
http://wrap.warwick.ac.uk

Original citation:
Dickson, James, Maheswaran, Satheesh, Wright, Steven A., Herdman, J. A. and Jarvis,
Stephen A., 1970- (2015) MINIO : An I/O benchmark for investigating high level parallel
libraries. In: 27th ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’15), Austin, Texas, USA, 15-20 Nov 2015.

Permanent WRAP url:
http://wrap.warwick.ac.uk/73143

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription. For more information, please contact the WRAP
Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/42612887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/73143
mailto:publications@warwick.ac.uk

MINIO: An I/O Benchmark for Investigating High Level
Parallel Libraries

[Extended Abstract]

James Dickson
Department of Computer

Science
University of Warwick

Coventry, UK
j.dickson@warwick.ac.uk

Satheesh Maheswaran
High Performance Computing

UK Atomic Weapons
Establishment

Aldermaston, UK

Steven Wright
Department of Computer

Science
University of Warwick

Coventry, UK

Andy Herdman
High Performance Computing

UK Atomic Weapons
Establishment

Aldermaston, UK

Stephen Jarvis
Department of Computer

Science
University of Warwick

Coventry, UK

ABSTRACT
Input/output (I/O) operations are amongst the biggest chal-
lenges facing scientific computing as it transitions to exas-
cale. The traditional software stack – comprising of paral-
lel file systems, middlewares and high level libraries – has
evolved to enable applications to better cope with the de-
mands of enormous datasets. This software stack makes
high performance parallel I/O easily accessible to applica-
tion engineers, however it is important to ensure best perfor-
mance is not compromised through attempts to enrich these
libraries. We present MINIO, a benchmark for the investiga-
tion of I/O behaviour focusing on understanding overheads
and inefficiencies in high level library usage. MINIO uses
HDF5 and TyphonIO to explore I/O at scale using differ-
ent application behavioural patterns. A case study is per-
formed using MINIO to identify performance limiting char-
acteristics present in the TyphonIO library as an example
of performance discrepancies in the I/O stack.

1. INTRODUCTION
Systems for modern high performance computing (HPC) are
reaching extreme scales, with efforts being made towards ex-
ascale computing [1]. While much of the focus on achieving
exascale has been on improving computation speed, many of
the peripheral components of the supercomputer have failed
to keep pace. One such example of this is in the parallel file
systems connected to today’s HPC systems – where both
physical and financial limitations have contributed to a re-
duced rate of development compared to processor and mem-
ory systems. As a result of the increase in computational
resources available today, simulations are being conducted
at greater resolution and generating larger volumes of data
than ever before. Many scientific simulations are therefore
becoming limited, not by their computational complexity,
but by their ability to perform I/O operations efficiently at
extreme scales.

Parallel applications are increasingly making use of the MPI-
IO library [5] or middlewares such as the Hierarchical Data
Format (HDF5) [3]. MPI-IO represents the backbone of
most parallel I/O, managing operations from multiple pro-
cesses to the underlying file system. High level libraries ex-
tend this capability, handling elements such as the calcula-
tion of file offsets and providing features such as collective
I/O. Additionally, the accompanying self describing file for-
mats give structure and portability to datasets across sys-
tems and applications. The origin of HDF5 has followed
a trajectory from serial to parallel, posing a question of
whether the current mechanism limits transition to future
extreme scale requirements. This places important focus on
how applications use I/O libraries.

To encourage adoption of modern I/O techniques, institu-
tions have the ability to introduce in-house layers or adap-
tations to existing high level libraries, examples being Ty-
phonIO [6] and SILO [4]. Their use adds a level of future
proofing to applications, standardisation of practices and
capabilities, such as support for VisIt in SILO. It is impor-
tant to ensure that in developing these libraries, unnecessary
overheads are not introduced and fine-grained control over
I/O behaviour is not lost.

2. BENCHMARK DESIGN
MINIO currently implements the HDF5 and TyphonIO par-
allel I/O libraries. Design considerations were made to fa-
cilitate generation and reading or writing various dataset
compositions in different patterns. The result of which al-
low direct comparisons to be drawn between different library
implementations.

2.1 Application Characteristics
The execution sequence followed by MINIO can be modelled
as the following:

Initialise and read input parameters;
if Writing then

Generate simulation data;
for n timesteps do

Perform computation to buffer I/O operations;
Write dataset contents to file;

end

end
if Reading then

for n timesteps do
Read dataset from file;
Perform computation to buffer I/O operations;

end

end
Data validation;
End simulation and output profiling information;

A valuable feature of our application is the computational
buffer introduced between consecutive read or write opera-
tions. The purpose being a greater similarity to real appli-
cations, which consist of numerical computations between
collections of I/O operations. The characteristics of this
buffer are controlled by the parameters explained in greater
detail below.

2.2 Parametrisation
The benchmark design allows for many of the application
features to be changed via input parameters depending on
user requirements. This permits investigation of I/O be-
haviour given different access patterns and problem formu-
lations. The configuration of a run is controlled by a self
describing input file written in the YAML data interchange
format.

Input parameters control the following aspects of application
execution:

• I/O library – TyphonIO or HDF5

• Mesh structure, number of real, mixed and ghost ele-
ments

• Additional quantities and mesh variables

• Number of I/O processes

• Number of timesteps

• Compute buffer length and complexity

The way computation is introduced to execution is via the
input’s compute level and compute length, which take an
integer value of 1 to 3 and 1 to 5 respectively. Increasing the
compute level value increases the complexity of operations to
perform, while the length parameter influences the duration
each buffer will take.

3. CASE STUDY
To assess the performance overheads of replacing HDF5 with
a more restrictive library sitting higher in the I/O stack, we

conducted a series of scaling experiments. ARCHER at the
Edinburgh Parallel Computing Centre was used to perform
large scale runs of up to 10,000 processes.

In order to observe I/O behaviour of the application during
execution, the Darshan profiling and tracing library [2] was
linked before application execution.

The results demonstrate that absolute I/O time for a run
is much greater for TyphonIO than when performing the
equivalent operations using HDF5 directly. As process count
scales, dedicated I/O for the simulation increases only margi-
nally for HDF5 operations. The HDF5 calls made by Typho-
nIO are very different and result in I/O time scaling linearly
with process count. The trend of increasing write times is
seen across all processes, resulting in a much greater cumu-
lative time is spent performing data writes for TyphonIO
calls compared to HDF5 when scaling past 2,000 processes.

Examination of the slowest write operations show that Ty-
phonIO’s slowest transfer size is consistently around 36 bytes.
The slowest data transfers made by HDF5 are never less that
27× larger, with runs at 100 and 7,000 processes displaying
sizes of 419 Kbytes and 104 Kbytes respectively. These val-
ues suggest that TyphonIO performs many smaller, less effi-
cient write operations. Additionally, timing data also shows
the slowest operation time is again consistently lower for
HDF5, with the transfer in question taking 4 times longer
at 100 processes. This operation upper bound increases at
a rate slightly above that at which process count scales for
TyphonIO, however the rate is decreasing for HDF5. Con-
sequently, at 10,000 processes there is a 30× time difference
with TyphonIO’s slowest transfer taking 18 minutes com-
pared to HDF5’s 35 seconds.

4. REFERENCES
[1] A. Brinkmann, T. Cortes, H. Falter, J. Kunkel, and

S. Narasimhamurthy. E10 – Exascale I/O Whitepaper.
2014.

[2] P. H. Carns, R. Latham, R. B. Ross, K. Iskra, S. Lang,
and K. Riley. 24/7 Characterization of Petascale I/O
Workloads. In Proceedings of the IEEE International
Conference on Cluster Computing and Workshops
(CLUSTER’09), pages 1–10, New Orleans, LA,
September 2009. IEEE Computer Society, Los
Alamitos, CA.

[3] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and
D. Robinson. An Overview of the HDF5 Technology
Suite and its Applications. In Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases,
pages 36–47. ACM, 2011.

[4] Lawrence Livermore National Laboratory. Silo: 2015.
https://wci.llnl.gov/simulation/computer-codes/silo,
Accessed: 1st August 2015.

[5] R. Thakur, W. Gropp, and E. Lusk. Data-Sieving and
Collective I/O in ROMIO. In Proceedings of the 7th
Symposium on the Frontiers of Massively Parallel
Computation (FRONTIERS’99), pages 182–191,
Annapolis, MD, February 1999. IEEE Computer
Society, Los Alamitos, CA.

[6] UK Atomic Weapons Establishment. Typhonio library.
https://github.com/UK-MAC/typhonio, Accessed:
10th June 2015.

LATEX TikZposter

MINIO: An I/O Benchmark for Investigating High Level Parallel Libraries
James Dickson1, Satheesh Maheswaran2, Steven Wright1, Andy Herdman2, and Stephen Jarvis1

1Department of Computer Science, University of Warwick, UK
2High Performance Computing, UK Atomic Weapons Establishment, Aldermaston, UK

MINIO: An I/O Benchmark for Investigating High Level Parallel Libraries
James Dickson1, Satheesh Maheswaran2, Steven Wright1, Andy Herdman2, and Stephen Jarvis1

1Department of Computer Science, University of Warwick, UK
2High Performance Computing, UK Atomic Weapons Establishment, Aldermaston, UK

Introduction

Input/output (I/O) operations are amongst the biggest challenges facing scientific computing
as it transitions to exascale. The traditional software stack – comprising of parallel file systems,
middlewares and high level libraries – has evolved to enable applications to better cope with
the demands of enormous datasets. This software stack makes high performance parallel I/O
easily accessible to application engineers, however it is important to ensure best performance is
not compromised through attempts to enrich these libraries. We present MINIO, a benchmark
for the investigation of I/O behaviour focusing on understanding overheads and inefficiencies in
high level library usage. MINIO uses HDF5 and TyphonIO, a library build on HDF5 with its own
scientific data model, to explore I/O at scale using different application behavioural patterns.
A case study is performed using MINIO to identify performance limiting characteristics present
in the TyphonIO library as an example of performance discrepancies in the I/O stack.

Traditional Software Stack

Parallel File System Lustre, GPFS, HDFS

Middleware MPI-IO

High Level Library HDF5, PnetCDF, Adios

Data Model Libraries TyphonIO, SILO, LibMesh

Storage Hardware

Application

Parallel I/O Paradigms

(a) The file-per-process approach achieves parallelism by simultaneously accessing multiple
files. Often the number of simultaneous accesses must be limited to avoid overloading
metadata systems. Distribution of data is handled by the application and is not easily
portable between runs of different sizes.

(b) Gather to root aggregates data at a single process and writes to a single file. The
greater workload is placed on the interprocess communication rather than the data
storage subsystem, however there is no opportunity for any real I/O parallelism.

(c) Shared file parallel I/O uses the above software stack, which handles the distribution of
data on behalf of the application. The management of contention and communication
in shared file I/O however becomes an important focus for achieving best performance.

P1 P2 P3 P4

File Output

P1 P2 P3 P4

File Output

F1

P1

F2

P2

F3

P3

F4

P4

File Output

(a) File-Per-Process – N-N (b) Root Gather – N-Root (c) Shared File – N-1

Related Work

• IOR [1] is a benchmark derived from workload analysis of applications used at NERSC. This
work has been successful in improving the representativeness of access patterns displayed
by many benchmarks, a trait we also wish to incorporate into the design of MINIO.

• FLASH-IO [2], MADBench2 [3], Chombo I/O and S3D-IO derive I/O kernels from complete
applications. This approach aims to bridge the gap between a standalone benchmark and
the applications they attempt to model. These are useful for providing insight into I/O
behaviours of single applications, but they are inevitably less useful for wider investigation.

• Skel [4] and APPrime [5] automatically generate I/O kernels based on input data and traces
taken from target applications. While this approach can match real world applications,
generating the required data may not always be feasible. Running full scale codes to
produce I/O traces uses valuable computational resources and can often take a great deal
of time given the complexity of many scientific applications.

Design

• Our benchmark is partly derived from a closed source application called IOBench, which was designed for
exercising file systems during system procurement. IOBench is limited in the flexibility of its execution
pattern and only performs operations using the TyphonIO data model library, which in turn uses HDF5.

• A feature of our application is the computational buffer introduced between consecutive read or write
operations. This buffer serves to produce a greater similarity to real applications, which consist of numerical
computations between collections of I/O operations. The way computation is introduced to execution is via
the input’s compute level and compute length, which take an integer value of 1 to 3 and 1 to 5 respectively.
Increasing the compute level value increases the complexity of operations to perform, while the length
parameter influences the duration each buffer will take.

Application Characteristics

Initialise Run

YAML Input File

Generate Data
Computation

Buffer
Data Write

Validate and
Exit Run

Profilling Data

(a) Write Sequence

Initialise Run

YAML Input File

Data Read
Computation

Buffer
Validate and

Exit Run

Profilling Data

(b) Read Sequence

Parametrisation

• Control of the application parameters is handled by a self describing input file written in the YAML data
interchange format.

• Structure of the dataset mimics the data model used by TyphonIO

Parameter Explanation

io method The method used for parallel I/O operations – either TyphonIO or HDF5
mesh The structure of the mesh that will be written/read – quad, unstructured or point mesh
processors Processes performing I/O operations
real Real elements in the target mesh per process
mixed Mixed material elements in the target mesh per process
ghost Ghost elements in the target mesh per process (ghost layers for quad mesh types)
quantities Data quantities (any mesh wide data other than materials)
variables Data variables (additional data not attached to other objects or their metadata)
io mode I/O behaviour to exercise exercised – either write or read
steps Number of iterations of the desired I/O behaviour
compute level Intensity of numerical computation performed between I/O kernel execution
compute length Duration of compute buffer

References

[1] Shan, H., Antypas, K., Shalf, J.: Characterizing and Predicting the I/O Performance of HPC Applications using a Parameter-
ized Synthetic Benchmark. In: Proceedings of the 20th ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’08), IEEE Press, (2008)

[2] FLASH-IO Benchmark on NERSC Platforms, http://pdsi.nersc.gov/IOBenchmark/FLASH_IOBenchmark.pdf

[3] Borrill, J., Oliker, L., Shalf, J., Shan, H.:Investigation of leading HPC I/O performance using a scientific-application derived
benchmark. In: Proceedings of the 19th ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’07), IEEE Press, (2007)

[4] Logan, J., Klasky, S., Abbasi, H., Liu, Q., Ostrouchov, G., Parashar, M., Podhorszki, N., Tian, Y., Wolf, M.: Understanding I/O
Performance Using I/O Skeletal Applications. In: Proceedings of the 18th International Conference on Parallel Processing (Euro-Par
2012), Springer Berlin, Heidelberg, (2012)

[5] Jin, Y., Liu, M., Ma, X., Liu, Q., Logan, J., Podhorszki, N., Choi, J.Y., Klasky, S.: Combining Phase Identification and Statistic
Modelling for Automated Parallel Benchmark Generation. In: Proceedings of the 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP 2015), ACM, New York, NY, USA, (2015)

Case Study

Experimental Setup

Archer

Processor Intel Xeon E5-2697
CPU Speed 2.7 Ghz
Cores per node 24
Nodes 4920
Interconnect Aries Dragonfly
File System Lustre
Storage size 1.5PB

• A performance study was conducted using MINIO to
identify how writing identical datasets differed between
TyphonIO and its underlying library implementation
HDF5.

• Weak scaling runs were performed from 100 to 10,000
processing elements using the ARCHER supercomput-
ing platform.

(a) Absolute I/O Time (b) Cumulative Write Time

10
0

20
0

40
0

80
0

1,
60

0

3,
20

0

6,
40

0

12
,8

00

10

100

1,000

IO
T

im
e

(s
)

10
0

20
0

40
0

80
0

1,
60

0

3,
20

0

6,
40

0

12
,8

00

100

1,000

10,000

100,000

1,000,000

10,000,000

C
um

ul
at

iv
e

W
ri

te
T

im
e

(s
)

(c) Size of Slowest Write Operations (d) Slowest Write Operation Time

10
0

20
0

40
0

80
0

1,
60

0

3,
20

0

6,
40

0

12
,8

00

100

1,000

10,000

100,000

1,000,000

Processing Elements

W
ri

te
O

p
er

at
io

n
S

iz
e

(b
yt

es
)

10
0

20
0

40
0

80
0

1,
60

0

3,
20

0

6,
40

0

12
,8

00

100

1,000

10,000

100,000

1,000,000

10,000,000

Processing Elements

W
ri

te
O

p
er

at
io

n
T

im
e

(s
)

TYPHONIO
HDF5

Evaluation

• The results demonstrate that absolute I/O time for a run is much greater for TyphonIO than when performing
the equivalent operations using HDF5 directly. As process count scales, dedicated I/O for the simulation
increases only marginally for HDF5 operations. The HDF5 calls made by TyphonIO are very different and
result in I/O time scaling linearly with process count. The trend of increasing write times is seen across
all processes, resulting in a much greater cumulative time spent performing data writes for TyphonIO calls
compared to HDF5 when scaling past 2,000 processes.

• Examination of the slowest write operations show that TyphonIO’s slowest transfer size is consistently around
36 bytes. The slowest data transfers made by HDF5 are never less that 27× larger, with runs at 100 and
7,000 processes displaying sizes of 419 Kbytes and 104 Kbytes respectively. These values suggest that
TyphonIO performs many smaller, less efficient write operations. Additionally, timing data also shows the
slowest operation time is again consistently lower for HDF5, with the transfer in question taking 4 times
longer at 100 processes. This operation upper bound increases at a rate slightly above that at which process
count scales for TyphonIO, however the rate is decreasing for HDF5. Consequently, at 10,000 processes
there is a 30× time difference with TyphonIO’s slowest transfer taking 18 minutes compared to HDF5’s 35
seconds.

