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Abstract: Panic disorder is characterized by a progression of panic symptom severity with repeated attacks. Repeated 

panic episodes evoke heightened anticipatory anxiety, phobic avoidance and are typically associated with comorbid 

symptoms of depression. Due to the heterogeneity of the disorder, reliable neurochemical correlates attending panic have 

not been identified. However, variable neuropeptide interfacing with major and minor transmitter systems may modulate 

individual vulnerability to panic and account for variable panic profiles. The extensive colocalization of cholecystokinin 

(CCK) with other neurotransmitters, including dopamine (DA), enkephalin (ENK) and GABA, in specific central sites 

may influence various aspects of anxiety and panic. The behavioral correlates attending panic likely follow from variable 

neurochemical release and conditioning/sensitization. Clinicians maintain that recurrent panic attacks are spontaneous 

(unexpected, uncued) and fail to acknowledge the wealth of information implicating a prominent role for stressful life 

events in panic. Conditioning and sensitization of both behavior (e.g., fear-motivated) and neurochemical events (e.g., DA 

and CCK) in response to uncontrollable stressors parallel the diverse heterogeneity of panic amongst clinical samples. 

Cholecystokinin-4, pentagastrin, lactate acid, and CO2 induce panic attacks that are dependent on subjective history, 

expectancy measures and panic profiles. Panic disorder is associated with chronic illness and familial sick-role modeling 

exacerbates the course of the illness. The current review outlines the evidence in support of a conditioning/sensitization 

model for panic, a model that may explain the variable efficacies of pharmacological interventions. 

INTRODUCTION 

 Panic disorder is characterized by the repeated occurrence 
of panic attacks. During a panic attack, fear, shortness of 
breath, dizziness, heart palpitations, chest pain, sweating, 
faintness, paresthesia, nausea and cognitive symptoms 
including depersonalization and fear of losing control are 
typically reported [1]. Panic disorder is invariably associated 
with anticipatory anxiety [2, 3] and is characterized by phobic 
avoidance [1]. Indeed, agoraphobic behavior routinely 
accompanies panic disorder and is more prevalent among 
females [4, 5]. In any event, panic disorder with or without 
agoraphobia ordinarily persists for protracted periods and is 
accompanied by social and occupational impairments [6, 7], 
health risks [8-10] and comorbid psychiatric disturbances 
including changes in cognitive function [11], major depression 
[12, 13], schizophrenia [14] and substance abuse [15, 16]. 

 Current neurochemical descriptors of panic are suggestive 
rather than persuasive and animal models of panic are 
provisional [17, 18]. Inferences concerning central correlates 
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of panic have been derived from behavioral and neuro-
chemical alterations attending systemic cholecysto-kinin 
(CCK) administration in paradigms that simulate anxiety [19, 
20]. The panic properties of systemic CCK [21-23] prompt 
suggestion that brain stem and spinal respiratory and 
cardiopulmonary CCK sites contribute to panic [24-26]. Panic 
attacks have been posited to occur in the absence of 
demonstrable precipitants (e.g., DSM-IV), despite evidence 
that stressful life events precede panic [2, 3, 27-33]. This 
observation is appealing, although the distribution, severity 
and controllability of stressful life events have received poor 
clinical documentation. In any event, the proposal that panic 
or the symptoms of panic are influenced by a stressor-CCK 
interface is intriguing. In fact, evidence implicating CCK and 
panic is convincing and a dopamine (DA)/CCK link to the 
disorder has been derived from neurochemical and behavioral 
evidence with nonhuman experimentation. Embedded in this 
matrix are issues pertaining to validity and generalizability of 
nonhuman experimentation and operational definitions of 
psychological dysfunction. 

 Dopamine-CCK colocalization has been detected in 
mesocorticolimbic DA neurons [34]. Identification of same 
vesicle DA/CCK [35] is consistent with speculation that DA 
and CCK co-release contributes to psychological disturbance 
[34]. At the very least, the variable influence of CCK on 
central DA should provide species-specific behavioral 
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correlates of anxiety. Stressful life events may precede panic 
in vulnerable individuals. Accordingly, the responsivity of 
DA and CCK to aversive life events may influence the 
severity of panic symptoms. Mild stressors promote 
mesocorticolimbic DA [36] and CCK release [37-39] in rats, 
while variations of stressor intensity favor mesocorticolimbic 
diazepam-binding inhibitor [40], corticotropin-releasing 
factor [41] or -carboline release (e.g., -CCE and -CCM) 
[42] in sites responsive to stressor associated alterations of 
DA and CCK. Taken together, diverse anxiogenic agents are 
released by stressors and the proposal that panic occurs in 
response to innocuous events is neither parsimonious nor 
appealing [43]. The present review suggests that 
conditioning and sensitization of anxiety may promote 
gradients of psychological dysfunction that eventuate in 
panic. Such an analysis suggests that life events are 
appraised soon after panic and rumination defines situational 
variables and provides a framework concerning the risk 
value of environmental events. 

 Animal models of conditioning and sensitization focus on 
long-term neurochemical alterations attending psycho-
stimulant administration and the influence of transmitter 
variations on locomotor activity and stereotypy [44, 45]. 
Although locomotor activity and stereotypy are not indices of 
anxiety, the neural mechanisms underlying behavioral 
sensitization affected by stressors and psychostimulants are 
relevant to panic induction. In this respect, emergence and 
aggravation of panic symptoms may be occasioned by the 
conditioned pairing of anxiogenic agents, including CCK, and 
stressful life experience(s). The nature and severity of the 
stressor dictates site-specific central CCK release [46, 47] 
and the sensitivity of the brain sites examined [38]. Such 
variables may define vulnerability to panicogenic 
environmental events. Exacerbation of panic symptoms 
might be occasioned by recurrent stressors, panic experience 
and/or cues associated with such stimuli. In this regard, 
panic profiles may parallel nonhuman instances of 
sensitization while comorbid psychological disorders, 
including depression may outline the variable contributions 
of experiential and organismic factors [48], including gender 
susceptibility [49-56] as well as environmental context and 
conditioning [57-62] to the expression of pathological states. 
Parametric analyses reveal variability in the induction, 
persistence and magnitude of effects relative to the behavior 
examined and the brain sites involved. In view of the 
observation that stressors and acute and chronic 
psychostimulant administration influence DA [63, 64] and 
CCK turnover [38, 39, 65-67] and both DA [31, 68] and 
CCK [69, 70] alterations appear in panic patients, it is 
suggested that neurotransmitter sensitization may contribute 
to panic symptoms. 

 A sensitization/conditioning account of panic is 
appealing because (a) protracted anxiety has been associated 
with central DA variations in nonhuman [71] and human 
subjects [72-75], (b) CCK/DA colocalization is prevalent in 
mesocorticolimbic sites associated with arousal, reward, 
learning/conditioning [76], (c) anxiety among nonhuman 
subjects is readily induced by CCK administration in animal 
models of anxiety including the elevated plus maze [77] and 
(d) stressor-associated environmental cues influence 
behavioral [78-80] and neurochemical change [81, 82] 
reminiscent of the anticipatory anxiety associated with panic 

disorder. This review attempts to determine whether there is 
sufficient evidence to suggest that panic symptoms occur 
spontaneously or follow from conditioning of central 
DA/CCK activity induced by anxiety provoking conditions. 
A synthesis of such information is not meant to characterize 
the human disorder but rather to evaluate a limited subset of 
symptoms, including but not limited to, anticipatory anxiety. 

Central Dopamine Turnover: Prelude to Anxiety and 

Emergence of Panic Disorder 

 Investigations of the pathophysiology of panic have 
focused on the serotonergic (5-HT), noradrenergic (NE), and 
the GABA-benzodiazepine systems [83-90] among other 
neurotransmitters. Nevertheless, several lines of evidence 
suggest that DA may be involved in anxiety [68, 91] and 
panic [31, 68]. For anxiety, although there is a paucity of 
information for the role of DA in mediating clinical anxiety, 
mild stressors, that provoke mesocorticolimbic DA turnover, 
have demonstrable anxiogenic effects in the elevated plus 
maze [92-94] and fear potentiated startle [80] in rats. Such 
paradigm-associated anxiety, which is responsive to acute 
benzodiazepine administration, increased DA concentrations 
in the frontal and pyriform cortices, nucleus accumbens, 
septum, medial hypothalamus and amygdala [81, 95-98]. In 
the latter instance for panic, plasma and cerebrospinal 
homovanillic acid (HVA) concentrations, a DA metabolite, 
fail to discriminate panic and control subjects [29, 99, 100]. 
The lack of a neurochemical panic index is not without 
precedent since NE alterations, for example, have likewise 
failed to discriminate panic from non-panic subjects [101, 
102]. Some laboratories have identified DA perturbations 
among panic patients with increased anxiety as measured on 
the Spielberger State Anxiety scale, augmented panic 
frequency in the 12 months preceding clinical interview and 
reduced symptom free periods relative to other panic patients 
[30, 31, 68]. Unfortunately, evidence for central DA and 
laboratory induced panic remains obscure. Laboratories that 
have assessed peripheral DA metabolites among normal 
subjects during laboratory exercises have failed to produce 
anxiety comparable to panic [103]. Indeed, there is no a 
priori reason to suspect that innocuous laboratory challenges 
will induce panic in patients with the disorder [104]. Still, 
contrived laboratory situations provoke panic in some panic 
patients [57] suggesting that some individuals are more 
vulnerable than others to the impact of specific environ-
mental encounters. It would be of considerable advantage to 
secure measures of central DA prior to, during and following 
panic induction in a laboratory situation. 

 Populations in which panic have been well documented 
include Parkinsonian patients and persons with schizo-
phrenia. Despite the neurodegenerative nature of Parkinson’s 
disease and the veiling of central neurochemistry by 
therapeutic interventions, panic in Parkinson’s disease and 
schizophrenia provides subtle evidence for the involvement 
of DA in the phenomenology of panic-like states. It is 
interesting that divergent alterations in DA associated with 
Parkinson’s disease and schizophrenia are associated with 
the elicitation of panic-like symptoms. While mesocortico-
limbic contribution to behavioral sensitization following 
stressor encounter [105, 106] has received extensive 
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documentation, nigrostriatal DA/CCK alterations may also 
alter sensitivity to stressors. 

Nigrostriatal Dopamine and Cholecystokinin: Anxiety 

and Panic-Like Behavior in Parkinson’s Disease 

 Parkinson’s disease is characterized by insidious 
nigrostriatal DA and CCK depletion [107-112]. In addition 
to tremor, inertia, rigidity, bradykinesia, akinesia, flexed 
posture and gait disturbance, Parkinsonian patients 
experience mild depression and irritability as well as 
memory and attentional perturbations [111, 113-117]. L-
dopa ordinarily ameliorates Parkinsonian associated motoric 
impediments but is ineffective in alleviating affective and 
cognitive symptoms of the disorder [111]. Advanced 
Parkinsonian stages reduce the efficacy of l-dopa in 
alleviating motor disturbance and not surprisingly symptom 
free intervals [118]. Parkinsonian patients experiencing daily 
on/off episodes report increased instances of anxiety and 
depression during l-dopa off stages [111, 119-121], 
prompting increased l-dopa therapy [122]. Alleviation of 
mood disturbance and anxiety at this juncture may be 
attributable to the l-dopa dose employed [123] or perhaps 
patient appraisal of restored motor function [73]. It should be 
considered that approximately 40% of l-dopa treated 
Parkinsonian patients [124-126] exhibit a DA mesocortico-
limbic-associated psychosis [127, 128]. Protracted l-dopa 
treatment, therapeutic dose increases and episodic instances 
of pharmacological insensitivity to peripheral DA loading 
have been linked to the emergence of panic-like symptoms 
(2.6 ± 1.4 panic attacks per day) among Parkinsonian 
patients [73, 122]. Nevertheless, panic frequency comparison 
between Parkinsonian and panic patients is obscured in the 
latter instance by investigations that fail to provide definitive 
panic statistics. Despite such difficulties, Parkinsonian panic 
(a) represents a relatively severe version of the disorder, (b) 
is distributed equally among male (45%) and female subjects 
(55%) [122] and (c) only emerges during latter stages of the 
disease (e.g., 60-70 years of age). In contrast, panic patients 
are most likely to experience a panic episode when they are 
middle-aged, rarely following age 65, and the disorder is 
more prevalent among females [4]. Nigrostriatal degenera-
tion may contribute to the paresthesia, burning sensations 
and discomfort emanating from the feet, chest or face 
immediately prior to panic [122]. Although a Parkinsonian 
focus on specific symptoms preceding panic has not been 
verified, such vigilance would parallel the documented 
physiological monitoring characteristic of panic subjects 
[129]. In this respect, distraction of Parkinsonian patients 
from antecedent neuromuscular perturbations attenuates 
panic [122]. 

 It is unlikely that estrogen availability can account for 
panic among Parkinsonian patients. While panic frequency 
and severity could be reduced in female relative to male 
Parkinsonian patients owing to menopause onset, such 
predictions have not been verified. In fact, estrogen 
replacement has been associated with the alleviation [130] 
and the exacerbation [131] of panic symptoms in panic 
patients. Panic episodes characterized by pre-panic 
palpitation, chest discomfort, tightness of jaw, teeth grinding 
and muscle ache were attenuated by estrogen. In contrast, 
panic episodes lacking such a prominent motor profile are 

exacerbated by estrogen. In Parkinsonian patients, l-dopa 
fluctuations and panic are often coupled to mood alterations 
such as depression. Increased estrogen levels in female rats 
have been associated with an increase in the rewarding value 
of brain stimulation from the medial forebrain bundle [132]. 
Taken together, the demonstration that (a) estrogen alleviates 
l-dopa nigrostriatal perturbations, (b) l-dopa fluctuations are 
associated with cognitive alterations including depression 
and psychosis (e.g., mesocorticolimbic DA alterations) and 
(c) the demonstration that l-dopa motoric fluctuations and 
depression are associated with the development of panic 
among Parkinsonian patients preclude an estrogen-based 
argument. In effect, an estrogen hypothesis defining 
emergence, maintenance and exacerbation of panic in 
Parkinson’s disease cannot readily account for the available 
data. In addition, the nature of the somatic experience per se 
does not appear to be relevant to the induction of panic. 
Rather, it seems that the intensity of the cognitive 
experience, regardless of the symptom cluster anticipated, 
may be sufficient to elicit panic. Such an interpretation 
suggests that panic emerges following rumination over 
perceptually defined salient cues in diverse pathological 
states (Fig. 1). In effect, panic among cardiac patients [133], 
depressed subjects [13, 28, 134-142] or individuals with 
myasthenia gravis [9] is not surprising. Clearly, conspicuous 
neurochemical variations attending Parkinson’s disease 
contribute to the emergence of somatic complaints and favor 
vigilance during treatment resistant intervals. In effect, 
fluctuations in Parkinsonian symptoms, coupled with 
pervasive, anticipatory stressors, may promote panic among 
treatment resistant Parkinsonian patients. 

 At first glance, it is not clear that panic among 
Parkinsonian patients contributes to the elucidation of the 
neural mechanisms associated with panic-like states and/or 
the putative influence of sensitization. These data merely 
suggest that panic-like symptoms in Parkinsonian patients 
follow from some neurochemical cascade elicited by DA 
denervation. Indeed, the appearance of panic-like symptoms 
in Parkinsonian patients coincides with the time course of 
mesolimbic DA denervation (e.g., VTA and prefrontal 
cortex) [143-145]. In addition to alterations in mesolimbic 
DA activity, post-mortem analyses of Parkinsonian brain 
tissue have also provided evidence for altered nigrostriatal 
CCK activity [107-110, 146]. Such changes in nigrostriatal 
CCK concentrations parallel indices of l-dopa treatment 
resistance (e.g., l-dopa resistant patients and animal model of 
Parkinson’s disease [147-151] and symptom severity [107-
110]). As such, it is conceivable that nigrostriatal DA/CCK 
and mesolimbic DA alterations contribute to the eventual 
expression of panic among Parkinsonian patients owing to 
the gradual denervation of mesocorticolimbic sites from the 
substantia nigra. In effect, panic associated with nigral 
denervation and prompted by l-dopa induced psychosis, 
suggests that a neurochemical depletion threshold may be 
attained during the latter stages of Parkinson’s disease. 
Available evidence to date has certainly not established a 
causal role for mesocorticolimbic CCK and panic among 
Parkinsonian patients. At best, plasma CCK levels and post-
mortem CCK-binding provide provisional indices of 
augmented CCK turnover in specific subject populations 
experiencing varying levels of anticipatory anxiety [152, 
153]. Nevertheless, anticipatory anxiety among Parkinsonian 
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patients may occur in response to the stressor-like 
experiences occasioned by the off stages of l-dopa therapy 
(c.f. stressor induced CCK alterations in nonhuman subjects, 
[38, 39, 67]). Indeed, variations of mesocorticolimbic CCK 
availability between DA-denervated Parkinsonian patients 
experiencing panic and age, sex and disease matched 
subjects would be intuitively appealing. While such 
provisional arguments must be held in abeyance, panic-like 
symptoms among Parkinsonian patients coincide with (a) 
changes in nigrostriatal CCK availability during the late 
stages of the disease and (b) the emergence of presumably 
enhanced stressor periods among Parkinsonian patients (c.f. 
DA/CCK interface following stressor imposition in 
nonhuman subjects, [38, 39, 154, 155]). However, the 
appearance of panic among Parkinsonian patients 
experiencing gradual exacerbation of cognitive dysfunction 
(e.g., impairments in memory and attention and the 
development of psychoses, [111]) and motoric debilitation 
(e.g., during l-dopa off periods and dyskinesias) lends 
support to a sensitization/conditioning hypothesis in the 
acquisition and expression of panic. 

Dopamine and Cholecystokinin in the Mesocorticolimbic 

System: Anxiety and Panic-Like Behavior in Schizophrenia 

 Paranoid forms of schizophrenia have been associated 
with elevated anxiety as revealed by the Brief Psychiatric 
and Hamilton Anxiety Rating Scales [156-162]. These 
psychiatric patients routinely report experiencing a high 
incidence of daily life stressors (e.g., loss of social support, 
divorce, death of a loved one, impending job and/or 
residential changes and admission to a psychiatric facility) 
that exacerbate schizophrenic episodes [161, 163-172]. 
Moreover, repeated exposure to such life stressors increase 
anticipatory anxiety as revealed by exaggerated startle 
responsivity among individuals with schizophrenia [173, 
174]. While atypical, severely stressful life events, including 
active military duty, for example, may precipitate psychotic 
episodes in vulnerable individuals [163], repeated experience 
with milder, stressful life events (e.g., loss of social support) 
over a few months has also led to schizophrenic symptom 
exacerbation, including psychosis [166]. In effect, elicitation 

and/or exacerbation of the symptoms of schizophrenia might 
be occasioned by a broad spectrum of life stressors, varying 
in severity and chronicity. Interestingly, panic and 
agoraphobia (e.g., 2.4 ± 1.4 attacks per week) have been 
reported among individuals with a history of paranoid 
schizophrenia (e.g., >4 years) by several different 
laboratories [72, 175-178]. The panic symptoms experienced 
by individuals with schizophrenia appear to represent a 
moderately severe panic course reminiscent of that 
experienced by Parkinsonian patients [179]. Characteristic-
ally, individuals with schizophrenia who experience panic-
like symptoms tend to be socially introverted, consistent 
with pervasive paranoia and/or embarrassment associated 
with psychotic episodes [175, 178]. The frequency of panic-
like symptoms among individuals with schizophrenia 
coincides with the psychotic episodes that are associated 
with anxious cognition, including rumination over 
agoraphobic fears and increased somatic perturbations [175, 
178, 180, 181]. Indeed, preoccupation with and attention to 
somatic and cognitive perturbations punctuated with varying 
degrees of psychosis may contribute to panic symptoms in 
individuals with schizophrenia. While somatic monitoring in 
schizophrenia would parallel the physiological vigilance 
characteristic of panic [129], cognitive monitoring may be 
specific to schizophrenia. Individuals with schizophrenia are 
undoubtedly cognizant of the progression of schizophrenic 
symptomatology (see [182] for discussion of suicide preva-
lence among individuals with schizophrenia). However, 
severe schizophrenic illness may preclude cognitive inter-
vention strategies with demonstrated efficacy on panic 
symptomatology in Parkinson’s patients [122] and panic 
patients [183]. Nevertheless, panic symptom attenuation in 
schizophrenia coincides with decreased psychotic episodes 
(e.g., alprazolam, 2.5 - 5mg/day, [177, 178]) or reduced 
agoraphobic associated behavior (e.g., imipramine, 
50mg/day, [175]). At this juncture, it is not readily apparent 
whether the neural mechanisms underlying schizophrenia are 
likewise conducive to the expression of panic. For example, 
psychosis has been demonstrated in panic patients. The 
appearance of psychosis among panic patients is related to 
the duration of panic (>10 years), severity (>3 panic 

 

Fig. (1). Schematic diagram outlining the progression of events that leads to panic disorder. Initial antecedent events or mild stressful 

events elicit some physical or cognitive changes following the repeated occurrence of symptoms (subtle physical or cognitive) that culminate 

in severe anxiety states with disease progression. Interestingly, CCK alterations have been documented in schizophrenia and Parkinson’s 

disease. Events may occur as early as before birth, with a critical period identified as prior to the age 18, and span across the lifetime. 
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attacks/day) of panic symptomatology and the presence of 
agoraphobia [184-186]. Moreover, the relative risk for 
schizophrenia among panic patients appears to be 
conspicuously increased relative to the general population 
[185]. Taken together, central neurochemical alterations 
accompanying psychopathology and/or the gradual 
emergence of conditioned behavior (e.g., agoraphobia) may 
influence the course of panic-like symptoms. 

 Hypersensitivity of mesocorticolimbic DA activity, as 
measured by DA binding [187, 188], DA mRNA [189], 
positron emission tomography (PET) [190] and 

123
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SPECT [191, 192] among individuals with schizophrenia, 
appears to coincide closely with the expression of positive 
schizophrenic symptoms such as delusions and 
hallucinations [193, 194]. Notably, positive symptoms of 
schizophrenia are associated with social and agoraphobic 
fear [161]. It should be underscored that negative symptoms 
of schizophrenia such as poverty of speech, flattened affect 
and psychomotor retardation are not associated with 
hypersensitivity of mesocorticolimbic DA activity (see [195] 
for review) or panic. It should be considered that 
mesocorticolimbic hypersensitivity might follow from the 
chronic neuroleptic regimens employed to attenuate 
delusions and hallucinations [196]. Typically, delusions, 
hallucinations and phobic avoidance assessed by the 
Minnesota Multiphasic Personality Inventory (MMPI), 
Clinical General Impression (CGI) and the Brief Psychiatric 
Rating Scale (BPRS) [157, 159, 195, 196] are exacerbated 
over the course of the illness. The gradual exacerbation of 
schizophrenic symptoms has prompted suggestion that 
conditioning and/or sensitization of mesocorticolimbic DA 
(see [181, 197-199] for review of mesocorticolimbic DA and 
cognition; c.f. amphetamine psychosis, [200-203]) 
underlie(s) expression of at least some of the behaviors 
associated with schizophrenia [91, 187, 204, 205]. In 
addition to alterations of central DA activity, there are some 
data that outline a putative contribution of central CCK to 
the etiology and maintenance of schizophrenia [206-209]. 
Postmortem determinations have revealed increased CCK 
concentrations in the striatum and mesencephalon [210, 211] 
and reduced CCK availability in the amygdala and 
hippocampus [212-214] as well as concomitant reductions of 
CCK mRNA in the temporal and frontal cortices in 
neuroleptic treated individuals with paranoid schizophrenia 
relative to controls matched for age (65.8 ± 6.8 years), 
morbidity (e.g., heart disease and cancer) and postmortem 
delay (16.6±4.2 hours) [215]. Available studies to date have 
clearly not established a relationship between central CCK 
and panic in individuals with schizophrenia and 
investigations documenting central CCK variations among 
individuals with paranoid schizophrenia typically fail to 
document any symptoms reminiscent of panic. It is 
interesting, however, that postmortem CCK determinations 
in brain tissue have verified patterns of CCK activity within 
specific brain sites associated with positive and negative 
symptoms of schizophrenia. On the one hand, positive 
symptoms of schizophrenia, precipitated by increased DA 
activity [195, 196, 216, 217], are associated with a greater 
reduction in frontal cortex CCK mRNA compared to the 
temporal cortex. On the other hand, negative symptoms of 
schizophrenia are associated with reduced CCK mRNA in 
the temporal cortex, amygdala and hippocampus [215]. 

Panic attacks fluctuate with psychosis severity and it would 
be of interest to determine mesocortical CCK activity (e.g., 
PET scan) among individuals with schizophrenia during a 
panic episode. Curiously, neuroleptic strategies for schizo-
phrenia (e.g., haloperidol) increase striatal and mesolimbic 
CCK concentrations [218, 219] and increase CCK binding 
(e.g., decreasing CCK tissue levels) in several cortical areas 
in nonhuman subjects that persist for several weeks [219-
221]. Panic-like symptoms and exacerbation of schizo-
phrenia following neuroleptic withdrawal [175, 222, 223] 
has been associated with increased CCK activity and conco-
mitant release of the anxiogenic substances, corticotropin-
releasing factor [224] and diazepam-binding inhibitor [225, 
226]. 

 While the panic properties of CCK-4 have been 
empirically documented among panic patients and healthy 
volunteers [21, 227], demonstration of the panic inducing 
properties of CCK-4 in individuals with schizophrenia is 
unavailable (c.f. CCK-8S administration in schizophrenia, 
[208, 228-234]). Recall that in individuals with schizo-
phrenia, social and agoraphobic fear have been reported to 
precede panic attacks [175]. Interestingly, in rats, social 
isolation has been associated with an upregulation of CCK2 
receptors in the frontal cortex [235]. It is conceivable that 
some personality variables associated with schizophrenia 
(e.g., social introversion or social alienation) provide indices 
of panic susceptibility following CCK-4 challenge. For 
example, the intensity of somatic, affective and cognitive 
responsivity to CCK-4 (e.g., Panic Symptom Scale) in panic 
patients has been related to anxiety sensitivity (e.g., Anxiety 
Sensitivity Index) and self-alienation scores derived from the 
MMPI Social Inversion Subscales [22]. It would be of 
interest to determine the effects of CCK2 antagonists, which 
attenuate the panicogenic effects of CCK-4 in panic patients 
[236], on agoraphobic fear and panic symptoms in 
individuals with schizophrenia (c.f. neuroleptic properties of 
CCK2 antagonists in nonhuman preparations, [237]). If 
CCK2 antagonists were efficacious in the treatment of panic 
symptoms among individuals with schizophrenia (e.g., 
psychosis, agoraphobia and/or social avoidance), it is 
conceivable that alterations in mesocorticolimbic CCK2 
receptor activity sustain expression of both schizophrenic 
and panic symptoms. Moreover, it should be considered that 
current therapeutic interventions (e.g., haloperidol), which 
promote increases in CCK activity in the frontal cortex of 
nonhuman subjects, might contribute to panic-like responses 
among individuals with schizophrenia. Taken together, 
alienation, introversion, panic and psychotic exacerbation 
may be associated with variants of enhanced CCK sensitivity 
and/or over activity of central DA and contribute to the 
expression of panic symptoms in individuals with 
schizophrenia. 

 Panic-like symptoms among individuals with schizo-
phrenia are reminiscent of those reported by Parkinsonian 
patients and may be occasioned by (a) the prevalence or 
perceived prevalence of stressful life events, (b) alterations 
of central DA/CCK availability associated with chronic 
illness and/or (c) the chronicity of therapeutic interventions. 
Interestingly, Parkinsonian panic coincides with reduced l-
dopa efficacy and l-dopa induced psychosis. Furthermore, 
autoradiographic data suggest comparable mesocorticolimbic 
DA receptor variations (e.g., frontal cortex and nucleus 
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accumbens) in paranoid schizophrenia and Parkinsonian 
patients experiencing l-dopa psychosis [145, 238-243]. The 
saliency of mesocorticolimbic DA/CCK alterations to the 
promotion of panic in individuals with schizophrenia and 
Parkinson’s disease is obvious. Taken together, the repeated 
encounters with stressful life events may facilitate panic in 
Parkinsonian patients, individuals with schizophrenia and 
panic patients (see Fig. (1)). The clinical vantage (DSM-IV) 
typically asserts that stressful life events do not participate in 
the precipitation or maintenance of panic. However, panic 
often emerges in clinical populations with demonstrated 
vulnerability to stressful life events (e.g., depression, 
schizophrenia, Parkinson’s disease). In order to determine 
whether stressful life events contribute to the provocation of 
panic symptomatology in individuals with schizophrenia, 
Parkinson’s disease and panic disorder, the cumulative and 
proactive influence of stressors must be determined (e.g., 
sensitization). 

Anxiogenic Indices Associated with Stressor Exposure: 

Nonhuman and Human Experimentation 

 Anxiety among nonhuman subjects has been defined as 
the behavioral response to unpredictable, novel or 
threatening stimuli, including uncontrollable footshock, in 
anxiety paradigms [78, 80, 94, 244]. Yet, it remains to be 
determined whether footshock is a suitable stressor in 
assessing anxiolytic efficacy. Examination of repeated 
anxiety provoking situations to the provocation of panic 
necessitates comparison of animal models that parallel the 
human condition. To date, adequate animal models of panic 
are lacking. It should be considered that fear conditioning 
(e.g., startle and freezing) in nonhuman subjects may provide 
a behavioral analogue of the anticipatory anxiety associated 
with panic disorder. It has been demonstrated, for example, 
that rats exposed to apparatus cues previously associated 
with footshock exhibited increased DA turnover in the 
prefrontal cortex [82] and amygdala [81] which was 
attenuated by low dose diazepam administration (1-5mg/kg). 
Conditioned fear paradigms employ rather mild stressors 
relative to paradigms assessing the behavioral repercussions 
of footshock. In any event, conditioned fear (e.g., freezing) 
has been reliably associated with elevated plasma ACTH, 
corticosterone and prolactin concentrations for at least 14 
days post-stressor in rats [245]. In humans, conditioned fear 
or fear-enhanced startle has been linked to psychological 
disorders in which sustained and exaggerated reactivity to 
environmental stressors appears fundamental. For example, 
enhanced startle response has been routinely associated with 
posttraumatic stress disorder [246], schizophrenia [247] and 
panic [248, 249]. Interestingly, clinical investigations have 
demonstrated an enhanced startle reflex (e.g., eye-blink and 
heart rate) in response to a startle probe (e.g., binaural burst 
of 110 dB white noise, 50 msec duration) previously 
associated with graphic photographic slides (e.g., wounds or 
mutilated bodies) in normal subjects [250]. In panic patients, 
exaggerated fear-potentiated startle response has been 
detected in response to the threat of electric shock [57]. 
Anticipation of electric shock (e.g., 1.5 mA, 50 msec 
conducted through the median nerve of the wrist) 
administered during the final 10 seconds of a 45 second 
threat but not a 50 second no-threat condition, signaled by 
differential light cues, increased startle in panic patients 

relative to healthy controls. This startle response was largest 
in younger panic patients (e.g., <40 years) who also reported 
an increased frequency of panic attacks within the week prior 
to testing relative to older panic patients and age matched 
control subjects [251]. Taken together, the absence of a 
detailed retrospective clinical characterization of putative 
stressors and inadequate documentation of salient cue 
associated variables prevent an accounting of the ensuing 
panic histories of disparate panic subjects. Ultimately, startle 
latencies provide a potential measure of the developmental 
history of anticipatory anxiety and panic emergence. Indeed, 
Grillon et al. [251] reported that anticipated cue associated 
challenges in a simulated startle paradigm among young and 
older panic subjects elicit variable patterns of experimental 
compliance which influenced participation and anxiety 
induction. 

 Surprisingly, the contribution of mild stressors to anxiety 
induction in clinical applications has been neglected. It is 
intriguing that amygdaloid [252] and mesencephalic [253] 
input to the parabrachial nucleus sustains cardiovascular 
arousal and the VTA participates in the detection of salient 
and non-salient cues in rats [254]. Interestingly, panic 
patients with frequent panic episodes (e.g., >5.6 ± 2.3 
attacks/week) exhibit heightened cardiovascular arousal, 
increased sympathetic/autonomic alterations and increased 
anxiety in response to innocuous stimuli relative to panic 
patients with less frequent panic attacks (1.5 ± 0.5 
attacks/week) and normal subjects [255, 256]. Perhaps, 
sustained rumination and hypervigilance concerning 
encounters with situational challenges heighten anxiety. The 
contribution of such variables to the induction of panic 
certainly merits consideration. Yet, alterations of central 
anxiogenic activity accompanying panic and the identi-
fication of the parameters of putative stressors or the 
perceived saliency of environmental stimuli to the evocation 
of panic attacks have not been established. The 
demonstration that anticipation of stressful encounters 
influences CCK activity in humans [152, 153, 257] is 
certainly consistent with such an interpretation. Repeated 
low psychostimulant doses in rats were associated with 
alterations in CCK concentrations and CCK mRNA 
expression, which could be detected for several weeks 
following the last injection [65, 66]. Likewise, exposure to 
life stressors prior to age 19 has been documented to 
precipitate anxiety, depression and/or panic in some 
individuals [258, 259]. Indeed, familial illness and sick role 
behavior may also be salient to illness onset and the course 
of the psychological disturbance [260, 261]. Moreover, 
childhood behavioral problems (e.g., social withdrawal, 
anxiety/depression and aggression/delinquency) and the 
degree of emotional involvement demonstrated by parents to 
offspring with schizophrenia have been associated with poor 
prognosis, including psychotic relapse and comorbid 
affective disturbances [262, 263]. It should be noted 
parenthetically that nonhuman primates raised under 
stressful conditions (e.g., variable foraging demands) reveal 
aberrant behavior patterns (e.g., hyperactivity, clinging and 
behavioral inhibition) [264] and protracted increases in 
cerebrospinal corticotropin-releasing factor (CRF) 
availability [265] in adulthood compared to age- and sex-
matched control subjects. To date, evidence for the enduring 
influence of site-specific central CCK alterations among 
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human or nonhuman primates exposed to early life stressors 
are unavailable. In effect, aberrant parental practices, sick-
role modeling and excessive rumination may precipitate 
central CCK alterations that contribute to symptom 
exacerbation and panic emergence. Moreover, some 
investigators have suggested that decreased lymphocyte and 
cerebrospinal CCK-8 concentrations in panic patients may 
reflect enhanced CCK receptor sensitivity, reduced CCK 
receptor availability or perhaps compensatory reduction of 
CCK-8 concentrations secondary to increased CCK-4 
activity [69, 70]. It should be considered that 
neurotransmitters colocalized with CCK, including DA, 
participate in the production or exacerbation of some of the 
symptoms associated with panic disorder. Dopamine 
alterations may be peculiar to panic patients with 
considerable anxiety and a relatively severe panic course [31, 
68]. Moreover, DA alterations have been linked to the 
development of social phobia, a severe form of agoraphobia 
[100, 266]. Taken together, the nature of the panic 
experience and the frequency of stressful encounters may 
precipitate CCK release and determine the saliency of 
environmental conditions to panic induction. 

Cholecystokinin, Anxiety and Panic Attacks 

 Molecular forms of CCK are cleaved from prepro-CCK 
and include CCK-8 sulfated (S), pentagastrin (CCK-5) and 
CCK-4 which are degraded by aminopeptidase (see [76] for 
review). Cholecystokinin-8S is the predominant central form 
of CCK and found in high concentrations in the cerebral 
cortex, nucleus accumbens, basal ganglia, thalamus, 
hypothalamus, periaqueductal grey, olfactory tubercle, 
olfactory bulb, VTA, some brain stem nuclei and the spinal 
cord [206, 267-272]. Cholecystokinin is colocalized with DA 
in the mesencephalon [273], CRF in the paraventricular 
nucleus of the hypothalamus [274], oxytocin in the 
supraoptic and paraventricular nucleus of the hypothalamus 
[275], substance P in the central gray projecting to the spinal 
cord [276], GABA in the amygdala, frontal cortex and 
hippocampus [277, 278] and enkephalin in the hippocampus 
([279]; (see [280, 281] for review of antagonistic role of 
CCK and enkephalin in stress, anxiety, cognition and pain). 
As such, it is not surprising that CCK has been implicated in 
nocioception [282], learning and memory [283] as well as 
ingestive [284, 285], sexual and reproductive behavior [286] 
and panic [76, 287]. 

 Central and gastrointestinal CCK receptors have been 
identified. The CCK1 receptor distribution predominates in 
the gastrointestinal tract, area postrema, nucleus tractus 
solitarius, posterior nucleus accumbens, amygdala, septum, 
hypothalamus, dorsal raphe, cerebral cortex, ventral 
tegmental area, substantia nigra and hippocampus in rats and 
mice [288-290]. Sedative [230], ingestive [291], kindling 
[292], exploration [293], locomotion [294, 295] and 
cognitive [296] properties of the CCK1 receptor have been 
amply demonstrated. Central CCK2 receptors are distributed 
in the brainstem solitary complex, nigrostriatal, mesolimbic 
and mesocortical sites among nonhuman and human subjects 
and appear to play an anxiogenic (or pro-panic) role [297, 
298]. Mice lacking CCK2 receptors are less anxious, as 
measured by increased exploratory behavior in the elevated 
plus maze paradigm, than their wild type littermates [299, 

300]. Although, peripheral and central CCK-8S 
administration in nonhuman subjects has been associated 
with anxiety in the elevated plus maze [301, 302] and light-
dark paradigms [244], CCK-8S induces nausea and 
gastrointestinal malaise in human subjects [303, 304]. Either 
“illness behavior” and anxiety are not adequately 
differentiated in nonhuman subjects following CCK-8S 
administration or fundamental differences exist between the 
influence CCK agonists have on peripheral CCK receptors 
(i.e., those of the alimentary canal) in nonhuman and human 
subjects. In contrast, the selective CCK2 agonist, CCK-4, 
induces anxiety in nonhuman subjects [20, 305] and 
promotes panic in panic patients and normal subjects [21, 
23]. The differential propensity of CCK-8S and CCK-4 to 
provoke anxiety and/or panic in human subjects as well as 
rats and mice may be attributable to species variations [306], 
differential brain region sensitivity (e.g., amygdala, 
prefrontal cortex and nucleus accumbens, [307, 308]), drug 
route [309, 310] and/or paradigm specificity [308]. Clearly, 
discrepancies between clinical and nonhuman studies 
necessitate examination of methodological variables 
including drug schedule and experiential factors that 
influence sensitivity to CCK challenge and anxiety (panic) 
induction. The ensuing discussion will examine the 
contributions of CCK-8S, CCK-4 and pentagastrin to the 
provocation of anxiety in nonhuman and clinical subjects, 
the evidence supporting the contention that stressful life 
contribute to CCK-induced panic and the nature of panic 
symptoms in response to CCK administration. The diverse 
clinical profiles of panic suggest developmental stages of 
psychological dysfunction. Sensitization of central DA/CCK 
activity and cognitive processes (e.g., rumination and 
anticipatory anxiety) may underlie variability in effective 
pharmacological management of panic (Fig. 2). 

Cholecystokinin Induced Anxiety: Nonhuman Models 

 Chronic diazepam and alprazolam withdrawal have been 
associated with increased anxiety in human [311, 312] and 
nonhuman subjects [313]. Interestingly, chronic benzodiaze-
pine treatment in rats decreases neural responsivity to 
microiontophoretic CCK-8S application in the frontal cortex 
and hippocampus [287, 314]. In contrast, termination of 
chronic diazepam treatment increases hippocampal and 
cortical CCK-8 binding in the rat [315]. In mice, the CCK2 
receptor antagonist, Cl-988, dose dependently (0.001-1.0 
mg/kg

-1
) antagonized the anxiogenic effects associated with 

diazepam withdrawal [313]. In rats, flumazenil (4 mg/kg i.p.) 
significantly antagonized the anxiogenic effects of the CCK2 
agonist, CCK-8S and the anxiolytic-like effects of the CCK2 
antagonist, L-365, 260 [310]. Moreover, rats rated anxious 
with respect to performance in the elevated plus maze 
exhibited a reduced benzodiazepine receptor density and 
increased CCK-8S binding in the frontal cortex relative to 
non-anxious counter-parts [315]. These data suggest that 
benzodiazepines suppress CCK-8S activity in the prefrontal 
cortex of anxious mice [20]. Moreover, the dose and nature 
of the CCK fragment employed suggests site-specific 
sensitivity to anxiogenic drug administration. It is 
conceivable that CCK fragments exert differential influence 
on central areas associated with anxiety emergence. Indeed, 
the central amygdaloid nucleus is conspicuously more  
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Fig. (2). Schematic illustration of the involvement of repeated anxiety episodes in panic (I), the developmental stages, or course, of 

panic and the precipitating variables that affect its course (II) as well as some of the central sites hypothesized to be involved in panic 

disorder (III). I. Repeated anxiety may precipitate major affective disorder while episodes of depression may lead to further increases in 

anxiety. Reciprocal influences on individual states of anxiety and depression may be influenced by subjective factors including chronic 

illness in the family, subject history or other stressors. Panic evolves following some time and the temporal parameters associated with the 

appearance of panic symptoms among various clinical populations have not been clearly determined. II. Panic symptoms, once present, may 

consist primarily of autonomic symptoms including cardiovascular perturbations or cognitive symptoms including depersonalization and fear 

of losing control without accompanying phobic or depressive symptoms. More commonly panic disorder is complicated with depression of 

varying severity, mild phobia, hypochondriasis, and/or severe avoidance behavior. The varying types of panic classifications may represent 

different developmental stages of panic. Moreover, age of onset, illness in the family, panic duration, panic frequency and panic severity may 

influence the progression of panic from uncomplicated panic episodes to panic with comorbid symptoms of depression and phobia. 

Moreover, such factors may also influence pharmacological management of panic. III. The developmental stages of panic appear to be 

characterized by prominent symptoms that may involve brain stem structures, mesolimbic areas or cortical areas. Uncomplicated panic, for 

example, may be primarily associated with cardiovascular and respiratory perturbations (e.g., brainstem) although anxiety (e.g., amygdala) 

and rumination (e.g., nucleus accumbens, VTA, prefrontal cortex) are also present. Co-morbidity with depression or phobia would typically 

involve mesencephalic (e.g., VTA), mesolimbic (e.g., nucleus accumbens, amygdala) and cortical areas (e.g., prefrontal cortex and cingulate 

gyrus). Repeated panic attacks likely alter the neurochemical substrates of the psychological disorder according to the sequence/frequency of 

panic intrusion or perhaps inter-panic interval. It is intriguing that the effectiveness of imipramine and alprazolam in alleviating panic 

symptoms varies with the severity of comorbid depressive symptoms or agoraphobia.  
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sensitive to CCK-4 than the prefrontal cortex or the nucleus 
accumbens in the startle paradigm [308]. Moreover, in 
exploration paradigms (e.g., light-dark task and elevated plus 
maze), low doses of ceruletide (CCK-8S agonist, 100 ng/kg

-

1
) and pentagastrin (CCK-5 agonist, 500 ng/kg

-1
) are only 

anxiogenic among mice previously exposed to the stress of 
overcrowding. Significantly elevated doses of ceruletide and 
pentagastrin are required to induce comparable levels of 
anxiety among rats and mice housed in non-crowded 
conditions [77, 316]. Furthermore, investigations in non-
human primates indicate that intravenously administered 
CCK-4 dose dependently (0.5- 4 mg/kg

-1
) increased fear and 

defensive behaviors according to the baseline anxiety scores 
of animals and their social hierarchical position [317]. 
Apparently, antecedent environmental experiences interact 
with the nature of subsequent pharmacological challenges in 
provoking anxiety. 

 The demonstration that (a) anxious mice exhibit reduced 
benzodiazepine receptor density and increased CCK-8S 
binding in the frontal cortex relative to non-anxious mice 
[315], (b) strain-specific sensitivity in fear-motivated 
behavior appears among rats [318], (c) strain-specific 
behavioral and neurochemical variations appear among mice 
exposed to the elevated plus maze [319] and (d) differential 
behavioral and neurochemical sensitivity emerges among 
divergent inbred and outbred mouse strains challenged with 
anxiogenic agents (e.g., footshock, [320]) certainly provides 
evidence for the influence of genetic variables to the 
expression of anxiety. It is intuitively consistent to suspect 
that genetic variables and antecedent environmental stressors 
likewise contribute to the attenuation, exacerbation or 
maintenance of clinical anxiety. Alterations in CCK2 
receptor sensitivity in panic patients may also accompany 
increased anxiety following CCK administration. In view of 
differential post-mortem CCK receptor binding between 
panic prone Parkinsonian patients and individuals with 
schizophrenia, panic subjects would likely demonstrate 
variable central CCK receptor sensitivity to exogenously 
administered CCK fragments. Current empirical evidence 
supports altered basal CSF CCK concentrations in panic 
patients relative to control subjects [69, 70]. The inadequacy 
of such a comparison is apparent and functional indices of 
CCK turnover and/or CCK receptor sensitivity in discrete 
central sites among CCK challenged panic subjects are 
required. 

 Potential parallels between nonhuman experimentation 
employing CCK-8S and clinical data is compromised owing 
to the ineffectiveness of this CCK fragment in provoking 
anxiety in humans. Accordingly, comparison of nonhuman 
CCK-induced anxiety with chronic anxiety syndromes, 
including panic, in human subjects is limited to studies 
concerned with CCK-4 availability and CCK2 receptor 
activation (e.g., [23, 321, 322]). However, the functional 
significance of central CCK1 receptor sensitivity and density 
in areas involved in central respiratory and cardiovascular 
activity (e.g., the nucleus tractus solitarius and parabrachial 
nucleus) [253, 323, 324], motivation (e.g., nucleus 
accumbens) [325], attention (e.g., VTA) [254], and cognition 
(e.g., prefrontal cortex) [181] to anxiety among nonhuman 
subjects requires consideration. It will be recalled that panic 
patients engage in considerable somatic monitoring [129]. 
The neurocircuitry of brainstem sites involved in the 

modulation of respiratory and cardiovascular function as 
well as possible neurochemical correlates attending 
increased vigilance and a possible relation to panic have 
been discussed previously [326]. It is conceivable that 
hypochondriasis in panic may stem from alterations in CCK1 
receptor sensitivity following protracted vigilance. 

 Consideration of parallels between behavioral profiles 
drawn from animal models of anxiety and clinical panic 
symptoms should focus on behaviors that reflect comparable 
aspects of anxiety. For example, it appears that conditioned 
fear (e.g., anticipatory anxiety) and exploratory tendencies in 
novel environments (e.g., the response of an organism to a 
potentially threatening stimulus) provide indices of diverse 
aspects of anxiety [327]. Repeated exposure of rats to the 
elevated plus maze as an analogue of anticipatory anxiety 
has been criticized owing to the resistance of such behavioral 
tests to the anxiolytic influence of benzodiazepines [328, 
329]. While questions relating to the validity of the elevated 
plus maze in evaluating anticipatory anxiety may be relevant, 
arguments pertaining to the efficacy of benzodiazepine 
intervention strategies may be misleading. For example, the 
nature of the anxiety experienced in the plus maze with 
repeated apparatus exposure undoubtedly varies with 
successive exposures to the stressor-like influence of the 
paradigm. In rodents the pattern of CCK release from 
specific mesocorticolimbic sites varies according to the 
nature and severity of the stressor [38, 39, 154, 155, 218]. In 
effect, repeated exposure of animals to the mild, anxiogenic 
influence of the elevated plus maze may augment CCK 
release and effect protracted alterations of CCK receptor 
sensitivity. In effect, the nature of the CCK associated 
experience has been altered and pharmacological 
responsivity might likewise be expected to vary. Taken 
together, reduced propensity of diazepam in alleviating 
anxiety associated with repeated maze exposure suggests that 
the neurochemical correlates of the stressor have been 
altered (e.g., conditioning/sensitization) [45, 330]. It is 
suspected that identification of some of the conditions (e.g., 
genetic and environmental) contributing to inter-individual 
sensitivity to CCK challenge paradigms, including 
efficacious anxiolytic applications, in nonhumans may 
parallel variable therapeutic efficacy of anti-panic drugs in 
clinical trials (Fig. 2). 

Cholecystokinin Challenge, Panic Induction and Clinical 

Investigations 

 The selective CCK2 agonists, CCK-4 and pentagastrin, 
induce panic in healthy volunteers and panic patients [21, 25, 
321]. Acute, oral L365, 260 administration (50 mg, 90 
minutes prior to CCK-4 challenge) attenuates CCK-4 (50 μg) 
[331] but not lactate [322] induced panic in panic patients. 
The specificity of L365, 260 in attenuating CCK but not 
lactate-induced panic may suggest that there are different 
types of panic. Curiously, an acute, oral dose of the CCK2 
antagonist CI-988 (50 or 100 mg) 2 hours prior to CCK-4 
challenge failed to attenuate CCK-4 (20 μg) induced panic in 
both normal subjects [332] and panic patients [333]. At this 
juncture it is not clear whether the efficacy of L365, 260, 
relative to CI-988, in attenuating CCK-4 panic is attributable 
to experimental protocol, pharmacological properties or 
panic profile. Nevertheless, it is likely that CCK-induced 
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panic symptoms including tachycardia, nausea and dyspnea 
stem from a CCK influence on selective brain stem nuclei. 
Cognitive variations attending CCK-induced panic, 
including anticipatory anxiety, are most likely attributable to 
mesolimbic and cortical sites secondary to brainstem 
activation (see [334, 335] for an accounting of such a 
conclusion with respect to cerebral blood flow and fMRI 
activity profiles in response to CCK-4 administration, 
respectively [321, 331]). While clinical responsivity to CCK-
4 is well documented, there is considerable behavioral 
variability in the responsivity of panic patients and healthy 
volunteers to CCK challenge. For example, the panic 
inducing properties of relatively large CCK-4 doses (e.g., 25 
or 50 μg) or pentagastrin (0.1-0.6 μg/kg) have been reliably 
demonstrated in several laboratories [21, 23, 25, 321, 336, 
337]. However, elevated anxiogenic drug administration (a) 
confounds potential central variations describing inter-
individual responsivity of clinical patients to CCK challenge 
and (b) prevents detection of the relative vulnerability of 
healthy control subjects to panicogenic agents. Indeed, the 
efficacy of CCK-4 in provoking panic-like symptoms 
appears to be dose dependent. For example, among panic 
patients the panic distribution was 17% (10 μg), 64% (15 
μg), 75% (20 μg), 75% (25 μg) and 91-100% (50 μg) 
following the respective CCK challenge doses [336]. In an 
accompanying investigation, proportional panic frequencies 
of 11% (9 μg), 17% (25 μg) and 47% (50 μg) were detected 
following CCK challenge doses administered in control 
subjects [338]. These data suggest varied CCK response 
thresholds among panic patients that are lower than those of 
control subjects, which exhibit graded responsivity to CCK 
challenge. The lower threshold for response found in panic 
patients relative to controls, with respect to CCK-4 dosage, 
has been confirmed [339, 340]. Selection of the respective 
challenge doses of CCK obscures investigation of 
sensitization and/or conditioning by discounting subject 
variability and clinical history. Such an approach is 
unfortunate and counterproductive. In effect, the obvious 
differential sensitivities of clinical populations to CCK 
challenge require documentation of threshold CCK doses 
(e.g., initial challenge). Ensuing responsivity of panic 
patients to CCK should, at the very least, consider 
rechallenge with sub-threshold doses of CCK-4. The interval 
pertaining to CCK re-exposure for clinical investigations is 
not readily available although data derived from nonhuman 
experimentation suggests that protracted intervals may be 
required (see [244] for discussion of temporal influences on 
CCK sensitization). Individuals with panic display variable 
clinical histories, including age of onset, familial history, 
frequency and severity of panic as well as comorbid 
symptoms of depression and/or agoraphobia (Fig. 2). The 
most appealing of such clinical accounts include instances 
where panic frequency and the appearance of agoraphobia 
are temporally exaggerated, suggesting an incremental basis 
to panic induction (e.g., [137]). Intuitively, it is appealing to 
consider that sub-threshold doses of CCK-4 in panic patients 
produce behavioral effects that mirror clinical panic 
exacerbation. To date, consideration of such factors and the 
potential contribution of these variables to long-term 
responsivity to CCK-4 challenge have not been adequately 
assessed (c.f. [45]). The anxiogenic efficacy of CCK in 
animals and nonhuman primates was clearly dependent upon 

antecedent environmental experiences, including the 
differential stressor influence of the paradigm considered 
[316, 317]. Such a comparison to panic patients appears to 
be a logical one. To be sure, it must be demonstrated that 
individual stressor and panic histories interact with CCK 
challenge to influence panic thresholds. Taken together, 
panic patients and control subjects demonstrate differential 
sensitivities to the panicogenic properties of CCK-4. 
Moreover, demonstration of enhanced CCK sensitivity 
following CCK-4 re-challenge underscores the need to (a) 
delineate an inter-drug interval conducive to behaviorally 
enhanced responsivity, (b) establish behavioral sensitivity to 
previously non-panicogenic doses of CCK-4 and (c) describe 
patient histories pertaining to effective challenge and 
rechallenge doses of CCK and the temporal parameters 
supporting sensitization. 

 The hypothesis that individuals exhibit differential 
sensitivities to the panicogenic properties of CCK-4, or to 
other panicogenic agents, is intriguing. At the very least, 
these data permit subject characterization according to 
organismic variables (e.g., baseline anxiety levels) and 
experiential factors (e.g., age of onset and severity of panic 
disorder). In effect, age of onset may provide one index of 
panic severity. For example, panic patients with a history of 
early life stressors, including childhood separation disorder 
or a family history of panic disorder with agoraphobia, 
exhibit an earlier age of onset of panic disorder relative to 
individuals who fail to report such events [341]. In this 
respect, severity of panic disorder may be operationally 
defined according to illness duration. Such an analysis would 
necessitate assessment of the cognitive repercussions 
associated with such an illness and individual perception of 
the saliency of such a stressor. In addition to illness duration, 
the severity of panic may be qualitatively assessed by panic 
frequency. Parkinsonian patients and individuals with 
schizophrenia with panic secondary to chronic illness have a 
relatively severe panic profile (e.g., 2.4 ± 1.4 panic 
attacks/week) [122, 175]. The appearance of panic attacks 
among late-stage Parkinsonian patients is interesting. In the 
clinical population, panic attacks rarely occur following age 
65. Interestingly, a lower 

3
H-CCK-8 hippocampal binding 

density [257] as well as decreased CCK mRNA in the 
hypothalamus and cerebral cortex [342] and increased CCK 
concentrations in the cerebral cortex [343] have been 
detected among rats 18-29 months of age relative to younger 
animals (i.e., 2-10 months). It would be of interest to 
determine if comparable alterations in CCK activity are 
evident in the amygdala and nucleus accumbens, for 
example, in animal models of Parkinson’s disease. An 
analysis of mesolimbic sites may provide a CCK associated 
index of panic susceptibility that addresses the apparent 
delay of panic onset among Parkinsonian patients. Surely, 
subjective characteristics including identification of events 
precipitating panic (e.g., Parkinson’s disease, schizophrenia 
and childhood anxiety separation) would evoke differential 
sensitivities to the panicogenic properties of CCK-4 among 
diverse clinical samples. 

 To date, clinical reports of CCK-4 induced panic, fail to 
identify subject characteristics or experiential variables that 
may influence responsiveness to CCK in normal subjects and 
panic patients. It should be noted parenthetically that panic 
attacks induced by CCK-4 occur within seconds (e.g., 20 ± 3 
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seconds) following systemic administration and appear to be 
similar to naturally occurring panic attacks (e.g., mean 
duration 20.7 ± 7.6 seconds) [21]. It appears that the 
assumption of panic spontaneity has been gleaned from the 
rapid induction of panic following a large, bolus injection of 
CCK-4 (50 μg). Moreover, the onset of “spontaneous” or 
induced (e.g., CO2) panic symptoms over a longer period of 
time (e.g., time to peak intensity >10 minutes) is inconsistent 
with a panic description afforded by DSM-IV criteria [344, 
345]. Such clinical definitions are counterintuitive particularly 
when it is considered that patients exhibiting panic attacks 
with latencies exceeding 10 minutes achieve peak intensity 
ratings comparable to those of panic patients with rapid 
symptom onset (see [345-347]). Curiously, immediate panic 
onset was characterized by increased phobic frequencies and 
elevated anticipatory anxiety while patients with more 
protracted latencies prior to panic onset exhibited more 
generalized anxiety symptoms [345]. Persistent fear of 
anticipated panic episodes has been recently proferred as a 
diagnostic criterion for panic disorder [344, 348]. While panic 
spontaneity is predicated on reduced latencies, it has been well 
documented that panic patients may experience a paucity of 
symptoms (e.g., 1-2 symptoms) prior to the emergence of 
symptom clusters (e.g., >4 symptoms). For example, life-
threatening interpretation of vestibular symptoms including 
fear of fainting, chest pains, breathing difficulty or choking 
sensations have led to catastrophic interpretations [2]. Not 
only does the occurrence of limited symptoms prior to the 
development of panic and the “fear of fear” criterion argue 
against spontaneity but also is suggestive of a developmental 
panic course. Recent operational definitions of panic, 
including limited and situational panic attacks, contradict 
previous versions of panic spontaneity and inadvertently 
support the argument that panic attacks evolve from gradual 
symptom exacerbation. If there were indeed a developmental 
course of panic, influencing the temporal appearance and 
severity of symptomatology, panic patients would not only 
exhibit differential sensitivities to the panicogenic properties 
of CCK-4 but also exhibit enhanced responsivity to panic-
associated cues. Indeed, in some instances the panicogenic 
properties of placebo have been demonstrated in panic patients 
[349]. Intuitively, panic attacks occurring in response to 
placebo procedures are suggestive of expectancy and likely 
reflect augmented basal anxiety levels. At this juncture, 
available clinical data do not readily identify laboratory setting 
and procedural details pertaining to blood pressure assessment 
and/or intravenous protocols as correlates of enhanced 
behavioral responsivity in clinical samples. Such an 
interpretation is hardly surprising, despite the accumulation of 
clinical evidence which argues for the lack of such an effect 
(c.f. [21, 350, 351]). To be sure, if environmental cues favor 
panic emergence; illness duration, severity of panic attacks, 
agoraphobia and associated rumination would likewise be 
expected to influence behavioral responsivity. Indeed, while a 
20 μg oral dose of yohimbine induces panic in panic patients 
with more than 2.5 panic attacks/week, this identical dose of 
yohimbine is without effect among panic patients with a panic 
frequency of less than 2.5 panic attacks/week [352, 353]. 
Likewise, elevated basal indices of anxiety, increased panic 
frequency in the week prior to testing and panic associated 
somatic reporting were reliably associated with yohimbine 
induced panic attacks relative to panic patients which failed to 

report such indices [352, 354]. Similarly, intravenous lactate 
elicited panic in 75% of panic patients reporting a panic 
frequency exceeding 1 panic attack/week while no panic 
attacks emerged with such challenge among panic patients 
reporting frequencies of less than 1 panic attack/month [355]. 
It should also be considered that experimental setting and 
patient expectations including anticipatory reactivity and 
stressor controllability may influence the course of 
panicogenic challenge paradigms [356-358]. For example, 
panic patients provided with the expectancy of anxiety in CO2 

challenge investigations have a demonstrable increase in 
reported distress and elevated panic incidence relative to 
patients who have been instructed that control over CO2 

inhalation can be achieved [358]. Moreover, experimental 
protocols that minimize expectancy of panic averted the 
panicogenic properties of yohimbine (20 μg orally) [352, 354]. 
It should be underscored that anxiety-rating scales appear to 
provide inadequate assessment of anticipatory anxiety and are 
likely influenced by patient compliance and demand 
characteristics. In contrast, physiological measures (e.g., blood 
pressure, heart rate and cortisol responses) while providing 
more objective measures of anxiety [251, 357, 359, 360] are 
not invariably sensitive to expectancy. To be sure, it is rather 
curious that panic patients fail to report anticipatory anxiety in 
challenge studies or to provide physiological measures of 
expectancy yet consistently report a hyper-vigilant state 
consisting of somatic monitoring or environmental vigilance 
which may serve as predictors of panic. It should also be 
considered that clinical investigation, in some instances, 
permits patient-assisted low dose benzodiazepine 
maintenance. In addition, failure to substantiate plasma drug 
concentrations prior to challenge (e.g., [336]) may complicate 
experimental interpretation and mask pre-test anxiety 
measures. In view of the observation that lactate-, yohimbine- 
and CO2-induced panic are influenced by rumination 
pertaining to panicogenic control and panic expectancy, it is 
likely that such factors also influence behavioral responsivity 

to CCK-4 administration. Further to this point, characterization 
of control subjects responsive to CCK-4 administration may 
provide salient information regarding panic vulnerability. For 
example, it has been demonstrated that 6 of 62 normal subjects 
subsequently reported a panic attack during the 12 month 
follow-up period following initial CO2 challenge [361]. 
Unfortunately, the temporal distribution of life events 
preceding the panic attack as well as detailed subjective and 
familial history were inadequately detailed. Although the 
proactive influence of CCK-4 on subsequent panic attacks are 
not available, a parsimonious accounting of this peptide would 
favor the prediction that CCK-4 experience contributes to the 
development of panic. Clinical strategies would accordingly 
employ therapeutic interventions prior to the “second” panic 
episode that may interrupt, or at best delay, conditioning 
and/or sensitization of CCK dependent symptoms [330]. 

Pharmacological and Cognitive Management of Panic 

Disorder: Implications for Putative Differential Sensitivities 

Among Panic Patient Samples 

 Pharmacological management of panic disorder often 
includes chronic administration of imipramine (150-300 
mg/day) with the benzodiazepine alprazolam (2-8 mg) as 
needed, although amitriptyline (150 mg/day) and clomipr-
amine (150-225 mg/day), the irreversible monoamine 
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oxidase inhibitor phenelzine (45-90 mg/day), the reversible 
monoamine oxidase inhibitors moclobemide (300-600 
mg/day) and brofaromine (150 mg/day) and certain selective 
5-HT reuptake inhibitors are also used [183, 362-372]. 
Chronic imipramine administration in nonhuman subjects is 
associated with reduced cerebrospinal and plasma NE 
concentrations [373-375] and 5-HT [376, 377]. In rats, 
chronic administration of imipramine decreases the 
electrophysiological activity of the locus coeruleus [378]. 
Interestingly, imipramine has demonstrable effects on panic 
frequency with limited effects on phobic and agoraphobic 
behavior [379]. In contrast to imipramine, the efficacy of 
alprazolam in ameliorating panic cannot be attributed to 
enhanced GABA/benzodiazepine receptor influence [380]. 
Indeed, diazepam and alprazolam augment benzodiazepine 
receptor density in the frontal cortex, hypothalamus and 
hippocampus ([381]; c.f. benzodiazepine receptor binding in 
panic patients, [382]) and influence central NE [85, 373] and 
5-HT activity [383] to a comparable degree in nonhuman and 
human subjects. Yet diazepam is therapeutically sterile in the 
treatment of panic [384] while alprazolam reduces panic 
frequency, anticipatory anxiety and phobic symptoms [385]. 
Taken together, these data would suggest that cascading 
neurochemical alterations associated with benzodiazepine-
GABA receptor variations contribute to the therapeutic 
efficacy of chronic alprazolam treatment. In any event, these 
data suggest that pharmacological management of panic 
should be directed toward specific symptoms characterizing 
the psychological disorder. Nevertheless, the efficacy of 
pharmacological interventions among panic patients is often 
confounded by attrition, patient compliance, relapse 
following progressive drug taper [386-388] and drug side 
effects [384, 389-395]. Alprazolam for example, is 
associated with a lower attrition (5%), than imipramine 
(20%) or placebo (54%). The reduced attrition associated 
with alprazolam is most likely due to its reduced therapeutic 
latency (e.g., within one week) relative to imipramine (e.g., 
4-8 weeks) or placebo on panic frequency, anxiety episodes, 
anticipatory anxiety and phobic symptoms [390, 395-397]. 
In the rat, acute (5 or 10 mg/kg) and chronic (10 mg/kg, 21 
days) imipramine administration fails to attenuate fear 
potentiated startle [398]. In contrast, acute administration of 
alprazolam (1.0, 2.0, 3.0 mg/kg) 30 minutes prior to test, 
dose dependently attenuated startle [399]. The relative 
efficacies of alprazolam and imipramine in antagonizing fear 
potentiated startle in rats suggests that alprazolam may be 
more effective in influencing central sites underlying 
expression of startle and conditioned behavior, including the 
central nucleus of the amygdala (c.f. [400-404]) (Fig. 2). 
Notably, central and basolateral nuclei amygdaloid 
neurochemical perturbations associated with benzodiaze-
pine-GABA receptor variations including alterations in 
GABA and glutamate [252, 405-407] most likely potentiate 
the anxiolytic and anti-panic properties of alprazolam. The 
patient characteristics provided by Andersch et al. [390] as 
well as Klein [394] and Taylor et al. [395], for example, 
suggest that alprazolam is more effective than imipramine in 
alleviating anticipatory anxiety preceding panic (e.g., 
anticipatory intervals associated with panic expectancy, 
Sheehan Patient-Rated Anxiety Scale). In retrospect, it is 
curious that clinical reports outlining the panicogenic effects 
of CCK fail to acknowledge a role for anticipatory anxiety in 

panic. Such putative differences in anticipatory indices 
among panic and control subjects participating in CCK 
challenge paradigms, as well as paradigms that manipulate 
anticipatory anxiety, pose serious obstacles to detractors of 
an expectancy hypothesis. In effect, the demonstrable 
heterogeneity of treatment efficacy associated with chronic 
imipramine and alprazolam may well follow from the 
influence of such agents on variable developmental stages of 
panic disorder. 

 It is presumed that panic is a heterogeneous disorder 
comprised of patients who experience uncomplicated panic 
or, conversely, a complicated panic disorder syndrome 
consisting of panic with comorbid symptoms of mild or 
major depression and/or panic with varying degrees of 
phobic avoidance. While it has been well documented that 
recurrent anxiety episodes provoke depressive episodes, 
repeated anxiety episodes together with the affective 
disturbance of depression may evoke panic (see [137] for 
review). In any event, the temporal parameters and the 
contribution of intra- and inter-individual environmental 
precipitants have not been clearly established (Fig. 2). 
Conceptually, the heterogeneity of panic types may coincide 
with differential stages of panic development. Regardless of 
psychiatric compartmentalization of panic, panic disorder is 
invariably progressive with evidence of symptom 
exacerbation. The adoption of limited panic and situationally 
provoked panic classifications and arbitrary acceptance of ad 
hoc patient categories provides tacit acceptance of a 
developmental course in panic. To be sure, it would be 
reasonable to suggest that premorbid patient characteristics, 
the duration of the illness, age of onset as well as the 
frequency and severity of panic episodes influence the 
expression or exacerbation of depression and phobic 
avoidance among individuals with panic disorder. Similar 
comparisons have been provided for depression and 
schizophrenia and there is no a priori reason to suspect a 
differential developmental course for panic disorder. In fact, 
uncomplicated panic and panic with comorbid depression 
and/or extensive phobic avoidance, on the other hand, may 
operationally define panic severity. Moreover, while 
responsivity to CCK challenge may vary with panic history, 
age of onset, illness duration and panic frequency, the 
efficacy of panic interventions would also be expected to 
vary with such variables (Fig. 2). 

 Pretreatment measures of panic have revealed diminished 
panic frequency, anxiety (Hamilton Anxiety Rating scale), 
depression, phobia, paranoia and help seeking behaviors. 
Moreover, placebo may be sufficient to attenuate panic 
symptoms for at least the duration of an eight-week clinical 
trial [408, 409]. In general, it appears that subjects who 
respond to placebo have a less severe course of panic and 
high expectations for pharmacological improvement. 
Alprazolam and imipramine are equally effective in 
attenuating panic symptoms associated with uncomplicated 
panic disorder [370, 409]. It should be noted parenthetically 
that clinical accounts of panic reveal a depression 
comorbidity rate of 60-75% [410, 411]. Chronic imipramine 
intervention (150 mg/day, 4-8 weeks) is relatively effective 
in ameliorating panic symptoms in panic patients early in the 
course of the disorder where mild depressive symptoms are 
also detectable [412, 413]. Conditions favoring imipramine 
treatment include a relatively short duration of illness (e.g., 
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1-2 years), younger age of onset (<40 years), comorbid mild 
depression and panic with no or limited agoraphobia 
characterized by respiratory distress [138, 414-416]. In 
contrast, alprazolam is less effective in alleviating panic 
symptoms among panic patients with comorbid mild 
depression [417] unless the disorder is accompanied by 
increased phobic avoidance and increased anticipatory 
anxiety. In such instances, alprazolam and imipramine are 
equally effective in alleviating panic symptoms [370]. 
Amitriptyline (150 mg/day) and phenelzine (60 mg/day) are 
also equally effective in alleviating panic symptoms 
associated with mild depression [418]. Patients with panic 
disorder with comorbid major depression are typically more 
anxious, fearful of criticism, unassertive and markedly 
impaired in various social areas compared to non-depressed 
panic patients [138, 419]. Moreover, panic patients with 
comorbid major depression are more likely to report earlier 
age of panic onset (<20 years), previous psychiatric 
hospitalizations, suicidal tendencies and increased suicide 
attempts than non-depressed panic patients [6, 420]. 
Typically, the perceived severity (e.g., disability scales) and 
frequency of panic among such patients is likewise increased 
[418, 421, 422] and phenelzine (75 mg/day) is more 
effective than imipramine and amitriptyline in ameliorating 
panic symptoms associated with major depression [418, 423, 
424]. Conditions favoring alprazolam treatment include age 
over 40, lower baseline levels of anxiety (Hamilton Anxiety 
Rating Scale) and mild phobic symptoms (Phobia Rating 
Scale) [409]. Although the presence of phobic anxiety and 
avoidance is associated with a longer duration of illness 
[425] and an increased severity of panic disorder as 
measured by disability subscales [426], panic patients over 
the age of 40 tend to have a later age of panic onset (e.g., 
later clinical admission) [409] and evidence suggests that 
subjects with a later panic onset have a less severe and more 
treatment responsive illness [341]. Illness severity measures 
(e.g., disability scale and agoraphobic avoidance) are more 
pronounced in panic patients who experience a greater 
frequency of panic attacks (>2 attacks/week) compared to 
patients who experienced panic attacks at a lesser frequency 
(<2 attacks/week) and higher doses of alprazolam (5.2 ± 1.5 
mg vs 3.0 ± 1.6 mg) are required to establish panic free 
periods [255, 427, 428]. At higher doses (150-250 mg/day, 
4-8 weeks) imipramine is also effective in attenuating the 
severity of panic symptoms including measures of fear in 
nondepressed panic patients with agoraphobia although 
subjects continued to experience panic attacks [429]. 
Hypochondriasis may also be a form of sickness behavior 
that responds favorably to alprazolam. For example, 
alprazolam (5.8 mg/day 6 weeks) reduced hypochondriasis 
(e.g. Illness Behavior Questionnaire, [430]) including 
preoccupation with bodily sensations and fear of physical 
illness yet had no effect on panic frequency [431]. Extensive 
phobic avoidance, hypochondriasis and relatively high levels 
of anticipatory anxiety have been associated with non-
responsiveness of panic symptoms to conventional drug 
therapies [432, 433]. Data suggests, however, that the 
reversible monoamine oxidase inhibitor, brofaromine, may 
be effective in ameliorating panic attack frequency 
associated with severe agoraphobia [434]. Typically 
cognitive and behavioral interventions, in addition to drug 
therapies, are utilized to reduce panic symptoms in otherwise 

treatment resistant patients although cognitive interventions 
may be employed prior to pharmacological therapy early in 
diagnosis [372, 412, 421, 435-437]. Moreover, the 
introduction of cognitive, behavioral or performance-based 
strategies in the treatment of panic disorder sustains 
improvement of panic symptoms during drug treatment and 
following drug taper [438-440]. Despite the demonstrated 
efficacy of most anti-panic medication in the attenuation of 
panic symptoms early in the disorder, panic progression 
typically necessitates adoption of protracted cognitive 
strategies. Such interventions may reduce the saliency of 
association cues since pharmacotherapy alone does not yield 
adequate long-term management of panic disorder. In fact, 
the effectiveness of performance-based treatment in 
alleviating phobic symptoms relies on subjective perceptions 
pertaining to performance adequacy or coping ability in 
specific tasks [441]. Taken together, baseline symptoms, 
panic frequency, depression severity, phobic avoidance and 
anticipatory anxiety are useful predictors of pharmacological 
efficacy on outcome scales. 

 It has been well documented that early diagnosis of panic 
facilitates the success of pharmacological and cognitive 
intervention strategies [137, 384, 385, 432]. Indeed, data 
derived from various laboratories suggest that the duration of 
panic disorder [425], the severity and frequency of panic 
attacks and agoraphobic avoidance [442] prior to treatment is 
negatively correlated with the efficacy of ensuing therapy. In 
many instances, illness chronicity appears to complicate 
treatment owing to the induction of agoraphobia and 
impairments of social interaction [425, 434]. Illness severity 
as measured by patient reports of more severe panic and 
agoraphobic symptoms, increased psychiatric 
hospitalizations and longer duration of panic were predictive 
of poor pharmacological and cognitive management 
compared to less severe courses of panic disorder [442]. 
Moreover, illness severity may also reflect an earlier age of 
onset and panic may be precipitated by childhood events. For 
example, investigators have alluded to a relationship 
between a history of childhood anxiety, including separation 
anxiety, school phobia and familial illness and the 
development of panic in childhood or early adulthood [260, 
394, 421, 434, 443-445]. Nonhuman primates raised under 
stressful conditions (e.g., variable foraging demands) exhibit 
aberrant behavior (e.g., hyperactivity, clinging and 
behavioral inhibition among others) [264]. Studies of 
nonhuman primates also indicate that infant temperament 
and qualities of the maternal-infant relationship influence the 
intensity of separation anxiety. For example, peer-raised 
animals show exaggerated and persistent attachment 
behaviors (e.g., exhibit more despair on separation) and 
display alterations in central NE, DA and 5-HT 
concentrations relative to maternally fostered animals which 
may impede the infants later ability to cope with life-
stressors [446]. Clinically, increased anxiety in childhood 
typically follows illness of a primary caregiver, with the 
imminent perception of possible death [447] and appears to 
be salient to the eventual induction of panic, [260, 447, 448]. 
Notably, illness and separation can exacerbate the frequency 
and severity of panic attacks [421, 447]. Not surprisingly, 
familial illness and sick role behavior can also influence the 
efficacy of anti-panic medications. For example, children 
who developed panic disorder following a bout of school 



14    The Open Psychiatry Journal, 2007, Volume 1 Hebb et al. 

phobia respond well to the selective 5-HT reuptake inhibitor, 
citalopram (20 mg/day). Interestingly, however, panic free 
periods were temporally shorter among children whose 
mothers also suffered from panic disorder with agoraphobia 
[449]. Presentation of panic symptomatology following a 
history of childhood anxiety is typically more severe relative 
to panic symptoms in patients without a history of childhood 
anxiety [141, 421, 434, 450]. For example, at the time of 
initial panic assessment, patients with childhood anxiety are 
characterized by greater agoraphobic avoidance as measured 
by agoraphobic avoidance scales (e.g., Fear Questionnaire), a 
longer duration of panic (e.g., childhood onset), more 
frequent panic attacks and more severe anxiety as indicated 
by clinical global severity scales (e.g., frequency of panic 
attacks/week, intensity of anticipatory anxiety, degree of 
avoidance and degree of social role impairment) [451]. 
Patients with a childhood history of anxiety disorders also 
have a significantly higher rate of comorbidity including 
social phobia, generalized anxiety disorder, obsessive-
compulsive disorder, major depression and a family history 
of anxiety disorders [445]. Moreover, panic disorder 
following a history of childhood anxiety is typically resistant 
to pharmacological treatment [434] and requires lengthy 
cognitive and psychological counseling [421, 447]. Taken 
together, clinical accounts of panic and the heterogeneity of 
individual treatment responses to alprazolam and 
imipramine, among others, reveal diversity in prominent 
symptoms associated with panic disorder. The presence of 
depression and agoraphobia reflect illness severity and 
influence the responsivity of panic symptoms to treatment. 
Moreover, untreated or inadequately treated panic symptoms 
worsen with time and the progression from uncomplicated to 
complicated instances of panic are predicated on panic 
frequency, severity of symptoms, age of onset, coping 
strategies and familial setting. 

 The clinical manifestation of panic among panic patients, 
individuals with Parkinson’s disease and schizophrenia 
among others suggests that stressful life events or the 
perception of uncontrollable or unpredictable aversive events 
may influence the emergence and exacerbation of anxiety. 
Repeated panic experiences influence cognitive activity and 
may enhance vigilance and somatic monitoring. In 
nonhuman subjects, the intensity, duration, controllability, 
predictability and chronicity of an aversive encounter as well 
as experiential factors [452, 453] influence the effectiveness 
of stressors in modifying ensuing behavioral and 
neurotransmitter activity. Moreover, presentation of the cues 
associated with the initial stressor experience can influence 
the expression of pathology. Similarly, among individuals 
with diverse panic histories, fear motivated behavior 
including anticipation of subsequent panic attacks and the 
development of avoidance behavior are modulated by prior 
stressor experience (e.g., previous panic attacks) and the cues 
associated with prior panic episodes (e.g., assignment of a 
weighting scheme to specific environmental events, [454]). 
The contribution of mild, stressful life events and DA to the 
emergence and maintenance of panic symptoms requires 
clarification. It would be difficult to characterize Parkinson’s 
disease, schizophrenia or major affective disorder with 
comorbid panic symptoms as mild disturbances from either 
physiological or cognitive vantages. Yet, sensitization of DA 
mechanisms and putative involvement with panic disorder is 

predicated on the assumption that pathology may be 
augmented owing to progressive encounters with mild, 
unpredictable and/or uncontrollable life events. It is 
conceivable that cognitive variations immediately preceding 
onset of Parkinson’s disease or schizophrenia, for example, 
provide rather subtle cues pertaining to alterations in the 
emotional and/or physical lability of the individual. 
Nevertheless, repeated or relatively protracted indices of 
such cues may be sufficient to sensitize central 
neurochemical substrates. In addition, mild stressors or 
environmental cues that elicit comparable cognitive 
variations may sustain the neurochemical correlates of initial 
experiences. In effect, such a scenario may eventually define 
the profile of symptoms and determine vulnerability (e.g., 
latency to the emergence of psychological dysfunction) to 
anxiety disorders, including panic. The emergence of panic 
necessitates the coupling of conditioned/sensitized DA 
activity, the behavioral manifestation of such neurochemical 
activity and central CCK. Interestingly, data collected in this 
laboratory suggest that mild stressors reliably induce anxiety 
among nonhuman subjects and more importantly that these 
anxiogenic indices are exaggerated following central CCK 
administration at protracted intervals. In effect, long-term 
responsivity to stressful life events, CCK activation or cross-
sensitization between CCK and stressors is dependent on the 
mild nature and the contextual cues associated with 
anxiogenic challenge. Notably, initial imposition of a severe 
stressor or re-exposure of animals to an equally severe 
stressor or a high dose of CCK does not induce a dissociable 
increase in behavioral responsivity. The duration of panic 
disorder prior to the emergence of symptom exacerbation 
would provide (a) an operational index of the time course of 
neurochemical sensitization and (b) provide evidence for, but 
not necessarily identification of, the influence of patient-
specific stimuli contributing to illness progression. In 
accordance with such an argument, imipramine and 
alprazolam would be expected to exert an influence when 
administered relatively early in the course of the disorder 
(e.g., soon after sensitization) and likely prior to clinical 
diagnosis of panic. Moreover, the pharmacological efficacy 
of imipramine and alprazolam on panic symptoms in CCK-
challenge studies would interact with the dose(s) of CCK 
employed and panic profile. For example, clinical 
investigations examining the anti-panic influence of 
imipramine on CCK-4 induced panic among panic patients 
revealed that a variable dose of imipramine (150-300 
mg/day) and a fluctuating duration of imipramine treatment 
(3-26 months) was necessary to attain an eight week panic 
free period following a bolus injection of CCK-4 (50 μg) 
which subsequently attenuated panic attacks to a rechallenge 
dose of CCK-4 (20 μg). Notably, 18% of panic patients who 
had previously panicked with CCK-4 (50 μg) reported a 
panic attack upon rechallenge (20 μg CCK-4) [331]. 
Unfortunately, with respect to CCK-induced panic, panic 
was predicated on large CCK challenge doses and, from a 
pharmacological vantage, investigators failed to isolate 
specific patient characteristics and panic profiles that 
enhance pharmacological responsiveness or at the very least 
dictate the dose of imipramine required to attenuate panic 
naturally. At best, imipramine and alprazolam may prevent 
exacerbation of panic. Indeed, withdrawal of such 
therapeutic interventions ordinarily results in the re-
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emergence and in some cases exacerbation of panic 
symptoms. To date, the role of CCK in the reemergence of 
panic symptoms following alprazolam withdrawal remains 
enigmatic (see [428, 455-457]). However, it should be 
emphasized that the symptoms diagnostic of Parkinson’s 
disease, schizophrenia or other disorders associated with the 
emergence of panic worsen over time. In parallel, panic 
symptoms also are temporally exaggerated. In effect, once 
sensitization has occurred, the profile and/or progression of 
panic symptoms are relatively dependent upon host factors. 
Notably, the conditioning of both somatic and cognitive 
panic symptoms over time and the demonstrated long-term 
resistance of panic symptomatology to therapeutic 
interventions support an argument for sensitization [204, 
458]. 

CONCLUSION 

 There is no evidence that panic attacks are spontaneous. 
However, available evidence points to a common etiology 
across disorders associated with panic. Clinically, the 
gradual exacerbation of anxiety-like behavior and the 
appearance of panic are reminiscent of the behavioral and 
neurochemical alterations in nonhuman subjects repeatedly 
exposed to anxiogenic stimuli. In fact, it is likely that panic 
disorder represents a constellation of sensitized behavioral 
responses (e.g., limited symptom attacks to a full blown 
panic attack with phobic avoidance) and the inter-subject 
variability may follow from the differential influence of 
organismic and experiential variables. Such claims are not 
surprising as sensitization/conditioning models have been 
offered as explanations for Parkinson’s disease (e.g., l-dopa 
fluctuations), schizophrenia and depression. Moreover, it 
appears that variations of CCK availability in specific central 
sites are associated with variable panic profiles. To date, a 
conditioning/sensitization hypothesis of panic disorder has 
not been adequately assessed. To be sure, the nature of the 
challenge stimuli, including dose and drug schedule, as well 
as possible cross-sensitization of specific anxiogenic 
challenges with stressful life events and the long-term 
repercussions associated with challenge-induced panic in 
both normal and panic patients must be considered. 
Moreover, adequate measures of anticipatory anxiety are 
clearly needed. CCK availability is linked to colocalization 
of other neurotransmitters in distinct central sites which 
suggests that CCK may modulate (a) different aspects of 
anxiety, including anticipatory reactions to anxiogenic 
stimuli, (b) variations in cognitive arousal and vigilance and 
(c) sensitization and conditioning of behavior (e.g., phobic 
associations) and central neurochemical activity (e.g., DA 
and GABA). Likewise, multiple anxiogenic agents and 
putative neurotransmitters or neuromodulators in the 
mesencephalon, the limbic system as well as the prefrontal 
cortex and brain stem sites would appear to participate in the 
promotion of anxiety. In fact, it may be the failure of clinical 
investigations to appreciate the complex interaction of CCK 
with other neurotransmitter systems, the sensitization of such 
systems and the contributions of subjective factors to the 
nature and temporal progression of anxiogenic release that 
prevents adequate treatment of panic disorder. Conversely, it 
should be considered that elimination of panic might only 
occur with prophylactic treatment. In any event, 
identification of specific subject populations at risk for later 

development of panic disorder, necessitates empirical 
demonstration of differential thresholds for panic evocation 
(e.g., challenge studies) and detailed clinical histories which 
would demonstrate the circumstances under which panic can 
be reliably induced (e.g., environmental and cognitive). 
Taken together, a comprehensive analysis of panic and 
panic-like states requires attention to the specific details 
outlined in this review regarding dose of challenge, inter-
challenge intervals, precise subject characteristics and panic 
history. Undoubtedly, exacerbation and maintenance of 
panic in chronic conditions, including Parkinson’s disease 
and schizophrenia, and the divergent panic profiles among 
panic patients involves sensitization and conditioning of 
neurochemicals (e.g., DA/CCK) and increased rumination 
that ultimately influence the effectiveness of therapeutic 
regimens. 
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