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Summary 

This thesis studies the state reconstruction problem for a class 
of non-linear systems. This class is that of perturbed linear systems. 
The properties of the linear part are used to arrive at results for the 
complete system. Whilst this is a common techni'que in mathematics and 
physics its use in non-linear infinite dimensional systems theory has 
not been extensi~ely investigated. The present work m~kes such an 
investigation with a view to indicating the successes, and limitations, 

of such a treatment. As to contribution, aS'far as the author is aware, 
many of the results are new both in precise statement and general approach. 

Chapter 1 introduces, and motivates, the formulation adopted. 
Chapter 2 provides some useful information on linear infinite dimensional 
control theory. Chapter 3 gives, subject to certain, perhaps restrictive, 

conditions, a rigorous statement, and proof, of the basic theorems. Here, 
as elsewhere~,the standard fixed point results are used. Parts of this 
chapter are extracts from, as yet unpublished,joint work with A.J. Pritchard 
and M.D. Quinn. ,Chapter 4 relaxes some of the conditions in 3 and applies 
the same techniques to other areas. ~hapter 5 surveys, in a formal fashion, 

, ' • f 

the more constructiv~, numerical aspects of the precedi'ng results with' a 
view to indicating directio~s for this important area of, further research. 

It is concluded that the "perturbed linear" approach used here can 
give results. that are both theoretically and computationally useful. The 
strength of the requirements placed on the linear part, however, indicates 
a challenging area for future investigations: a constructive approach to 
intrins1cally non-linear problems. 
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CHAPTER I Introduction 

1.1 Generalities 

Control and observation problems for linear dynamical systems 

have been widely studied. In reality, many practical problems concern 

models which are non-linear in nature. It is thus desirable to develop 

an analysis of control and observation properties which is applicable to 

non-linear systems; or at least to classes of non-linear systems, the 

term "non-linear system" being a slight misnomer since it only specifies 

exclusion from a particular class. Such a theory should lead to constructive" 

information, since the fact that a solution exists does not often solve a 

significant practical problem. This thesis studies aspects of such a non 

linear systems theory for a class of systems VJhich might'be called "semi­

linear". That is to say, they appear as the sum of a linear and a non-

1 inear part. 

"For such systems the general aim ;s to use properties of the linear 

, part in establishing formulations which allow one to prove results for the 

complete system. A s;mp1e example of this procedure ;"s afforded by 

Example 1.1 

Consider f =Az + ~(z) z(O) = zo where" A is a linear operator 

and ~f(·) a non-linearity. Then, under appropriate conditions (see 

Chapter 3) we can make sense of the variation of constants formulation 

(1 .1) 
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If we take the right hand side of (1.1) to define an operator action 

on z, ~(z), then a fixed point of ~ is regarded as defining a 

solution of the original, non-linear, problem. 

From a strictly mathematical viewpoint this is an antique technique: 

a complicated problem is approached by regarding it as a perturbation of 

a simpler one whose analysis is well-developed. Though widely exploited 

in the mathematical theory of non-linear differential equations such ideas 

have only' been app1 ied in a disjointed and fragmentary fashion to problems 

arising in control theory. This state of affairs is to be contrasted 

with the use of manifold and differential geometric techniques in the 

"geometric" non-linear control theory of Brockett et al .. Some major 

contras ts are: 

a) global v. local : the differential-geometric approach attempts to 

deduce global information about contro11abi1 i'ty and observabi 1 i ty -

the perturbation approach is necessarily local often both in time 

~nd in initial data (it may however sometimes be extended to provide 

gl oba 1 information). 

b} "exis.tenti al" v. constructi ve,: the, geometri c ideas (as in the theory 

,of dynamical systems proper) provide qualitative information about the 

soluti'on - they rarely (if ever) lead di'rectly to a numerical solution. 

~By 'contrast (per~ap~ due to the influence of Brouwer) fixed point 

formulations, such as may arise from perturbation techniques, have 

been the subject of much "constructive" attention. 

c) finite v. infinite (dimensional) : whilst there is a theory of 
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infinite dimensional Banach (and Hilbert) manifolds it has yet to 

be extensively applied to dynamical systems resulting from partial 

differential equations. The perturbation techniques (perhaps because 

of their tess sophisticated requirements) have been applied to both 

ordinary and partial differential equations. Indeed some of the 

results for semi-linear systems have been developed in the first 

instance specifically for partial differential equations, without 

regard to their implications for finite dimensional systems. 

Thus, in conclusion, simplicity, particularly when it is effective 

in solving significant problems, should not be despised. In the present 

work motivation derives from a desire to provide constructive answers to 

problems arisjng from semi-linear partial differential equations.' Moreover, 

suitably equipped with a philosophically based pessimism concerning the 

limitations of applied mathematics we may be prepared to accept only local 
. , 

• f 

answers. It should not be surprising that perturbation techniques constitute 

. a suitable approach. 
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1.2 Formulation 

Consider an observed dynamical system given, at least formally, 

by 
i = f(z,u,t) 

y = h(z,u, t) 

z(O) = zo 
(1 .2) 

where u is the input to the system and is assumed known,z is the state, 

and y denotes the output. Take an initial guess for the state trajectory 

z(.) and let 

z = z + Zl 

y = h(z,u,t) + yl 

substitution in (1.2) gives 

i ' = A(t)Z' + r(zl ,u,t) + f(z,u,t) - z 

z I (0) = Zo 
yl = C(t)ZI + n(zl ,u, t) 

where z6 = z~ - z(O) • 

(1.3) 

(1 .4) 

The (time-varying) linear operators A(t), C(t) represent the linear 
, 

part of the expansioQ after' local approximation about z; f(.,.,.) a~d - • 

. n(.,.,.) represent the, higher order, non-linear terms of the approximati.on. 

If z satisfies the original dynamics with the specified initial 

condition then we have 

z = f(z,u, t) ; z(O) = Zo (1 .5) 

When (1.5) does not hold f(z,u,t) - z is an additional known quantity 

in the Zl equation. Such known quantities, appearing in either the 

dynamics or the output equation, do not alter the results of this thesis. 

For ease of exposition such terms are therefore ignored. 

Our aim, then, is to use knowledge of the linear theory of state re­
"\ 

construction to provide an approach to reconstructing the state of the 
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non-linear systems (1.1). Although reconstructing an initial state for 

the system which is the linear part of (1.4), i.e. 

i = A(t)zl 

Y = C(t)ZI 
(1 .6) 

has received much attention (se~, for example, Chapter 9 of Curtain­

Pritchard, [1]) we shall, again for ease of exposition, restrict attention 

to time-i nvariant systems wri tten as 

i l = Azi + f(zl) 
(1.7) 

yl = Czl 

Note that the non-linearity in the output equation has been dropped. This 

too can be done without any real loss of generality in the methods to be 

described. 

In Chapter 4 we briefly study the (non-linear) problem of joint state 

and parameter estimation by our methods. In this case the original system 

has the form 

i = f(z,u,a,t); z(O) = Zo 
(1 .8) 

y =h(z,u,a,t) 

where a lies in the chosen parameter space. As before we make a local 

approximation about a guess z(e) (for the state trajectory) and a 
(the parameter)e Performing s'implifications as above we arrive at 

i l = A Zl + Alai + f(z,a) 
(1.9) 

yl = C Zl 

Of course systems such as (1.7) and (1.9) may arise naturally, 

rather than by the approximation "procedure described above. The next 

section contains some examplese 
'\ 
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1 . 3 Some mode 1 s 

The examples in this thesis are based on the simplest 

standard models of non-linear (second-order) parabolic and hyperbolic 

equaions, i.e. the non-linear heat and wave equations respectively. 

Here we indicate some circumstances in which models of the type (1.7) 

might arise. These should be taken as providing evidence that the 

considerations of this thesis are potentia11yapp1icable to the real 

wor1 d. (See Henry [1], Reed [1] for thi s, and other, evi dence.) 

Example 1.2 (reaction - diffusion) 

Models of chemical reactions often give rise to equations of 

the form 

az az a2z - + a - ---". = f(z) 
at ax axL (1.10) 

More precisely, consider Sl, ••• ,SN being N chemical species which 

participate in R independent reactions. These reactions take place 

over a region g c 1R3 Let c. be the concentration of S •. then 
~ 1 1 

ac. R 
old· ( ) f 0a:r- = lV Di grad ci + L a •.• 

j=l lJ J 
(1.11) 

0\ 
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where the conservation of mass is expressed as 
N 
La. . SJ. = 0 ( j = 1 , • -~ • , R ) 

i =1 1 J 

Di represents the diffusion coefficient for the species Si and 

f j (c1 ' ••• ,cN) is the rate of the j th reacti on. 

Example 1.3 (population genetics) 

Consideration of the probabilities of genetic events often gives rise 

to study of "Fisher's equation" 

2 
~ = a z + f(z) 
at ;7 

z(o) = Zo 

(1.12) 

Such equations are also usee to de~cribe the geographic distribution of 

plant, animals or epidemics. 

Example 1.4 (Navier-- Stokes) 

The physical laws governing the flow of a viscous incompressible 

fluid yield the model 

a 0 1 
~ + (q.v)q = v~q - - grad p at p 

(1.13) 
div q = 0 

where pis; the pressure,o q the ve loci ty .and p," are pos i ti ve 

constants (representing density and kinematic viscosity respectively). 
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By a transformation of Kato-Fujita we obtain a model in the desired _. 

semi-linear form. More simply one often considers the simplified form 

known as Burgerls equation viz. (see Burgers in Additional References, p.166) 

_az + az a2z_ 
z--~-O 

at ax ax'" 
(1.14) 

rather than the comp1eteNavier-Stokes system (1.13). Such equations 

have been subject to much research - partly due to their possible relation 

to turbulent behaviour in fluids. 

The above examples give rise to semi-linear parabolic equations; in 

fact, they are semi-linear diffusion equations. Many other processes give 

rise to such models e.g. non-linear heat conduction, re-distribution of 

impuri ties in-semi -conductors; see Henry [1] for further deta i 1 s. One 

characteristic feature of such equations (in contrast to linear diffusion 

equations) is the possible presence o~ travelling wave solutions. Though 
-

much analysis has been devoted to this topic, knowledge, especially for 

higher-dimensional systems (i.e. over ~n , n » 1 ), is still incomplete. 

Such phenomena are often used to justify the assertion that the majority 

of waves are not governed by the wave equation. Non-linear wave equations 

of interest, however, include ••• 

Example 1.5 (Klein-Gordon) 

A model of the following form is found in a variety of circumstances 

2 2 
a z _ a z + VI (z) = O. 
;tz;? (1.15) 
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where VI
(.) is a non-linear function of z occurring as the derivative 

of a potential energy V(·). Especially popular is the choice VI(Z) = sin Z; 

predictably, this gives the IIsin e - Gordon ll equation. Such an equation 

has occurred in modelling dislocations in crystals, propagation of magnet­

isation waves in ferromagnetic materials, and Josephson junctions. With a 

cubic nonlinearity (VI (z) = z3) (1.15) has been uspd to make tentative 

suggestions about the nature of elementary particles. This should not be 

surprising in view of the close relation to the non-linear Schrodinger 

equation. 

In all these cases we may be interested either in inserting control 

action to drive the system so as to meet certain objectives (e.g. attain 

a desired final state) or in taking output measurements so as to reconstruct 

the internal state. It is with this latter objective, namely state re­

construction, that this thesis will be mainly concerned. Many of the 

methods and theorems have analogies in the corytro1 case, but these are not 

explored here. Magnusson [1] investigates some applications of these 
, 

methods to the control case. Thus we are here concerned to study a system 

model of the type (1.7) in the case where the state, Zl(.) , is infinite 

dimensional. The methods developed and the results obtained for infinite-

dimensional state reconstruction in semi-linear systems, are new. In many 

cases these results are still new when restricted to a finite dimensional 

state-sp,:lces. As indicat~d in Section 1.2 the output measurements will be 

taken to be given by a time invariant linear mapping acting on the system 

state. In systems governed by partial differential equations such a mapping 

could be, 'for example, the value .. (if well defined) of the system state at 

some point in its domain of definition or the result of integrating the 

system state ove} some sub-set of this domain. 
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1.4 Trea tment 

The preceding sections have already indicated the main features 

of the thesis: the special class of non-linear systems to be studied 

us i ng fi xed poi nt r~s u1 ts and strong assumpti ons on the 1 i near part. The 

necessary linear theory is provided in Chapter 2. Chapter 3 concerns the 

basic results and Chapter 4 investigates various refinements. Originally 

Chapter 5 was going to be a rigorous study of the numerical analysis. 

associated with application of the techniques of Chapters 3 and 4. This 

study, once embarked upon, proved to be both lengthy and intricate, 

demanding a variety of new material. A full presentation of this material 

was some way from the main aim ~!f the thesis - this being, as previously 

stated, the application of fixed point results to semi-linear control 

theory. Thus, after some discussion, it was decided tc restrict Chapter 5 

to a largely formal account of these numerical aspects. This account tries' 

to illustrate the main ideas and outline the requirements for a rigorous 

treatment. The purpose is to give an indication of this important area, 

without overburdening detail, and to show some promising directions for 

further research. 
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CHAPTER II Linear Theory 

Summary . 

Thi s chapter presents a review of 1 i near i nfi ni te dimens.i ona 1 control 

theory in a form suited to our later requirements. The basic material is 

dra~n from Curtain-Pritchard [1] and Lions [2]. Additional material on 

analytic semigroups can be found in Hille-Phillips [1], on solvability 

and i11-posedness in Nashed [1], and on embedding theorems in Lions [3] 

and Adams [1]. None of the material is new, but its juxtaposition is 

sl i ghtly novel. 

2.1 Linear Evolution Equations semigroups 

Consider the .(finite dimensional) ordinary differential equation 

. 
z = Az . , z(O) = zo (2.1 ) 

where z(t) lies in mn for some n· and A is an nxn matrix. The 
IV 

matrix exponential eAt is used to express the solution of (1) in the 

form 

(2.2) 

In the case "Of a linear partial differential equation we may have a 

represeniation simi1ar'to· (2.1) where z(t) now lies in some Banach 

space Z and wish to define a solution using an infinite dimensional 

analogue of the matrix exponential. This analogue is the semigroup. 
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More precisely we have 

De fin i t ion 2. 1 

A strongly continuous semtgroup is a map S(.) from ~+ to L(Z) , 

satisfying 

S(t+s) = S(t)S(s); 0 s sst (2.3) 

S(O) = I (2.4) 

(2.5) 

Example 2.2 

Let A € __ .L(Z) and defi ne 

At _ : (At)n 
e - t.. -::r 

n=O n. 
• f 

; this yields a strongly continuous semi group. 

Theorem 2.3 

Let S(t) be a strongly continuous semigroup on a Banach space Z, 

then 

a) I 1~(t)1 I is bounded on every finite subinterval of [O,~[ 

b) Vz € Z, S(t)z is strongly continuous 

c) if· Wo = inf ( i log IIS(t)ll) then Wo = lim ( t 10gIIS(t)ll) < ~ 
. ~o ~ 
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d) Vw > Wo a a constant Mw such that Vt ~ 0 

II S( t) II ~ M ewt 
w 

Pf. see Curtain-Pritchard, [lJ. 

The connection between the semi group and the solution of an abstract 

evolution equation is made by using the following 

De fin i t ion 2. 4 

The infinitesimal generator A of a strongly continuous semi group 

S(t) on a Banach space Z is defined by 

Az = lim i (S(t)-I)z 
t40+ 

(2.6) 

whenever this limit exists; the domain of A,' denoted D(A) being the 

set of elements in Z for which the limit exists. 
. . 

Theorem 2.5 

Suppose S(t) is a strongly continuous semigroup ~n a Banach space Z, 

with infinitesimal generator A, and thus 

a) 

b) 

c) 

if Zo € D(A) then S(t)zO € D(A) Vt ~ 0 

d . . 
at(S(t)~O) = AS(t)zO = S(t)AzO for Zo € D(A) , t > 0 

... 
n . 

~n(S(t)zo) = AnS(t)zO = S(t)Anzo ' Zo € D(An) , t > 0 
dt 

Zo € D(A) 
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e) A is a closed linear operator, DTA) = Z 

f) "D(An) is dense in Z 
n 

Pf. see Curtain-Pritchard [lJ. 

Operators A which generate strongly continuous semi groups are 

characterised by the Hille-Yosida theorem. This theorem uses the 

Definition 2.6 

Let A be a closed densely defined linear operator. The set of 

complex numbers A such that A is not an eigenvalue and the range of 

AI - A is the whole space Z is called the resolvent set of A . 

For A € p(A) ,(AI - A)-l is denoted R(A;A) and is called the 

reso1 vent of ... A • 

Theorem 2.7 (Hille-Yosida) 

A closed linear operator, A , such that UTA) = Z for a Banach. 

space Z generates a strongly continuous semi group S(t) iff 3 real 

numbers M,w such that V real. A > w, A € p(A) the resolvent set 

of A and 

IIR(A,A)rll s M 
(A-W)r r=1,2, •••• (2.7) 

If this holds then 

II S(t) II s Mewt 

Pf. see Hille-Phillips [lJ. 

• f 
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The conditions of this theorem are not always easy to check and other 

criteria have been developed; see Curtain and Pritchard [lJ, p.22 for 

example. As will be seen, in a 'variety of contexts (particularly in 

solvability and optimisation) a?joint operators naturally occur; in 
* the following Z denotes the dual space of Z, <·'·>Z*,Z denotes 

the duality pairing. 

De fin i t ion 2. 8 

Let A be a closed, densely defined linear operator with domain 

* O(A) in a Banach space Z. The adjoint operator A associated with 

* * A (lithe adjoint of A") is a linear operator: O(A ) ~ Z where 

* * * iJ{A ) :: {z* € Z 11 g* € Z <g*,z> * = <z*,Az> * Vz € O(A)} 
Z ,Z Z ,Z 

* where we define A z* = g* • 

* As O(A) is dense, A z* is well defined. One use of the adjoint 

operator is in 

Theorem 2.9 

Let A be a closed densely defined linear operator on a Banach space 

Z, then ~ generates a semigroup S(t) on Z satisfying I IS(t)1 I ~ ewt 

V t ~ 0 -i f f VA > w 

I I(AI-A)zl Iz ~ .(A-w)1 Izl Iz ' z € O(A) 

* * I I(AI-A )z*1 I * ~ (A-w)1 Iz*1 I * , z* € O(A ) 
Z Z 
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Pf. see Curtain-Pritchard [1]. 

Corollary 2.10 

In the case where Z is a.Hi1bert space if there exists a a such 

that 

al Izl 12 ~ Re «Az,z» Z € O(A) 

* z* € D(A ) 

then A generates a semi group S(t) on Z 

Pf. Consider, for example, the condition 

I I(AI - A)zl Iz ~ (A-w)1 Izl Iz z € O(A) 

of Theorem 3.9. In the Hilbert space this is equivalent to «.,.') now 

denotes inner product) 

<AZ - Az , Az - Az> ~ (A-w)2<z,z> 

for A > W , Z € O(A) by e xpa ns ion 

2A(wl Izl 12 - Re<Az,z» + <Az,Az> - w21 Izl 12 ~ 0 

which wi"ll be satisfied for w,A large enough if there exists a B as 

in the statement. Similarly for the other condition •• 



- 17 -

Given a semi group S(t) it is often natural to consider its adjoint 

* S (t) • What can be said about this collection of operators? A simple 

statement is ••. 

Theorem 2.11 

Let Z be a reflexive Banach space, S(.) a strongly continuous 

* semigroup on Z with infinitesimal generator A. Then S (.) is a 

* * strongly continuous semigroup on Z with infinitesimal generator A . 

Pf. see Curtain-Pritchard [1]. 

Example 2.12 

. dz 2 
Take Az = - ~ Z = L ([O,l]~) 

and D(~) = {z : z € H1([O,1]; ),z(O) = O} 

Integration by parts gives that " 

* dz 
A z = ~ 

* with D(A) =" {z Z € H1([O,1];ffi),z(1) = O} 
IV 

Addi tiona l1y 

<Az,z> = - ~(z(1))2 s 0 

... * . 2 
<A z,z> = -"~(z(O)) s 0 

Hence the conditions of Corollary 2.10 are satisfied with B ~ 0 . 

Thus A generates a semi group. 
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Example 2.13 

Consider the system 

e,z + ai + Az = 0 z{O) = Zo ' i{o) = zl a ~ 0 

where A is a positive self-adjoint operator on a real Hilbert space 

H, with dense domain satisfying 

<Az,z> ~ kl Izl 12 Vz € D(A) k > 0 ". 
, . 

Proceeding formally we consider the first order system 

w = Qw where w = [: 1 
and 

As A is self-adjoint and positive its square root A~' is well defined 

and we may introduce a Hilbert space H = D{A~) x H with inner product 

and henc~, for w € D{Q) = D{A) x D(A~) 

<w,Qw>H = <Az,i> + <z,-Az-az> 

= -all i II ~ • 

• f 
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The adjoint of Q with respect to the Hilbert space H is given 

by 

* D(Q ) = D(Q) • 

* · 2 Therefore <w,Q w> ='-al Izl IH ; hence, by Corollary 2.10 we have 

that Q generates a semigroup on H (in fact, a strongly continuous 

semi group) • 

Example 2.14 (Wave equation) 

This is a special case of the preceding. 

Take Ztt
O

- = zxx 

with z(O,t) = z(l,t) = O. Let H = L2(CO,l];1R) and Az = -z (in 
tV xx 

the formulation of th~ preceding) 

* then A = A and (~ is a dummy spatial integration variable) 

... 
using integration by parts and standard embeddings. 

In the formulation of Ex. 2.13 we have 

. I 
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and can conclude that Q generates a strongly continuous semi group 

S(t) on H. If we separate the componenets of the domain space as 

w1 (for z) and w2(for z) then 

w = ~:] € H~(O.l) x L
2

(O.1) and we have the following explicit 

expression for the semi group action 

L2[<W1'~ >cosnTIt + ~w2'~ >sinnTIt]~ n., nTI n . n 

where ~ = sin n~ ~ • n 

Example 2.15 (Heat equation) 

The heat equation 

Z - z t - xx 

z(O,t) = z(l,t) = ° 
z(x,O) = Zo 

is a prototype for a 1ar.ge class of parabolic equations. 

Taking H; L2(O,1) one has Az = zxx define~ on the domain 
2 1 O(A) = H (0,1) n HO(O,l). In this case the semigroup has the explicit 

express ion· 

. , 
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The fact that the A in question generates a strongly continuous 

semigroup can be deduced from Hille-Yosida Theorem - see Curtain-Pritchard 

[lJ. Semigroups generated by elliptic operators possess additional smoothing 

properties, which are briefly described in the appendix on analytic semi-

groups. 

Notion of a solution semi group 

Using Theorem 2.5 it is clear that if Zo lies in D(A) , where A 

generates a strongly continuous semi group S(t) , we can define a solution 

of i = Az as z(t) = S(t)zO. This solution is continuous on [O,oo[ , 

differentiable on ]o,~[ , and unique. It is often referred to as the 

strong solution. If, however, zo' D(A) we may still wish to have some 

notion of so'lution - in this case one defines the mild solution as S(t)zO' 

Example 2.16 

In regard of example 2.14, the mild solution is' given by 

~t] = S(t) [:~] for Zo € H~(O.l) • 

2 2 1 1 zl € L [0,1]. In case that Zo € H (0,1) n HO(O,l), zl € HO(O,l) 

then this solution is in fact a strong solution. 

Suppose now one considers the inhomogeneous equation 

. . 
z = Az + f; z(O) = Zo ' (2.8) 

then, by anal ogy'Wi th fi ni te dimens i on (Vari a ti on of cons tants formul a), 

one has, . 
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Definition 2.17 (Mild solution) 

Iff € L P (0 , t1 ; Z ) P ~ 1 th en 

Z(t) = S(t)zo + I:S(t-S)f(S)dS 

is a mild solution of (2.8) on [O,tlJ • 

One can now show 

Leoma 2.18 

z(t) defined by (2.9) is strongly continuous on [O,tl ] • 

Pf. see Curtain-Pritchard [1]. 

(2.9) 

This leoma is important because it tells us for a useful class of 

functions f where the resulting state trajectory will lie. There are 

other notions of solution relevant to 1(2.9), in particular, that - • 

investigated in Lions-Magenes [1]. Thus far we have attempted to present 

a formulation which applies to both the hyperbolic (Examples 2.13, 2.14) 

and the parabolic (Example 2.15) cases. This generality is not always desirable 

since the two cases possess some fundamental differences. In particular, some 

hyperbolic equations (Example 2.14) will give rise to a semigroup which is 

in fact a group; whereas, since a parabolic equation smooths the initial 

data, one cannot invert the semigroup action. These 'statements will be made 

more precise in the following. Lions [2] presents a framework for linear 

parabolic'equations as follows. 
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Notion of a solution : weak 

Let V,H be Hilbert spaces such that V is continuously embedded 

* and dense in H; V is the dual of V ,and H is identified with its 
* . * dual H • One writes V c H c V and considers a family of operators 

* 2 2 * A(t}:V + V (hence defining a map .A(·) € L(l (0, tl ;V);L (0, t
1

;V )} by 
. 2 

f + A(t}f(t) for f € L (0,t1;V)) . The objective is to study the 

evolution equation 

, dz + A(t}z = f dt 

z(O) = Zo 
with initial conditon 

for appropriately chosen f, zO. To do this one introduces 

De fin i t ion 2. 19 

with the'norm 

(2.10) 

(2.11) 

Usi~g the fact that: V is Hilbert, W(0,t1) normed as above can 

be given a Hilbert space 'structure. The following regularity result is 

important for what follows. 

Theorem 2.20 

'Any f € W(O!tl ) is, after possible modification on a set of measure 



- 24 -

zero, a member of C(0,t1;H) , 

Pf. see Lions-Magenes, [lJ, Volume 1. 

2 * Take, in (2.11), zo € H, f € ~ (O,tl;V) in (2.10) and A(t) 

satisfying the "coercivity condition" 3, A such that 

<A(t)~t~> * + AI I~J IH ~ al I~I Iva> 0, V~ € V , t € JO,tl [ 
V ,V 

Theorem 2.21 

With f,zO' A(t) as above, the problem (2.10), (2.11) has an 

unique solution in W(O,t1) • Moreover the induced map' 

f,zO ~ z is continuous from 

Pf. see Lions, [2J. 

The coercivity condition used above ensures that when A(t) is time . 
invariant (i.e. A(t) = A ¥t € (O,tl )) , -A generates a strongly 

continuous semigroup. Hence, by Theorem 2.20, Theorem 2.21 is consistent 

with the semigroup approach (where .one obtains z € C(O, tl ;H), • Note 

that a different class of perturbations is used, i.e. f € L2(O,t1;V*) 

rather than ,LP(O,tl;H) 
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2.2 Solvability and least squares problems generalised inverses 

Consider the operator equation 

Tx = Y (2.12) 

where T is a linear mapping from a Hilbert space X into a Hilbert 

space Y. Traditionally one considers that (2.12) has a solution if 

and only if y € range (T). In a variety of circumstances (particularly 

in optimisation problems) this traditional notion may not be the most 

appropriate. The generalized (or sometimes pseudo) inverse offers one 

way in which the not"ion of a solution may be extended. 

Definition 2.22 

T is said to be a closed operator iff G(T) , the graph of T, 

is closed in X x Y (i.e. xn € X , xn ~ xO~Txn ~ Yo : Xo € X and 

TxO = yO)· 

C1 early, any T € L (X, Y) is a closed opera tor. 

Note that the ranJe of T is not necessarily closed in Y. Now and 

* * for the rest of this section we identify X with X and Y with Y 

* T will denote the adjoint map; then we have that 

- * R(T) = N(T )J. 

(2.13) 
-* R(T ) = N(T)J. 

* Clearly, R(T) is closed. in Y iff R(T) is closed in X • 

T I J. : N (T ) J. ~ R ( T ) i s 1 - 1 th u s 
N(T) 

(TI )-1' exists and is such tha't 
N(T).r 

(TI \ )-1 R(T) ~ N(T)J. 
N(T)J. 
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It is now reasonable to define the generalized inverse Tt of T 

as 

Definition 2.23 

Tt is the linear extension of 

D(Tt) = R(T) + R(T)~ 

N(Tt) = R(T)~ • 

(TI )-1 
N(T)~ 

so that 

If R(T) is closed then Y = R(T) + R(T)~ so that Tt is a bounded 

operator; if R(T) is not closed then R(Tt) is R(T*) • 

As might be expected in a Hilbert space, the generalized inverse has 

a natural interpretation in terms of projectinns. Let P denote the 

orthogonal projection of X onto N(T)~ and Q the orthogonal projection 

* ~ of Y onto N(T) • It can be shown that 

P = TtT - (2.14) 

Q = T Tt (2.15) 

Thus the projection onto N(T*) may be written as I -'TTt and that 

onto N(T) as I - TtT. Further properties of generalized inverses 

will be' found in Appendix 3. 

Least sguares problems 

One of the most useful features of generalized inverses is their 

relationship to least squares problems. Consider Tx = y , T € L(X,Y) 
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once more; suppose we now no longer wish to find a solution x which 

satisfies Tx = y exactly, instead we are content to find an x which 

mi nimi ses II Tx - y II y 

De fin i t ion 2. 24 

A vector xLS is a least squares solution if 

II TxLS - y II y = i nf{ II Tx - y II y x € X} 

All such xLS satisfy T*T xLS = T*y the so-called normal 

equa tions. 

Definition 2.25 

if 

A vector x will be called a least squares solution of minimum norm 

x is a least squar~s solution aDd 

Tlxllx ~ IlxLSli x for all least squares ~olutions xLS. 

The set of least squares solutions may be empty. If R(T) is closed, 

however, the set of all xLS ;s non-empty closed and convex; and a closed 

convex set in a Hilbert spaces possesses an unique element of minimum norm. 

The relatjonship between the generalized inverse and the least squares 

solution of minimum norm is expressed by 

Theorem 2.26 

Let T be bounded, R(T) closed, then 

"\ 
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Pf. see Beutler [1] 

and 

Theorem 2.27 

If T is bounded, but R(T) not necessarily closed then if 

y € D(Tt) = R(T) + R(Tt) we have x = Tty . 

Pf. see Beutler [1] • 

Of course, many problems can be formulated in a linear least squares 

context. An operator which gives the solution to such a problem may offer 

no inherent computational advantages. It mry be possible to use the 

algebraic identities satisfied by the pseudo inverse to solve the linear 

least squares problem; but it is more likely that, especially in the 

infinite dimensional case, ,one would ~esort to some more traditional 
-

minimisation procedure. It is true, however, that existence of such an 

operator offers some analytic advantages. 

Solvability 

The solvability of (2.12) has been considered, in the mathematical 

1iterat~re, 'since the time of Hausdorff and Fredholm. Take T € L(X,Y) 

with X,Y ,Hilbert and make the , ••• 

Definition 2.28 

T is normally solvable iff R(T) is closed. 

• f 
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This is equivalent to (using (2.13)). 

Definition 2.29 

The equation Tx = y is consistent iff y is orthogonal to any 

* solution u of T u = 0 

For bounded linear T such as are considered here one obtains 

Theorem 2.30 

The following are equivalent 

a) R(T) is closed; 

b) y(T) = inf.{~ : 0 F x € N(T)L}> 0 j 

c) inf{1 ITx-yl I : x € X} is attained Vy € Y ; 

d) the restriction of T to N(T)~ has a bounded inverse; 

e) the quotient space X/N(T) is isomorphic with R(T); 

f) T has a bounded generalized inverse. 

Pf. see Nashed [lJ. 

In'the case of linear operators T:X ~ Y which are unbounded but 

have closed graphs, a theorem analogous to the above holds, subject to 

certain mo~ifications. For example, in condition b) x must be restricted 

to lie in D(T) n N(T)L ~ Note also that normal solvability for anyone 

* * * of T,T ,TT , or T T implies the same for all the others. 
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Example 2.31 

Examples of normally solvable T are given by 

a) all operators which are bounded below (i.e. 

I J Tx II ~ mil xii for some m > 0 ; 

b) all operators of the form T = T1 - AT2 ' A r 0, where T2 

is completely continuous and T1 has a bounded inverse; 

c) all operators of the form T = Tl + T2 where R(T1) is 

closed and R(T2) is finite dimensional. 

These ideas give rise to some simple, but sometimes ignored, 

conclusions of relevance to the construction of algorithms. 

Algorithmic implications 

Several different versions of well (or ill) posedness exist in the 

literature. That appropriate to the Rresent setting is 

Definition 2.32 

The equation Tx = y (T € L(X,Y); X,Y being Hilbert) is said to 

be well-posed, relative to the spaces X and Y if, for each y € Y 

the uni que "sol uti on ll Tty depe~ds conti nuous lyon y; otherwi se the 

equation is said to be ill-posed. 

Then one can show 

Theorem 2.33 

Let T be as above. The following are equivalent 

"\ 

. , 
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a) the operator equation Tx = y is well-posed relative to the 

spaces X and Y; 

b). T has closed range in Y . 

Pf. see Nashed [lJ. 

In the rest of this section, both for simplicity of presentation, 

and because it is the only case which will be studied in detail in the 

sequel, we shall assume that T is injective (i.e. N(T) = {OJ) • 

Suppose now that y is in the range of T i.e. :a 
Suppose also that in practice only an approximate 

is available, then the solution (if it exists) x 
e: 

x ~ X : Tx = y . 

y : Ily - y II ~ e: e: e: 

such that Tx = y 
e: e: 

need not be close to x for e: close to zero. Boundedness of the inverse 

map would prevent such pathological behaviour. In any case, even if y 

is known exactly any discretised version of the problem will still be badly 

il~-conditioned. Thus one needs to develop, at the very least, some method' 
of producing approximate problems which always have a solution and ., 

additionally, if possible, a solution which depends continuously on the 

given data, y. A variety of standard remedies exist - we choose to 

present 

Definition 2.34 

The augmented problem P X' e: > 0, is defined as IIfind x of e:, 

minimum norm in X which minimizes 
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From the secti on on 1 eas t squares problems, P X corresponds _. 
~, 

to finding the generalized inverse for the augmented operator 

IV 
T X ~ X x Y X ~ (x,Tx) €,X 

wh~re X x Y is given the norm 11·1 I~ + €21 1·1 I~ . 

The generalized inverse of this operator will be denoted by 
'\it IV 
T X. Note that as T is a closed operator T X has closed range 
€, €, 

and therefore a bounded generalized inverse. One can consider that the 

problem P€,X concerns a normal equation 

* * (T T + €I)x = T Y 

... - * 
(for € > 0, T T + €I will be invertible). It can be shown (see for 

+ ~xamp1e Lions-Stampacchia [1]) that if y € range T then, as € ~ 0 , 
IVt 
T X(O,y) ~ x where Tx = y 

€, 

, 
We still do not obtain, in the limit, any • 

continuity with respect to the data y. Such a·property is obtained by 

using a device due to Tikhonov [1], which is now presented. 

Consider a Hilbert space. Z which is compactly embedded in X. 

Then by analogy with Definition 2.34 we have 

Definition 2.35 

The augmented problem P Z is defined as "find x of minimum norm 
€, € 

in Z which minimizes IITx - YII~ + €21Ixll~ II 
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IV 

Denote by T the associated member of L(Z,ZxY) and by £,Z 
IV 

Tt Z its generalized inverse. From the results of Tikhonov [1] one 
£, 

obtains the following continuity property. 

Theorem 2.36 

Let y be in T(Z) (i.e. ~ x* € Z Tx* = y ). . Let y ~ yin 
£ 

Y as £ ~ 0+ and define x = T Z (O,y ). Then x ~ x* in X . 
£ £, £ 

Pf. see Tikhonov [lJ. 

The above procedure describes one possible regularisation method for 

ill-posed problems; it is a method which, as will be seen, is peculiarly 

appropriate to the present requirements. For further information on 
.. - " regularisation see Ribiere [lJ. 

- . 
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2.3 Linear infinite dimensional control theory: formulation 

Knowledge of linear evolution equations in function spaces 

(e.g. definition and representation of solutions; allowable classes of 

perturbations) and of linear least squares problems (posed in Hilbert 

spaces) is now applied to the study of some problems in control theory. 

As 1;ldi cated in Chapter I, the scope of the trea tment wi 11 rapi dly be 

restricted to problems of state reconstruction. The control case gives 

rise to slightly different but naturally related considerations; in the 

linear theory this relationship is, in effect, that between a linear map 

and its adjoint; and, in particular, between the range of the map and the 

kernel of its adjoint. The control and observation problems will both be 

stated first in the semigroup case and then for the Lions formulation of 

2.2. The latter formulation, as stated in 2.2, only applies to parabolic 

problems; though there are extensions, see Lions [1], to second order 

hyperbolic equations such as Example 2.14. We shall rIot investigate these 
I 

extensions here and Will fdr the rest of this thesis be concerned with . . 
three classes of linear problems viz. 

a. second order hyperbolic equations, in the semigroup formulation; 

b. parabolic equations, in the case where both the semigroup formulation 

and the Lions formulation apply; 

c •. finite dimensional equations where, of course, many of these problems 
of fo~mu1ation disappear. 
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Control and observation semi group 

Cons ider 

i = Az + Bu 

z(O) = zo ' 

(2.16) 

(2.17) 

on the interval - [O,ti]' where A generates a strongly continuous 

semigroup Set) on a Banach space Z, zo € Z, and"B is a bounded 

operator from a space of controls Uinta Z. We make the following. 

Definition 2.37 

The system (2.16), (2.17) is said to be controllable on [O,t,] iff 

given any two points zO,zl € Z there exists a control 

u(·) ~ LP(O,t1;U) (p ~ 1) such "that z(O) = zo and z(t1] = zl . 

Define the operator 

t " 

Gc LP(O,t1;U) + Z u + J01S(t1-S)B u(s)ds 

- . 

and introduce the following definition (the need for this definition will 

be "i ndi cated in the seque 1) • 

Definition 2.38 

The system (2.16), (2.17) is said to be approximately controllable 

on [O,t1] iff range (Gc) = Z • 
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Hence (2.16), (2.17) is approximately controllable in time t1 

if, for any zl E Z, and any e > 0 , ~ u(.) E LP(O,t1;U) such that 

II z (t1) - zl 11 ~ e • 

Consider now the observation problem given by 

i :.. Az (2.18) 

y = Cz (2.19) 

again over the time interval [O,t1J; A, as before, g~nerates a 

strongly continuous semi group S(t) on a Banach space Z and C is a 

bounded operator from Z, the space of states, into Y, a space of 

outputs. Hereinafter we shall assume Z, Y (and U) to bereflexive Banach 

spaces. Given. the observed outputs y(.) one wishes to reconstruct the 

appropriate init~a1 state zO. Define the operator 

introduce the following ••• 

Definition 2.39 

The system (2.18), (2.19) is said to be initially observable on 

[O,t1J iff N(HO) = {a} • 
... 

In practice, however, we may wish for the existence of a continuous 
. reconstruction operator 

• f 
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When range (HO) has the induced topology from LQ(0,t1;Y) , 

the existence of such an operator is ensured by 

Definition 2.40 

The system (2.18), (2.19) is said to be continuously initially 

observable on [0,t1]. iff 3 y € ~ , y > ° such that 

Vz € Z • 

It is clear that to each system (2.18), (2.19) one can associate 

a "dual" controlled system 

. * * z = A z + C u 

where u(.) € LP(0,t1;Y*) p: 1 + 1 = 1 to which one can apply the p q 

considerations of the control section. The following theorem results. 

Theorem 2.41 

i) (2.18), (2.19) is initially observable on 0,t1 iff the 

dual controlled system is approximately controllable on [O,tl ] • 

ii) (2.18), (2.19) is continuously initially observable on [0,t1] 

iff the dual controlled system is exactly controllable on [0,t1] . 

Pf. se~ Curtain-Pritchard, [1]. 

This du·ality expresses the fact that the adjoint of Gc is an 

operator of type HO (but. for the dual system). The surjectivity of Gc 
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corresponds to the injectivity of HO; and Gc is a closed operato~o 

iff HO is. This duality, and the obvious relationships to section 2.2, 

will be explored in the sequel. For future reference, we present four 

examples. 

Example 2.42 

Let Z be a real separable Hilbert space and consider an operator 

A defined by (R: 1 ~ k ~ r < ~ and ~ k orthonormal set) n n 

(2.20) 

the conditions of Example 2.12, Curtain-Pritchard [1] must be satisfied 
for A to generate a semi group. 
This corresponds to A possessing eigenvalues An(Al > ~2 > ..• ) of 

(finite) multiplicity rn. Let the control system have the form 

where 

Then 

m 
i = Az + L b. u. 

j=l J oJ 

b1, •. ,bm € Z and uj € LP(O,t1), 1 < P < ~ • 

m 
B(u1, ••.• ,um) = L b.u. and 

j=l J J 

(2.21 ) 

Hence by dU'a1ity the mild solution of (2.21) is approximately controllable 

on [O,t1] iff 
~ A t rn 

-L e n L <b.,~ k><Z*'~ k> = 0 
n=l k=l J n .' n 

(2.22) 

-(j = 1, ••• ,m ; t € [0~t1]) 

implies z* = 0 • 
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Using (2.22) one can deduce (see Curtain-Pritchard [1]) the following 

result "(2.21) is approximately controllable on [O,t1] iff rank BR, = rR, II 

where BR, is the matrix 

B = R, 

,<b , <I> n > m Jl.rR, Z 

'Hence the number of controls required is at least as great as the highest 

multiplicity of the eigenvalues. 

Example 2.43 (cf Example 2.15) 

Z(O,~) = z(l,t) = a 

has the dua 1 

z(O,t) = z(l,t) = a 

y(t) = J:b1(X)Z(X,t)dX 

u(t) € 1R 
IV 

The operator. A is self-adjoint with compact resolvent and the eigenvalues 
. 2 2 

and eigenvectors are An = -n 1T and <l>nl = sinmrx and tn = 1 for all n 

Thus the controlled system will be approximately controllable using Example 

2.42, with only one control if 
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Vn 

By duality the same condition ensures initial observabi1ity for the 

dual system. 

Example 2.44 

z(O,t) = z(l,t) = ° . 
2 2 Take u(·) € L (O,tl;L (0,1)) then, using the expressions for the semi-

group in Example 2.15, it can be shown that the system is exactly 

controllable to H~(O,l) , but not L2(0,1). See the demonstration 

in Curtain-Pritchard [1], p.59, for example. Py duality the observation 

problem with Jlcomplete information ll
, i.e. o.utput considered in. 

L2(0,t1;L2(0,1)) is only initially observable. 

Example 2.45 (cf Example 2.14) 

Ztt = Zxx + u(x,t) 

Z(O,t) = z(l,t) = ° ; z(x,O) = Zt(x,O) = ° , 
Using the analysis of 2.14 we may put this problem within our present 

framework, by augmenting the state and creating B =~] with 

u € L2(0,t;;L2(0,1)) we get that the system is exa~t1y controllable 

on [0,t1] for any t1 > 0. Hence the dual problem (i.e. complete 

. observation' of Zt) is continuously initially observable. 

. , 
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Control and observation: weak 'solution 

Here the control and observation problems are stated in the form 

used by Lions [2]. The weak or variational formulation is naturally 

suited to the study of linear least squares problems; and, indeed, that 

is how control and observation are formulated. Recalling the material on 

weak solutions in 2.2, one defines U, a Hilbert space of controls (for 

example previously we have used U = L2(O,t1;U) for U some Hilbert 

space) and B a bounded linear operator such that 

2 *. B € L(U, L (O,t1;V )) • 

2 * As before, let f and Zo be given: f € L (O,t1;V) and Zo € H • 

Now, supposing that the family A(t) satisfies the required coercivity 

conditions, see Theorem 2.21, one obtains for u € U z(u) satisfying 

%f + A ( t) z = f + B u ( 2 .23 ) 

2 z € L (O,t1;V) (2.25) 

Consider now 

(2.26) 

where 2 Y is a Hilbert space of outputs (for example, Y = L (O,t1;Y) 

where Y is Hilbert), Yd € Y and 

M € L(U;U) 

"\. 

(2.27) 
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V € lR, v > 0 
IV 

then standard results give the following. 

Theorem 2.46 

(2.28) 

With the above assumptions there exists an unique u minimising 

IICy(u) - Yd l I~ + <Mu,u>U • 

Pf. see Lions [2]. 

In [2] Lions indicates how to formulate the adjoint system for this 

problem. The adjoint system gives an explicit expression for the' 

optimally controlled system; in numerical work the adjoint ir used to 

find the gradient for use in a variety of algorithms. The treatment of 

Lions has other refinements, for example the consideration of arbitrary 

closed convex subsets of the space U. as admissible controls, but the above 
. . 

will suffice for our purposes. 

The observation problem is now formulated by viewi.ng the initial 

condition as a control. That is, the space of admissible controls U is 

taken equal to H. As, before one has C € L(W(O,tl);Y), Yd € Y, and 

M € L(H;H) with M coercive i.e. satisfying (2.28), and then one 

obtai ns 

Theorem 2.47 

The problem find z(u) satisfying 

dz + A(t)z = f crt \. (2.29) 
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(2.30) 

which minimizes 

2 J(u) = IICz(u) - Yd l ly + <Mu,u>H (2.31 ) 

:has an unique solution. Moreover this can be characterised by an 

optimality system (i.e. equations for evolution of the state and its 

adjoint). 

Pf • L ions" [2]. 

Equations (2.29), (2.30), (2.31) indicate one approach to the problem 

of initial state reconstruction. It is possible to formulate more general 

reconstruction problems - e.g. versions which introduce some notion of 

mode 1 error - some cO.'c'ents on these d i recti ons wi 11 be made in the next 

Relationship to least sguares formulation 

Consider now that the hypotheses of the Lions formulation hold; . 
then the problems posed by Lions (e.g. Theorems 2.46, 2.47) naturally 

correspond to the explicit construction of certain pseudo-inverses. For 

example, in Theorem 2.47, consider the map T defined from H to Y 

by T:u + Cz(u) (this map is "identical" with HO of Definition 2.39 

wi th Z taken" equal to ~"and L 2(0, t1: Y) as Y). If the system is 
... 

initially observable but not continuously initially observable T does 

not have' closed range, although it is injective. Suppose however (without 

" 2 ( "any real loss of generality) that ~ = e IH IH denoting the identity map 

on H, e € ffi , e > 0) • Then one has,using the notation and results 

following Definition 2.34, 
" ~ 
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Theorem 2.48 

The problem PE,H is that desc~ibed in Theorem 2.47 and thus for 

all Yd € Y has ~olution given by T!,H(O'Yd) • Moreover if Y € range T 
+ "'t . 

then as E ~ o. TE,H(O,y) ~ x* in H such that Tx* = Y . 

Pf. cf Lions-Stampacchia [1]. 

Suppose now that one wishes to include some model error in the 

formulation. For instance, the setting of (2.29), (2.30) and (2~3l) 

yields two possible ways of proceeding: 

a. by regarding the model error as a "control ll one obtains the problem: 

find z(u,v) satisfying 

%£.+ A(t)z = f + V J (2.32) 

(2.33) 

which minimizes 

J(u,v) = IICz(u,v) - Yd l I~ + E2«U,u>H + <v,v> 2 * ) 
. L (O,t,;V ) 

(2.34 ) 

b. by .regard.ing the state trajectory as available for choice one obtains 

the problem: 

defi ne T 

by T dz (z,u) ~ (dt + A(t)z , Cz) 

zl t=O =. u 
(2.35) 

where 

\ 
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Find (z,u) which minimizes 

J(z,u) = \ \~ + A(t)z - f\ \ 2 * + 
L (O,t1;V ) 

(2.36 ) 

Note that if Yd is such that Yd = Cz, where z is a sol ution of 
. + 

(2.29), (2.30), then as e: -+- 0 both a. and b. give the "same" solution. 

Note also that both a. and b. can be regarded as concerning the construction 

of pseudo-inverse operators. In the case of (2.36) the construction in 

ques ti on is tha t of (usi ng the notati on of Defi ni ti on 2.34) 

r:,W(Q,tl)xH(Q,Q,f'Yd) • This operator will be used in Chapter 4. 

As to interpretation of (2.34), (2.36); if we let e: -+- 0 in (2.34) 

we see that we obtain an "output error only" formulation - although the 

state trajectory (and thus the output trajectory) now depends not only on 
. 

the initial state, u, but also on a perturbation, v , of the 

differential equation. So (2.34) could be regarded as a "regularised 

output-error formulation". By con~rast in (2.36), letting e: -+- 0, one 

obtains a problem containing both output error and "model error ll weightings • 

. The advantages of schemes involving model error weightings are well-known. 

In a closely related area. Jazwinski, [1], discusses difficulties with the 

standard numerical interpretation of the Kalman filter when model error 

vanishes. 
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Problem a. falls immediately within the framework of Lions [2]; it is 

not explicitly studied in Lions [2] as only the simpler problems 

involving either u or v (but not both) are considered there. Not 

so for problem b. since the Lions treatment does not admit of z as 

an independent variable. One can~ using the notation of a. replace 

(2.36) by 

a formulation, having similar properties to (2.36), and whirh falls 

within the Lions treatment. For later use, however, we prefer an 

"explicit extraction of Zll. 

. . 
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2.4 Linear least sguares analysis: further refinements 

The preceding section has shown how problems of control and 

observation can be cast in a linear least squares framework. The solution 

of these problems can then be represented by some pseudo-inverse. In the 

case (common in infinite dimensions) that the operator, for whose pseudo­

inverse one searches~ does not have closed range, then we construct a 

regularisation (using in effect the closed graph theorem and the graph 

norm) which has a bounded pseudo-inverse. The regularised problem is not 

an artificial one - as can be seen in 2.3, the regularised problem is 

often an entirely natural control or estimation problem,- well-known in 

its own right. In this section we shall look at further properties of 

the regularisation. To do so we shall require that the hypotheses of the 

Lions formulation hold; and, in addition, that the family A(t) be time 

invariant i.e. A(t) = A, Vt ~ O. Thus it will also be possible to 

make use of the semigroup formulation and notations. Latterly some other 

aspects of infinite dimensional problems are briefly described. 

More regularisation 

In practice either because of numerical approximation or experimental 

error, the element of the range on which the pseudo inverse is to act may 

not be known exactly. Thus for the answers obtained to make sense we need 

to ensure some continuity property with respect to these perturbations of 

the data. In order to do this, we here use the ideas of Tikhonov 

(Definition 2.35, Theorem 2.36) and introduce appropriate compactly embedded 

Hilbert spaces. Rather than attempt a formulation for the general problem 

we here present the two specific instances of most use to us, viz •••• 



- 48 -

a. recall (2.29), (2.30), (2.31). These can be regarded, with 
2 

M = e: IH ' as concerning a map T:H + Y. (given by CSt Zo in semi-
'" . 

group notation) and its regularisation T H. Suppose now we introduce e:, 

'" a Hilbert spac~ Zl compactly embedded in H. The operator T Z will 
e:, 1 

possess a bounded pseudo-inverse and have the continuity property (with 

respect to approximation in the output space Y) whic~ is described in 

Theorem 2.36. For future reference we make 

Definition 2.49 

"'t The operator T described above, will henceforth be denoted by 
e:'Zl 

, as is consistent with the notation HO. 

b. Now we wish to consider a formulation involving model error. Define 

the map T by 

T 

(2.37) 

T ; (z,zO) + (z(.) - S(.)zo ' Cz(·)) 

where we have committed some abuse of notation by mixing the semi group 

and Lions formulations. The interpretation, however, is obvious. Note 

that C is now a map C: L2(0,tl ;H) + Y ; some circumstances may 

demand that C: W(O,tl ) + Y. We introduce, as before, a (Hilbert) 

. space Zl compactly embedded in H. With an eye to the facts of 

. Appendi x 1 we make 

. . 
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Definition 2.50 

By analogy with Definition 2.19 one takes 

wi th the norm 

Then by Appendix 1, Wz (0,t1) is compactly embedded in L2(0,t1;H) • 
1 

Thus Wz (0,t1) x Zl is compactly embedded in L2(0,t1;H) x H. Hence 
1 . 

'" one can define T W (0 t \~Z and obtain, as an immediate consequence 
e:, Zl ' 1.' 1 

of Theorem 2.36 the following .•• 

Theorem 2.51 

Consider the equation 

z(t) - S(t)zO = f (t) e: 
(2.38) 

Cz(t) = 

where (fe:,Ye:):~ (f,y) i~ L2(0,tl ;H) x Y as e: ~ 0+. Suppose that 

(f,y) lies~in the range of Tlw
z 

(0,t
1

)xZ
l

; i.e. there exists 
. 1 

(z*,zO) in Wz (O,t,)xZl such that 
. 1 

z*(t~ - S(t)zO = f(t) 

Oz*(t) = y(t) 
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e: e:) 'Vt ( ) Now let (z ,zo = T W (0 t ) Z O,O,f ,y e:, Z '1 x 1 e: e: 
1 

Then as e: + 0, (ze:,z~) + (z*,zo) with convergence in the norm of 

L 2 ( 0 , t1 ; H ) x H • 

Pf. bt Theorem 2.36. 

Conmentary 

It is worth making a number of remarks on the above results. 

1. Finding a space Zl compactly embedded in H is often not difficult 

(see Appendix 2); it is also desirable, however, to make some natural 

choice. One can often take, for example, Zl = V and thus 

Wz (0,t1) = W(O,tl ) as previously defined. 
1 

2. In the case that ~1 = V we should expect to find. ~,ome connection 

between the linear least squares problem and other notions of solution. 

Indeed, if (f ,~) € range (TI W(O,'t
1 

)xV) then f € W(O, t 1); and if • 

one takes f(O) = 0 then z*(O) = zO*; additionally if f has a 
. t \ 

representation as f(t) = IoS(t-S)9(S)dS for some' g(.) € L2(O,t1;H) 

then we are dealing with a mild solution. Note, however, that the 

initial state Zo lies in V and not, as is usually the case, in H. 

3. Often this last restriction (i.e. zn € V) is not too important. 

For not only is V dense in H, but also it is often physically 

desirable to recover an initial state in V rather than H. 

Remember that in general 2 z(·).€ L (O,tl;V) and so it is not possible 

to speak of its values in V other than in an almost everywhere sense. 
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4. Such a restriction, to look at a smoother type of solution, 

(i.e. Zo € V rather than Zo € H) is the characteristic feature 

of Tikhonov regularisation'techniques. Also typical is the fact that 

convergence is not obtained in the smoother space, but in the original 

rougher space (i.e. H rather than Zl ; L2(O,tl ;H) x H rather 

than W
Zl 

(0, t l ) ~, Z,) • 

5. This treatment may appear to be excessively complicated. The 

following motivatory remarks are intended to justify its introduction. 

Many of the linear parabolic equations one would wish to handle throw 

up problems which are ill-posed in the sense of Definition 2.32. 

Moreover these problems are usually not II stab1e ll wi th regard to 

approximation of data; comments on this notion of stability and a 

straightforward approach for use when it obtains will be found in 

Cea [1]. This desirable pr-operty is ensured for o'ur purposes by 

using the approach of Tikhonov. The fact that the regularised 

pseudo-inverse maps into a compactly embedded space is an advantage 
I 

in, the fixed point formulations to come. Moreover we ensure that 

any algorithm based on using a sequence of linear approximate problems 

to arrive at the fixed point makes sense; as each linear problem is 

well posed and IIs tab1e ll with respect to data perturbations. 

Other observations 

In the preceding, attention has been restricted to output operators 

C : L 2(0, t1 ;H) -+- Y •. This was done so as to obtain a natural setting for 

, the Tikhonov regu1arisation. As was previously noted, it is more appropriate 
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to consider C: W(O,tl ) + Y; or more simply C : L2(O,tl ;V) + Y 

These last two alternatives permit study of certain boundary or pointwise 

observations; though a useful, general theory of such systems remains to 

be constructed (for an indication of the difficulties, see Curtain 

Pri tchard [1 J, Chapter 8). In view of the rudimentary nature of even 

the 1 i near theory, these 'rna tters wi 11, for the mos t part, be ignored i rl' 

the present work. In the rest of this section we content ourselves with 

some remarks on these topics. 

Recall the system studied in (2.29), (2.30) 

dz + A(t)z = f 
dt 

z = 0 

inn x JO, t. [ 

on I: = an 

in n 

For a point b € n one wishes to define a cost functional 

t ' 

J 
1 2 2 2 

J(u) = (z(b,t) - Yd(t)) dt + e: IluliH ••• o . 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

where Yd € L2(0,t1;~) , € > O. The sensible definition of this cost 

function, however, is not always possible. 

" Examp 1 e 2.5 f. 

1 Take (2.39), (2.40), (2.41) and n c ~ ,A(t) = ~ the Laplacian 

a2
z • 1 0 2 1 ( ) (i.e. A(t)z,= ~ ) • Slnce HO(n) c C (0) , z(.) € L (0,t1;HO 0 ) 

. . 

implies that z(b,·) € L2(0,t1;~) • Hence the cost functional (2.42) makes 

sense. " 
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Example 2.53 

Take (2.39), (2.40), (2.41) and n to be the unit ball in ~3, A(t) = ~ 

Then it can be shown (see Lions [4J) that for f~. 0 there exists u E L2(n) 

with support on {x: Ilxlf 3 ~'1} so that z(O,·) I. L2(O,tl~) . 
1R 

One can make it so by restricting attention to a smaller class of admissible 

initial states •• 

Thus in Example 2.52 our lIinitia1 state to output ll framework (i .e. 
"'t that which gives rise to H of Definition 2.49) is still valid. o e:, Zl 

The framework including model error (i.e. (2.37)) is not valid as C is 
2 unbounded on L (O,tl;H). In Example 2.53 neither framework is valid; 

the lIinitial state to output" version can be recovered by restricting the 

set of admissible initial states to the (Hilbert) s~ace 

. I 2 - 2 U = {u u ~ L (n),z(b,.;u) E L (O,tl;~)} 

where U has the norm 

With this restriction, however," it is not clear whether one can find 

natural compactly embedded subspaces of U; thus the Tikhonov formulation ... 
cannot be used. One can, "however, construct a well-defined problem (2.39), 

"'t (?40), (2.41), (2.42) whose solution is given by OHe:,U(O'Yd) where 

'" H denotes the map o e:,U 



- I 

- 54 -

IV 
H U-+-UxY o E;,U 

IV 

H u -+- (u,z(b,·;u)) o E;,U 

and U on the right-hand side is, as is usual, given the equivalent 

norm E;21 1·1 Iu ' E; > 0". Thus we can, at-least theoretically, pose this 

problem in a linear least squares context; as the use of "theoretically" 

implies th~re are a number of numerical and computational questions whose 

answers are unknown (e.g. how to characterise U, how sensitive is 

the result to data errors). 

It is obvious that the study of boundary observation (and control) 

offers many possible research problems. One might, for instance, investigate 
2 the approximation of C € L(W(O,tl);Y) (or L(L (O,tl;V);Y)) by 

CE; € L(L2(0,tl ;H);Y) and appropriate (if any) notions of convergence. 

The main object of this thesis is to i'ndicate some ways of looking at 

non linear problems and not to find the best possible setting for linear 

sys terns wi th poi ntwi se observa ti ons . (or control). The above remarks 

should be taken as caveats in respect of the thesis' generality. 
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CHAPTER III A Non-Linear Theory 

Summary' 

This chapter begins with an introduction to non linear partial 

differential equations. This section is necessarily brief but aims to 

indicate sdme justification for the approach to reconstruction (and, by 

analogy control) problems adopted later in the chapter~ Further details 

will be found in Haraux [1], Henry [1], Lions [3]. In these later sections 

we indicate the use of the linear part, in conjunction with some fixed 

point theorems, to construct and prove theorems about a class of non-linear 

systems. Algorithmic, and other, aspects of these results are discussed 

in later chapters. 

3.1 Non linear evolution equati~ns 

The problems encountered i~ the study of non linear ordinary 

differential equations are numerous. Indeed, this is a currently acti've 

area of research. Some pathological (at least, by comparison with the 

linear case) phenomena which occur are indicated by standard examples, 

vi z. •. • 

Example 3. 1 

The solutions of linear evolution equations, such as are studied in 

Chapter II, can usually be extended for all positive time; this is 

certainly true of the semi group formulation. The same does not hold for 

. non-linear ordinary differential equations: consider 
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z(O) = a > a 

zet) - a for - 1-at O~t<l 
a 

(3.1) 

(3.2) 

Obviously this does not exist for all t > 0, but only for t 

sufficiently small. This problem of rapid growth, or "blow-up", is 

fundamental and cannot be excised by additiona,l smoothness or other such 

assumptions. 

Example 3.2 

The solutions of well posed (Hadamard) linear evolution equations are 

unique. Again this is not so even for non-linear ordinary differential 

equations: consi:der (for a E: ]O,l[) 

dz Izla crt = ; z(O) = a (3.3) 

this has the obvious solution z(t) = a Vt ~ 0; and also infinitely 

many other solutions; for any ~ > a take 

x(t) = 

1 ,where p = T:a · 

a for 

for t ~ T 

. . 
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In this case, the problem is one of insufficient smoothness as the right 

hand side of the equation is not Lipschttz continuous in' z . 

Additionally, of course, jt is possible to write down systems of non­

linear ordinary differential equations whi'ch do not have any solutions. 

Thus one is faced by n9n-exi'stent, rhJn-globa1, non-unique solutions; 

though not all at once. 

Infinite dimensional case: formulation 

Given a non 1i:near partial differential equation it is, at the very 

least, desirable to have an appropriate notion of solution, with which 

questions of existence and uniqueness can be studied. As in the linear 

case one has the usual problems of interpreting a formal expr,";sion: 

that is, one can search for strong,mi1d Oi' weak solutions. Moreover, 

non linearities often map one outside a given domain space. This is not 

an unusual occurrence in practical problems.: 

Example 3.3 

Consider the nonlinear map N: z ~ z2 where z is a real valued 

function on the interval [0,1]. 'Suppo~e that the desired range space 

is L2[0,1]. Then an appropriate domain space for N would be 
4 2 

L [0,1] c L [O~l] 

Another problem is that global Lipschitz conditions often do not 

apply. 

Example 3.4 

4\ 2 Consider N:L [0,1] ~ L [0,1], Nz = z2 as above, then there does 
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not exist k > 0 such that 

To provide some background we recall the classical result. 

Theorem 3.5 

Let Z be a Banach space, [O~t1] the time interval of interest 

and f: [O,tl ] x Z + Z be continuous. Assume also that f is locally 

Lipschitzian in z, uniformly with respect to t. Then VtO € ~O,tl[ 

and each Zo € Z 3 0 > a and a unique strong solution on 

[to,tO+o[ of the Cauchy problem 

(recall that by strong solution we mean a zC·) explicitly satisfying 

the differential equation (and initial condition)). 

Pf. Define 

F : z ... Zo + r f(s,z(s»ds 
to . 

for a. sma 11, enough 

sup I If(s,z)\ \Z ~ M < ~ • 
S € [ 0 , t 1 ] '\ .' .' . 

II z-zO II Z~a. 
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If M.o ~ a then F: B + B 
a a 

Also, by the local Lipschitz 

assumption, if a,o are small enough, F is a strict contraction from 

B to B • Hence the result by the contraction mapping theorem (see 
a a 

Appendi X 4) .• 

It can also be shown that if f is Lipschitzian in X (other 

assumptions as Theorem"3.5) then one can take to = a and 0= tl . As 

noted in Chapter I many systems can be viewed as a nonlinear perturbation 

of a linear part. Certainly this is true locally in time - by using some 

form of approximation - and often, as we have seen we may, only be able to 

define solutions locally in time and (state) space in any case. This type 

of non-linear equation is also more tractable analytically - for one can 

trade off the properties of linear and non linear parts against each other; 

for instance a smoothing property of the semigroup generated by the line,lr 

part against the "roughness" of the nonlinear part. Consider the equation 

i = Az + f (t , z ( t) ) ( 3 .4 ) 

where A generates a semi group S(t) on a Banach space Z. Hereafter 
. "' 

an equation such as (3.4) will be called semi-linear. Concerning a mild 

solution of (3.4), valid for all za € Z, there is the result of 

Segal [1]. 

Theorem 3.6'" 

If f satisfies the hypotheses of Theorem 3.5 then VZa € Z 

3 0 > a such that the (nonlinear) integral equation 
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z(t) = S(t)zo + J: S(t-s)f(s,z(s)}ds (3.5) 

has an unique solution in C([O,o];Z) . 

Pf. As Theorem 3.5. 

The assumptions on the nonlinearity can be restrictive: consider 

for instance 

Example 3.7 

Here we are concerned to formulate the nonlinear Schr8dinger equation 

. dz (I 12 1 dt + ~z = 9 . z }z (3.6) 

in. the SpaC(l ... Z = H2 ~n;~) where n = 2,3 • Now Z is an algebra 

included in Loo~n;~) (see also P.ppendix 1); this is.a consequence of 

( 0 denotes a) ax 

(3.7) 

- . 

{which is true for z E H2~n} n Loo~n)) and the fact that H2 embeds in 

Loo (for n = 2,3). In order that feZ) c Z it is enough to demand that 

9 E' CO QB.+) ,gl ,sg 1 1 (s) 00 + 
E L1oc~ } 

... '" 

This gives, for instance, that 

. dz k 1 12 1 at + ~z = z z (3.B) 

has .a '1 oca 1 solutio{l in H2@n) (n = 2,3) . 
'" 



- 61 -

Thus far we have seen how an integral, or mild, formulation for 

non linear partial differential equations can be constructed. Local 

existence and uniqueness results are then proven using fixed point 

arguments. Now it is appropriate to investigate the effects of varying 

the assumptions on the non-linearity, f, and the semigroup S(·) in 

(3.5) with a viev to proving more easily applicable theorems. 

Further resu1 ts 

Ofte~ f(t,z) in (3.4) is differentiable with respect to t and 

z thi s property can be used to re 1 ax other assumptions on f( · ,~) • 

Theorem 3.8 

Let f be differentiable from [0,t1J' x DCA) into Z. Assume 

also that the function 

. af af g(t,u,v} = at (u) + au (u,v) (3.9) 

. 
is locally Lipschitz: D(A) x Z + Z (uniformly in t). Then for 

Zo € D(A) . the equation (3.4) has an unique strong solution 

z(·) € C([0,6];D(A)) for some &.> 0 

Pf. see Segal [1]. 'The proof proceeds by setting v = ut . and studying 

the system 

u = v 
t. (3.10) 

Vt = Av + g(t;u,v) 

treated in the space D(A) x Z as a perturbation of the linear system 

'\ 

(3.11 ) 
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Obviously (3.11) generates a·(linear) semigroup 

(3.12) 

Versions of the preceding theorems are used to complete the result. I 

A recent example from the literature showing the use of this 

theorem is 

Example 3.9 

Arising from a mathematical model of liquid crystal behaviour studied 

by Dias we have the system ••• 

n cm3 ; n bounded with a regular boundary r 
'" 

az 2 . at - ~z + (z.h(t» z - (z.h(t»h(t) = 0 

z .~1 = 0 . on r 

on r 

2 3 az D(A) =. {z E: (H (n» :z.n1 = 0 on r, an x n1 = 0 on r} 
1 

where n1 is the normal to r 

(3.13) 
" . 

Then Theorem 3.8 may be applied to give a local existence and 

uniqueness result for any Zo E: D(A) • See Dias (additional references). 

As has already been stated, if the semigroup involved has a "smoothing" 

acti on then it. may be used to "smooth U the non-1 ineari ty; these comments 
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are most appropriate in regard to linear parabolic parts and the 

corresponding analytic semi groups - with reference to Appendix 2 

(for definition of sectorial, Za etc.) we may state 

Theorem 3.10 

Let -A be a sectorial operator, a € [0,1[ and f: U ~ Z where 
. + a . 

U is an open subset of R x Z • Assume also that f(t,z) is locally 

Lipschitz (in (t,z)) ; then for any (to'zO) € U.l 0·= o(to'zO) > 0 

such that (3.5) has an unique solution z(·) € C([to,to + o];Za) . 

Pf. exactly analogous to that of Theorem 3.5 

In this case, by assuming additional smoothness on f (most usually 

that t ~ f(t,z) is locally H~lder continuous) one can show the existence 

and uniqueness of strong solutions; i.f:" solutions which satisfy the 

differential equation (3.4). In the present work, as has already been 

noted in Chapter II, we prefer to work with mild solutions which involve 

spaces more appropriate to' our formulation of the estimation (and con~ro1 r 
problems. Some examples from the literature will illustrate the use of the 

above Theorem. 

Example 3.11 

Consider (cf. Navier-Stokes) the system 

... 2 

. ~ + z ~ = a z + f(t z) at ax;;Z , 
(3.14) 

,z(O,t) = z{w;t) = 0 
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where f:lR+ x lR +lR is locally Holder continuous in t and locally 
IV IV 

Lipschitz in z with \f(t,v)\ ~ g(t,\vl) where g is continuous and 

increasing in the second variable. 

2, d2 
Now take Z = L (O,1r) ; as in Example 2.15 we have A:: --2 

dx 

with domain H2(0,11") n H~(O'11") and D(A~) = H~(O,rr}. It can now be 

shown that 

where F(t,~)(x) = _~(X)~I(X) + f(t,~{x)) 0 < x < 11" satisfies the 

hypotheses of Theorem 3.10. Thus (3.14) has a mild solution in 
1 C([O,o];HO(O,11")) for some 0 > 0 • 

Example 3.12 
.-.-

Consider the system 

az a2z' 2 
-=~+z-z 
at axf.-

z(O,t) ,= z(l,t) = 0 

1 Suppose z(x,O) = zO(x) ~ 0 on 0 ~ x ~ 1 where Zo € HO(O,l) 

'Then a standard maximum principle argument (see, for example, Protter 

and Weinberger [1]) gives that z(·,t) ~ 0 for all times t, in its 

interval of existence; moreover, the solution can be proven to exist 

for all t ~ 0 • , 

One can go on to study many other aspects of the solutions in 

. . 

Theorem 3.10; for instance smoothness of parameter dependence, asymptotic 
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stability of certain solutions (e.g. zero solution in (3.15)), periodic 

solutions. These directions will not be pursued here; although they are 

obviously of relevance to certain control and estimation applications. 

So far, we have considered mild solutions lying in C([0,t1];Z) 

for some tl and Z. The integral formulation (3.5), however, can be used 

to define notions of solution lying in more general spaces (e.g. 

Lr ([0,t1];Z) for some r,tl and Z}. Thus one can hope to include 

larger classes of non-1inearities; and also provide a framework more 

suited to certain classes of control, estimation and optimisation problems 

where such spaces occur naturally. Much work has been done in this 

direction; the next· theorem gives an example due to Ichikawa-Pritchard [1]. 

See also Kato-Fujita, Weiss1er (additiona' references). 

Theorem 3.13 

Let V ,Z, ,Z2 be Banach spa,ces wi th V c Zl ; and 
+ a,b,P1,P2,q,r,s,tl € ~ satisfying P1 ~ r ~ 1 , P2 ~ q ~ 1 

111 s ~ 1 - = - + - - -1 As s ume a 1 so , r q s 

i) S(t) € L(Zl'V) n L(Z2'V) for t > 0 with 

II S ( t ) z II V ~ g 1 ( t) II z II Z t > 0 V Z € Zl and 
1 

IIS(t)zllv ~ 92(t) Ilzllz t > 0 Vz € Z2 
. , 2 

P1 P2 
where ~ g, € L (0, t1 ~) ,g2 € L (0, t1 ~) 

ii} f: V ~ Z2 is such that z(·) € Ba defined by 

Ba 5' {z(·) € Lr (0,t1;V) : I Iz(·)1 I r ~ a} implies that 
. .. L (0, t, ; V) 

f(z(·)) € .Ls (O,t1;Z2) and3 b Ilf(z(·))11 s ~ b 
L (0, t1 ;Z2) 

. . 
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iii) Ilf(z(-))-f(;(-)}11 s ~ k(llz(-}11 r ' 
L (O,tl ;Z2) L (O,tl;V) 

I liCe) I I r )1 Iz(-)-2(-)\ I r 
L (O,tl;V) L (O,tl;V) 

+ + + where k:lR x m -+ R , conti nuous, symmetri c and such 
"" "" "" 

iv) for z(-), z(-) € Ba 

Then· there exists a solution of (3_5) in Lr(O,tl;V) (unique in B)_ . a 

Pf_ The objective is to apply the contraction. mapping theorem (see 
. I t 

Appendix 4) to the map ~:(~z)(t) = S(tJzO + JoS(t-T)f(Z(T»dT. First' 

we show that ~:Ba -+ Ba -

By i) and ii) 

Viewing th~ second term on the right hand side as a convolution 

(92 ~ L q(o. tl ~) .11 fez) II Z2 ~,L S, (0. tl ~» ; see Dteudonne (addftiona 1 

references) p_29l_ Hence we obtain 

'\ . 
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From ii) and v) we conclude 

Next, it is required to show that ~ is a contraction on Ba . 

Consider ~z - ~Z for z,z € Ba; by the same "convolution technique" 

as used above one obtains 

By using iii), iv) 

where K: 0 '< K < 1 • 

Thus,by the contraction mapping theorem, ~ has an unique fixed point 

in Ba .• 

. , 

The mild solution used in this theorem (i .e. i.n Lr(O,tl ;V) can be 

related to that used in the preceding theorems (i.e. C(O,tl;V)) by the 

following .. 

'\ 
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Coro 11 ary 3. 14 

Suppose, in addition to the hypotheses of Theorem 3.13, that 

S(t) € L(Z2,Zl) for t > ° and satisfies 

IIS(t)zllz ~ g3(t) Ilzllz 
1 2 

where 

and 

1 1 
P3: P3 + s = 1 • 

Then the solution proven to exist in Lr (O,t1;V) by Theorem 3.13, 

also lies in C(O,t1;V) . 

Pf. see Ichikawa-Pritchard [lJ. 

The local Lipschitz condition iii) in Theorem '3.13 is more general than 

is usual since two different spaces are used. In the case that these 

spaces are distinct, the contraction ~roperty on Lr (O,t1;V) would be 

expected to result from some smoothing action of the semigroup S(t) • 

With the aid of the above formulation and further regularity results one 

can investigate solutions which are global in time. Typically one obtains 

a ball of initial statessuch that solutions starting there can be extended ... 
for all time. The size obtained for this ball makes precise the standard 

;lIfor II ~O II suffi ci ent1y small ••• II statements • All these aspects are 

studied in Ichikawa-Pritchard [lJ. Fpr future reference, this section 

concludes with an example drawn from this paper. 
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Example 3.15 

Recall Example 2.13 with a = 0 and a non-linearity f1(z,i) , 

that is 

i + Az + f 1(z,i)'= 0 

i (0) = zl ; ,z (0) = zo 
(3.16) 

Let A be as in Example 2.13, then by augmenting in the standard 

fashion we obtain a semigroup S(t) on the product space O(A~) x H . 

The non-linearity is taken to be such that 

(z,i) J+ (0 , f1 (z,i)) 

The semigroup in this case does not smooth the space O(A!) x H (as 

has been previously stated, this is a ,typical feature of hyperbolic, as 

opposed to parabolic-problems). However, in this case we can take 

advantage of the special structure of F. 

Suppose that f1 : O(A!) x H ~ H satisfies 

II f 1 w-f 1 w II H!S: k (II w II 1 , II w II 1 ) ·11 w-w II 1 
D(A~)xH D(A~)xH , D(A~)xH 

then 

II Fw-Fw II 1 !S: k ( II w II 1 , II w II 1 ) ·11 w-w II 1 
, D(A~)xH D(A~)xH D(A~)xH . D(A~)xH 

. . 
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Hence, with V = Zl = Z2 = D(A~) x H, Theorem 3.13 applies, with 

k(.,.) < 1 on Ba' for any r ~ 1 . By the corollary the solution 

obtained is also in C(0,t1;D(A~) x H) . 

Examp 1 e 3. 16 

By analogy with 2.14, this is a special case of the preceding. 
3 Consider the following system for x € n c~ where n is open bounded, 

subject to the appropriate smoothness conditions on an 

Ztt = Zxx + f1(z'Zt) 

Z' an = 0 

i(O) = zl ; z(O) = Zo 

(3.17) 

2 We take H = L (n;l~) (cf. Example 2.14), A defined as in Example 2.14, 

and so D(A~) = H~(n) • Candidate non-1inearities 

f1 D(A~) x"H ~ Hare 

f1 (z~Zt) ~ za fo~ 1 S a < 3 (~ee Appendix 1) 

or f1 : (z,Zt) ~ DazllzllP1 lal S 1 , Vp ~ 1 
" H 
"where Da is a differential operator. 

Again fr~m the results in Appendix 1, if n c~ then one can consider 

f1 (z,Zt) ~ za 

or f1 (z,Zt) ~ zaZt 
"\. 

for 1 S a < 00 

for 1 S a < 00 
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and hence impose condi ti ons so as to ensure sa ti sfacti on of the 1 oca 1·· 

Lipschitz and contraction requirements. 

Note that the emphasis in these last results (Theorem 3.13, Corollary 

3.14), is on solutions which are "local in initial states" as well as 

local in time. That is~ one searches for solutions which may only be 

defined for initial states in some ball, whose size may.be proscribed. 

This differs markedly from previous work where one is concerned to define 

solutions globally. The need for such restrictions will now be indicated. 

Pathology of solutions 

In (3.1), (3.2) we have displayed an example of Ib1ow-up" for a non-

linear ordinary differential equation. The same phenomenon also occurs 

for non-linear partial differential equations. 

Example 3.17 

2 az _ a z + z3 
at - ax2 a < x.< ~, t > a 

z(O,t) = z(~,t) = a 

If I IZol I i is sufficiently small it can be. shown that the 
HO (0, ~;~) 

(strong) solution z(·,t) exists Vt > a (and even tends to zero as 

. . 

t ~~); see, for instance, Henry [1]. Suppose now that I IZol I 1 
HO(O'1T;~) 
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is not small; in particular, that 

and 

Arguments based on the maximum principle (see Protter-Weinberger [lJ) 

show that z(x,t) ~ 0 for x € [O,TIJ , t on the interval of existence. 

Now set 

g(t) = fTIZ(X,t) sin x dx 
, 0 

so 

d fTI 3 %t = - 9 + OZ (x,t) sin x dx • 

Holders inequality gives (using '(sin x)1/3.(s,in x)2/3) 

g(t) ~ 22/3 (ITI
z3(x,t)Sin x dx)1/3 

o . 

and thus the differential inequality 

for t > 0 

This differential inequality can be u.~ed to show that g(t) -+ + 00 in 
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finite time (in fact: at, or before, ~ log«g(O)+2)/~g(O)-2))) . 

Further analysis of this example can be found in Ichikawa-Pritchard 

[1] which gives an estimate for the region of asymptotic stability. 

The use of techniques such as those above indicates either a. that 

the solution blows up, or b. that the solution has a maximal interval of 

existence strictly less than the blow-up time. From our present, 

pragmatic, point of view both these phenomena will be regarded as 

"so1ution patho1ogies". The following two theorems indicate for two 

archetypal equations (the wave and heat equations) when _such pathologies 

occur. See Ball, [1], for a detailed discussion of these results. 

Both these theorems are stated with the understanding-that reasonable 

assumptions have been to ensure the existence of a solution; perhaps 

only locally in time and for small initial data. 

Theorem 3.18 (John) 

Consider the non-linear wave equation in ~3 

Ztt - 6z = f(t,z) 

3 
t~O,x€1R 

IV 

(3.18) 

. . 

subject to f(t,s) ~ blsl P where b > 0 and with compactly supported 

initial dat~.If 1 < p < 1+/2 any solution of (3.18) is Ipatho1ogica1" 

as defined -above. This condition is sharp in that if f(t,x,s) = Isl P 

with p > 1 + 12 then the solution exists for all time, as long as the 

-initial data is sufficiently small. " 

Pf. see John [1]. 
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This result has been extended by a number of authors (e.g. Glassey, 

Kato). For instance Sideris has shown that, on ~1 , pathologies develop 

Yp > 1 (here the proof turns on the fact that the solution of Ztt = zxx 

with same initial data (as the non-linear problem) does not decay uniformly 

to zero). 

Theorem 3.19 (Fujita) 

Consider the non-linear heat equation 

Zt - f:.z = f(t,z) 

n 
t~O, xe:1R 

tV 

Z(x,O) = zO(x) ~ 0 

(3.19) 

subject to f(t,s) ~ blsl P where b > 0 and with compactly supported 

initial data. 

If 1 < p ~ n+2 any solution of (3.18) is I pa thologica1", as 
n 

defined above. 

p n+2 I 

This condition is sharp in that if f(t,x,s) = s with p >~ , 

then the solution exists for all time, as. long as the initial data is 

sufficiently small. 

Pf. see Fujita:[lJ. 

These results point to some fundamental restrictions on modelling 

with non-linear partial differential equations; and that, in general, it 

is only reasonable to ask about solut.ions defined for sufficiently small 

initial data and. intervals of time. 
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Philosophical issues 

Since we hope ultimately, even if not in this thesis, to address 

control and estimation problems of practical significance, it is worth 

asking "given a system of non-linear partial differential equations 

derived by modelling physical reality, what is implied by the restrictions 

on the (mathematical) solution noted above?" For instance we might not 

expect a well-behaved physical reality to blow-up at, or fail to exist 

after, some time (this is not a Berkeleyan justification for the C.N.D.). 

Additionally, if we have a good model we would surely expect it to be valid 

for a variety of initial states. 

The justification adopted by the author is that all modelling involves 

approximation. That is, to arrive at any model, assumptions descriptive of 

some particul ... :!r regime of operation have been made. The model cannot· 

reasonably be expected to provide a good approximation outside of this 

regime. "Blow-up" may indicate a trclnsition to some qualitatively different 
I 

behaviour. Such transitions are not unknown in non-linear systems; 

probably the most well-known example is the onset of turbulence in fluid 

flow. From this viewpoint it is not unreasonable to pr'oduce models which 

have only "l ocal meaning" (i .e. local in time and states). The above 

restrictions on the notion of solution are thus consistent with this 

interpretation of modelling. 
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3.2 Reconstruction for non-linear systems 

This section considers the problem of reconstructing the 

state of a system, governed by a non-linear evolution equation, given 

the available measurements. The approach is entirely analogous to that 

of the preceding section. There the properties of the linear part, the 

semigroup, were used to construct a representation - the mild solution, 

by variation of constants - and to assist in the investigation of its 

properties (viz. the trade off between the smoothing action of the 

semigroup and the non-linearity). In this section our knowledge (see 

Chapter II) of linear state reconstruction is used to cast the non-linear 

problem as a fixed point one. Standard fixed point theorems are then used 

to obtain the desired results. First we provide some justification for 

the formulation. 

Formul a ti on 

Here, and subsequently, the non-linearity is taken to be autonomous, 

i.e. time independent; it will thus be a function of the state alone. 

This assumption is not a major restriction - it can easily be removed - it 

merely serves to simplify the presentation. More contentious, perhaps, is 

the assumption that the linear. part also is time invariant. Thi~ again, is 

not intrinsic, ~or the methods can straightforwardly be extended to cover 

the evolution operator case. It is rare, however, for linearisation to 

yield a time invariant linear system; in general. one linearises about 

some time-varying trajectory. The present aim is to demonstrate the 

techniques rather than prove the most general theorem possible. 
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. Suppose, then, that we consider the evolution equation 

i = Az + f( z) (3.20) 

with observations 

y = Cz (3.21) 

where C is a linear output operator, and A generates a semigroup 

S(t) • The linear part 

i = Az 

(3.22) 
y = Cz 

gives rise to the "initial state to output" operator on [0, t l ] 

(3.23) 

Suppose that the 1 i near system (3.22) Ii s conti nuous ly i ni ti ally 

observable with resp~ct to some space Y; then Hal (or 'Hl 

as it is' called in the discussion preceding Definition ~.40) exists. 

Consider now a mild solution of (3.20), given, if it exists, by 

. . t 
z(t)' = S(t)zo + I S(t-s)f(z(s))ds 

. 0 
(3.24) 

then operat.fng on both sides by C one has 

yet) = CS(t)zo + CltS(t-S)f(Z(S))dS 
. 0 

(3.25) 

, 

. . 
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Thus by rearranging (3.25) we have 

and substitution of (3.26), for' Zo in (3.24), gives 

z(t) = S(t)Hc;J(y(o) - Cf~S(o-S)f(Z(S))dS) + 

f:S(t-S)f(Z(S))dS 

(3.26) 

(3.27) 

The right-hand side of (3.27) is used to define a map ~ acting on the 

"trajectory space". Note that C(~(z))(t) = y(t) . Hence a fixed point 

of ~ will be consistent with the original dynamics and output equation. 

The rest of this chapter will be concerned with making this general approach 

rigorous, i.e. proving existence (and, in some cases, uniqueness) for 

such fixed points. The maps, whose fixed points are sought, are constructed 

from some known linear reconstruction prob1em~ whilst regarding the non­

linearity as a known perturbation. When the real non-linearity is inserted 

one obtains a map whose fixed points will be trajectories consistent with 

the original non-linear equations. This might be regarded as the estimation, 

(or, by duality, control) version of the .so-ca11ed "5chauder 1inearisation 

procedure". To prove results in this area we need, as in section 3.1, 

conditions on the linear part, the non-linearity and their interaction. 

Contraction mapping result 

Take the.map ~ defined by 

(~(Z))(t) = S(t)Hol(y(o) - CfoS(o-S)f(Z(S))dS) 
\ t . a 
+ f 5(t-;)f(z(s))ds • • • a . (3.28) 
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where HO is taken as mapping from Zl to Y , and is invertible --

i.e. linear part as a system on Zl with output in Y is continuously 

initially observable. 

The following result is patterned after Theorem 3.13. 

and 

let V, Zl' Z2 be Banach spaces with V c Zl ; 
+ a, K, Pl' P2' q, r, R, s, tl € ~ 

sa ti s fyi ng Pl ~ r ~ 1 , P2 ~ q ~ 1 , s ~ 1 , 

111 - = - + - - 1 • Assume also r q s 

i) S(t) € L(Zl'V) n L(Z2'V) t > ° 
II S ( t) z I lv ~ g 1 (t) II z II Z t > 0 Vz € Zl 

1 

IIS(t)zllv ~ 92(t) Ilzllz t > 0 Vz € Z2 
2 

P - P2 
where 91 € L 1 (0, tl ~) , g 2 € L ( 0, tl ~) • 

i i) R > 0 is such that 

IlcI·S(.-T)Z(T)dTll y S Rlizil s 
o L (O,tl ;Z2) 

and 

. . 

where ~ is the space for which continuous initial observability holds. 

ii,i) f : V -+- Z2 is such that 

II f (z ( • ) )-f (z ( • ) ) II s ~. k ( II z ( · ) 1\ r ' 
L (O,tl ;Z2) . L (O,tl;V) 

~Jli(·)11 r )llz(.)-z(·)1I r 
L-(O,tl;V) L (O,t1;V) 

\1 

\ 
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where k: m+ x m+ -+-m+ is conti nuous, symmetri c and such that 
'U 'U 'U 

such that for z,z.€ Ba 

k( II z II r ' II z \I r ) ~ K < 1 
L (O,tl;V) L (O,tl;V) 

Then: the state of the system described by (3.24) can be reconstructed 

given an output, y, satisfying 

(3.29) 

Pf. TIle .objective is to apply the contraction mapping theorem (using the 

second form in which it appears in Appendix 4) to the map ~ defined by 

(3.28). First we show that ~ is a contraction on Ba . 

II ~z~~z II r' ~ II g1 II r . • 
... L (O,tl ;V) L (O,tl~) 

IIH~l II IlcJ·S{.-T)(f{Z{T))-f{i(T)))d~lly + 
. L{Y,Zl) 0 

+ II g2 11 q II f (z) - f (z) II s 
. L (0, tl ~) . L (0, tl ; Z2) 

'\ 
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using the "convo1ution argument" 

s (R II HO 111 L( Y Z ) 1191 II r + 119211 q ) • 
, 1 L(O,t1~) L(O,tl~) 

Ilf(z) - f(z)11 s 
L (O,t1;Z2) 

by ii) 

k(llzll r ,llzll r )llz - zll r 
L (O,t1;V) L (O,t1;V) L (O,t1;V) 

using iii). Finally, from iv) we conclude 

. , 

Hence ~ is a contraction on Ba. 

In accord with the second form of the contraction mapping theorem we 

take 0 = Ba ' Wo = O. Then the ball S is given by 

Hence for . zl € S 
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which yields, by i) and (3.29) 

and so SeD. 

Thus the hypotheses of the second form of the contraction mapping 

theorem are satisfied and so ~ has an unique fixed point in Sa. I 

Exactly as in Coro 11 ary 3.14, an addi ti ona 1 smoothi ng hypothes is 

on the semigroup gives a more regular solution, viz .•.• 

Corollary 3.21 

Suppose, in addition to the hypotheses of Theorem 3.20, that 

Set) € L(Z2,Zl) for t > ° and satisfies 

where 

and 

p :_1 +1=1 
3 :P3 s 

Then the solution proven to exist in Lr(0,t1;V)~ by Theorem 3.20, also 

lies in C(0,t1;V) . 

Pf. using the map ~ of (3.28) instead o~ the mild solution (3.5), 

one follows the proof of Corollary 3.14 as in Ichikawa-Pritchard [1]. 
'\ 
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Example 3.22 

With reference to Example 3.16 we consider the.non-linear wave 

equation in one dimension and illustrate Theorem 3.20. 

Ztt = Zxx + fez) 

z(o,t) = z(l~t} = a 

z(.,O) = zoC-};ZtC-,O) = zlC-) 

2 1 Az = - zxx ' DCA) = H (0,1) n HO(O,l} 

and Q is defined as in Example 2_14. 

C3.30} 

The semi group generated by Q has the explicit expression given 

in Example 2.14_ : 

where ~n = sin nTI~ • 

Suppose we have an observation of the form 

J
l . 

yet) = oC(X)Zt(x,t)dx 

00 

where c(x)..;:: l: cn~n(x}, cn = <c'~n> · 
n=l 

Such a c(x) could be used, for example, to model a local spatial 

. . 

(3.31) 

average of the time derivative, as an approximation to measurement at a 

point. Obviously one must require that. cn fa, for all n., so as to 
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obtain observabi1ity. The time interval of interest is [0,2J 

i.e. t1 = 2 . ,Suppose now that the output space Y consists of 

functions y(.) which can be expressed as 

00 

yet) = r (an sinn~t + b cosn~t) 
n=l n 

From Definition 2.40, we have that the linear part is continuously 

initially observable, when Y is normed by 

(3.32) 

(3.33) 

For instance, if cn ~ ~ then Y is equivalent to H1(0,2) (cf Curtain­

Pritch~ td [1]). 

Now 1 et F rWW21 = PwO~] ~ ~ and make the choices 

Zl = V = D(A~) x L2(0,1) 

Z2 = D(A) x D(A~) 

P1 = r = 4 ; P2 = q = 4/3 ; s = 2 

gl = g2 = 1 (constant) . 

Th en, ta kin g... z·~ 1 €: L 4 (0 , 2 ; D ( Ai) x L 2 ( 0, 1 ) } 
w2 . . 

and using the fact . [W] 

that (see Appendix 1) H~(O,l) which is D(AI)., is a Banach algebra 

under pointwise products we have 'w1(t) € D(Ai) , o ~ t ~ 2 

~ 
1 
1 

! 
1 

I 
:~ 
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and so 

wlC·) € L4(0,2;D(A~)) which implies that 

2 2 ~ w1(-) € L (0,2;D(A )) • 

Hence it makes sense to'write 

and, similarly, to coriclude that iii) of Theorem 3.20 holds with 

k(e l ,e2) = y{e l +e2) for some constant y > 0 • If we let 81 denote 

IIH011IL(v,Zl) and B2 = (RB1+l)2y then the non-linear observer can 

be constructed for _ \\y\\y~ a8,1 (l~a82). This expression has its. 

1 ·11 . 
maximum when a = 2S: ' i.e. \ Iy\ \ ~ 4~ ; this corresponds to 

2 1 2 

a contraction constant of K = ~ (we need 82a ~ K < 1 ). Note that 

as· 81 decreases (i nc~eas i ng II amp 1 i fi ca ti on II in output channel), the ball 

in the state space reaches a limiting upper size. This is consistent 

with results concerning the non-existence of solutions to (3.30) for 

arbitrarily large times and initial data. 

The use of Theorem 3.20 depends either on exploiting a smoothing 

action of the semi group or, as in Example 3.22, a particular structure 

possess~d by the non-linearity. The formulation has been designed to allow 
'\ 
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large classes of non-1inearities, with the restriction as noted before 

that only local results are obtained. It is possible to expend much effort 

on improving the bounds in (3.29). For instance, one could first stabilize, 

for instance by linear feedback, the linear system so that the semi-

group S(·) has bounds 

1\ S ( t) II s Me -w t w > 0 • 

Hence a is increased and so is the size of the ball in Y. It is also 

possi b 1 e to use other fi xed poi n t theorems ina formu1 a tion closely 

related to that of Theorem 3.20. Here we choose only to present ari 

application of the Schauder fixed point theorem. Applications of the 

(set-valued) Bohnenb1ust-Kar1in theorem in both its weak and its strong 

versions will be found in Carmichae1-Pritchard-Quinn [1]. 

Schauder-based result 

Recall the map <I> of (3.28) along wi'th· the continuous initial 

observabi1ity assumption on the linear part - just as preceded Theorem 3.20. 

Theorem 3.23 

Let" Zl' Z2 be Banach spaces; and p,a,s,s' ,t1 , R,K € ~+ such 

that p ~ s' , s'~ 1 l + l. = 1 . s s 

Assume also 

i } t > 0 
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is continuous and 

where p (.) .: ~+ + ~+ is continuous and p(a) + 0 as a + 0 . 

t 
iv) JoS(t-T)f(_)d-r:C(O, t, ;Z,) + Z, is compact 'v't € [0, t,] 

the map from C(O,t,;Z,) + Y defined by 

z(o) + CfoS(O-T)f(Z(T))dT is compact 
.. - 0 

such that 

(RIIH(jlIIL(Y,z ) liSCo) II sup LCZ) 
, [O,t,] ., 

+ II g II s I . ) sup p ( a) ~ K <, · 
L (O,t,) a~a 

.Then: the' state of the system described by (3.24) can be 
... 

recon.structed, given an output, y, satisfying 

Ily II Y ~ -1 a (' - K) 
, 1IHo IIL(y,z )11?(·)llsup L(Z) 

, [0, t, ] 1 

.' II> 

. . 

(3.34) 

: 
, ~ 



- 88 -

gives, by i), iii) 

and using ii), iv) we have 

s 115(" )11 sup L(Z,l II HO '11 Ley ,Z, ) Ily II y + 
[0, t1 J 

:RI IHo'IILCyz)1 15(0) sup LeZ) + 11911 s' ]osup p(e)a 
'1 [o,t

1
J' 1 L (0,t1) e~a 

~ a(l-K) + Ka , by v} and (3.34) 

~ a • 

Hence ~ maps Ba , a closed convex subset of a Bana~h space, into 

itself. To show ~ continuous we compute 

• f 

11~(z+h) - ~(z)llC(o,t· ;Z ) S CRI IHo' I ILey ,2.)li sCO) I I sup L(Z) + 
11 [0,t

1
J -1 

Ilgll s' )1 If(z+h)-f(z) II s 
L (.0 , t 1) . L (0, t1 ; Z2 ) 

and, by ii),' ~ is continuous. 
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Lastly it is required to show that ~ maps Ba into a precompact 

subset (of Ba) • Here we need iv) and the function-space valued version 

of the Arze1a-Asco1i theorem. Consider first the operator 

I
t . 
o S(t-T)f( _ )dT : C(O,t;1,} + 1, 

t .. to 

I II S(t-T)(fz)(T)ds - I S(to-T)(fz}(T}dTI 11 ~ 
00' 

to 
I I (Set-tO) - 1)1

0 
S(to-T}(fZ}(T}dTll

z1 

+ 11ft S(t-T)(fz}(T)dTI Iz 
to ' 

to 
~_lleS(t-to} - 1)fo S(to-T}(fZ}(T)dTll

z1 
+ 

The map E: ~ x 1, + 11 (t,z) + S(t}z is continuou~. Let 1c 

. I 

be a compact subset of 1,. E is uniformly continuous on [O,t1] x 1c • 

By iv) the image of Ba under the map 
t . 

I 0 S(tO-T) f( _ )dT is compact. Thus 
o. . . 

~ to . 
I I (S(t-tO) - 1)fo S(tO-T)f(_)dTllzl"'O 

as. t + to ' 

as t +.to • 

Un i form 1 y on B a.· Ad d i t ion a 11 y , II g II s I + 0 
L (to,t) 

Thus we can conclude equicontinuity from the right for 
). 
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Now we need to show equicontinuity from the left: take t > £ > h > 0 

Now let h + 0 and then £ + 0; from ii) and iii) we hale 
t . 

that J S(t-T)f( )dT is equicontinuous from the right on B o -a 
t 

N~ we need to show that· J~(t-T)f(_ )dT acting on Ba is 

uniformly bounded (as a map Ba + C(O,tl;Zl)) Consider 

, ... -: 

s \\g\\ s' sup p(e)a · 
L (O,t,) e~a 



- 91'-

. Hence the uniform boundedness; thus we can use the function space 

valued version of Asco1i-Arze1a (see Martin [1]) to conclude that the 

image of Ba , under J:S(t-T)f( _ )dT ,is compact in C(O,t1;Zl) . 

An entirely analogous argument can be applied to the term ~2 where 

(We use the second part of iv) and the strong continuity of Set) exactly 

as above to conclude equicontinuity of the set ~2(Ba)) • 

Hence ~(Ba) is compact in C(O,t1;Zl) and so the conditions 

of the Schauder theorem are satisfied; thus there is a fixed point of 

~ in Ba.' 

As (a somewhat artificial) example of this result's application 

recall Examples 2.14,2.45 and 3.16 and consider 

Example 3.24 

z(O,t) = zCl,t) = 0 

C : DCA!) x L2(O,l) + L2(O,l) 

C ..... (t. ) 
·z + .Zt. 

t 
(cf Example 2.45; continuous initial 

observability by duality) 

F 

F C(O,t1; D(A!)xL2(O,l)) + L2(O,t1;D(A)xD(A!)) 

'\ 
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one has that ii) (for F) is satisfied with p(e) = c for some 

con~tantc (cf Example 3.22, the contraction case). Moreover 

Jt Jt 2 II S(t-T)(FW(T))dTII 1 s liz II 1 ds 
o D(A)xD(A~) 0 D(A~) 

t 
s J IIwll2 

o D(A~)xL 2(0,1 ) .. 

gives that JtS(t-T)(F w(T))dT is bounded in D(A) x D(Ai) if w(·) 
. 0 

is bounded in C(O,tl;D(A~)xL2(0,1)). Now D(A) (resp. D(A~)) is 

compactly embedded in D(Ai) (resp. L2(0,,)). Thus J:S(t-T) (F w(T))dT 

is compact from C(0,tl;D(A~)xL2(0,1)) to D(A~)xL2(0,1). Using the 

fact that J~S('-T)(F w(T))dT € C'(O,t,;D(A)XD(Ai)) we. have 

cJ~S('-T)(F w(T))dT € C'(O,t,;D(Ai)) and thus, by Appendix " compact 

in L
2

(0,tl ;L2(0,1)) as required. Proceeding analogously to Example 3.22 
I 

we have that a non-linear·observer can be constructed for 

I Iyl Iy s asil(1-aS2) for appropriate constants Sl,S2. This gives a 

fixed point of ~ in· {z : I Izi I . . ~ 2 s a} · 
C(O,t1;D(A )xL (0,1)) 

In general,· the compactness hypotheses of iv) will be satisfied 
... 

either because a. the operator f is compact, or b. the semigroup 

S(·) smooths the space Zl. In both cases one tries to show that 

t . 
J OS (t-T) f( _ )dT is bounded from C(O, t, ;Z,) into Zo where Zo is 

; I 

I' 
I 
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compact in Zl; additionally one needs to show that cJ~S('-S)f(Z)dS 

is compact when considered as a ,map from C(O,t1;Zl) + Y. Provided 

Y can be characterised precisely then one may be able to proceed as 

before (i.e. showing that image lies in some compactly embedded subspace 

of V). Consequently, the known embeddings (Appendix 2) are of great 
., 

importance in the analysis. In addition, it may be possible, using the 

theorem of Riesz-Tamarkin (sometimes ascribed to Frechet-Ko1mogorov), 

which is the LP analogue of Asco1i-Arze1a, to consider looking 'for fixed 

points in spaces such as LP(O,t1;Z) . 

Some critical comments 

The examples above concern hyperbolic partial differential equations. 

This is ',0 coincidence. For 1ineat' parabolic systems (at least without 

additional manipulation) continuous initial observabi1ity rarely obtains. 

In fact one has .•• 

Theorem 3.25 

Consider the observed system (2.18), (2.19) where A generates a 

strongly continuous ~emigroup S(t), t > 0, and r C is bounded. If 

we have continuous initial state observabi1ity for some t1 > 0 i.e . 

.3 y € lR+ such that 
'V 

for some p, 1 ~ p < 00; and if for. each t ~ 0 the range of S(t) is 

dense in Z then .S(t) can be extended to a strongly continuous group 

of bounded operatorsop -00 < t < 00 
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Pf. See Dolecki-Russell [1]. 

The results (Theorems 3.2 and 3.23) we have seen demand that' HO 

be boundedly invertible on y(.) - cJ~S(.-S)f(Z(S»dS. As the ~bove 

result makes clear, for a large class of systems (including, at least, 

linear p~)rabo1ic ones), this cannot be so when Y = (p(O,t1;Y) .' The 

standard procedure (Dolecki-Russell [1] has the most complete discussion 

of these points) is to restrict attention to the range of HO ' i~e. 

take Y = 'range(HO) and then to define a topology on Y which makes 

Hal continuous. Generally this topology will not be equivalent to. the 

relative topology on range(HO) inherited from LP(O,t1;Y). The most 

obvious, and robust, way of ensuring that y(.)-cJ·S(.-S)f{Z(S))dS € Y 
, 0 

is to demand that both y(.) and cJ~S(.-S)f(Z(S»dS lie in Y 

This is a somewhat stringent requirement; one is in effe:t asking that 

both y(.) and cJ·S(.-S)f(Z(S))dS are given by CS(.)zO for some o . 
ZOIS. In order to make sense ~f the results obtained when the system is 

I 

initially observable, but not continuously initially observable, with 

respect to LP(O,t1;Y) (and so Y is taken to be range(HO)) we must 

then impose some pos'teriori verifi~ation.condition(s) on the fixed 

point(s) obtained. These conditions will be designed to tell us whether 

or not the fixed:point(s) obtained make sense in terms of the original 

problem (3.20), (3.21)·. ,Such investigations are being performed, but will 

not be discussed in this thesis. The first part of Chapter 4 presents an 

al ternative way of resolving some of these problems using an optimi'sation 

approach. The remainder of this chapter will be devoted to further 

exploration of the formulation used in Theorems 3.20 and 3.23. 
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3.3 More applicable non-linear functional analysis 

The theorems which have just been applied (contraction, 

Schauder) are probably the best known of the fixed point results developed 

by mathematicians over the last-50 or 60 years. Many other results are 

available and are potentially applicable to the ~ of (3.28). Here, 

without any claim (or aim) for completeness the use of two other such 

results is indicated. Further details will be found in Carmichael-Pritchard-

Quinn [1] (in addition to Bohuenb1ust-Kar1in) and [2]. As stated above 

we shall use the formulation of Theorems 3.20 and 3.23, and hence will be 

subject to the restrictions noted at the end of section 3.2. 

Operator splitting 

. t 

Define (~l(z»(t) = JoS(t-T)f(Z(T»dT . .'. (3.34) 

and 

..• (3.35) 

then, comparing with,(3.28), 

~ = ~1 + ~2 • 

Such operatorsplittings commonly occur in the application of fixed point 

techniques. A number of theorems have been developed in order to exploit 

such cases. Here we only use the theorem due to Nussbaum (see 
" 

Appendix 4). Thi s theorem deal s wi th the sum of a "contracti on" and a 

"compactl~_ operator. In our terms we obtain 
\ 



" 
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Theorem 3.26 

Consider the dynamical system described, in mild form, by (3.24) 

and (3.25); assume that Zl,Z2 are Banach spaces (Zl C Z2) 

P s € lR + : ! + ! = 1 and , ~ p s ' 

i) the semigroup S(t)· generated by A, satisfies 

S(t) € L(Z2,Zl) t > ° 
IIS(t)zllz ~ g(t)llzll z ; IIgll = c < ex) 

1 2 L P (0, tl ~) 

ii) R > 0 is such that 

is continuous and satisfies a Lipschitz condition 

II f (z ) - f (z) II -s ~ k ( II z II , II z II ) II z - ill 
, L (O,tl ;Z2) 

where the norms on the right hand side are computed in C(O,tl;Zl) • 

The function k(·,·) : ~+ x ~+ +~+ is continuous, symmetric and 

such that k(O,O) ~ 0 , 

iv) the map f~om' C(O,tl ;Zl) + Y defined by 

z(·) ~.cI~S(.-T)f(Z(T))dT is compact. 

v)' a € lR+ is chosen so that 
~ 

(Rd + c) sup k (a ,0) ~ K < 1 
O~a~a 

'\ 

~ 1 
" ','I 

J 

. . 
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where 

and 

Then: the state of the system described by (3.24), (3.25) can be 

reconstructed, given an observation y(.) satisfying 

Pf. Consider first 

lI~lz + ~2zllC(D.t ;Z):S IIS(·>l1 sup LeZ) IIH(jlIIL(Y,z )llylly .• 
1 1 [0 , t1 ] 1 1 I 

+ (Rd + c) sup k(e,O) 
Osesa 

s a(l-K) + Ka = a 

The contjnuity of ~1 and ~2 follows directly from the continuity 

of f; additionally, for z, z € Ba ' 

lI~lz-~lZllc(o t·Z) s Ilgll p Ilf(z)-f(z)11 s 
, 1'1 L (O,t1;~) L (O,t1;Z2) 

s c k(1 Izl 1,llzll)1 Iz - zllc(o,t1;Zl) 
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Finally, we need to show that ~2 maps Ba into a precompact -­

subset (of Ba). From condition iv) the image of Ba under 

cI·S(--T)f( )dT is precompact in Y. Then by the (strong) continuity 
o -

of Set) (and the continuity of Hal) we may conclude compactness in 

C ( 0, tl ; Z 1) -

Thus we have, by Nussbaum a fixed point of ~l + ~2 in Ba _. -

This theorem may easily be applied to a system such as that of 

Example 3.24. The critical comments at the end of 3.2 still apply, 

however. The requirements that H~l exists (and is bounded), and that 

the compactness condition, iv), of the Theorem holds, combine to place 

severe restriction on the systems which can be studied. Thus, although 

the proof is much ~impl er (we do not have to use the poi ntwi se compactness 

of ItS(t-T)f( )dT) than that of Theorelll 3.23 this formulation offers no o -
fundamental improvement. It would be ~ossible to reformulate Theorem 3.26 

. . 
with ~l as the compact part and ~2 as the contraction; this would' 

avoid the need to find a space compactly embedded in Y but would 

otherwise have few advantages, hence is not developed here. The operator 

splitting of Theorem 3.26 will be used again in Chapter 4. 

Degree theoretic result 

Here we use the degree theor~tic formulation (see Appendix 4) of 

Leray-Schauder's classic paper (Leray-Schauder, [lJ). Recall from 

Appendix 4 the formulation we consider the equation 

z - ~(Z,A) = 0 (3_36) 

\ 
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(under a number of assumptions listed in Appendix 4) then, if for 

some 1.0 we can find all solutions z - ~(z,AO) = 0 , we may conclude 

that there is a solution for any A in some range of interest as long as 

an associated topological invariant (the Leray-Schauder index) can be 

calculated at . 1.0 and, hence, shown to be non-zero. The aim is to find 

a 1.0 such that this calculation is particularly easy. In our present 

case, with an eye to (3.28), we define 

t· . 
(~(Z,l))(t) = S(t)H~lY(.)+l(JoS(t-T)f(Z(T))dT -

S(t)H~l(cJ~S(.-T)f(Z(T))dT)) (3.37) 

. -1 Note that (~(z,O))(t) = S(t)HO (y(.)) and ~(z,l) recovers the 

~ of (3.28) •... Th us in app lyi ng the Leray~Schauder res ul t of Appendi x 4, 

we define n = Ba x M where Ba is the ball in C(0,t1;Zl) as previously 

defined, and M = [0,1]. 

Theorem 3.27 

Consider the dynamical system described, in mild form, by (3.24), 

(3.25); assume that Zl ,Z2 are Banach spaces (Zl c Z2) , 
+ 1 1 

P s € lR • - + - = 1 and , ~. p s 

i) the semigroup S(.) generated by A, satisfies 

Set) € L(Z2,Zl) t > 0 

I IS(t)zl Iz ~ g(t)1 Izl Iz 
1 2 

. I 
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ii) R > a is such that 

IlcJ"S("-T)Z(T)d'rll y S Rlizil s 
a L (0,t1;Z2) 

iii) f : C(O,tl;Zl) ~ LS(0,t.1 ;Z~) 

is continuous and sati~;fies a "growth" condition 

Ilf(z)11 s s p(llzll)llzll 
L (0,tl ;Z2) 

where the norms on the right hand side are computed in C(0,t1;Zl) . 

The function p(.) : ~+ ~~+ is continuous and p(e) ~ a as 

e ~ a • 

iv) the following compactness conditions are satisfi',d: 

JtS(t-S)f( )ds: C(O,t1;Zl) ~ Zl is compact for each t € [O,t1J a -

c J~ S( .-T)f(_ )dT : C(O, tl ;Zl) ~ Y is compact 

. v) a € ~+ is chosen so that 

where 

(Rd + c) sup p(e) s K < 1 
O~e~a 

d ::: IIS(.) q s~p L(Zl} I IHii
1 

I lL(y,Zl ) 
[a', tl ] 

vi) an. the boundary of the set n does not contain any solution of (3.36). 
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Then: the state of the system described by (3.24) (3.25) can be 

reconstructed given an observation, y , satisfying 

(3_38) 

Pf. The complete continuity of ~(.,-) is shown by proceeding exactly 

as in Theorem 3.23; hence will not be repeated here_ To show uniform 

continuity with respect to A, consider 

J. 1 J. ~ "IA1-A21 II oS(--1')f(Z(1'))d1' - S(-)HO C oS(.-1')f 

" ( z ( l' ) ) d1' II C ( 0, t1 ; Zl ) 

~ IA1-A21[llgll p Ilf(z)ll s "" + 
L (0, t1 ; ,,) t (0, t1 ; Z2) 

Rd II f ( z) II s ] 
L (O,t1;Z2) 

and for z € B we have a " 

11~(z'A1) - :~(z'A2)llc(o,t1;Zl) 

~ IA1-A21[Rd + c] sup p(e)a 
O:::;e~a 

Thus we obtain uniform continuity with respect to A_ 

• f 
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Fo~ . X = 0 the only solution is zL(t) = S(t) H~l y and 

(3.38) ensures that 

II zL II C( 0, t ; Z ) " II s ( • ) II sup L (z) I HO 1 II L (Y ,Z ) II y II 
1 1 . - [0, t, J -I 1 

s d~IYlly 

S a 

• • Z.L € Ba • 

When X = 0, the transformation z ~ z - ~(z,x) is a translation 

of the identity and thus has index equal to + 1 . 

Thus, provided the "a priori assumption", vi), holds we conclude 

that ~(·,1) has at least one fixed point in Ba. ]. 

The most obvious disadvantage of this formulation is the requirement 

vi). It is this assumption, however, which allows use of a ball in Y 

havirig radius aId; in general, this is larger than the ball used in 
I 

previous theorems. In practice a solution technique based on this theorem 

would attempt to follow the, possibly bifurcating, path of solutions· 

beginning at zL. 

In Leray-Schauder [lJ a formula for the (Leray-Schauder) degree of a 
.. 

mapping is developed. In:our case the value of the degree is +1 since 

this is the value at A =·0. The formula states that the degree is the 

sum of the indices of the solutions. Under .some supplementary conditions, 

all the indices must be either +1 or· -1 • The calculation of the index 
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at a particular solution will depend on the eigenvalues of the Frechet 

derivative evaluated at that solution; and, hence, on the behaviour of 

the 1inearised system. In Chapter 5 we return to an investigation of the 

1inearised system and implications for questions of uniqueness and 

algorithms. The directions suggested by direct evaluation of the degree 

will not be further pursued here; but, it would seem, at least in regard 

of certain specific problems, such an approach may provide more detailed 

qualitative information. 

Yet another direction which could be pursued (but not here) concerns 

the introduction of a different "operator-splitting". Suppose we introduce 

(~(Z.A))(t) = S(t)H-l(y(o)) + f:S(t-S)f(Z(S))dS· 

AS(t)H-l(Cf~S(o-S)f(Z(S))dS) 

so tha t for A = 0 

(~(Z.O))(t) = S(t)H-l(y(o)) + f:S(t-S)f(Z(S))dS ° 

- , 

Then if we show that z.- ~(z,O) = 0 has an unique solution with non­

zero index, we may deduce that z - ~(z,l) = 0 possesses a solution. 

Typically, this would involve imposing a contraction condition on the 

operator ~.(z,O) together with compactness requirements on both . ~(z,O) 

and S(t)H-l(CfoS(o-S)f(Z(S))dS) ° As A moves from 0 to 1 we follow 
. . 0 

a continuous path in the space of trajectories, starting at A = 0 with 
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. the mild solution, (3.24), corresponding to the 11inear" estimate 

of system state i.e. z(·) satisfies 

. t 
z(t) = S(t)zO + JoS(t-S)f(Z(S))dS 

where Zo is evaluated by solving Zo = H-1(y(.)) 

. , 

\ 
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CHAPTER IV Other topics 

Summary 

In this chapter we investigate a number of variations on the themes 

expounded in Chapter III. Specifically we consider a) different ways 

of constructing the map for whose fixed points we search or b) other 

control and estimation problems which admit of a fixed-point formulation. 

In all these cases, as before, the properties of the linear part are 

exploited in order to create a candidate map for whose fixed points we 

search. Though the assumptions on the linear part are possibly restrictive 

the examples of this section by no means exhaust the potential of this 

approach; see for example Carmichael-Quinn [lJ. 

4.1 Use of pseudo-inverses 

Thus far we have demanded (at some, cost, see the critical 

comments of 3.2) continuous initial observabi1ity for the linear part 

and used the existence of a bounded reconstrtiction ~perator (H~l) to 

construct the non-linear map ~. In this section we look at the 

possibility of using pseudo inversesto provide the bounded reconstruction 

operator based on the linear part. We shall make use of compactly embedded 

spaces not only because the linear part gives rise to an ill-posed problem 
... 

(cf. 2.4) but also becau~e the aim is to apply fixed point theorems which 

use compactness properties (cf. comments after Ex; 3.24). As has been 

indicated in previous remarks the obvious application is to those parabolic 

systems where the linear part is initially observable, but not continuously 

initially observable. 
.\ 
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Consider then the state space of the linear part to be a Hilbert 

space Z and let Zl be another Hilbert space compactly embedded in 

Z. Recall now Definition 2.49 for oHt Z being the 
e::, 1 

regularised pseudo-inverse with graph norm and thus a map from 
2 Zl x L (O,tl;Y) + Zl ' equation (3.28) now becomes 

( ~ C z) ) ( t)' = S ( t) OH t Z (O,y ( · ) - I· S ( · -s ) f ( z ( s ) } ds } 
e::, 1 0 

t 
+ JoS(t-S)f(Z(S))dS (4.1) 

In the manner of (3.34), (3.35) this ~ is split into ~l and ~2 

defined by 

(~2(z))Ct) = S(t)OH-1
Z (y(.}-cI·SC·-S)f(Z(S))dS) 

- e::, 1 0 

Theorem 4.1 

(4.2) 

(4.3) I 

Consider the dynamical system described, i'n mild form, by (3.24) 

'and (3.25) and recast as above; assume that Zl' H are Hilbert spaces, 

Z2 Ba~ach (Zl ,c H c Z2) wi th Zl compactly embedded in Hand H 

continuously·embedded in Z2; let 
1 1 ' P + 5 = 1 and, further, that 

i) Set) € L(Z2,H} t > 0 

IIS(t}zIIH ~ g(t) Ilzllz 
~ 2 

-"\ 

+ p,s € m and assume that 
'V 
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ii) R > ° is such that 

where Y is, as in Chapter 2, now a Hilbert space; . 

Y = L2(0,tl ;Y) for $ome Y (Hilbert)_ 

is continuous and satisfies a Lipschitz condition 

where the norms on the right hand side are computed in 

C(O,t,;H\ _ The function k(-,-} : m+ xm+ ~R+ is continuous, 
'V 'V 'V 

symmetric and such that k(O,O} = ° _ 
iv) a € R+ is chosen so that 

(Rd + c) sup k(e,O) ~ K < , 
O:s;e:s;a 

where 

d = II S(-)ll. sup L(H} 
[0, t, ] 

and 
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Then: the map <P,' defined by (4.1), has a fixed point in the ball·· 

Ba = {z € C(O,t1;H) I Izl IC(O,t
1

;H) ~ a} provided that the observation 

y(.) satisfies 

Pf. Consider first z € "Ba ,. for such a z we have by ~he hypotheses 

above 

I I <P1z+<P2zI IC(O,t
1

;H) ~ I IS(·)I Isup L(H) 
[0, t1 ] 

IV . 

II OH e; ,Zl ( 0 . • ) II L ( Y ,Zl ) II y II y + 

+ (Rd+c) sup k(e,O) ~ a(l-K) + Ka = a 
O~e~a 

The continuity of <P1 and <P2 follows from that.of f 

exactly as in the proof of Theorem 3.26. 

additionally 

. , 

Finally we need to show that <P2 maps. Ba into a precompact subset 
IV 

of B • From the definition of OH Z ' it maps Ba into a precompact 
a . e;, 1 

subset of H. !hen by the (strong) continuity of S(t) we may conclude 

compactness in C(0,t1;H) • 

Thus we have, by Nussbaum a fixed point of <Pl + <P2 in Ba · • 

Consider the example 

.~ 
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Example 4.2 (cf Example 2.43) 

; . z(O,t} = z(l,t} = 0 

. 1 
yet} = J c(x)z(x,t}dx o . 

Then, ns in Example 2.43,. the linear part is i:nitial1y observable if 

1 
foC(X) sin n~x dx F 0 Vn • 

Even if this holds, it is not, however, continuously so. Here we make the 

slightly artifica1 assumption that 

1 2 Zl = D(A) ; H = HO(O,l) ; Zz == L (0,1) 

f : $ + -$$ : H + Z2 is proven as follows -x . 

1 recall that for ~ € HO ' 

$x for convenience); so 

<1>( .)= J~ ljI' (x) dx . (ljI' used here 'instead of 

$ is absolutely continuous and ., 

SUpl$(X) 1 ~ 11$11 1 ; thus 
x HO 

We take p = 2-£ £ € ]O,l[ (this comes from the definition of the 
"\ 

norm on IIS(t)zll) and s c"orrespon"ding1y. D(A) i"s compactly embedded 
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in H which is continuously embedded in Z. Thus with appropriate-­

a,c,d,K,R E m+ we may satisfy the hypotheses of Theorem 4.1; and hence 
tV 

conclude the existence of a fixed point for the map ~. This point will 

be a "system trajectory" lying in C{O,t, ;H) . 

As in Chapter 2 the behaviour of the fixed point as € + 0+ is a 

natural question to study; as are continuity properties with respect to 

th e da ta y ( .) • Notice that since oH't Z 
€, 1 

recovers a best approximation, 

the fixed point can now only be regarded as a "consistent" state trajectory. 

The relation betHeen this result and those obtained by more direct attacks 

on the non-linear optimisation problem is also worthy of investigation. 

The result does provide, however, an approach to state reconstruction which 

is appropriate to a class of non-linear parabolic prob11ms; which class 

cannot sensibly be handled by the methods of Chapter 3. 

Another choice of pseudo-inverse . . 
As was indicated in Chapter 2 one can think of many linear problems 

where the pseudo-inverse provides a useful notion of solution. Now, if 

semi-linear terms are added it may be possible to use the pseudo-inverse 

derived from the linear part to create a map whose fixed points provide a 

notion of state reconstruction appropriate to the non-linear problem. Here 

we cons i der Qne 'example of thi s procedure. 

Recall the map T of (2.37) in the case where, for a linear parabolic 

equation, both the semigroup and ~he Lions' formulations apply. Recall 
tV 

also the "regu1arised" operator T€,\4
z 

(O,t,)xZ, , defined for Theorem 
. , , 

2.51 ,{and the other,notations used there: viz. Z, compactly emebdded 
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in H; Zl' H being Hilbert; C: L2(O,tl ;H} + Y}. The notation 

Pw will be used to denote the projection of the product space 
Zl 

WZ,(O,t,} x Z, .onto its first factor Wz,(0,tl 1 , such that 

Pw (z(·),zo) = z(·}. The se~i-linear problem (3.24), (3.25) then 
Zl . 

naturally gives rise to consideration of the following map ~ 

~t J. ~z = Pw T W (0 t ) Z (0,0, S(·-s}f(z(s})ds,y(·}) 
Z e, Z . , , x , ° 
1 1 

. . '. (4.4) 

(recall that 

as in Chapter 2). 

This formula arises as follows: . we would like to use the map T of (2.37) 

to find a solution of 

T(z,zO) = (J·S(--S)f(Z(S»dS,YC·)} 
. 0 

(4 _5) 

where . J~S('-S)f(Z(S))dS € L
2

(O,t1;H), ye') € Y • Being aware, however, 

of the scarcity of conti~uous initial observability (at least among 
... . 

parabolic equations) and.of the smoothing properties of the semigroup 

action we are driven to consider the regularised problem 

~ 2 (z,zO) = (O,o,Jo-st--S),f(Z(S»dS, y(-}) (4_6) 
e:,L (O,tl;H)xH 
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From both a practi ca 1 and a theoreti ca 1 vi ewpoi nt it is des i rab 1 e to·· 

have some continuity properties with respect to the right hand side of 

(4.6). Thus we look to 

~E'WZ (O,t1)xZ1(Z,Zo) = (O,O'f~S(.-S)f(Z(S»dS' y(.» (4.7) 
1 

Under appropriate conditions this can be made consistent with the mild and 

Lions representations (e.g. the commentary following Theorem 2.51). 

As we know that Wz (O,tl ) is compactly embedded in L2(O,tl ;H) 
1 . 

we shall aim in the following theorem to use Schauder applied to ~, 

thought of as a map from L2(O,tl ;H) + L2(O,tl ;H) . 

, Theorem 4.3 

. Consider the dynamical system described, in mild form, by (3.24) 

and (3.~5) and recast as above; assume that Zl' H are Hilbert spaces, 
I 

Z2 Banach eZl C H~ Z2) with Zl compactly embedded in Hand H. 

continuously embedded in Z2 let the constant for the first embedding 

be given bye, € ~+, i.e. 

+ Take € > ° and· p,s € R such that p ~ 1 , s ~ 1 . .. IV 

Further, assume that 

i) Set) € L(Z2,H} t > ° 
IIS(t)zIIH ~ g(t)llzllz 

2 

1 1 3 
and p + s = '"2"" 
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2 s' ii) f: L (O,t,;H) ~ L (O,t,;Z2) 

is continuous and such that 

where p(e) : ffi+ ~ffi+ is continuous and p(a) ~ a as a ~ a e 
IV IV 

iii) a € ffi+ is chosen so that 
IV 

c d sup pea) ~ K < , 
a~a 

where 

d = e, II Pw rt w (0 t ) Z (.0 , a , e , e ) II 
Z e;, Z " . x , 1 , 

(the norm is t0k~n in L(L2(O,t,;H)xY, Wz (O,t,))) 
__ 1 . 

Then: the map cI>, defi ned by (4 e 4), has a fi xed poi nf tn the ba" 

Ba = {z € L2(O,t, ;H) : Ilzll 2 I ~ a} provided that the 
- L (O,t,;H) 

observation y(e} satisfies 

Ily II Y ~ a (1-K) 

Pfe Consider first z € Ba; for such a z we have 

Il.~z II 2 e I ~ ell I cI>Z II W (0, t ) 
. L (O,t1,H) Z, 1 

and using the "convo'ution property" as before we have 
. '\ 

• f 



:" 
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~ d c sup pee) a + a{l-K) 
e~a 

~ a . 

Thus ~:Ba ~ Ba. The continuity of ~ is straightforward. 

As ~(Ba) c Wz (O,t1) .and this latter space is compactly embedded 
1 

in L2(O,t1;H) we have that ~(Ba) is a compact subset of L2(O,t1;H) 

and thus of Ba. Thus we have, by Schauder, the existence of a fixed 

point for ~ in Ba. I 

In the following we use the notation, for z E L2(O,1) , 

2 J1· 2 
Izl = o(z(X)) dx · 

Example 4.4 (c: Example 2.43) 

Zt = zxx - Izl z ; z(O,t) = z(l,t) = ° 
1 . 

yet) = JoC(X)Z(x.t) dx . 

Then the linear part is initially observable if 

even assuming this to hold it is not, however, continuously so. 
; 

... l ' 2 
Take Zl = HO(O,l) ; Z2 = H = L (O,l) 

It is c)ear that 

Therefore we take s f 1 , p = 2 and 

per) = r . 
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It is worth noting here that by Lemma 2.18 (or results of Lions, [lJ) 

z(O,t) = z(l,t) = a 

has a solution in C(O,tl;H) for g E Ll (0,tl ;Z2) 

Interpolation techniques are used in Lions [4J to consider a wider 

class of forcing terms g; e.g. any g in Lq(U)(O,tl;H-B(O,l)) 

1 B where q(S) = 1 - 2 ' a < B < 1 , will still give a solution z in 

2 C(O,tl;L (0,1)). Such results are used to consider other non-linearities, 

for instance, I z 12z • 

To satisfy condition i) estimates on 1 IS(·)I 1 are needed. 

Condition iii), however, required estimate of an operator norm. How best 

to perfo~m this estimation is not clear. When in finite dimensional state 

spaces one can construct (using the normal equations) e:~plicit 
~t 

representations of the T .••• operator; and use these to state hypo-

theses ensuring the required norm bounds. 

Nonetheless, from a computational viewpoint, this approach has some' 

attractions. The n~merical solution of linear least squares problems 
tV . 

such as is expressed by T W (o't) Z ' has been much studied. 
. e:, Z ' 1 x 1 

. 1 

In any iterative' method based on this formulation the use of compactly 

embedded spaces will proyide at each step desirable continuity properties 

with respect to the data. As in the comments following Example 4.2, 

however, the behaviour of the fixed point as e: ~ 0+ is a natural question 

to study. 

'\ 
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Another, and more significant, difficulty i,ninterpretation is the 

relation between the fixed point obtained and the solution of the 

(deterministic) non-linear optimisation problem posed as "find z(·) 

such that 

t 
z(t) = S(t)zo ~ JoS("-S)f(Z(Sl)dS 

which minimizes 

t t 

J l<Z(T) ,z(Tl>d~ + J \CZ(T)-Y(Tl ,CZ(~)-Y(Tl>d~"" 
o 0 . 

, For the solution of this problem may be available by other means (e.g. 

maximum principle); examination of the simplest cases shows this 

solu~10n to be different from t~at obtained using the fixed point approach. 

This is perhaps not surprising when one considers that the non-linear 

optimisation procedure makes essential use o~ gradient information about 
I 

the non-l inearity; ~hereas the fi'xed point approach never ca 1 cul a tes 

the gradient - one might regard it as possi,bly prov;'ding the "best 

approxi'mation without di fferentiation". The following (formal) elaboration 

concerns this point. 

Consider that 

,. 
is to be minimised with respect to z(t), wet) 0 ~ t ~ t 1, subject to 

the constraint 
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In view 6f~tHe con~i~aint we minimise J t w.r.t. z(O) and w(·) ; , 
the best estimate fbrr i z(·) is then determined. Proceeding in the 

usual fashfon,1 we fo'rm the augmented cost functional 

.. t, 
J~ ~"Jt '+ f '<x(s),(~-Az-f(z)-w)(s»ds 

1 1 0 

(4.9) 

(4.10) 

and compute the"" fi rs t: vari a ti on of Ja • Here the expos i ti on bi furca tes 
t1 

for we shall a) 'ke~pt the nonlinearity f(z) or b) replace it by.a (known) 

perturbat~.on g(. ~ ~. (PO,Q,R +ve definite, self-adjoint); 

a) gives 

a -1! " > -
oJ

t1
::= <PO:' (:z(O)-zO)-A(O) ,0z(O» + <A(t1) ,oz(t1 ». 

t1 . 
-+ fo {«R':l'C)*(y(s)-Cz(s)) + ).(s) + A\ + (dflz(o))\,QZ(S» 

~1 . 
+'<Q w(s)-A(s),ow(s»}ds 

Th us necessary condfti ons for oJ~. = 0 . are gi ven by 
1 

-1 -. PO~(z(G)-zO} ~ A(O) = 0 

'1( t 1) = 0 

~ J#t'~-~(A +'Jflz)\ - C*R-l(y(t) - Cz(t)) 

L~ Q-1 w(s)' - ~(~) = 0 
\ 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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Eliminating w(·) from (4.9) using (4.15) we obtain 

dA· * * -1 dt = - (A + dflz) A - C R(y(t) - Cz(t) 

%f = QA(t) + Az(t) + fz(t) 

z(O) = Zo + POX(O) 

x( t 1) = a • 

Then (4.16) is, in effect, the "op tima1ity system" of Lions; 

b) gives an optimality system (by almost identical calculations) 

dx * * -1 dt = - A X - C R (y(t) - Cz(t)) 

~ = Qx(t) + Az(t) + g(t) 

z(O) = Zo + POX(O) 

. A( t 1) = a · 

(4.16) 

(4.17) 

When we substitute f(z) for g in (4.17) we obtain a fixed point 

formu1 a ti on of the type di scussed in the precedi ng paragraphs. It is 

clear that, in general, the resulting fixed point will not be a solution 
... 

of (4.16) ~n1ess dflz = O. Thus we cannot expect· to attain the non-

linear optimum, using the fixed point approach. 

Anotherquesti on of interest is sug.gested by (4.16): given that the 

essence of the fixed point approach is to reach the solution of a non-linear 
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problem via a sequence of linear ones, can we formulate (4.16) in this 

way? A possible answer is indicated by consideration of the iteration 

defined by 

dAn * - * 1 
-:Tt = - (A + df\· ) A - C R- (y(t) - Cz(t)) 
u t. zn-1 . n 

dz 
~ = QAn.{ (A + dflz )zn + (f - dflz )(zn-1) 

n-1 n-1 (4.18) 

This iteration corresponds to solving the reconstruction problem, 

i.e. minimising cost functional (4.8), for the linear system 

in = (A + dfl )z + (f - dflz }(zn-1) 
zn-1 n n-1 

The proposed scheme is closely related, it seems, to methods of quasi-
I 

1inearisation, such as are studied in Fa1b-Jong, [lJ, and is further 

investigated in Carmichael-Quinn [lJ. As will be. seen in Chapter 5, 

application of Newton's method to the fixed point problem for the ~ of 

(3.28) yields a scheme with a similar structure. 
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4.2 State and parameter estimation 

Suppose we are given a system of the form 

i = f(z,a) 

y = h(z) 

z(O) = zo 

and that we know neither the state z(·) nor the parameters a. 

Both these have to be recovered from the output y(.}. Now make some 

initial guess (i(·),~) and construct a local approximation about this 

guess. With simplification (largely, as indicated in the introduction, 

for ease of exposition) we shall assume that the local approximation 

gives equations of the form 

zeO) = zo i-= Az + Ala + f(z,a) 

y = Cz 
(4.19) 

. , 
The parameters a Will be assumed to be constants and hence we may, · 

at least formally, describe the system by 

(4.20) 

Y= [C, ~ 0] (:] 
(4.21 ) 

The problem of joint state and parameter estimation has thus been recast· 

as a "semi-linear estimation problem""of the type dealt with in this thesis. 

We may hope to apply, under appropriate conditions, the fixed point results 
.\ 
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of the preceding sections. We may thus expect to produce algorithms 

(with some associated convergence analysis) for state and parameter 

estimation. This in itself is sufficiently unusual to merit attention -

see for instance the discussion of Chavent [1] for an account of the 

difficulties involved in arriving at a definition of identifiability which 

is both analytically applicable and pra~tically productive. Suppose we 

consider our parameter to be constant in lRP then we must study the 
IV 

injectivity of the map from the space of initial states x lRP to the 
IV 

space of outputs arising from the linear system 

(4.22) 

y = [C 
0] [:] 

(4.23 ) 

A useful criterion for ensuring this property is 

Lemma 4.5 

i) Suppose that the system 

i = Az zeO) =.zO 
(4.24) 

y = Cz 
... : 

is continuously initi~lly observable on [O,tl ] 

ii) the map from D(A} x ~p + Z x Y . defined by 

(:0) + (~~~ + Ala) is injective;. 
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Then: a. assumptions i) and ii) together imply that the augmented system 

is continuously initially observable (i.e. the map from (zo) + y(.) 
a 

defined by (4.22), (4.23) is injective and has closed range); 

b. the augmented system being continuously initially observable 

implies i) and ii}. 

Pf. a. Consider the mild expression of (4.22), (4.23) vii. 

(4.25) 

and suppose that this, output .is identically zero on [O,tl ]. Then 

CzO = 0 ' by evaluation at ,t = o. Forming 'y(t+h)h- yet) , by use 

of (4.25), we have that CS(t)(S(h)h- I)zo~a 1i'mit as h + O. Hence by 

, i), ~\1~ lzO has a limit as h + 0 and ,so Zo E DCA} , by definition. 

Thus (using theorem 2.5) we may differentiate (4.25) to obtain 

• f 

(again using Theorem 2.5; and,on the integral term, ,a cha,nge of variables, 

u = t-s) and as the system (4.24) is initially observable we have that 

AzO + Ala =0. By ii) CzO = 0 = AzO + Ala can only occur when 

Zo = 0 , a = 0 ., Thus the map (42.5) is injective and so the augmented 

system'is inttial1y observable. 

To show continuous initial observabi1ity (r~quired if the lIinversion ll 

procedure, described in Chapter III, for creating (3.28) is to work) all 

we need note is that the right hand term of (4.25) is defined on a finite 

dimensional spac~. Hence by Example 2.31, c., and the results preceding 
, , ' 

Theorem 2.48 we may conclude that the augmented system is continous1y 

initially observable. 
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b. Again by Example 2.31, c., continuous initial observabi1ity of the 

augmented system i·mp1ies that of (4.24). If the injectivity assumption on 

(A A1) does not hold tne~ by (4.25) (and its time derivative) there will 
C 0 

exist a non trivial (zO,a) such that the corresponding yeO) = a and ~{ = 0 

i.e. output is zero. This contradicts continuous initial observabi1ity 

for the augmented system. I 

The condition 

Al 
o ) = {a} 

though simple, is slightly novel and has some relevance to procedures 

for joint state and parameter estimation using Kalman filters (see 

Jazwinski, [lJ). The argument simplifies when one is using a 

(4.26) 

finite dimensional state space .. This is the case in Example 4.6. In the 

case that S(·) is a group and (4.24) is continuou~ly initially observable 

. we have another approach. For then in case that (zO,a) gives y(.) ~ 0 I 

we obtain at each instant t l 

which lies in DCA) (using Theorem 2.5 and the fact that continuous 

initial observabi1ity implies continuous final observability; see 

Curtain-Pritchard [lJ, p.70). 
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Having established continuous initial observabi1ity for the augmented 

system we are free to construct a ~ (for the "augmented state trajectory") 

exactly as in (3.28) but now in terms of the output operator and semi group 

action of (4.22), (4.23). Then we may apply Theorem 3.20 (or even Theorem 

3.23) to show that in some ~all in the augmented state space ~ has a 

fixed point. Moreover, if one uses Theorem 3.20, a successive approximation 

procedure will converge to this fixed point. Rather than repeat the 

formulation of Theorems 3.20, 3.23 we illustrate the approach wi~h two 

examples .. 

Example 4.6 

Consider the finite dimensional system (~€ ~2} 

x = (0 
'V 1 

y(t) = (1 

where a € ~l is a constant. Assume initial guesses~the constants 

x,~ ,for state trajectory and parameter respectively; then set 

x + z = x , ~ + a = al to obtain for ~ € ~2 (~= (Zl,Z2)T) 

i =( 0 
'V 1 

y = .. (1 0) z + (1 0) x 

For simplicity, take a = 0; thus we obtain a system 

i ~ A z + Ala + f(z,a) 
'V 'V 

y = Cz -+- h 
. '\ 
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where h is a known function and (A,C) observable; the preceding 

treatment needs only minor modifications in order to account for the 

presence of h(·). Now z = (zl,z2) E ker C => zl = 0 and therefore 

from (4.26) we obtain aX = 0 and z2 = 0; if we take X 1 0 then 

we have 

Hence we may apply our fixed point results; in Theorem 3.20, for example, 

the non-linearity satisfies the contraction condition with 
+ k(e1,e2) = c(e1+e 2) ,for some constant c E ~ • 

Example 4.7 (cf. Examples 3.16, 322) 

Consider the observed wave equation in one dimension 

w(O,t} = w(l,t) = 0 

1 
yet) = JoC(X)W(X,t)dX 

(4.27) 

(4.28) 

(4.29) 

where a € m is an'unknown parameter. 
tV 

Assume initial guesses Z,a for 

state and parameter respectively. Let z be' independent of time and 

satisfy the boundary condition of· (4.28). Then set 

- . -z + z = w, a + a = a 1 

to obtain 

(4.30) 

''\ 
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z(O,t) = z(l,t) = ° (4.31 ) 

y(t} = <c,Z> 2 + <C,Z> 2 
L (0,1) L (0,1) 

(4.32} 

Assume for simplicity that ~ = 0, and so using the notati'on familiar 

from other examples with the wave equation we form th.e augmented state 
T 

(z,Zt) and obtain 

Hence we have an equation in the form 

i = AZ + Ala + f(Z,a) + g 

y = CZ 

where y(.) = y(.) - <c,z> 2 
L (.0,1) 

The known function <C,z> 2 . causes no difficulties. 
L (0,1) 

Recall Example ~.14 and, the eigenfunctions +n ' defined there. 

Set /c = <c,. >, and assume cn'l ° ~n. Taking Y to be the n n . 
00 

space of function~ of the form yet) = ~ (an cos nTIt + bn sin nTIt) 
n=l ' 

00 : a2 + b2 

n2 2 n n normed by 11.11 = I: TI 2 ,the pair (A,C) is continuously 
,n=l cn 

initially observable. 

By condition (4.26) the linear part of the augmented system is 

\ 
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continuously initially observable if the conditions 

Zt = 0 

a2z --::-z + aZ = 0 
ax 

<C,Z> = 0 

imply that Z = 0 , Zt = 0 , a = o. Setting 

00 

(4.34) becomes 

2 2 -- n ~ Z + aZ = 0 n n Vn 

Substituting (4.36) in (4.35) gives 

Hence if one assumes c,~ are such that 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

. . 

then the linear part of the augmented system is continuously initially 

observable. Clearly the non-linearity is a local contraction on 
1 2 2 HO(O,l) x L (0,1) x~ into L (0,1). Then one can conclude that, 

subject to COIlditions (as in Theorem 3.20) on the operators and the output, 

iteration of a map ~ (based on (3.28), but taking account of g and y) 
will determine both the state Z and the parameter a • 
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The condition imposed on the linear part is designed to ensure the 

injectivity of the "initial state x parameter output" map for the 

linear system resulting from 1inearisation about some nominal state 

trajectory and parameter value. This is identical with the requirement 

imposed in some other works which attempt to provide a rational basis for 

identification algorithms' (again, see Chavent [lJ). In some such work 

the initial state is assumed known (in Chavent1s case the problem concerns 

identification of parameters in a wave equation given the observed response 

to a seismic pulse - thus the initial state, immediately before the pulse, 

may be assumed to be rest (or zero)). Once again our treatment is directed 

towards answering the question "how much can one do with the linearisation?" 

There will, of course, be systems where the influence of the parameters 

does not appear in the linear approximat~cn (or is not recoverable 

therefrom); hence ocr methods, us ing the 1 i near part, wi 11 provi de no 

identification information. 

- . 
It is clear from the proof of Lemma 4.5 that (A,C) initially 

observable + condition (4.26) gives initial observability for the 

augmented system. Thus we can envisage extension of previous work to look 

at parabolic. systems and cases where a varies in space. One major constraint 

on this treatment, however, is the fact that the presence of unknown para­

meters in the highest order terms of an operator gives rise to livery 

unbounded II non-linearities (this is a reflection of the difficulties 

arising in· perturbation theory when the perturbation is of the "same size" 

as the original operator). It is not yet clear how such problems should 

be handled within the present framework. 
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4.3 Adaptive control 

In this section attention will be restricted to ordinary 

differential equations (i.e. finite dimensional syste~s). For such 

systems, problems of adaptive control often occur and have been studied 

by many authors. The adaptive controller is meant to compensate for the 

fact that, in the real world, perfect models are rarely available. Thus 

one tries some control and uses the observed response to that control in 

order to update one IS knowl edge of the contro11 ed system and hen"ce improve 

the ".control action. Of course there are many w"ays in which such adaptive 

procedures may be formulated. Here we consi"der a system of the form 
n p m (z € 1R ,y € 1R ,u € 1R ) 

I\, I\, " I\, 

i = Az + Nz + Bu 
(4.29) 

y = Cz 

where the state z is regarded as containing unknown parameters (as in 

(4.20), (4.2l)}; these parameters embody our lack of confidence in our 

model of the real world - in as much as the real world is presumed to 

obey the same original model with possibly different parameter values. 

We shall assume that if the (augmented) state z is known at the beginning 

of an "interval [O,tlJ then the control action Bu is completely 

determined thereafter as a"" function of z(O) and the output y - that is, 

we shall assume that if we knew the ini"tial (unaugmented) state and the 

exact parameter values then we would be able to instantly calculate the 

feedback operator F(zO) which would provide the control action desired. 

Thus the general scheme is as follows: consider positive time as 

having been split up,into equal intervals [jtl,(j+l)tlJ where 
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j = 0, 1 ,2 , • . •• ; tl > 0 • 

1. . Produce (in a manner unspecified) an initial state guess Zo 

set j = 0 ; 

2. on an interval [jtl,(j+1JtlJ, given an initial estimate 

zO(jt1) , apply the feedback F(zO(jtl }} ; this is modelled 

by 

y = Cz 
(4.30) 

3. now apply the parameter and state estimator of the preceding 

section (suitably adjusted for the known input F(zO(jt1))y)- to 

formulate (and by successive a~:w'oximation provide an algorithm 

for) the problem of reconstructing z over the interval 

[jt1,(j+l)tl J 

byz = ~j(z) 

let this fixed point formulati·o·n be denoted 

4. determine an initial guess over this interval by solving 

i = Az + Nz + F(zO(jtl})y 

with z(jtl ) =' zO(jt1) , 

(if, for instance, (4.30) results from a system which i.s linear when 

the parameters are ~noW1 then this step is tr·ivia1); 

5. then iterate ~j i-times to obtain a new approximation 

z} 9n [jtl,(j+l)tlJ hence obtain a value zO((j+l)tl ) 

(as Z}((j+l)tl )); 

6 • set J: = j + 1 an d re tu rn to 2 ... 
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Steps 1. to 6. constitute our proposed adaptive control scheme. 

The next theorem indicates, rather crudely, the sorts of conditions 

one might impose to ensure that this scheme made sense i.e., ensure that 

our state and parameter estimates "converge" to the real world values. 

When this convergence occurs our control action will ensure that the 

real plant will behave as desired. Then we will say that an adaptive 

controller has been constructed. Thus we wish to ensure that on each 

interval [jtl,(j+l)tlJ iterating tjbrings us closer to the fixed 
n' 

poin~ in C(jtl ,(j+l )tl ~ ); and that moving from interval to interval 

in the fashion described does not upset convergence. The reason that 

only i iterations are allowed on each i'nterva1 is the same as that for 

using adaptive control in the first place:- one is trying to adapt a 

controlier, on-line, in real time, in response to observed p1a~behaviour. 
, . 

Thus it is not possible,to iterate a large number of times on any particular 

interval. 

Theorem 4.7 

Recall Theorems 3.13 and 3.20, especially the latter. Assume that 

the linear part of the augmented system (4.30} is observable (i.e. (A,C} 

observable); Lemma 4.5 gives 'conditions for this. Assume also that 

a,8l,K,kl ,ka,R,s,s',tl € m+, where ~ + t. = 1 , and that 

a. 

b. 

IleAt zll ~ g(t)I'lzil 

g ( .) € L s' (0, tl ~n) 

n t ~ 0 , Z € m 
'" 

n s n ,N : C (0 , tl ~ ) + L ( 0, tl ~ ) 

continuous, N(O}\ = 0, and satisfies 
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where the norms on the right hand side are taken in 

C(O,t1~n) ; k : m+ x m+ +m+ is continuous, symmetric and such 
'V 'V 'V 'V 

c. R > 0 is such that 

. where Y is the output space • 

d. the feedback operator F(v) : Y +mn is such that 
. 'V 

Ilzll . n ~ a} 
C(O, t1 ~ ) 

we have that 

Then: the scheme described in steps 1. to 6., preceding the theorem, 

gives an adaptive control provided 
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a(l - K} 
Ily(·) II s ---------------

\leA. 1\ n II HO 111 + . k.1 a (R+ II gil. ) 
C (0 , t1 ; L ~ )) L (Y ~n ) L s ( a , tl ) 

(4.31) 

and 

B Ki 1 
1 < • (4.32) 

Pf. Since the system (4.30) is autonomous we can reduce cons.ideration 

of ' the scheme 1. to 6. to a series of problems defined over [0,t1J, 

where the initial value for the next problem is obtained from the final 

value of the last. Note also that the difference between the maps 

, <1>. for different j lies solely in the term F(·}y which is fixed for a 
J 

particular j-. 

Consider any <1>j' the above remark allows us to conclude that it 

is a contraction on Ba viz. 

II "II II A· II <1>.Z-<1>.Z s e 
J J C(O t ;lRn} C(O t · Lnon)) , 1 f\J " l' \~ 

-1 
IIHo lI o

( n) L Y,lR 
f\J 

I IcJ~eA(.-Sl(N(Z(S)} - N(z(s}}}dsl Iy + 

II 9 II s· II Nz - Nz II s n 
L (0, t1 ) . L (0, tl ~ ) 

s (Rlle
A·1I n IIHa11! n 

. C (0 , t1 ; L ~ }) L (Y,1R ) 

+ II 9 II s. ) II Nz-Nz II s·· n s K II z-z II n 
L( 0, t1 } L (0, tl ~ ) C (0, tl ~ ) 

on B~, using b.'and e. " 
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Next we show that any such ~j maps Ba into itself. 

Choose z € B ; V € mn : I Ivl I n ~ a then we must consider a ~ m . 
~. 

t .. . 
+ fo eA(t-s)(Nz(s) + F(v)y(s»ds 

\I ~j z \I n ~ IleA. \I n II H 0' II n (II Y \I y + 
C ( 0, t,;lR ) C ( 0 , t1 ; L ~ )) L ( Y ~ ) 

+ RIINzl1 s + RIIF(v)YII s ) + IIgll sa( IINzl1 s + 
L ( 0 , t1 ) L ( 0 , t1 ) L L (0, t1 ) 

+ IIF(v)YII s ). 
L (0, t1 ) 

Now using b.· and d.· this gives 

~ (I leA. II n IIHo111 I n + Rk,lI z ll n + 
C (0 , t1 ; L (1R ) L (Y ~ ) C ( 0 , t, ~ ) . . 

+ k1 \I g II s' . 1\ z 1\. n ) Ily 1\ y + (R \I eA. II n II HO 111 n 
L ( 0 , t1 ) C ( 0, t, ~ ) 0 C ( 0 , t, ~ ) L ( Y,lR ) 

.. + IIgll s' ) k(lIzll,O)llzll n 
L ( 0 , t1 ) . C ( 0 , t1 ~ ) 

(4.31), 

v : I Ivl I n ~ a, we have, when y(.) satisfies 
~ 

Thus for z € Ba·. , 
... 

~ a( 1-K) + Ka 

~ a . 
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Lastly we observe that if z(O), z(O) are two initial conditions 

z(t) - z(t) = eAt(z(O)-z(o)) + JteA(t-S)(N(Z(S))-N(Z(S)))dS 
. a 

gives that (by Gronwall's lemma) 

liz - ill n ~ a1I1 z(O)-z(O) \I n (4.33) 
c ( 0, tl;IR ) lR 

IV IV 

Now suppose we perform the sequence 1. to 6. with Zo the very 

first guess at the state trajectory, lying in Ba. Let z* denote the 

true trajectory. Then by the above i i tera tions of <PO gi ve a fi na 1 

state estima't~ Ilzi(t1)-z*(tl)II~Killzo-z*11 n 
. . C(O, t1 ~ ) 

Moving to the next interva~ we have th~t Zo on the next interval is 

such that 

II Zo - z* II ~ alii z i (tl ) - z*(t1) II 

~ a1 Kill Zo - z* II n . 
. ceo, t1 ~ } 

(using (4.33) and step 4.) 

... 
Iterating i times on this interval we have that state error is 

• f 

reduced to a1 K2i II zO~z* II n. Thus the. "reducti on factor" is 
. . . C(O, tl ~ ) 
~lKl and condition (4.32) ensures that the whole adaptation process 

converges. I 
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The term B1 Ki expresses the balance between the amplification of 

errors in the initial state due to the natural dynamics of the system and 

the contraction properties of the observer ite~ation. The theorem tells 

us that, provided reality obeys a model of the form (4.30), then the 

adapti ve control scheme (1. to, 6.) wi 11 converge to the correct sol uti on. 

This is typical of statements made about adaptive control algorithms by 

several other authors; though many of th~se works concern only systems 

which are linear in the state and linear in the parameters (but jointly 

bilinear). One could expect to expand upon the above result in such special 

cases. 

The above result can also be extended to certain infinite dimensional 

systems. Indeed Theorem 4.7 is stated so as to be consistent with the 

'(infinite dimensional) formulation o,f Chapter 3. The history and literature of 

adaptive control techniques, however, has, been concerned with finit~ 

dimensional systems. The above 'result might also be extended to circumstances 

where the control action could not be immedi'ate1y explicitly calculated (as 

above) but had to be determined by an iterative procedure. The control 

version of the present fixed point treatment could be used, for instance. 

One must then ensure that this joint procedure (iterating both for correct 

control and correct, state) converges. It is not clear how best to formulate 

such an iteration. Lastly, in practice these, results merely serve to ensure 

that certain procedures are reasonable; often one cannot'expect to verify 

all the conditions before trying to apply the a,lgorithm. The lack of a 

rigorous convergence analysis has not prevented the appli,cation of other 

adaptive control techniques. 

. \ 
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CHAPTER V Notes on constructive aspects 

Summary 

As stated in the introduction (Section 1.4) this chapter will be 

concerned with a largely formal account of some algorithmic possibilities 

arising from the treatment of Chapters 3 and 4. The intention is to 

provide some flavour of the "numerical analysis" which might arise from 

the preceding treatment, whilst avoiding over-burdening details and technical 

complexity. In cases where existence and (local) uniqueness of a fixed 

point is proven by a contraction argument a constructive procedure' ("successive 

approximation") is automatically available. This is not so in cases where 

, Schauder is used. One may then wish to know what would happen for successive 

approximation - or develop other iterations. Even in the contraction case 

one may wish to use other procedures in order to spee1 convergence. 

5.1 Schauder: uniqueness 

The uniqueness result of Ke110gg:Smith-StIJart (Theorem 6, 

Appendix 4 : see Smith-Stuart [lJ) is intended for application in cases 

where the existence' of a fixed poi,nt has been proven by Schauder's theorem. 

Inourcase we shall consider the ~ of (3.28) and assume that the existence 
, 

of a fixed po~nt has been ensured by a theorem such as Theorem 3.23. For 

the result of Appendix 4, to apply one requires: 

a. ~'is Frechet differentiable; 

b. there is no fixed point of ~ on'the boundary of Ba 
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c. the set" {z € Ba : 1 is an eigenvalue of d~'z} has no 

accumulation points in Ba . 

Assumption b. will be satisfied in the case of Theorem 3.23 for the 

norm bounds there give that ~(Ba) in fact lies in the interior of Ba . 

Thus we are reduced to considering the Frechet derivative d~lz for all 

points z € Ba · 

Resu1 ts on the Frechet di fferenti abi 1 i ty of Hammerstein o"perators 

(fo~ which, see Martin [lJ) give some indication of conditions on the 

semigroup and non-linearity which will ensure both continuous Frechet 

differentiability of ~ , and representation of the deriva~ive in the 

desired form. Assuming some such result to hold we take (v € C(O,t1;Zl)) 

(5.1 ) 

Now suppose we choose a point zl € Ba such that d~fzl has an eigenvalue 

of 1 • That is to say v € C(O,t1;Zl) such that 

From (5.1) we haye, "then, 

vet) = S(t)Ho-1(-cI·S(·-S)(dfl (v))(s)ds) 
" 0 d Zl 

+.J:S(t-S)(dflz1(V»(S)dS. 

'\ 

(5.2) 
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Now consider the system 

(5.3) 

y = Cv (5.4) 

Curtain-Pritchard [lJ gives conditions under which the perturbed semi­

group in (5.3) ,generates a mild evolution operator, and the (mild) 

solution of (5.3) can be represented as 

Thus (5.2) correspo~ds to (using the same procedure as led to (3.28)) 

a reconstruction of the state for the linear system (5.3), (5.4), given 

an output which is zero. If the 1inearisation at zl ((5.3)) is 

observable (i.e. (A + dft ,C) is observable) then we may conclude 
zl . • 

that any such ~econstructed state, v , must be identically zero. Conversely, 

if the 1inearisation (A + dftz1'C) 

a non-trivial v satisfying (5.2). 

is unobservable then there will exist 

Hence, formally, we have 

Proposition 5.1 

A point ~1 € Ba is such that d~tz1 has an eigenvalue of 1 

the 1inearised system (5.3), (5.4) at zl is unobservable. 

iff 

Pf. All results in this Chapter wi'll be stated as summaries of (hopefully 

plausible) formal arguments. No rigorous proofs will be given. 

Hence we-may state 
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Proposition 5.2 

Let ~,f be as above and let Theorem 3.23 apply. Then: (3.28) 

has an unique solution in the ball Sa iff the set 

{z Sa: (A + dflz' C) is unobservable} does not have any limit 

points in Sa 

Pf. By Proposition 5.1 and Appendix 4, Theorem 6. 

One might interpret points at which the 1inearised system is unobservable 

as. points from which non-uniqueness may arise. That is. to say, by looking 

only at the linear approximation around these points we cannot see in 

certain directions. Propostti:on 5.2 tells us that this local blindness does not 

prevent us from. globally reconstructing the solution as long as there are 

not "too many" blind spots. Of course, there may be fixed points of ~ 

even when condition~ a., b., c. do not hold - but then uniqueness, 

using these semi1inear methods, cannot be guaranteed. 
.' I 

Many practical observation (resp. control) problems have curves, or 

surfaces, in the state trajectory space made up of points at which the 

linearisation is not observable (resp. controllable). It is arguable that 

the inability to ensure uniqueness in such problems is a good reason for 

not us~ng this semi-linear approach. Non-unique reconstruction seems 
... 

closely akin to the traditional notion of unobserva~ility. This does not 

matter so much in the control case, where we are only interested in reaching 

some final state and not on how we get there. To study such questions one 

is forced to make more detailed analyses concerning the interaction between 

the system dynamics and "directions of blindness" that is, to 'consider 
'\ 

approximations of higher order-than linear. This is one aspect of non-linear 

geometric control theory, and is currently the subject of much research. 
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5.2 Successive approximation 

Successive approximation, that is, 

gives a particularly simple algorithm; if it converges then we obtain 

a fixed point of ~. It is thus important to have available some 

general conditions (other "than contraction) which will ensure, at least 

locally, convergence of this procedure. One answer is provided by 

Proposition 5.3 " 

Let ~ of (3.28) be a map from C(O,t1;Zl) into itself. Let ~,f 

satisfy the·differentiabi1ity and reJ,.resentation assumptions of Section 

5.1. Suppose that z* is a fixed point of ~ and that d~tz* is a 

compact (linear map). 

dfl * 
(A + ~ ), C} is unobservable} (5.5) 

If cr <1 then z* is a point of attraction for the iteration 

Pf. By a slight modification of the discussion preceding Proposition 5.1 

one has that ~re stateme~t IId~lz* has" A F 0 as an eigenva1ue" 

"(as it is compact d~fz*' only non-zero spectrum is point spectrum) is 

equivalent to the system 

ij = Av + }(dflz*)(V) 
'\ 

y :;: Cv 

(5.6) 
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being unobservable. Thus the spectral radius requirement of the 

Ostrowski - (refined by) -Kitchen result of Appendix 4 becomes the 

condition stated as (5.5). 

Of course a < 1 ensures that 1 . is not an eigenvalue of d~lz* . 

Recall also that if ~ is a compact map and continuously Frechet 

differentiable then compactness of the Frechet derivative follows. 

Condition (5.5) concerns: that "size" of perturbation needed to cause 

breakdown of observability - the bigger the perturbation required, the 

smaller a will be. Intui·ti·ve1y Proposition 5.3 says "providing the 

linear part is dominant enough at.the fixed point, ~ will be a local 

contraction there." This should be contrasted with Theorem 3.20 which 

does not use"""any di fferentiabil i ty assumptions. 

Further, suppose trntthe hypotheses. of Proposition 5.2 hold; the 
. , 

fact that for any s~arting point Zo the sequence of successive i.ter~tes ' 

zl ,z2' z3" • · • 1 i"es iOn a compact subset of C (0, tl ; Zl ) , and therefore 

contains a strongly convergent subsequence does not allow us to conclude 

that the limit of this subsequence, is the desired fixed point (as would be 

the case i"f the sequence zl ,z2'.. . itsel f were convergent). The 

existence of suc~ convergent subsequences prompts a search for transform­

ations F such that iteration of F(~) will converge to a fixed point 

of ~. Consider such an F(~): in order to apply Theorem 7, Appendix 4, . 

we must determine the spectrum of d(F(~}) Iz*. To do this we should like 

to use the Gelfand calculus to obtain ~he spectrum of the Frechet derivative 



- 143 -

of the transformed t as the image under F of the spectrum of thi' 

Frechet derivative of t. Since the Gelfand calculus requires a 

complex Banach algebra we need extra hypotheses to ensure that we are 

justified in using the complexification technique. In addition an 

arbitrary F cannot be used.- we must ensure that a fixed point of 

F(t) is a foixed point of t It is not yet clear how best to perform 

these analyses. 

. . 
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5.3 The Newton method 

For the map ~ of (3.2) we shall in this section consider, 

not the fixed point problem: find a z such that ~(z) = z, but the 

root finding problem: find a z such that (I - ~)(z) = o. Such 

problems are traditionally solved by Newton's method. Following the 

formulation of Newton in Kantorovich-Akilov [lJ and assuming different­

iability and representation results as in Section 5.1, we have an iteration 

formally defined as 

. (5.8) 

, If we define the defect 

(5.9) 

and the update 

(5.10) 

we get, by re-arranging (5.8), 

(5.11) 

the right-hand side of (5.11) becomes 

(5.12) 
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The left hand side of (5.11) gives 

I
t . 

(I - d~lz )vn(t) = vn(t) - S(t-S)(dfl (vn))(s)ds 
n 0 zn 

(5.13) 

Equating (5.12) and (5.13) gives 

(Vn+Zn)(t) = zn+l(t) = S(t)H~l(y(,)-cI'S('-S)(f(Zn(S» + 
o . 

t 
+ (dflzn(Vn»(S)dS) + JoS(t-S)(f(Zn(S» + (dflzn(Vn»(S»dS 

(5.14) 

Now using (SilO) we substitute zn+1 - zn for vn and obtain 

zn+l(t) = S(t)~~l(y(.) - cJ~S('-5)(dflzn(Zn+l»(S)dS 

- cJ~S('-S)(f - dflzn)(Zn(S»dS) + 

+ I:S(t-S)(dflzn(Zn+l»(S)dS + 

- , 

t 
+ I S(t-s)(f - dfl )(z {s))ds ••. (5.15) o zn n 

As in Section 5.1 we may associate, at least formally, a sequence 

of linear problems with (5.15). For, consider the perturbed linear 

system 

in+1 =. (A + dflzn)(Zn+1) + (f - dflzn)(Z~) 
-\ 

y = CZn+1 

•. (5.16) 
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Then proceeding as in Section 5.1 we may regard (5.15} as arising from 

the initial state reconstruction problem for (5.16). The iteration 

written as (5.16) can be regarded as repeated 1inearisation and will 

make sense if the pair (A + dft ,C) is observable. Such. an· iterative 
zn 

structure based on repeated 1inearisation i.s not uncommon elsewhere in 

non-linear estimation. The extended Kalman filter is a well known example. 

In (5.16), however, we have a known ("bias"} correction term 

(f - dflzn)(Zn) · 

fashion. 

Terms of this nature are often inserted in an ad hoc 

It is possible to provide a convergence analysis, for this iteration, 

based on the theorems, concerning Newton's method, in Kantorovic-Aki10v [lJ. 

These theorems demand hypotheses on the first and second.Frechet derivatives 

of ~. The interpretation, in our case, looks somewhat inelegant and it 

might be better to attack the iteration (5.16) directly. These matters as 

already indicat~d are not pursued here and we shall conclude thi·s Chapter 

with some remarks on extensi"ons of the treatment in this section. - , 

Iterated re-1inearisationcan be computationally onerous, but is often 

performed in off line design studies. Various authors have investigated 

the possibility of simplified versions. The simplest of these (again, see 

Kantorovich-Aki10v, [l]} uses d~1 in all the iterative steps (5.16) 
Zo 

instead of d!lz~. In case that d~lzo ~ 0 then this reduces to our 

contraction iteration. In any case, for computati?nal purposes one is 

inevitably dealing with some approximate version. Certainly, when ~ is 
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compact, d~lz is compact linear and so can be approximated a finite 
n 

dimensional operator. 

Computational experience in other fields shows that the Newton 

algorithm may converge even when the conditions of Kantorovic-Akilov [1] 

fail. In particular one 'can, in some cases, by appropriately manipulating 

the iterative scheme,achieve convergence even to points lying on surfaces 

where the Frechet derivative is singular. In our case raises the 

interesting possibility of considering "intrinsically non-linear" 

observa ti on problems. Typi ca 11 y such problems wi 11 pos'sess curves, or 

surfaces, of points at which the linearised system will be unobservable; 

for instance, problems arising in satellite control show such phenomena. 

Further investigation of this point seems desirable since it offers a 

way of overcoming one of the main defects of the present treatment - the 

strength of the conditions on the linear part. 

. , 

.) 
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Appendix 1 : embeddings 

For a region n c%n , whose boundary (an) is sufficiently 

smooth (explicitly: has the cone property) we define the Sobo1ev spaces 

Wm,p(n), where m,p are positive integers, as the space of real valued 

functions on n such that all derivations up to and including order m 

are LP integrable. In this thesis Hm(n) denotes Wm,2(n) . From 

Adams [1] we have that ••• 

1. bounded, mp > n; then the embeddings 

1 ~ q ~ 00 

are compact. , 

2. mp > n implies that Wm,p(n) is a Banach algebra' under pointwise 

products. 

3. mp ~ n,' bounded, j a positive integer 

(where 

o <n - mp < nand 1 ~ q <~) is compact . n-mp 
and 

is compact. 

Example: w1,2(n) = H'(n) ~ wo,q(n) = Lq(n) is 

, '. 2n 
compact if n ~ 3 and 1 s q < n=2 

-\ 

. , 
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Example: If P > n W1,p(O) is a Banach algebra 

i.e. H1(O) is a Banach algebra for n = 1 • 

If the Sobo1ev space is also a Banach algebra any polynomial 

(products .bei ng defi ned poi ntwi se) wi 11 be we ll-defi ned. The norms 

of the embeddings noted above sometimes appear in calculations. In 

general optimal estimates for these constants are difficult to obtain; 

see Adams [lJ and Lions-Magenes [lJ. 

The following result will be found in Lions [3J. Take three Banach 

spaces BO,B,Bl with continuous embeddings BO ~ B ~ Bl ; BO,B, reflexive; 

and the embedding. BO ~ Bl being compact. Define 

where t, is fi ni te and , < PO' P, < Ie». Equi pped wi th the norm 
. , 

WPo,P, 
BO,B, is a Banach space. If PO = P, = 2 and BO,B, are Hi'bert then 

so is 
PO,P, . * 

WBO,B, (when B, = BO we denote this space by WBO(O,t,)) • 

... 
Theorem (Lions) 

PO'P l Under the above hypotheses the embedding of W in BO,Bl 
Po . 

L (O,t, ;B) is compact. 
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Appendix 2 : analytic semi groups 

Analytic semi groups can be regarded as an "operational" 

expression of the smoothing action created by parabolic partial 

differential equations. More precisely; let Z be a Banach space, 

A:D(A) + Z a closed, densely defined linear operator in Z. A is 

called seatoriaZ if there ~re constants ~,M, a: 0 < ~ < ~/2, M ~ 1 , 

a € ~ such that the sector S~,a =' {A€C (.AFa, ~ < arglA-al ~~} is 

contained in p(A) , the resolvent set of A, and 

'II(A-A)-lll ~_M_ 
.IA-a I 

V A € SA. 'i',a 

If A is sectorial then k ~ 0 such that Re a(A+kI) > O. Let 

,Al = A + kI. For 0 < a < 1 define 

Then Aia is bounded and injective. Let Za be the range of. Aia , 

zO = Z, Zl = D(A); then we can take A~: Za + Z to be the inverse 

of A~a, A~ = Iz ' and A~ = A ~ Za is dense in ~. Define the 

norm 11·11 on Za by Ilzll = IIAalz11 where 11·11 denotes the a a 

norm for Z. Za does not depend on the. choi ce of k different 

choices of k yield equivalent norms on Za. Za is a Banach space 

under 11·11 a 

Example: Let 0 be an open bounded set in ~n whose boundary is of 
~ 2 class C (m an integer). Let Z = L (0) 

\ 
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'2m m D(A) = H (n) n HO(n) , (Az)(x) = ,II aa(x)(Daz(x» 
la ~m 

where the a :~ +R are continuous mappings and Daz 
a. tV 

is taken as a distributional derivative. 'Suppose that 

A is uniformly strongly elliptic on n, i.e. 

3 Co € R+ : (_l)m E a (x).~a ~ col~12m 
tV lal=m a 

V~ = (~a)lalsm ' ~a € ~ and Y x € n. Then A is 

sectorial. Indeed in this case R(~,A) is compact 

v ~ € peA) • 

If A is sectorial -A generates an analytic semi group. That is to 

say, a semi'group satisfying Defini'tion 2.1 and, in addi'tion, t + Set) 

is real analytic on ]O,oo[ V z € Z. Conversely we know that if -A 

genera tes an ana lyti c semi group then A is sector ~ ;,,1 . A simple 

expression of the smoothing pruperty i's 

"Let A be sectorial, and -A generate an analyti'c semi group 
I 

Set) ;mis any positive integer. Then 'it > 0 R(S(t» c D(Am}." 
. . 
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Appendix 3 : pseudo-inverses 

Further to the material contained in the first part of 2.2 

we have (for T € L(X,y), with closed range} 

and so 

(T*)t = (Tt)* 

(Tt)t = T 

(T*T)t = T (T*}t 

t * t * * * t T = (T T) T = T (TT) • 

It can also be shown that 

and 

t * -1 * N(T) =' {OJ => T = (T T) T 

* t *. *-1 N(T ) =' {OJ => T = T (TT ) 

*, Suppose that T = Be with B ,'e being surjective, then 

Tt = etBt = e~ee*)-l(BB*)-lB*. The ~ollowing 2 lemmas consider 

composition, and direct products, of maps. 

Lemma 1 

Let Hl ,H2,H3 be Hilbert spaces; T1 (resp. T2) being bounded 

linear and witn closed range from H1 to H2 (resp. H2 to H3) . 
* . Suppose that R(T2} c R(T1) then R(T2oTl ) is closed in H3 . 

Lemma 2 

Let _ Hl ,H2,H3 be Hilbert spaces; T being a bounded linear map 
\ 
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from H1 to H2 , S being a bounded linear map from H1 to H3 , 

both T and S having closed range. Consider the map 

T x S : H1 + H2 x H3 : u + (Tu,Su) 

this has closed range iff the image of N(T) under S is closed in H3 

,and the image of N(S) under T is closed in H2 • 

Sometimes either the domain, or the range, has a particularly simple 

structure. Such structure can be used to advantage in the computation of 

the pseud~ inverse. 

Lemma 3 

Let F be bounded linear F: X + XF and onto (X,XF both Hilbert), 
, * * T X + Y . as before, R(T) = R(F }; then 

t * * * -1 * T = F (FT TF) FT • 

Lemma 4 (dual of 3) 

* Let E be bounded linear Y + Y * , and onto (Y,Y * both Hilbert), 
. E E 

T X + Y as before and R(T) = R(E) then 

t * * * -1 * T = T E(E TT E) E • 

Example: if T is represented by a matrix one might in Lemma 3 take 

H -to consist of the linearly independent rows of T. 
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Appendix 4 : fixed point theorems 

Many results have been developed for study of the fixed point 

problem. This appendix briefly summartses those results which are used 

in this thesis. Let I be a ~ap from a Banach space X into itself. 

One of the first results was ••. 

Theorem 1 (Banach contraction : first form} 

Let . I : X ~ X be such that 

for some K: 0 < K < 1 • 

Then I has a fixed point in X .• 

The above theorem can be adapted so as to provi. de for "l oca 1" 

results (as in this thesis). 

Theorem 2 (Banach contraction : second form) 

I : X ~ X as above. Let D be a closed subset of X 

and II ~x - IX U .~ K 11 x -, X .11 ' Vx1,x2 € D for some K € ]0,1 [. The 
. , 

iterative procedure C.'su~cessive approximation") xi+l. = lXi' 

i. = 0,1,,2, ••• , converges to an unique solution in D of IX = x if 

the sphere 

1 i es in D • 
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Generalising Brouwer's theorem in finite dimensions we have 

Theorem 3 (Schauder) 

A continuous operator ~ which maps a closed convex subset, S, 

of X into a precompact subset of S, has a fixed point in S. 

For operator sp1ittings such as are discussed in Chapters 3 and 4 

a ttempts to combi ne the properti es of the Banach and Schauder theorems 

have been made. 

Theorem 4 (Nussbaum (see additional references).] 

Let S be a closed bounded convex subset of the Banach space X. 

Suppose that··· ~l and ~2 are continuous mappings from S into X such 

that 

- . 

Vx,x € S 

.iii) ~2(S) is compact 

then ~1 + ~2 has a fixed point in S. 

The results of Leray-Schauder [lJ concern the.application of Leray­

Schauder degree to fixed point problems. The main result of that reference 

is 
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Theorem 5 

Consider the equation 

z - F(Z,ll} = 0 (A4.1 ). 

under the following assumptions: 

a. Z is a real Banach. space with norm 11·11 , z E Z and Fe·,·) takes 

va 1 ues in Z. 

b. The values of the parameter II lie in an interval, M, on the 

real line (/. / denotes absolute value). 

c. Z x.M denotes the product space with norm 

liz - Zl I I + III - III I for Z,ZI E Z 

d. Fez,) is defined on the closure n of an open bounded set 

g in Z x. M . 

e. Fe·,·) is compact on n and uniformly continuous in ll. 

f. an does not contain any solution (Z,ll) of (A4.1). 

g. Or some llO E'~ , (A.41) possesses a finite number of solutions 
... 

all of which are known. Thus at llO we may calculate the total 

Leray-Schauder index which we assume to be different from zero. 

Then: we may conclude that there is a "solution 'dll E r~ and, moreover, 

it is a solutionwhich varies continuously wi.th M. 
'\ 
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We may wish to ensure uniqueness in cases where existence has 

been proven using Theorem 3. 

Theorem 6 (Kellogg: Smith-Stuart) 

Let ~,S be as in Theorem 3. Suppose that 

i) ~ is continuously Frechet differentiable on S ; 

ii) there is no fixed point of ~ on the boundary of S ; 

iii) for each Z E S, 1 is not an eigenvalue of the Frechet 

derivative at z of ~ (denoted d~lz) • 

Then ~ has an unique fixed point in S 

The result also holds (for dim X >1) if iii) is 

replaced by 

iii) I the set ' {z € S: 1 is an ei genva 1 ue . of d~' z} . has 

no points of accumulation in S. 

Concerning the,convergence of the sequence generated by successive 

approximation we have 

Theorem 7 (Ostrowki: Kitchen [1] : Sermange) 

Let f be a mapping whose domain and range are subsets of a Banach 

space X. Suppose th~t 
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i) x* € X is a fixed point of f 

ii) f is differentiable at x* ; 

iii) the spectral radius of the derivative of f at x* is 

less than 1. 

Then: there exists a neighbourhood N of x* such that 

for each x € N • 

If such a neighbourhood N exists we shall say that x* is 

a point of attraction for the iteration xn+ = f(xn) . 

\ 
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List of notations 

a 

a 

A 

A(· ) 

c 
c 

f(· } 

real constant 

parameter vector 

linear operator, possibly unbounded 

fami 1y of s.ame 

ball radius a in some function space 

operator giving output from state 

opera tor gi vi ng output trajectory ft"om s ta te trajectory (see (2.26)) 

Fr~chet derivative of ••• at -

domain of an operator 

function: either of time 'or state z (usually appearing as .• 

non-homogeneous term in evo1utton equation} 

H Hilbert space 

Hm(n) Sobo1ev space; see Appendix 1 

HO initial: state to output operator 

J(.) . cost functional 

K real constant 

LP 

L(X,Y} 

\ 

p. th power Lebes gue i nt.egrab 1 e functi ons 

space of bounded linear opera~ors from X to Y 
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the kernel of an operator 

real numbers 

non-linear operator 

q real number 

r real number 

RC-) range of an operator 

s real number'; dummy integration vari'able 

S(-) semi group 

t 

T 

u 

u 
U 

v 

time variable; tl denotes specific instant 
I 

bounded J inear, 'operator between Banach spaces 

dummy integration variable 

control input; values in U, trajectory 1 ies in space U 

sp~<:.e of values tak.en by control 

space of input trajectories 

Banach space 

Wm,p(n) ... Sobo1ev spac'e; see Appendix 1 -'. 

- , 

W(O,tl ) a space of functions defined on [O,tl ]; see Definition 2_19 

Wz(0,t1) a variation on the above 
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X Banach space 

V Banach space 

Y space of output trajectories 

z is used to denote the system state 

zo the initial state i.e z(O) 

Z the Banach space in which the system state lies 

* is used to denote adjoi nt s pace a d also ope.ra tor 
.1.. used to denote (in Hilbert space) "subspace orthogonal to 

map or "has 1imit"; apparent from context 

t denotes generalized inverse; see Definition 2.23 

~ Laplacian 

v. grad 

v div 

In the case of function valued function spaces e.g. 

O,t1 denotes time interval [O,t1J and Z the Banach space in which 

these functions take their values. 

II 

• f 
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