Right Censored Simulated Data (Groupl):The data consist of ap­

proximately 30 percent right censored observations, equally divided by C~ 

variate group. Survival is over estimated under the NDSM at early times, 

due to a poor choose of time axis. 
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Figure 10: rught Censored Simulated Data (Group2): The data consist of 

approximately 44 percent right censored observations, equally divided by 

covariate group. 
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Figure 11: Interval Censored Simulated Data (Group1):The data consist 

of interval censored observations, equally divided by covariate group. The 

average length of the censoring interval is 87 units. 
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Figure 12: Interval Censored Simulated Data (Group2): The data consist 

of interval censored observations,equally divided by covariate group. The 

average length of the censoring interval is 251 units. 

147 



~ o 

C! o 

o 

~. i ,\ : 

'.'-: , : 

, . 
• · \ , \ · \ · , 

\ \~f' 
I .... ~ 
I "l , \ : 
, ,! . "' .... , , , ! , " : , \: 

'. t\ 

\. L:~, 
, ", 
\ \ 
\ \ . , . \ . \ . , . ' . , 

\ " '" ", ... , 
\ " 

Tumbull-O 
Tumbull_1 

, '. 
\\, ············1 •••••• 

...... ·····1·· 
""... L ................. .... 

L ... :···· .. 
1 __ '" 

---------------------
!500 1000 1!500 

Survival Time 

Figure 13: Double Interval Censored Simulated Data: The data consist of 

double interval censored observations, equally divided by covariate group. 

The average length of the censoring interval is 105 units on the left and 87 

units on the right. Turnbull's estimate is based on midpoints for the initiating 

event. 
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served survival (as estimated by the relevant non-parametric technique). 

For the right censored data set, the first group (Group 1), consisted of 30 

percent right censored observations, and Group 2, 44 percent right censored. 

The initial division used for the estimation of the survival under Group 1 was 

an even division: 100,200, ... , 1800. The corresponding estimated survival is 

presented in figure 9: there appears to be a slight over-estimation of survival 

for very early times. This is almost certainly because the time axis division, 

is not fine enough to capture the amount of change within these very early 

days. Consequently estimation under Group 2 (figure 10), is based on a 

division of the time axis with a much finer division at early times: there ap­

pears to be an improved fit, highlighting the need for caution and care when 

choosing the time axis division. The model copes well with the increased 

proportion of censoring within the second group. 

Figures 11 and 12, similarly demonstrate how the models can accommodate 

quite different degrees of interval censoring, and yet produce similar survival 

estimates. In the first example of interval censored data the average length 

of the censoring interval is 87 units, and in the second example it is increased 

to 251 units. The estimated survival changes very little when interval cen­

soring is also introduced on the left (figure 13), although there does exist 
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some discrepency when comparing the survival estimated using the NDSM 

with Tumbull's estimate. The most likely cause for this discrepancy is due 

to the fact that the estimate produced by the Tumbull method was based 

on a data set with mid-point substitutes for the times of infection with HIV. 

The average length of the censoring interval on the left is 105 units and on 

the right 87 units. 

5.4 Summary 

Within this Chapter methods for model fitting to be used within the appli­

cation of the NDSM have been discribed ( a continuation of that in Chap­

ter 3). The full conditionals for parameters have been outlined, and where 

necessary Metropolis-Hastings steps have been incorporated. For interval 

censoring and double interval censoring an alternative method based on a 

data augmentation algorithm has been discussed. It is expected that this 

method will reduce considerably the computation time involved within the 

estimation of the parameters for a double interval censored data set. The 

methods were successfully applied within a range of simulated data sets, and 

the impact of the degree of censoring considered. 
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6 Data applications 

The focus of this Chapter will be on applying the Normal Dynamic Survival 

Model to interval censored, double interval censored, and frailty data sets. 

All of the methods for estimating model parameters, as described in Chapter 

5, will be considered, and results compared. These applications will build on 

the principles already established through previous applications (Chapter 3 

and 5, for the right censored and simulated data sets respectively). 

All of the data frames, non-parametric survival curves (Kaplan-Meier and 

Thmbull), survival curves assuming the proportional hazards assumption 

(Cox, 1972), along with tests for proportionality, may be found within ap­

pendix A. For some of the data sets, the preliminary analysis is based on 

approximated data (e.g. using midpoints or by ignoring dependencies). 

Vague priors have been used throughout for all of the covariate and base­

line parameters (the same numerical values as in Chapter 3 for the gastric 

cancer data analysis were used). The number of iterations carried out was 

always greater than that recommended by the Raftery and Lewis (1992) di­

agnostic. Samples of the simulation plots are given in the appendix. 

It is reiterated, that even if covariate effects are found not to change over 
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time, then the Normal Dynamic Survival Model may still be used. In a right 

censored application the approach would then provide an alternative to Cox's 

proportional hazard model (and indeed also an alternative to Gamerman's 

approach). With interval censoring, the method would provide a compar­

ison with Finkelstein's (1985) extension of the proportional hazards model 

to interval censoring. With double interval censoring similar comparisons 

could be made with the models developed by Kim et al. (1993). Within 

the data analysis likelihoods are often compared between models, it must be 

remembered that comparing likelihoods in this way is a guide only, as the 

likelihoods are themselves based on estimates. 

6.1 Breast Cancer Data 

Surgical removal of an invasive breast cancer tumor, is an alternative option 

to a mastectomy; generally being preferred as it is supposed to retain a bet­

ter cosmetic appearance. In the following study, breast cancer patients were 

followed after they had undergone surgery to remove the tumor. Patients 

were requested to visit the clinician every 4 to 6 months, when cosmetic ap­

pearance would be assessed. Although the patients were requested to return 

regularly, actual intervals between visits were sometimes much longer, espe­

cially for patients who were geographically remote. At each visit a cosmetic 

appearance score for the breast was derived. Remission was defined to oc-
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cur, for the purpose of this data analysis, when the overall cosmetic score 

deteriorated by a significant amount, as determined by the study organisers. 

Remission is the survival event of interest which can be identified to lie within 

an interval, generating a set of interval censored survival data. Interest lies 

in comparing the survival of patients treated with radiation to those treated 

with chemotherapy and radiation. The data set is contained in table 7(page 

198) with time measured in months. 

Finkelstein and Wolfe (1985) were among the first to analyse this data set. 

From the fitted semi-parametric survival regression model (adapted for in­

terval censoring), there is a clear indication that the treatment which con­

sistently increases the chances of survival, is radiation alone. Ghosh and 

Sinha (1995) later considered a non-parametric analysis for one of the c~ 

variates from this same data set, using a piecewise correlated baseline haz­

ard model (they did not consider a dynamic covariate effect), although fail­

ing to display any numerical output from their fitted model. Sinha (1997) 

used a semi-parametric approach (no covariates and a baseline hazard mod­

elled by a L~vy process), estimating that the survival curves cross at an 

early time. Sinha concluded by plotting a credible band of difference in two 

log ( -log(S(t») against time, that there was not enough evidence to reject 

proportional hazards. Although when considering mean estimated values 
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only, then the assumption would be rejected. There is a noticeable difference 

in the estimated survival under the model proposed by Sinha (1997) and 

that proposed by Finkelstein and Wolfe (1985). The first difference prob­

ably occurs as a result of the parametric assumptions made by Finkelstein 

and Wolfe (1985): the impact of this is to predict radiation as the superior 

treatment throughout; the model proposed by Sinha (1997) is not restricted 

by such assumptions, estimating that the survival curves cross at an early 

time. The second larger difference occurs between the prediction under the 

radiation group: Sinha (1997) estimates less than 5 percent surviving after 

60 months; whereas Finke1stein and Wolfe (1985) estimate the proportion 

to be 40 percent. Goggins et al. (1998) compared a proportional hazards 

model fitted to the interval censored data (based on an enumeration of all 

possible rankings), to a midpoint imputation approach, concluding that the 

exact approach provided a better fit. Using the EM algorithm, the treatment 

effect was estimated to be 1.45 (standard error 0.371). Pan (2000) using a 

proportional hazards model estimated the treatment effect to be 0.90 (stan­

dard error 0.29). 

The estimated survival using the non-parametric approach ofTumbull (1976) 

is given in figure 31 (page 199). The survival curves are estimated to cross 

at an early time, and the final estimated proportion surviving at time 48, 
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are 41 and 0 percent. The estimated survival under Cox's model, using the 

midpoints of the data, is given in figure 32 (page 200). Estimated sur­

vival under radiation at 60 months is 35 percent, again very different to that 

estimated by Sinha (1997). The Grambsch and Themeau (Grambsch and 

Themeau, 1994) test for proportional hazards is statistically significant at 

the five percent level (chi-squared value of 4.5 on 1 degree of freedom). The 

accompanying plot indicates that the treatment effect follows a quadratic 

like shape (figure 33, page 201). 

6.1.1 Analysis using the NDSM 

The value 1 is assigned to the combined treatment and 0 to radiation. A 

division of the time axis was chosen, with interval lengths increasing as the 

amount of information decreased. The log-likelihoods observed after 1,000 

and 10,000 iterations changed only slightly (-137.27 and -135.42), and as con­

vergence checks were also satisfactory, it was decided not to consider 100,000 

iterations. Two different methods of model fitting were used: the exact likeli­

hood approach and the imputation method (Chapter 5). As can be seen from 

the estimated survival (figure 14), estimates from the two approaches were 

very similar. The largest difference observed is between the treatment effect 

for the first time interval, although variance estimates for this parameter are 

quite large, and the impact on the predicted survival is slight (see table 19 
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for standard errors of estimates). A summary of the numerical output com­

paring the two methods is presented in table 19 (page 225). The estimates 

obtained using the method of imputation have a slightly larger variance than 

those estimates obtained using the exact approach. 

Estimates for the treatment effect are given in figure 15. The treatment 

effect increases sharply over the first 20 months after surgery, changing from 

a negative to positive effect at around 10 months. After 20 months the treat­

ment effect begins to decrease, although always remaining above zero. The 

estimates for the evolution variances are 0.21 and 0.51 (variances 0.05 and 

0.21). This estimate is consistent with that produced by the Grambsh and 

Therneau (1994) method (figure 33, page 201). The conclusion is that 

chemotherapy appears to increase the probability of acute skin reactions 

when administered in conjunction with radiotherapy, although this is not so 

certain in the earlier days, where the effect could possibly be reversed. A 

complete numerical output is given in the appendix (table 19, page 225). 

The corresponding survival curves are given in figure 14. The estimate com­

pares well with that estimated by Sinha (1997), up until around 45 months: 

Sinha estimates that survival under radiation drops to zero between months 

45 and 60. There seems however to be little evidence from the data to support 
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this, with very little infonnation observed after month 45. Indeed Thmbull's 

estimate (figure 31) also does not support that estimated by Sinha (1997). 

The estimated survival, constraining the NDSM to a proportional hazards 

model, is given in figure 17, with the estimated treatment effect being 0.93 

(variance 0.083), which is similar to that estimated by Pan (2000) (estimated 

treatment effect 0.90 and standard error 0.29). This estimate is lower than 

that estimated by Goggins et al. (1998), although within two standard er­

rors of their estimate. It is also noted that the data set does not meet the 

requirements of the proportional hazards model (covariate effects have been 

estimated to change over time), and so by fitting an inappropriate model it 

is possible that poor parameter estimated may be obtained. The estimated 

log-likelihood is -140.79, slightly worse than that observed under the non­

proportional hazards model. 

With this data set it seems that a proportional hazards analysis, although 

it may not be completely appropriate, does not draw such extreme, incor­

rect conclusions, as were observed in the gastric cancer data analysis. On 

the other hand the method has shown very clearly that the effect of the 

treatment is different from a constant function. 
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Figure 14: Breast Cancer: Survival estimates show survival under radiation is 

better than under the combined treatment, except during the first 20 months 

after diagnosis. 
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Figure 15: Breast Cancer: The treatment effect indicates that radiation has 

an initial negative effect, but changes to a positive effect after around 15 

months. 
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Figure 16: Breast Cancer: The log-baseline hazard decreases over time. 
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Figure 17: Breast Cancer: Survival estimated using the NDSM constrained 

to return proportional hazards estimate survival under radiation is better 

than under the combined treatment throughout. 
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6.2 Kidney Infection Data 

This data set is based on the time to infection of 38 kidney patients (table 10, 

with survival times recorded in days). For each individual two infection times 

are recorded, either exact or right censored. There is a strong possibility that 

the two infections times for any individual will be positively correlated, the 

data are therefore analysed using frailties. In the terminology described in 

the previous Chapters, the data set consists of 38 groups with 2 observations 

in each group, and just one recorded covariate for each observation, which 

represents gender (age is a covariate that has sometimes been used within 

this data set although is not used here). The data set was introduced in this 

thesis as an example in Chapter 2 (example 2.9). 

Initially ignoring the fact that the data are grouped, and using 0 to rep­

resent males and 1 for females, Kaplan-Meier curves were plotted for both 

males and females (figure 35, page 206). Cox's proportional hazards model 

was also fitted, and again sex was found to be a significant covariate (fig­

ure 36, page 207). Grambsch and Themeau (1994) tests of proportionality 

yielded a chi-squared value of 11.2 on 1 degree of freedom, giving a clear in­

dication of lack of proportionality. The estimated plot (figure 37, page 208) 

of the covariate effect over time, showing a very evident decreasing effect. 
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There have been several analyses of this data set: the data have been used in 

numerous papers as an example of a random effects data set. McGilchrist and 

Aisbett (1991) modelled the data using a conditional proportional hazards 

model, with log-normal frailties. Aslanidou and Dey (1996) fitted a gamma 

frailty model to the data set, comparing the conditional proportional hazards 

model (using a piecewise correlated process to model the baseline), with the 

conditional Weibull proportional hazards. Sinha (1998) used a posterior like­

lihood approach, modelling the data by a conditional proportional hazards 

model, again using a piecewise correlated process modelling the baseline haz­

ard. Qiou (1997) compared the positive stable frailty to the gamma frailty 

model on the same data set, although as mentioned in Chapters 2 and 4, 

the positive stable frailty model is not always considered as an appropriate 

model. All of the above mentioned papers found that after accounting for 

the dependencies within individuals, the effect of the covariate representing 

sex increased. 

To investigate the time dependencies of the covariate effect sex, a Normal 

Dynamic Survival Model was initially fitted to the data (with no frailties, 

and assuming that all of the observations were independent). The result­

ing survival curves, covariate effect and predicted baseline hazard may be 

found within figures 18 to 20. Consistent with the estimate produced by 
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the Grambsch and Therneau (1994) estimate, the effect of the covariate de­

creases over time, indicating that proportional hazards is not an appropriate 

assumption to make (at least when not accounting for the dependencies). The 

estimated log-likelihood under the proportional hazards model was -332.73 

compared to -329.50 when fitting a non-proportional hazards model. 

Allowing for the fact that the data are grouped, two further survival models 

were fitted to the data: the first a conditional proportional hazards model 

with gamma frailties (using the NDSM constrained to return proportional 

hazards); and the second a Normal Dynamic Frailty Model. The estimated 

survival under both models are very similar (figure 18). The estimated co­

variate effect over time, under the NDFM, is presented within figure 20. 

The effect of sex, once again is observed to decrease over time, but to a 

lessor extent than under the NDSM (with no frailties). Furthermore it is 

observed from this same figure that after accounting for the dependencies, 

the effect of the covariate has increased. Similarly the effect of sex under 

the conditional proportional hazards model increased to -1.66, compared to 

an estimated effect of -0.84 under the proportional hazards model with no 

frailties. The log-likelihood increased from -315.36 under the conditional 

proportional hazards model to -313.9 under the conditional Normal Dy­

namic Survival Model, indicating that the latter provides a slightly better 
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fit. The estimated frailties for each individual were extremely similar under 

both models, and are presented in table 12. These estimates also compare 

well to those estimated in the papers cited above. 

Numerical values for the estimated parameters over time are presented within 

the appendix (table 11, page 209). Simulated values at each iteration of the 

Gibbs sampler are also presented for a selection of the parameters. The esti­

mated variance of the frailties was 2.12 (variance 0.6) under the conditional 

proportional hazards model, and 2.21 (variance 0.7) under the conditional 

NDSM: both indicating that there exists a large amount of heterogeneity 

within the model. The estimated evolution variances under the Normal Dy­

namic Frailty Model were 0.059 and 0.03 (variances 0.01 and 0.004). All 

results within this section were based on 10,000 iterations, with a bum in of 

1,000 iterations. 
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Figure 18: Kidney Data: Estimated survival under the conditional NDSM, 

the NDSM (without accounting for any heterogeneity), and the conditional 

NDSM constrained to return proportional hazards. Under all models females 

have a much better prognosis than males (upper curve for all 3 models). 
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Figure 19: Kidney Data: Estimated log-baseline hazards under the condi­

tional NDSM, and the NDSM without accounting for any heterogeneity. The 

baseline hazard decreases under the conditional NDSM due to the inclusion of 

the frailty parameters. Hazards under both models follow a similar pattern. 
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Figure 20: Kidney Data: Estimated effect of the sex parameter under the 

conditional NDSM, and the NDSM without accounting for any heterogeneity, 

The covariate effect increases under the conditional NDSM, although under 

both models the effect follows a similar pattern over time. 
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6.3 AIDS Data 

Hemophiliacs became at risk of receiving contaminated (by HIV) blood sam­

ples during the late 19708 to the mid 19808, when the introduction of heat 

treating and screening blood, virtually eliminated the risk of future contami­

nations. Blood samples from hemophilia patients, from several clinics in the 

United States and elsewhere, were stored during the 19708 and 1980s, for 

reasons completely independent of the HIV virus (Brookmeyer and Goed­

ert,1989). Also available are blood samples from a group of homosexual men 

(another high risk group), participating in a cohort study for a Hepatitis B 

vaccine. 

All of these data sets permit the time of HIV infection to be determined 

up to an interval. Once the patients were found to have been infected with 

HIV, they were then followed over time, and data are available on the times 

of their progression to AIDS (either recorded as interval censored or exact). 

The data set considered here, is the one previously analysed by Kim et al. 

(1993), who used a proportional hazards model for the incubation distri­

bution. There are two groups of patients, divided by the type of treat­

ment that they received: heavy and light (which reflects the severity of their 

hemophilia). The data may be found in tables 14 and 15 (pages 213 and 
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214). For the times of HIV infection time zero represents 1978 and the data 

are recorded in 6 month units; so that an infection time of 20 uints refers to 

1988. 

Possible covariates which may effect either or both of the infection and in­

cubation distributions are age, type and severity of hemophilia (which will 

effect the amount of replacement blood clotting factor given). Treatment 

centre or geographical location is not a factor in this data set, as all of the 

patients are from the same treatment centre. Treatment center may be an 

important factor in other data sets, as it is possible that some treatment 

centers may have received contaminated factors before others (although in 

the USA there are only a handful of manufacturers of the replacement blood 

clotting factor, which distribute across the whole of the country). Kim et al. 

(1993), found that treatment type was a significant factor, but did not find 

age to be. In the analysis on a similar data set, Brookmeyer and Goedert 

(1989), found that both age and treatment type were influential factors on 

survival. They commented that initially treatment center was influential, 

although after accounting for the other two covariates, the effect was found 

to be slight. 

Preliminary analysis of survival curves for both the initiating and termi-
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nating event times are given in the appendix. Treatment type is clearly a 

significant covariate for both the initiating and terminating event distribu­

tions. Age is also a possible significant covariate. It was included within this 

analysis, firstly as it is interesting to consider its effect, and whether does 

have a significant impact, and secondly as it is the only data set considered 

within the thesis that has more than one covariate. It is noted that age was 

found to be an insignificant covariate in the analysis of Kim et al. (1993); this 

could possibly be because their model was restricted by the proportional haz­

ards assumption. For the initiating event the Grambsh and Themeau (1994) 

estimate of the treatment effect over time, suggests that the parameter de­

creases in an almost linear form. For the incubation distribution however 

the estimate is remarkably different, almost quadratic in shape (although 

for this parameter the chi-squared test is not statistically significant). The 

Grambsch and Themeau (1994) test indicates that the effect of age does not 

vary over time. 

6.S.1 Analysis of Times of Infection 

The estimated survival curves for the time of the initiating event is presented 

in figure 22. As indicated in the preliminary analysis, the lightly treated 

group have a much increased chance of survival. There appears to be a slight 

difference between the age groups, under both treatment types, with with 
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Figure 21: AIDS Data Initiating Event: The negative treatment effect (for 

time to infection with HIV) indicates that heavily treated patients have a 

poorer prognosis than those who are lightly treated. The negative value of 

the age effect indicates that those who are in the younger age group have a 

poorer prognosis. 
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Figure 22: AIDS Data Initiating Event: Estimated survival for all combina­

tions of treatment type and age group, for time to infection with HIV. Age 

o refers to the younger group; and heavy refers to the heavily treated group. 
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Figure 23: AIDS Data Initiating Event: The estimated log-baseline hazard 

for time to infection with HIV suggests that the hazard increases continuously 

over time. 
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those in age group 1 (older than 20 years) having the slightly better survival 

rate. The most noticeable differences between the age groups occurs under 

the heavily treated group, at early times. The estimated log-likelihood with­

out including age was -384.69, and when including age increased slightly to 

-383.4. 

The estimated plots of the both the treatment and age effect over time is 

presented in figure 21. The treatment effect appears to be fairly steady at 

around -1, showing no particular increase or decrease. The age effect on 

the other hand, decreases sharply with time, until at around time 10, when 

its effect has reduced to almost zero. The estimated covariate effects over 

time, do not show as much similarity to the Grambsch and Therneau (1994) 

plots as was observed within the other data applications. This is very prob­

ably because none of the estimates are remarkably non-constant, and small 

changes are more difficult to detect. A plot of the log-baseline hazard is given 

in figure 23. The hazard of developing HIV increasing continuously for all 

combinations of covariate groups, which is consistent with results cited in 

Brookmeyer and Goedert (1989), and also confirms that the Weibull distri­

bution is possibly an adequate model for this data set. 

All results cited were based on 10,000 iterations (1,000 burn in) and us-
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ing the exact interval censored approach. The imputation method (Chapter 

5) was considered, and results found to be very similar. 

6.3.2 Analysis of Incubation Time 

Again both of the covariates age and treatment were included within the 

analysis. The estimated survival is presented in figure 24. As with the times 

of infection, there exists a large difference between the treatment types, and 

a much smaller difference between the age groups. The most noticeable dif­

ferences between the age groups is at later times, although it is at these 

times that the amount of information reduces, and the standard errors of the 

estimates increase. 

The estimated treatment and age effects are given in figure 25. The ef­

fect of age is concentrated around zero, except at later times. The treatment 

effect follows a quadratic like shape, consistent with the Grambsch and Th­

erneau (figure 44) estimate. Disregarding the estimate after time 12, when 

the variability of the estimate is high, the conclusion would be that treatment 

has a decreasing effect. It would be interesting to consider this hypothesis, 

with a more recent data set, where estimates made after time 12 would be 

more reliable. The estimated hazard (figure 26) suggests that the hazard of 

developing AIDS reduces 7-10 years after infection with HIV, although this 
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is almost certainly a result of very few deaths during the later years. 

Again a selection of the Gibbs output is given in the appendix (figure 46, 

page 224), the results within this section are based on 100,000 iterations 

using the exact approach. A sample of the numerical output from both the 

exact and an approximate likelihood method are given in tables 17 and 18. 

There is only a small difference between estimates, with those produced using 

the approximate method having more often than not a slightly larger variance 

than compared to the same parameter estimated using the exact approach 

(although this is not as consistent as under the interval censored comparison, 

section 6.1). There was quite a large difference between the log-likelihoods 

under both methods (-914 and -1096), although this was mainly a contri­

bution from later time parameters where uncertainty was large, after saying 

this it is noted that the difference in survival between the two methods was 

small. 
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Figure 24: AIDS Data Terminating Event: Estimated survival for all combi­

nations of treatment type and age group, for time to diagnosis of AIDS. Age 

o refers to the younger group; and heavy refers to the heavily treated group. 

178 



~ -, 

Treatment Effect 
Age Effect 

JL---i I ! 
~ I 

r·_·····.1 I 
i L.., 

11 L-l 
- 1--1 

I 
5 10 15 20 

Time 

Figure 25: AIDS Data Terminating Event: The negative treatment effect 

(for time to diagnosis of AIDS) indicates that heavily treated patients have 

a poorer prognosis than those who are lightly treated. The negative value of 

the age effect indicates that those who are in the younger age group have a 

poorer prognosis. 
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Figure 26: AIDS Data Terminating Event: The estimated log-baseline hazard 

for time to diagnosis of AIDS suggests that the hazard increases continuously 

until time 10. After time 10 the hazard decreases, this is almost certainly a 

result of lack of follow up. 
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7 Conclusions and Discussion 

Piecewise correlated functions are by no means new to survival analysis, 

although their use seems to have been limited to modelling the baseline 

hazard function in a proportional hazards setting. The immense Hexibility 

of the proportional hazards model should not be underestimated, but not 

all data frames meet this assumption. Gamerman (1987) sought to rectify 

the situation, by introducing a non-proportional hazards model, based on a 

piecewise-constant (correlated) process modelling both the baseline hazard 

and covariate effects. Constraints of the method of model fitting used, mean 

that the model is not easily adapted to handling additional types of censoring 

(interval censoring and double interval censoring), and many of the multi­

variate models for such data types are again restrained by the proportional 

hazards assumption. 

It is easy to see the appeal of a model which retains the Hexibility of the 

proportional hazards model, but which will also return non-proportional haz­

ards when the assumption is not appropriate. The fundamental principals 

underlying the model developed, the NDSM, are fairly straightforward. The 

model fitting techniques less so, and unfortunately require in-depth programs 

before they can be put into practice. In some of the data applications the 

model produced remarkably different results to those obtained by using a 
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proportional hazards model (in terms of predicted survival curves). In other 

applications, only slightly different results were observed; although even in 

these cases the covariate effect was found not to be constant. The dynamic 

covariate effects may be of interest in themselves, and the models have a 

wider use than merely estimating the survival. The techniques developed 

here could for instance be extended into a formal hypothesis test for propor­

tional hazards. Alternatively the effect of the covariate over time may be of 

interest to a medical investigator. 

The appeal of the model is possibly over shadowed by the complicated nature 

of the estimation involved. In the past models were undoubtedly restricted 

by computational power, and the model developed here is certainly compli­

cated and time consuming to program. But today computational power is 

not such an issue. Computation times ranged from several minutes (a right 

censored data application with 90 observations) to several days (exact double 

interval censored approach with 257 observations). What is important how­

ever, whatever the method of computation, is that accurate estimates should 

be obtained. This can be done be combining common sense, experience, and 

the use of convergence diagnostics, all increasing the accuracy and stability 

of the estimates. 
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The non-statistical medical world is already applying the new Bayesian tech­

niques of MCMC to real data applications. And in the case of Bayesian 

smoothed incidence maps, it is now a valuable tool (avoiding small number 

problems involved with the older methods). The models developed here, have 

an almost equal potential: the full conditionals are log-concave and 80 BUGS 

(Spiegelhalter et al., 1996) could be used as in Bayesian mapping (with the 

exception of the double interval censored model). Perhaps with the contin­

uing developments of MC MC in Bayesian analysis, the models developed in 

this thesis will in time become easier to implement. 

Extensions of the NDSM 

Because of the approach used, some parametric assumptions had to be made 

(otherwise Gibbs sampling could not have been used). In this thesis nor­

mal and gamma distributions were used. These distributions were chosen 

because of their interpretability, conjugate properties (reducing to standard 

full conditionals and tractable marginals), and wide use in similar appli­

cations: West and Harrison (1997) used normality in Bayesian time series 

modelling, and Clayton and Cuzick (1985) amongst others, have modelled 

frailties by the gamma distribution. This is not to say however that other 

parametric distributions could not have been used, and their impact should 

not be underestimated, 
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For the frailty model clear extensions exist in the type of distribution mod­

elling the frailties. The gamma distribution was used here mainly because 

it is conjugate to the likelihood, thus providing a tractable marginal distri­

bution. If the integration involved in computing the marginal distribution 

was not tractable, it would be possible to use Monte Carlo simulations to 

calculate the posterior moments (perhaps using MCMC). But including addi­

tional Monte Carlo simulations, would once again increase the computational 

times involved within the model fitting. The gamma distribution has often 

been applied successfully in frailty modelling, and so it can be used here 

fairly confidently without extensive investigation. The major aim of this 

thesis was to apply a non-proportional hazards model and not to investigate 

frailty modelling, but a very interesting continuation of the work developed 

here would certainly be to investigate the impact of the frailty distribution on 

the marginal hazards. Hougaard (1986) and others have considered using the 

positive stable frailty distribution, as it has the added advantage of modelling 

a hazard which is proportional both conditionally and marginally. It would 

be interesting to consider the implications of using the positive stable frailty 

distribution within a NDSM. Specifically would the positive stable frailty 

distribution model a conditional Normal Dynamic Survival Model both con­

ditionallyand marginally? 
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One further point worthy of discussion under the topic of frailty models 

are dynamic frailty effects. For a reasonable sized group it may not be a 

valid assumption that the frailty effect is constant across the time axis: just 

as covariate effects change over time, so too may the frailty effects (they can 

after all be interpreted 88 unobservable covariates). Unfortunately with the 

applications considered in this thesis, there do not exist sufficient observa­

tions within each group to consider dynamic frailties. 

Frailty models are often interpreted within the statistica1literature to model 

either unobservable covariates or to account for non-independent observa­

tions. The fundamental difference which exists between usual covariates and 

"unobservable covariates" modelled 88 frailties, is that usually there exist 

only a small number of observations to estimate each frailty, and secondly 

inferences focus on the marginal distribution. But interest could also lie 

within the marginal distribution, in many survival applications which would 

not always be considered to be frailty models. Suppose that a data set con­

sists of a group of cancer patients, some of whom have participated within 

screening program, and some that have not. Along with an indicator of 

screening, the data set would almost certainly consist of various other co­

variates, such 88 age and deprivation score to name just a couple. If interest 
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focuses on whether th06e screened have a higher survival rate than those not 

screened: it will then be necessary to compute the marginal distribution, i.e. 

integrating out the effect of all other covariates. For a large data set, the 

covariates such as age etc. could be included as frailties: given that there 

would then be a larger amount of data to estimate each of the frailty ef­

fects, it would then become possible to consider including dynamic frailties. 

Indeed Paik et al. (1991) have considered applications of dynamic frailties. 

Such an application as the one mentioned above introduces one further is­

sue: multivariate frailties (i.e. age and deprivation), yet again another area 

of interesting research. 

Leaving aside parametric assumptions, one of the other fundamental issues 

concerns efficiency and accuracy of the model as it stands. The accuracy of 

estimate obtained should be an integral part of any model: confidence may 

certainly be placed in the estimates produced for all of the data applications 

considered, but care was always essential: if the chain had failed to accept a 

sufficient amount of values (or had accepted too many), then it would have 

not converged. A more efficient type of MCMC algorithm may be of benefit. 

A further improvement, with estimation, not necessarily concerning accuracy, 

but rather efficiency, would be to develop a more efficient approximation to 
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the double interval censored likelihood. Taking summations rather than in­

tegrating, euentially means that a form of numerical integration has been 

used. There exits much research and investigation on how best to choose the 

summation points, although the points used within this thesis were not ch(}o 

seD in any of these ways. Including an efficient form of numerical integration 

could be of great benefit: as probably the major disadvantage of the model 

as it stands is the computation involved with the double interval censored 

model. 

Perhaps one of the other most natural extensions of the Normal Dynamic 

Survival Model would be to include the division of the time axis as an un­

known parameter to be estimated (as did Arjas and Gasbarra, 1994). Differ­

ent divisions of the time axis were considered within the data applications 

in the thesis, and in the majority of cases, as long as divisions were sensible, 

then the impact appeared to be small. Although in one application, the right 

censored simulated data, it was noted how the survival was over predicted 

under a division with too few points at early times. Bayes factors could 

be used, although would increase computational times; perhaps the method 

advocated by Arjas and Gasbarra (1994), could have avoided this potential 

problem. 
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Further Applications 

There exist several interesting areas of further application, which particularly 

concern the AIDS data set. 

One assumption made within the AIDS data analysis, is that the distri­

bution of the incubation time is independent of the chronological time that 

an individual developed HIV. This becomes increasingly unrealistic with the 

introduction of AZT, a treatment which has been shown to increase the in­

cubation period of the virus. Furthennore virus strains are also known to 

vary over time, and different strains could have differing incubation peri­

ods. One possible way to avoid this assumption is to include a covariate, 

with time varying effect, which would represent the chronological time of 

infection. Following naturally from the AIDS applications within Chapter 6, 

the NDSM could be extended to accommodate truncated data. Many of the 

more recent data sets which may be used to estimate the incubation period of 

the HIV virus are truncated (section 2.9). Using the NDSM, the likelihood 

may be derived simply by extending the likelihoods which were developed 

within Chapter 5. Suppose that each observation is truncated on the left 

(similar extensions exist for right truncation) by Cli where tli e I~. Then the 

likelihood, once again as a factorisation over individual contributions, will 
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be: 
L(T) = n~lp(T > tilT> ai) 

nn ~ 
= i=l~ 
_ nn A(I,~JI)C(t"tm;JI) 
- i=1 A(I,IItJl)C(Gi,teJ.,.8) • 

It appears that such a likelihood could be readily incorporated into the model 

fitting techniques developed in Chapter 6. Additional care would be needed 

to ensure sufficient data within all of the intervals (to avoid the danger of 

estimates being based on little or no infonnation). 

7.1 Summary 

In brief, the dynamic Bayesian survival model (Gamennan, 1987) has been 

re-analysed, changed slightly and re-applied to the gastric cancer data. The 

motivation behind this work, was to create a model which could include inter-

val censoring, double interval censoring and non-independent observations. 

The model developed, the Nonnal Dynamic Survival Model, has successfully 

been applied within a range of data applications. The model, when applied 

to right censored data, although not producing a remarkable improvement on 

that developed by Gamennan, does have some advantages: it introduces the 

evolution variance as a hyper-parameterj avoids the linear Bayes approxima-

tion, by using the more up to date technique of MeMC; and avoids having 

to carry out both an online and retrospective analysis. The model requires 
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specific programming, but then so too does Gamerman's version, and in fact 

the computation involved within the right censored model is moderate (10 

minutes for 10,000 iterations). More importantly, the NDSM was extended 

within Chapter 4, to accommodate interval censoring, double interval cen­

soring, and non-independent observations, which Gamerman's model can not 

do. A non-proportional hazards model thereby exists to model data appli­

cations which were previously restricted to either non-parametric methods 

or proportional hazards. The range of data which can now be modelled us­

ing a non-proportional hazards technique has therefore been extended, and 

inferences can thus be drawn on the effect of the covariates over time. 
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A Data Frames and Preliminary Analysis 

A.l Gastric Cancer Data 

The data frame represents the survival times of 90 gastic cancer patients. 

Right censored observations are denoted by •. All survival times are recorded 

in days. 

Treatment Survival Time 

Chemotherapy and radiation 17,42,44,48,60,72,74,95,103,108, 

122,144,167,170,183,185,193, 

195,197,208,234,254,307,315,401, 

445,464,484,528,542, 

567,577,580,795,855,1174*,1214,1232*, 

1366,1455* ,1585* ,1622*, 

1626* ,1736* 

Chemotherapy 1,63,105,125,182,216,250,262,301, 

342,354,356,358,380,383, 

383,388,394,408,460,489,499, 

523,524,535,562,675,676, 

748,778,786,797,955,968,977,1245, 

1271,1420,1460* ,1516* ,1551, 

1690*,1694 

Table 4: Gastric Cancer Data 
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Figure 27: Gastric Cancer: Survival estimated using the non-parametric 

technique known as the Kaplan-Meier curve. 
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Figure 28: Gastric Cancer: Survival estimated using the proportional hazards 

model developed by Cox (Cox, 1972). 
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Figure 29: Gastric Cancer: The Grambsch and Themeau (1994) test for pro­

portionality, yields a chi-squared value of 11.1 on 1 degree of freedom. The 

plot indicates that the treatment effect decreases from a positive to nega­

tive effect: chemotheraphy and radiation have initially the poorer prognosis, 

although change to the better prognosis after around 1000 days. 
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Time Po var(lJo) PI var(PI) 

100 -6.998 0.140 0.710 0.210 

200 -6.802 0.080 0.865 0.154 

300 -6.686 0.071 0.412 0.198 

400 -6.310 0.102 0.015 0.249 

500 -6.298 0.072 0.161 0.243 

600 -6.196 0.078 0.175 0.192 

700 -6.418 0.105 -0.413 0.424 

800 -6.366 0.094 -0.541 0.285 

900 -6.530 0.114 -0.687 0.296 

1000 -6.519 0.106 -1.012 0.397 

1100 -6.670 0.135 -1.135 0.345 

1200 -6.631 0.118 -1.126 0.349 

1300 -6.399 0.139 -0.959 0.374 

1400 -6.370 0.122 -1.024 0.343 

1500 -6.290 0.122 -1.370 0.530 

1600 -6.186 0.129 -1.599 0.471 

1700 -6.118 0.140 -1.76 0.489 

1800 -6.119 0.166 -1.893 0.489 

Table 5: Gastric Cancer: The estimated parameters in the NOS M based on 

10,000 iterations, and division 1 of the time axis (Chapter 3). 
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11 Time 11110 1 var(Po) 11 PI 
Division 1 100.000000 -6.997919 0.140056 0.710458 

500.000000 -6.298003 0.071899 0.161492 

1000.000000 -6.518715 0.106141 -1.011860 

1500.000000 -6.289463 0.121734 -1.369720 

1800.000000 -6.119363 0.165888 -1.893697 

Division 2 100.000000 -7.198092 0.081542 0.907102 

500.000000 -6.167043 0.077111 0.049965 

1000.000000 -6.472663 0.090322 -1.034699 

1500.000000 -6.238798 0.098772 -1.364340 

1800.000000 -6.019131 0.126056 -1.784977 

Division 3 103.000000 -7.347658 0.069857 1.254830 

499.000000 -6.101015 0.069747 -0.250224 

977.000000 -6.438448 0.071180 -1.080969 

1551.000000 -6.173302 0.075005 -1.541757 

1800.000000 -6.036098 0.086855 -1.656929 

1000 IteratioD8 100.000000 -6.743143 0.082463 0.475765 

500.000000 -6.272270 0.027244 -0.083461 

1000.000000 -6.393534 0.036533 -1.257496 

1500.000000 -6.289953 0.040743 -1.670100 

1800.000000 -6.230968 0.084879 -2.268828 

10000 Iterati0D8 100.000000 -6.910058 0.117889 0.619454 

500.000000 -6.183795 0.062162 -0.118117 

1000.000000 -6.430449 0.084848 -1.448498 

1500.000000 -6.368153 0.103135 -1.842821 

1800.000000 -6.426151 0.118865 -2.648087 

NDSM (PH) 100.000000 -6.648217 0.066480 0.171631 

500.000000 -6.343220 0.045168 0.171631 

1000.000000 -6.734523 0.066716 0.171631 

1500.000000 -6.601112 0.078410 0.171631 

1800.000000 -6.422539 0.098857 0.171631 

Table 6: Gastric Cancer: Summary Output 
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Figure 30: A selection of the simulated values from the Gibbs sampler. The 

top half of the plot refers to the baseline parameter, and the latter half to 

the treatment effect. 
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A.2 Breast Cancer Data 

The data set contains 94 remission times for breast cancer patients, with 

survival times recorded in months. Right censored observations are denoted 

by -, and exact observations by.. Treatment 0 will represent radiation 

and treatment 1 will represent the combined treatment of chemotherapy and 

radiation. An observation of the form 6,10 refers to an interval censored 

observation as refered to by the notation (6,10] within the thesis. 

Radlotherapy Combined 

46· 25,37 37,- 8,12 0,5 30,34 

6,10 46,- 0,5 0,22 5,8 13,-

0,7 26,40 18,- 24,31 12,20 10,17 

46,- 46,- 24,- 17,27 11,- 8,21 

46,- 27,34 36,- 17,23 33,40 4,9 

7,16 36,44 5,11 24,30 31,- 11,-

17,- 46,- 19,35 16,24 13,39 14,19 

7,14 36,48 17,25 13,- 19,32 4,8 

37,44 37,- 24,- 11,13 34,- 34,-

0,8 40,- 32,- 16,20 13,- 30,36 

4,11 17,25 33,- 18,25 16,24 18,24 

15,- 46,- 19,26 17,26 35,- 16,60 

11,15 11,18 37,- 32,- 15,22 35,39 

22,- 38,- 34,- 23,- 11,17 21,-

46,- 5,12 36,- 44,48 22,32 11,20 

46,- 14,17 10,35 48,-

Table 7: Breast Cancer Data 
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Figure 31: Breast Cancer: Survival is estimated using the non-parametric 

technique for interval censored data as developed by Thrnbull (1976). Radi­

ation is denoted by 0, the combined treatment by 1. 
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Figure 32: Breast Cancer: Survival is estimated using Cox's proportional 

hazards model, and the analysis is based on the midpoints of the interval 

censored observations. 
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Figure 33: Breast Cancer: The Grambsch and Therneau (1994) test for 

proportionality, yields a chi-squared value of 4.5 on 1 degree of freedom. The 

analysis was based on the mid-points. For the short time that the treatment 

effect is negative, the combined treatment has the better pronosis, although 

after around 10 months the treatment effect becomes positive and radiation 

has the better prognosis. 201 



Time fJo var(fJo) PI var(PI) 

2.000000 -4.672 0.329 -0.737 1.054 

4.000000 -4.561 0.162 -0.591 0.367 

5.000000 -4.402 0.228 -0.322 0.451 

7.000000 -4.256 0.188 -0.190 0.421 

8.000000 -4.147 0.183 -0.0490 0.486 

10.000000 -4.230 0.164 -0.014 0.351 

13.000000 -4.263 0.142 0.173 0.458 

15.000000 -4.296 0.151 0.718 0.320 

18.000000 -4.209 0.181 1.372 0.378 

20.000000 -4.162 0.167 1.727 0.375 

23.000000 -4.226 0.175 1.512 0.425 

25.000000 -4.259 0.168 1.334 0.312 

28.000000 -4.300 0.156 1.182 0.358 

30.000000 -4.225 0.141 1.174 0.422 

33.000000 -4.055 0.160 1.242 0.353 

35.000000 -3.932 0.176 1.280 0.348 

38.000000 -3.745 0.155 1.359 0.360 

40.000000 -3.722 0.204 1.115 0.495 

43.000000 -3.751 0.191 0.942 0.419 

45.000000 -3.728 0.195 0.948 0.419 

48.000000 -3.672 0.203 0.957 0.496 

50.000000 -3.707 0.216 0.797 0.505 

56.000000 -3.736 0.224 0.661 0.502 

62.000000 -3.764 0.234 0.494 0.505 

Table 8: Breast Cancer: Estimated parameters for the NDSM based on 

10,000 iterations. 
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1 var(Po) 11 111 1 var(l1l) 

Exact 2.000000 -4.672285 0.329380 -0.737070 1.054595 

10.000000 -4.228912 0.164141 -0.013802 0.351617 

30.000000 -4.225&24 0.141269 1.174146 0.421863 

50.000000 -3.706744 0.216431 0.796942 0.505562 

ImputatioD 2.000000 -4.64S090 0.491784 -1.165036 1.100107 

10.000000 -4.212164 0.268752 -0.194692 0.598277 

30.000000 -4.168136 0.181635 1.084502 0.394358 

50.000000 -3.737493 0.350477 0.810028 0.631038 

NDSM (PH) 2.000000 -6.255736 0.247787 0.935386 0.083692 

10.000000 -4.597068 0.213016 0.935386 NA 

30.000000 -3.921287 0.210437 0.935386 NA 

50.000000 -3.520420 0.261745 0.935386 NA 

Table 9: Breast Cancer: A sample of the estimated parameters, from the 

NDSM using the exact approach, the NDSM using the imputation method, 

and the NDSM constrained to return proportional hazards. 
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Figure 34: Breast Cancer: A selection of the simulated values from the Gibbs 

sampler. The top half of the plot refers to the baseline parameter, and the 

latter half to the treatment effect. 
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A.3 Kidney Data 

The kidney data set contains the times of two infections for 38 individuals, 

with survivla times recorded in months. Females are denoted by 1 and males 

by O. For each observation there exists a right censoring indicator. 

Individual nm. Ceuorlng Sex Individual Times Cenaoring Sex 

1 8,16 1,1 0 20 15,108 1,0 1 

2 33,13 1,0 1 21 152,562 1,1 0 

3 22,28 1,1 0 22 402,24 1,0 1 

4 447,318 1,1 1 23 13,66 1,1 1 

5 30,12 1,1 0 24 39,46 1,0 1 

6 24,246 1,1 1 25 12,40 1,1 0 

7 7,9 1,1 0 26 113,201 0,1 1 

8 511,30 1,1 1 27 132,156 1,1 1 

9 53,196 1,1 1 28 34,30 1,1 1 

10 15,154 1,1 0 29 2,25 1,1 0 

11 7,333 1,1 1 30 130,26 1,1 1 

12 141,8 1,0 1 31 27,58 1,1 1 

13 96,38 1,1 1 32 5,43 0,1 1 

14 149,70 0,0 1 33 152,30 1,1 1 

15 536,25 1,0 1 34 190,5 1,0 1 

16 17,4 1,0 1 35 119,8 1,1 1 

17 185,117 1,1 1 36 54,16 0,0 1 

18 292,114 1,1 1 37 6,78 0,1 1 

19 22,159 0,0 1 38 63,8 1,0 0 

Table 10: Kidney Data 
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Figure 35: Kidney Data: Survival estimated using the non-parametric 

Kaplan-Meier method, ignoring the dependencies which may exist within 

the data. 
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Figure 36: Kidney Data: Survival estimated using Cox's proportional haz­

ards model, ignoring the dependencies which may exist within the data. 
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Figure 37: Kidney Data: The Grambscb and Themeau {1994} test for pro­

portionality, yields a chi-squared value of 11.2 on 1 degree of freedom. The 

analysis ignored any dependencies which may exist within the data. The 

difference between the sexes decreased over time although always remaining 

positive: females always have the better prognosis. 
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NDSM (FralltJee) NDSM 

Time Po YW(IJo) PI var(PI) Po var(lJo) PI var(Pl) 

10.000 -3.470 0.167 -1.767 0.248672 -3.904 0.110 -1.203 0.180 

20.000 -3.362 0.061 -1.722 0.024677 -3.784 0.074 -1.145 0.037 

30.000 -3.2&4 0.CM6 -1.863 0.031744 -3.660 0.076 -1.050 0.049 

40.000 -3.319 0.048 -1.656 0.023809 -3.895 0.107 -0.997 0.038 

60.000 -3.440 0.080 -1.682 0.028689 -4.175 0.112 -1.005 0.044 

60.000 -3.478 0.062 -1.681 0.02988 -4.332 0.105 -0.971 0.038 

70.000 -3.612 0.044 -1.696 0.027074 -4.433 0.090 -0.974 0.052 

80.000 -3.659 0.048 -1.110 0.034156 -4.584 0.130 -0.964 0.043 

90.000 -3.677 0.063 -1.694 0.02616 -4.686 0.101 -0.940 0.049 

100.000 -3.638 0.039 -1.667 0.023844 -4.616 0.103 -0.840 0.082 

120.000 -3.479 0.047 -1.621 0.021509 -4.632 0.126 -0.773 0.047 

160.000 -3.433 0.036 -1.600 0.02503 -4.582 0.103 -0.133 0.043 

170.000 -3.331 0.064 -1.566 0.029421 -4.441 0.124 -0.682 0.061 

200.000 -3.361 0.043 -1.650 0.026219 -4.562 0.124 -0.658 0.044 

220.000 -3 .• 0.048 -1.651 0.031787 -4.703 0.121 -0.660 0.051 

260.000 -3.429 0.044 -1.&6S 0.028122 -4.812 0.091 -0.661 0.044 

270.000 -3.465 0.063 -1.&68 0.033395 -4.901 0.103 -0.665 0.048 

300.000 -3.446 0.062 -1.531 0.031981 -4.911 0.106 -0.641 0.043 

330.000 -3.424 0.042 -1.616 0.027949 -4.911 0.106 -0.620 0.051 

360.000 -3.415 O.~ -1.496 0.030603 -4.898 0.116 -0.571 0.058 

400.000 -3.408 0.040 -1.492 0.021319 -4.970 0.136 -0.593 0.060 

600.000 -3.341 0.059 -1.441 0.040533 -4.832 0.156 -0.548 0.075 

Table 11: Kidney Data: Estimated parameters for the NDSM with frailties, 

and the NDSM without frailties, both sets of estimates are based on 10,000 

iterations. 
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11 Conditional Proportional NDSM 1 Conditional NDSM I 

Individual u, VU' (u,) u, var (u,) 

1 1.431 0.666 1.432 0.562 

2 1.323 0.617 1.310 0.603 

3 1.081 0.344 1.059 0.319 

4 0.568 0.093 0.556 0.094 

5 1.169 0.374 1.151 0.366 

6 1.044 0 .• 1.049 0.294 

7 1.601 0.729 1.587 0.723 

8 0.695 0.136 0.680 0.138 

9 1.096 0.316 1.100 0.314 

10 0.536 0.106 0.547 0.101 

11 0.932 0.240 0.929 0.229 

12 1.010 0.356 1.036 0.365 

13 1.406 0.541 1.392 0.527 

14 0.588 0.192 0.605 0.199 

15 0.516 0.106 0.504 0.099 

16 1.116 0.461 1.096 0.430 

17 1.005 0.269 1.012 0.273 

18 0.863 0.207 0.851 0.193 

19 0.632 0.254 0.635 0.242 

20 1.080 0.414 1.086 0.395 

21 0.162 0.014 0.173 0.016 

22 0.616 0.142 0.607 0.134 

23 1.609 0.720 1.594 0.697 

Table 12: Kidney Data: Estimated frailties obtained using the conditional 

NDSM and the conditional NDSM constrained to return proportional haz­

ards. The output is continued overpage. 
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11 Conditional Proportional NDSM I Conditional NDSM I 

Individual u, var u, u, var u, 

24 1.177 0.486 1.168 0.472 

2S 1.OM 0.323 1.044 0.313 

26 0.740 0.197 0.743 0.195 

27 1.039 0.289 1.042 0.293 

28 1.684 0.815 1.664 0.762 

29 1.362 0.522 1.348 0.487 

30 1.333 0.487 1.334 0.474 

31 1.577 0.705 1.581 0.680 

32 1.313 0.614 1.299 0.593 

33 1.260 0.444 1.270 0.425 

34 0.895 0.274 0.911 0.289 

35 1.428 0.553 1.436 0.547 

36 0.806 0.416 0.813 0.333 

37 1.188 0.499 1.184 0.497 

38 0.676 0.179 0.688 0.181 

Table 13: Kidney Data: Estimated Frailties (continued) 
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Figure 38: Kidney Data: A selection of the simulated values from the Gibbs 

sampler. The top half of the plot refers to the baseline parameter, and the 

latter half to the covariate representing sex. 
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A.4 AIDS Data 

Times Times Age TUn. Times Age Times Times Age 

15,00 0(6) 16,00 0(15) 17,00 0(9) 

15,00 1(13) 16,00 1(16) 17,00 1 

18,00 1 1,5 23,00 0(2) 1,11 23,00 0(2) 

1,12 23,00 1(2) 1,13 23,00 1 1,14 23,00 0 

1,15 23,00 0(7) 1,16 23,00 0 1,17 23,00 0 

1,18 23,00 0 1,15 23,00 1(2) 1,16 23,00 1(3) 

3,10 23,00 0 4,11 23,00 1 5,11 23,00 1 

6,13 23,00 1 6,8 23,00 0 7,12 23,00 0 

7,10 23,00 0 8,16 23,00 1 8,12 23,00 0 

8,15 23,00 0 8,13 23,00 0 9,12 23,00 1 

9,14 23,00 1(2) 9,13 23,00 0 9,14 23,00 0 

10,15 23,00 1 10,16 23,00 0 10,12 23,00 1 

10,12 23,00 0 11,14 23,00 1(2) 11,15 23,00 1 

11,12 23,00 1(2) 11,14 23,00 0(2) 11,16 23,00 1 

12,14 23,00 1(3) 12,15 23,00 1 12,13 23,00 0(4) 

12,14 23,00 0 13,15 23,00 0(2) 13,14 23,00 0(4) 

14,15 23,00 0(4) 14,16 23,00 1 15,16 23,00 1(3) 

13,15 23,00 1 15,16 23,00 0(2) 1,12 23,00 0 

1,3 7,8 0 1,12 14,15 0 6,12 16,16 0 

7,13 16,17 1 10,11 19,20 0 11,12 20,20 0 

13,14 20,20 1 3,16 21,21 1 6,13 21,21 1 

8,16 21,21 1 10,12 21,21 0 13,15 21,22 0 

13,13 22,22 0 12,13 23,23 1 

Table 14: AIDS Data Lightly Treated Group: The indicator 0 will denote 

those individuls who are younger than 20, and 1 will denote those who are 

older than 20. Multiplicities are denoted in brackets. The first interval 

censored time refers to the time of infection with HIV and the second the 

time of developing AIDS. All times are recorded in units of 6 months. 
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Tlmee Tlm. Age Tlm. Times Age Times Times Age 

15,00 0(2) 16,00 1(2) 16,00 0 

17,00 1(2) 17,00 0 1,16 23,00 0 

1,7 23,00 0 I,ll 23,00 0 1,12 23,00 0(2) 

1,13 23,00 1 1,13 23,00 0 1,14 23,00 0(3) 

1,15 23,00 0(2) 5,7 23,00 1 5,7 23,00 0 

3,14 23,00 0 3,15 23,00 1 7,9 23,00 0 

7,10 23,00 0 7,15 23,00 1 8,10 23,00 0 

8,15 23,00 1 9,10 23,00 0(2) 9,12 23,00 0(3) 

10,11 23,00 0(4) 10,11 23,00 1(3) 10,12 23,00 0(1) 

10,15 23,00 0 11,12 23,00 0 11,13 23,00 1 

11,13 23,00 0(3) 12,13 23,00 0(6) 12,13 23,00 1 

12,14 23,00 0 12,14 23,00 1 13,15 23,00 0(2) 

13,15 23,00 1 13,16 23,00 0 14,15 23,00 1(2) 

14,15 23,00 0(6) 14,16 23,00 0(2) 15,16 23,00 0(4) 

15,16 23,00 1 1,7 12,13 0 1,7 16,16 1 

1,10 11,12 0 3,7 17,17 0 5,7 11,12 0 

1,15 20,21 0 7,9 19,19 0 8,10 15,15 0 

5,8 13,13 0 9,11 17,18 1 9,12 17,18 0 

9,13 14,15 0 9,12 22,22 0 10,11 14,15 0 

9,13 17,18 0 10,12 15,16 1 10,14 15,16 1 

10,11 15,16 0 10,12 23,23 0 12,13 20,20 0 

10,12 16,17 0 13,15 17,18 0(2) 13,14 19,20 0 

13,14 17,18 1 14,15 23,23 1 

13,14 20,21 0 

Table 15: AIDS Data Heavily Treated Group: The indicator 0 will denote 

those individuls who are younger than 20, and 1 will denote those who are 

older than 20. Multiplicities are denoted in brackets. The first interval 

censored time refers to the time of infection with HIV and the second the 

time of developing AIDS. All times are recorded in units of 6 months. 
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Figure 39: AIDS Data Lightly Treated Group: Survival estimated for time of 

infection with HIV, using Thmbull's non-parametric estimate. Age 0 refers 

to the young , and 1 to the old: the younger age group has a slightly worse 

prognosis. Time 0 refers to the baseline year of 1976. 
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Figure 40: AIDS Data Lightly Treated Group: Test of proportionality for 

the treatment covariate, using the Grambsch and Themeau (1994) method 

(Chi-squared 5.84 on 1 degree of freedom), on the midpoints. The effect 

of the treatment group is always below zero: those heavliy treated have a 

poorer prognosis. 
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Figure 41: AIDS Data Lightly Treated Group: Test of proportionality for 

the age covariate, using the Grambsch and Themeau (1994) method (chi­

squared 0.57 on 1 degree of freedom), on the midpoints. The age coefficient 

is always below zero: the younger age group have a poorer prognosis. 
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Figure 42: AIDS Data Lightly Treated Group: Survival estimated using the 

non-parametric technique of Thmbull (1976), using the mid-point estimate 

of the time of infection with HIV. Age 0 refers to the young, and 1 to the 

old. 
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Figure 43: AIDS Data Heavily Treated Group: Survival estimated using the 

non-parametric technique of Tumbull (1976), using the mid-point estimate 

of the time of infection with HIV. Age 0 refers to the young, and 1 to the 

old. 
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Figure 44: AIDS Data Heavily Treated Group: Test of proportionality for 

the treatment covariate, using the Grambsch and Themeau (1994) method 

yields a chi-squared value of 1.82 on 1 degree of freedom (the analysis is 

based on the midpoints for both the initiating and terminating events). The 

effect of treatment for the most Part lies below zero: those who are heavily 

treated have a poorer prognosis. 220 
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Figure 45: AIDS Data Heavily Treated Group: Test of proportionality for 

the age covariate, using the Grambsch and Therneau (1994) method yields 

a chi-squared value of 0.031 on 1 degree of freedom ( based on midpoints for 

both the initiating and terminating events). The effect of age for the most 

part remains below zero: the younger age group have a poorer prognosis. 
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I Time I Po 
2 -5.790575 2.00686 -0.960747 0.39185 -1.64264 1.751489 

4 -4.602558 2.46481 -0.817161 0.18623 -1.327341 0.832039 

6 -4.129051 0.999091 -0.872241 0.193277 -1.032307 0.561733 

8 -3.310349 0.799196 -0.916407 0.176341 -0.820576 0.59865 

10 -2.842222 0.389331 -0.901194 0.115074 -0.726836 0.413043 

12 -1.427167 0.202624 -0.797409 0.117987 0.028259 0.623024 

Table 16: AIDS Data Initiating Event: Estimated parameters for the NDSM, 

based on 10,000 iterations and using the exact approach for interval censored 

data. 

2 -5.305671 1.087589 -2.234006 3.261825 -0.585549 1.091998 

4 -4.128886 0.907251 -1.832218 1.336736 -0.406836 0.625257 

6 -3.013641 0.42909 -1.253854 1.510693 -0.223149 0.420917 

8 -3.058191 0.228827 -1.080417 0.425423 -0.193311 0.215805 

10 -3.146728 0.246401 -0.499555 0.534915 -0.139119 0.226517 

12 -3.206084 0.326398 -0.716354 0.514963 -0.156922 0.293463 

16 -4.035723 0.869695 -1.469853 1.873698 -0.385959 0.655941 

18 -4.7271 1.892896 -1.999056 2.737599 -0.559676 1.03059 

20 -5.194874 1.75505 -2.404214 2.723598 -0.732929 0.772102 

Table 17: AIDS Data Terminating Event: Estimated parameters for the 

NDSM, based on 10,000 iterations and using the exact approach for double 

interval censored data. 
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I Time 11 Po 1 var(tJo) 11 {JTr.Gt 1 var(!Jrr.Gt) 11 {JAg. 

2.000000 -5.217024 0.247651 -1.942915 1.521044 -1.243109 1.822406 

4.000000 -4.747465 0.288911 -2.328925 0.889899 -0.891388 0.939200 

6.000000 -3.018825 0.227894 -2.547969 1.066354 -0.176423 1.992035 

8.000000 -2.911131 0.220405 -1.003226 3.947143 -0.508922 0.717651 

10.000000 -3.329770 0.120149 -0.596732 0.421432 -0.078895 0.993386 

12.000000 -3.140666 0.343819 -0.923506 0.814023 0.164282 0.869636 

16.000000 -4.391720 1.050059 -1.871770 4.122241 -0.473107 1.911123 

18.000000 -4.940779 1.150206 -2.423250 2.148905 -0.774359 1.308590 

20.000000 -5.449628 1.364477 -2.833107 1.471056 -1.167297 0.905398 

Table 18: AIDS Data Tenninating Event: The numerical output for the es­

timated covariates and log-baseline hazard using NDSM and the imputation 

appraoch. 
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Figure 46: AIDS Data: A selection of the simulated values from the Gibbs 

sampler for the incubation period. The top half of the plot refers to the base­

line parameter, and the latter half to the treatment type and age covariate. 
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A.5 Simulated Data 

Model Time fJo var(Po) fJI var(fJI) 

IDght Censored (1) 10.00000 -5.685481 0.079080 -0.063452 0.149427 

50.00000 -5.685481 0.079080 -0.063452 0.149427 

100.000000 -5.685481 0.079080 -0.063452 0.149427 

500.000000 -5.894586 0.165527 -1.050403 0.332961 

1000.000000 -6.603894 0.598130 -2.477262 0.721092 

1500.000000 -8.828787 1.042869 -3.931657 0.628030 

1800.000000 -9.527205 0.947608 -4.696644 0.726968 

IDght Censored (2) 10.000000 -4.969922 0.127922 -0.614938 0.235428 

50.000000 -5.958526 0.120786 -0.437071 0.301176 

100.000000 -6.253285 0.088837 -0.423458 0.324750 

500.000000 -5.647845 0.139456 -1.050906 0.314525 

900.000000 -4.959828 0.158246 -2.735861 0.378840 

Interval Censored (1) 100.000000 -5.169090 0.029972 -0.862561 0.107349 

500.000000 -5.880076 0.094768 -0.989358 0.109221 

1000.000000 -5.041160 0.159216 -1.447741 0.126527 

1500.000000 -4.146556 0.203692 -2.090662 0.113536 

1800.000000 -3.267208 0.238393 -1.905883 0.140437 

Interval Censored (2) 100.000000 -5.353534 0.063426 -0.749494 0.121556 

500.000000 -5.836803 0.152770 -1.078415 0.168785 

1000.000000 -4.928615 0.144398 -1.297322 0.598187 

1500.000000 -4.213766 0.267698 -2.273114 0.245310 

1800.000000 -3.144088 0.351331 -2.054257 0.355576 

Double Interval Censored 100.000000 -5.177161 0.489248 -0.959257 0.384927 

500.000000 -5.992734 0.193816 -1.344065 0.486133 

1000.000000 -4.633619 0.397782 -1.917615 0.273418 

1550.000000 -1.592266 0.359383 -4.449400 0.408326 

Table 19: Simulated Data: Summary Output 
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B Simulation Code 
Initialisation 
Initial data and priors are stored in text files read in via the following func­
tions. 
The following function contains prior parameter estimates. 

fD_prior(N.n.k.datatype.beta_prmn.beta_prvr.lambda_prmn. 
lambda_prvr.alphaW.betaW.alphaV.betaV.alphaF) 
int N.n.k.datatype: 
double beta_prmn[k+2].beta_prvr[k+2]: 
double lambda_prmn[k+2].lambd~prvr[k+2]: 
double alphaW[k+2].betaW[k+2].alphaV[k+2].betaV[k+2].alphaF[2]j 
{ 
int g.i.l: 
for(g=1:g<=k+1:++6)5 

beta_prmn~--3.0: 
beta_prvr [g] -16 .0: 
alphaW [g] -0.0001 : 
betaW [g] -0.0001 : 
} 

for(g=1:g<=k+l:++g){ 
lambda_prmn[gl--3.0: 
lambda_prvr [g] -16 • 0: 
alphaV [g] -0.0001: 
betaV [g] -0.0001 : 

alphaF [11-7 .0 : 
alphaF[2]-3.0: 
} 

The following function is an initialisation function, which will enable sampled 
values to be stored and acceptance rates calculated. 

fn_start_up(N.n.k.datatype.L.NT.store.accpt.storeW.accptW.storeT. 
accptT.storeV.accptV.accptF.storeF.my_rand.st_Fparm. 
var_store.var_storeW.var_storeV.var_storeT.var_storeF) 
int N.n.k,datatype,L,NT: 
int accptF[L+l],accpt[k+2][N+l],accptW[k+2],accptT[k+2] [NT+l] , 
accptV[k+2],my_rand[3]: 
double store [k+2] [N+l],storeW[k+2],storeF[L+l],storeT[k+2] [NT+l] , 
storeV[k+2],st_Fparm[L+l]: 
double v&r_store[k+2] [N+l],v&r_storeW[k+2],var_storeF[L+l], 
v&r_storeT[k+2] [NT+l],var_storeV[k+2]: 
{ 
int l,g,i: 
int randO: 
for(g-l:g<-k+l;++g){ 

for(i.!~i<=N:++i){ 
store[g,J [i]-O.O: 
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var _store [g] [i] -0.0 j 
accpt[g] [iJ-Oj 
} 
storeV [g] -0.0 j 
var _storeV [g] -0.0 j 
accptV[g]-Oj 
} 

for(g-ljg<-k+lj++g){ 
for(i-lji<-HTj++i){ 
storeT[g] [i]-O.Oj 
var _storeT [g] [1] -0 . 0 j 
accptT[g] [iJ-Oj 
} 
storeV[g]-O.Oj 
var _storeY [g] -0.0 j 
accptV[g]-Oj 
} 

for(l-ljl<-Lj++l){ 
accptF[l]-Oj 
storeF[l]-O.Oj 
var_storeF[l)-O.Oj 
st_Fparm[l)-O.Oj 
} 

my_rand[l)-rand()j 
my_rand[2)-rand()j 
my_rand[3)-rand()j 
} 

The following function reads in the relevent data frames. 

fn_longdata(N,n,k,datatype,data,covariate, interval. cansori ng,HT, 
intervalT,L ,ind_frail ,frail) 
int N,n,k,datatype,HT,L,ind_frailj 
double data [datatype+l] [n+l],covariate[k+2) [n+l] ,interval[N+l] , 
censoring[n+l),intervalT[HT+l]j 
int frail[n+l]j 

lnt i,j,g,gk,dt; 
int covkg; 
double covarj,obsj.interj 
FILE *fp_int,*fp,*fopen()j 
fp_int=fopen("interval.tzt","r"); 
for(i=Oj1<-N;++1){ 
fscanf (fp_int, ''%If'' ,tinter) j 
interval [1)-inter; 
} 
if (datatype--4) { 

for(j-O;j<-HT;++j){ 
fscanf(fp_int,"%lf",tcovarj); 
1ntervalT[j]-covarj; 
}} 
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close(fp_int)i 
fp=fopen("data. txt". "r"); 
for(j-1ij<-ni++j){ 

fscanf (fp. "Xlf" .tobsj) i 
data (1) [j)-obsji 
if (datatypa--2) { 

fscanf{fp. "Xlf" .tobsj); 
data(2) [j)-obsj i 

} 
if (datatypa--4) { 

} 

fscanf(fp. "Xlf" .tobsj) i 
data (2) [j)-obsj; 
fscanf{fp. "Xlf" .tobsj) i 
data [3) [j]-obsj; 
fscanf(fp. "Xlf" .tobsj); 
data [4] [j]-obsj i 

covariate[l] [j]-1.0i 
for{g-2;g<-k+1;++g){ 

fscanf(fp. "Xlf" .tcovarj) i 
covariate[g] [j]-covarji 
} 

fscanf(fp."Xlf".tcovarj); 
censor1ng[j]-covarj; 
if (ind_frail--1) { 

fscanf{fp."~dn.tcOVkg)i 
frail [j]-COVkgi 
} 

} 

if (ind_frail--O) { 
frail[j]-li 
} 

closeUp) i 
} 

The following function reads in starting values for all parameters within the 
Gibbs sampler. 

fn_start_values(N.n.k.datatype.beta.Wvar.L.ind_frail.frail_parm) 
int N.n.k.datatype.L.ind_fraili 
double beta [k+2] [U+1]jWvar[k+2]i 
double frail_parm[L+1 i 

aoUble betaO.beta1i 
int l.tmp.g.j.indicatori 
FILE *fpinit.*fp_pr_out.*fopen(); 
fpinit-fopen("initial.tn"."r")i 
for(g-2ig<-k+li++g){ 

fscanf (fpin1t. "Xlf" .tbetaO) ; 
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beta [g] [1] -betaO ; 
for(j-2;j<-N;++j){ 

beta[g] [j]-O.O; 
} 

} 

fscanf(fpinit, ''%If'' ,tbetaO); 
Wvar[l]-betaO; 

for(g=2;g<-k+l;++g){ 
fscanf(fpinit, "Xlf" ,tbetat); 
Wvar [g] -betal ; 
} 

for(l=l;l<-L;++l){ 
frail_parm[1]-1.0; 
} 

close(fpinit); 
} 

Output Statistics 

The estimated survival and hazard functions are computed via the following 
two functions. 
fn_hazard(trans_beta,input_cov,n,N,k,interval,fprun,frail_ind, 
frallty,alphaF) 
int n,k,N,frail_indt' double trans_beta[k+2] N+l],input_cov[k+2],alphaF[2]; 
double interval[N+l],frailty[n+l]; 
FILE *fprun; 
{ 
double exp(),sum,sumtmp,tmplambda,tmpl,tmp2[k+2],Afunction(); 
int j,l,g,gb; 
double diff,sum2,total[k+2]; 
input_cov[1]=1.0; 
tmp2[1]-1.0; 
total [1] -0 . 0 ; 
for(g-2;g<-k+l;++S)~ 

} 

input_cov~-O.O; 
tmp2 [g] -1. 0 ; 
total [g] -0.0 ; 

for(i=l:i<-N;++i){ 
for(g=l;g<-k+l;++g){ 
sum-trans_beta[l] [i]; 
for(gb=2:gb<=k+l;++gb){ 

input_cov[gb]-O.O;} 
input_coy [g] -1. 0; 
for(gb-2;gb<-k+l;++gb){ 
sumtmp-trans_beta[gb] [i]*input_cov[gb]; 
sum=sum+sumtmp;} 
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tmplambda-8WD; 
if (frail_ind--l) { 

8um2-tran8_beta[1] [i]; 
for(gb-2;gb<-k+l;++gb){ 
8WDtmp-tran8_beta[gb][i]*input_cov[gb]j 
8um2-8WD+8WDtmp;} 
diff-interval[i]-interval[i-l]; 
8WD~~xp(8um2).diff; 
total [g] -total [g] +8WDtmp ; 

tmpl-exp(tmplambda)*alphaF[l] /(alphaF[l]+total[g]);} 
if (frail_indl-l) { 
tmplambda-8WD; 
tmpl-exp(tmplambda);} 
fprintf (fprun. "~f ". tmpl); } 

} 

} 

fn_Burvival(tranB_beta.input_cov.n.N.k.interval.fprun2.frail_ind. 
frailty.alphaF) 
int n.k.N.frail_indt· double tran8_beta[k+2] N+l].input_cov[k+2]; 
double interval[N+l].frailty[n+l].alphaF[2]; 
FILE *fprun2; 
{ 
double exp().log().8WD.Bumtmp.tmplambda.tmpl.tmp2[k+2].diff.tmp3. 
tmp2B[k+2].totalB[k+2].tmp4.alp.total[k+2].sum2.frail; 
int tmp.i.g.gb.j; 
input_cov[1]-1.0; 
tmp2 [1] -1. 0; 
total [1] -0 • 0 ; 
for(g-1;g<-2;++g){ 
input_ cov [g] -0 .0; 
tmp2 [g] -1. 0; 
total [g] -0 • 0 ; 
tmp2B[g]-1.0; 
totalB [g] -0 .0; 
} 

for(i-l;i<-N;++i){ 
fprintf(fprun2. "\n ~f ".interval[i]) j 

fOr(g=1;g<-2;1ii){ 
frail-frailty ; 
8um-tran8_beta 1] [i]; 
tmplambda-8WD; 

tmpl-(-1.0)*exp(tmplambda); 
tmpl""tmp1*frall; 
diff-interval[i]-interval[i-l]j 
tmp2 [g] -tmp2 [g] *exp (tmphdiff) ; 
fprintf (fprun2. "~f ". tmp2 [g] ) ; 
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} 

The Gibbs samplers 

The following function includPii all of the code to carry out a single iteration 
of the Gibbs sampler. 

fn_gibbs(M.D.buff.buffT.covariate.Wvar.interval.data. 
datatype.beta.N.n.k.store.accpt.atoreW.accptW. 
my_rand.cenaoring.MT.DT.Vvar.lntervalT. 

beta_prmn.beta_prvr.alphaW.betaW.bet~propvr. 
atoreT.accptT.atoreV.accptV,lambda_prmn, 
L.ind_frail.frail.frail_parm.F.atoreF.accptF. 

lambda_prvr.alphaV,betaV,hyper,icaug,dicaugic, 
var_store ,var_storeW , var_storeV , var_storeT ,var_atoreF) 

int M,D,NT,MT,DT,buff,buffT.accptW[k+2].accpt[k+21[N+l]. 
my_rand[3].frail[n+l],beta_propvr[k+2][N+l]; 
double Wvar[k+2].beta[k+2] [N+l],store[k+2] [N+l],storeW[k+2]. 
st_Fparm[L+l] ,censoring[n+l] ,storeF[L+l]; 
double interval[N+l].data[datatype+l] [n+l] ,covariate[k+2] [n+l]; 
double beta_prmn[k+2],beta_prvr[k+2] ,alphaW[t+2] ,betaW[k+2]; 
int accptV[k+2],accptT[k+2][NT+l],accptF[L+l]; 
double Vvar[k+2],lambda[k+2][NT+l].storeT[k+2] [NT+l].storeV[k+2]; 
double lambda_prmn[k+2].lambd~prvr[k+2].alphaV[k+2],betaV[t+2]; 
double lam_propvr[k+2][NT+l],intervalT[NT+l],frail_parm[L+l],F[2]; 
double ,var_storeT[k+2][NT+l],var_storeV[k+21 
double var_store[k+2][N+l].var_atoreW[k+2].var_storeF[L+l]; 

int m,g,i,j,indicator,typetmp.l; 
double fn_modulas().tmpl.tmpa.tmpb.log_lik.fn_lik(); 
double trans_lambda[k+2][NT+l],mn_lambda[k+21[NT+l]~~ar_lambda[k+21[NT+l] 
trans_beta[k+2] [N+l] ,mn_beta[k+2] [N+l],var_beta[k+2] LN+l] ; 
double xtmpT,mtmp.tmp.buff2.bufftmp; 
double olddata[datatype+l] [n+l] ,xtmp,fn_value() ,fn_valueT(); 
double dataS[datatype+l] [n+l],log_likA.log_likB; 
FILE *fp_finT,*fp_simTl,*fp_simT2,*fprunT,*fp_final, 
*fp_siml.*fprun.*fp_simT3,*fp_simT4,*fopen(); 
fp_final-fopen("final_out.txt","v"); 
fprun-fopen("running_sUJD. txt", "v") ; 
fp_siml=fopen(" aiml. txt", "v"); 

for(j=l;j<=datatype;++j){ 
for(i-l;i<-n;++i){ 

olddata[j] [i]-O,O; 
} 

} 
if (icaug-l){ 

for(j-l;j<-datatype;++j){ 
for(i-l;i<-n;++i){ 

olddata[j] [i]=data[j] [i]; 
data[j] [i]-O,O; 
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} 
} 

} 
typetmp=Oi 
if (datatype-4) { 

typetmp-4; 
datatype-2i 

} 
/ ••• Augments the data (where necessary) ••• / 
if(icauga-l){datatype-1i} 
for(m-lim<-Mi++m){ 
printf("This is it no %d %d (1nit)\n" ,m,dicaugrc); 
if (1cauga-l){ 
fn_transform(beta,trans_beta,N,k,interval)i 
for(i-lii<-ni++i){ 

if (olddata[2] [i]--O.O){ 
data[l] [i]-olddata[l] [i]i 

} 
censoring[i]-O.Oi 

if (olddata [1] [1] <olddata [2] [1]){ 
xtmp-fn_value(N,n,k,datatype,i,covariate, interval 

olddata,trans_beta,censoring); 
data[1] [1]-xtmp; 
censoring[i]-1.0; 
if (olddata[l] [1] > data[1] [i] 11 data[l] [i] > olddata[2] [i]){ 

printf("WARNING: DATAPOINT GENERATED OUT OF RANGE %d \n",i);} 
} 
if (olddata[l] [i]=-olddata[2]fi]){ 

data[l][i]-olddata[l [i]; 

} 
censoring[i]-1.0; 

~ 
/ ••• Carries out a Gibbs sample on the frailty paramaters ••• / 
if (ind_frail--l) { 

for(l-l:l<-L:++l){ 
frail_gibbs(buff ,D,m,l,covariate, interval ,data , datatype , 

beta,N,n,k,my_rand,censoring, 
NT,intervalT,lambda,L,ind_frail,frail,frail_parm,F,storeF, 

accptF,st_Fparm,var_storeF)i 
} 
fn_fullfrail(n,k,N,buff,D,L,m,F,frail_parm,accptF,storeF, 

my_rand,var_storeF); 
} 

if(cox·-O a coxinit--O){ 
indicator""l i 
for(g=lig<""k+li++g){ 

for(i-l:i<-N:++i){ 
covar_gibbs(buff,D,1,m,g,i,9,covariate,Wvar,interval,data, 
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datatype,beta,N,n,k,store,accpt,my_rand,cenaoriD«, 
beta_pnm,bet __ prvr,bet __ propvr,NT,intervalT,lambda,fprun.L. 

ind_frail,frail,frail_para,var_store)j 
}} 

if (hyper-l) { 
indicator-2; 
for(g-ljg<-k+lj++g){ 

evolution-!ibbs(buff,D,2,m,g,9,covariate,Wvar,interval.data, 
datatype,beta,N,n,k,storeW,accptW,my_rand,censoriDg.alphaW. 

betaW.NT,intervalT,laabda, 
L,ind_frail,frail,frail_parm,V&r_storeW)j 
} 

} 

} 
if(cox--l 11 cozlnit--l){ 
indicator- j 

for(i-lji<-Nj++i){ 
covar-!lbbs(buff,D,I,_,I,l,9,covariate.Wvar.iDterval.data. 
datatype,beta,N,n,k,store,accpt,my_rand.cenaoriDg, 
beta_pnm, beta_prvr , beta_propvr , NT ,interval T ,lam6cia, fprun, L 

ind_fral1,fral1,frail_parm,var_store)j 
} 
for(g-2jg<-k+lj++g){ 
covar-!lbbs(buff,D,I,m,g,I,9,covariate,Wvar,iDterval,data, 
datatype,beta,N,n,k,store,accpt,my_rand,censoriDg, 
bet __ pnm,bet __ prvr,beta_propvr,NT,iDtervalT,lambda,fprun, 

L,ind_frail,frail,frail-P&rm,var_atore)j 
} 
if (hyper--IH 
iDdicator-2j 
evolutlon-!lbbs(buff,D,2,m,I,9,covariate,Wvar,iDterval,data, 
datatype,beta,N,n,k,.toreW,accptW,my_rand,censoriDg,alphaW, 

betaW,NT,iDtervalT,lambda, 
L,ind_frail,frail,frall_parm,V&r_storeW)j 
} 

} 
/*** Store. value. which have been aampled ***/ 
If(m>D){ 

IltIIp-ID+ 1 . 0 j 

~~i~L 
buff2-bufftmp-l.0j 
tmp-fn_modulaa(mtmp,buff2)j 
if (tmp--O. OH 

fpriDtf(fp_aiml, "\n Xd ", (m-D)/buff) j 
for(g-ljg<-k+lj++g){ 

fprintf (fp_siml, "X11" ,Wvar [g]) j 
for(i-Iji<-Nj++i){ 

fprintf (fp_aiml, "Xlf", beta[g] [1]) j} 
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} 
} 

fprintf (fp_aullt, "~lf" ,frail_parm [1] ) j 

} 

cloae(fp_aiml)j 
cloae(fprun)j 
1*** Calculatea the mean and final likelihood ***1 
fn_mean(N,M,D,k,buff,store,mn_beta,var_beta.var_atore)j 
log_likA-fn_lik(N.n,k,datatype,mn_beta,interval, 
1,covariate,data,censoring,N~intervalT. 
lambda.L,ind_frail,frail,frail_parm)j 
log_likB-O.Oj 
if (icaug-l) { 
log_likB-fn_lik(N,n.k.2,mn_beta,interval,1.covariate, 
olddata,cenaoring,N,intervalT,lambda,L, 
ind_frail.frail,frail_parm)j 
} 
fn_aummary(n,M,D.k,N,buff,Wvar,accptW,accpt.storeW, 
mn_beta,trana_beta,interval,fp_final.L, 
ind_frail,accptF,frail_parm,frail,F,atoreF, 
st_Fparm,var_beta,var_storeW,var_storeF)j 
fprintf (fp_f inal, "\n \loglikelihood ~lfXlf\n", log_lit!, log_likB) j 
close(fp_final)j 

l 
The MetropUs-Hastings Samplers 

This is the Metropolis-Hastings sampler for the covariate effect parameters. 

covar_gibbs(buff,D,indicator,it_no.g,i,l,covariate. 
Wvar,interval,data,datatype,beta,N,n,k,atore, 
accpt,my_rand,cenaoring,beta_prmn,beta_prvr. 
propvar,NT,intervalT.lambda,fp_covar,L,ind_frail, 

frail,frail_parm,var_store) 
buff,datatype,N,n.k,NT,L,l,in~frail, frail[n+l]j 
D,indicator,it_no.g.i.accpt[k+2][N+l].ml_rand[3]j 
Wvar[k+2],beta[k+2] [N+l].store[k+2] [N+l]j 
interval[N+l].data[datatIPe+l][n+l].covariate[k+2][n+l]j 
beta_prmn[k+2].beta_prvr[k+2]j 
propvar[k+2][N+l].c&naoring[n+l],frail_parm[L+l]j 
intervalT[NT+l],lambda[k+2] [NT+l].var_store[k+2] [N+l]j 
*fp_covarj 

int 
int 
double 
double 
double 
double 
double 
FILE 

aouble 
double 
double 

current.newl.new2.rl,r2,weight,tmp6.unij 
exp(),full_cond().rnormal(),runiform(),fn_modulaa()j 
tmp.mtmp,bufftmp,buff2j 
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current-beta[g] [i]; 
rl=full_cond(indicator,g,i,l,covariate,Wvar, interval, 
data,datatype.beta.N.n,i,bet~prmn,beta_prvr. 
censoring.NT.intervalT.lambda.L,ind_frail, 
frail,frail_parm); 
nevl=rnormal(current,propvar[g] [i],my_rand); 
beta[g] [i)-nevl; 
r2=full_cond(indicator.g,i. 1.covariate.Wvar, interval, 
data.datatype.beta,N,n,i,beta_prmn,beta_prvr. 
censoring,NT,intervalT.lambda.L.ind_frail.frail.frail_parm); 
veight-r2-rl ; 
tmp6-exp(veight)j 
uni-runiform{my_rand); 
if (tmp6<-uni) { 

beta [g] [1] -current; 

} 

if (it no>DH 
mtmp-!t_no+i.O; 
mtmp-mtmp-l. 0; 
bufftmp-buff+l.0j 
buff2-bufftmp-l.0; 
tmp-fn_modulas(mtmp.buff2)i 
if (tmp-O.O){ 
store [g] [i] -store [g] [i] +current j 
var_store[g] [i)-var_store[g] [i]+(current*current) j 
p 

The following function samples the evolution variance from the relevent full 
conditional. 
evolution_gibbs(buff.D.indicator.it_no.g.l.covariate.Wvar. 
interval.data.datatype,beta.N.n.k.storeW.accptW. 
my_rand. censoring.alphaW.betaW.NT. intervalT.lambda, 
L.ind_frail,frail.frail_parm.var_storeW) 
int buff.datatype.N.n.k.NT.L.ind_frail.l.frail[n+l]i 
int D.indicator.it_no.g.accptW[k+2].my_rand[3]i 
double Wvar[k+2],beta[k+2][N+l] storeW[k+2]j 
double censoring[n+l].covariate[k+2] [n+l].interval[N+l]; 
double alphaW[k+2].betaW[k+2].data[datatype+l][n+l]j 
double intervalT[NT+l],lambda[k+2] [NT+l].v&r_storeW[k+2]i 
double frail_parm[L+l]; 
{ 
int ij 
double exp().pgamma().rgamma().fn_modulas()j 
double tmp,mtmp,buff2.bufftmpi 
double ith_part.neva.nevb.sample,sampleW.my_condj 
FILE *fp_evol.*fopen()i 
my_cond=O.Oj 
for(i-2ji<-Nj++i){ 

i th_part-beta [g] [i] *beta [g] [1] i 
ith_part-ith_part /2*(interval[i]-interval[i-l])j 
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.y_cond-.y_cond+ith_partj 
} 

neva-alphaV~+«N-l.0)/2.0)j 
nevb-betaV~+.y_condj 
.ample-rg .... (n.va.l.0/n.vb.my_rand)j 
.ampleV-l.0/aamplej 
Vvar ~ -aampleV j 
} 

The following function samples the frailty parameters from the relevent gamma 
distribution. 

frail-sibba(buff.D,it_no,1,covariat.,interva1,data. 
datatype,beta,N.n,k,my_rand,cenaoring. 

NT,iDt.rvalT,lambda,L,iDd_frai1,frai1,frai1_parm, 
alphaF,atoreF.accptF,at_Fparm,var_atoreF) 
iDt buff,datatype,N,n,k,NT,L,ind_frai1,1,frai1[n+l]j 
iDt D,it_no.accptF[L+l],my_rand[3]j 
double beta[k+2][N+l],cenaoring[n+l],var_.toreF[L+l]j 
double iDterval[N+l] ,data [datatype+l] [n+l],covariate[k+2] [n+l] j 
double intervalT[NT+l] ,lambda[k+2] [NT+l] j 
double frail_parm[L+l],alphaF[2],atoreF[L+l],st_Fparm[L+l]j 

int i' 
double ;;,bF,lik,bdaahi 
double mtmp,bufftmp,burf2,tmp,tmpl,tmpafj 
double exp() ,fn_modulas() ,rgamma() ,fn_frail_lik() ,fn_hyperfrail()j 
double n.valpha,nevbeta,hyperalpha,hyperbeta,betadash,deltaj 
aF-alphaF[1] j 
delta-O.Oj 
for(i-lji<anj++i){ 

it (frail [i] -1) { 
d.lta-d.lta+cenaoring[i]j 

~ 
lit-fn_frail_lik(k,n,N,L,datatype,l,data, interval, 
covariate,beta,frail,frail_parm)j 
tmpaf-aFj 
tmpl-rgamma(aF+d.1ta,1.0/(tmpaf+lik),mJ_rand)j 
frail_parm[l]-tmplj 
} 

This function calculates the full conditional for the covariate effect parame­
ters. 

double full_cond(indicator,g, iDt_index ,1 ,covariate ,Vvar , interval. 
data,datatyp. ,beta,N,n,k,beta_prmn,beta_prvr , censoring ,NT , 
int.rvalT,lambda,L,ind_frail,frai1,frail_parm) 
int datatype,N,n,k,NT,1,ind_frail,L,frai1[n+l]j 
double beta [k+2] [N+l] ,cenaoring[n+l] ,data [datatype+l] [n+l] j 
double beta_prmn[k+2],b.ta_prvr[k+2],Vvar[k+2] ,covariate[k+2] [n+l] j 
int indicator,g,int_indexj 
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double 

!oub1e 
int 
double 

1ambda[k+2][NT+l],interva1[N+l],interva1T[NT+l],frai1_parm[L+l]; 

1ik2,lik,mu1t_by,ith_part,my_cond,tmp6,tmpl,tmp2,tmp3; 
i,indexl; 
log(),log_norm(),fn_1ik(); 

1ik=fn_1ik(N,n,k,datatype,beta,interval,1,covariate,data,censoring, 
NT,interva1T.1ambda,L.ind_frai1.frai1,frail_parm); 
if (int_index==l) { 

mu1t_by=log_norm(beta[g] [1] ,beta_prmn[g] ,beta_prvr[g]); 
} 

if (int_index!=l){ 
mu1t_by-1og_norm(beta[g] [int_index] .0.0.Vvar[g]); 
} 

return(lik+mu1t_by); 

} 

The following function evaluates the full conditional for the frailty hyper­
parameter. 

fn_hyperfrai1(current.L.frai1_parm) 
Li 
current,frai1_parm[L+l]; 

double 
int 
double 
{ 
double tmpl,tmp2.tmp3.tmp4,tmp5.tmp6.tmp7.P,S. 
hypera1pha,hyperbeta,invcurrent; 
int 1; 
double gammafn(),exp().log()i 
/ ........................................ / 
P-O.O; 
S=1.0; 
hypera1pha=0.001; 
hyperbeta=l. 001; 
/ ...................................... / 
for(l=l;l<-L;++l){ 

P=P+frai1_parm[1]; 
S=S.frail_parm[l]i 
} 

tmpl-gammafn(current); 
tmp2=L.1og(tmpl)i 
tmp3=(L.current)+hyperalpha-l.0i 
tmp4-tmp3.1og(current)i 
tmp5=current.hyperbeta i 
tmp6-(current-l.0).log(S)i 
tmp7=(current).P; 
return(tmp4+tmp6-tmp5-tmp7-tmp2)i 
} 

The following functions carry out the Metropolis-Hastings step for the frailty 
hyper-parameter. 

fn_fu11frai1(n.k.N,buff,D,L.it_no.alphaF,frai1_parm. 
accptF,storeF,my_rand.var_storeF) 
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int n,k,N,buff,D,L,it_no,accptF[L+l],my_rand[3]; 
double alphaF[2],atoreF[L+l],frail_parm[L+l],var_atoreF[L+l]; 
{ 
double current,newl,new2,rl,r2,weight,tmp6,uni, 
pl,p2,alpha,beta; 
double erp(),fn_hyperfrail(),rgamma(),runiform(), 
fn_modulaa(),pgamma(); 
double tmp,mtmp,bufftmp,buff2; 
/ ..................................................................... / 
current=alphaF[l]; 
rl=fn_hyperfrail(current,L,frail_parm); 
pl=pgamma(current,alpha,beta); 
newl=rgamma(alpha,l.O/beta,my_rand); 
r2-fn_hyperfrail(newl,L,frail_parm); 
p2-pgamma(newl,alpha,beta); 
weight-r2-rl-p2+pl; 
tmp6=erp(weight); 
uni-runiform~my_rand); 
if (tmp6<-uni){ 

alphaF[l]-current; 
if(it no>D){ 
mtmp-It_no+l.0; 
mtmp-mtmp-l. 0; 
bufftmp-buff+l.0; 
buff2-bufftmp-l.O; 
tmp=fn_modulaa(mtmp,buff2); 
if (tmp-O.O){ 
atoreF [l]-atoreF [l]+current; 

storeF[2]-atoreF[2]+(current.current); 
p 

} 

Afunction refers to A(·) used within the calculation of the likelihood. 

double Afunction{start,end,obsindex,k,n,N,datatype,trans_beta, 
interval,covariate,frailty) 
int k,n,N,datatype; 
int start,end,obsindex' 
double frailty,trana_betatk+2] [N+l],interval[N+l] ,covariate[k+2] [n+l]; 

~ ................................................................. / 
double sum,diff; 
double tmpl,tmp2,tmpc,erp(); 
int i,g; 
/ ................................................................. / 
sum=O.O; 
for{i=start;i<end+l;++i){ 
diff=interval[i]-interval[i-l]; 
tmp2=trans_beta[1] [i]; 
for(g=2;g<=k+l;++g){ 
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tllpcatrana_beta[g] [i] .covariate [g] [obaindex] ; 
tllp2-tllp2+tllpc ; 
} 

tmpl-.xp(t.p2)*diff.frailty; 
aw.-aUlt+tllpl; 
} 
return«-1.0).aua), 
} 

Cfunction refers to the function C(·), also used within the calculation of the 
likelihood. 
double Cfunction(begin,finiah,intind.x,obaindex,k,n,N,datatype, 
trana_beta,interval,covariate,frailty) 
int k,n,N,datat~; 
ut intind.x,obaindu· 
double begin,finish,fraiity, 
double trana_beta[k+2] [N+l1,interval[N+l] ,covariate[k+2] [n+l] , 

5 ••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••• •••• 1 
double aua,diff,tllpc, 
double tmpl,tllp2,tllpS, 
ut j,g; 
double .xp(),log(), 

I·························································· ... · ..... 1 diffafinish-befin, 
aumatrana_beta 1] [1ntindex] , 
for(g-2;g<-k+l;++g){ 

tllpc-trana_beta [g] [intindex] .covariate [g] [obsindex] ; 
awpaua+tllpc, 
} 

trap2-aum ; 
trap2-exp(tllp2) ; 
tllp3- (-1.0).tllp2.diff.frailty, 
return(tllp3); 
} 

The following function calclates each individual contribution to the likeli­
hood. 

double log_fn(data,cen,obaindu,k,n.N,datatype,trans_beta, interval , 
covariate,L,ind_frail,frail,frail_parm) 
int k,n,N,datatype,L,ind_frail; 
int obaindu, 
double data [datatype+l] [n+l],cen,trana_beta[k+2] [N+l] , 
int frail [n+ll • 
double frail_parmtL+l],interval[N+l].covariate[k+2] [n+l]; 

aoUble 
int 
int 
double 

aua,tllpc,tmpl,tllp2,tllpS.tmp4,tmp6,diff,dataR,dataL,frailty· 
intR.intL,i,g,frailty_ind, ' 
locationRO ; 
Afunction(),Cfunction(),exp(),log(); 
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frailty=-1.0i 
if (ind_frail=-l) { 

frailty_ind-frail[obsindex]i 
frailty-frail_parm[frailty_ind]i 

} 

dataR=data[l][obsindex]i 
intR=locationR(N,dataR,interval)i 
if (datatype==2) { 

dataL=data[2] [obsindex]i 
intL=locationR(N,dataL,interval)i 

} 

tmpl=O.Oi 
tmp2=O.O; 
if(intR!=l){ 
tmpl = Afunction(l,intR-l,obsindex,k,n,N,datatype,trans_beta, 
interval,covariate,frailty); 
} 
tmp2=Cfunction(interval[intR-l],dataR,intR,obsindex,k,n,N, 
datatype,trans_beta,interval,covariate,frailty); 
if(datatype==l t cen--l.0 11 datatype=-2 t dataR==dataL){ 
sum=trans_beta[l] [intR]; 
for(g=2;g<=k+l;++g){ 

tmpc-trans_beta[g] [intR]*covariate[g] [obsindex]; 
sum=sum+tmpc; 
} 
tmp6-tmpl+tmp2+sum+log(frailty); 

return(tmp6) ; 
} 
tmp3=O.O; 
tmp4=O.O; 
if(datatype=-2 t dataL!=O.O){ 
if(intLI=l){ 
tmp3= Afunction(l,intL-l,obsindex,k,n,N,datatype, 
trans_beta,interval,covariate,frailty);} 
tmp3=exp(tmp3); 
tmp4=Cfunction(interval[intL-l],dataL,intL,obsindex, 
k,n,N,datatype,trans_beta,interval,covariate,frailty); 
tmp4=exp (tmp4) ; 
} 
return(log«exp(tmpl)*exp(tmp2»-(tmp3*tmp4»); 
} 

The following function calculates the likelihood for the complete data set, 
based on current parameter estimates. 

double fn_lik(N,n,k,datatype,beta,interval,l,covariate,data, 
censoring,NT,intervalT,lambda,L, 

ind_frail,frail,frail_parm) 
int k,n,N,datatype,NT,l,L,ind_frail,frail[n+l]; 
double beta [k+2] [N+l]; 
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double interval[N+l].intervalT[NT+l].lambda[k+2] [NT+l].frail_parm[L+ 1], 
covariate[k+2] [n+l].data[datatype+1] [n+1].censoring[n+1]; 
{ 
int i.j.g; 
double cen.sum.tmpl.tmp2.tmp3.tmp4; 
double log_fn().log_aids_fn(); 
double trans_beta[k+2] [N+l]; 
double trans_lambda[k+2] [NT+1]; 
for(g=1;g<=k+1;++g){ 
trans_beta[g] [l]=beta[g] [1]; 
for(i=2;i<=N;++i){ 

trans_beta[g] [i]=trans_beta[g] [i-1]+beta[g] [i] ; 
}} 

if (datatype==4) { 
for(g=l;g<=k+l;++g){ 
trans_lambda[g] [l]-lambda[g] [1]; 
for(i=2;i<=NT;++i){ 

trans_lambda[g] [i]-trans_lambda[g] [i-l]+lambda[g] [i]; 
}} 
sum=O.O; 
for(j=l;j<=n;++j){ 

cen=censoring[j]; 
tmp1=O.O; 
if (data [3] [j] I=O.O){ 
tmp1=log_aids_fn(data.cen.j.k.n.N.NT.datatype. 

trans_beta.trans_lambda. 
interval,intervalT,covariate,L,ind_frail.frail,frail_parm); 
} 

return(sum); 
} 
sum=O.O; 
for(j=l;j<=n;++j){ 

tmp1=O.O; 
1*** if (data [1] [j] I-O.O){ ***1 
cen=censoring[j]; 
tmp1=log_fn(data.cen.j.k.n.N.datatype.trans_beta. 

interval.covariate. 
L.ind_frail.frail.frail_parm); 
sum=sum+tmp1 ; 

} 
return(sum) ; 
} 
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