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Summary

This thesis studies the state reconstruction problem for a class
of non-linear systems. This class is that of perturbed linear systems.
The properties of the linear part are used to arrive at results for the
complete system.y Whilst this is a common technique in mathematics and
physics its use in non-linear infinite dimensional systems theory has
not been extensively investigated. The present work makes such an
investigation with a view to indicating the successes, and limitations,
of such a treatment. As to contribution, as far as the author is aware,
many of the results are new both in precise statement and general approach.

Chapter 1 introduces, and motivates, the formulation adopted.

Chapter 2 provides some useful information on linear infinite dimensional

control theory. Chapter 3 gives; subject to certain, perhéps restrictive,

conditions, a rigorous statement, and proof, of the basic theorems. Here,

as elsewhere, the standard fixed point results are used. Parts of this

chapter are extracts from, as yet unpublished, joint work with A.J. Pritchard

and M.D. Qufnn. Chapter 4 relaxes some of the conditions in 3 and applies
 the same techniques to other areas. GChapter 5 surveys, in a formal fashion,

the more constructive, numerical aspects of the preceding results with-a

view to indicating directions for this important area of : further research.

It is concluded that the "perturbed linear" approéch,used here can
give results that are both theoretically and computationally useful. The
strength of the requirements placed on the linear part, however, indicates
a challenging area for future investigations: a constructive approach to
intrinsically non-linear problems.
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CHAPTER I : Introduction

1.1 Generalities

Control and observation problems for linear dynamical'systems
have been widely studfed. in reality, many practical problems coﬁcern
modeis which are non-linear in nature. It is thus desirable to develop
an analysis of control and observation properties whfch is applicable to
non—]inear systems; or at least to classes of non-]ineaf'systemé, the
term "non-linear system" being aAs1ightmisnomer since it only specifies
eXc]usion frdm a particular class. Such a theory should 1eéd to constructive.
information, since the fact that a solution exists does not often solve a
significant practical problem. This thesis étudies aspects of such a non
linear systems theory for a class of systems which might be called "semi-
linear". That is to say, they appear'as'the sum of a linear and a non-

linear part.

"For such systems the general aim is to use properties of the linear
. part in establishing formulations which allow one to prove results for the

complete system. A simpTe example of this procedure is afforded by

Examp]é 1.1

Consider 2 = Az + f(z) ; 2(0) = zg where- A is a linear operator

and -f(+) a non-linearity. Then, under appropriate conditions (see

Chapter 3) we can make sense of the variation of constants formulation

¢
2(t) = Mz 4 JO.eA(t'S)f(z(s))ds e (1.1)



If we take the right hand side of (1.1) to define an operator action
on z, &(z) , then a fixed point of ¢ 1is regarded as defining a

solution of the original, non-linear, problem.

From a strictly mathematical viewpoint this is an antiqué technique:
a complicated problem is approached by regarding it aé a perturbation of
a simpler one whoge analysis is well-developed. Though widely exploited
in the mathematical theory of non-linear differential equations such ideés
have only been applied in a disjointed and fragmentary fashion to problems
arising in control theory. This state of affairs is to be contrasted
with the use of manifold and differential geométric techniques in the
“geometric" non-linear control theory of Brockett et é].. Some méjor |

contrasts are:

a) global v. local : the differential-geometric approach attempts to
deduce global information about controllability and observability -
the perturbation approach is necessarily local often both in time

- and in initial data (it may however sometimes be extended to provide

‘global information).

v b) "existential" v. constructive.: the geometric ideas (as in fhe theory
-dedynémical systems proper).providg qualitative information about the
solution - they rarely (if ever) lead directly to a numerical solution.
"By:contrast (perhap; due to the influence of Brouwer) fixed point
formulations, such as may arise from perturbation techniques, have

been the subject of much "constructive" attention.

c) finite v. infinite (dimensional) : whilst there is a theory of



infinite dimensional Banach (and Hilbert) manifolds it has yet to

be extensively applied to dynamical systems resulting from partial
differential equations. The perturbation fechniques (perhaps because
of their less sophisticated requiréments) have been applied to both
ordinary and partfa] differential‘equations. Indeed some of the
results for semi-linear systems have been developed in the first -

instance specifically for partial differential equétions, without

regard to their implications for finite dimensional systems.

Thus, in conclusion, simplicity, particularly when it is effective
in solving significant problems, should hot be despiSed. In the present
work motivation derives from a desire to provide constructive answers to
problems arising from semi-linear partial differential equatidns.' Moreover,
suitably equipped with a phi]osophica]]y’based pessimism concerning the
limitations of.appTied mathematics we may be prepared to accept only 1oca1

answers. It should not be surprising that perturbation techniques constitute

~a suitable approach.



1.2 Formulation
Consider an observed dynamical system given, at least formally,

by

z = f(z,u,t) 3 2(0) =z, (1.2)

h(z,u,t)

y

where u 1is the input to the system and is assumed knowh, ‘'z is the state,
and y denotes the output. Take an initial guess for the state trajectory

z(-) and let

zZ+ 2

; .
.o (1.3)

y = h(z,u,t) + y'

substitution in (1.2) gives

2= A(t)Z' + F(2',u,t) + F(Z,ust) - 3
z'(0) = zb ... (1.4)
y' =C(t)z' + h(z',u,t)

where zj = zbm- Z(0) .

The (time-varying) linear operators A(t), C(t) represent the linear

part of the expansion after local approximation about Zz ; f(-,.,.) and"

“h(-,+,+) represent the, higher order, non-linear terms of the approximation.

If z satisfies the original dynamics with the spécified initial

condition then we have

T=f(Eut) 520 =7, - .. (1.5)

When {1.5) does not hold f(Z,u,t) - Z is an additional known quantity
in the z' equation. Such known quantities, appearing in either the
dynamics or the output equation, do not alter the results of this thesis.

For ease of exposition such terms are therefore ignored.

Our éim, then, is to use knoWledge of the linear theory of state re-
A
construction to provide an approach to reconstructing the state of the
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non-linear systems (1.1). Although reconstructing an initial state for

the syétem which is the linear part of (1.4), 1i.e.

z = A(t)z*

.. (1.6)
C(t)z'

y

has received much attention (see, for example, Chapter 9 of Curtain-
Pritchard, [1]) we shall, again for ease of exposition, restrict attention
to time-invariant systems written as
Az' + f(i')

cz'

2 |
. oan

yl
Note that the non-linearity in the output equation has been dropped. This

too can be done without any real loss of generality in the methods to be

described.

In Chapter 4 we briefly study the (non-linear) problem of joint state
and parameter estimation by our methods. In this case the original system

has the form

= f(z,u,a,t) 3 2z(0) =‘z0

Ne
I

Ce (1-8)‘

1]

y = h(z,u,a,t)

where o 1lies in the chosen parameter space. As before we make a local
approximation about a guess z(:) (for the state trajectory) and &

(the parameter). Performing simplifications as above we arrive at

n

2' =AZ' + Aja' + f(z,0)

.. (1.9)
C z2'

yl

0f course systems such as (1.7) and (1.9) may arise naturally,
rather than by the approximation procedure described above. The next

section contains some examples.
- 3



1.3 Some models

The examples in this thesis are based on fhe simplest
standard mode]s of non-linear (second-order) parabolic and hyperbolic
equaions, i.e. fhe non-linear heat and wave equations respectively.
Here we indicate some circumstances in which models of the type (1.7)
might arise. These‘should be taken as providing evidence that the
considerations of this thesis are potentially applicable to the real

world. (See Henry [1]1, Reed [1] for this, and other, evidence.)

Example 1.2 (reaction - diffusion)

Models of chemical reactions often give rise to equations of

the form

02,532 22, 4y .. ~(10)

More precisely, consider Sl""’SN being N chemical species which

participate in R independent reactions. These reactions take place

over a region € clﬁ? . Let c; be the concentration of Si' then

ac, R
—— = div (Di grad ci) + I a..f, ... (1.11)

. jo1 13



N

where the conservation of mass is expressed as I o5 Sj =0 (j=1,...,R) .
i=1

Di represents the diffusion coefficient for the species S. and

fj(c],...,cN) is the rate of the jEﬁ reaction.

Example 1.3 (population genetics)

Consideration of the probabilities of genetic events often gives rise -

to study of "Fisher's equation"

9z _ 9z 1
= = + f(z) X € R
ot 3X2 oM
(1.12)
z(0) = z,

Such equations are also used to describe the geographic distribution of

plant, animals or epidemics.

Example 1.4 (Navier-- Stokes) ' L

The physical laws governing the flow of a viscous incompressible

fluid yield the model

o

%% + (q.V)q = vAq - -:-)— grad p
. (1.13)

0

div q
where p is:the pressure, q the velocity and p,v are positive

constants (representing density and kinematic viscosity respectively).



By a transformation of Kato-Fujita we obtain a model in the desired
semi-linear form. More simply one often considers the simplified form

known as Burger's equation viz. (see Burgers in Additional References, p.166)

' 2
9Z 9Z _ 3z _
a—t"l‘za—)z -a—xz--o : | RN (1.14)

rather than the completeNavier-Stokes system (1.13). Such equations
have been subject to much research - partly due to their possible relation

to turbulent behaviour in fluids.

The above examples give rise to semi-linear parabolic equations; in
fact, they are semi-linear diffusion equations. Many other processes give
rise to such models e.g. non-linear heat conduction, re-distribution of
impurities in-semi-conductors; see Henry [11 for further details. One
characteristic feature of éuch equations (in contrast to linear diffusion
equations) is the possible presence ofi travelling wave solutions. Though '

much analysis has been devoted to this topic, knowledge, especially foﬁA
higher-dimensional systems (i.e. over iﬁn s N> 1), is still incomplete.
Such phenomena are often used to justify the assertion that the majority

- of waves are not governed by the wave equation. Non-linear wave equations

of interest, however, include ...

Example 1.5 (Klein-Gordon)

A model of the following form is found in a variety of circumstances

22-224v(z) =0 e (1.15)



where V'(+) is a non-lihear function of z occurring as the derivative
of a potential energy V(:) . Especially popular is the choice V'(z) = sin z;
predictably, this gives the "sih e - Gordon" equation. Such an equation
has occurred in modelling dislocations in crystals, propagation of magnet-
isation waves in ferromagnetic materials, and Josephson junctions. With a
cubic nonlinearity (V'(z) = 23) (1.15) has been uscd to make tentative
suggestions about the nature of elementary particles. This should not be 
surprising in view of the close relation to the non-linear Schrdodinger

equation.

In all these cases we may be interested either ih inserting control
action to drive the system so as to meet certain objectiveé (e.g. attain
a desired final state) or in taking output measurements so as to reconstruct
the internal state. It is with this latter objective, namely state re-
construction, that this thesis will be mainiy concékned. Many of the
methods and theorems have analogies in the control case, but these are not
explored here. Magnusson [1]1 dinvestigates some applications of these
methods to the control case. Thus we are here cdnce}ned to study a system
model of the type (1.7) in the case where the state, z'(-) , is infinite
dimensional. The methods developeq and the results obtained for infinite-
dimensibna] state reconstruction in semi-linear systems, are new. In mény
cases these results are s;il] new when restricted to a finite dimensional
state-spaceé. As indicatéd in Section 1.2 the output measurements will be
taken to be given by a time invariant linear mapping acting on the system
state. In systems governed by partial diffefentia] equations such a mapping
could be, for example, the value.(if well defined) of the system state at
some’point in its domain of definition or the result of integrating the

system state over some sub-set of this domain.
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1.4 Treatment .

The preceding sections have already indicated the main features
of the thesis : the special class of non-linear systems to be studied
using fixed point results and strong assumptions on the 1inear part. The
necessary linear thedry is provided in Chapter 2. Chapter 3 concerns the
basic results and Chapter 4 investigates various refinements. Originally
Chapter 5 was going to be a rigorous study of the numerical analysis
associated with application of the techniques of Chapterﬁ 3 and 4. This
study, once embarked upon, proved to be both lengthy and intricate,
demanding a variety of new material. A full presentation 6f this material
was some way from the main aim «f the thesis - this being, as previously
stated, the‘a;plication of fixed point results to semi-linear control
theory. Thus, after some discussion, it was decided tc restrict Chapter 5
to a largely formal account of these Aumerica] aspects. This account tries’
to illustrate the main ideas and outline the requirements for a rigorous
treatment.  The purpose is to_give an indicatidn of this important area,
without overburdening detail, and to show some prohising directions:for

further research.
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CHAPTER II : Linear Theory

Summary

This chapter presents a review of linear infinite dimensional control
theory in a form suited to our later requirements. The basic material is
drawn from Curtain-Pritchard [1] and Lions [2]. Additional material on
analytic semigroups can be found in Hille-Phillips [1], on solvability
and i11-posedness in Nashed [1], and on embedding theorems in Lions [3]
and Adams f]]. None of the material is new, but its juxtaposition is

slightly novel.

2.1 Linear Evolution Equations : semigroups

Consider the (finite dimensional) ordinary differential equation
z=hz ;3 2(0) =z, .. | (2.1)

where z(t) 1lies in ]%n for some n  and A is an nxn matrix. The
matrix exponential eAt is used to express the solution of (1) in the

form

) = At

z(t Z - | L. | (2.2)

In the case of a linear partial differential equation we may have a
represen%ation similar to (2.1) where z(t) now lies in some Banach
space Z and wish to define a solution using an infinite dimensional

analogue of the matrix exponential. This analogue is the semigroup.
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More precisely we have

Definition 2.1

+

A strongly continuous semigroup is a map S(-) from R to L(z) ,
satisfying
S(t+s) = S(t)S(s) ;'.o csst Ce. (2.3)
S(0) =1 .. (2.4)
[1S(t)zg-zg] | > 0 as t > of v zoeZ ... | (2.5)
Example 2.2

Let A e. L(Z) and define

8

At 2 (At)"
' e = T
n=0 " '

i ™

3 this yields a strongly continuous semigroup.

Theorem 2.3
Let S(t) be a strongly continuous semigroup on a Banach'Space Z,
then
a) ||§(t)|| is bounded on every finite subinterval of [0,=[
b) Vze Z, S(t)z is strongly continuous

c) if wy = inf ( ']f1og [[S(t)[]) then wy = Tim (]t'mg”s(t)”) e
: t>0 ) toe



13-

d)  ¥w>w, 3 a constant M, such that ¥t >0
s} = Mt
W
Pf. see Curtain-Pritchard, [11].
The connection between the semigroup and the solution of an abstract

evolution equation is made by using the following

Definition 2.4

The infinitesimal generator A of a strongly continuous semigroup

S(t) on a Banach space Z 14s defined by

Az = Tim £ (S(t)-1)z .. | (2.6)
0+

whenever this limit exists; the domain of A , denoted D(A) being the

set of elements in Z for which the 1imit exists.
i

Theorem 2.5

Suppose S(t) is a strongly continuous semigroup on a Banach space Z,

- with infinitesimal generator A , and thus

a) if zjyeD(A) then S(t)z; e D(A) Vt =20

b)  $S(t)z) = AS(t)zy = S(t)Azy for z, < D(A) , t>0

c) %Eh(s(t)zo) = A"S(t)z0 = S(t)A"z, , 2y ¢ DA™ , t >0

: t
d) S(t;)z0 -z = fOS(s)Azods ﬂ g € D(A)
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e) A is a closed linear operator, D(A) =Z

f) N D(An) is dense in Z
n _
Pf. see Curtain-Pritchard [11.

Operators A which generate strongly continuous semigroups are

characterised by the Hille-Yosida theorem. This theorem uses the

Definition 2.6

Let A be a closed densely defined linear operator. The set of
complex numbers A such that A 1is not an eigenvalue and the range of
AI - A 1is the whole space Z 1is called the resolvent set of A .

For A ep(A)» (AL - A)"1 s denoted R(r;A) and is called the

resolvent of ..A .

Theorem 2.7 (Hille-Yosida)

A closed linear operator, A , such that D({A) = Z for a Banach.
space Z generates a strongly continuous semigroup S(t) iff 3 real
numbers M,w such that V real A >w, A e p(A) the resolvent set
of A and

r M 1.
IIR(A’A) || S (W)r Y‘ = ],2,.0-- s e (2-7)
- o If this holds then

lIs(t)]] s me¥t

Pf. see Hille-Phillips [11.
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The conditions of this theorem are not always easy to check and other
criteria have been developed; see Curtain and Pritchard‘tll, p.22 for
example. As will be seen, in a variety of contexts (particu]ér1y in
solvability and bptimisation) adjoint operators naturally occur; in
the following Z* denotes the dual Space of Z, < 7w 7 denotéé

the duality pairing.

Definition 2.8

Let A be a closed, densely defined linear operator with domain
, . .
D(A) 1in a Banach space Z . The adjoint operator A associated with

* *
A ("the adjoint of A") 1is a linear operator : D(A ) - Z where

* ' : '
MAY) = {z¥ e T [Ig* € 7' : <g*,2> 5 = <z*,Az> 4 Vz e D(A)}
7%,1 2,2

*
where we define A z* =g* .

As D(A) 1is dense, A*z* is well defined. One use of the adjoint

operator is in

Theorem 2.9

Let A be a closed densely defined 1inear'operator on a Banach space
Z, then A generates a semigroup S(t) on Z satisfying |[|S(t)|] < et
Vt 20 4ff VA >w | |

[1(A1-A)z||; = (a-w)||2z|]; » z e D(A)
AI-A)Z4]| 4 2 (o) [2%]| o« » 2% € DAT)
k yA . YA :

A
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Pf. see Curtain-Pritchard (11].

Corollary 2.10

In the case where Z 1is a.Hilbert space if there exists a B such

that

v .

B||z||2 Re (<Az,z>) z € D(A)

v

*
BIIZ*II2 Re (<A z*,z*>) z* ¢ D(A*)

then A generates a semigroup S(t) on Z .

Pf. Consider, for example, the condition
1AL - A)zl], = (=w)llz]], z € D(A)

of Theorem 3.9. In the Hilbert space this is equivalent to (€+,*> now

denotes inner product)
<Az - Az , Az - Az> 2 (A-w)2<z,z>
for A>w, ze¢ D(A) s by expansion
2%‘W||Z||2 - R?<Az,z>) + <Az;Ai> - w2||z||2 20

-

which will be satisfied for w,\ large enough if there exists a B as

in the statement. Similarly for the other condition. ]
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Given a semigroup S(t) it is often natural to consider its adjoint
*
S (t) . What can be said about this collection of operators? A simple

statement is...

Theorem 2.11

Let Z be a reflexive Banach space, S(.) a strongly continuous
*
semigroup on Z with infinitesimal generator A . Then S (.) is a

* : *
strongly continuous semigroup on Z with infinitesimal generator A .

Pf. see Curtain-Pritchard [1].

Example 2.12

Take Az =-F 7 =L%(00,11R)
and D(A) = {z : z € H'([0,13; ),2(0) = 0} .

Integration by parts gives that -

with D(A") = {z : z  H(LO,113R),2(1) = 0}

Additionally
- Y-
<Az,z> = - 3(z(1))" < 0

<A*z,z> = -3(2(0))2 <0

Hence the conditions of Corollary 2.10 are satisfied with 8 =0 .

Thus A generates a semigroup.
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Example 2.13

Consider the system
Z+az+Az=0 ; 2z(0) = Zy » 2(0) = z; 32 0

where A 1is a positive self-adjoint operator on a real Hilbert spacé

H, 'with dense domain satisfying

<Az,z> 2 k||z||2 ¥z e D(A) 5 k>0

Proceeding formally we consider the first order system

] z
w=0Qw where w = [}
z

and
z 0 I} {2z '
Ql.} = | -
z -A -a| |2z

As A 1is self-adjoint and positive its square root Aé' is well defined

and we may introduce a Hilbert space H = D(Aé) x H with inner product
<w,W>H = fAéz,AéE>H + <i,'z'>H-

and henca, for w e D(Q) = D(A) x D(Ai)

<, Qw>, <Az,7> + <z,-Az-a2>

s112
-a||z] ]y
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The adjoint of Q with respect to the Hilbert space H 1is given

f-0 B

D(Q") = D(@) .

by

* . . : .
Therefore <w,Q w> = -al]zllﬁ ; hence, by Corollary 2.10 we have
that Q generates a semigroup on H (in fact, a strongly continuous

semigroup).

Example 2.14 (Wave equation)

This is a special case of the preceding. |

Take ztt = zxx

with z(0,t) = z(1,t) =0 . Let H=L%([0,1LR) and Az = -z (in

the formulation of the preceding)
Y 1
D(A) = H(0,1) n HO(O,l)
*
then A =A and (& 1is a dummy spatial integration variable)

1

- !
2
wpeny = [ 2o 2 [ ey = P2l

using intggration by parts and standard embeddings.

In the formulation of Ex. 2.13 we have
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D(Q) = D(A) x D(AY) = H2(0,1) n HY(0,1) x Hy(0,1)

and can conclude that Q generates a strongly contiﬁuous semigroup

S(t) on H . If we separate the componenets of the domain space as

W, (for z) and W, (for z) then

W= " € Hé(o,l) x L2(0,1) and we have the following explicit
Y2

expression for the semigroup action

1 .
W, 22[<w],¢n>c9§nnt + ﬁ;<w2,¢n>s1nnnt]¢n
- S(t) =
W, zZ[-nw<w],¢n>s1nnnt + <w2,¢>cosn1rt]¢n

where ¢n =sinnr g .

Example 2.15 (Heat equation)

The heat equation

t XX
z(0,t) = z(1,t) =0
z(x,0) = 2,

is a prototype for a large class of parabolic equations.

Taking H = L®(0,1) one has Az = z,, defined on the domain

D(A) = H%(0,1) n H}(0,1) . In this case the semigroup has the explicit

expression’

‘ ) _n2"2t . T
(S(t)zg(g) = r2e sin nmg sin nry z(y)dy .
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The fact that the A in question generates a strongly continuous

semigroup can be deduced from Hille-Yosida Theorem - see Curtain-Pritchard
[1]. Semigroups generated by ei]iptic operators possess additional smoothing
properties, which are briefly described in the appendix on analytic semi-

groups.

Notion of a solution : semigroup

Using Theorem 2.5 it is clear that if z; 1lies in D(A) , where A
generates é strongly continuous semigroup S(t) , we can define a solution
of z=Az as z(t) = S(t)zy . This solution is continuous on [0, ,
differentiable on 10,o[ , and unique. It is often referred to as the
strong solution. If, however, Z ¢ D(A) we may still wish to have some

notion of solution - in this case one defines the mild solution as S(t)zo.

Example 2.16

In regard of example 2.14, the mild solution is'given by
z 2,

= S(t) 2, for Z, € Hé(o,l) s

b4 0

t

2, « 00,13, In case that z; « K2(0,1) n HY(0,1) , z; € H)(0,1)

1

then this solution is in fact a strong solution.

Suppose now one considers the inhomogeneous equation

z=Az+f; 2(0) =z , ) e (2.8)

then, by analogy with finite dimension (variation of constants formula),

one has, -
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Definition 2.17 (Mild solution)

If fe Lp(O,t];Z) p=1 then L ‘ .
t
un=supo+qugﬂq« .. (2.9)
0
is a mild solution of (2.8) on [0,t;1 . 3

One can now show

Lemma 2.18
z(t) defined by (2.9) is strongly continuous on [O,t]] .
Pf. see Curtain-Pritchard [13].

This lemma is important'because it tells us for a useful class of
functions f where the resulting state trajectory will 1ie. There are
other notions of solution relevant to (2.9), in particular, that T
investigated in Lions-Magenes [1]. Thus far we have attempted to presént
a formulation which applies to both the hyperbolic (Examples 2.13, 2f14)
and the parabolic (Example 2.15) cases. This generality is not always desirable
since the two cases possess some fundamental differences. In particular, some
hyperbolic equations (Example 2.14) will give rise to a semigroup which is
in fact a group; whereas, since a parabolic equation smooths the initial
data, one cannot invert the semigroup action. These statements will be made
more precise in the following. Lions [2] presents a framework for linear

parabolic equations as follows.
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Notion of a solution : weak

Let V,H be Hilbert spaces such that V 1is continuously embedded
and dense in H ; V* is the dual of V .and H 1is identified with its
dual H* . One writes V c H c.V*. and considers a family of operators
A(t):V > V" (hence defining a map A(-) e L2 (0,t43V)5L2(0,,3V™)) by
f -~ A(t)f(t) for fie L2(O,t];V)) . The objective isvto study the

evolution equation

dz -
i A(t)z = f C e | (2.10)
' with initial conditon
2(0) = z, C (2.11)

for appropriately chosen f, zg - To do this one introduces

Definition 2.19

2

W(0,t,) = (F[f e L2(0,t,3V), 3 ¢ (2(0,t.5v™ )
9] s]a ,aT s-|9

with the norm
t, ) t) ' ,
. df,,2
1¥llygo, ) = (J 1F)17es + [ T1gH12Z a0t

Using the fact that :V is Hilbert, W(O,t])‘ normed as above can
be given a Hilbert spaée'structure.' The following regularity result is

important for what follows.

Theorem 2.20

~ "Any f ¢ w(o,t]) is, after possible modification on a set of measure
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zero, a member of C(O,t];H) s
Pf. see Lions-Magenes, [11, Volume 1.

: *
Take, in (2.11), z5 e H, feL?(0,t3V7) in (2.10) and A(t)
satisfying the "coercivity condition" 3 A such that

<A(t)¢,¢>v* y +Allelly zallelly >0, VoeV, te 10,4

Theorem 2.21

With f,z0 » A(t) as above, the problem (2.10), (2.11) has an

unique solution in W(O,t1) . Moreover the induced map

f,zo + 2 is continuous from

2 *
LmJﬁV)XH+ww¢ﬁ
Pf. see Lions, [2].

The coercivity condition used above ensures that when A(t) is time
invariant (i.e. A(t) =A ¥te (O,t])) s =A gene}ates a strongly
continuous semigroup. Hence, by Theorem‘2.20, Theorem 2.21 is consisient
with the semigroup approach (where one obtains z e C(O,t];H), . Note
that a different class of perturbations is used, i.e. f ¢ L2(0,t];V*)

rather than _Lp(O,t];H) .

-
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- 2.2 Solvability and least squares problems : generalised inverses

Consider thé operator equation
Tx =y « . (2.12)
where T 1is a linear mapping from a Hilbert space X into a Hilbert
space Y . Traditionally one considers that (2.12) has a solution if
and only if y e range (T) . In a variety of circumstances (particularly
in optimisation problems) this traditional notion may not be the most
appropriate. The genera]izéd (or sometimes pseudo) inverse offers one

way in which the notion of a solution may be extended.

Definition 2.22

T is said to be a closed operator iff G(T) , the graph of T,
is closed in X xY (i.e. X, € X, Xn +~x0=$Txn >Y¥y t Xy € X and

Tx0 = yo).

Clearly, any T e L(X,Y) 1dis a closed operator.
Note that the ranje of T s not neceSsarily closed in Y . Now and
*
for the rest of this section we identify X with X and Y* with Y 3
T* will denote the adjoint map; then we have that
- *
R(T) = N(T)* R(TY = N(T")
L] . L] (2.]3)
% 1 * 1 .
R(T ) = N(T) R(T )™ = N(T)

Clearly, R(T) is closed in Y iff R(T') is closed in X .

-~

L N(T) > R(T) is 1-13  thus
- IN(T)

(T )']. exists and is such that
N(T)*

(1] )7 s R > N
NT*
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It is now reasonable to define the generalized inverse TJr of T

as

Definition 2.23

t -1

T is the linear extension of (Tl ;) so that
: N(T)
D(TT) = R(T) + R(T)*
N(TT) = R(T)* .

If R(T) is closed then Y = R(T) + R(T)* so that T' s a bounded
operator; if R(T) 1is not closed then R(T*) is R(T*) .

As might be expected in a Hilbert space, the generalized inverse has
a natural interpretation in terms of projectinns. Let P denote the
orthogonal projection of X onto N(T)l and Q the orthogonal projection

*
of Y onto N(T )l . It can be shown that

-

P=TT ... (2.14)

Q=TT - ' (2.15)

. * ) . '
Thus the projection onto N(T ) may be writtenas I - 11T and that
onto N(T) as I - T . Further properties of generalized inverses

will be found ih Appendix 3.

-

Least squares problems

One of the most useful features of generalized inverses is their

relationship to least squares problems. Consider Tx =y , T e L(X,Y)

h
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once more; suppose we now no longer wish to find a solution x which
satisfies Tx =y exactly, instead we are content to find an x which

minimises ||Tx - yllY

Definition 2.24

A vector xLS is a least squares solution if

T - ylly = inf] 1T - ylly £ x e X

LS

A11 such xLS satisfy T*T x>~ = Tfy 3 the so-called normal -

equations.

Definition 2.25

A vector X will be called a least squares solution of minimum norm

if X is a least squares solution and

‘T1§||x < llesllx for all least squares solutions xLS .

The set of least squares solutions may be empty. If R(T) is closed,
however, the set of all xLS is ndn-empty closed and convex; and a closed
convex set in a Hilbert spaces possesses an unique}e]ement of minimum norm.
The re]atjonéhip between the generalized inverse and the least squares

solution of minimum norm is expressed by

Theorem 2.26

Let T be bounded, R(T) closed, then

A
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X = T+ y

Pf. see Beutler [1]

and

Theorem 2.27

If T is bounded, but R(T) not necessarily closed then if
y e D(TT) = R(T) + R(T) we have % =TTy |

Pf. see Beutler [1]1 .

Of course, many problems can be formulated in a linear least squares

context. An operator which gives the solution to such a problem may offer

no inherent computational advantages. It m7y be possible to use the
algebraic identities satisfied by the‘pseudo inverse to solve the linear
least squares problem; but it is more likely that, especially in the
infinite dimensional case, one would resort to some more traditional
minimisation procedd}e. It is true, however, that existence of such an

operator offers some analytic advantages.

Solvability
The solvability of (2.12) has been considered, in the mathematical
literature, since the time of Hausdorff and Fredholm. Take T e L(X,Y)

with X,V Hilbert and make the . . .

Definition 2.28

T 1is normally solvable iff"R(T) is closed.

A
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This is equivalent to (using (2.13)).

Definition 2.29

The equation Tx =y 1is consistent iff y 1is orthogonal to any

*
solution u of Tu=20.
For bounded linear T such as are considered here one obtains

Theorem 2.30

The following are equivalent
a) R(T) is c]osed;‘
. Tx|] . L
b) «¥(T) = inf.{ :0#xe N(T)Yy> 03
c) inf{||Tx-y|] : x € X} is attained Vy e Y ;
d) the restriction of T “to N(T)i has a bounded inverse;
e) the quotient space X/N(T) 1is isomorphic with R(T);

f) T has a bounded generalized inverse.
Pf. see Nashed [13.

In the case of linear operatoré T:X.» Y which are unbounded but
have closed graphs, a theorem analogous to the aboye holds, subject to
certaih mqgiffcations. For example, in condition b) x must be restricted
to lie in D(T) n N(T)L . Note also that normal solvability for any one

of T,T*,TT*, or T*T implies the same for all the others.
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Example 2.31

Examples of normally solvable T are given by

a) all operators which are bounded below (i.e.

[|Tx]] =2 m||x|] for some m> 0 ;

b) all operators of the form T = T] - ATZ s A # 0, where T2

is completely continuous and T.| has a bounded inverse;

c) all operators of the form T = T] + T2 where R(T]) is

closed and R(T2) is finite dimensional.

These ideas give rise to some simple, but sometimes ignored,

conclusions of relevance to the construction of algorithms.

Algorithmic implications

Several different versions of well (or i11) posedness exist in the
literature. That appropriate to the present setting is

Definition 2.32

The equation Tx =y (T e L(X,Y); X,Y being Hilbert) is said to
- be well-posed, relative to the spaces X and Y if, for each y e Y
the unique "solution" T*y depeﬁds continuously on y ; otherwise the

equation is said to be ill-posed.

-

Then one can show

Theorem 2;33

Let T be as above. The following are equivalent

1\
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a) the operator equation Tx =y 1is well-posed relative to the

spaces X and Y ;
b). T has closed range in Y .

Pf. see Nashed [1].

In the rest of this section, both for simplicity of presentation,
and because it is the only case which will be studied in detail in the
sequel, we shall assume that T is injective (i.e. N(T) = {0}) .
Suppose now that y is in the range of T i.e. d xe X : Tx=y .
Suppose also that in practice only an approximate y, ]Iy - ysll <e
is avai]ablé,then the solution (if it exists) X such that sz =Y,
reed not be close to x for e close to zero. Boundedneés of the inverse
map would prevent such pathological behaviour. In any case, even if y
is known exaﬁily any discretised version of the problem will still be badly

ili-conditioned. Thus one needs to develop, at the very least, some method "
of producing approximate problems which always have a solution and

additionally, if possible, a sclution which depends continuously on thé
given data, y . A variety of standard remedies exist - we choose to

present

Definition 2.34

The augmented probliem Pe x* €?> 0', is defined as "find x of

minimum norm in X which minimizes

2 2 "
- 12+ €812
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From the section on least squares problems, P€ X corresponds
9

to finding the generalized inverse for the augmented operator

?e,x X=X x Y roxo> (x,Tx)

where X x Y is given the norm ||-||$ + 52||'||§ .

The generalized inverse of this operator will be denoted by
N
1.
Te,X .

and therefore a bounded generalized inverse. One can consider that the

Note that as T 1is a closed operator ?E X has closed range

problem Pe x concerns a normal equation

(T*T +el)x = T*y

(for ¢ >0 ;H T*T + el will be invertible). It can be shown (see for
example Lions-Stampacchia [1]) that if y € range T tﬁen, as e » 0" ,
?:’X(O,y) + X where Tx =y . We sti1l do not obtain, in the limit, ény '
continuity with respect to the data y . Such a property is obtained by

using a device due to Tikhonov [1], which is now presented.

Consider a Hilbert space. Z which is compactly embedded in X .

Then by analogy with Definition 2.34 we have

Definition 2.35

The augmented prob]em Pe 7 is defined as "find X of minimum norm
]

in Z which minimizes [|Tx - YI|$ + ezllxllZ "

o N -
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Denote by ?e 7 the associated member of L(Z,ZxY) and by
n 9
T: 7 its generalized inverse. From the results of Tikhonov [1] one

obtains the following continuity property.

Theorem 2.36

Let y bein T(Z) (i.e.d xeZ:Txy=y). let y_~+y in

+

n
Y as e-+0 anddefine x_ = T(_:,Z (0,y ) . Then X, > Xy in X .

Pf. see Tikhonov [11].

The above procedure describes one possible regularisation method for
ill-posed problems; it is a method which, as will be seen, is peculiarly
appropriate to the present requirements. For further information on

regularisation see Ribiere [11.
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2.3 Linear infinite dimensional control theory : formulation

Knowledge of linear evolution equations in function spaces
(e.g. definition and representation of solutions; allowable classes of
perturbations) and of linear least squares problems (posed in Hilbert
spaces) is now applied to the study of some problems in control theory.
As iandicated in Chapter I, the scope of the treatment will rapidly be
restricted to problems of state reconstruction. The control case gives
rise to slightly different but naturally related considerations; in the
linear theory this relatibnship is, in effect, that between a linear map
and its adjoint; and, in particular, between the range of the map and the
kernel of its adjoint. The control and observation problems will both be
stated first in the semigroup case and then for the Lions formu]ation of
2.2. The latter formulation, as stated in 2.2, only applies to parabolic
problems; th;ugh there are extensions, see Lions [1],.to second order
hyperbolic equations such as Example 2.14. We shall rot investigate these
extensions here and will for the restiof this thesis be concerned with' -t

three classes of linear problems viz.}
a. second order hyperbolic equations, in the semigroup formulation; -

b. parabolic equations, in the case where both the semigroup formulation

énd the Lions formulation apply;

c. - finite dimensional equations where, of course, many of these problems
of formulation disappear.
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Control and observation : semigroup

Consider
z = Az + Bu “ .. ‘ (2.16)
z(0) = zy . (2.17)

on the interval .[O,ti], where A generates a strongly continuous
semigroup S(t) on a Banach space Z , zy € Z, and B is a bounded

operator from a space of controls U into Z . We make the following.

Definition 2.37

The system (2.16), (2.17) is said to be controllable on [O,t]] iff
given any two points 2452y € Z there exists a control

u(+) ¢ LP(0,443U) (p 2 1) such that z(0) = z, and 2(t]) = 7, -

Define the operator \

) t

%:Lﬂmqw)+z:u+1

1 -
0 S(t]-s)B u(s)ds

and introduce the following definition (the need for this definition will

be indicated in the sequel).

Definition 2.38
The system (2.16), (2.17) is said to be approximately controllable

on [O,t]] iff range (Gc) =Z7.
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Hence (2.16), (2.17) is approximately controllable in time t1
if, for any z; € Z, andany € >0, 3 u(.) ¢ Lp(O,t];U) such that
Hz(t)) - 2] < e . |

Consider now the observation problem given by

7 -Az | C. (2.18)

y = Cz ce . (2.19)

again over the time interval [0,t1] 3 A, as before, generates a
strongly continuous semigroup S(t) on a Banach space Z and C is a
bounded operator from Z , the space of states, into Y , a space of
outputs. Hereinafter we shall assume Z,Y (and U) to bereflexive Banach
spaces. Given the observed oufputs y(+) one Wishes to reconstruct the
appropriate initja] state zg - Define the operator

H0 VAR tq(O,t];Y) P zg CS(t)z0 (g >1) and

introduce the following ...

Definition 2.39

The system (2.18), (2.19) is said to be initially observable on
[0,t,3 iff N(Hy) = {0} .

In practice, however, we may wish for the existence of a continuous
‘reconstruction operator

H] : range (HO) + 7 H] H0 =1

h
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When range (HO) has the induced topology from Lq(O,t];Y) R

the existence of such an operator is ensured by

Definition 2.40

The system (2.18), (2.19) is said to be continuously initially
observable on [0,t,]. iff vy R,y >0 such that

vI1Hgzl| > ll2ll;  Vzez

L9(0,t,3Y)

1’

It is clear that to each system (2.18), (2.19) one can associate

a "dual" controlled system
.. * *
z=Az+Cu
1

where u(.) e LP(0,t.3Y") p: L+
e . 6 ,'I, pop q

considerations of the control section. The following theorem results.

=1 to which one can apply the

Theorem 2.41

i) (2.18), (2.19) is initially observable on O,t] iff the

dual controlled system is approximately controllable on [O,t]] .

ii) (2.18), (2.19) is continuously initially observable on [0,t1]

iff the dual controlled system is exactly controllable on [O,t]] .

Pf. see Curtain-Pritchard, [11.

This duality expresses the fact that the adjoint of GC is an

operator of type H0 (but for the dual system). The surjectivity of GC

1
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corresponds to the injectivity of H0 5 and Gc is a closed operator.
iff H0 is. This duality, and the obvious relationships to section 2.2,
will be explored in the sequel. For future reference, we present four

examples.

Example 2.42

Let Z be a real separable Hilbert space and consider an operator

A defined by (R: 1<k < Fy < and Ok orthonormél set)

r
n

Ay D6 < .2 Ce. (2.20)

Az = _
1 " k=l

n

[TH 3 B

the conditions of Example 2.12, Curtain-Pritchard [1] must be satisfied
for A to generate a semigroup. ’
This corresponds to A possessing eigenvalues An(A] >%, > ...) of

(finite) multiplicity L Let the control System have the form

m

z=Az+ ‘Z]bj u; ' R (2.21)
J= ,

P ®
where b],..,bm € Z and uj e L (O,t]), 1<p<o>,

m
n) = ji]bjuj and

Then B(u],....,u

* .
Bz-= (<b]’Z>Z secess <bm,z>z)

Hence by duality the mild solution of (2.21) is approximately controllable
on [0,t,1 iff '

o Ant rn :
A . i
zoel L <bjsb <20, > = 0 . (2.22)
(G =Tseuesm 3 te to;t]])
\

implies z* =0 .
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Using (2.22) one can deduce (see Curtain-Pritchard [1]) the following

result "(2.21) is approximately controllable on [O,t]] iff rank By =r, "

where Bz is the matrix

Dratgr7p veee *Dp2 91>

»<b

<b1’¢2 m’¢2r >z

>’.....
ry 2 3

o

‘Hence the number of controls required is at least as great as the highest

multiplicity of the eigenvalues.

Example 2.43 (cf Example 2.15)

2, =z, * b](x)u(t) u(t) e R
z(0,%) = z(1,t) =0
has the dual
Zy = Zxx
z(0,t) = z(1,t) =0

'l .
y(t) = Job](x)z(x,t)dx .

The operator, A is self-édjoint with compact resolvent and the eigenvalues
and eigenvectors are A = -nznz and o1 = sinnmx  and tn =1 for all n.,
Thus the controlled system will be approximately controllable using Example

2.42, with only one control if
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1 ,
J b](x) sin nmx dx #0 ¥n
0

By duality the same condition ensures initial observability for the

dual system.

Example 2.44

z(0,t) = z(1,t) =0 .

Take wu(:) € Lz(O,t];LZ(O,l)) then, using the expressions for the semi-
group in Example 2.15, it can be shown that the system is exactly
controllable to Hé(o,l) » but not L2(0,1) . See the demonstration

in Curtain-Pritchard [11, p.59, for example. Py duality the observation
problem with "complete information", i.e. output considered in.
L2(0,t,3L%(0,1)) is only initially observable.

Example 2.45 (cf Example 2.14)

Zet T Zxx T u(x,t)

z(0,t) = z(1,t) = 0 ; z(x,0) = zt(x,O) =0,

Using the analysis of 2.14 we may put this problem within our present
framework, by augmenting the state and creating B = [(I)] with

ue L2(O,t;;L2(0,1)) we get that the system is exactly contro]]abie
on [O,t]] for any t] > 0 . Hence the dual problem (i.e. compléte

- observation of z, ) is continuously initially observable.
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Control and observation : weak solution

Here the control and observation problems are stated in the form
used by Lions [2]. The weak or‘variational formulation is naturally
suited to the study of linear least squares problems; and, indeed, that
is how control and observation are formulated. Recalling the material on
weak solutions in 2.2, one defines U , a Hilbert space of controls (for
example previously we have used U = L2(0,t];U) for U some Hilbert

space) and B a bounded linear operator such that

2

B e L(Uy L2(0,15V7)) .

*
As before, let f and z be given : f ¢ LZ(O,t];V ) and zg € H .
Now, supposing that the family A(t) satisfies the required coercivity

conditions, see Theorem 2.21, one obtains for u e U 2z(u) satisfying

-%+Aﬁﬁ=f+BU‘ e (2.23)
Z|t=0 =z, .. (2.24)
z e L2(0,t3V) . | 'mzm
Considér now
C e L(H(0,t})3Y) Cee (2.26)

where Y 1is a Hilbert space of outputs (for example, V = L2(0,t];Y)
“where Y is Hilbert), Yq € Y and

Me L(UsU) L (2.27)
\
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such that

Mu,us = o] |ullZ veR, v>0 ... (2.28)

then standard results give the following.

Theorem 2.46

With the above assumptions there exists an unique u minimising
2
[ICy(u) - .yd”y + <Mu,u>, .

Pf. see Lions [2].

In [2] Lions indicates how to formulate the adjoint system for this
problem. The adjoint system gives an explicit expression for the
optimally controlled system; in numerical work the adjoint i< used to
find the gradient for use in a variety of algorithms. The treatment of
Lions has other refinements, for example the coﬁsideration of arbitrary
closed convex subsets of the space U: as admissible contfols, but the above

will suffice for our‘purposes.

The observation problem is now formulated by viewing the initial
condition as a control. That is, the space of admissible controls U is
taken equal to H . As before one has C e L(W(O,t]);y), Yy é Yy , and
M e L(H;H) with M coercive i.e. satisfying (2.28), and then one

obtains

-

Theorem 2.47

The problem : find 2z(u) satisfying

o _ | .
THMNz=f 4- .. (2.29)
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zlt=0 =u ... (2.30)
which minimizes
J(u) = ||Cz(u) - ydllf, + <Mu,u>y c .. (2.31)

thas an unique solution. Mofeover this can be characterised by an
optimality system (i.é. equations for evolution of the state and its

adjoint).
Pf. Lions [2].

Equations (2.29), (2.30), (2.31) indicate one approach to the problem

of initial state reconstruction. It is possible to formulate more general
reconstruction problems - e.g. versions which introduce some notion of
mode1 error - some co.i*ents on these directions will be made in the next

paragraph.

Relationship to least squares fofmu]ation

Consider now that the hypotheses of the Lions fgrmu]ation hold;
then the problems posed by Lions (e.g. Theorems 2.46, 2.47) naturally .
correspond to the explicit construction of certain pseudo-inverses. For
example, in Theorem é.47,»considér the map T defined from H to VY
by T:u > Cz(u) (this mép is ﬁidentica]" with H, of Definition 2.39
with Z taken equal to H and LZ(O,t]:Y) as ¥). If the system is
initially 6bservab1e but not continuously initially observable T does
not have closed range, although it is injective. Suppose however (without
“any real loss of generality) that M = eZIH (IH denoting the identity map
on H,eeR,e> 0) . Then one has, using the notation and results

following Definitio? 2.34, ... .
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Theorem 2.48

The problem P_ . is that described in Theorem 2.47 and thus for
n,
all Yq € Y has solution given by TZ H(O,yd) . Moreover if y e range T
n . .
then as e + 0" TZ H(O,y) + Xe in H such that Tx, =y .

Pf. cf Lions-Stampacchia [1].

Suppose now that one wishes to include some model error in the
formulation. For instance, the setting of (2.29), (2.30) and (2.31)
yields two possible ways of proceeding:

a. by regarding the model error as a "control" one obtains the problem:

find z(u,v) satisfying

g—%ﬂ- A(t)z = f+v . e (2.32)
2|4 = . (2.33)
which minimizes
_ 2 2 ,
J(u,v) = [[Cz(u,v) - yylly + e“(<u,umy + <y, , %)
‘ L0, t73V ")
c. (2.34)

b. by regarding the state trajectory as available for choice one obtains

the prob]ém:

define T : W(0,t;) x HL2(0,t50") x ¥

by T (zu) - (E Az, C2)

| (2.35)
where Z|t=0»= u

h
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Find (z,u) which minimizes

) = I+ Mz - fllp
,]’

2 2
”CZ = ydl |y te (<Z’Z>W(0,t-‘) + <uau>H)

. (2.36)

Note that if Yq is such that Yq = Cz , where 2z is a solution of
(2.29), (2.30), then as ¢ -+ 0% both a. and b. give the "same" solution.
Note also that both a. and b. can be regarded as concerning the construction
of pseudo-inverse operators. In the case of (2.36) the construction in
question is that of (using the notation of Definition 2.34)

?:,N(O t (0 0 f,yd) This operator will be used‘in Chapter 4.

As to interpretation of (2.34), (2.36); if we let €~ 0 in (2.34)
we see that we obtain an "output.error only" formulation - although the
state trajectory (and thus the output trajectory) now depends not only on
the initial state, u , but also ona perturbation; v , of the
differential equation. So (2.34) could be regarded as a "regularised
output-error formulation". By contrast in (2.36), letting € ~0 , one
obtains a problem containing both output error and "model error" weightings.
‘The advantages of schemes’involving model error weightings are well-known.
In a closely related areaﬁdazwinski, 11, discusses difficulties with the
standard numerical interpretation of the Kalman filter when model error

. vanishes.
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Problem a. falls immediately within the framework of Lioné [2]1; it is
not ekp]icitly studied in Lions [2] as only the simpler problems
involving either u or v (but not both) are considered there. Not
so for problem b. since the Lions treatment does not admit of z as

an independent variable. One can, using the notation of a. replace
(2.36) by | |

2
I(uv) = [lez - yyl15 + 92 o
9 'l’

e2(<v,v>

2 « + <u,u>
LE(0,t45V")

y)

a formulation, having similar properties to (2.36), and which falls

within the Lions treatment. For later use, however, we prefer an

"explicit extraction of z".
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2.4 Linear least squares ana1ysis : further refinements

The preceding section has shown how problems of control and
observation can be cast in a linear least squares frémework. The solution
of these problems can then be represented by some pseudo-inverse. In the
case (common in infinite dimensions) that the operator, for whose pseudo-
inverse one searches, does not have closed range, then we construct a
regularisation (using in effect the closed graph theorem and the graph
norm) which has a bounded pseudo-inverse. The regularised problem is not
an artificial one - as can be seen in 2.3, the regularised problem is
often an entirely natural control or estimation problem, well-known in
its own right. In this section we shall look at further properties of
the regularisation. To do so we shall require that the hypotheses of the
Lions formulation hold; and, in addition, that the family A(t) be time
invariant i.e. A(t) =A, Yt=20 . Thus it will also be possible to
make use of the semigroup formulation and notations. Létter]y some other

aspects of infinite dimensional problems are briefly described. Co

More regularisation

In practice either because of numerical approximation or expekimenta]
errbr, the element of the range on which the pseudo inverse is to act may
not be known exactly. Thus for the answers obtained to make sense we need
to ensufe igme:continuity property with respect to these perturbations of
the data. In order to do this, we here use the ideas of Tikhonov
(Definition 2.35, Theorem 2.36) and introduce abpropriate compactly embedded

Hilbert spaées. Rather than attempt a formulation for the general problem

we here present the two specific instances of most use to us, viz... .

\
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a. recall (2.29), (2.30), (2.31). These can be regarded, with
M= eZIH , as concerning a map T:H > Y (given by CSt z4 in semi-
n, .

group notation) and its regularisation Te H Suppose now we introduce
]

a Hilbert space Z] compactly embedded in H . The operator ?e 7 will
. 9 'l

possess a bounded pseudo-inverse and have the continuity property (with
respect to approximation in the output space VY) which is described in

Theorem 2.36. For future reference we make

Definition 2.49

n, .
The operator T: 7 described above, will henceforth be denoted by
Ay . . ] . .
H » as is consistent with the notation H, .
0 e,Z.I 0

b. Now we wish to consider a formulation involving model error. Define
the map T by

1

2(0,ty3H) x ¥

T: L2(0,i];H) x H=1L
(2.37)
T3 (Z,ZO) + (z(.) - S(')ZO s Cz(*))

where we have committed some abuse of notation by mixing the semigroup
and Lions formulations. The interpretation, however, is obvious. Note

that C is now amap C : L2

(O,t];H) + Y 3 some circumstances may
demand that C : w(O,t]) + Y . MWe introduce, as before, a (Hilbert)
 Space Z] compactly embedded in H . With an eye to the facts of

- Appendix 1 We make
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Definition 2.50 : ;

By analogy with Definition 2.19 one takes

2 df 2 *
'WAWJﬁ={erL(mHﬂﬂqfeLwxgqﬂ

i/

with the norm

t t
1 1
111l 0,8 - (Jo e 11F e+ | gk Bas)t

1
Then by Appendix 1, My (0,t;) s compactly embedded in LZ(O,t];H) .
1
Thus wZ (O,t]) X Z] is compactly embedded in LZ(O,tI;H) x H . Hence
1 4
n
one can define TE,wZ (O,t])<Z and obtain, as an immediate consequence

| 1 !
of Theorem 2.36 the following...

Theorem 2.51

Consider the equation

z(t) - S(t)z0 fe(t) _
' (2.38)

Cz(t) Yo (t)

where (fe,ye);+ (foy) in L2(0,t];H) xY as e+0" . Suppose that
(f,y) 1lies in the range of le (0,t,)Z, ; i.e. there exists
Z L]
1 ,

(z*,za) in W (0,t1)le such that
. A

z*(t) - S(t)z = f(t)

Cz*(t) = y(t) .
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n,
=T+

€ _€ ‘
Now let (z°,z) W (O,t])xZ](O’O’fe’ye)
1

Thenas e€-~+0, (ze,zg) > (z*,za) with convergence in the norm of

L2(0,t,3H) x H .

Pf. by Theorem 2.36.

Commentary

It is worth making a number of remarks on the above results.

Finding a space Z] compactly embedded in H is often not difficult
(see Appendix 2); it is also desirable, however, to make some natural
choice. One can often take, for example, Z] =V and thus

W, (O,t]) = W(O,t]) as previously defined.
1 .

In the case that Z] =V we should expect to find <ome connection
between the linear least squares problem and other notions of solution.

Indeed, if (f,y) e range (TIW(O,t])XV) then f € N(O,t]) 3 and'if '

one takes f(0) =0 then 2z*(0) = 26 ; additionally if f has a
. t ' .
representation as f(t) = I S(t-s)g(s)ds for some’ g(-) € Lz(o,t1;H)
0

then we are'dealing with a mild solution. Note, however, that the

initial state 26 lies in V and not, as is usually the case, in H .

Offen“thié last restriction (i.e. 26 e V) is_not too important.
For not only is V dense in H , but also it is often physically
desirable to recover an initial state in V rather than H .

Remember that in general i(~)Je Lz(O,t];V) and so it is not possible

to speak of its values in V other than in an almost everywhere sense.

B
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4. Such a restriction, to look at a smoother type of solution,
(i.e. zg eV rather than z € H) is the characteristic feature
of Tikhonov regularisation techniques. Also typical is the fact that
convergence is not obtaineq in the smoother space, but in the original
rougher space (i.e. H rather than Z] H L2(0,t];H) x H rather
than NZ](O,t]) x Z]) .

5. This treatment may appear to be excessively complicated. The
following motivatory remarks are intended to justify its’introduction.
Many of the linear parabolic equations one would wish to handle throw
up problems which are il1-posed in the sense of Definition 2.32.
Moreover these problems are usually not "stable" with regard to
approximation of data; comments on this notion of stability and a
straightforward approach for use when it obtains will be found in
C€a [11. This desirable property is ensured for our purposes by
using the apprdach'of Tikhonov. The fact that the regularised
pseudo-inverse maps into a compactly embedded space is an advantage
in the fixed point formulations to come. Moreo@er we ensure that
any algorithm based on using a sequence of linear approximate problems
to arrive at the fixed point makes sense; as each linear problem is

well posed and "stable" with respect to data perturbations.

- Other observations

In the preceding, attention has been restricted to output operators
C: LZ(O,tI;H) > ¥ . This was done so as to obtain a natural.setting for

the Tikhonov regularisation. As was previously noted, it is more appropriate

2
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to consider C : W(O,t]) -+ Y 3 or more simply C : L2(0,t];V) > Y

These last two alternatives permit study of certain boundary or pointwise
observations; though a useful, general theory of suéh systems remains to
be constructed (for an indication of the difficulties, see Curtain
Pritchard (11, Chapter 8). In view of the rudimentary nature of even

the Tinear theory, these matters will, for the most part, be ignored in
the present work. In the rest of this section we content ourselves with

some remarks on these topics.

Recall the system studied in (2.29), (2.30)

L)z =t in ax10,t0 ... (2.39)
z=0 on I =23Q N (2.40)
. z|t=0 = u in @ ... (2.41)

For a point b e @ one wishes to define a cost functional

t
1
J(u) = [0 (z(b,t) - yd(t))zdt + ezllullﬁ ce (2.42)

where Yq € LZ(O,t];BJ » € >0 . The sensible definition of this cost

function, however, is not always possible.

Example 2.52

Take (2.39), (2.40), (2.41) and 2 <R' , A(t) =4 the Laplacian

2
(e A(t)z = §-§-) . since H(2) < €%(a) , 2(+) e L2(0,t;3H) (@)
X R

implies that z(b,*) e L2(0,t]:R) . Hence the cost functional (2.42) makes

sense.- 1
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Example 2.53

Take (2.39), (2.40), (2.41) and @ to be the unit ball in R>, A(t) =4 .

Then it can be shown (see Lions [4]) that for f = 0 there exists u e LZ(Q)

with support on {x : lelf 3 <1} so that 2(0,-) ¢ L2(O,t]ﬂﬁ) .
R

One can make it so by restkicting attention to a smaller class of admissible

initial states. @&

Thus in Example 2.52 our "initial state to output" framework (i.e.

n
that which gives rise to OHZ 7 of Definition 2.49) is still valid.
A
The framework including model error (i.e. (2.37)) is not valid as C is
£

unbounded on L O,t];H) . In Example 2.53 neither framework is valid;

the "initial state to output" version can be recovered by restricting the

set of admissible initial states to the (Hilbert) sjace

2

U= (ulu e L%(@),2(b,-3u) & L2(0,t;3R)
where U has the norm
4
2
lully = (ul?y o+ | 2,502}
L) o ,

With this restriction, however, it is not clear whether one can find
natural compactiy embedded subspaces of U ; thus the Tikhonov formulation
cannot be used. One can, however, construct a well-defined problem (2.39),
(2.40), (2.41), (2.42) whose solution is given by Oﬁz U(O,yd) where

Ny : ’

OHe,U denotes the map



- 50 -

n
H cU->-UxY

Oe,U”

n .
OHe,U :u - (u,z(b,-;u))

and U on the right-hand side is, as is ushal, given the equivalent

norm 52[|~||U , € >0 . Thus we can, at least theoretically, pose this -
problem in a linear least squares context; as the use of "theoretically"
implies there are a number of numerical and computational questions whose
answers are unknown (e.g. how to characterise U , how sensitive is

the result to data errors).

It is obvious that the study of boundary observation (and control)
offers many possible research problems. One might, for instance, investigate
the approximation of C € L(N(O,t]);V). (or L(Lz(O,t];V);V)) by
C. e L(Lz(o,t];H);V) and appropriate (if any) notions of convergence.

The main object of this thesis is to indicate some ways of looking at
non linear problems and not to find the best possible setting for linear
systems with pointwise observations .(or control). ' The above remarks

should be taken as caveats in respect of the thesis' generality.
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CHAPTER III : A Non-Linear Theory

Summary -

This chapter begins wjth an introduction to non linear partial
differential equations. This section is necessarily brief but aims to -
indicate sdme justification for the approach to reéonstruction (and, by
analogy control) problems adopted later in the chapter. Further details
will be found in Haraux [1], Henry [1], Lions [3]. In these later sections
we indicate the use of the linear part, in conjunction with some fixed
point theorems, to construct and prove theorems about a.c1ass of non-linear
systems. Algorithmic, and other, aspects of these results are discussed

in later chapters.

3.1 Non linear evolution equations

The problems encountered ip the study of non linear ordinary

differential equations are numerous. Indeed, this is a currently active
area of research. Some pathological (at least, by comparison with the
linear case) phenomena which occur are indicated by standard examples,

viz... .

Example 3.1

The sclutions of linear evolution equations, such as are studied in
Chapter II, can usually be extended for all positive time; this is
~certainly true of the semigroup formulation. The same does not hold for

-non-linear ordinary differential equations: consider



- 56 -

%% = 2% s 2z(0) =a>0 c e (3.1)

then the .only solution is

a

Toat for 0<t«<

z(t) =

(3.2)

[ -

Obviously this does not exist for all t > 0, but only for t
sufficiently small. This problem of rapid growth, or "blow-up", is
fundahenta] and cannot be excised by additional smoothness or other such

assumptions.

Example 3.2

~ The solutions of well posed (Hadamard) linear evolution equations are
unique. Again this is not so even for non-linear ordinary differential
equations: consider (for « e 10,1[)

%% = |z|®* ; z(0) =0 N (3.3)

this has the obvious solution z(t) =0 Vt

v

0 ;3 and also infinitely

many other solutions; for any <t > 0 take

0 for 0O<t<r
x(t) =
pP(t-t)P  for tzr
_ N
where p = T=
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In this case, the problem is one of insufficient smoothness as the right

hand side of the equation is not Lipschitz continuous in z .

Additionally, of course, it is possible to write down systems of non-
linear ordinary differential equations which do not have any solutions.
Thus one is faced by non-existent, non-global, non-unique solutions;

though not all at once.

Infinite dimensional case : formulation

Given a non linear partial differential equation it is, at the very
least, desirable to have an appropriate notion of solution, with which
questions of existence and uniqueness can be studied. As in the linear
case one has the usual problems of interpreting a formal exprcusion:
that is, one can search for strong,mild oi* weak solutions. Moreover,
non linearities often map one outside a given domain space. This is not

an unusual occurrence in practical problems."

Example 3.3

Consider the nonlinear map N : z » 22 where z 1is a real valued
function on the interval [0,1]; ‘Suppose that the desired range space
is L2[0,1] . Then an appropriate domain space for N would be

4 2
L [Os]] clL [09]]

Another problem is that global Lipschitz conditions often do not

~apply.

Example 3.4

| _\
Consider N:L%[0,17 = L?[0,17, Nz = z® as ahove, then there does
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not exist k » 0 such that
2 2 4
Iz} - 22]|L2 < ki|z, -‘zzllL4 ¥z,,2, e L

To provide some background we recall the classical result.

Theorem 3.5

Let Z be a Banach space, [O;tlj the time interval of interest
and f : [O,t]] x L - Z be continuous. Assume also that f 1is locally
Lipschitzian in z , uniformly with respect to t . Then Vto € QO,t][
~and each zy € Z 3 § >0 and a unique strong solution on
[to,t0+a[ of the Cauchy problem

dz _ f(t _
F= ftz(t) |, z2(ty) =z,
(recall that by strong solution we mean a z(-) explicitly satisfying

the differential equation (and initial condition)).

Pf. Define
t
Fizarzyt I f(s,z(s))ds
B, = {zeVg:|lz- z]] , < a}

for o small enough

sup [If(s,2)[|; sM<w .
sef0,t,1 1 ] a

Hz-zp| | ;<a
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If M.6 <a then F: Ba - Ba . Also, by the local Lipschitz
assumption, if o,§ are small enough, F 1is a strict contraction from
Bu to Ba . Hence the result by the contraction mapping theorem (see

Appendix 4). B

It can also be shown that if f is Lipschitzian in X (other
assumptions as Theorem 3.5) then one can take to =0 and &= t] . As
noted in Chapter I many systems can be viewed as a nonlinear perturbation
of a linear part. Certainly this is true locally in time - by using some
form of abproximation - and often, as we have seen we may. only be able to
define solutions locally in time and (State) space in any case. This type
of non-linear equation is also more tractable analytically - for one can
trade off the properties of linear and non linear parts against each other;
for instance a smoothing property of the semigroup generated by the linear

part against the "roughness" of the nonlinear part. Consider the equation
2z = Az + f(t,z(t)) .. (3.4)

where A generates a semigroup S(t) on a Banach ;pace Z . Hereafter
an equation such as (3.4) will be called semi-linear. Concerhing a mild
solution of (3.4), valid for all Zy € Z , there is the result of

Segal [13. |

Theorem 3.6"

If f satisfies the hypotheses of Theorem 3.5 then Vzo A

35 > 0 such that the (nonlinear) integral equation
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t _ .
2(t) = S(t)zg + J S(t-s)f(s.z(s))ds . . . (3.5)
_ ‘ 0
has an unique solution in C([0,81;Z) .

Pf. As Theorem 3.5.

The assumptions on the nonlinearity can be restrictive; consider

for instance

Example 3.7

. "w.,. .
Here we are concerned to formulate the nonlinear Schrodinger equation

. dz 2

igp* 8z =9(]z]")z C e . (3.6)
in the space Z = H2 Gﬁn;g) where n =2,3 . Now Z is an algebra
included in L”OR";Q) (see alse Popendix 1); this is a consequence of

’ 9
(D denotes -5;)

Ioz] ﬁ_Clzlimlbzzliz C. (3.7)

2

(which is true for z e H20§n) n L“OR")) and the fact thét H™ embeds in

L” (for n =2,3). In order that f(Z) < Z it is enough to demand that

’ ' ' o0 +
9 CO®),959"(5) € L, )

This gives, for instance, that

. dz 2 o
igptazs k|z|z R - (3.8)

has a local solutiop in Hzogn) (n = 2,3) .
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Thus far we have seen how an integral, or mild, formulation for
non linear partial differential equations can be constructed. Local
existence and uniqueness results are then proven‘using fixed point
arguments. Now it is appropriate to investigate the effects of varying
the assumptions on the non-linearity, f , and the semigroup S(-) in

(3.5) with a view to proving more easily applicable theorems.

Further results

Often f(t,z) din (3.4) is differentiable with respect to t and

z 3 this property can be used to relax other assumptions on f(-,:) .

Theorem 3.8

Let f be differentiable from [O,t]J;x D(A) dinto Z . Assume

also that the function
of of
g(tsu,v) = =% (u) *5g (u,v) ' ... (3.9)

is Tocally Lipschitz : D(A) x Z = Z (uniformly in 't). Then for
zq € D(A) the equation (3.4) has an unique strong solution

z(*) € C([0,81;D(A)) for some § >0 ..

~and studying

Pf. see Segal [1]. ‘The proof proceeds by setting v = Uy
the system - |
u, =V
t. .. (3.10)
Vg = Av + g(tsu,v)

treated in the space D(A) x Z as a perturbation of the linear system

h

(3.11)
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Obviously (3.11) generates a (linear) semigroup

t
L(t) (ugsvg) = (ug + Io S(s)vgds> S(t)vg) . . . (3.12)

Versions of the preceding theorems are used to complete the result.

A recent example from the Titerature showing the use of this

theorem is -

Example 3.9

Arising from a mathematical model of liquid crystal behaviour studied

by Dias we have the system ...

Q c1}3'3 ; Q bounded with a regular boundary T

Ny

2= %), h() e I®RY)

‘ %% - 8z + (2.h(1))%2 = (z.h(t))h(t) = O
z.n] = 0 . On F ' e o o (3.]3) . ¢
9z -
ﬁ] x Ny = 0 on T

D(A) = {z e (W(2))}:zony =0onr, 2 xn =0 on 1)
ny ol |
where 'n] is the normal to T .

Then Thebrem 3.8 may be applied to give a local existence and

-

uniqueness result for any Z € D(A) . See Dias (additional references).

As haévalready been stated, if the semigroup involved has a "smoothing"

action then it may be used to "smooth" the non-linearity; these comments

b
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are most appropriate in regard to linear parabolic parts and the
corresponding analytic semigroups - with reference to Appendix 2

(for definition of sectorial, Z% etc.) we may state

Theorem 3.10

Let -A be a sectorial operator, a € [0,I1L and f : U~ Z where
U 1is an open subset of R x % . Assﬁme also that f(t,z) 1is locally
Lipschitz (in (t,z)) 5 then for any (ty,zj) e U,3s = 8(tgszy) > 0
such that (3.5) has an unique solution z(-) ¢ C([to,t0 +81;2%) .

Pf. exactly analogous to that of Theorem 3.5

In this case, by assuming additional smoothness on f (most usually
that t » f(t,z) is locally Holder continuous) one can show the existence
and uniquene§§ of strong solutions; 1i.e. solutions which satisfy the
differential equation (3.4). In the present work, as has already been
- noted in Chapter II, we prefer to work with mild solutions which involve
spaces more appropriate to our formu{ation of the estimation (and control)’

problems. Some examples from the Titerature will illustrate the use of the

above Theorem.

EXamp]e 3.11

Consider (cf. Navier-Stokes) the system

-~

- 92 3z _ 3"z
5t t 235 “';;Z + f(t,z)

(3.14)
z(0,t) = z(myt) = O
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where 1’:11\2'+ x% +R is locally Holder continuous in t and locally

Lipschitz in z with |f(t v)| < g(t,|v]) where g is continuous and

increasing in the second variable.

Now take Z = L2(0,n) ; as in Example 2.15 we have A = - -

with domain H2(0,r) n HO(O,n) and D(A?) = H(0,r) . It can now be
shown that

+ 2
F iR x Hy(0um) » L(0,m)

where F(t,9)(x) = =¢(x)¢'(x) + f(t,6(x)) 0 < x < v satisfies the
hypotheses of.Theorem 3.10. Thus (3.14) has a mild solution in
C(£0,61;Hy(0,m)) for some 6 > O .

Example 3.12

Conside"r_ the system

2 .
'a—i a7""2"’22 .t
9X

- .. (3.15)
z(0,t) = z(1,t) =0
Suppose z(x,0) = zo(x) 20 on 0<x<1 where Zg € Hé(o,l)
‘Then a standard maximum principle argument (see, for example, Protter
and Weinberger [1]) gives that z(-,t) = 0 for all times t , in its

interval of existence; moreover, the solution can be proven to exist

for a11 £.2 0.

One can go on to study many other aspects of the solutions in

Theorem 3.10; for instance smoothness of parameter dependence, asymptotic

2
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stability of certain solutions (e.g. zero solution in (3.15)), periodic
solutions. These directions will not be pursued here; although they are

obviously of relevance to certain control and estimation applications.

So far, we have considered mild solutions lying in C([O,t]];Z)
for some t] and Z . The integral formulation (3.5), however, can be used
to define notions of soiution lying in more general spaces (e.g.
Lr([0,t]];2) for some rsty and Z ). Thus one can hope to include
larger classes of non-linearities; and also provide a framework more
sﬁited to certain classes of control, estimation and optimisation prbb]ems
where such spaces occur naturally. Much work has been aone in this

direction; the next theorem gives an example due to Ichikawa-Pritchard [13.
See also Kato-Fujita, Weissler (additional references).

Theorem 3.13

Let V,Z],Z2 be Banach spaces with V ¢ Z] 3 and

a,b,p],Pz,q,r,s,t] € Ef' satisfying pp2rz 1, Pr 2 Q2 1

1 _1,.1_ ;
SZ]’?-E+§ -1 . Assume also

i) S(t) € L(Z;sV) n L(Z,,V) for t >0 with

||S(t)z|]V < g](t)llzllzl t>0 VzeZ; and
[Is0zlly = 5B l2lly t>0 ¥z,

: N bg
. where gy e L (0,t;R),9, € L °(0,t;3R)

ii) f: V> 22 is such that z(-) e Ba defined by
B, = {z(*) e Lr(O,t];V) 2z, < a} implies that
. L (O,t];V)
f(2(+)) € L3(0,t13Z,) and3 b = ||F(z(-D]] ¢ <b

L (09t1322)
BN
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s s f . _fk. | 5k> . )
1) (20 ))-F(( ))llLS(O,tlslz (I )IlLr(O’tl;V)

lli(-)llLr V))Ilz(-)—i(-)ll -

(0,t L"(0,t43V)

b} " ;
+ oot o X .
where k:IBl xlﬁ -»]1,3' s continuous, symmetric and such

that k(e],ez) -0 as (91’92) -+ (0,0)

iv) for z(+), z(*) € B,

g k(i z( si1z(+) ) <1
192150, gy E gl
v) for zg € Z]
911 - Hzpllz + g | b <a
s, L"(0,t,®)  © 4 . zlqu(o,t]ﬂg)

Then there exists a solution of (3.5) in Lr(O,t];V)‘ (unique in Ba)'

Pf. The objective is to apply the coptraction.mapping theorem (see
Appendix 4) to the map ¢:(9z)(t) = S(t)z, +'I S(t-t)f(z(x))dr . First
' 0

we show that <1>:Ba > Ba .

)

By i) and ii)
t | |
HCICIMERNONEN PR jo ACOIMCONIPACEE
Viewiné the second term on the right hand side as a convolution

(9, « Lq(o;t];lg),uf(z)llz2 e,L?(O,t]ﬂR)) ; see Dieudonné (additional

references) p.291. Hence we obtain
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H<I>Z| lLr(O,t] ;V)S Hg] I lLr(O,t] ,],R;)HZOI IZ] +

+ |19,
27 19¢0,t

f
’ 1ﬂR)|| @1

(Oat] ;Zz)

From ii) and v) we conclude

| 1ez]| | <a. Thus ¢:B_~>B_.
L"(0,t,5V) a 2
Next, it is required to show that ¢ is a contraction on B, .
Consider ¢z - ¢z for z,Z e B, 5 by the same "convolution technique"

as used above one obtains

|[oz-e2]| . < []g,]] 1f(2)-F(2)]|
L(0,t3V) L9(0,t;R) L3(0,t3Z,) -
By using iii), iv)
| |oz-02] | T <K ||zE]] .
| Lr(O,t];V) L"(0,t,3V)

where K:0<K<1.

Thus, by the contraction mapping theorem, ¢ has an unidue fixed point

in. Ba . |

The mild solution used in this theorem (i.e. in Lr(O,t];V) can be
related to that used in the preceding theorems (i.e. C(O,t];V)) by the

following.
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- Corollary 3.14

Suppose, in addition to the hypotheses of Theorem 3.13, that
S(t) € L(Z,,Z;) for t >0 and satisfies

Iszlly sogllally  V2e?,

where

P3
93 el (Ost]ﬂB)
and

A B
p3. "-)-g‘l'-s-—].

Then the solution proven to exis* in Lr(O,t];V). by Theorem 3.13,

also lies in C(O,t];V) .
Pf. see Ichikawa-Pritchard [11].

The local Lipschitz condition iii) in Theorem 3.13 is more general than

is usual since two different spaces are used. In the case that these
spaces are distinct, the contraction property on Lr(O,t];V) would be
expected tb result from some smoothing actioh of the semig}oup S(t) .
With the aid of the above formulation and further regularity results one
can investigate solutions which are global in time. Typically one obtains
a ball of 1njtiél statessuch that solutions starting there can be exténded
for all time. The size obtained for this ball makes precise the standard
Mfor ||20|| sufficiently small..." statements. A1l these aspects are
studied in Ichikawa-Pritchard [11. For future reference, this section

concludes with an example drawn from this. paper.

B
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Example 3.15

Recall Example 2.13 with o =0 and a non-linearity f](z,i) s
that is ...

1
o

S+ Az + f(2,2) =

2(0) =z, 3 2(0) Z,
Let A be as in Example 2.13, then by augmenting in the standard

fashion we obtain a semigroup S(t) on the product space D(Aé) x H .

The non-linearity is taken to be such that

F: D(AY) x H - D(A}) x H

: (z,2)» (0, f](z,i)) .

The semigroup in this case does not smooth the space D(Ag) x H (as
has been previously stated, this is a typical feature of hyperbolic, as
opposed to parabolic” problems). However, in this case we can take

advantage of the special structure of F .

Suppose that f] : D(A%) x H->H satisfies

fow-fwll, < k o] W | {w-
| v 'IWHH (HWHD(Aé)XH HWHD(A%)XH)‘ | |w wlID(A%)xH

then -

W] |

[IFw-Fal] 5 < k(]|wl]

Ay DA ) [w-wl|

p(Ad)xH D(A)xH
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Hence, with V = Z] = Z2 = D(A%) x H, Theorem 3.13 applies, with
k(.,.) <1 on Ba » forany r 21 . By the corollary the solution

obtained is also in C(0,t;3D(A}) x H) .

Example 3.16

By analogy with 2.14, this is a special case of the preceding.
Consider the following system for x ¢ @ c]ﬁ3 where @ 1is open bounded,

subject to the appropriate smoothness conditions on 5Q .

Zep = Zyy t f](z,zt) |
z|aQ =0 .. (3.17)

2(0) = zy 5 z(0) = z,

We take H = LZ(QﬂQ) (cf. Example 2.14), A defined as in Example 2.14,

D(A) = H(R) n HY(2R)
and so D(A%) = Hé(n) . Candidate non-linearities
£y D(AY) x H>H are
1’-I : (z?zt) +> 2% for 1<a<3 (see Appendix 1)
or fy: (2,2,) > Da2||2||51 [al <1, ¥p=21

~ where D* 1is a differential operator.

Again from the results in Appendix 1, if @ <R then one can consider

fl (z,it) > z* for 1sa<w

or fy: (z,2,) za;t for 1sa<owo ;

A
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and hence impose conditions so as to ensure satisfaction of the local-

Lipschifz and contraction requirements.

Note that the emphasis in these last results (Theorem 3.13, Corollary
3.14), is on solutions which are "local in initial states" as well as
local in time. That is, one searches for solutions which may only be
defined for initial states in some ball, whose size may be proscribed.
This differs markedly from previous work where one is concerned to define

solutions globally. The need for such restrictions will now be indicated.

Pathology of solutions

In (3.1), (3.2) we have displayed an example of "blow-up" for a non-
Tinear ordinary differential equation. The same phenomenon also occurs

for non-]inea?~partia] differential equations.

Example 3.17 _ |

2
9z _ 932 3
3% - ;f? + 2z O<x<7m, t>0
X
z(0,t) = z(m,t) =0
2(x,0) = zo(x) .
If |lzpll is sufficiently small it can be shown that the
ot 1 .
Hy (0,m5R)

(strong) solution z(-,t) exists ¥t >0 (and even tends to zero as

t » ) ; see, for instance, Henry [11. Suppose now that ||zo|| ]

HO(O’";B)
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is not small; in particular, that

z5(+) 20 on [0,n]
and

™
J zo(x) sin x dx > 2
0 .

Arguments based on the maximum principle (see Protter-Weinberger [1])

show that z(x,t) 20 for x e [0,m] , t on the interval of existence.

Now set
™
g(t) = J z(x,t) sin x dx
: 0

SO

m
%% =-g+ f z3(x,t) sin x dx .
0 ,
Holders inequality gives (using '(sin x)1/3.(sin x)2/3)

2/3

g(t) < 2 (I;z3(x,t)sin X dx)]/3

and thus the differential inequality
%% 2-qg+ %-g3 for t>0

™ . ) A
g(0) = j zo(x)Sin xdx > 2 .
0 A

This differential inequality can be used to show that g(t) » + = in
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finite time (in fact: at, or before, % log((g(0)+2)/§g(0)-2))) .
Further analysis of this example can be found in Ichikawa-Prifchard

[1] which gives an estimate for the region of asymptbtic stability.

The use of techniques such as those above indicates either a. that
the solution blows up, or b. that the solution has a maximal interval of
existence strictly 1esspthan the b]ow-upltime. From our present,
pragmatic, point of view both these phenomena will be régarded as
“solution pathologies". The fo]]dwing two theorems indicate for two
archetypal equations (the wave and heat equations) when such patho]ogies
occur. See Ball, [1], for a detailed discussion of these results.

Both these theorems are stated with the understanding that reasonable
assumptions have heen to ensure the existence of a solution; perhaps

only locally in time and for small initial data.

Theorem 3.18 (John)

Consider the non-linear wave equation in ﬁf
Zey = B2 = f(t,z)‘ . “

3 . e (3.18)
t=20, x eﬂ% '
subject to f(t,s) = b|s|P where b > 0 and with compactly supported
initial data. If 1 < p < 1+/2 any solution of (3.]8) is "pathological"
as defined above. This condition is sharp in that if f(t,x,s) = |s]|P
with p>1 + Y2 then the solution exists for a11 time, as long as the
-initial data is sufficiently small. .

Pf. see John [1].
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This result has been extended by a number of authors (e.g. Glassey,

Kato). For instance Sideris has shown that, on u@l » pathologies develop
¥p > 1 (here the proof turns on the fact that the solution of Zop = Zyy
with same initial data (as the non-linear problem) does not decay uniformly

to zero).

Theorem 3.19 (Fujita)

Consider the non-linear heat equation

z, - Az = f(t,z)

t
t20, xeR" C. (3.19)

z(x,0) = zo(x) >0

subject to f(t,s) 2 blslp where b > 0 and with compactly supported
initial data. |

If 1<ps ﬂ%é any solution of (3.18) is "pathological", as

defined above.

n+2
n

This condition is sharp in that if f(t,x,s) = sP with p > R
then the solution exists for all time, as long as the initial data is

sufficiently small.

Pf. see Fujita [11.

-

These results poiﬁt to some fundamental restrictions on mode1ling
with non-linear partial differential equations; and that, in general, it
is only reasonable to ask about solutions defined for sufficiently small

initial data and intervals of time.

‘{\
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Philosophical issues

Since we hope ultimately, even if not in this thesis, to address
control and estimation problems of practical signifiéance, it is worth
asking "given a system of non-linear partial differential equations
derived by modelling physical reality, what is implied by the restrictions
on the (mathematical) solution noted above?" For instance we might not
expect a well-behaved physical reality to blow-up at, or fail to exist
after, some time (this is not a Berkeleyan justification for the C.N.D.).
Additionally, if we have a good model we would surely expect it to be valid

for a variety of initial states.

The justification adopted by the author is that all modelling involves
approximation. That is, to arrive at any model, assumptions descriptive of
some particular regime of operation have been made. The model cannot
reasonably be expected to provide a gbod approximation‘outside of this
regime. “Blow-up" may indicate a traqsition to some qualitatively different
behaviour. Such transitions are not unknown in non-linear systemg; '
probably the mosf well-known example is the onset of.turbulence in fluid
flow. From this viewpoint it is not unreasonable to produce models which
have only "local meaning” (i.e. local in time and states). The ébove

restrictions on the notion of solution are thus consistent with this

interpretation of modelling.

-
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3.2 Reconstruction for non-linear systems

This section considers the problem of reconstructing the
state of a-system, governed by a non-linear evolution equation, given
the available measurements. . The approach is entirely analogous to that
of the preceding section. There the properties of the linear part, the
semigroup, were used to construct a representation - the mild solution,
by variation of constants - and to assist in the investigation of its
properties (viz. the trade off between the smoothing action of the
semigroup énd the non-linearity). In this section our knowledge (see
Chapter II) of linear state reconstruction is used to cast the non-linear
problem as a‘fixed point one. Standard fixed point theorems are then used
to obtain the desired results. First we provide some justification for

the formulation.

Formulation

Here, and subsequently, the non-]inearity is taken to be autonomous,
i.e. time independent; it will thus be a function of the state alone.
This assumption is not a major restriction - it can easily be removed - it
merely serves to simplify the presentation. More contentious, perhaps, is
the assumption that the 1inear.par£ also is time invariant. This, again, is
not intrinsic, for the methods can straightfdrward]y be extended to cover
the evolution opérator case. It is rare, however, for linearisation to
yield a_time invariant 1ihear system; 1in general one linearises about
some time-varying trajectory. The present aim is to demonstrate the

techniques rather than prove the most general theorem possible.
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" Suppose, then, that we cbnsider the evolution equation
z=Az + f(2) R . (3.20)
with observations |
y =Cz : SN (3.21)

where C 1is a linear output operator, and A generates a semigroup

S(t) . The linear part

Az

Ne
]

.. | (3.2?)
Cz 4

Y

gives rise to the "initial state to output" operator on [O,t]]
Hy = 29 CS(o)z0 N ' (3.23)

Suppose that the linear system (3.22) 'is continuously initially

observable with respéct to some space Y ; then HB] (or 'H] ,

as it is-called in the discussion preceding Definition ?.40) exists.

Consider now a mild solution of (3.20), given, if it exists, by
: ' t
z(t) = S(t)z0 + J S(t-s)f(z(s))ds . .. (3.24)
. 0
then operating on both sides by C one has

. |
y(t) = Cs(t)zy + CIOS(t-s)f(z(s))ds .. (3.25)
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Thus by rearranging (3.25) we have
z, = Ha](y(-) - CIQS(-—s)f(z(s))ds) . (3.26)
and substitution of (3.26), for z in (3.24), gives
2(6) = S () - f SCe)tats)es) 4
t
JOS(t-s)f(z(s))ds e (3.27)

The right-hand side of (3.27) is used to define a map ¢ acting on the
“trajectory space”. Note that C(#(z))(t) = y(t) . Hence a fixed point

of & will be consistent with the original dynamics and output equation.
The rest of this chapter will be concerned with making this general approach~
rigorous, i.e. proving existence (and, in some cases, uniqueness) for

such fixed points. The maps, whose fixed ﬁoints are sought, are constructed
from some known Tinear reconstruction problem, whilst regarding the non-
Tinearity as a known perturbation. When the real non-linearity is inserted
one obtains a map whose fixed points will be trajecfories consistent with

the original non-linear equations. This might be regardéd as the estimation.
(or, by duality, control) version Qf the_so?called “Schauder linearisation
procedﬁre". To prove results in this area we need, as in section 3.1,
conditions on the Tinear part, the non-linearity and their interaction.

-

Contraction mapping result

Take the map ¢ defined by

(2(2))(t) = SO (¥(+) - cfAS(.-s)f(z<s))ds)
3 ‘

t .
+ [ S(t-s)f(z(s))ds e (3.28)
0 .
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where H0 is taken as mapping from Z] to ¥ , and is invertible -
i.e. Tlinear part as a system on Z] with output in Y is continuously

initially observable.

The following result is patterned after Theorem 3.13.

Theorem 3.20

Let V, Z], Z2 be Banach spaces with V c Z] ;

and a, K, P1» Pps Qs T R, s, t] € B+
satisfying Py 2rz21, Pp 292 1,s21,

1 1 _
¥ + T 1 . Assume also

O|—

i) S(t) € L(ZysV) 0 L(Z,V) t>0

||5(t)2|1v < g](t)llzllz t>0 V¥zelZ and
1 -

[Is(t)zl]y = gz(t)IIZIIZZ t>0 VYzelZ,

i

‘ p Y
1
where g; e L (O,tlﬂﬁ), g, € L 2(0,t]ﬂg) .
ii) R > 0 1is such that

c| s(--t)z(x)dx R
1 jo< 0)2(c)ds| ] < uans(o,t‘;ZZ)

whére Y is the space for which continuous initial observability holds.
iii) f: V- 22 is such that

FGz()-FECD
L (0,t1322)

k y ,
SO

Lr(o,t];V))l|Z(.)-Z(.)||Lr(0,t1;V)



- 80 -

where k : xH2 -+E2 is continuous, symmetric and such that

k(e],ez) +0 as (e],ez) + (0,0)

iv) taking B, = {z e L"(0,t;3V):]]2]] < a}
a 1 L"(0,t,3V)

such that for z,Z e Ba

(R [H7)! + {1911 ) .

0 ||L(Y,;ﬂlg]l|

ro.t: 90, ¢, ;
L"(0,t:R) L9(0,t;R)

k <K<l
(z]] . (0.850) ||Zl|L 0.t V))_ <

Then:  the state of the system described by (3.24) can be reconstructed

given an output, y , satisfying

Hyll =< a(1-K) . (3.29)

A
||9]||L (0 . [ 1Hg HL(V,Z])

Pf. The objective is to apply the contraction mapping theorem (using the
B second form in which it appears in Appendix 4) to the map ¢ defined by

(3.28).: First we show that o is a contraction on Ba

|lez-o2]] |, < lgll X
L (0, ]a ) ] Lr(OQt]ﬂB‘)

-

165" S(-=1) (f(2(r))-f(2(x)))dt| ],

c
L(V,Z])” Io

f(z) - f(z
+ ll 2”|_q(o ¢ )Il (z) (Z)HLS(O,t];ZZ)

x
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using the "convolution argument"

<RI iy, z,) sy 1 + 11g,] ) .

(05t 3R) L(0,t,R)

f(z) - f(z
[17(2) (Z)llLS(O,tl;ZZ)

by i1)

< (RIIHO IIL(y Z )llg]ll llgzli ) -

"0, ) 190, R)

k(l1z]] A1zl Mz - z]]

L"(0,t;3V) L"(0,t,3V) L"(0,t;3V)

using iii). Finally, from iv) we conclude

< K||z - z|| .
L(Oa]’) |

Hence ¢ 1is a contraction on Ba

In.accord with the second form of the contraction mapping theorem we

take D=B_ ,w =0. Then the ball S is given by

a 0

' ) K -1
S = : |z - S(-) oyH ST.IHS(‘)HQyH

L"(0,t,3V)

Hence for - z] e S

L"(0,t,3V)

K -1
Hzy [l < (0 + o HIsCOH vl
: i Q'I’

}
L"(0,t;3V)
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which yields, by i) and (3.29)

HZ]H <a
and so ScD.

Thus the hypotheses of the second form of the contraction mapping

theorem are satisfied and so & has an unique fixed point in Ba |

Exactly as in Corollary 3.14, an additional smoothing hypothesis

on the semigroup gives a more regular solution, viz... .

Corollary 3.21

Suppose, in addition to the hypotheses of Theorem 3.20; that
S(t) € L(Zy»Z;) for t >0 and satisfies

szlly s llzlly,  ¥ze 7
where
P3 :
and
1 1
Pyt — + = =1
3 Pz S

Then fhe solution proven'to exist in Lr(O,t];V), by Theorem 3.20, also

lies in C(O,t];V) .

Pf. using the map ¢ of (3.28) instead of the mild solution (3.5),

one follows the broof of Corollary 3.14 as in Ichikawa-Pritchard [11.
. 1 .
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Example 3.22

With reference to Example 3.16 we consider the.non-linear wave

equation in one dimension and illustrate Theorem 3.20.

Ziy = Zyy + f(z)

z(0,t) = z(1,t) =0 | C (3.30)

Z("O) ZO(.);Zt(.’O) = Z](')

- - 2 1
Az = Zyy s D(A) = H°(0,1) n HO(O,])
and Q 1is defined as in Example 2.14.

The semigroup generated by Q has the explicit expression given

in Example 2.14.

1 . - :
2 §2[<zo,¢n>cosnnt + ﬁ}‘zl’¢n>51"n"t]¢n.

5(t)
z, ﬁZ[jnn<zo,¢n>sdnnnt + <z],¢n>cosnnt]¢n

where o = sin nrg

Suppose we have an observation of the form

1 - , ‘
y(t) Joc(x)zt(x,t)dx ‘ AN (3.31)

where c(x)-= £ ¢ ¢ (X) , C_ = <C,$.> .
ney M n n

Such a c¢(x) could be used, for example, to model a local spatial

average of the time derivative, as an approximation to measurement at a

point. Obviously one must require that <5 #0, forall n‘; so as to

!
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obtain observability. The time interval of interest is ([0,2]
i.e. t] = 2 . Suppose now that the output space VY consists of
functions y(.) which can be expressed as

©

y(t) = =

(a, sinnmt + b_ cosnwt) . e (3.32)
n=] M n

From Definition 2.40, we have that the linear part is continuously

initially observable, when Y is normed by
2 _ ] 2 2 .
Hylly = n§1((a" + bn)/cﬁ) .. (3.33)

For instance, if ¢ &-% then ¥ 1is equivalent to H](O,Z) (cf Curtain-
Pritchird [1]).

w] 0
Now let F = and make the choices
W2 1

Z, = V = D(A}) x L%(0,1)
Z, = D(A) x D(A})
py=r= 4 P = q =4/3ys =2
g = gp =1 (cohstént).
Then, taking_ z ; :] e:L4(0,2;D(A5) x L2(0,1))v>and using the fact
ol

that (see Appendix 1) HB(O,]) » Wwhich is D(AE)', is a Banach algebra

under pointwise products we have 'w](t) € D(A%) s, 0<sts<?2
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and so
4,0 oo nsad o '
w](-) e L'(0,2;D(A%)) which implies that

Wi (-) e L2(0,2:0(Ad)) .

Hence it makes sense to-write

2 2 2 |
Fz)(- - '
[1(F2) ()] 12(0,2:0(A)xD(A})) Hwg () ] 12(0,2;0(A}))
< ||Z(°)||44

L*(0,2;0(a1)x%(0,1))
and, similarly, to conclude that iii) of Theorem 3.20 holds with
k(e],ez) = Y(6]+62) for some constant y>0 . Ifwe let By denote
||H6]||L(y Z.) and 8, = (Rg;+1)2y then the non-linear observer can

>
be constructed for _ l]yllys as{l(llaez) . This expression has its -

. _ 1 . A R .
maximum when a " 78, i.e. [yl] = 158, ° thl; corresponds to

™

a contraction constant of K =-% (we need Bya < K<1). Note that

as By decreases (ihcreasing "amplification" in output channel), the ball
in the state space reaches a limiting upper size. This is consistent
with results concerning the non-existence bf solutions to (3.30) for

arbitrarily large times and initial data.

The use of Theorem 3.20 depends either on exploiting a smoothing
action of the semigroup or, as in Exahp]e 3.22, a particular structure

possessed by the‘non-linearity. The formulation has been desfgned to allow
» A
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large classes of non-linearities, with fhé restriction as noted before
that only local results are obtained. It is possible to expend much effort _'
on improving the bounds in (3.29). For instance, one could first stabilize,
for instance by linear feedback, the linear system so that the semi-

group S(+) has bounds

Hs(t) ]| < M@t w >0

Hence a is increased and so is the size of the ball in VY . If is also
possible to use other fixed point theorems in a formulation closely
related to that of Théorem 3.20. Here we choose only to present an
application of the Schauder fixed point theorem. Applications of the
(set-valued) Bohnenblust-Karlin theorem in both its weak and its strong

versions will be found in Carmichael-Pritchard-Quinn [1].

Schauder-based result

Recall the map ¢ of (3.28) along with the continuous initial

observability assumption on the linear part - just as preceded Theorem 3.20;

Theorem 3.23

Let~ Z], 22 be Banach spaces; and p,a,s,s',t], R,K € E?' such

that p=>s', s>1, ‘% +-%. =1 .
Assume also
i) - S(t) € L(ZZ,Z]) t>0

lIs(t)zl 1, < s(t) ||z||zz” Loge Pty

A\
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i) f 1 C(0,ty3Z) » Ls(O,t];Zz)

is continuous and

f
| (Z)I|LS(0,t1;ZZ) < p(llzllc(o,t];z]))llz|Ic(o,t];Z1)

where p(-)_:q§F¢+E€' is continuous and p(8) ~0 as 6 - 0.

ii1) ||°J S(--t)z(x)e||, < R||z]|
Y L%(0,t,32,)
t .
iv) j S(t-r)f(__)dr:C(O,t];Z]) > Z] is compact VYt ¢ [O,t]]
0 :

the map from C(O,t];Z]) +~ Y defined by
2(+) + cj'S(--r)f(z(r))dr is compact
. 0
v)  taking B, = {z € C(0,t{5Z,) : ||z||C(0 £32,) S @
. i R
such that

(RIIHa]llL(y,Z )lls(')ll suo L(Z )
! [0,t11 =

+ 1ol g ) supo(e) sK<1
L(’] esav

Then: the. state of the system described by (3.24) can be

reconstructed, given an output, y , satisfying

lylly s —2 =K ’ .. (3.38)
' ll l‘L(V Z, )[|S ()11 sup L(Z;) ~
00,
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| i : gt .
PF.  (e2)(t) = S(OHZ Ty (") - JOS(--T)f(z(T))dT] + JOS(t-r)f(z(r))dt

gives, by i), 1ii)

lezllggo,t, iz, * 5O g 1 M el ¢
0,3 LY.y
RiIfz|| ¢ 1+ |1fz|]
L3(0,t132,) Ils ll S'(0,t,R) LS (0,4)32,)

and using 1ii), 1iv) we have

<1SCM sup 1z 19 Hygy,zy 1ty
[0,t;] L

-1 |
A1 1,291 156 50 Floll g desup (o)
s ‘ p L(Z ) S
- 1 [0,t,] 1 L® (0,t;) e<a

< a(1-K) + Ka , by v) and (3.34)

<a . ' ' ot

Hence ¢ maps Ba s a closed convex subset of a Banach space, into

itself. To show ¢ continuous we compute

| |e(z+h) - o

HC(Ot 1Z;) S(RHH ”L(y’z)”S(')H sup  L(Z) +
[O,t]]
. f(zth)-f .
ll g IR

and, by 1ii), ¢ 1is continuous.
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Lastly it is required to show that ¢ maps Ba’ into a precompact

subset (of Ba) . Here we need iv) and the function-space valued version

of the Arzela-Ascoli theorem. Cons%der first the operator

t |
Jo S(t-1)f( _ )dr : C(0,5Z;) » 7,

t ‘ to -
||JOS(t-r)(fz)(r)ds - jo S(tge) (f2)(x)eel I s

t
0
[(S(t-tg) - I)[O S(tg-e) (F2) (el

¢ |
+ ||Jt S(t—r)(fz)(T)dT‘lzi

0
to
sﬂ!|(S(t-t0)" I)J S(t 'T)(fz l|z
lll ooy AN

~The map E : R x Z] > Z] : (t,z) » S(t)z dis continuous. Let ZC

be a compact subset of Z] . E dis uniformly continuous on [0,t1] x Zc

© By 1iv) the image of Ba under the map
to '
J S(to-r)f(__)dr is compact. Thus

0 : : ‘ _

- “ t
0 :
11(s(t-ty) - 1)[0 S(tgre)f( el |z +0

as. t -ty , uniformly on B, . Additionally, [[g]]
. L® (t >t)

as t +pt0 . Thus we can conclude equicontinuity from the right for

3
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t
JOS(t-r)f( _)dr on B, -

Now we need to show equicontinuity from the Teft: take t >e >h >0

et ~ ¢t-h
11 S(t-t)f(z)dr = J S(t-h-r)f(z)drllZ <
10 . 0 1

rt-¢ t-¢
I s(teo) £(2) de - j S(t-h-x)f(2)del I,
0 0

! stear@edly 1 sermraed]
=T Z)dt =T Z)dr
t-e 4 t-e 4

< Il(S(e)—S(e¥h))Jo S(t-e-n)f(2)de I

2 . f
+ IlgllLS (o,e)ll (Z)IILS(O,t];ZZ)

Now 1let h -0 and then ¢ >0 from ii) and iii) we have

t .
that I S(t-t)f( )dt 1is equicontinuous from the right on Ba
o - :
. t '
Now we need to show that 'J S(t-t)f( )dr acting on Ba is
. : 0 -

uniformly bounded (as a map Ba -+ C(O,t];Z])) . Consider

||JOS(.-t)f(ZZdT]Ic(o’t];z])

-,

.. f .
< llgllLS 0., | (Z)IlLS(O,t];Zz)
< gl ¢ sup p(0)a
~ (O,t]).esa

Y
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-Hence the uniform boundedness; thus we can use the function space
valued version of Ascoli-Arzela (see Martin [1]) to conclude that the

t
image of B, , under J S(t-t)f( _ )dr , is compact in C(O,tl;Z]) .
0
An entirely analogous argument can be applied to the term 2, where

(0,2)(t) > S(t) H-](CI;S(--r)f(z)dr)

(We use the second part of iv) and the strong continuity of S(t) exactly

as above to conclude equicontinuity of the set Qz(Ba)) .

Hence @(Ba) is compact in C(O,t];Z]) and so the conditions
of the Schauder theorem are satisfied; thus there is a fixed point of

¢ in Ba N |

As (a somewhat artificial) example of>this result's application :

recall Examples 2.14, 2.45 and 3.16 and consider

Examp]e 3.24

= +
Ztt Zxx z

2(0,t) = 2(1,t) = 0
¢ : D(A}) x 12(0,1) » L2(0,1)

c™ (i ) »> ;tf (cf Example 2.45; continuous initial

observability by duality)
0.
Fe(2)-()
_ zt z2_
F: 00,3 D(Ad)xL
A

2 2

(0,1)) > L%(0,t,3D(A)xD(A))
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one has that ii) (for F) is satisfied with p(e) = c for some

constant ¢ (cf Example 3.22, the contraction case). Moreover
t t o,
[ sty rueenae s [ 12 s
0 D(A)xD(A?) 0 D(A%)

Il 1
< W
J0 p(a})x?(0,1)

. t .
gives that JOS(t-r)(F w(t))dt 1is bounded in D(A) x D(Aé) if w(-)

is bounded in C(0,t,3D(A%)xL%(0,1)) . Now D(A) (resp. D(AY)) is
| t |
compactly embedded in D(Aé) (resp. L2(0,1)) . Thus [ S(t-t) (F w(t))dt
0

is compact from C(0,t,3D(A})x%(0,1)) to D(A%)xL%(0,1) . Using the

fact that J;S('-r)(F w(t))dr € C](O,t];D(A)xD(A%)) we have

CJ.S("T)(F w(t))dr € C](O,t];D(Aé)) and thus, by Appendix 1, compact
0 .

. 2 . . :

in L (O,t];Lz(O,l)) as required. Proceeding analogously to Example 3.22
we have that a non-linear observer can be constructed for

||yl|y < ae{](]-asz) for appropriate constants g,,8, . This gives a

fixed point of ¢ in {z : ||z]| < a}

C(0,t,3D(A%)xL(0,1))
In general, the compactness hypotheses of 1iv) will be satisfied
either becaugé a. the oﬁerator f is compact, or b. the semigroup

S(+) smooths the space Z] . In both cases one tries to show that

t ,
I S(t-t)f( )dr 1is bounded from C(O,t];Z]) into Z0 where Z0 is
0 —
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compact in Z]; additionally one needs to show that C[.S(--s)f(z)ds
0

is compact when considered as a map from C(O,t];Z]) + Y . Provided

Y can be characterised precisely then one may be able to proceed as

before (i.e. showing that image lies in some compactly embedded subspace -
of Y). Consequently, the known embeddings (Appendix 2) are of great
importance in the analysié. In addition, it may be possible, using the
theorem of Riesz-Tamarkin (sometimes ascribed to Frechet-Kolmogorov),
which is the LP analogue of Ascoli-Arzela, to consider looking for fixed

points in Spaces such as Lp(O,t];Z) .

Some critical comments

The examples above concern hyperbolic partial differential equations.
This is 10 coincidence. For linear parabolic systems (at least without
additional manipulation) continuous initia]'observabi]ity rarely obtains.

In fact one has ... : ]

Theorem 3.25

Consider the observed systém (2.18), (2.19) where A generates a
strongly continuous semigroup S(t), t>0, and' C is bounded. If
we have continuous initial state observabflity for some t] >0 i.e.
3y e%+ such that

yl1Cs(-)zgll o 2 ||z4l]

LIRS
_ fd} some p, 1sp<ewe; and if for each t > 0 the range of S(t) is
dense in Z then .S(t) can be extended to a strongly continuous group

of bounded operators on -« < t<e




- 94 -

Pf. See Dolecki-Russell [1].

The results (Theorems 3.2 and 3.23) we have seen demand thatf'H0

be boundedly invertible on y(-:) - CI'S(--s)f(z(s))ds . As thevabove
- 0

result makes plear, for a large class of systems (ihc]uding, at least,
linear parabolic ones), this cannot be so when VY = Lp(O,t];Y) . The
standard procedure (Dolecki-Russell [1] has the most complete dichssion
of these points) is to}restrict attention to the range of H0 , 1.e.
take VY ='range(H0) and then to define a topology on Y which makes
H&l continuous. Generally this topology will not be equiQa]ent to_the
relative topology on range(Ho) inherited from Lp(O,t];Y) . The most

obvious, and robust, way of ensuring that y(.)-CJ S(+=s)f(z(s))ds ¢ ¥
~ o
is to demand that both y(-) and CI S(+-s)f(z(s))ds 1lie in Y .
. 0 -

This is a somewhat stringent requirement; one is in effect asking that

both y(-) and CI.S(--s)f(z(s))ds are given by CS(-)z0 for some
0 .

zo's . In order to make sense of the results obtained when the system is
initially observable, but not continuously initia]]& observable, with

| respect to Lp(O,t];Y) (and so Y 1is taken to be range(HO)) we must
then impose some posteriori verification.condition{s) on the fixéd
point(s) obtained. These conditions will be designed to tell us whether
or.not the fixedfpoint(s);obtained make sense in terms of the original
problem (3.203, (3.21). .Such investigations are being performed, but will
not be discussed in this thesis. The first part of Chapter 4 presents an
alternative way of resolving some of these problems using an optimisation
abproach. The remainder of this chapéer will be devoted to further

exp]dration of the fO{mulation used in Theorems 3.20 and 3.23.
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3.3 More applicable non-linear functional analysis

The theorems which have just been applied (contraction,

~ Schauder) are probably the best known of the fixed point results developed

by mathematicians over the last 50 or 60 years. Many other results are
available and are potentia]1y applicable to the ¢ of (3.28). Here,
without any claim (or aim) for completeness the use of two other such

results is indicated. Further details will be found in Carmichael-Pritchard-
Quinn C1]1 (in addition to Bohuenblust-Karlin) and [2]. As stated above

we shall uée the formulation of Theorems 3.20 and 3.23, and hence will be

subject to the restrictions noted at the end of section 3.2.

Operator splitting

Define (Q](z))(t) = (3.34)

|
——
‘-f
w
—~
‘-’-
]
A
S
. -~
~~
N
—~
B, |
S”
S—
(=%
3]
Ll

and

(32 (1) = S Y- = €[ SE-f(a(xNe) . . . (3.39)
0 | |

then, comparing with (3.28),

@ =0+, .

* Such operator splittings ¢ommon1y occur in the application of fixed point
techniques. A number of theorems have been developed in order to exploit
such cases. Here we only use the theorem due to Nussbaum (see
Apbendix 4). This theorem deals with the sum of a "contraction" and a

"compact" operator. In our terms we obtain
: A ..
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Theorem 3.26

Consider the dynamical system described, in mild form, by (3.24)

and (3.25); assume that Z],Z2 are Banach spaces (Z] c 22)

1

p,s el!!i‘+:%+-§-=1 and

i) the semigroup S(t) generated by A , satisfies
S(t) € L(ZZ,Z]) t>0

[Is(t)zll, < a(t)llzll; s [lgll =C<w
4 Z, LP(0,t, R)

ii) R > 0 1is such that

|]CI S(--t)z(t)de||y < R||z|]
0 L>(0,t,3Z,)

1342
1) £ 2 C(0,£)327) > L°(0,t13Z))

is continuous and satisfies a Lipschitz condition

[[f(z) - £ § < k(llzl]L11zID 1z - 2]
037y |

where the norms on the right hand side are computed in C(O,t];Z]) .
~ The function k(-,-) : Ef'x m;—_*ngr is continuous, symmetric and

such that k(0,0) =0,

iv) the map from- C(0,t3Z;) » ¥ defined by

z(-) +-CJ$S(--t)f(z(r))dr is compact.

v) a ei%+ is chosen so that

(Rd + ¢) sup k(8,0) < K<1
Os6<a
A

T S P e
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where

118 !
d B NG sup L(.Z]) HHO ”L(V,Z])
0,t,1
and

c sup - k(e],ez) < K<1

Ose],ezsa

Then: the state of the system described by (3.24), (3.25) can be

reconstructed, given an observation y(-) satisfying

1-K
lyll, s 20K

Pf. Consider first

ze B, = {z ¢ C(O’t];zl):lIZlIC(O,tl;Zl) < é} ; for such z ,

: ‘ o -1 |
- “‘I’]Z + QZZIIC(Q't];z]') SRINOI sup  L(Z;) “HO “L(y’zl)”)'“y. ‘
‘ [0,t,1 '

M

+ (Rd + ¢) sup k(o,0)
O<6<a

< a(1-K) + Ka = a

. . 0.+ @2 : Ba > Ba

Thé continuity of 2 and 2, follows directly from the continuity

of f ; additionally, for 2, z ¢ Ba .

|10q2-2,2]| .z.y < |lall [1f(2)-f(2)]]
e,z 7| LP(0,t;3R) L3(0,132,)

s e k(l1zl L 2Dz - g, sz

< Kllz - 2lle(o,¢,52))
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Finally, we need to show that 2, maps Ba into a precompact

subset (of Ba) . From condition iv) the image of Ba under
CI'S('-t)f(__)dr is precompact in Y . Then by the (strong) continuity
0

of S(t) (and the continuity of Ha]) we may conclude compactness in

C(O,t] ;Z]) .

Thus we have, by  Nussbaum a fixed point of 2 + o, in Ba . |

This theorem may easily be app1ied to a system such as that of
Example 3.24. The critical comments at the end of 3.2 still apply,
however. The requirements that Ha]' exists (and is bouhded); and that
the compactness condition, iv), of the Theorem holds, combine to place
severe restriction on the systems which can be studied. Thus, although

the proof is much cimpler (we do not have to use the pointwise compactness
t T .

of J S(t-t)f( _)dt) than that of Theoren 3.23 this formulation offers no
0

fundamental improvement. It would be possible to reformulate Theorem 3.26‘
with ¢, as the comﬁact part and ¢, as the contraction; this would’ |
avoid the need to find a space compactly embedded in Y but would

' otherwise have few advantages, hence is not developed hére. The operator'

splitting of Theorem 3.26 will be used again in Chapter 4.

Degree theoretic result

Here we Use the degree theoretic formulation (see Appendix 4) of
Leray-Schauder's classic paper (Leray-Schauder, [1]). Recall from

Appendix 4 the formulation : we consider the equation

z - o(z,2) =0 Ce ~(3.36)
A
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(under a number of assumptions Tlisted in Appendix 4) then, if for

some A, We can find all solutions 2z - @(z,xo) = 0A ,» we may conclude
that there is a solution for any A in some range of interest as long as
an associated topo]ogica] invariant (the Leray-Schauder index) can be
ca]cu]atéd at and, hence, shown to be non-zero. The aim is to find
a AO such that this calculation is particularly easy. In our present

case, with an eye to (3.28), we define

.
((2.2))(8) = (G y(pa(f S(E-0)f(a(e))e -

S(t)HB](CI;S(--T)f(Z(T))dr)) ... (3.37)

Note that (@(z,0))(t)

S(t)HB](y(-)) and 9(z,1) recovers the
® 6f (3.28)... Thus in applying the LerayeSchaudér result of Appendix 4,
we define Q = B, x M where B_ is the ball in C(O,t];Z]) as previously

defined, and M = [0,1].

Theorem 3.27

Consider the dynamical system described, in mild fbrm, by (3.24),

(3.25); assume that Z, , 22 are Banach spaces (Z; < 22) .
+ .1, 1 _ '
P»s € R .-6+-§—1 and

i) the semigroﬁb S(-) generated by A , satisfies
S(t) e L(Z,0Z)) t>0

C <o

S(t)z L s g(t)liz : g =
159211y, = o0l lellz, 5 sl o
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ii) R >0 is such that

] s¢-myz(m)ael Iy < RIl2]
0 L5(0,t432,)

ii1) £ 1 C(0,ty3Z) » LS(O,t];Zé)
is continuous and satisfies a "growth" condition
Hf(z)]] < eo(l1zI)]1z]]
S .
L O,t],Zz)
where the norms on the right hand side are computed in C(O,t];Z]) .

The function p(-) : mf'e-ﬁf' is continuous and p(8) + 0 as

9+0.

’ iv) the following compactness conditions are satisfi~d:

t ' _
I S(t-s)f(_)ds : C(O,t];Z]) > Z] is compact for each t e [0,t,]
0

1

CJ.S('-T)f(__)dT : C(O,t];Z]) + Y 1is compact
0

V) ace mf' is chosen so that

(Rd + c) sup p(8) < K <1
0<6<a _

where

s ‘: -1
d = IIS()H sup L(Z.l) I'Ho ”L(V’Z])
[O;t1]

vi) 39', the boundary of the set g does not contain any solution of (3.36).
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Then: the state of the system described by (3.24) (3.25) can be

reconstructed given an observation, y , satisfying
; |
||y||y <37 . . e (3.38)

Pf. The complete continuity of ¢&(-.,.) 1is shown by proceeding exactly
as in Theorem 3.23; hence will not be repeated here. To show uniform

continuity with respect to A, consider

| |¢(Z,%1) = ‘I’(Z’)‘z)l IC(O,t] ;Z])

s |32yl llf;s<--r>f<z(r>)dr - 5"’”5]°fésﬁ"r)f
(2(x))dr| lc(o,t];zl)
< lx]-letllglle(o’t];m)IIf(Z)IILS(O’t];ZZ) +
q Rd1|f(2)||LS(0’t];Zz)]
<

|A]-A2|[Rd + c]p(||2|I)Ilzllc(o,tl;zly

and for z € Ba we have

[e(z:2) = 2(z:2)) e, 1,52,
7 o |A-2,|[Rd + c] sup p(e)a
2 0s<6<a

Thus we obtain uniform continuity with respect to A.

B
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-1

For A =0 the only solution is zL(t) = S(t) H0 y and

(3.38) ensures that

2o, 52,y = SO gy 1zl 1491y zy 111
' [0,t]]

s dllylly

< a

’

-.,Zl_c-:Ba

When A =0 , the transformation z + z - &(z,A) is a translation

of the identity and thus has index equal to + 1 .

Thus, provided the "a priori assumption", vi), holds we conclude

" that #(-,1) has at least one fixed point in B, . )

The‘most obvious disadvantage 6f this formulation fs the requirement
vi). It is this assumption, however, which allows use of a ball in VY
having radius a/d ; in generai, this is larger thap the ball used in
.previous theorems. In practice a solution technique based on this theorem
would attempt to follow the, possibly bifurcating, path of solutions-

beginning at zZ -

In Leray-Schauder [1] a formula for the (Leray-Schauder) degree of a
mapping is developed. In our case the value of the degree is +1 since
this is the value at A =0 . The formula states that the degree is the
sum of the indices of the solutions. Under .some supplementary conditions,

all the indices must be either +1 or. -1 . The calculation of the index
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at a particular solution will depend on the eigenvalues of the Frechet
derivative evaluated at that solution; and, hence, on the behaviour of
the Tinearised system. In Chapter 5 we return to an.investigation of the
linearised system and implications for questions of uniqueness’and
algorithms. The directions suggested by direct evaluation of the degree
will not be further pursued here; but, it would seem, at least in regard
of certain specific problems, such an approach may provide more detailed

qualitative information.

Yet another direction which could be pursued (but not here) concerns

the introduction of a different "operator-splitting". Sﬁppose we introduce

t .
S(H Ty () + [OS(t-s)f(z(snds

(2(z,2))(t)

_AS(t)H'](CI;S(v-s)f(z(s))ds)

so that for A =0 . ' S

(2(z,0))(t)

-'| t
S(t)H "(y(+)) + Jos(t-s)f(z(s))ds .

~ Then if we show that z - ¢(z,0) = 0 has an unique solution with non-
zero index, we may deduce that z - ¢(z,1) = 0 possesses a solution.
Typically, this would inVo]ve imposing a contraction condition on the
operator Q(QZO) together with compactness requirements on both . ¢(z,0)
and S(t)H'](CIQS(--s)f(z(s))ds) . As X moves from 0 to 1 we follow

a:continuous bath in the space of trajectories, startingat A =0 with
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~the mild solution, (3.24), corresponding to the "linear" estimate

of system state i.e. z(*) satisfies
' -t
z(t) = S(t)z0 + J S(t-s)f(z(s))ds
0

where z, is evaluated by solving z = H'](y(-)) .
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CHAPTER IV : Other topics

Summary

In this chapter we investigate a number of variations on the themes
expounded in Chapter III. Specifically we consider a) different ways
of constructing the map for whose fixed points we search or b) other
control and estimation problems which admit of a fixed-point formulation.
In all these cases, as before, the properties of the linear part.are
exp]oited.in order to create a candidate map for whose fixed points we
search. Though the assumptions on the linear part are possibly restrictive
the examples of this section by no means exhaust the potential of this

~ approach; see for example Carmichael-Quinn [1].

4.1 Use of pseudo-inverses

Thus far we have demanded (at some cost, see the critical
comments of 3.2) continuous initial observability for the linear part
and used the existence of a bounded reconstruction 6perator (Ha]) to
* construct the non-linear map ¢ . In this section we look at the
possibility of using pseudo inversesto provide the bounded reconstruction
operatbr based on the linear part. We shall make use of compactly embedded
spaces not only because ;he linear part gives rise to an ill-posed problem
(cf. 2.4) buf"also becau%e the aim is to apply fixed point theorems which
use compactness properties (cf. comments after Ex. 3.24). As has been
indicated in previous remarks the obvious épplication is to those parabolic
systems where the linear part is init%a]]y observable, but not continuously

initially observab1e.X
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Consider then the state space of the linear part to be a Hilbert
space Z and let Z] be another Hilbert space compactly embedded in

Z . Recall now Definition 2.49 for Oﬁ: , being the
*H

regularised pseudo-inverse with graph norm and thus a map from
Zy x L2(0,t];Y) 7y, equation (3.28) now becomes
‘ At .
(e(2))(1) = S() gl 7 (09() - IOS(--s)f(z(s))ds>

t
. J S(t-s)f(z(s))ds . . .  (4.1)
0 .

In the manner of (3.34), (3.35) this @ is split into 8, and o,
defined by |

t , | _
(oy(2)) () J S(t-s)f(z(s))ds L. (a.2)

(4(2)(8) = SO (()=C SC-9)fta(snds) . (4.3)

Theorem 4.1

Consider the dynamical systém described, in mild form, by (3;24)
‘and (3.25) and recast as above; assume that Z], H are Hilbert spaces,
22 Banach (Zl~c Hc ZZ) with 21 compactly embedded in H and H

continuous]y«embedded in Z2 s let p,s e Ef' and assume that

%-+-% =1 and, further, that
i) S(t) € L(Z,,H) t>0

= € =

lIs(e)zlly = s(0)l1zlly 3 llsll

Plo,t.
\ L7(0,t;:R)
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ii) R > 0 is such that

c| s(-- dr|]y < R
e[ St--n)2(meel ], < 12l s 00

where Y s, as in Chaptér 2, now a Hilbert space;

y = L2(0,t];Y) for some Y (Hilbert).

ii1) £ : C(0,ty3H) » LS(O,t];ZZ)
is continuous and satisfies a Lipschitz condition
() - f(D ] s < k(11z] 121D 1z-2]|
L7(0,ty3Z,)
1°72
where the norms on the right hand side are computed in
C(O,t];H\ . The function k(-,-) : Ef‘><§f’»-ﬁf is continuous,

symmetric and such that k(0,0) =0 .

iv) ae R* is chosen so that .

(Rd + c) sup k(e8,0) < K<1
O<6<a

where ' '

n
d= 1ISC L sup rwy  Moe,z, (@M iw,z,)
and

c  sup k(e],eZ) <K<1.
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Then: the map ¢ , defined by (4.1), has a fixed point in the ball-

B, = {z e C(0,ty3H) : llzllC(O,t];H) < a} provided'that the observation

y(+) satisfies

lylly, < 20K

Pf. Consider first =z e"Ba ;  for such a z we have by “he hypotheses

above

: N
II‘!’]Z*“I’zzllc(o’t];H) s ”s(.)Hsup L(H) - HOHe,Z](O‘ )”L(V,Z.I)Hy”V+
©,t,]
+ (Rd+c) sup k(8,0) < a(1-K) + Ka = a
O<p<a
K o + 9, 1B ~B .

The'continuity of ¢] and % follows from that of f ; additionally

Herzi2lleo,¢,5m) = KI12-2llc0,¢,5m) e

exactly as in the proof of Theorem 3.26.

Finally we need to show that 9, maps ~Ba into a precompact subset

of B. . From the definition of .H , it maps B_ into a precompact
a .0 e,Z] a

subset of H . Then by the (strong) continuity of S(t) we may conclude

compactness in C(O,t];H) .

Thus We have, by Nussbaum a fixed point of 2 + o in Ba . |

Consider the example
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Example 4.2 (cf Example 2.43)
=2z, " 2Z, 3 z(0,t) = z(1,t) =0

1
. 2
y(t) = Joc(x)z(x,t)dx (y(-] L (O,t]ﬂR))
Then, as in Example 2.43,. the Tinear part is initially observable if

1
I c(x) sin nux dx # 0 ¥n .
0 ,

Even if this holds, it is not, however, continuously so. Here we make the

slightly artifical assumption that

1 2
Z, = D(A) 5 H = Hy(0,1) 35 Z, = L°(0,1)

fry-> -y, H > Z2 is proven as fo]]ows.-'

recall that for ¢ ¢ Hé s ¢(-)'= J.¢'(x)dx . (" used here instead of
0

By for convenience); so ¢ 1is absolutely cont{nuous and

supfu(x)] < [[v]] y 5 thus
X H0

Ilw](wi-wé)llzz ¥ ll(wl-wz)wél|zz

Ilwlw{-wzwéllzz <
i < oy HogmepHy +Togmeally Tl
Vil Tomda iy HHvymeally Tivally
<

(IlW]llH + |l¢2'|H) ‘|¢]'¢2||H

We take p =2-¢ €€ 10,10 (this comes from the definition of the

: Y .
norm on ||S(t)z]| ) and s correspondingly. D(A) is compactly embedded
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in H which is continuously embedded in Z . Thus with appropriate-
a,c,d,K,R ¢ Ef' we may satisfy the hypotheses of Theorem 4.1; and hence
conclude the existence of a fixed point for the map ¢ . This point will

be a "system trajectory" lying in C(O,t];H) .

As in Chapter 2 the behaviour of the fixed point as ¢ » 0" is a

natural question to study; as are continuity properties with respect to

the data y(*) . Notice that since Oﬁz 7 recovers a best approximation,
. Y

the fixed point can now only be regarded as a "consistent" state trajectory.
The relation between this result and those obtained by more direct attacks
on the non-linear optimisation problem is also worthy of investigation.

The result does provide, however, an approach to state'reébnstruction which
is appropriate to a class of non-linear parabolic probl?ms; which class

cannot sensib!y be handled by the methods of Chapter 3.

Another choice of pseudo-inverse '

-

As was indicated in Chapter 2 one can think of many linear problems
where the pseudo-inverse provides a useful notion of solution. Now, if
semi-linear terms are added if.may be possible to use the pseudo-inverse
defived from the 1ihear part to create a map whose fixed points provide a
notion of state reconstruction appropriate to the non-linear problem. Here

we consider one example of this procedure.

Recall the map T of (2.37) in the case where, for a linear parabolic
equation, both the semigroup and the Lions' formulations apply. Recall

N
also the "regularised" operator Te,WZ (0,t1)le , defined for Theorem‘
. 1

2.51 (and the otherxnotations used there: viz. Z] compactly emebdded
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in H 3 Z], H being Hilbert; C : LZ(O,t];H) -+ ¥) . The notation

Pw will be used to denote the projection of the product space
JA
1

wz_(O,t]) X Z] onto its first factor W -O’tl) » such that
: .

z](

Py (2()s25) = 2(+) . The semi-linear problem (3.24), (3.25) then
yA .
1

naturally gives rise to consideration of the following map o

o=y Tz’wz](o’t])XZ](O,O,IOS(.-s)f(z(s))ds,Y(-)) .. (4.8)
(recall that

'\l -
T :Wil(o,t])xz

" ' 2
+ W, (0,ty)xZ,xL(0,ty3H)xY

1

as in Chapter 2).

This formula arises as follows: we would like to use the map T of (2.37)

to find a solution of

T(zzg) = (J;S(--s)f(z(s))ds,y(')) . (4.5)

where 4J.S(‘-s)f(z(s))ds € Lz(o,t];H), y(-) e ¥ . Being aware, however,
0

of the scarcity of continuous initial observability (af least among’
parabolic equations) and of the smoothing properties of the semigroup
action we are driven to consider the regularised problem

~

T (2:20) = (0.0, S=)f(z(s))ds, ¥ () - - (4:6)

£,L2(0, 1, 5H)
" X
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From both a practical and a theoretical viewpoint it is desirable to-
have some continuity properties with respect to the right hand side of

(4.6). Thus we look to
T - 12) = (0,0, | S(+=s)f ds, y(+)) . . . (4.7
S’WZ](O’tl)XZ1(Z zg9) = ( JO (+-s)f(z(s))ds, y(*)) (4.7)

Under appropriate conditions this can be made consistent with the mild and

Lions representations (e.g. the commentary following Theorem 2.51).
As we know that wz (O,t]) is compactly embedded in L2(0,t];H)
1

we shall aim in the following theorem to use Schauder applied to ¢ ,

thought of as a map from L2(0,t];H) -+ L2(0,t1;H) .

~ Theorem 4.3

- Consider the dynamical system described, in mild form, by (3.24)
and (3.%5) and recast as above; assum? that Zy, H are Hilbert spaces,
Z, Banach (Z; < H=< 7)) ‘with Z, compactly embedded in H and H .
continuously embedded in 22 ;‘ let the constant for the first embedding

.

- be given by ey e Eﬁ , 1i.e.

Hzlly < & HZHZ]

+ 1,1_3
Take e >0 and p,s eR" such that p>1,s 21 and 3+§---2- .
Further, assume that
i) S(t) e L(Z,,H) t>0
szl 1y < ot llzll, s gl e
. 2

p .
LP(0,t;R)
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1) £ 1 150, 3H) » L5(0,32,)

is continuous and such that

f
s,y =120 ) 22

where p(°) : Ef'-*ug+ is continuous and p(e) 0 as s >0 .
ii1) a ¢ ' is chosen so that

c dsupop(e) < K<l

f<a
where
%
d:e.l llP T (,OQOSOQO)lI

y Tealy (0,8)x,
1 G
(the norm is tuken in L(LZ(0,ty3H)x¥ , Wy (0,t)))
. 1 |

Then: the map ¢, defined by (4.4), has a fixed_point'in the ball

={z¢ LZ(O,t];H) 2 ]zl 2 ' < a} provided that the

L™ (0,ty3H)

observation y(*) satisfies

lyl], < 24

Pf. Consider first Z'e Ba s for such a z we have

ILQZ'ILZ(O,tl;H)!g e]||¢2|iwzl(o,t])
[Py i . (IIJ S(--1)f(z( ))d I + [1ylly)
se -T Z{T T N
Z] e W (0 t xZ M 2( 0, ]’ H) y

and using the “"convolution property" as before we have
\
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IA

d ¢ sup p(e) a + a(1-K)
p<a

IA
o}

Thus <I>:Ba > Ba . The continuity of ¢ is straightforward.
As @(Ba) c W, (O,t]) .and this latter space is compactly embedded
1

in L2(0,t];H) we have that ¢lBa) is a compact subset of LZ(O,t];H)
and thus of Ba . Thus we have, by Schauder, the existence of a fixed
point for ¢ in B . |

In the following we use the notation, for z ¢ L2(0,1) R

1
122 = [O(z(x>)2dx :

" Example 4.4 (c. Example 2.43)
2, = 2y " |z] z 5 z(0,t) = z(lft) =0

: |
y(t) = joc(x)z(x,t) dx

~ Then the linear part is initially observable if
] "

I c(x) sinnax dx £0 ¥n

o . ,

even assuming this to hold it is not, however, continuously so.
o i 2
Take Z; = Hy(0,1) 5 Z, = H = L7(0,1) .
It is clear that
\ 2 1 .
f(‘) : L (O,t] ;H) + L (O,t],Zz)

Theréfore we take s

£ 1,p =“2 and )

p(r) =r
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It is worth noting here that by Lemma 2.18 (or results of Lions, [1])

z, =2, v 9 3 z(0,t) = z(1,t) =0

has a solution in C(0,t;3H) for g e L'(0,t;32,)

Interpolation techniques are used in Lions [4] to consider a wider
class of forcing terms gi e.g. any g in Lq(“)(o,t1;H'B(0,1))

where —— =1-8_,0<g<1,will still give a solution z in
q(8) 2

C(O,t];Lz(O,l)) . Such results are used to consider other non-linearities,

for instance, [zlzz .

To satisfy condition i) estimates on ||S(-)|| are needed.
Conditioniii), however, required estimate of an operator norm. How best
to perform this estimation 1s\not c]ear; When in finite dimensional state
spaces one can construct (using the normal equafions) explicit
representations of the ?T.... _oberator; and use thése to state hypo-

theses ensuring the required norm bounds.

Nonetheless, from a computational viewpoint, this abproach has some -

attractions. The numerical solution of linear least squares problems
n C : .

such as is expressed by_ Te’wz1(0,t])le » has been much studied.
In any iterative method based on this formulation the use of compactly
embedded spaces will pquide at each step desirable continuity properties
with respect to the data. As in the comments following Example 4.2,
hbwever, the behaviour of the fixed poiht as e~ 0" is a natural question

to study.
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Another, and more significant, difficulty in interpretation is the
relation between the fixed point obtained and the solution of the
(deterministic) non-linear optimisation problem posed as ffind z(*)
such that

t
2(t) = S(t)zg + JOS('-s)f(z(s))ds

which minimizes
Y A Y .
J <z(t),z(t)>dr + J‘ <Cz(t)-y(t),Cz(t)~y(r)>dr."
0 0 .

.For the solution of this problem may be available by other means (e.g.
maximum principle); examination of the simplest cases shows this

" solu:ion to be different from that obtained using the fixed point approach.
This is perhéﬁs not surprising when one considers that the non-linear
optimisation procedure makes essential use of gradient information about
the non-]inearity; whereas the fiXedlpoint approach never calculates o
the gradient - one might regard it as possibly providing the "best
_approximation without differentiation". The following -(formal) elaboration

concerns this point.

Consider that
t

. - _ 1 -
2, - %<g(0)-zo,PO](z(O)-zo)> . gjo <w(s),Q " (s)w(s)>ds
+ ;[0 <y(s)-Cz(z) R V(y(s)-Cz(s))>ds L (4.8)

is to be minimised with respect to z(i), w(t) 0=<tc< t subject to

~ the constraint -
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dz _, . S
H% =Az:+ f(z):+w - 0O0<tcx t] . e . (4.9)

In view oftthe constraint we minimise Jp w.r.t. z(0) and w(+) ;
. 1
the best estifiate for ' z(-) is then determined. Proceeding in the
usual fashion, we fd?m the augmented cost functibna]
t-I :
3B =0, 4 | <n(s),(z-Az-f(z)-w)(s)>ds . . . (4.10)
L I PV

and compute the first’ variation of Ji Here the exposition bifurcates

; 1 .
for we shall a)’keépvthe nonlinearity f(z) or b) replace it by.a (known)

perturbation g(-) A kPO;Q,R +ve definite, self-adjoint);

-a) gives
GJiT:F <P (2(0)-Zp)-1(0),52(0)> + <A(t,),s82(t)>
: t] (Y ok ' *
N JO.{<(R+IC) (y(s)-Cz(s)) + i(s) + A*A + (dflz(-)) As8Z(s)>
'+’<Q;] W(S)-A(s),aw(s)>}ds | . : . (4.11)

Thus necessary cond%fions for sJi = 0 are given by
: 1

b pal(z(b)sz) - A(0) = 0 (4.12)
CA(ty) = 0 (4.13)
¢ ;-g%-;“S(A +‘Jf|z)*x SRt - C2(t)) ... (4.18)

chqwuj-3¥;)=o . (4.15)
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Eliminating w(-) from (4.9) using (4.15) we obtain

g% =- (A+ dflz)*k - CRT(y(t) - Cz(t))

42 - aa(t) + Az(t) + F2(t) | c .. (8.16)
2(0) = Zy + P4A(0)

x(t]) =0.
Then (4.16) is, in effect, the "optimality system" of Lions;
b) gives an optimality system (by almost identical calculations)

dx

_ A* *_'l
'a-i—" A~-CR

(y(t) - Cz(t))

dz _ | |
qF = Q(t) + Az(t) + g(t) c .. (407)
2(0) =z + Pyx(0) o

Alt) =0,

When we substitute f(z) for g 1in (4.17) we obtain a fixed point
formulation of the typé discussed in the preceding paragraphs. It is
clear that, in general, the resulting fixed point will not be a solution
of (4.16) un]éss df|, = 0. Thus we cannot expect to attain the non-

linear optimum, using the fixed point approach.

Anotherquestion of interest is suggested by (4.16): given that the

essence of the fixed point approach is to .reach the solution of a non-linear

3
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problem via a sequence of linear ones, can we formulate (4.16) in this
way? A possible answer is indicated by consideration of the iteration
defined by |

dln * 0 % ]
F& = - (A dF|, ]) Ay = C R (y(t) - Cz(t))
. n- '

dzn

- A+ df f - df
T U (A df|, )z + |21 01 (4.18)
2,(0) = Zg + Pyr,(0)

An(t]) =0

This iteration corresponds to solving the reconstruction problem,

" i.e. minimising cost functional (4.8), for the linear system

2= (A+ dflzn-])zn + (f - dflzn_1)(zn_]) .

The proposed scheme is closely related, it seems, to‘methods of quasi-
“linearisation, such as are studied in Falb-Jong, [11, and is further
investigated in Carmichael-Quinn [1]. As will be seen in Chapter 5,
application of Newtdh's method to the fixed point problem for the ¢ of

(3.28) yields a scheme with a similar structure.

-
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4.2 State and parameter estimation

Suppose we are given a system of the form

Ne
|

= f(z,a) z(0) = zg

y = h(z)

and that we know neither the state z(:) nor the parameters o .

Both these have to be recovered from the output y(-) . Now make some
initial guess (E(‘),E) and construct a local approximation about this
guess. With simplification (largely, as indicated in the introduction,
for ease of exposition) we shall assume that the local approximation

gives equations of the form

Ne.
|

= Az + Ao + f(z,0) 2(0) =z, -

(4.19)
Cz

<
1}

The parameters @ will be assumed to be constants and hence we may ,

at least formally, describe the system by

z A A |2 f(z,a) [z] [ZO] |
= .+ ) s (0) = e o o (4.20)
a 0 O o 0 a o

y = [C, . 03 [z] '
L (4.21)

The problem of joint state and parameter estimation has thus been recast
as a "semi-linear estimation problem"-of the type dealt with in this thesis.

We may hope to apply, under appropriate conditions, the fixed point results
Y '
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of the preceding sections. We may thus expect to produce algorithms

(with some associated convergence analysis) for state and parameter
estimation. This in itself is sufficiently unusual to herit attention -
see for insfance the discussion of Chavent [1] for an account of the
difficulties involved in arriv%ng at a definition of identifiability which
is both analytically applicable and practically productive. Suppose we
consider our parameter to be constant in ]Ep then we must study the
injectivity of the map from the space of initial states x]ﬁp to.the

space of outputs arising from the linear system

Bb 0o -

y=I[C 0] [z] | . (4.23)

o
A useful criterion for ensuring this property is

Lemma 4.5

i)  Suppose that the system

z = Az z(0) =2,

(4.24)
y = Cz
is continuously initially observable on [0,t;] ;

ii) the map from D(A) x gp >Z x Y defined by

(ZO) -+ (AZO t Ay )'is injective;
a CZ0 )
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Then: a. assumptions i) and ii1) together imply that the augmented system
z -
is continuously initially observable (i.e. the map from (aO) -+ y(+)

defined by (4.22), (4.23) is injective and has closed range);

b. the augmented system being continuously initially observable
implies i) and ii).
Pf. a. Consider the mild expression of (4.22), (4.23) viz.

. t :
y(t) =Cs(t)z, + CJOS(t-s)A]q ds ... © (4.25)

and suppose that this output.is identically zero on [O;t]] . Then
Czy = 0 by evaluation at t =0 . Forming 'y(t+h)h- y(t) , by use

of (4.25), we have that CS(.t)(S h) - I)zd-ba limit as h -~ 0 . Hence by
i) AW 2L has a Timitas h >0 andso z, e D(A) , by definition.
Thus (using Theorem 2.5) we may differentiate (4.25) to obtain

R CS(t)(Azp + Aja) = 0 o [0,t;]

(again using Theorem 2.5; and, on the integral term, a change of variables,
u=t-s ) and as the system (4.24) is initially observable we have that
Az0 + A]a =0 . By ii) Cz0 =0 = Az0 f A1a can only occur when

z, = 0, a=0. Thus the map (42.5) is injective and so the augmented

system is iniiially observable.

To show continuous dinitial observability (reqﬁired if the "inversion" -
procedure, described‘jn Chapter III, for 6reating (3.28) is to work) all
we need note ié that the right hand term of (4.25) is defined on a finite
dimensiqnal space. Hence by Example 2.31, c., and the results preceding
Theorem 2.48 we may ébnclude that the augmented system is continously

‘initially observable.
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b. Again by Example 2.31, c¢., continuous initial observability of the
augmented system implies that of (4.24). 1If the injectivity assumption on
A _
(
C
exist a non trivial (zo,a) such that the corresponding y(0) = 0 and %% =0

A]) does not hold then by (4.25) (and its time derivative) there will
0 _

i.e. output is zero. This contradicts continuous initial observability

for the augmented system. B

The condition
A A

ker(. o) = {0} ‘ ... (4.26)
though simple, is slightly novel and has some re]evénce to procedures
for joint state and parameter estimation using Kalman fiiters (see
Jazwinski, [11). The argument simplifies when one is using a
finite dimensional state space. .This is the case in Example 4.6. In the
case that S(+) is a group and (4.24) is continuously initially observable
-we have another approach. For then in case that (Zo,a) gives y(:) =0

we obtain at each instant t'

t ] . .
zg = -JO S(-s)A]a ds

-

which Ties in D(A) (us{ng Theorem 2.5 and the fact that continuous
initial observability implies continuous final observability; see

Curtain-Pritchard [11, p.70).

A
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Having established continuous initial observability for the augmented
system we are free to construct a ¢ (for the "augmented state trajectory")
exactly as in (3.28) but now in terms of the output operator and semigroup
action of (4.22), (4.23). Then we may apply Theorem 3.20 (or even Theorem
3.23) to show that in some bali in the augmented state space ¢ has a
fixed point. Moreover, if one uses Theorem 3.20, a successive approximation
procedure will converge to this fixed point. Rather than repeat the
formulation of Theorems 3.20, 3.23 we illustrate the approach with two

examples.

Example 4.6
Consider the finite dimensional system (X e Ef)
0 1 |
] a'l
y(t) = (1 0) x
where q qu is a constant. Assume initial guesses,the constants

Xsa ,for state trajectory and parameter respectively; then set

‘X+z=X,a+ta= ay to obtain for 2z e Ef (z = (z],ZZ)T)

{0 D2 G))

)

SN

y=(1 02z + (1 07X

For simplicity, take % =03 thus we obtain a system

fl -

Az+ A]d + f(z,a)

Z
N

Cz + h
1

y
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where h 1is a known function and (A,C) observable; the preceding
- treatment needs only minor modifications in order to account for the
presence of h(<) . Now z = (z],zz) e ker C => Zy = 0 and therefore

from (4.26) we obtain aX = 0 and 2, =03 if we take X # 0 then

A A] | ‘
ker "= {0}
c 0

Hence we may apply our fixed point results; in Theorem 3.20, for example,

we have

the non-Tinearity satisfies the contraction condition with

k(e1,62) = c(e]+ez) for some constant ¢ e Ef'.

Example 4.7 (cf. Examples 3.16, 322)

Consider the observed wave equation in one dimension

Wep = Wy + oqW C . (4.27)

w(0,t) = w(1,t) = 0 ) . (4.28)
1 .

y(t) = Joc(x)w(x,t)dx . .. (4.29)

where o e],Ri' is an-unknown parameter. Assume initial guesses Zz,a for
state and parameter respectively. Let Zz be independent of time and

satisfy the boundary condition of- (4.28). Then set

-~

to obtain

Zyp = 2yt wz + Z + Eg + E’Z’+ aZ . e (4.30)
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2(0,t) = z(1,t) = 0 C (4.31)

y(t) = <c,2>, + <C,2z> 5 c e (4.32)
1%(0,1) L4(0,1)

Assume for simplicity that o = 0 , and so using the notation familiar
from other examples with the wave equation we form the augmented state

T
(z,zt) and obtain

Hence we have an equation in the form

Z=A+Ma+f(Za)+g
y = CZ
where y(:) = y(*) - <¢,Z> 2 .
L=(0,1)
The known function <c,z> - causes no difficulties.
L2(0,1)

Recall Example 2.14 and the eigenfunctions oy defined there.

Set -c, = <c,¢.> , and assume c '#0 ¥n . Taking ¥ to be the

©o

space of functions of the form y(t) = I (an cos nrt + bn sin nnt)

_ n=1
) o E a2 + b2
< n2.2°n n . . .
normed by ||.|] = £ n°r ——— , the pair (A,C) 1is continuously
. n=1 c
. no

initially observable.

By condition (4.26) the linear part of the augmented system is

A
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continuously initially observable if the conditions

z, = 0 - N (4.33)
2

%§+J=o | C. | (4.34)
X

<c,z> =0 . « .. (4.35)

imply that z =0, z, = 0, a=0. Setting

z2(x,°) = z]zn(-)¢n(x) s Eh = €E,¢n>
n:

(4.34) becomes
n

-0’z +oZ =0 n . (4.36)

Substituting (4.36) in (4.35) gives

c
a;—-z—-z—-nzn=0
n=1 n"x : ‘ , -
= = Sy 2y
Hence if one assumes c¢,z are such that = #0
n=1 n"x

then the linear part of the augmented system is continuously initially
observable. Clearly the non-linearity is a local contractién on

Hé(o,l) x L2(0,1) xR into L2(0,1) . Then one can conclude that,
subject to copdifions (as in Theorem 3.20) on the operators and the output,
iteration of:a map ¢ (based on (3.28), but taking'account of g and & )

will determine both the state 2z and the parametér o .
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The condition imposed on the linear part is designed to ensure the
injectivity of the "initial state x parameter output" map for the
linear system resulting from linearisation about some nominal state
trajectory and‘parameter value. This is identical with the requirement
imposed in some other works which attempt to provide a rational basis for
identification algorithms (again, see Chavent [1]). In some such work
the initial state is assumed known (in Chavent's case the problem concerns
jdentification of parameters in a wave equation given the observed response
to a seismic pulse - thus the initial state, immediately before the pulse,
may be assumed to be rest (or zero)). Once again our treatment is directed
towards answering the question "how much can one do with the linearisation?"
There will, of course, be systems where the influence of the parameters
does not appear in the linear approximat:bn (or is not recoverable
therefrom); “hence our methods, using the linear part, will provide no

identification information.
1

It is clear from the proof of Lemma 4.5 that (A,C) dnitially
observable + condition (4.26) gives initial observability for the
-~ augmented system. Thus we can envisage extension of previous work to look
at.parabo]ic.systems and cases where o varies in space. One major constraint
on thfs treatment, however, is the fact that the presence of unknown para-
meters in the highest order terms of an operator gives rise to "very
unboundéd" non-]inearities (this is a reflection of the difficulties
arising in perturbation theory when the perturbation is of the "same size"
as the original operator). It is not yet clear how such problems should

be handled within the present framework.
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4.3 Adaptive control

In this section attention wf]] be restricted to ordfnary
differential equations (i.e. finite dimensional systems). For such
systems, problems of adaptive control often occur and have been studied
by many authors. The adaptive controller is meant to compensate for the
fact that, in the real woé]d, perfect models are rarely availabla. Thus
one tries some control and uses the observed response to that control in
order to update one's know]edge'of the controlled system and hence improve
the.contrb] action. Of course there are many ways in which such adaptive
procedures may be formulated. Here we consider a system of the form

(ZeIIR;n ,yelﬁp., Uen,%m)

z = Az + Nz + Bu

(4.29)
y = Cz

where the state vz is regarded aé containing unknown parameters (as in

(4.20), (4.21)); these paramefers embody ouf lack of confidénce in our

model of the real world - in as much as the real world is presumed to

~ obey the same original model with possibly different parameter values.

We shall assume that if the (augmented) state =z 1s known at the beginning

of an interval [O,t]] ‘then the contro] action Bu 1is completely

determined thereafter as a.function of 2z(0) and the output y - that is,

we shall assume that if we knew.the initial (unaugmented) state and the

éxact paramefer values fhen we would be able to instantly calculate the

feedback operator F(zo) which would provide the control action desired.

Thus the general scheme is as follows: consider positive time as

having been split up\into equal intervals [jt],(j+])t]] where



J
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= 0,1,25000. 3 t] >0 .

‘Produce (in a manner unspecified) an initial state guess z5 3

set j =03

on an interval [jt],(j+])t]] » given an initial estimate
z5(ity) » apply the feedback F(zo(it;)) 5 this is modelled
by |

Ne
]

Az + Nz + F(zo(jt]))y

(4.30)
Cz

L
1]

now apply the parameter and state estimator of the preceding "
section (suitably adjusted for the known input F(zo(jt]))y), to
formulate (and by successive arproximation provide an algorithm

for) the problem of reconstructing z over the interval
[jt],(j+1)t]] ; let this fixed point formulation be denoted

by z = 04(z) 3

determine an initial guess over this interval by solving

2 = Az + Nz + F(zy(3tq))y

V{‘ith z(jt]) = zo(.jt]) ’

(if, for instance, (4.30) results from a system which is linear when

the parameters are knownthen this step is trivial);

then iterate °j i-times to obtain a new approximation
z} on [jt],(j+1)t]] s hence obtain a value zo((j+1)t])

(as Z}((5+1)%)) 3

set j: = j+1 and return to 2 ..
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Steps 1. to 6. constitute our proposed adaptive contrb] scheme.

The next theorem indicates, rather crudely, the sorts of conditions

one might impose to ensure that this scheme made sense 1i.e., ensure that
our state and parameter estimates "converge" to the real wof1d values.
When this convergénce occurs our control action will ensure that the

real plant will behave as ﬁesired. Then we will say that an adaptive
controller has been constructed. Thus we wish to ensure that on each

interval [jt],(j+])t ] iteratihg ¢. brings us closer to the fixed

1 J

point in AC(jt],(j+1)t1ﬂ§n) s and that moving from interval to interval

in the fashion described does not upset convergence. The reason that

only i iterations are'allowed on each interval Ts the same as that for

, using adgptive control in the first place:- one is trying to adapt a
contro]?ér, on-line, in real time, in response to observed p]antbehaviqur.
Thus it is not possible to iterate a large number of times on any particular

interval.

Theorem 4.7

Recall Theorems 3.13 and 3.20, especially the latter. Assume that
the 1inear‘part of the augmented system (4.30) is observable (i.e. (A,C)
observéb1e); Lemma 4.5 gives conditions for this. Assume also that

a,Bl,K,k],ka,R,s,S',t] ;]R+ , Where %—+ g1-= 1, and that

a. ||eAtz|lsg(t)||zi| tZO,ZelB‘n
g(+) e L° (0,t;R")

b. N : C(0,t;R") » L°(0,t;R")

continuous, N(O)= 0 , and satisfies
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|INz - Nz|]| n, < KOzl Iz - 2]

L%(0,t; ")

where the norms on the right hand side are taken in
C(O,t1 ;IR") 3 k R xRY > RY s continuous, symmetric and such
Y N v N

that K(0g,0,) 0 as (é],ez) > (0,0) .

c. R >0 is such that
1] Az syasly <RIzl o
o L*(0,tyR")

.wheré Y is the output space .
d. the feedback operator F(v) : Y 4-&? is such that

IIF(V)y(°)IlLS 0.t B> k1||VlanHy(')lly .

1%~ ~

e.  taking B, = {z e C(0,t;sR") : ||z]] < a}
a : 1°~ C(O,t]ﬂgn)

we have that

RIGHT o 1] $ 1o gk, K<

LY R") C(0,t13L®")) L> (0,t;)

where k_ = sup k(6,,6,)
. 2 0coya0pca 12

f. set g = exp((k, + D]leM ]| L ty)
T : C(O’t]ﬂ,% )

Then: .the scheme described in steps 1. to 6., preceding the theorem,

gives an adaptive control provided

\
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a(l - K)
Hy() ] s . —
M) LT skamdlsll )
C(0,t;3L@®™)) LV R 5" (0,)
(4.31)
and
B K <1 | - (4.32) -

Pf. Since the system (4.30) is autonomous we can reduce consideration

of "the scheme 1. to 6. to a series of problems defined over [O,tll .
where the initial value for the next problem is obtained from the final
value of the last. Note also that the difference between the maps

Qj for different j lies so]ely in the term F(-)y which is fixed for a

particular j-.

Consider any ¢j » the above remark allows us to conclude that it

is a contraction on Ba viz. '

| A
¢ z- @ z < |le™ ' . ||H
: g c(0,t,R") : HC(O_,t];L(ng")) 1% HL(VJR)

||cj(')e"("5’(N(z(s)) - N(z(s)))ds|],,

g Nz - Nz
Hellyst 0,0y 1" = M o,y
- |
< (R|[e™ Hy
] HC(o,t];Lagn))|| 0 l‘ L(Y.R")
, Nz-N K||z-2
+ 119l  (0,t,) ) Nz-nz | g (0,],1R)S ik ZHC(O,’C];%") ,

on B, , using b. ‘and e.
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Next we show that any such Qj maps Ba into itself.

Choose zeB_; veR" : ||v]] . <a then we must consider
, a ~ R
n, .

A

(052)(8) = " gy (-) - o &M na(s) + F(vpy(s))as)
J 0

t -- |
s Jo A5 (Nz(s) + F(v)y(s))ds )

A. -1
[1e.z]] < |le™ ] [1Hy 1] (Hylly +
3 e0,4, ") c(o,tst®)) 0 LY R Y
+ R [Nz | RIFOYI )+ Hal] g(]INe]] -
L%(0,t;) L%(0,t, L3 L%(0,t;)
+ [{F(v)yl] )
L%(0,t;)
Now usigg b. and d.  this gives
A. -1 |
< (lle™]] AMHgTHE o+ Ry [ 2] ] +
cotst®) O LR T (0.t R |
N
| A. -1
+killgll ¢ Azl Miylly + (R[]e™ ] [1Hy [
P 0t 0,8 y o0t B 0 LY RY
o+ gl 6 ) k(l1z[],0)]1z]|
L5 (0,t,) C(0,t;R")
Thus for z e B, , Vv: [{v]] n S @, we have, when y(*) satisfies
- R
(4.31), "
< a(1-K) + Ka
<a.
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Lastly we observe that if z(0), 2(0) -are two initial conditio;s
A X R t o, o
2(t) - 2(1) = "*a(0)-3(0)) + [ M) nGEs))as

gives that (by Gronwall's lemma)

Iz - 2| < 8y 112(0)-2(0)] |y I (4.33)

N

C(0,t;R")

Now suppose we perform the sequence 1. to 6. with Zg the very
first guess at the state trajectory, lying in Ba . Let z* denote the
true trajectory. Then by the above i 1iterations of % give a final

state estimate ||zi(t )-z*(ty) ]| < Killz -z*|
S L =" 'C(O,t];lﬁn)

Moving to the next interval we héve that zg on the next interval is

such that

l1zg = 2*I] < 81127 () - 2*(t)]]

;.
cokilzg - 2|
| 1 0 C(O,t]ﬂﬁn)

(using (4.33) and step 4.)

Iteratiﬁg i times on this interval we have that state error is

reduced to B]K21||zo‘z*|| n. - Thus the "reduction factor" fis
. | C(0,t3R")
B]K1 and condition (4.32) ensures that the whole adaptation process

converges. '
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The term By Ki expresses the balance between the amplification of
errors in the initial state due to the natural dynamics of the system and
the contraction properties of the observer iteration. The theorem tells
us that, provided reality obeyé a model of the form (4.30), then the
adaptive control scheme (1. to.6.) will converge to the correct solution.
‘This is typical of statements made about adaptive control algorithms by
several other authors;» though many of thcse works concern on]y‘systems
which are Tinear in the state and linear in the parameters (but jointly
bilinear). One could expect to expand upoh the above result in such speeial

cases.

The above result can also be extended to certain infinite dimensional
systems. Indeed Theorem 4.7 is stated so as to be consistent with the
(infinite dimensional) formulation of Chapter 3. The history and literature of
adaptive control techniques, however, has been concerned with finite K
dimensional systems. The above result might also be extended to circumstances
where the control action could not be immediately explicitly calculated (as
above) but had to be determined by an iterat%ve procedure. The control
version of the present fixed point treatment could be used, for instance.

" One must then ensure that this joint procedure (iterating both for correct
control and correct state) converges. .It is not clear how beét to formulate
such an iteration. Lastly, in précticebthese.resu]ts merely serve to ensure
that certain procedures are reasonable; often one cannot expect to verify
all the conditions before trying to apply the algorithm. The lack of a
rigoroqs convergence anaiysis hés not prevented the application of other

adaptive control techniques.
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CHAPTER V : Notes on constructive aspects

Summary

As stated in the introduction (Sectidn 1.4) this chapter will be
concerned with a largely fdrma] account of some algorithmic possibilities
arising from the treatment of Chapters 3 and 4. The intention is to
provide some flavour of the "numerical analysis" which might arise from
the preceding treatment, whilst avoiding over-burdening detai]s'and technical
complexity. In cases where existence and (local) uniqueness of a fixed
point is proven by a contraction argument a constructive procedure’ ("successive .
approximation") is automatically available. This isnot so in cases wHere
. Schauder 1is used. One may then wish to know what would happen for successive
approximation - 6r develop other iterations. Even in the contraction case

one may wish to use other procedures in order to speed convergence.

5.1 Schauder : uniqueness

The uniqueness result of Kei]ogg:Smith-Sfuart‘(Theorem 6,
Appendix 4 : see Smith-Stuart [1]) is intended for application in cases
where the existehce‘of a fixed point has been proven by Schauder's theorem.
Inourcase we shall consider the ¢ of (3.28) and assume that the existence
of a fixéd point has been ensured by a theorem such as Theorem 3.23. For

the result of Appendix 4 to apply one requires:
a. ¢ 1is Frechet differentiable;

b. there is no fixed point of ¢ on the boundary of Ba ;
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c. the set {z e Ba : 1 is an eigenvalue of d¢ Z} has no

accumulation points in Ba .

Assumption b. will be satisfied in the case of Theorem 3.23 for the
norm bounds there give that Q(Ba) in fact lies in the interior of Ba .
Thus we are reduced to cohsidering the Frechet derivative do¢ 7 for all

points z € Ba .

Results on the Frechet differentiability of Hammerstein operators
(for which, see Martin [13) give some indication of conditions on the
semigroup and non-linearity which will ensure both continuous Frechet
differentiability of ¢ , and representation of the derivative in the

~ desired form. Assuming some such result to hold we take (v e C(O,t];Z]))

(40,0 (1) = S(OHG' (- € ()8, () s)ds)

t L.
+ j S(t-s)(df (v))(s)ds . o (5.1)
0

Now suppose we choose a point 'z] € Ba such that do 7 “has an eigenvalue
' 1

of 1 . That is tosay v e C(O,t];Z]) such that

def, (v) =v.
IZ] ’
From (5.1) we haye,:then,

v(t) = S(t)Hy (-CJ;S('-S)(dle](v))(s)ds)

t
+.j S(t-5) (df |, (v))(s)ds Ca (5.2)
o m |
b
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Now consider the system

< e
fl

W+ (dF], () . (5.3)
y=0C | .. (5.4)

Curtain-Pritchard [1] gives conditions under which the pérturbed semi- -
group in (5.3) .generates a mild evolution operator, and the (mild)

solution of (5.3) can be represented as

t v
v(t) = S(thvy + JOS(t-s)(dflz](v))(s)ds

Thus (5.2) corresponds to (using the same procedure as led to (3.28))
a reconstruction of the state for the linear system (5.3), (5.4), given
an output which is zero. If the linearisation at z; ((5.3)) is

observable (i.e. (A + dflz ,C) .is observable) then we may conclude
'l )

that any such reconstructed state, v , must be identically zero. Conversely,
if the linearisation (A + df'i ,C) s unobservable then there will exist
' 1

a non-trivial v satisfying (5.2). Hence, formally, we have

Proposition 5.1

A point z é Ba is such that d¢‘z has an eigenvalue of 1 iff
- 1 _
the Tinearised system (5.3), (5.4) at z, is unobservable.

Pf. A1l results in this Chapter will be stated as summaries of (hopefully

plausible) formal arguments. No rigorous proofs will be given.

. Hence we-may state
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Proposition 5.2

let ¢ , f be as above and let Theorem 3.23 apply. Then: (3.28)

has an unique solution in the ball B_ iff the set
{z B, : (A+ df[z, C) is uhobservab]e} does not have any limit

points in Ba .

Pf. By Proposition 5.1 and Appendix 4, Theorem 6.

One might interpret points at which the linearised system is unobservable

as points from which non-uniqueness may arise. That is. to say, by lboking
only at the linear approximation around these points we cannot see in

certain directions. Proposition 5.2 tells us that this local blindness does not
prevent us from globally reconstructing the solution as long as there are

not "too many" blind spots. Of course, there may be fixed points of @

even when conditions a., b., c. do not hold - but then uniquenéss,

using these semilinear methods, cannot be guaranteed.

Many practical observatioﬁ (resp. control) Eroblems have curves, or
surfaces, in the state trajectory space made up of'poihts at which the
Tinearisation is not observable (resp. controllable). It is arguéble that
the inability to ensure uniqueness in such problems is a good reéson for
not using this semi-linear approach. Non-unique reconstruction seems
closely akin to the traditioné] notion of unobservability. This does not
matter so much in the control case, where we are only interested in'reaching'
some final state and not on how we get there. To study such questions one
is forced to make more detailed ana]yées concerning the interaction between
the system dynamiés qu “directions of b1indness" that is, to consider

approximations of higher order than linear. This is one aspect of non-linear

geometric control theory, and is currently the subject of much research.
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5.2 Successive approximation

Successive approximation, that is,

Ziy1 T ¥4

gives a particularly simpTe algorithm; 1if it converges then we obtain
a fixed point of ¢ . It is thus important to have available some
general conditions (other than contraction) which will ensure, at least

locally, convergence of this procedure. One answer is provided by

Proposition 5.3

Let & of (3.28) be a map from C(O,t];Z1) into itself. Llet ¢, f
satisfy the-differentiabi]ity and representation assumptions of Section
5.1. Suppose that z, 1is a fixed point of ¢ and that d6|z* is a

compact (linear map).
df
‘Set o = sup{r : (A +,(—515?), C) 1is unobservable} .« . (5.5)
"If o<1 then 2z, 1is a point of attraction for the iteration
nel - <I>(Zn) -

Pf. By a slight modification of the discussion preceding Proposition 5.1

one has that the statement “d@lz has A # 0 as an eigenvalue"
, . *

.(as it is compact d¢[z - only non-zero spectrum is point spectrum) is
N .

equivalent to the system

<
[}

Av +-%(dfiz*)(v) : .  (5.6)

y = Cv
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being unobservable. Thus the spectral radius requirement of the
Ostrowski - (refined by) -Kitchen result of Appendix 4 becomes the

condition stated as (5.5).

Of course o < 1 ensures that 1 s not an eigenvalue of do
. *

Recall also that if ¢ 1is a compact map and continuously Frechet
differentiable then compactness of the Frechet derivatfve follows.
Condition (5.5) concerns that "size" of perturbation needed to cause
breakdown of observability - the bigger the perturbation required, the
smaller o will be. Intuitively Proposition 5.3 says "providing the
Tinear part is dominant enough at . the fixed point, ¢ will be a local
contraction there." This should be contrasted with Theorem 3.20 which

does not use any differentiability assumptions.

Furthér, suppose thatthe hypotheses of Propos{tion 5.2 hold; the
fact that for any s§arting"pofht zOI the sequence of successive iterqtes'
Zy5Z5sZgs00nn lies in a compact subset of C(O,t];Z]), and therefore
- contains a strongly convergent Subsequence does not allow us to conclude °
that the limit of this subsequence,is the desired fixed point (as would be
the case if the sequence  ZysZps... itself were convergent). The
existence of such convergent subsequences prompts a search for transform-
ations F éuch fhat iteration of F(2) .wi11 converge to a fixed point
of ¢ . Consider such an F(¢) : in order to app]y Theorem 7, Appendix 4, -
we must determine the spectrum of d(F(¢))!Z* . To do this we shbu]d Tike

to use the Ge]fand calculus to obtain ‘the spectrum of the Frechet derivative
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of the transformed ¢ as the image under F of the spectrum of the
Frechet derivative of ¢ . Since the Gelfand calculus requires a
complex Banach algebra we need extra hypotheses to ensure that we are
justified in using the complexification technique. In addition an
arbitrary F cannot be used .- we must ensure that a fixed point of

F(e) is a fixed point of & . It is not yet clear how best to perform

these analyses.
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5.3 The Newton method

For the map ¢ of (3.2) we shall in this section consider,
not the fixed point problem: find‘a z such that 8(z) = z, but the
root finding problem: find a 'z such that (I - 9)(z) =0. Such
problems are traditionaT]yvsolved by Newton's method. Following the
formulation of Newton in Kantorovich-Akiiov (11 and assuming different-
iability and representation results as in Section 5.1, we have an iteration

formally defined as

-] .
(I - d@lzn) (¢ - I)(z,) + 2z, = 2,4 (5.8)
If we define the defect
' dn = (o - I)(zn) : c e (5.9)
and the updéte
Vo = Zne1 " Zn ... (5.10)
we get, by re-arranging (5.8),
(1 - d@lz )vn =d, (5.11)
12,
the right-hand side of (5.11) becomes
d (1) = S(t)Hy' (y(-)-] S(--s)f(z,(s))ds) +
o .
t
+-J S(t-5)f(z,(s))ds - z_(t) L (5.12)

0
b
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The left hand side of (5.11) gives

t )
(1= 6], (8] = v (1) - JOS(t-s)(dflzn(vn))(s)ds
. -.l . . A
S(t)H; (CJOS(.-S)(df‘Zn(vn))(s)ds) .. (5.13)

Equating (5.12) and (5.13) gives

(v#2,) (1) = 2,,1(t) = s<t)H5‘(y(-)-cj;s<--s)(f<zn<s>) +

¢
(8], () (s)0) + IO (5-5)(Flzq(s)) + (7], (3,))())ds

(5.14)

Now qung (5:10) we substitute Zn+1 -z, for Vi and obtain

e (1) = S(H M (y(-) - ¢

I S(+-s)(ef], (z.))(s)ds
¢,
t

0 n+1)

S(--s)(f - dflz z (s))ds) +
0

S(t—s)(df|Z (zn+]))(s)ds +

t
+

g
0
IOS(t— )(F - 4], zp(Nds - . . (5.15)

-

As in Section 5.1 we may associate, at least formally, a sequence
of linear problems with (5.15). For, consider the perturbed linear

system

N
il

N+ = (A + dflzn)(zn+]) + (f - df‘zh)(zh)
-\ ) - . . .. (5.16)
Czn+1

<
1]
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Then proceeding as in Section 5.1 we may regard (5.15) as arising from
the initial state reconstruction problem for (5.16). The iteration
written as (5.16) can be regarded as repeated‘linearisation and will

make sense if the pair (A + dflz ,C) 1is observable. Such an iterative
n

structure based on repeated linearisation is not uncommon elsewhere in

non-linear estimation. The extended Kalman filter is a well known example.

In (5.16), however, we have a known ("bias") correction term )

(f - df|Z )(zn) . Terms of this nature are often insefted in an ad hoc
n

fashion.

It is possible to provide a convergence analysis, for this iteration,
based on the theorems, concerning Newton's method, in Kantorovic-Akilov [13].
These theorems demand hypotheses on the first and second Frechet derivatives
of & . The interpretation, in our case, looks somewhat inelegant and it
might be bet%ér to attack the iteration (5.16) directly. Theﬁe matters as
already indicated are not pursued here and we shall conclude this Chapter

with some remarks on extensions of the treatment in this section.

Iterated re-linearisation can be computationally onerous, but is often
performed in off line design studies. Various authors have investigated
the possibility of simplified versions. The simplest of these (again, see

Kantorovich-Akilov, [11) uses d@lz in all the iterative steps (5.16)
: | ‘ 0
instead of dglz". In case that d@lz = 0 then this reduces to our
' n 0

contraction iteration. In any case, for computational purposes one is

inevitably dealing with some approximate version. Certainly, when ¢ is



- 147 -

compact, d¢ 2 is compact linear and so can be approximated a finite
n .

dimensional operator.

Computational experience in other fields shows that the Newton
algorithm may converge even when the conditions of Kantorovic-Akilov (1]
fail. In particular one can, in some cases, by appropriately manipulating
the iterative scheme, achieve convergence even to points lying on surfaces
where the Fréchet derivative is singular. In our case raises the
interesting possibility of considering "intrinsically non-linear"
observation problems. Typically such problems will possess curves, or
surfaces, of points at which the Tinearised system will be unobservable;
for instance, perlems arising in satellite control show such phenomena.
Further investigation of this point‘seems desirable since it offers a

way of overcahing one of the main defects of the present treatment - the

strength of the conditions on the linear part.
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Appendix 1 : embeddings

For a region @ c]&n , whose boundary (59) fs sufficiently
smooth (explicitly : has the cone property) we define the Sobolev spaces
wm’p(n) s where m,p are positive integers, as the space of real valued
functions on @ such that all derivations up to and including order m
are LP integrable. In this thesis Hm(n) denotes wm’z(n) . From

Adams [1] we have that ...

1. bounded, mp > n ; then the embeddings

W™P(a) » c°(a)

W™ Pq) > w0 %) l<sqsw

are compact. .

2. mp >n implies that wm’p(ﬂ) is a Banach algebra under pointwise

products. , '

3. mps<n, bounded, j a positive integer
PPy > W 9(a)  (where

0 <n-mp <n and 1_§ q < 32%5) is compact -

and

1:wj+m’9(n) +ws9(q) (where n=mp , 1sgq <)

is compact.

Example:  W'*2(a) = H'(a) » W2 %) = LI(a) is

compact if n=3 and 1sq< 5
A
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Example: If p>n w1’p(n) is a Banach algebra

i.e. H](Q) is a Banach algebra for n=1.

If the Sobolev space is also a Banach algebra any polynomial
(products being defined pointwise) will be well-defined. The norms
of the embeddings ncted above sometimes appear in calculations. In
general optimal estimates for these constants are difficult to obtain;

see Adams [1] and Lions-Magenes [11].

The following result will be found in Lions [3]. Take three Banach
spaces BO’B’B] with continuous embeddings B0 -~ B =~ B1 : BO,B] reflexive;
and the embedding. B0 > B] being compact. Define

Po2Pq

W ={v:ivel
BO’B]

_dv

p
0( - &

P
O,t];BO), v e L (O,t];B])}

where t] is finite and 1 < PgeP; <= - Equipped with the norm

[Ivitpg — + LIv'H by
(O,t],BO) L (O,t],B])
po’p‘l . .
W is a Banach space. If p, =p; =2 and B,,B, are Hilbert then
BO,B] 0 1 0’71 T
PnsP : .
so is WO ] (when By = B" we denote this space by W, (0,t,)) .

Theorem (Lions) _
B Po°Pq

Under the above hypotheses the embedding of wB B in
_ 0’71

po : '
L (O,t];B) is compact.
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Appendix 2 .: analytic semigroups

Analytic semigroups can be regarded as an "operational"
expression of the smoothing action created by parabolic partial
differential equations. More precisely; let Z be a Banach space,
A:D(A) ~ Z a closed, dense]y defined linear operator in Z . A is
called sectorial if there are constants ¢, M, a:0<¢ <m/2, M21,

a € R such that the sector S, _ = {xeC|Afa, ¢ < arg|r-a| < 7} s

$,a
contained in p(A) , the resolvent set of A, and

| -1 M
HO - A) | s—— ¥xres
1x-a] $:8

If A 1is sectorial then. k 20 such that Re o(A+kI) > 0 . Let

A] =A+klI . For 0<a<1 define

-2 _sinma [ -a -1 '
A= IOA (Aehy) dh

Then A;“ is bounded and injective. Let Z% be the range of A%,

Z0 = Z, Z] = D(A) 5 then we can take A? : 2% > Z to be the inverse
of A% AY =1, and Ay =A. Z° isdense in Z . Define the
norm ||-||a on % by lzl], = ||A?z|| where ||-]| denotes the.

norm for Z . Z% does not depend on the choice of k ; different
choices of k yield equivalent norms on Z% . Z* is a Banach space

under lI-IIu .

Examp]e:' Let @ be an open bounded set in %n whose boundary is of

class sz (m an integer). Let Z = Lz(ﬂ) R
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D(A) = H™(a) n HI(R) , (A2)(x) = = a (x)(D"z(x))
o {<m

where the aafﬁ +R are continuous mappings and D%z
is taken as a distributional derivative. Suppose that
A is uniformly strongly ellipticon o , 1i.e.

+ m o 2m
dcy e R (-1) | £ oa (x).8% =z cqle]™

o|=m
¥e = (ga)lalsm , Ea e% and ¥ x e Q. Then A is
sectorial. Indeed in this case R(r,A) is compact

Y xeop(A) .

If A is sectorial =-A generates an analytic semigroub. That is to
say, a semigroup satisfying Definition 2.1 and, in addition, t - S(t)
is real analytic on 10,o[ ¥ z ¢ Z . Conversely we know that if -A
generates an analytic semigroup then A is sector{ﬂl. A simple

expression of the smoothing pruperty is

"Let A be sectorial, and -A generate an ana1ytic semigroup

S(t) ;mis any positive integer. Then ¥t >0 R(S(t)) < D(A™)."
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Appendix 3 : pseudo-inverses

Further to the material contained in the first part of 2.2

we have (for T e L(X,Y) with closed range)

* *
(T = (™
(Tt =1
(Tt =T (1Ht
and so
*
ot = Tt
It can also be shown that
. + * -'l *
N(T) ={0}=>T =(TT) T
and
* . . + * * ..'|
N(T)={0} =T =T (TT)
Suppose that T = BC  with Bf',-c. being surjective, then
t tot feeyv 1 pr* 10 - . .
T"'=CB =C(CC) (BB) B . The following 2 lTemmas consider
'composition, and direct products, of maps.

Lemma 1

Let H],Hz, be Hilbert spaces; T] (resp. Tz) being bounded
Tinear and with closed range from H] to H2 (résp. H2 to H3) .
Suppose that R(T,) « R(T;) then R(T,oT;) is closed in Hj .

Lemma 2

Let H],H H be Hilbert spaces; T :being a bounded Tlinear map
3
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from H] to H2 s S being a bounded linear map from H] to H3 s

both T and S having closed range. Consider the map
TxS: Hy = H2 X H3 :u -~ (Tu,Su) ,

this has closed range iff the image of N(T) wunder S 1is closed in H3

and the image of N(S) wunder T is closed in H2 .

Sometimes either the domain, or the range, has a particularly simple
structure. Such structure can be used to advantage in the computation of

the pseudo inverse.

Lemma 3
Let F be bounded linear F : X - XF and onto (X,XF both Hilbert),
T XY ‘aé before, R(T*) = R(F*) 3 then

+ * * *-] *
T = F(FTTF)T'FT .

Lemma 4 (dual of 3)

‘Let E* be bounded linear Y » Y , , and onto (Y,Y « both Hilbert),
T :X~>Y as before and R(T) = R(E) then

+ * * %k _]*
T =TEETTE)E .

Example: if T s represented_by a matrix one might in Lemma 3 take

H -to éonsist‘ofvthe linearly independent rows of T .
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Appendix 4 : fixed point theorems

Many results have been developed for study of the fixed point
problem. This appendix briefly summarises those results which are used
in this thesis. Let ¢ be a map from a Banach space X into itself.

One of the first results was ...

Theorem 1  (Banach contraction : first form)

Let & : X+ X be such that
lex = ox|] < K||x - X]| Vx],x2 e X

Cforsome K:0<K<1.

Then ¢ has a fixed point in X .

The above theorem can be adapted so as to provide for "local"

results (as in this thesis).

Theorem 2 (Banach contraction : second form)
¢ : X >X as above. Let D ‘be a closed subset of X

and ||ex - oX|] siK|[x -.ill » ¥x;sX, € D for some Ke 10,10 . The

iterative procedure ("successive approximation") Xip1 = %5 s

i=0,1,2,..., converges to an unique solution in D of ¢&x=x if

thé sphere

: K
S=ueX:|h-xﬂ|sFKHﬁ—xd|

A
lies in D .
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Generalising Brouwer's theorem in finite dimensions we have

Theorem 3  (Schauder)

A continuous operator ¢ which maps a closed convex subset, S ,

of X 1into a precompact subset of S , has a fixed point in S .

For operator splittings such as are discussedin Chapters 3 and 4
attempts to combine the properties of the Banach and Schauder theorems

have been made.

Theorem 4 (Nussbaum (see additional references).)

Let S be a closed bounded convex subset of the Banach space X .
Suppose thatw-¢1 and o, are continuous mappings from S 1into X such

that

i) (@1 + @2)5 c S~

i) [logx = agX|| < K[|x - x]| VX,X € S

d11)  9,(S) is compact

then ¢, + ¢, has a fixed point in S.
The results of Leray-Schauder [1] concern the application of Leray-

Schauder degree to fixed point problems. The main result of that reference

is
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Theorem 5

Consider the equation

z - F(z,u) =0 - e (A4.1)

under the following assumptions:

a.

Z 1is a real Banach space with norm ||*|| , z e Z and F(.,-) takes

values in Z .

b,

The values of the parameter ﬁ Tie in an interval, M, on the

real Tine (|.|.denotes absolute value}.
Z x M denotes the product space with norm
Hz = z'|| + |u=-n'] for z,2' €Z; pop' e M.

F(z, ) 1is defined on the closure @ of an open bounded set

o din ZxM.

Then:

F(-,+) 1s compact on @ and uniformly continuous in u .
90 does not contain any solution (z,ﬁ) of (A4.1).

Or some Mg eM, (A.41) possesses a finite number of solutions
all of which are known. Thus at ﬁo we may calculate the total

Leray-Schauder index which we assume to be different from zero.

we may conclude that there is a solution ¥Yu ¢ M and, moreover,

it is a solutionwhich varies continuously with M .
. N |
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We may wish to ensure uniqueness in cases where existence has
been proven using Theorem 3.

Theorem 6  (Kellogg : Smith-Stuart)

Let ¢, S be as in Theorem 3. Suppose that

i) o is continuously Fréchet differentiable on S ;
ii) there is no fixed point of @ on the boundary of S ;
iii) for each z ¢S,

1

is not an eigenvalue of the Fréchet
derivative at z of ¢ (denoted d@‘z)

Then ¢ has an unique fixed point in S .

The result also holds (for dim X > 1) if iii) s
replaced by

iii)' the set {z e S : 1 is an eigenvalue of d¢‘z} “has

no points of accumulation in S .

Concerning the convergence of the sequence generated by successive
approximation we have

Theorem 7  (Ostrowki : Kitchen [1] : Sermange)

Let f be a mapping whose domain and range are subsets of a Banach
space X . Suppose that

——,—




iii)

Then:
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x* ¢ X is a fixed point of f 3

f 1is differentiable at x*

the spectral radius of the derivative of f at x* s

less than 1.

there exists a neighbourhood N of x* such that

Tim f1(x) = x*
N->xo

for each x e N .

If such a neighbourhood N exists we shall say that

a point of attraction for the iteration Xop = f(xn) .

X* is
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List of notations

a real constant

a parameter vector

A linear operator, possibly unbounded

A(-) family of same

Ba’ ball radius a 1in some function space

C operator giving output from state

C operator giving output trajectory from state trajectory (see (2.26))
d...|_ Fréchet derivative of ... at -

D(*) domain of an operator

f(+) function : either of time 'or state z (usually appearing as.

non-homogeneous term in evolution equation)

H Hilbert space
Hm(n) Sobolev space; see Appendix 1
Hy initial state to output operator
J(.) . . cost functional
K real constant
. .\ “
P p.th power Lebesgue integrable functions

L(X,Y) space of bounded linear operators from X to Y
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N(*) the kernel of an operator

p,p];pz real numbers

® non-linear operator
q real number
r real number
R(*) range of an operator
S real number; dummy integration variable
S(-) semigroup
t time variable; t denotes specific instant
T bounded 1inear operator between Banach spaces
T dummy integration variable
u control input; va]ués in U, trajectory lies in space U
U space of values taken by control
u ’ space of input trajectories
Vo Banach space

wm’p(n) . Sobolev space; see Appendix 1

W(Q,t]) a space of functions defined on [O,t]J 3 see Definition 2.19

wZ(O,t]) a variation on the above
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X Banach space
Y Banach space
y space of output trajectories
z is used to denote the system state
z the initial state i.e z(0)
yA the Banach space in which the system state lies
*
‘ is used to denote adjoint space a d also operator
i used to denote (in Hilbert space) "subspace orthogonal to...."
> map or "has limit"; apparent from context
+ denotes generalized inverse; see Definition 2.23
A Laplacian
v. grad
p)

v div \

In the case of function valued function spaces e.g. L2(0,t1§2)
O,t] denotes time interval [O,t]] and Z the Banach space in which

thesé functions take their values.

-~
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