
 

http://wrap.warwick.ac.uk/ 
 

 
 

 
 
 
 
 
 
 
Original citation: 
Mengus, Eric and Pancrazi, Roberto (2015) The inequality accelerator. Working Paper. 
Coventry: University of Warwick. Department of Economics. Warwick economics 
research papers series (WERPS) (1067). (Unpublished) 
 Permanent WRAP url: 
http://wrap.warwick.ac.uk/73200    
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
A note on versions: 
The version presented here is a working paper or pre-print that may be later published 
elsewhere.  If a published version is known of, the above WRAP url will contain details 
on finding it. 
 
For more information, please contact the WRAP Team at: publicatons@warwick.ac.uk  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/42612988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/
http://wrap.warwick.ac.uk/73200
mailto:publicatons@warwick.ac.uk
http://www2.warwick.ac.uk/


Warwick Economics Research Paper Series 

The Inequality Accelerator 

Eric Mengus & Roberto Pancrazi 

September, 2015 
Series Number: 1067 
ISSN 2059-4283 (online) 
ISSN 0083-7350 (print) 



The Inequality Accelerator ∗

Eric Mengus Roberto Pancrazi

September 15, 2015

PRELIMINARY

Abstract

We show that the transition from an economy characterized by idiosyncratic

income shocks and incomplete markets à la Aiyagari (1994) to markets where state-

contingent assets are available but costly (in order to purchase a contingent asset,

households have to pay a fixed participation cost) leads to a large increase of wealth

inequality. Using a standard calibration our model can match a Gini of 0.93 close

to the level of wealth inequality observed in the US. In addition, under this level of

participation costs, wealth inequality is particularly sensitive to income inequality.

We label this phenomenon as the Inequality Accelerator. We demonstrate how

costly access to contingent asset-markets generates these effects. The key insight

stems from the non-monotonic relationship between wealth and desired degree of

insurance, in an economy with participation costs. Poor borrowing constrained

households remain uninsured, middle-class households are almost perfectly insured,

while rich households decide to self-insure by purchasing risk-free assets. This

feature of households’ risk management has crucial effects in asset prices, wealth

inequality, and social mobility.
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1 Introduction

A widely adopted assumption in macroeconomic models is that households can per-

fectly participate in asset markets. Then, in presence of idiosyncratic risk, complete and

freely-accessible markets imply a non-existing endogenous evolution of wealth inequality,

since agents with different income realizations optimally decide to provide insurance to

each other. We refer to this outcome as the perfect-insurance equilibrium. This setting

is obviously not suited for analyzing inequality. The polar opposite case is the incom-

plete market assumption, under which households do not have access to state-contingent

assets, simply because those assets do not exist (Bewley, 1980; Deaton, 1991; Aiyagari,

1994; Krusell and Smith, 1998). This setting generates a self-insurance equilibrium, in

which agents buy or sell risk-free bonds to intertemporally smooth their idiosyncratic

shocks. Interestingly, the incomplete market model suffers from two caveats. First, from

a theoretical point of view, the incomplete market model is not able to generate the

large wealth inequality as observed in the data, as summarized in Quadrini and Rios-Rull

(2014), unless it includes unrealistic income processes, as in Castaneda et al. (2003).1 Sec-

ond, from an empirical point of view, conducting an empirical analysis on labor income

risk and insurance, Guvenen and Smith (2014) find that the amount of uninsurable in-

come risk perceived by individuals is substantially smaller than what it is typical assumed

in incomplete market models.

In this paper we propose a solution for these caveats. We consider an intermediate case

between the two polar cases, i.e. the perfect-insurance equilibrium and the self-insurance

equilibrium. In our setting markets that potentially provide full insurance do exist, but

it is costly to access to them. In an otherwise standard general equilibrium economy, we

introduce costs for participating in contingent asset markets. Specifically, in our frame-

work households have to pay qa+κ to purchase a contingent bonds, where q denotes the

price of the asset, and κ denotes the additional fixed participation cost.2 Consequently,

households face a trade-off between paying the participation cost and enjoying the gain

of consumption smoothing. For a large set of values of the participation cost κ, the

economy is, then, characterized by a partial-insurance equilibrium, where only a fraction

of the population is insured. In the first section of the paper we provide the intuition

1As commented in Quadrini and Rios-Rull (2014), the persistence of income process in Castaneda

et al. (2003) is “engineered” to be able to replicate the observed wealth inequality.
2The idea that consumption smoothing is costly underpins our approach: being active in financial

markets involves monetary costs, broadly defined, such as fees and transactions costs charged by brokers

and intermediaries, costs related to information acquisition, and non-monetary costs, such as the oppor-

tunity cost of time devoted to find the best portfolio allocation. See Acemoglu and Zilibotti (1997) for

the role of fixed cost on capital accumulation and growth.
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behind this result by analyzing a simple insurance model similar to the one in Kimball

(1990b); the necessary condition for the existence of a partial-insurance equilibrium is

assuming that agents’ utility features decreasing absolute prudence (or equivalently a

positive forth derivative). In this case, the precautionary-saving premium asked by the

agent is decreasing in wealth. Notice that, as discussed in Kimball (1990a), commonly

used parameterizations of the utility function, such as the constant relative risk aversion

utility, displays decreasing absolute prudence.

In the more general economy we demonstrate that our setting leads to novel findings

about the relationship between degree of insurance, income risk, and wealth inequality.

Specifically, when participation costs reduce from a arbitrary large value, such that the

economy is equivalent to a self-insurance equilibrium, to intermediate values, such that

the economy turns into a partial-insurance equilibrium, wealth inequality can dramatically

increase. With intermediate value of participation costs our model can predict a level of

wealth inequality similar to the one observed in the U.S. data (Gini index equal to 0.93).

Notice that when we increase the participation cost such that our economy behaves

as an incomplete market model as in Aiyagari (1994), the wealth Gini index is much

lower and equal to 0.12. Hence, our model can predict a large wealth inequality starting

with a much less disperse income process than in Castaneda et al. (2003).3 Our result,

then, links the increased innovation in the financial sector in the last three decades, as

documented by Lerner (2002) to the increased wealth inequality in the same time span,

as reported by Saez and Zucman (2014). Also, when participation costs reduced further,

the economy transits to a perfect-insurance equilibrium, and wealth inequality reduces

to zero, thus leading to an interesting non-monotone relationship between participation

costs and wealth inequality.

Additionally, the partial-insurance equilibrium equilibrium leads to a non-trivial rela-

tionship between income risk and wealth inequality. In fact, in an economy characterized

by intermediate levels of participation costs, a certain (small) degree of income inequality

triggers a very large amplification from income inequality to wealth inequality, driven by

the non-monotone willingness to insure across the wealth distribution and its implications

on asset prices. We label this phenomenon as the Inequality Accelerator. With a numer-

ical example, we find that a small increase of the exogenous income inequality in the

participation-cost model leads to a very large change of the resulting wealth inequality.

Crucially, however, the same change in income dispersion implies a vary small increase of

the wealth inequality in the incomplete market model.

How can wealth inequality increase from a reduction of participation costs to financial

3For example, income dispersion, measured as Gini index on income, in our model is 0.097, whereas

it is 0.600 in Castaneda et al. (2003).
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markets? The answer for this question stems from the non-monotone relationship between

households’ insurance desire and their wealth generated by the participation cost model.

Hence, the first contribution of the paper is to closely characterize households’ decision

about participating in asset markets. Specifically, we consider a standard neoclassical

model with idiosyncratic shocks as in Aiyagari (1994). We assume that households can

purchase two type of assets: a state contingent asset, which can be purchased only by

paying a fixed participation cost, and a risk-free asset. First, agents decide whether

they want to participate in the financial markets, and, then, they decide against which

states they are willing to buy insurance. We demonstrate that this discrete choice about

financial market participation can be solved with standard recursive methods by using

value functions. Also, we prove that households decide to participate in a contingent

market as long as its participation cost is lower than a certain threshold value. Intuitively,

the threshold depends positively on the households’ gains of insurance, and it depends

non-monotonically on households’ wealth, for a large variety of utility functions. As

a result, the partial-insurance equilibrium is characterized by a set of poor households

that are not able to obtain any insurance, by a set of middle-class household that actively

participate to the contingent asset market and, hence, are fully insured, and, interestingly,

by a set of rich households that prefer to self insure by accumulating a large stock of the

risk-free assets. In the empirical section of the paper we directly test the non-monotonic

distribution of insurance across wealth, using the Bank of Italy Survey of Households’

Income and Wealth (SHIW) data.

The second contribution of the paper is to explore the consequences of the non-

monotone relationship between insurance and wealth for inequality, partial insurance,

and welfare. Specifically, we demonstrate that the partial-insurance equilibrium features

two forces that lead to a skewed wealth distribution. First, perfectly insured middle-class

households do not accumulate more assets and, as the risk-less interest rate is lower than

in the complete market model, they even progressively consume their wealth. Second,

self-insured richer households benefit from real interest rates that are higher than in the

incomplete market model and they accumulate more wealth in comparison with the stan-

dard Aiyagari model. These two forces reinforce the social disparity from the rich that

accumulate wealth and the rest of the population. As a result, the upper tail of the

wealth distribution thickens in presence of intermediate levels of participation costs.

Participation costs lead some households to choose to be perfectly insured and some

other households to choose to be only self-insured. Hence, the fraction of population that

is perfectly insured is a function of the level of participation costs. We can then draw a

similarity between the degree of partial insurance discussed in Guvenen and Smith (2014).

Specifically, in their setting partial insurance is on the intensive margin - agents can insure
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a fraction of their income, whereas in our setting partial insurance is on the extensive

margin - agents can be insured or not. Using different calibrations of the model, we show

that degrees of partial insurance above and below the one estimated by Guvenen and

Smith (2014), around 45 percent, can lead to the realistically observed wealth inequality

in presence of participation costs.

In terms of welfare, we find that insurance decisions are usually not constrained effi-

cient, because of a pecuniary externality arising through factor prices, similarly to Davila

et al. (2012). In addition, we also find that a similar externality affects insurance deci-

sions: competitive-market insurance participation may exceed its social-planner level in

the partial-insurance equilibrium, because of the distortions in asset prices and wages.

This happens due to the resulting large level of wealth inequality, which makes more capi-

tal desirable so as to redistribute resources through higher wages. Interestingly, this result

reverts with higher participation costs and lower wealth inequality, for which competitive-

market insurance participation is lower than its social-planner level.

Related literature. In addition to the papers that we have already mentioned, our

work expands on several bodies of the literature.

Among the empirical studies conducted on lack of insurance and consumption smooth-

ing as Townsend (1994) and Mace (1991), our work bears similarity to that of Cochrane

(1991), and, more recently, Grande and Ventura (2002), who study households’ insurance

against different types of risk. They show that households are well insured against cer-

tain types of risks, such as health problems, but not against other types of risks, such as

unemployment (especially involuntary job loss) (see also Blundell et al., 2008).

Our paper shares similarities with the literature on welfare. Since our focus is on par-

ticipation costs, our approach resemble that of Townsend and Ueda (2010), who consider

the welfare effect of financial liberalization, which leads to better consumption insurance.

It is also related to the literature on the constrained Pareto optimality of idiosyncratic

shock models as Carvajal and Polemarchakis (2011) or Davila et al. (2012) among others,

or on the welfare cost of incomplete markets (see Levine and Zame, 2002). Here, we find

sizable effects of incomplete markets on risk-sharing as the agents that we consider are

sufficiently impatient.

Our work also amplifies on the literature linking models of incomplete insurance with

empirical evidence as in Krueger and Perri (2005, 2006) or Kaplan and Violante (2010),

who assess the degree of insurance beyond self-insurance. In our setting the participation

cost modifies the link between income and consumption inequality, through the resulting

non-monotone degree of insurance across wealth. Hence, trends in one of these variables

are imperfectly transmitted to the other, consistently with the findings in Attanasio et al.
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(2012) and Aguiar and Bils (2015).

Finally, our work links to the literature in finance on limited participation as in

Luttmer (1999), Vissing-Jorgensen (2002) and more recently in Paiella (2007), Guve-

nen (2009) or Attanasio and Paiella (2011) among others. In these models, stock market

is open only in a subset of periods. Also, even when economists focus on limited asset

trading,4 they generally do not consider frictions related to asset market participation in

their models.

The rest of the paper is organized as follows: in Section 2 we present a simple insurance

model in order to provide conditions and intuitions for households’ insurance decision.

In Section 3 we describe the general economic environment. Section 4 characterizes the

individual asset market participation decisions. Section 5 presents the results about social

mobility, wealth inequality, and welfare. In Section 6 we empirically test the presence

of the non-monotone insurance behavior across wealth using the Bank of Italy Survey

of Households’ Income and Wealth (SHIW) data. Section 7 discusses a set of further

extensions. Finally, Section 8 provides concluding remarks.

2 A Simple Insurance Model

In order to gain some intuition about households’ individual contingent-market par-

ticipation choice, we first analyze a simple two-period and two-state insurance model.

Our model is similar to the one proposed in Kimball (1990a) and in Kimball (1990b), in

which we include a fix cost to state contingent asset market participation

The economy lasts two periods, t = 0, 1. The household is endowed with a level of

wealth W in both periods. In period t = 1 the household might face an exogenous loss of

wealth, −L ≥ 0, which occurs with probability p. With probability 1− p, the household

receives a positive shock pL/(1− p) so that the expected loss is 0. The indicator variable

1L describes the realization of the state of nature. Let define as feasible the levels of wealth

such thatW > L, to assure that consumption is positive in every period and in every state.

The household maximizes the following expected utility function: E0 (u(c0) + u(c1)). For

simplicity, we assume that there is no discounting.

We introduce an endogenous decision of participating in the insurance market. The

agent has access to state contingent assets. At time t = 0, the agent can acquire α

units of a state-contingent asset at unit price qα that repay a unit of consumption good

4This can happen because of lack of commitment (Thomas and Worrall, 1988; Kocherlakota, 1996),

trading technologies (Chien et al., 2011) or because of ad hoc assumptions as in the incomplete market

literature.
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at time t = 1 only if the loss in wealth occurs, i.e. if 1L = 1, and β units of a state-

contingent asset at unit price qβ that repay a unit of consumption good at time t = 1

only if the loss in wealth does not occur, i.e. if 1L = 0. Importantly, in order to have

access to the state contingent asset, the agent needs to pay a fixed cost κ. The household

is not necessarily willing to pay the fixed cost and, hence, we define δ(W,κ) as a choice

variable that denotes the contingent asset market participation, given a level of wealth

and a participation cost: if the household pays the cost and purchases contingent assets,

δ(W,κ) equals 1. Otherwise, it equals 0.

Conditional on participation, δ(W,κ) = 1, the budget constraints are:

c0 + qαα + qββ + κ = W

c1 = W + 1L(α− L) + (1− 1L)(β + pL/(1− p)).

Without loss of generality, we assume the prices of the contingent asset are actuarially

fair, (qα = p and qβ = 1−p). In this case, the optimal amount of insurance is: α = L−κ/2
and β = −κ/2− pL/(1− p), and agent’s expected utility is:

V P (W,κ) = 2u (W − κ/2) ,

where the superscript P denotes the expected of utility of an agent that participates to

the insurance market.

Conditional on no-participation, δ(W,κ) = 0, the two periods budget constraints are:

c0 = W

c1 = W − 1LL+ (1− 1L)pL/(1− p).

The expected utility of the agent is:

V N(W ) = u(W ) +

[
(1− p)u

(
W +

pL

1− p

)
+ pu (W − L)

]
,

where the superscript N indicates the utility of an agent with no access to the insurance

market. Let P(κ) be the set of wealth levels for which participation in the insurance

market is optimal for a given participation cost κ. Formally:

Definition 1. (Participation Set). For a given participation cost κ, for any wealth level

in P(κ) insurance market participation is optimal, that is:

P(κ) =
{
W ∈ (L,∞) : V P (W,κ) > V N(W )

}
.

Let define the gain of insurance as G(W,κ) = 1
2

(
V P (W,κ)− V N(W )

)
. It can be

rewritten as:

G(W,κ) = u
(
W − κ

2

)
− 1

2
u(W )− 1− p

2
u

(
W +

pL

1− p

)
− p

2
u (W − L) . (1)

The first set of results concern the frictionless economy with no costs.
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Proposition 1. (Insurance Incentives without cost) Let u(x) be a three-times continuous

and differentiable utility function, such that u′(x) > 0, u′′(x) < 0, and satisfies the Inada

conditions: lim
x→∞

u′(x) = 0, and lim
x→0

u′(x) =∞. Then, for any feasible level of wealth, i.e.

∀W > L:

1. G(W, 0) > 0 ;

2. lim
W→∞

G(W, 0) = 0.

3. If u′′′ > 0 then ∂G(W,0)
∂W

< 0 .

See Appendix C.1 for the proof.

Proposition 1 shows that, absent any cost, κ = 0, the (strictly) concavity of the utility

function guarantees a (strictly) positive benefit from insurance. If the utility function has

a positive third derivative, its marginal utility is convex and, therefore, displays prudence,

as defined in Kimball (1990b), and a decreasing absolute risk aversion. In this case, the

gains from insurance G(W, 0) are decreasing with respect to wealth. As discussed in

Kimball (1990a), prudence measures the strength of the precautionary saving motive,

which induces individuals to prepare and forearm themselves against uncertainty they

cannot avoid- in contrast to risk aversion, which is how much agents dislike uncertainty

and want to avoid it.

We now consider the economy with participation costs.

Proposition 2. (Insurance Incentive with cost) Let u(x) be a four-times continuous and

differentiable utility function, such that u′(x) > 0, u′′(x) < 0, u′′′(x) > 0, u′′′′(x) < 0, and

satisfies the Inada conditions: lim
x→∞

u′(x) = 0, and lim
x→0

u′(x) = ∞. Then, for any feasible

level of wealth, i.e. ∀W > L, and for any feasible level of cost, i.e. κ < 2L:

1. (Existence of Thresholds). Let κ̂ < 2L be the solution of G(L, κ̂) = 0. Then,

∀κ < κ̂, ∃! W (κ) > L: W ∈ P(κ) ⇐⇒ L < W < W (κ).

2. (Comparative static of participation set)

• Participation set coincides with all feasible wealth levels when κ = 0, that is:

P(0) = {W : W > L} .

• Participation set is shrinking in participation cost, that is for all κ1 < κ2, if

W ∈ P(κ2) then W ∈ P(κ1); hence, P(κ2) ⊂ P(κ1).

• Participation set is empty for any participation cost greater than κ̂, that is:

∀κ > κ̂, P(κ) = ∅.
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See Appendix C.2 for the proof.

This proposition explains a crucial characteristic of the insurance market. When ac-

cessing to the insurance market is costly, the agent endogenously decides whether to par-

ticipate in that state-contingent asset market depending on the level of its wealth. When

wealth level is large enough, W > W (κ), the agent is better off by not-participating in the

insurance market since the cost of paying the fix cost is larger than the expected benefit

of reducing the loss in case of occurrence of the negative shock. For those wealth levels,

in fact, G(W,κ) < 0. Also, notice that the participation set varies with the participation

cost. When the cost tends to zero, the participation set corresponds to the entire feasible

wealth domain. On the contrary, the participation region disappears when the cost is

larger than a certain threshold κ̂. In this case entering in the insurance market is either

infeasible or not beneficial. The necessary condition for the existence of the threshold

wealth level is a strictly negative forth derivative of the instantaneous utility function.

This condition is equivalent to assume a utility characterized by decreasing absolute pru-

dence. As described by Kimball (1990a), which relates this assumption to precautionary

saving behavior, approximate constancy for the wealth elasticity of risk-taking is enough

to guarantee decreasing absolute prudence. Also, commonly used parameterizations of

the utility function, such as the constant relative risk aversion utility, displays decreasing

absolute prudence.

3 Model

In this section we describe the general economic environment. We consider an infinite

horizon production economy populated by a continuum of mass 1 of ex ante homogenous

households. This model follows closely Aiyagari (1994) except for two dimensions: we

introduce securities contingent to idiosyncratic states and we simultaneously introduce

fixed participation costs for each contingent market. Time is discrete and indexed by

t ∈ {0, 1, ...}.

Uncertainty and preferences. Each Household chooses consumption so as to max-

imize the following utility: U = E
∑

yt β
tπ(yt)u (c(yt)) , where β ∈ (0, 1) is the discount

factor, c(yt) denotes consumption at date t, and u is a strictly increasing and concave

function that satisfies limc→0 u
′(c) = −∞ and limc→∞ u

′(c) = 0. Without loss of general-

ity, u is twice differentiable.

Households inelastically provide labor. At every period they receive a stochastic labor

endowment, yt. Since there is no aggregate uncertainty, this assumption is equivalent to

consider that households receive a stochastic good-endowment ỹt = wyt, where w is the
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constant wage rate.

We assume that yt follows a Markov process, which takes values in Y = {y1, ...yN}
and that π(yj|yk) is the associated transition probability from state j to state k. We

denote by yt the history of the realizations of the shock, yt = {y0, y1, ..., yt}, and by Π(yk)

the fraction of households in state k.

Remark. Note that since there is no aggregate uncertainty here the fraction of households

in each state is constant.5

Asset structure. To smooth consumption, households may trade a set of different

assets. First, they can purchase non-contingent bonds. Each of these bonds yields,

unconditionally, one unit of goods next period. We denote by B(yt) household’s position

in the risk-free assets and by qf its price. Besides, as in Aiyagari (1994), we impose

that this position is bounded below: B(yt) ≥ −B where B ≥ 0 is finite.6 Second,

households can trade a set of state-contingent assets. In state ym, each of these assets

pays contingently to the realization of yk next period: it pays 1 when y = yk and 0

otherwise. We denote by q(k,m) the price of this asset and by a(k, yt) the corresponding

holdings of a household with history of shocks yt. Note that in our notation contingent

asset holding depends on the current state m through the history of shock yt.

The novelty we introduce in this paper is that purchasing those assets requires paying

a fixed fee, κ. Hence, in order to hold a(k, yt) units of any contingent assets household

has to pay q(k,m)a(k, yt) + κ. Here, for simplicity, we assume that if the agent pays the

participation cost she can purchase or sell the preferred quantity of any state contingent

assets. We assume that κ is a pure waste.7

The presence of the fixed cost implies that the household needs to take a discrete

decision about whether to participate in the contingent asset market. We denote by

δ(yt) ∈ {0, 1} the corresponding decision variable, with the following meaning: when

δ(yt) = 1, household with history yt decides to enter in the state-contingent assets and

when δ(yt) = 0, she does not.

5This assumption can be relaxed; to solve the corresponding model with aggregate uncertainty, Krusell

and Smith (1998)’ methods are needed. Yet, this is beyond the scope of this paper, which focuses on

idiosyncratic shocks only.
6We do not provide further foundations for that constraint. It can be exogenous debt limits as in

Bewley (1980), natural debt limits as in Aiyagari (1994) or endogenous borrowing constraints as in Zhang

(1997) or Abraham and Carceles-Poveda (2010) for such foundations.
7This involves no loss of generality. In a more general setting, where transaction costs may be

pecuniary costs charged by intermediaries, fixed costs paid by some agents will be other agents’ revenues.

Here, our assumption is close to assuming a redistribution of intermediaries’ profits to households in a

lump-sum way.
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Finally, the proceeds of both contingent and risk-less assets are invested in physical

capital, whose returns are used to honor assets’ payments.

Remark. The borrowing constraint introduces a limit to markets, even when participation

costs are absent. Markets are then not complete stricto sensu. Yet, we will show that

there are complete de facto, in the sense that the borrowing limit does not prevent full

households’ insurance.

Remark. The main results of this paper hold when assuming that participation cost is

state-dependent, κj. In this case, households’ decides in which state-contingent asset

market to enter and, therefore, the participation decision is a set of binary variables. In

Appendix B, we present this setting.

In the end, a household with a history of shock yt and a current shock realization ym

faces the following sequence of budget constraints:

c(yt) + qfB(yt) + δ(yt)

(∑
k

q(k,m)a(k, yt) + κ

)
= B(yt−1) + a(m, yt−1) + wym.

Production. As in Aiyagari (1994), we include production in our economy, creating

an endogenous net supply of assets. A single representative firm produces using a Cobb-

Douglas technology:

Yt = AKα
t L

1−α
t + (1− δ)Kt,

where capital, Kt, and total labor, Lt, are rent from households. Total labor is the

combination of labor provided by the different types of households (y = yk, for k =

1, .., N), i.e.:

Lt =
∑
k

Π(yk)yk.

First order conditions for capital and labor are:

Aα

(
Kt

Lt

)α−1
= r + δ, (1− α)

(
Kt

Lt

)α
= w.

Market clearing condition. The asset market-clearing condition pins down aggregate

capital, Kt+1, as:

Kt+1 =
∑
yt

∑
k

(
q(k,m)a(k, yt) + qfB(yt)

)
,

and the goods market-clearing condition pins down aggregate consumption, Ct, as:

Ct +
∑
yt

δ(yt)κ =
∑
yt

c(yt) + δ(yt)κ = Yt −Kt+1 + (1− δ)Kt.

Recall that in our notation the current individual state m is included in the history of

shocks yt.
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Recursive formulation. In this setting, the problem faced by households is complex:

it integrates a double maximization to decide about participation in the contingent asset

market and about asset purchases. Formally, this problem can be written as follows:

Problem 1.

max
δ(yt),c(yt),B(yt),a(yt)

∑
yt

βtπ(yt)u(c(yt))

s.t. c(yt) + qfB(yt) + δ(yt)

(∑
k

q(k,m)a(k, yt) + κ

)
= wym +B(yt−1) + a(m, yt−1).

Fortunately, this problem can be rewritten recursively. Indeed, in Appendix A we

show that it is equivalent to solve the following problem, for which the value function V

is unique:8

Problem 2 (Recursive formulation). Given {w, q, qf},

V (x,B, {a}, y) = max
δ

max
{a′},B′

{
u(c) + β

∑
y′

π(y′|y)V (x′, B′, a′, y′)

}

s.t. c+ δ

(∑
y′

q(x, y′, y)a′(y′) + κ

)
+ qf (x)B′ ≤ w(x)y +B + a(y),

B′ ≥ −B, and x′ = H(x).

with solution {δ, {a′}, B′} = h(x,B, {a}, y).

In particular agents are indexed by {B, {a}, y}, describing their asset positions as well

as their labor supply. We denote by x the probability measure over Borel sets of compact

set S = Y × A, where A is the compact set of households’ asset positions. As in Davila

et al. (2012), we can construct the aggregate law of motion. To this purpose, we first

construct the individual transition process. Let J ∈ S be a Borel set. The corresponding

individual transition function is:

Q(x,B, {a}, y, J, h) =
∑
y′∈Jy′

π(y′|y)ξh(x,B,{a},y)∈J{B,{a}} ,

where ξ is the indicator function. As a result, we can define the updating operator T (x,Q)

for tomorrow’s distribution, x′, given today one, x:

x′(J) = T (x,Q)(J) =

∫
S

Q(x,B, {a}, y, J, h)dx.

Finally, we can define the equilibrium in a recursive way:

8This means that the discrete choice does not prevent the existence and uniqueness of the value

function.
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Definition 2. A recursive competitive equilibrium is a pair of function h and H that

solves problem 2 given H and such that H(x) = T (x,Q(.;h)).

4 Individual Insurance Participation Decision

This section characterizes households’ asset market participation decisions. The main

goal of this section is to emphasize some important consequences of introducing partici-

pation costs: the existence of a threshold participation cost value, limited downward and

upward insurance, and, ultimately, the non-monotonic relationship between participation

decision and wealth. For simplicity we assume that the productivity shock follows a

two-state first-order Markov process with the two possible states denoted as: yl and yh

with yh > yl ≥ 0. Regarding financial markets, we assume the existence of a risk-free

asset, B, (whose price is qf ) and of a contingent securities associated with transitions to

the low-income state, a, (whose price is q). As a consequence, markets are complete, as

households can use the two instruments to insure against the high-income state as well.

In this section we consider only one household.

In this setting the first order conditions for Problem 2 yield:

VB(B, a, y) = u′(wy +B + 1y=yla− δ (qa′ + κ)− qfB′),

Va(B, a, y) = 1y=ylu
′(wy +B + 1y=yla− δ (qa′ + κ)− qfB′),

qfu′(wy +B + 1y=yla− δ (qa′ + κ)− qfB′) = β
∑

y′∈{yH ,yL}

π(y′|y)VB(B′, a′, y) + γ,

δqu′(wy +B + 1y=yla− δ (qa′ + κ)− qfB′) = δβ
∑

y′∈{yH ,yL}

π(y′|y)Va(B
′, a′, y),

where γ is the Lagrange multiplier associated with the borrowing constraint B′ ≥ −B.

When the agent decides to participate in the contingent asset market, i.e. δ = 1, these

equations define aP and BP . Similarly, when δ = 0, they define aN = 0 and BN , where,

as before, the superscript P denotes asset holding when participating in the contingent

asset market and superscript N when not participating.

Remark. Uninsured agents (δ = 0) purchase only risk-free assets. Their first order con-

ditions are:

VB(B, a, y) = u′(wy +B − qfB′),

u′(wy +B − qfB′) =
∑

y′∈{yH ,yL}

π(y′|y)VB(B′, 0, y) + γ.

Hence, uninsured agents solve a similar problem as households in Aiyagari (1994).
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Our first result is a no-arbitrage condition easily derived from the first conditions

above and that puts a restriction on asset prices:

Proposition 3 (Asset prices). Constrained households (for which γ > 0 in state y) do

not purchase contingent assets as long as:

q(y) ≥ qfπ(yl|y).

When there are unconstrained households (γ = 0) that participate in the contingent asset

market, the following no-arbitrage condition is satisfied:

q(y) = qfπ(yl|y).

Proof. See Appendix C.3 for the proof.

The first consequence of this proposition is that there are only two types of portfolio in

the economy: either households trade only risk-free assets or they trade both contingent

and risk-free assets. Indeed, constrained households’ willingness to purchase contingent

assets is strictly lower than for unconstrained households. Therefore, when smoothing

consumption, the household has a choice between a non-targeted but cheap insurance (by

using only risk-free assets) and a targeted but costly insurance (by using both types of

assets).

The participation choice. Which type of insurance does the agent choose? We show

now that this decision is non-monotonic in the individual level of wealth. Denoting indi-

vidual agents’ wealth by W = wy+B+ 1y=yla, the contingent asset market participation

choice follows from comparing the indirect utility when participating in the contingent

asset market:

UP (W, q, qf , κ) = u
(
W −

(
qaP + κ

)
− qfBP

)
+ β

[
π(yh|y)V (BP , aP , yh) + π(yl|y)V (BP , aP , yl)

]
,

to the indirect utility obtained when not participating:

UN(W, qf ) = u
(
W − qfBN

)
+ β

[
π(yh|y)V (BN , 0, yh) + π(yl|y)V (BN , 0, yl)

]
.

The comparison between UP and UN pins down a threshold value for the cost that

determines the insurance behavior for the agent, as stated by the following proposition:

Proposition 4 (Threshold). Given aggregate asset prices and individual level of wealth,

{W, q, qf}, there exists a threshold value for the fixed participation cost, κ, such that:

- For κ ≤ κ(W, q, qf ), the household participates in the contingent asset market (δ = 1).

- For κ ≥ κ(W, q, qf ), the household does not particpate (δ = 0).

Proof. See Appendix C.4 for the proof.
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Wealth and insurance. Finally, the relationship between the threshold cost value,

κ, and individual wealth generates the following non-monotonic insurance participation

behavior, along the lines of Proposition 2:

Corollary 5. When households’ preferences feature decreasing absolute prudence, there

exist two threshold values for wealth, W (κ, q, qf ) and W (κ, q, qf ), such that:

- For any W ≥ W (κ, q, qf ), households with wealth W do not pay the cost and use only

risk-free bonds to smooth consumption.

- For any W (κ, q, qf ) ≤ W ≤ W (κ, q, qf ), households with wealth W pay the cost κ and

purchase both contingent assets and risk-free bonds.

- For any 0 ≤ W ≤ W (κ, q, qf ), households with wealth W do not pay the cost and use

only risk free bonds to smooth consumption, if they are not borrowing-constrained.

Proof. See Appendix C.5 for the proof.

As a consequence, depending on their wealth, agents have different abilities to smooth

consumption: not at all where they are constrained (since they cannot afford the costly

contingent assets and they cannot use risk-free bonds because of the constrain), almost

perfectly when they are middle-class (since they acquire contingent bonds) and, inter-

estingly, only partially when they are very wealthy (since they prefer not to purchase

contingent bonds and use only the risk-free bond).

To summarize, between 0 and W , there is a discrete number of levels of wealth. Poor-

est agents transit from one to another. For larger level of wealth (between W and W ),

agents purchase also contingent assets and, hence, they achieve a better consumption

smoothing. When becoming very wealthy, i.e. when W ≥ W , they accept some income

risk, but, because of outstanding wealth, their income shocks become negligible.9 There-

fore, the existence of a tradeoff between enjoying the benefit of insurance and paying the

cost to access the contingent asset market creates an endogenous heterogeneity for the

participation decision across wealth.

Insurance across states, but not across periods. Corollary 5 states that only-

middle class households will be fully insured, since they are the only ones that enter in the

contingent-asset market. Those assets guarantee them to be completely insured against

all the possible next-period income realizations. Notice, however, that this statements

9The self-insurance result for wealthier households contrasts with findings by Ragot (2010) showing

that households use money to smooth costly portfolio adjustments. This translates into a relatively lower

demand for money by wealthier households.
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does not imply that middle-class agents will be permanently fully-insured. In fact, if

equilibrium asset prices are such that the wealth of middle-class households deteriorates,

adverse income shocks might cause them to transit into the poorest wealth category (with

wealth between 0 and W ). Hence, as it will become clear next session, the existence of

the three social classes described in Corollary 5, which means that the wealth thresholds

satisfying the following restrictions: (i) W>0, (ii) W < W , and (iii) W is finite, depend

on the equilibrium asset prices.

Consumption smoothing for richest and poorest households. We pointed out

that the richest and poorest households may not participate in the contingent asset mar-

ket. What are the consequences of this behavior in terms of insurance? Denoting the

growth rates of consumption as follows:

gyl|y =
u′(c(B′(B, a, y), a′(B, a, y), yl))

u′(c(B, a, y))
and gyh|y =

u′(c(B′(B, a, y), a′(B, a, y), yh))

u′(c(B, a, y))
,

from Proposition 3 we obtain the following Corollary:

Corollary 6. Participation to the contingent asset market leads to full insurance when

participating to the contingent asset market, but to imperfect insurance when not partic-

ipating:

1 =
gPyl|y
gPyh|y

≥
gNyl|y
gNyh|y

. (2)

When participating, consumption grows at a rate that depends only on the price of the

risk-less asset:

gPyl|y = gPyh|y =

(
β

qf

)−1/σ
,

which implies that insured households’ consumption decreases (increases) over time when

qf ≥ β (qf ≤ β).

When constrained on their risk-free asset position (i.e. γ > 0), agents do not purchase

contingent assets; hence, they do not completely insure. Conversely, when households

participate in the contingent asset market, they equalize next period marginal utilities

and are fully insured. As a consequence, we have the following implication:

Corollary 7. Consumption volatility is non-monotone across the three wealth categories:

it is highest for constrained poor households, it is lowest for insured middle-class house-

holds, and it attains an intermediate value for self-insured rich households.
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4.1 Equilibrium

A first useful result is a characterization of the aggregate insurance behavior:

Proposition 8 (Equilibrium). For any κ ≥ 0, there exists a unique equilibrium. More

accurately, there exists κ and κ ≥ κ such that the unique equilibrium is as follows:

(i) self-insurance equilibrium: for κ ≥ κ, households use only risk-free assets to smooth

consumption and qf = q̄f : the participation cost economy coincides with the Aiya-

gari economy.

(ii) Partial insurance equilibrium: for κ ≤ κ ≤ κ, some households participate in the

contingent asset market while the others purchase only risk-free assets. Asset prices

are as follows: qf (κ) > β and q(y)(κ) = qf (κ)π(yl|y). Specifically, qf (κ) is a

continuous and increasing function of participation costs κ.

(iii) Perfect-insurance equilibrium: for κ ≤ κ, all households participate in the contingent

asset market and are fully insured. Asset prices are as follows: qf = β and q(y) =

βπ(yl|y).

Proof. See Appendix C.6 for the proof.

In particular, for large values of the participation cost, κ > κ, the unique equilibrium

features self-insurance. For costs lower than κ, the equilibrium features insurance: either

the one featuring partial-insurance (for intermediate values of participation costs, κ ≤
κ ≤ κ), or the one featuring perfect-insurance (for small values of participation costs,

κ ≤ κ ).

The equilibrium interest rate As pointed out in Aiyagari (1994), when households

have only risk-free bonds to self-insure against idiosyncratic shocks (self-insurance equi-

librium), the interest rate paid on these bonds is lower than the interest rate paid when

markets are complete.10 The intuition for this result is simply that high level of inter-

est rates would incentivize households to accumulate an infinite amount of assets, which

would allow them to consume infinitely and, of course, to be perfectly insured. A similar

result holds in our proposed partial-insurance model, but for a different reason. If the

risk-free rate was equal to the full-insurance case (i.e. qf = β), households with an inter-

mediate level of wealth, W (κ, q, qf ) ≤ W ≤ W (κ, q, qf ), would always be perfectly insured

because their wealth never deteriorates, since the return on their portfolio would be large

10Similarly, Bewley (1980) finds that the optimal rate of inflation should be a little bit higher than the

inverse of the discount rate.
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enough. Hence, these households would never transit into the region characterized by

imperfect insurance. In addition, poor households that starts with a low level of wealth,

0 ≤ W ≤ W (κ, q, qf ), will eventually transit into the perfect-insurance region after re-

ceiving a series of positive income shocks. Hence, also those households would be fully

insured in the long-run. Finally, rich households with wealth, W ≥ W (κ, q, qf ), either will

accumulate an infinitely large quantity of wealth given the high-return on the risk-free

assets (as in Aiyagari (1994)) or they will transit into the perfect-insured region after

being subject to a series of negative income shocks. Either way, however, they will be ob-

viously perfectly insured. As a result, if qf = β the unique stationary distribution would

feature only perfectly-insured households.11 Also, our model contrasts with the findings

obtained by Huggett (1993) on the risk-free rate. Specifically, in Huggett’s model, the

presence of idiosyncratic shocks leads to higher savings, which in turn depresses interest

rates at lower rates than the one pegged simply by the households’ discount factor (cf.

Aiyagari, 1994). In our model, however, the larger is the availability of contingent assets

among households, the higher is the risk-free rate in the economy, since precautionary

demand of risk-free assets is reduced.

5 Macroeconomic Implications of Participation Costs

In the previous section we have shown that participation costs potentially imply the

existence of three categories of households: uninsured and poor, perfectly-insured and

middle-class, and self-insured and rich. The coexistence of the latter two categories in

a partial-insurance equilibrium leads to interesting and novel implication for inequality,

partial insurance rate, and welfare, as we describe in this section.

5.1 Participation costs and the Wealth Distribution

Social mobility. How does the existence of participation cost in the contingent as-

set markets affect the wealth distribution? The answer to this question depends on the

interaction between participation costs and income risk. For intermediate levels of partic-

ipation costs that allow for a partial-insurance equilibrium to exist, two forces operate in

different portions of the wealth distribution. On the one hand, perfectly insured (middle-

class) households do not accumulate more assets and, as the risk-less interest rate is

lower than in the complete market model, they even progressively consume their wealth.

On the other hand, self-insured richer households benefit from real interest rates that

11This would not be robust to the introduction of aggregate shocks or to idiosyncratic wealth shocks,

as, for example, in Blanchard (1985) in which households die according to some Poisson process and

other appear with a lower level of wealth.
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are higher than in the incomplete market model and they accumulate more wealth in

comparison with the standard Aiyagari model. These two forces contribute to skew the

wealth distribution and lead to large wealth inequality.

Obviously, an important condition for the existence of the second force is that the

stationary partial-insurance equilibrium exhibit a non-zero fraction of self-insured rich

households. A necessary condition for this to happen is that the economy is subject

to large-enough income risk. Intuitively, self insured rich households still face negative

income shocks. As the real interest rate is still below the discount rate in equilibrium

(qf ≥ β), these households’ wealth can potentially fall below the correspondent upper par-

ticipation threshold, W . Because of this existing downward social mobility force, in order

to obtain a stationary partial-insurance equilibrium featuring self-insured rich households,

perfectly insured households should also face some income shocks that are large enough

to allow for certain degree of upward social mobility. The following proposition rigorously

states this mechanism.

Proposition 9. For participation costs such that the partial-insurance equilibrium exists

(i.e. κ ≤ κ ≤ κ), if there exists two levels of income shocks, yk and yj, such that

w(yk − yj) ≥ W −W and π(yk|yj) > 0, then the stationary partial-insurance equilibrium

features a positive measure of self-insured rich households (Wi ≥ W for some household

i).

Otherwise, agents with a level of wealth such that they are either in the insurance

zone or below (Wi ≤ W ) never accumulate more wealth than the upper threshold of the

insurance zone. In this case the stationary partial-insurance equilibrium features measure-

zero of self-insured rich households(@i such that Wi ≥ W.)

This proposition states that when income shocks are sufficiently large, so that insured

middle-class agents can jump above the insurance area (i.e. when w(yk− yj) ≥ W −W ),

then there is some upward social mobility, ensuring that some agents will become rich

and self-insured. Conversely, when income shocks are small, social mobility is bounded

above and middle-class households have no incentives to infinitely accumulate wealth.

In the end, the wealth distribution highly depends on insurance behavior and income

shocks. In particular, thresholds in participation decisions are likely to make the wealth

distribution a discontinuous function of income shocks. In the rest of the section, we

quantitatively investigate this relation.

Remark. This effect is similar as in the complete market economy where the steady-

state wealth distribution exactly matches the initial wealth distribution. In that case,

households do not have any incentive to accumulate more wealth as they are fully insured
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against income variations.12

Upper tail of the wealth distribution and inequalities. Our social mobility result

has an impact on the wealth distribution and inequality. Here, we perform two exercises.

First, we show that intermediate participation costs allow the wealth Gini coefficient to

increase with respect to self-insurance economy. Second we highlight the role of income

inequality in amplifying wealth inequality in the partial-insurance equilibrium.

We consider a calibration close to the unemployment economy as in Davila et al.

(2012). The utility function is assumed to be CRRA u(c) = c1−σ/(1 − σ), with σ = 2.

The discount factor is set at β = 0.96, so that the annual interest rate is close to 4 percent.

The share of capital in the production function is set at α = 0.36 and the depreciation rate

at 0.08. The only difference with the standard calibration is that we allow for a third state

for the income process: y ∈ {0.01, 1, 1.1} but this third state is relatively unlikely so that

the income process is very close to the original unemployment economy. The assumed

transition matrix is π = {0.62, 0.38, 0; 0.0199, 0.98, 0.0001; 0, 0.5, 0.5}. There are three

important comments related to the calibration of the income process. First, our setting

delivers the same unconditional moments for the labor market as targeted in Davila et al.

(2012), namely a 5 percent unemployment rate and an average unemployment duration

of 2.6 years. Second, the inclusion of the third income state assures that the process

has enough income variation to guarantee a positive upward social mobility, which is a

necessary condition of the existence of a steady-state wealth distribution that features

both perfectly-insured and partially-insured agents in presence of intermediate levels of

participation costs, as pointed out in the previous section. Finally, the entries of the

third row of the transition matrix, which determines the probability to stay in the third

state and to transit into the second or first state, are arbitrary calibrated to [0, 0.5, 0.5],

but our results are not affected by different choices of these probabilities, as long as the

third-state is not absorbing.

We simulate this economy for three different levels of participation cost: a high cost

so that the economy is characterized by the self-insurance equilibrium, as in the Aiyagari

model, an intermediate cost, so that the economy is characterized by the partial-insurance

equilibrium, and a zero-cost, so that the economy is characterized by the perfect-insurance

equilibrium (complete markets de facto). Table 1 summarizes the main statistics for the

three economies.

In the perfect insurance equilibrium, in which participation costs are absent, agents

can fully insure against idiosyncratic shocks. In this case, no inequalities emerge as

12Conversely, in the Aiyagari economy, the initial wealth distribution has no effect on the steady-state

wealth distribution.
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High Cost Intermediate Cost No Cost

Self-insurance Eq. Partial-Insurance Eq. Perfect-Insurance Eq.

Cost/Income (%) > 25 15 0

Interest rate (%) 3.244 4.148 4.167

Aggregate assets 3.202 2.963 2.959

Wealth Gini 0.121 0.932 0

Table 1 – Steady state for the unemployment economy

agents do not accumulate wealth. Interestingly, there are important differences between

the case of the self-insurance equilibrium and the partial-insurance equilibrium. In fact,

as emphasized by Proposition 9, the partial-insurance equilibrium implies that agents’

wealth levels can be bounded above depending on income fluctuations and the size of the

insurance area W −W . When participation costs are sufficiently low (partial-insurance

equilibrium), income fluctuations allow agents to “jump” above the insurance area, and

as a consequence, there exists a positive mass of households with wealth levels above W .

This effect is highlighted in Table 1: in the partial-insurance equilibrium, a large mass of

agents are trapped with low levels of wealth as they quickly choose to get fully insured,

while a small fraction of agents “jump” above the insurance area when receiving a high

level of income and accumulate large stocks of assets. As a result, the wealth inequality of

the partial-insurance economy is much larger than the wealth inequality of the incomplete

market model.

Furthermore, the accumulation of assets in the partial insurance equilibrium when

levels of wealth exceed W is even amplified compared to the Aiyagari (1994) model

by the larger real interest rate. In fact, with intermediate participation costs, there

are lower downward pressures on interest rates than in the incomplete market model

because of the existence of households that participate in the contingent markets and

that, therefore, have no willingness to accumulate wealth. Notice, however, that albeit

the partial-insurance model produces large levels of wealth inequalities, in equilibrium,

the interest rate remains lower than in the complete market economy (perfect-insurance).

Yet, in contrast to Piketty (2014), in our explanation of inequality, the level of interest

rate does not play a central role, but only an amplifying one; wealth is mainly driven

by the households’ individual willingness to accumulate assets, which depends on their

insurance choices.

Finally, when participation costs become sufficiently high, no agents purchase insur-

ance anymore, and the economy reverts to the self-insurance equilibrium. Interest rates

are lower due to a larger precautionary demand for risk-less assets and there is no dis-

continuity anymore in the wealth accumulating process due to the insurance area.
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The Inequality Accelerator. We now conduct a comparative static exercise to illus-

trate how, in a model with partial-insurance, larger income inequality translates in larger

wealth inequality: we refer to this mechanism as the inequality accelerator effect. We

consider two income processes: the same income process as in the previous paragraph:

y ∈ {.01, 1, 1.1} associated with

π = {0.62, 0.38, 0; 0.0199, 0.98, 0.0001; 0, 0.5, 0.5},

and a slightly different one: y ∈ {0.01, 1, 1.05} associated with the same transition matrix.

Notice that the second process is characterized by a smaller income dispersion across the

states. Hence, in Table 2, which reports the equilibrium wealth Gini index resulting from

both income processes, we label the first process as the High Income Inequality and the

second process as the Low Income Inequality.

High Cost Intermediate Cost No Cost

Self-Insurance Eq. Partial-Insurance Eq. Perfect-Insurance Eq.

Cost/Income (%) >25 15 0

Wealth Gini Index

High Income Inequality 0.121 0.932 0

Low Income Inequality 0.110 0 0

Davila et al. (2012) 0.108 - -

Table 2 – Steady state for the unemployment economy

When income fluctuations - or, in our context, income inequality - are sufficiently low,

wealth inequality is bounded. Indeed, when households become fully insured, they do not

further accumulate assets, putting an upper bound on their wealth (see Proposition 9).

This is no longer the case when income fluctuations become slightly larger. In this case,

income fluctuations allow agents to “jump” above the insurance area: their level of wealth

shifts from a level below W to a level above W . Then, these households continue to

accumulate assets for self-insurance purpose. As already mentioned, this accumulation

is accentuated because of the higher level of interest rate compared with the Aiyagari

model. Importantly, notice that the inclusion of the third income state with respect to

the calibration in Davila et al. (2012) does not affect per-se wealth inequality, since in the

Self-Insurance equilibrium (i.e. with large participation costs) in our three state economy

leads to a basically identical wealth Gini coefficient to the one reported by Davila et al.

(2012), which consider a two-state income process that leads to the same unconditional

unemployment moments.

Importantly, notice that the motivations behind the large welfare inequality achieved

in our setting differs from the ones in Castaneda et al. (2003). In fact, in their incomplete
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market model the large wealth inequality is solely driven by the very large income dis-

persion (income Gini index equal to 0.600), which translates into a large income risk for

the top-earners. In contrast, in our setting, a much smaller degree of income fluctuations

(income Gini index equal to 0.097) is able to trigger a sizeable welfare inequality not

only through the much weaker channel of income risk for the top-earner, but, above all,

through the different insurance incentives across the wealth distribution and asset prices.

To summarize, the economy characterized by intermediate levels of participation costs

requires only a certain (small) degree of income inequality to trigger the large amplifi-

cation from income inequality to wealth inequality mainly driven by the non-monotone

willingness to insure across the wealth distribution and its implications on asset prices.

5.2 Participation Costs and Partial Insurance

As discussed in the previous section and, more specifically, in Proposition 9, the joint

presence of insured and self-insured households increases the level of wealth inequality.

Obviously, the coexistence of fully insured and self-insured households implies a certain

degree of aggregate insurance in the economy. In this section we explore the relationship

between participation cost, wealth inequality, and degree of partial insurance.

Let us denote the equilibrium share of insured agents by θ. Hence, θ directly represents

the fraction of insured households. In addition, applying the law of large numbers and

noticing that that each agent’s income is independently distributed, θ also represents the

average share of individual income that is insured, or, equivalently, the degree of partial

insurance, as defined in Guvenen and Smith (2014). We compute the share of insured

households for two different popular calibrations of the heterogeneous agents model, i.e.

the unemployment economy that we use in the previous subsection and the one in Aiyagari

(1994) as used in Davila et al. (2012).13 Table 3 reports the obtained results.

The top-panel of the table displays the resulting characteristics in case of high partic-

ipation costs. In this setting, there are no households that enter in the contingent asset

market and, therefore, the fraction of insured agents, or equivalently the fraction of total

insured income, is zero. The two calibrations imply rather low level of inequality, as indi-

cated by a wealth Gini index of 0.11 for the unemployment economy and of 0.42 for the

Aiyagari (1994) economy. The bottom-panel of the table reports the same equilibrium

statistics in the presence of intermediate levels of participation costs. When participation

costs are not excessively high, the degree of partial insurance as well as the wealth Gini

13The calibration for the Aiyagari (1994) model is as in p.19 of Davila et al. (2012). The coefficient of

relative risk aversion in the CRRA utility function is set to 2. The discount factor is set to 0.96. The

capital share is equal to 0.36. The three state process for income is y = {0.78, 0.27, 0.66}. The transition

matrix is π = {0.66, 0.17.0.27; 0.28, 0.44, 0.28; 0.07, 0.27, 0.66}.
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Unemployment Aiyagari (1994)

High cost Gini 0.11 0.42

θ (%) 0 0

Intermediate cost Gini 0.93 0.96

θ (%) 84.6 31.6

Cost/Income (%) 15.0 22.3

Table 3 – Degree of partial insurance

coefficient increase. Yet, the relationship between the degree of partial insurance and

the increased level of inequality is not trivial and is calibration-dependent: even a small

share of partial insurance, which corresponds to a small share of participation, around 30

percent, as in the case of Aiyagari (1994) economy, is able to skew the wealth distribu-

tion to provide with a Gini index similar to one observed in the U.S. data. In this case,

even with a minority of insured households, the equilibrium level of interest rate and the

social mobility effect described in the previous section give rich agents large incentives

to accumulate wealth. Interestingly, the unemployment economy implies a similar level

of inequality with a much larger participation rate, around 80 percent. In this setting,

the properties of the income process are such that even a small fraction of self-insured

household has strong incentives to accumulate a large amount of wealth.

Our definition of partial insurance can be linked to the one introduced in Guvenen and

Smith (2014). However, whereas their form of partial insurance is on the intensive margin

- agents can insure a fraction of their income, in our setting partial insurance is on the

extensive margin - agents can be insured or not. In their empirical work, Guvenen and

Smith (2014) estimates the fraction of partial insurance around 45 percent. In this section

we showed how the existence of participation costs, which leads to partial insurance, can

generated realistic level of wealth inequality together with degree of partial insurance

both above and below their estimated partial insurance level.

5.3 Participation Costs and Welfare

This subsection analyses the welfare properties of an economy with participation costs.

It is well-known that economies with idiosyncratic shocks are not necessarily constrained

Pareto efficient (cf. Carvajal and Polemarchakis, 2011; Davila et al., 2012, among others)

in the sense that a central planner can do better than the market allocation when accessing

the same tools. The central idea of that result stems from a pecuniary externality arising

through factor prices (e.g. wages and interest rates): by accumulating more assets, agents

depress interest rates making further insurance less likely. In the partial insurance model
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we developed in this paper, the same intuition applies for the accumulation of risk-free

assets as well as of contingent assets, as we discuss in this section.

Let us first define constrained Pareto efficiency in our setting. The central planner

solves the following problem:

Problem 3.

V (x) = max
B′(y,B,a),δ(y,B,a),a′(y,B,a)

∫
u

B + a1y=yl + wy − qf (K)B′(y,B, a) · · ·

· · · − δ(y,B, a) (q(K)a′(y,B, a) + κ)

 dx+ βV (x′),

s.t. x′ = T (x,Q(., y)), K =

∫
(a+B)dx.

As in Davila et al. (2012), we consider equal weights for all agents as we are interested

in insurance and not in redistribution. Finally, we assume that the central planner is also

constrained to rule out allocation where she would be able to perfectly insure agents by

transfers.

The solution of Problem 3 allows us to obtain the following results:

Proposition 10. The planner’s problem solution is such that:

(i) For κ ≤ κ, the economy is constrained Pareto optimal.

(ii) For κ ≥ κ, the economy is constrained Pareto suboptimal.

Furthermore, the central planner’s solution features perfect insurance for some κ > κ.

Otherwise, constrained efficient insurance is ambiguous.

Proof. See Appendix C.7 for the proof.

When participation costs are sufficiently low (κ ≤ κ), agents are fully insured and

markets are completed both in the central planner’s solution and in the competitive

market solution. In this case, the competitive market solution is constrained Pareto

optimal.

When participation costs increases to an intermediate level, there is no more full

insurance and the economy transits in the partial-insurance equilibrium. In this case,

a pecuniary externality arises through asset prices as already noted by Carvajal and

Polemarchakis (2011) or Davila et al. (2012). We show that this externality also arises

in the insurance behavior: for intermediate values of participation costs, agents insure

less in the competitive equilibrium compared with the central planner’s allocation. This

translates into a lower risk-free rate and a lower level of aggregate insurance.

Nevertheless, when participation costs are sufficiently high so that the central planner

prefers not to implement full insurance, the insurance externality may be muted. Indeed,
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as noted by Davila et al. (2012), higher levels of capital can lead to more insurance as

they allow to redistribute wealth to agents at the bottom of the wealth distribution,

for whom labor is the main source of income. Insurance markets reduce the agents’

willingness to save and, therefore, the aggregate level of capital: as a result, insurance

through markets and through higher wages are competing with each other. In the end,

the degree of insurance in the central planner’s solution may be higher or lower compared

to the competitive market allocation depending on the relative size of these two insurance

mechanisms.

We show in the appendix that the constrained efficient solution is characterized by

equations that differ from the competitive market allocation only by some additional

terms depending on factor prices, as in Davila et al. (2012) (See Appendix C.7). By com-

puting these additional terms, we are then able to determine whether there is too much

or too little participation compared with the efficient allocation. With the unemployment

economy calibration, this leads to the results presented in Table 4. In the intermediate

cost case, wealth inequalities are large and redistribution is more effective through higher

wages and more capital and so, through less insurance. This is not the case in the high

cost case, where agents gain from a higher interest rate and, then, a lower stock of capital.

High Cost Intermediate Cost Low Cost

Self-insurance Eq. Partial-Insurance Eq. Perfect-Insurance Eq.

Insurance Level Under-Insurance Over-insurance Complete

Table 4 – Constrained efficiency of insurance

6 Evidence on partial insurance and consumption

smoothing

In this section, we investigate the extensive margin of partial insurance and con-

sumption smoothing. In particular, we test an implication of our model, which is the

non-monotonic distribution of insurance. Recall, that Corollary 5 states that with in-

termediate participation costs the economy features a partial-insurance equilibrium in

which poor households are non-insured, middle-class households are perfectly insured,

and richer household are only partially insured. In this section, we confirm that result by

directly analyzing consumption data, income, and wealth Italian data.

Italian Data. We estimate the regression:
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∆ log cit = α1 +
N∑
j=1

αj(Dj∆ log yit) + βXit + εit, (3)

where Dj, with j = 1, .., N , is a dummy indicating groups of increasing wealth. The

estimates αj, with j = 1, .., N , are the coefficients of interest, since they measure the

degree of consumption insurance for a given wealth category. We estimate the regression

in (3) by using the Bank of Italy Survey of Households’ Income and Wealth (SHIW) panel

data in the period 2006-2008, since it uniquely provides information about the level of

wealth of the households. We consider seven wealth categories, identified by the following

six percentiles: 10, 25, 50, 75, 85, 95, to explore the insurance level of at the extremes of

the distribution. We consider three different specifications that control for age, education,

lifecycle (status), type of profession, and geographical areas. The results are presented

in Table 5. The estimation confirms the non-monotonic degree of consumption insurance

as predicted by our model. Poor households are largely uninsured; when the wealth

increases, consumption insurance improves. The 5th wealth level (75-85 percentile) is

perfectly insured, since the coefficient linking income growth to consumption growth is

not significantly different from zero. Importantly, at the top of the wealth distribution

the households are only partial insured. At the bottom of the table, we report the

p-values of the hypothesis that test these predictions. First, the insurance coefficient

for the poorest wealth category is significantly different than the next higher wealth

category at 1 percent significance level. Indeed, that means that the poorest category are

significantly less insured. Second, the insurance coefficient for the 5th wealth category is

significantly different than the one for the highest wealth category at 1 percent significance

level. This means that, there is a statistically significant difference between the low

consumption-to-income relationship for the middle class and the larger consumption-to-

income relationship for the richest households.

Additional evidence on non-monotone insurance. Even though it has not been

documented on its own, our non-monotonicity result is consistent with recent findings

based on improvements of the treatment of U.S. CEX data as in Aguiar and Bils (2015),

who show that taking into account rich households’ specific consumption increases the

volatility of their consumption and hence aggregate consumption inequality. Our result is

also consistent with the non-monotone marginal propensity of consumption across wealth

during the Great Recession as estimated by Krueger et al. (2015).

It is also possible to confirm the non-monotonic insurance behavior by checking

whether agents actually purchase insurance. For example, Parsons et al. (2015) pro-

vide evidence from the Danish voluntary public unemployment insurance system that
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(1) (2) (3)

∆(ct) ∆(ct) ∆(ct)

W1∆(yt) 0.479∗∗∗
[0.10]

0.486∗∗∗
[0.10]

0.486∗∗
[0.10]

W2∆(yt) 0.202∗∗∗
[0.06]

0.204∗∗∗
[0.06]

0.200∗∗
[0.06]

W3∆(yt) 0.204∗∗∗
[0.04]

0.204∗∗∗
[0.04]

0.197∗∗
[0.04]

W4∆(yt) 0.192∗∗∗
[0.16]

0.196∗∗∗
[0.04]

0.202∗∗
[0.04]

W5∆(yt) 0.016
[0.07]

0.018
[0.06]

0.021∗∗
[0.04]

W6∆(yt) 0.334∗∗∗
[0.06]

0.336∗∗∗
[0.06]

0.338∗∗
[0.06]

W7∆(yt) 0.398∗∗∗
[0.11]

0.394∗∗∗
[0.11]

0.408∗∗
[0.11]

Constant 0.297∗∗∗
[0.13]

0.390∗∗
[0.16]

0.441∗∗
[0.16]

Age and Age2 YES YES YES

Education NO YES YES

Status NO YES YES

Profession NO NO YES

Area NO NO YES

Observation 1721 1721 1721

R2 0.064 0.067 0.076

W1∆(yt) = W2∆(yt) 0.0002∗∗∗ 0.0002∗∗∗ 0.0002∗∗∗

W5∆(yt) = W7∆(yt) 0.0055∗∗ 0.0064∗∗ 0.0049∗∗

Table 5 – Non-Monotonic Insurance across wealth: Italian data

Note: this table reports the estimates of regression (3) for Italian data. The dataset is the panel Bank

of Italy Survey of Households’ Income and Wealth (SHIW) data in the period 2006-2008.The top-panel

reports the coefficient estimates α̂j for the seven wealth groups considered (percentiles: 10, 25, 50, 75,

85, 95). Standard errors are reported in brackets. The central panel describes the control variables, X,

considered in each of the there specification (1), (2), and (3). The bottom panel reports the p-values

of the F-statistics which test the equality W1∆(yt) = W2∆(yt), which means that poorest households

has the same degree of insurance as the second poorest group, and W5∆(yt) = W7∆(yt), which means

that middle-class households has the same degree of insurance as the richest households. Both of these

hypotheses are rejected at least at 5 percent significance level. Hence, the data support the non-monotonic

degree of insurance with respect to wealth as implied by our partial-insurance model.

top parts of the distribution participate much less than intermediate ones, even though

the unemployment risk is not substantially lower. More generally, they also show that

wealth can affect negatively unemployment insurance participation. As mentioned above,
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there is also evidence on lack of insurance for the lowest part of the distribution.

7 Further extensions and discussion

Default and limited-commitment economies. Economies with participation costs

are substantially different from lack-of-commitment economies. The intuition is that,

in limited-commitment economies when lenders anticipate a possible default in some

future states, they limit their loans either as an incentive for borrowers to repay or as

a hedge against the default. This behavior results in bounded (below) agents’ portfolio

positions.14 In economies with participation costs, instead, the amount a household can

borrow against a future state is unconstrained as long as she is willing to pay the fixed

cost. In the two economies, households can be constrained (i.e. they cannot equalize their

marginal rates of substitution), but for very different reasons: in one case the households’

gain from transferring wealth inter-temporally is too low given the participation cost to

pay, and, in the other case households are willing to transfer more wealth but they are

constrained by borrowers.

Downward and upward insurance. Several examples in the literature underscore

the comparatively lower levels of insurance coverage for poorer households than for the

rest of the population.15 In those studies, lack of insurance concerns downward shocks,

which is future negative income shocks. This differs from borrowing constraints that limit

the ability of insurance against upward shocks, which is positive future income shocks.

Of course, as poor households are also likely to be borrowing constrained, they are also

uninsured upward.

Our participation cost-model is able to reproduce such lack of both downward and

upward insurance for poor households. In contrast, the one-sided no-commitment model

(see Thomas and Worrall (1988) as an example) fails to reproduce the downward non-

insurance: short-selling or borrowing constraints only prevent households from borrowing

against future revenue and not from accumulating assets for insuring against lower future

14As studied by Thomas and Worrall (1988), Kehoe and Levine (1993) or Kocherlakota (1996), in

these economies, borrowers always compare the gains of financial trade with autarky and, hence, take

decisions of repayment or default.
15Rampini and Viswanathan (2012) find that health insurance coverage is 75.5 percent for households

earning less than $25,000 per year compared to 92.2 percent for those earning more than $75,000. Brown

and Finkelstein (2007) find similar results for private long-term care insurance coverage. An additional

example is provided by Cole et al. (2009) when studying insurance behavior of Indian farmers. Murdoch

(1995) studies how farmers in India choose to lower their average income against lower volatility. Cole

and Shastry (2009) show in a different context that education is also a determinant of insurance decisions,

providing a non-monetary interpretation of participation costs.
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income. Although Rampini and Viswanathan (2012) show that only poor households are

unable to smooth consumption, they also fail to reproduce downward non-insurance, as

limited insurance for poor households derived from borrowing constraints. In comparison,

the standard Aiyagari (1994) model is compatible with the absence of downward non-

insurance, but it cannot account for endogenous insurance decisions as it simply rules out

insurance contracts.

Interpreting participation costs. Our baseline interpretation of participation costs

is a monetary one. These monetary costs arise from financial or insurance intermedi-

aries, possibly related to sunk costs due to an intermediaries’ production functions or

to screening costs, when agents have to signal their type by willing to pay the fixed

costs.16 Other interpretations include cognitive costs or shopping-costs: selecting insur-

ance requires time and effort. All these interpretations imply paying the fixed cost ex

ante. Another alternative form of fixed cost faced by households surfaces when collecting

insurance payments when bad shocks occur. Collection requires proofs of damage to ad-

dress the adverse selection problem. Assuming this alternative form of participation cost

would not qualitatively change our results: it would also prevent agents from purchasing

insurance against small shocks, and would lead to preferences for purchasing insurance

only against large shocks. In this situation, as in our setting, poorer households cannot

afford to pay the insurance.

Long-term assets. Our theory considers only one-period assets that require paying

the participation costs at every period; however, in the real world, one might argue that

insurance is a long-term proposition.

In our framework one could introduce a long-term asset that pays nothing as long as

good shocks occur but yields a payoff in case of a bad shock. The main difference with

respect to a short-term asset is that this long-term asset can be held for several periods,

until a bad shock occurs and triggers a payoff to the agent. Our analysis can easily be

extended to similar long-term assets under the assumption that the long-term insurance

stops after a bad shock. Otherwise, the insurance would be purchased once and for all.

More general long-term assets can also be considered, but they have to remain, to some

degree, contingent on agents’ idiosyncratic shocks.

16The exact setting leading to this kind of fixed cost would be a dynamic version of Rothschild and

Stiglitz (1976).
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8 Concluding remarks

In this paper, we study the partial-insurance equilibrium that characterizes an econ-

omy with participation cost in state-contingent asset markets. In this setting households’

degree of insurance depends on their wealth. In fact, under decreasing absolute prudence,

the partial-insurance equilibrium is characterized by a set of poor households that are not

able to obtain any insurance, by a set of middle-class household that actively participate

to the contingent asset market and, hence, are fully insured, and, interestingly, by a set

of rich households that prefer to self insure by accumulating a large stock of the risk-free

assets.

This non-monotonic relationship between degree of insurance and wealth leads to

important implications about social mobility, welfare, and wealth inequality. Specifically,

when participation costs reduce from a arbitrary large value, such that the economy is

equivalent to a self-insurance equilibrium, to intermediate values, such that the economy

turns into a partial-insurance equilibrium, wealth inequality dramatically increases. With

intermediate value of participation costs, our model can predict a level of wealth inequality

similar to the one observed in the U.S. data (Gini index equal to 0.93). Then, we show that

in presence of a partial-insurance equilibrium, wealth inequality is particularly sensitive

to income inequality. We label this phenomenon as the Inequality Accelerator. With

a numerical example, in fact, we find that a small increase of the exogenous income

inequality in the participation-cost model leads to a very large change of the resulting

wealth inequality. Crucially, however, the same change in income dispersion implies a

vary small increase of the wealth inequality in the incomplete market model.

Our paper has, then, important implications for households’ risk management, asset

prices, social mobility, welfare, and inequality. Our approach uses a simplified framework

without aggregate shocks and with participation costs exogenously introduced.
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the US earnings and wealth inequality,” Journal of Political Economy, 111, 818–857.

Chien, Y., H. Cole, and H. Lustig (2011): “A Multiplier Approach to Understanding

the Macro Implications of Household Finance,” Review of Economic Studies, 78, 199–

234.

Cochrane, J. H. (1991): “A Simple Test of Consumption Insurance,” The Journal of

Political Economy, 99, pp. 957–976.

Cole, S., X. Gine, J. Tobacman, P. Topalova, R. Townsend, and J. Vickery

(2009): “Barriers to Household Risk Management: Evidence from India,” Harvard

Business School Working papers.

Cole, S. and G. K. Shastry (2009): “Smart Money: The Effect of Education, Cog-

nitive Ability, and Financial Literacy on Financial Market Participation,” Mimeo.

32



Davila, J., J. H. Hong, P. Krusell, and J.-V. Rios-Rull (2012): “Constrained

Efficiency in the Neoclassical Growth Model with Uninsurable Idiosyncratic Shocks,”

Econometrica, 80, 2431–2467.

Deaton, A. (1991): “Saving and Liquidity Constraints,” Econometrica, 59, 1221–48.

Gollier, C. (2004): The Economics of Risk and Time, vol. 1 of MIT Press Books, The

MIT Press.

Grande, G. and L. Ventura (2002): “Labor income and risky assets under market

incompleteness: Evidence from Italian data,” Journal of Banking and Finance, 26, pp.

597–620.

Guvenen, F. (2009): “A Parsimonious Macroeconomic Model for Asset Pricing,” Econo-

metrica, 77, 1711–1750.

Guvenen, F. and A. A. Smith (2014): “Inferring Labor Income Risk and Partial

Insurance From Economic Choices,” Econometrica, 82, 2085–2129.

Huggett, M. (1993): “The risk-free rate in heterogeneous-agent incomplete-insurance

economies,” Journal of Economic Dynamics and Control, 17, 953–969.

Kaplan, G. and G. L. Violante (2010): “How Much Consumption Insurance Beyond

Slef-Insurance?” American Economic Journal: Macroeconomics, 2, 53–87.

Kehoe, T. J. and D. K. Levine (1993): “Debt-Constrained Asset Markets,” Review

of Economic Studies, 60, 865–88.

Kimball, M. S. (1990a): “Precautionary saving and the marginal propensity to con-

sume,” NBER Working Paper, No. w3403.

——— (1990b): “Precautionary Saving in the Small and in the Large,” Econometrica, 58,

pp. 53–73.

Kocherlakota, N. R. (1996): “Implications of Efficient Risk Sharing without Com-

mitment,” The Review of Economic Studies, 63, pp. 595–609.

Krueger, D., K. Mitman, and F. Perri (2015): “Macroeconomics and Heterogene-

ity, Including Inequality,” Mimeo.

Krueger, D. and F. Perri (2005): “Understanding Consumption Smoothing: Evi-

dence from the U.S. Consumer Expenditure Data,” Journal of the European Economic

Association, 3, 340–349.

33



——— (2006): “Does Income Inequality Lead to Consumption Inequality? Evidence and

Theory,” Review of Economic Studies, 73, 163–193.

Krusell, P. and A. A. Smith (1998): “Income and Wealth Heterogeneity in the

Macroeconomy,” Journal of Political Economy, 106, 867–896.

Lerner, J. (2002): “Where does State Street lead? A first look at finance patents, 1971

to 2000,” The Journal of Finance, 57, 901–930.

Levine, D. K. and W. R. Zame (2002): “Does Market Incompleteness Matter?”

Econometrica, 70, 1805–1839.

Luttmer, E. (1999): “What Level of Fixed Costs Can Reconcile Consumption and

Stock Returns?” Journal of Political Economy, 107, 969–997.

Mace, B. (1991): “Full Insurance in the Presence of Aggregate Uncertainty,” Journal of

Political Economy, 99, 928–956.

Murdoch, J. (1995): “Income Smoothing and Consumption Smoothing,” Journal of

Economic Perspectives, 9, pp. 103–114.

Paiella, M. (2007): “Does wealth affect consumption? Evidence for Italy,” Journal of

Macroeconomics, 29, 189–205.

Parsons, D. O., T. Tranæs, and H. B. Lilleør (2015): “Voluntary Public Un-

employment Insurance,” IZA Discussion Papers 8783, Institute for the Study of Labor

(IZA).

Piketty, T. (2014): Capital in the Twenty-First Century, Belknap Press.

Quadrini, V. and V. Rios-Rull (2014): “Income Inequality in Macroeconomics,” NH

Handbook of Income Distribution, 2B.

Ragot, X. (2010): “The Case for a Financial Approach to Money Demand,” Working

papers 300, Banque de France.

Rampini, A. and S. Viswanathan (2012): “Household Risk Management,” Tech. rep.,

Duke University.

Rothschild, M. and J. E. Stiglitz (1976): “Equilibrium in Competitive Insurance

Markets: An Essay on the Economics of Imperfect Information,”The Quarterly Journal

of Economics, 90, 630–49.

34



Saez, E. and G. Zucman (2014): “Wealth inequality in the United States since 1913:

Evidence from capitalized income tax data,” Tech. rep., National Bureau of Economic

Research.

Stokey, N., R. Lucas, and E. with Prescott (1989): Recursive Methods in Eco-

nomic Dynamics, Harvard University Press.

Thomas, J. and T. Worrall (1988): “Self-enforcing Wage Contracts,” Review of

Economic Studies, 55, 541–54.

Townsend, R. (1994): “Risk and Insurance in Village India,” Econometrica, 62, pp.

539–591.

Townsend, R. M. and K. Ueda (2010): “Welfare Gains From Financial Liberaliza-

tion,” International Economic Review, 51, 553–597.

Vissing-Jorgensen, A. (2002): “Limited Asset Market Participation and the Elasticity

of Intertemporal Substitution,” Journal of Political Economy, 110, 825–853.

Zhang, H. H. (1997): “Endogenous Borrowing Constraints with Incomplete Markets,”

Journal of Finance, 52, 2187–2209.

35



A Appendix: value function and recursive formula-

tion

The following proposition establishes the existence and the uniqueness of the value function solving

Problem 2.

Proposition 11. The value function V exists and is unique.

Moreover, the value function V can be obtained by iterations: for any initial value V ′ ∈ Ω and

defining the sequence, Vn = TnV ′, Vn converges to V .

Proof. This proof extends the proof of Stokey et al. (1989) for discrete variables. Recall that the value

function satisfies:

V (B, {a}, y) = max
{a′},B′,{δ′},w.r.t. B.C.

u (C)

+ β
∑
y′

π(y′|y)V (B′, {a′}, y′)


Defining T as:

TV = max
{a′},B′,{δ′},w.r.t. B.C.

u (C) + β
∑
y′

π(y′|y)V (B′, {a′}, y′)


it is easy to show that T satisfies Blackwell’s conditions. First T is monotonic. For W ≤ V , we have

that :

TW = max
{a′},B′,{δ′},w.r.t. B.C.

u (C) + β
∑
y′

π(y′|y)W (B′, {a′}, y′)


≤ max
{a′},B′,{δ′},w.r.t. B.C.

u (C) + β
∑
y′

π(y′|y)V (B′, {a′}, y′)


= TV

Second T discounts: let Γ be a positive constant:

T (V + Γ) = max
{a′},B′,{δ′},w.r.t. B.C.

u (C) + β
∑
y′

π(y′|y) (V (B′, {a′}, y′) + Γ)


= max
{a′},B′,{δ′},w.r.t. B.C.

u (C) + β

Γ +
∑
y′

V (B′, {a′}, y′)


= TV + βΓ

We define X = {x = {B′, {a′}, y′}}. Ω denotes the set of functions V such that V is continuous with

respect to B and a. We need also to prove that:

• Ω with the d∞ metric is a metric space.

• TV is in the same set as V , which is obvious.

Metric space Let {Vn} a Cauchy sequence of Ω. For every x ∈ X, Vn(x) converges to V (x). Let

us verify that V is the limit using the d∞ metric. As {Vn} a Cauchy sequence: for some ε > 0 and for

some x ∈ X, there exists n such that for every p and q satisfying q ≥ p > n, |Vp(x), Vq(x)| < ε. Taking

the limit of this expression with respect to q, we obtain that |Vp(x), V (x)| < ε. As this is true for every

x ∈ X, this implies that d∞(Vp, V ) converges to 0, which means that Vn converges to V .

36



Conclusion The requirements of the Contraction Mapping theorem are satisfied. There exists an

unique V ∈ Ω such that TV = V . Furthermore, for any V ′ ∈ Ω and defining V1 = TV ′ and, more

generally, Vn = TnV ′, Vn converges to V . This makes possible iterations on the value function as

usual.

The connexion between being solution to Problem 1 and to Problem 2 easily obtains from standard

results, at least in the case of bounded utility function (see Stokey et al., 1989). Indeed, in that case,

the discrete participation choice does not prevent limn−>∞
∑n
t=0 β

tu(ct) to exist (and be finite), which

allows to use Theorems 4.2 to 4.5 in chapter 4, thus guaranteeing the equality between the two solutions.

When using unbounded utility functions, this result is more difficult to obtain, but it is not related to

the discrete decision.

B Appendix: Multiple states and order of insurance

Having analyzed the market participation with two states, we now study the participation decisions

for an arbitrary number of states. Buying insurance contingent to one particular state decreases one

agent’s wealth and, hence, modifies his willingness to participate to another contingent asset market. As

a results, agents face a trade-off when insuring against multiple states. In this section, we first illustrate

the interaction between insurance against different states and, second, we show that households choose

insurance following a sequential order.

The effects of initial wealth on multiple insurances Given the strict relationship

between asset market participation decision and agents’ wealth as shown in Corollary 5, we now focus

on the agents with an intermediate level of wealth. In particular, we assume that there are gains from

participating in each contingent asset market k:

u(W − qfBN ) + β
∑
k

π(yk|y)V (BN , 0, y)

< u(W − q(k, y)a(k)− κ(k, y)− qfBP ) + β
∑
m

π(ym|y)V
(
BP , {0, .., aPk , ..0}, yl

)
.

However, it is not a foregone conclusion that the agent can afford to access to every asset market, as we

may have:

u(W − qfBN ) + β
∑
k

π(yk|y)V (BN , 0, y)

> u(W −
∑
k

q(k, y)a(k)− κ(k, y)− qfBP ) + β
∑
k

π(yk|y)V
(
BP , {aP }k, yk

)
.

If this condition is satisfied, the household prefers not to buy insurance against every state of the nature.

Intuitively, buying insurance against one state decreases the resources available to buy insurance against

another state.

Sequential decision When a household is able to participate in contingent asset markets only to

a limited degree, she chooses sequentially to buy insurance against different states. Intuitively, we will

show that the utility obtained by insurance against one state is proportional to the distance between the

threshold cost and the actual associated cost of insurance for that state. Hence, that distance provides

a criterion for ranking different assets. The first state against which the agents will insure is the one
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where the distance between the actual participation cost and the threshold is maximized. Moreover,

by insuring against more and more states, agents decrease their wealth because of participation costs.

When their wealth is low enough, agents stop buying further insurance.

In order to rigorously define the sequential decision, we define two concepts: the set of feasible

insurance, and a choice of insurance.

Definition 3. The set of feasible insurance F (y) is a subset of Y , such that for every k ∈ Y , gains with

respect to the completely non-insurance case are positive:

u(W − qfBN ) + β
∑
k

π(yk|y)V (BN , 0, y)

< u(W − q(k, y)a(k)− κ(k, y)) + β
∑
m

π(ym|y)V
(
BP , {0, .., aPk , ..0}, ym

)
.

i.e. participation in the asset market contingent to the state k is preferred to autarky.

A choice of insurance at period t is a subset I(y) of F (y).

The recursive problem for household i writes:

max
I(y)⊂F (y)

max
{a(h′)}


u

(
W −

∑
k

δk∈I(y)(q(k, y)a(k) + κ(k, y))

)
+β
∑
l

π(yl|y)V
(
BP , {aPl }, yl

)
 . (4)

The following Proposition characterizes the solution of the sequential insurance problem faced by

the agents, and states the analogy between gains from accessing the asset market and distance between

participation costs and the threshold costs.

Proposition 12 (Pecking order of access to markets). The ordering of asset market participations of

households follows the gains with respect to non-participation:

u(W − qfBN ) + β
∑
k

π(yk|y)V (BN , 0, y)

< u(W − q(k, y)a(k)− κ(k, y)− qfBP ) + β
∑
l

π(yl|y)V
(
BP , {0, .., aPk , ..0}, yl

)
.

These gains map with the same order as the distance between costs (κ(k, y)) and thresholds (κ(k, y)): the

higher the gains, the greater the difference: κ(k, y)− κ(k, y).

Proof. Program (4) is:

max
I(y)⊂F (y)

 max
{a(k)},B


u

W − ∑
k∈I(y)

q(k, y)a(k) + κ(k, y)− qfB


+
∑
l

π(yl|y)βV (B, {a(k)}, yl)




Consider now a sequential choice following this iterative algorithm:

• Initial condition: set of possible choices: S = F (y) ⊂ Y , list: L = ∅

• Iteration:

– yk is the state in S which gives the highest gain compared to non-participation.

– L = L ∪ yk and S = S − yk
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This algorithm stops as S is a finite set.

As this algorithm yields a sequence L, we define by I(y) the set of elements of this sequence and

now, we have to prove that this set solves optimization (4). Consider a state h1 in F (y) − I(y) and a

state h2 in I(y). Using lemma 13, we have the result.

Lemma 13 (Local property). I(y) maximizes utility if and only if I(y)−{h1}∪ {h2} gives lower utility

for any h1 ∈ I(y) and h2 ∈ F (y)− I(y).

Proof. First we show the implication from left to right. This is trivial as I(y) maximizes utility contradicts

the proposition that there exists a h2 in F (y)− I(y) and there exists a h1 in I(y) such that I(y)−{h1}∪
{h2} gives lower utility.

Second we show the implication from right to left. Suppose that I(y) − {h1} ∪ {h2} gives lower

utility for any h1inI(y) and h2 ∈ F (y)− I(y). We proceed by contradiction by supposing then that I(y)

does not maximize utility and that there exits I ′ which maximizes utility. I ′ cannot be a subset of I(y)

and I(y) cannot be a subset of I ′ neither, considering the stopping condition of the iterative algorithm.

There exist then h2 in I ′ but not in I(y) and h1 in I(y) but not in I ′. It is easy to check that we can

get more utility by taking with I(y)′ − {h1} ∪ {h2} compared with I ′, which contradicts the fact that I ′

maximizes utility.

Two specific cases merit consideration. First, when costs are uniform across states, according to

Proposition 12, households become insured against the worst possible or best possible state. They begin

with the worst and the best and, progressively, they purchase insurance against less extreme future

outcomes. Second, when costs are sufficiently increasing along with income shocks, agents may become

insured only against small shocks, not against large income variations, since the latter case involves

paying larger participation costs. This situation is consistent with recent research about insurance( Cole

et al. (2009)). However, modelling increasing fixed costs would require further microfoundations that are

beyond the scope of this paper.

C Appendix: Proofs of propositions

C.1 Proof of Proposition 1.

First, notice that the feasibility condition W > L assures that consumption is always is strictly

positive. To prove (1) we only need the conditions that u′(x) > 0, u′′(x) < 0. Since the utility function

is increasing, u′(x) > 0, then we have the following ordering: u(W − L) < u (W ) < u(W + pL/(1− p)).
Therefore, gain of insurance is positive if:

u(W ) ≥ pu(W − L) + (1− p)u(W + pL/(1− p)),

which holds as the utility function is concave.

To prove (2), notice that concavity of the utility function implies:

[u (W )− u(W − L)] < u′(W − L)L,

[u (W )− u(W + pL/(1− p))] < −u′(W + pL/(1− p))pL/(1− p),

Since u′(x)>0 then, for any W > 0, we have:

0 < G(W, 0) < u′(W − L)L− u′(W + pL/(1− p))pL/(1− p),
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and by the Inada condition, lim
W→∞

u′(W − L) = lim
W→∞

u′(W ) = 0 and therefore lim
W→∞

G(W ) = 0.

To prove (3), notice that from equation (1), the effect of wealth on the gain of insurance is given by:

∂G(W, 0)

∂W
=

1

2

(
u′ (W )− (1− p)u′

(
W +

pL

1− p

)
− pu′ (W − L)

)
. (5)

we need to show that the right-hand-side of equation (5) is negative. The proof follows the same argument

as for proving (1) by using the property of u′′(x) < 0 to order the points as follows: u′(W−L) > u′ (W ) >

u′(W + pL/(1− p)) and by using the convexity of u′, i.e. u′′′(x) > 0 to prove the inequality.

C.2 Proof of Proposition 2.

The proof of (1) follows three steps. First, we prove that the function G(W,κ) has one and only one

minimum at a wealth level W ∗. Second, we prove that G(W ∗, κ) < 0. Third, we prove that under the

condition of the cost, there exists a unique threshold level W̄ .

Feasibility in each state and time requires that W > L and that κ < 2L. Suppose that u′′′′ < 0. As

u′′′ > 0 and u′′ < 0, the coefficient of absolute prudence, P (W ) = −u
′′′(W )
u′′(W , is decreasing in W , as its

derivative has the sign of −u′′′′u′′ − (u′′′)2. Similarly to Kimball (1990b), we define as the precautionary

equivalent premium the function ψ(W ) such as u′(W − ψ(W )) = 1
2u
′(W ) + p

2u
′(W − L) + 1−p

2 u′(W +

pL/(1 − p)). Given the properties of the utility function, ψ(W ) is non-negative, strictly decreasing in

W and converges to 0 when W goes to ∞ (see Proposition 62 in Gollier (2004)). Hence, ∀W ∈ [L,∞),

ψ(W ) is invertible and ψ−1 ∈ (0, ψ(L)]. Notice that by applying the definition of ψ(L) and using the

Inada conditions, we have that: ψ(L) = L. Finally, note that G(W,κ) converges to 0 when W goes to

∞. As a consequence, for all κ ≤ 2L, there exists a unique level of wealth W ∗(κ) = ψ−1(κ/2) such that

u′(W ∗(κ)− κ/2) = 1
2u
′(W ∗(κ)) + p

2u
′(W ∗(κ)− L) + 1−p

2 u′(W ∗(κ) + pL/(1− p)); hence, for all κ ≤ 2L,

there exists a unique W ∗(κ) such that ∂G(W∗(κ),κ)
∂W = 0. As ψ(W ) is decreasing, for W ′ > W ∗(κ):

u′(W ′ − κ/2)− 1

2
u′(W ′)− p

2
u′(W ′ − L)− 1− p

2
u′(W ′ + pL/(1− p))

= u′(W ′ − ψ(W ∗(κ)))− 1

2
u′(W ′)− p

2
u′(W ′ − L)− 1− p

2
u′(W ′ + pL/(1− p))

≥ u′(W ′ − ψ(W ′))− 1

2
u′(W ′)− p

2
u′(W ′ − L)− 1− p

2
u′(W ′ + pL/(1− p)) = 0,

which implies that for W ′ > W ∗(κ), ∂G(W ′,κ)
∂W > 0. The same reasoning for W ′ < W ∗(κ) implies that

for any W ′ < W ∗(κ), ∂G(W ′,κ)
∂W < 0. We have proved that G(W,κ) has a unique minimum in W ∗(κ).

As a second step, notice that since G(W,κ) admits exactly one minimum W ∗(κ), is decreasing for any

W < W ∗(κ), is increasing for any W > W ∗(κ), and converges to 0 when W goes it ∞, then necessarily

G(W ∗(κ), κ) < 0. Notice that for any W ′ > W ∗(κ), then G(W ′, κ) < 0. We have proved that the

minimum of G(W,κ) is negative.

As a third step, let κ̂ be the value of the cost that solves: G(L, κ̂) = 0, i.e.:

u(L− κ̂

2
) =

1

2
[u(L) + (1− p)u(L/(1− p)) + pu(0)] .

Since by Proposition 1 G(L, 0) > 0, since G(L, 2L) < 0, and since obviously G(L, κ) is decreasing in κ,

then by the intermediate value theorem, ∃! κ̂: G(L, κ̂) = 0. Then, for any feasible κ such that κ < κ̂,

then G(L, κ) > 0 and G(W,κ) reach a negative value at its minimum; hence, by the intermediate value

theorem, exists a unique W (κ) < W ∗(κ) such that G(W (κ), κ) = 0.

The proof of (2) comes easily. First, by Proposition 1, ∀W > L, G(W, 0) > 0. Hence, ∀W > L,

V P (W,κ) > V N (W ) and by definition P(0) = {W : W > L}. Second, notice that by using the implicit
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function theorem, ∂G(L,κ)
∂κ < 0. Hence, ∂W (κ)

∂κ < 0. Therefore, ∀κ2 > κ1, P(κ2) ⊂ P(κ1). Finally, as κ

increases above κ̂, G(L, κ) < 0, and, therefore, ∀W > L, G(W,κ) < 0. In this case V P (W,κ) < V N (W )

and by definition P(κ) = ∅.

C.3 Proof of Proposition 3.

Manipulating first-order conditions yields:

u′(yh|y)

u′(yl|y)
=
βπ(yl|y)

q

(
qf − q
βπ(yh|y)

− γ

u′(y)βπ(yh|y)

)
.

At most, the agents are willing to equalize marginal utilities u′(yh|y) = u′(yl|y) and, in addition, the

positivity of γ lead to:

βπ(yl|y)

q

qf − q
βπ(yh|y)

≥ 1 or, equivalently qfπ(yl|y) ≥ q.

C.4 Proof of Proposition 4.

The choice to participate amounts to comparing UP (W, q, qf , κ) and UN (W, qf ). Using the envelope

theorem, the derivatives of ∆ = UP (W, q, qf , κ)− UN (W, qf )) are:

∂∆

∂κ
= −u′(W − qaP − κ− qfBP ) < 0.

In addition, when κ = 0, participation is preferred to non-participation, as, when participating, the

household can do as good as when not participating. As a result, there exists then κ such that households

accept to pay the cost κ if and only if κ ≤ κ.

C.5 Proof of Corollary 5.

First, note that there exists W sufficiently small so that BP = BN = −B. In this case, we can

show that the agent will not participate to the state contingent market, which means that the following

relationship is satisfied:

u(W − (q(y)aP + κ) + qfB)− u(W + qfB)

≤ β

π(yl|y)
[
(V (−B, aP , yl)− V (−B, aP , yh))− (V (−B, 0, yl)− V (−B, 0, yh))

]
+(V (−B, aP , yh)− V (−B, 0, yh))


≤ βπ(yl|y)

[
(V (−B, aP , yl)− V (−B, aP , yh))− (V (−B, 0, yl)− V (−B, 0, yh))

]
. (6)

In fact, the Inada condition implies that when W approaches zero, aP , BP and BN tend to zero as well.

Hence, as long κ > 0, a sufficiently decreasing W implies that u(W − (q(y)aP +κ) + qfB)−u(W + qfB)

goes to −∞, and equation (6) is then verified.

We now prove that also when W large the agent also prefers not to participate. First, notice that

limW→∞ aP < ∞, as there is no gain of infinitely accumulating contingent assets, but limW→∞BP =

limW→∞BP = ∞. Prudence (u′′′ > 0) and the fact that qaP + κ ≥ 0 imply that BN > BP , for all W

and κ > 0. Furthermore, decreasing absolute prudence (u′′′′ < 0) implies that that BN − BP decreases
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with W and converges to 0. The derivative of the gain of insurance with respect to wealth is:

∂(UP − UN )

∂W
= u′(W − qfBP − qaP − κ)− u′(W − qfBN ),

= u′(W − qfBP − qaP − κ)− β

qf
(
π(yh|y)u′(yh +BN − terms) + π(yl|y)u′(yl +BN − terms)

)
,

= u′(W − qfBP − qaP − κ)− β

qf
u′(BN + E(y − terms)− ψ(W )),

= u′(W − qfBP − qaP − κ)− u′(W − qf (BN )− qaP − qfg(ψ(W ))).

The sign of the derivative depends on the sign of: qf (BN − BP ) + g(ψ(W )) − κ. When W converges

to ∞, both BN − BP and ψ(W ), the precautionary saving premium, converges to 0; hence, qf (BN −
BP ) + g(ψ(W ))− κ converges to −κ and the derivative becomes ultimately positive if and only if κ > 0.

In addition, as in Proposition 2, the gain from insurance converges to 0 when wealth goes to infinity,

due to Inada conditions; 17 therefore, the gain from insurance is ultimately negative. In addition,

qf (BN −BP ) + g(ψ(W ))− κ is decreasing in W , so that, there exists at most one change of sign for the

derivative. We can then conclude the existence of a threshold W along the lines of Proposition 2.

C.6 Proof of Proposition 8.

Corollary 5 define W and W . The lowest level of wealth is yl − B and there exits a highest level of

wealth Ŵ . When W ≤ yl−B and Ŵ ≤W , participating is always better. This gives the existence of κ.

Continuity with respect to κ and Corollary 5’s results on W and W ’s limits imply that there exists

some level of κ above which W ≤W , i.e. the household never participate to the market. This gives the

existence of κ.

Turning to asset prices, as a first step, notice what may happen to the risk-free interest rate. Whether

households are insured or uninsured, the following Euler equation holds:

qfu′(c(B, a, y)) = β
∑

y′∈{yH ,yL}

π(y′)u′(c(B′, a′, y′)) + γ

The super-martingale theorem establishes that β > qf cannot be an equilibrium. This restricts price

to be qf ≥ β. Proposition 3 gives the constraint on contingent asset prices and so these constraints on

prices are qf ≥ β and q(y) ≥ qfπ(yl|y).

When participation costs are low, suppose that all households participate to the contingent asset

market. As Euler equation for both assets are satisfied for all agents, at all time and in all states,

consumption levels do not depend on histories of shocks. As a result, qf = β and q(y) = βπ(yl|y).

In the next two cases, consumption levels depend on histories as the household may have not par-

ticipated in some period. In the case of high level of cost, the economy follows Aiyagari (1994) and so

we denote by qf > β the equilibrium price. In the case of intermediate level of cost, suppose here that

qf = β, then q(y) = βπ(yl|y). Agents are then perfectly insured, when participating. As the probability

to be insured is strictly positive, then with probability 1, all households will be perfectly insure i the

long run, negating the fact that the stationary distribution features uninsured households.

17This is consistent with the fact that in the Aiyagari model agents with infinite wealth will be perfectly

insure.
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C.7 Proof of proposition 10.

This proof closely follows Davila et al. (2012) to obtain the recursive problem solved but the central

planner. At this point, we need to use alternative techniques compared with perturbation methods to

deal with the discontinuity introduced by the discrete choice.

The central planner problem can be written as follows:

V (x) = max
hf (y,B,a),δ(y,B,a),h(y,B,a)

∫
u

B + a1y=yl + wy − qf (K)hf (y,B, a)

− δ(y,B, a) (q(K)h(y,B, a) + κ)

 dx+ βV (x′)

s.t. x′ = T (x,Q(., y)),K =

∫
(a+B)dx

The policy rules should solve:

max
hf
t (y,B,a),δt(y,B,a),ht(y,B,a)

∑
t

βt−1
∑
y

∫
u(ct)xt(B, a, y)dBda

ct + qf (K(xt))h
f (y,B, a, xt) + δ(y,B, a, xt) (q(K(xt))h(y,B, a, xt) + κ) = B + a1y=yl + wy

given x1 and where:

K(xt) =
∑
y

∑
(B + a)xt(B, a, y)dBda

and

x′(B′, a′, y′) =
∑

π(y′|y)
x
(

(hft )∗,−1(y,B′, a′), (ht)
∗,−1(y,B′, a′), y

)
d
da

This can be rewritten as:

∑
y

∫


u

B + a1y=yl + yfL(K(x))− qf (K ′(x′))hf (y,B, a, x)

− δ(y,B, a, x) (q(K ′(x′))h(y,B, a, xt) + κ)


+β
∑
y′

π(y′|y)u

hf (y,B, a, xt) + h(y,B, a, xt)1y′=yl + yfL(K ′(x′))

− qf (K ′′(x′′))B′′ − δ′′ (q(K ′′(x′′))a′′ + κ)



 .x(B, a, y)dBda

and

K ′(x′) =
∑
y

∫ [
h∗(x, y,B, a) + h∗,f (x, y,B, a)

]
x(B, a, y)dBda

We can here use a perturbation approach. We consider hε = h∗+εχy=y0ξ and hζ,f = h∗,f+ζχy=y0ξ
f .

Ψ(ζ, ε) =
∑
y

∫


u

B + a1y=yl + yfL(K(x))− qf (K ′(x′))hfζ (y,B, a, x)

− δ(y,B, a, x) (q(K ′(x′))hε(y,B, a, xt) + κ)


+β
∑
y′

π(y′|y)u

hfζ (y,B, a, xt) + hε(y,B, a, xt)1y′=yl + yfL(K ′(x′))

− qf (K ′′(x′′))B′′ − δ′′ (q(K ′′(x′′))a′′ + κ)



 .x(B, a, y)dBda
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The derivates with respect to ε and ζ yield:

d

dε
ψ(0) =

∫

− δ(y0, B, a, x)q(K ′(x′))u′

B + a1y0=yl + y0fL(K(x))− qf (K ′(x′))hf,∗(y,B, a, x)

− δ(y0, B, a, x) (q(K ′(x′))h∗(y0, B, a, xt) + κ)

 ξ

+ βπ(yl|y0)u′

hf (y0, B, a, xt) + h(y0, B, a, xt) + ylfL(K ′(x′))

− qf (K ′′(x′′))B′′ − δ′′ (q(K ′′(x′′))a′′ + κ)

 ξ

x(B, a, y0)dBda

+
∑
y

∫


−qK(K ′(x′))u′

B + a1y=yl + yfL(K(x))− qf (K ′(x′))hf,∗(y,B, a, x)

− δ(y,B, a, x) (q(K ′(x′))h∗(y,B, a, xt) + κ)


+β
∑
y′

π(y′|y)y′fKL(K ′(x′))u′

hf (y,B, a, xt) + h(y,B, a, xt)1y′=yl + yfL(K ′(x′))

− qf (K ′′(x′′))B′′ − δ′′ (q(K ′′(x′′))a′′ + κ)




×
(∫

ξfx(B̃, ã, y0)dB̃dã

)
x(B, a, y)dBda

d

dζ
ψ(0) =

∫

− qf (K ′(x′))u′

B + a1y=yl + yfL(K(x))− qf (K ′(x′))hf,∗(y0, B, a, x)

− δ(y0, B, a, x) (q(K ′(x′))h∗(y0, B, a, xt) + κ)

 ξf

+ β
∑
y′

π(y′|y0)u′

hf (y0, B, a, xt) + h(y0, B, a, xt)1y′=yl + yfL(K ′(x′))

− qf (K ′′(x′′))B′′ − δ′′ (q(K ′′(x′′))a′′ + κ)

 ξf

x(B, a, y0)dBda

+
∑
y

∫

− qfKu

′

B + a1y=yl + yfL(K(x))− qf (K ′(x′))hf,∗(y,B, a, x)

− δ(y,B, a, x) (q(K ′(x′))h∗(y,B, a, xt) + κ)


+ β

∑
y′

π(y′|y)

∫
u′

hf (y,B, a, xt) + h(y,B, a, xt)1y′=yl + yfL(K ′(x′))

− qf (K ′′(x′′))B′′ − δ′′ (q(K ′′(x′′))a′′ + κ)

 y′fLK(K ′(x′))


×
∫
ξfx(ã, y0)dãx̃(a, e)dBda

Let us define:

∆ =
∑
ŷ

∫ −
hf (ŷ, B, a, x)qfK(K ′(x′))

+ δ(ŷ, B, a, x)h(ŷ, B, a, x)qK(K ′(x′))

u′

B + a1ŷ=yl + ŷfL(K(x))− qf (K ′(x′))hf,∗(ŷ, B, a, x)

− δ(ŷ, B, a, x) (q(K ′(x′))h∗(ŷ, B, a, xt) + κ)


+
∑
y′

βπ(y′|ŷ)u′

hf (ŷ, B, a, x) + 1y′=ylh(ŷ, B, a, x)

+ y′w(x′)− a′′

 y′FKL(K ′(x′))

x(B, a, ŷ)dBda. (7)

We obtain that, when δ(y,B, a, x) = 1, the first order conditions solved by the central planner are:

qfu′

B + a1y=yl + yfL(K(x))− qf (K ′(x′))

× hf,∗(y,B, a, x)− (q(K ′(x′))h∗(y,B, a, xt) + κ)

 = β
∑
y′

π(y′|y)u′

hf (y,B, a, x) + 1y=yl

× h(y,B, a, x) + y′w(x′)− a′′

+ ∆

(FOCP1)

qu′

B + a1y=yl + yfL(K(x))− qf (K ′(x′))hf,∗(y,B, a, x)

− δ(y,B, a, x) (q(K ′(x′))h∗(y,B, a, xt) + κ)

 = βπ(yl|y)u′

hf (y,B, a, x) + h(y,B, a, x)

+ ylw(x′)− a′′

+ ∆

(FOCP2)

When δ(y,B, a, x) = 0, the first order condition solved by the central planner is:

qfu′
(
B + a1y=yl + yfL(K(x))− qf (K ′(x′))hf,∗(y,B, a, x)

)
= β

∑
y′

π(y′|y)u′
(
hf (y,B, a, x) + y′w(x′)− a′′

)
+ ∆

(FOCN)
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In addition, the central planner determines δ by comparing:

u
(
B + a1y=yl + yfL(K(x))− qf (K ′(x′))hf,P (y,B, a, x)−

(
q(K ′(x′))hP (y,B, a, xt) + κ

))
− u

(
B + a1y=yl + yfL(K(x))− qf (K ′(x′))hf,N (y,B, a, x)

)

+ β
∑
y′

π(y′|y)


u

hf,P (y,B, a, xt) + hP (y,B, a, xt)1y′=yl + yfL(K ′(x′))

− qf (K ′′(x′′))B′′ − δ′′ (q(K ′′(x′′))a′′ + κ)


− u

hf,N (y,B, a, xt) + yfL(K ′(x′))

− qf (K ′′(x′′))B′′ − δ′′ (q(K ′′(x′′))a′′ + κ)



+ Γ

with

Γ =(qf (hf,P (y,B, a, x)− hf,N (y,B, a, x)) + q(K ′(x′))hP (y,B, a, xt))×∑
ŷ

∫ −
hf (ŷ, B, a, x)qfK(K ′(x′)) + ...

...+ δ(ŷ, B, a, x)h(ŷ, B, a, x)qK(K ′(x′))

u′

B + a1ŷ=yl + ŷfL(K(x))− qf (K ′(x′))hf,∗(ŷ, B, a, x)

− δ(ŷ, B, a, x) (q(K ′(x′))h∗(ŷ, B, a, xt) + κ)


+
∑
y′

βπ(y′|ŷ)u′

hf (ŷ, B, a, x) + 1y′=ylh(ŷ, B, a, x)

+ y′w(x′)− a′′

 y′FKL(K ′(x′))

x(B, a, ŷ)dBda (8)

= (qf (hf,P (y,B, a, x)− hf,N (y,B, a, x)) + q(K ′(x′))hP (y,B, a, xt))∆.

We can now characterize the constrained efficient allocation. To begin with, we can notice that,

when markets are complete (δ = 1 everywhere), conditions (FOCP1) and (FOCP2) are always satisfied

and, in addition, Γ = 0. This helps us to prove the following lemma.

Lemma 14. When κ ≤ κ, conditions (FOCP1) and (FOCP2) are satisfied. Thus, the competitive market

allocation is constrained efficient.

When κ ≥ κ, conditions (FOCP1) and (FOCP2) are generally not satisfied. Thus, the competitive

market allocation is generally not constrained efficient.

Indeed, no ”pecuniary” externality can appear.

The next lemma investigates participation in the constrained efficient allocation compared with the

competitive one.

Lemma 15. There exists κ̂ > κ such that the constrained efficient allocation features δ = 1 everywhere.

Proof. Consider ε arbitrarily small and consider the participation cost κ+ε. The competitive equilibrium

features incomplete insurance: there exist a, B and y such that δ(a,B, y, x) = 0. The magnitude of the

cost of restoring full participation is at the order of ε while the cost to manipulate portfolio allocation

is of order 1. As a result, when ε is sufficiently small, the central planner is better off restoring full

participation for κ < κ+ ε.

Computing Γ. First note that Γ (defined by (8)) has the opposite sign of ∆ (defined by (7)).

Indeed, more insurance leads to less capital. As a result, if there is insufficient capital (∆ > 0), there

is too much insurance and vice versa. We compute ∆ for our different calibrations of the participation

cost. We find a negative value for the high value of κ (as in Davila et al., 2012), implying a positive Γ,

that is insufficient insurance. Conversely, we find a positive value for ∆ for the intermediate value of κ.

As a consequence, Γ is negative and there is too much insurance.
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