

This is a repository copy of Binding loci of RelA-containing nuclear factor-kappaB dimers in promoter regions of PHM1-31 myometrial smooth muscle cells..

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/91464/

Version: Accepted Version

Article:

Cookson, V.J., Waite, S.L., Heath, P.R. et al. (3 more authors) (2015) Binding loci of RelA-containing nuclear factor-kappaB dimers in promoter regions of PHM1-31 myometrial smooth muscle cells. Molecular Human Reproduction, 21 (11). pp. 865-883. ISSN 1360-9947

https://doi.org/10.1093/molehr/gav051

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Molecular Human Reproduction following peer review. The definitive publisher-authenticated version Mol. Hum. Reprod. (2015) 21 (11): 865-883. is available online at: https://dx.doi.org/10.1093/molehr/gav051

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Binding Loci of RelA-containing Nuclear Factor-kappaB (NF-κB) Dimers in Promoter Regions of PHM1-31 Myometrial Smooth Muscle Cells

Running Title: Myometrial Gene Regulation by NF-κB

Victoria J. Cookson^{1,5,*}, Sarah L. Waite^{1*}, Paul R. Heath², Paul J. Hurd³, Saurabh V. Gandhi⁴, and Neil R. Chapman^{1,#}

¹Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism,

University of Sheffield, Level 4, Jessop Wing, Tree Root Walk, Sheffield S10 2SF United Kingdom

²Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ

³School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS

⁴Department of Obstetrics and Gynaecology, Sheffield Teaching Hospitals NHS Foundation Trust, Level 4, Jessop Wing, Tree Root Walk, Sheffield S10 2SF

\$Current address for Dr. Victoria Cookson: Academic Unit of Clinical Oncology, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX. Email: v.cookson@sheffield.ac.uk

*Corresponding Author: Dr. Neil Chapman; n.r.chapman@sheffield.ac.uk; Tel. 00 44 (0)114 2268530.

^{*}These authors contributed equally to this study.

1 Abstract

24

Human parturition is associated with many pro-inflammatory mediators which are 2 regulated by the Nuclear Factor kappa B (NF-kB) family of transcription factors. In the 3 present study, we employed a ChIP-on-chip approach to define genomic loci within 4 5 chromatin of PHM1-31 myometrial cells that were occupied by RelA-containing NF-kB 6 dimers in response to a TNF stimulation of one hour. In TNF-stimulated PHM1-31 cells, anti-RelA serum enriched 13,300 chromatin regions; importantly, 11,110 regions were 7 also enriched by anti-RelA antibodies in the absence of TNF. DNA sequences in these 8 9 regions, from both unstimulated or TNF-stimulated PHM1-31 cultures, were associated with genic regions including IkBa, COX-2, IL6RN, Jun and KCNMB3. TNF-induced 10 binding events at a consensus KB site numbered 1,667; these were represented by 112 11 12 different instances of the consensus kB motif. Of the 1,667 consensus kB motif occurrences, 770 (46.2%) were identified within intronic regions. In unstimulated PHM1-13 14 31 cells, anti-RelA-serum-enriched regions were associated with sequences corresponding to open reading frames of ion channel subunit genes including CACNB3 and KCNB1. 15 16 Moreover, in unstimulated cells, the consensus kB site was identified 2,116 times, being defined by 103 different sequence instances of this motif. Of these 2,116 consensus kB 17 motifs, 1.089 (51.5%) were identified within intronic regions. Parallel expression array 18 analyses in PHM1-31 cultures demonstrated that TNF stimulated a >2-fold induction in 19 51 genes and a fold repression of >1.5 in 18 others. We identified 14 anti-RelA-serum-20 21 enriched genomic regions that correlated with 17 TNF-inducible genes, such as COX2, Egr-1, Jun, IκBα and IL6, as well as five regions associated with TNF-mediated gene 22 repression, including Col1A2. 23

Introduction

In the developed world, premature birth (that before 37 weeks completed gestation) complicates 6-12% of pregnancies (Khashan et al., 2010). Annually it is estimated that 1.1million babies worldwide die from being born prematurely (Blencowe et al., 2012; Chang et al., 2013); surviving infants having an elevated risk of major long-term mental and physical handicap (Marlow et al. 2005; Costeloe et al. 2012). Moreover, such infants also have a disproportionate effect on health-care budgets worldwide: a recent U.K. estimate of the total cost of preterm birth to the public sector was £2.95 billion (Mangham et al., 2009). Tocolytic therapies (drugs which stop premature contractions of the womb) are few in number and are associated with complications for both infant and mother (Oei, 2006). This problem is compounded by the fact that, despite many years of research, we remain ignorant of the fundamental biological principles governing uterine function during pregnancy and labour.

NF-&B Biology and the Myometrium

Regulatory networks between transcription factors and DNA ensure cells function normally. The Nuclear Factor kappaB (NF-κB) family are one set of transcription factors which govern a wide variety of cellular activities (reviewed in Perkins, 2007; Perkins, 2012; Hayden and Ghosh, 2012; Cookson and Chapman, 2010). NF-κB, which is rapidly induced by over 400 different stimuli including TNF (Perkins, 2007; Hayden and Ghosh, 2012; Cookson and Chapman, 2010), is present in virtually every cell type within the body. NF-κB is composed of dimeric complexes formed from five distinct subunits: RelA (p65), RelB, c-Rel, NF-κB 1 (p105/p50) and NF-κB 2 (p100/p52) (Perkins, 2007; Perkins, 2012; Hayden and Ghosh, 2012; Cookson and Chapman, 2010). DNA binding by NF-κB dimers is mediated by a conserved N-terminal domain termed the Rel Homology Region (Chen and Ghosh, 1999). Combinations of

subunits determine the specificity of transcriptional activation (Perkins et al., 1992; Chen and 49 Ghosh, 1999); indeed NF-κB can modulate prolonged gene expression through the exchange 50 51 of NF-κB dimers at a given promoter (Saccani et al., 2003). 52 There are predicted to be in excess of 3,000 kB sites within the human genome with the 53 consensus NF-κB binding site generally viewed as 5'-G-5G-4G-3R-2N-1Y₀Y+1Y+2C+3C+4-3' 54 (where R = A or G; N = A, C, T or G and Y = C or T; Natoli et al., 2005). Importantly, there 55 are a great many functional variants of this consensus κB motif and there is now a wealth of 56 studies describing how κB DNA motifs associate with various NF-κB dimers (Ghosh et al., 57 1995; Müller et al., 1995; Cramer et al., 1997; Huang et al., 1997; Chen et al., 1998a; Chen et 58 al., 1998b; Chen and Ghosh, 1999; Phelps et al., 2000; Hoffman et al., 2003; Leung et al., 59 60 2004; Huang et al., 2005; Moorthy et al., 2007; Trinh et al., 2008; Wan and Lenardo, 2009; 61 Wang et al., 2012). 62 At term, the smooth muscle of the uterus, the myometrium, is exposed to a complex milieu of 63 inflammatory signalling factors (Aguilar and Mitchell, 2010; Cookson and Chapman, 2010; 64 Golightly et al., 2011; Webster et al., 2013). Moreover, there is now a body of evidence that 65 NF-κB dimers containing the RelA NF-κB subunit play a pivotal role in regulating human 66 parturition (Belt et al., 1999; Allport et al., 2001; Elliot et al., 2001; Yan et al., 2002a; Yan et 67 al., 2002b; Lappas et al., 2003; Lee et al., 2003; Chapman et al., 2004; Lappas and Rice, 2004; 68 Lappas et al., 2004; Soloff, et al., 2004; Chapman et al., 2005; Lindström and Bennett, 2005, 69 Soloff et al., 2006; Terzidou et al., 2006; Mohan et al., 2007; Lindström et al., 2008). 70 Consequently, it would seem highly likely that, based on the evidence above, the myometrial 71 smooth muscle cell could have evolved suitable mechanisms to ensure those NF-κB-regulated 72

promoters are expressed only at the correct spatio-temporal juncture. Consistent with this notion, we have previously demonstrated that temporal changes in NF- κ B subunit composition and associated DNA-binding activity occurs between non-pregnant (NP), pregnant (P) and spontaneously labouring (SL) myometrium (Chapman et al. 2004). At present, the importance of this change in NF- κ B dimer composition within the uterine smooth muscle is unclear. Temporal changes in NF- κ B subunit composition on NF- κ B-regulated promoters, however, can permit fine-tuning of the transcriptional response ensuring the gene is expressed at the correct level for the appropriate length of time (Saccani et al., 2003).

The obvious corollary to those observations, therefore, is that it is highly likely that a similar temporal manner of regulation is being employed in the uterus ensuring parturition occurs at the correct juncture. The study described herein examines where NF- κ B complexes bind to chromatin in myometrial cells and whether this binding influenced gene expression in such cells. Essentially this allows us to determine if NF- κ B promoter occupancy is associated with transcriptional activation, transcriptional repression or homeostasis.

Materials and Methods

PHM1-31 Cell Passaging

- 91 PHM1-31 immortalised human myometrial myocytes were the kind gift of Prof. Barbara
- 92 Sanborn, Colorado State University, USA (Monga et al. 1996). Cells were cultured in
- Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% (v/v) FCS and 2 mM
- 94 L-glutamine and 0.1 mg/ml Geneticin using published cell culture procedures (Chapman et al.
- 95 2005, Webster et al., 2013, Waite et al., 2014).

Transfertions, Plasmids and Luciferase Assays

Transient transfection of PHM1-31 myometrial cells was performed using the LT-1 reagent from Miras (Geneflow, Staffordshire UK) as described by Chapman et al., (2005) for primary myometrial cells. The 3x-κB-ConA-luciferase (3x-κB-ConA-Luc) and enh-ConA-luciferase (ΔκB-ConA-Luc) vectors were the generous gift of Prof. Ron Hay (University of Dundee, U.K.) and the construction of these has been reported in detail (Rodriguez et al., 1996). All transfection experiments were performed a minimum of three times and results are expressed as the mean ± SEM. All data analyses were conducted on GraphPad Prism Version 5.02 (GraphPad Software, San Diego, California). Comparison of data from two matched samples were compared using a paired, two-tailed t-test; p<0.05 was considered statistically significant.

RelA Immunocytochemistry in PHM1-31 Cells Following TNF Stimulation

PHM1-31 cells were cultured in a 24-well plate, washed in PBS and fixed in 1% (v/v) formaldehyde overnight at 4°C. Endogenous cellular peroxidase was quenched with 1% (v/v) hydrogen peroxide for 10 minutes. The Vectastain® Elite ABC kit (Vector Labs) was used for the following reactions. Endogenous biotin was blocked with PBS containing horse serum and avidin for one hour at room temperature, followed by incubation with primary antibody (anti-RelA, #sc-372, Santa Cruz Biotechnology Inc.) in antibody diluent and biotin at 4°C overnight. Secondary anti-mouse IgG (Dako) was added for 30 minutes at room temperature before the addition of the ABC reagent for 30 minutes at room temperature and finally DAB (3, 3'-diaminobenzidine). Cells were stored in PBS and photographed. Negative control experiments included the substitution of the primary antibody with an isotype control (Abcam, # ab46450).

Preparation of Nuclear Extracts and Electrophoretic Mobility Shift Assay (EMSA)

Nuclear extracts were prepared essentially as described in Dignam et al., (1983). In this study, the EMSA utilised an oligonucleotide consisting of the HIV-1 3'long terminal repeat (LTR) κB site (in bold; 5'-GATCCGCTGGGGACTTTCCAGGCG-3'). The EMSA was carried out as detailed in Chapman et al., (2002 and 2005).

Western Immunodetection

Expression of the RelA NF-κB subunit was examined using Western analysis with immunoblots probed with antibodies that recognize either the amino terminal or carboxy terminal of RelA (p65) (Santa Cruz Biotechnology Inc. Santa Cruz CA #sc-109 and #sc-372 respectively) and developed using EZ-ECL detection reagents (Geneflow, Staffs. U.K.) as detailed in Chapman et al., (2004).

Chromatin Immunoprecipitation (ChIP) Assay

The ChIP assay was performed on eight T-75 flasks of PHM1-31 cells (~2.6-2.8x10⁶ cells/flask) grown to 100% confluence using the Magna-ChIP ChIP assay kit (#17-611, Millipore U.K. Ltd. Dundee) following the manufacturer's guidelines and detailed in Webster et al., (2013). ChIP antibodies used were RelA and RNA Polymerase II (#sc-372 and #sc-899 respectively; Santa Cruz Biotechnology Inc. Santa Cruz CA). Briefly, four flasks were stimulated with 10ng/ml TNF for one hour while the remaining four were unstimulated controls. TNF has been demonstrated to be present in myometrium at term (Opsjln et al., 1993; Fitzgibbon et al. 2009; reviewed in Golightly et al., 2011) and has been used regularly by our group studying cytokine-induced myometrial NF-κB function (Chapman et al., 2005, Webster et al., 2013; Waite et al., 2014). The rationale for this time point was that it would represent an early response to TNF. We believe such early binding events play pivotal roles in the cell's

145	choice of subsequent signalling pathway usage (reviewed in Perkins 2007). It was accepted
146	that TNF-induced gene regulation events occurring after one hour would not be investigated
147	(Campbell et al., 2001; Rocha et al., 2003). Three biological replicates of these ChIP assays
148	were completed. The work-flow utilised to generate the appropriate chromatin samples is
149	illustrated in Figure 1.
150	
151	Quality Control PCR of Immunoprecipitated DNA
152	Prior to microarray analyses, ChIP efficacy was determined by enrichment of RelA on the
153	IκBα promoter. PCR was carried out on the immunoprecipitated DNA using primers flanking
154	the κB sites within the $I\kappa B\alpha$ promoter as a positive control (Chapman et al. 2005). The $G\alpha s$
155	promoter, which is not regulated by RelA was chosen as a negative control (Webster et al.,
156	2013). Once it was determined that the chromatin was of sufficiently high quality, it was then
157	prepared ready to probe Affymetrix 1.0R Human promoter Arrays (Affymetrix, Santa Clara,
158	CA).
159	
160	Affymetrix Microarrays
161	Full details of both arrays employed in this study can be found at the manufacturer's web site:
162	GeneChip Human Promoter 1.0R Array:
163	http://www.affymetrix.com/estore/catalog/131461/AFFY/Human+Promoter+1.0R+Array#1_
164	<u>1</u>
165	Human Genome U133 Plus 2.0 Array:
166	$\underline{http://www.affymetrix.com/catalog/131455/AFFY/Human+Genome+U133+Plus+2.0+Array}$
167	<u>#1_1</u>

ChIP DNA Amplification, Fragmentation and Labelling

ChIP DNA was amplified using the Whole Genome Amplification Kit (WGA; Sigma) as detailed in the manufacturer's instructions with slight modifications. Briefly, 1 µl of ChIP DNA was diluted with 9 µl of ultrapure water. Then 2 µl of library preparation buffer together with 1 µl of library stabilisation solution was added to this and heated at 95°C for 2 minutes before cooling on ice. After that, 1 µl of library preparation enzyme was added and the reaction was incubated in the thermal cycler for the following times: 20 minutes at 16°C (pre-cooled to this temperature), 20 minutes at 20°C, 20 minutes at 37°C, 5 minutes at 75°C, and on hold at 4°C. The amplified DNA was re-amplified using the WGA re-amplification kit to generate the 7.5 µg required. This method is described in the manufacturer's guidelines (Sigma). The reamplified DNA was then fragmented and labelled according to the Affymetrix ChIP Protocol using the GeneChip WT Double-Stranded DNA Terminal Labelling Kit.

Human Promoter 1.0R Array Procedures

Hybridisation of amplified DNA to Affymetrix Human Promoter 1.0R arrays was carried out using the GeneChip Hybridization, Wash and Stain kit (Affymetrix) according to the Affymetrix ChIP Protocol. The hybridisation cocktail (7.5 µg fragmented labelled DNA, 50pM control oligonucleotide B2, hybridisation mix, 7% (v/v) DMSO) was hybridised in the Affymetrix GeneChip Hybridisation Oven 640. Washing and staining was carried out using the GeneChip Fluidics Station 450 as described in the GeneChip Expression Wash, Stain and Scan User manual (Affymetrix). The GeneChip Scanner 3000 7G, operated by the GeneChip Opertating Software (GCOS, Affymetrix), was used to scan the Human Promoter 1.0R Arrays.

Data Analysis in Partek Genomics Suite 6.6

The raw data (.CEL) files, generated by the GCOS software, were imported into Partek Genomics Suite (PGS; Version 6.6; www.partek.com/pgs) and subjected to Robust Multi-array Average (RMA) background correction, quantile normalisation and Log (base₂) transformation utilising the software's tiling workflow. Prior to invoking an ANOVA, the data were normalised to the baseline by subtraction of all values ascribed to IgG samples from both unstimulated controls and TNF-treated samples since these values would represent non-specific binding events (Fig.1; illustration of work-flow). A two-way ANOVA was then completed within PGS to undertake multiple comparisons and determine the difference between unstimulated controls and TNF-treated samples at probe-level. Differences between control and TNF-stimulated samples were considered significant if p≤0.05.

Upon completion of the ANOVA, the Model-based Analysis of Tiling (MAT) algorithm (T statistic) was employed to detect enriched regions of chromatin in un-stimulated and TNF-stimulated data sets (Johnson et al. 2006). The MAT algorithm allows a rapid method of detecting regions enriched by a given transcription factor (in this study RelA-containing NF- κ B dimers). The MAT algorithm was then applied across a sliding window of 600bp, using a minimum of 10 probes per region with ChIP-enriched regions deemed to be statistically significant when p \leq 0.01: this output was the MAT score. Those regions with a positive MAT score and p value \leq 0.05 from the ANOVA indicated significant enrichment by anti-RelA antiserum in those samples treated with TNF compared to untreated controls. Conversely, a negative MAT score and p value \leq 0.05 from the ANOVA represented those samples where enrichment of genomic loci was greater in unstimulated controls compared to those exposed to TNF. Promoters of known genes within the significantly enriched regions were then identified

using the RefSeq database, based on the hg18 build of the human genome. All of the array data has been archived with the NCBI Gene Expression Omnibus (NCBI GEO) with the accession number GSE65721 (www.ncbi.nlm.nih.gov/geo); this number covers all associated experimental sub-series. All tables of original data sets can be accessed and down-loaded from the folder entitled Cookson et al 2015 Public Access MHR Original Data Sets at the following hyperlink:

https://drive.google.com/folderview?id=0B4bwcdSzbmn8OXdLWEtKemxtb0k&usp=sharing

RNA Extraction

On reaching 90% confluence, PHM1-31 cells were stimulated with 10ng/ml TNF for one hour with non-stimulated flasks serving as controls. RNA was extracted using the EZ-RNA extraction system (Geneflow, Staffs. U.K.) and quantified using the nanophotometer (Implen; supplied by Geneflow, Staffs. U.K.). Prior to first strand synthesis, the quality of isolated RNA was verified using Agilent's Eukaryote Total RNA Nano Chip (5067-1511) in conjunction with the Agilent 2100 bioanalyser following the manufacturer's guidelines. Three biological replicates were performed.

Affymetrix U133plus2 Human Expression Array Procedures

RNA was reverse transcribed using Bio-Rad iScript cDNA synthesis Kit according to the manufacturer's guidelines (Bio-Rad Laboratories Ltd. Hertfordshire U.K.). The preparation and hybridisation of cDNA to U133Plus2 expression arrays was performed according to published protocols (Kirby et al. 2011; Simpson et al., 2011; Brockington et al., 2013; Raman et al., 2015).

Data Analysis in Partek Genomics Suite 6.6

240	The raw data files (.CEL) were imported into PGS V6.6 and analysed following the software's
241	Gene Expression workflow. Differentially expressed genes were identified using ANOVA to
242	generate p values. Linear contrast was used to calculate fold-change and mean ratio from the
243	contrast between unstimulated and TNF stimulated samples. Genes with fold change ≥ 2 or
244	fold change \leq -1.5 and with p values \leq 0.05 were identified using RefSeq.
245	
246	Data Analysis of Combined Human Promoter 1.0R and U133plus2 Human Expression
247	Arrays
248	Using PGS, the enriched region list from both Criteria-A and Criteria-C were merged with the
249	respective gene list from the expression array analyses. This provided data defining NF-κB-
250	enriched regions that were either expressed or repressed.
251	
252	Validation of Microarray Results by qRT-PCR
253	Quantitative RT-PCR using SYBR Green Jumpstart Taq ReadyMix (Sigma, UK) was
254	undertaken following MIQE guidelines (Bustin et al. 2009). GAPDH and β -Actin were
255	selected as housekeeping genes. The primer sequences were as follows:
256	TNFAIP3 Forward: 5'-TGAGCCCTTGGCGTGGAACC-3';
257	TNFAIP3 Reverse: 5'-AAAGGGCTGGGTGCTGTCGG-3';
258	NFKBIA Forward: 5'- CGCCCAAGCACCCGGATACA-3'
259	NFKBIA Reverse: 5'- GGGCAGCTCGTCCTCTGTGA-3';
260	GAPDH Forward: 5'-TGTTCGACAGTCAGCCGCATCT-3';
261	GAPDH Reverse: 5'-CAGGCGCCCAATACGACCAAATC-3';
262	β-Actin Forward: 5'-CGAGCACAGAGCCTCGCCTT-3'

263 β-Actin Reverse: 5'- CGAGCACAGAGCCTCGCCTT -3'.

qPCR was performed in triplicate using a 7900HT fast qPCR Machine (Applied Biosystems)

and gene expression data were analysed using $\Delta\Delta$ CT using SDS 2.0 Software (Applied

Biosystems).

Results

TNF induces RelA Nuclear Localisation and Occupancy of the IxB\alpha Promoter in PHM1-

270 31 Cells

A number of pro-inflammatory cytokines, including TNF, are associated with the onset of both normal and preterm birth (Aguilar and Mitchell, 2010; Golightly et al., 2011). Prior to the ChIP-on-chip experiments, it was important to confirm that in PHM1-31 cells, NF- κ B RelA was activated by stimulation with TNF. RelA immunocytochemistry of PHM1-31 cells showed diffuse staining in the control, unstimulated cells and those stained with control IgG, (Fig. 2A; Panels I and II) whilst translocation of the RelA subunit into the nucleus (black arrows) was apparent following 1 hour TNF stimulation (Fig. 2A; Panel III). Moreover, increased RelA binding to the consensus κ B site in EMSA was also seen and that binding activity could be specifically super-shifted with anti-RelA antiserum (Fig. 2B). Furthermore, when PHM1-31 cells were transiently transfected with the RelA-responsive 3x- κ B-luc reporter and subsequently exposed to TNF for one hour, increased reporter activity was seen in those cells harbouring the 3x- κ B-luc vector, but not those with the $\Delta\kappa$ B-luc control (Fig. 2C).

Immunoprecipitation using the RelA antiserum (sc-372) showed specific binding to the RelA protein, while the control IgG failed to precipitate any RelA complexes (Fig. 2D). To demonstrate the specificity of the ChIP, the RelA antiserum detected low level binding of RelA

complexes to the IkB α promoter region without TNF stimulation; as predicted, this increased upon TNF exposure. No binding was seen at the RelA-insensitive G α s promoter. Supporting this, after exposure to TNF, RNA PolII binding was also observed at the IkB α promoter. These results illustrate that the immunoprecipitation and ChIP methods were specific for the RelA NF-kB subunit. Interestingly, while we see a low-level of NF-kB occupancy of the IkB α promoter under unstimulated conditions, we could not detect a similar pattern of immunostaining (Fig. 2A, Panels I and II).

TNF Induces RelA NF-&B Promoter Occupancy at a Variety of Promoters

In this study of PHM1-31 myometrial myocytes, statistically significant differences in promoter occupancy between unstimulated and TNF-treated cultures were observed in 24,410 genomic regions enriched by the anti-RelA antiserum (p≤0.05); these data were termed Criteria-B and represent all enriched regions from both unstimulated and TNF-treated cultures (Fig. 3A; Original Data Set - Table 1). Within the set Criteria-B, defining the MAT algorithm parameters to enriched values of >0 and p≤0.01 (i.e. a positive MAT score) generated 13,300 genomic loci that were significantly more enriched by the anti-RelA antiserum in TNF-treated cells compared to unstimulated controls; this subset was termed Criteria-A (Fig. 3A; Original Data Set - Table 2) and represents TNF-induced enrichment.

Similarly within the Criteria-B dataset, defining the MAT algorithm parameters to enriched values of <0 and p≤0.01 (i.e. a negative MAT score), we identified 11,110 genomic regions that were significantly more enriched by the anti-RelA antiserum in the unstimulated control set compared to the TNF-treated samples. This subset was termed Criteria-C and represents unstimulated enrichment. Therefore, in this study, the Criteria-C dataset identifies genomic

loci bound by NF-κB dimers containing the RelA subunit (homo- or heterodimers of RelA) when the cell population is not exposed to an exogenous stimulant such as TNF (Fig. 3A; Original Data Set - Table 3). While we cannot rule out the possibility that some RelA-enriched regions may be non-specific, the removal of the IgG-associated regions will minimise such interference.

RelA-enriched loci from both Criteria-A and Criteria-C datasets represent given regions of chromatin and thus may map to different aspects of a gene including exons and introns. Fig. 3B illustrates a schematic representation of chromosome 14 (the IκBα locus) illustrating such differentially enriched regions listed in either Criteria-A (TNF-induced; red vertical lines) or Criteria-C (unstimulated; blue vertical lines) datasets.

RelA-Enriched Regions Encoding or Juxtaposed to Genes Associated with Parturition

Enrichment of chromatin from TNF-treated cells by anti-RelA serum was seen to contain or be juxtaposed to regions encoding many genes believed to play a significant role in myometrial quiescence or labour itself including, but not limited to, PTGS2, Jun, IL6RN, IL6, CACNB3, KCNMB3, TRPC2 and VCAM-1 (Original Data Set - Table 4; Criteria-A and Original Data Set - Table 5; Criteria-C). Figure 4 illustrates examples of genes identified in RelA-enriched chromatin after cells were stimulated with TNF. Of these, regions harbouring PTGS2 and Jun were enriched in the presence of TNF (Figs. 4A-4B; Criteria-A regions are red bars) and those regions also encoded κB motif(s) that were in agreement with the published κB consensus site. For PTGS2 a region was also enriched in the absence of TNF but no consensus κB motif was identified therein. Interestingly, genes encoding IL6RN and KCNMB3 were also enriched in the presence of TNF but no discernible consensus κB motif could be identified in those

respective Criteria-A enriched regions, suggesting a non-consensus κB motif was being utilised (Figs. 4C-4D; red bars). Moreover, we also observed that intronic regions of both IL6RN and KCNMB3 were also enriched by RelA NF-κB in the absence of TNF stimulation suggesting that RelA-containing dimers do have a function in governing expression of these genes (Figs. 4C-4D; blue bars). Finally, regions that were only enriched by RelA-containing dimers in the absence of TNF (i.e. unstimulated) were also examined. Examples of such regions were those encoding regulatory subunits of calcium and potassium channels such as CACNB3 and KCNB1 (Figs. 4E-4F; blue bars). Significantly, regions encoding these ion channel subunits also harboured κB motifs corresponding to the consensus κB sequence (Figs. 4E-4F).

To ensure our experimental system was functioning correctly, we also examined the NF- κ B-regulated the I κ B α promoter region (LeBail et al., 1993). As expected, in TNF-treated cells, aspects of the I κ B α promoter were enriched by anti-RelA serum. Interestingly, however, no enrichment of the I κ B α promoter was observed in the absence of TNF (Fig. 5A) despite this region being weakly amplified in the control ChIP assay (Fig. 2E). Increasing the resolution of the schematic representation in Fig. 5A illustrates two regions within the I κ B α gene enriched in TNF-treated cells (Fig. 5B). The region upstream of the I κ B α transcription start site was also seen to encode the three κ B motifs believed to be responsible for governing I κ B α expression (LeBail et al., 1993). A second intra-genic region within I κ B α open reading frame was seen to be enriched in TNF-treated cells although no consensus κ B motifs were identified therein (Fig. 5B). In contrast to genes in close proximity to the anti-RelA serum enriched loci, other enriched regions were decidedly more remote from the nearest genes (Original Data Set

<u>- Table 4</u>, Criteria-A and <u>Original Data Set - Table 5</u>, Criteria-C; full annotated gene lists associated with these enriched regions can also be viewed therein).

Frequency of kB site Motif Occurrence in Criteria-A and Criteria-C Datasets

In the Criteria-A dataset (i.e. RelA-enriched regions in response to TNF), 1,667 occurrences of the κB consensus sequence were identified, defined by 112 different sequence representations (Original Data Set - Table 6). Of the 1,667 occurrences, 1,604 resided in non-repetitive genomic regions. To aid clarity, we focussed the study on those motifs from the non-repetitive regions. These motifs were defined by 65 different sequence instances (Table 1). The remaining 63 occurrences, whilst not studied further, were defined by 47 different sequence instances many of which were also observed in the non-repetitive dataset (data not shown). Of the 1,667 consensus κB motif occurrences in the Criteria-A dataset, 770 (46.2%) were identified within intronic regions (Original Data Set - Table 6).

In the Criteria-C data set (i.e. RelA-enriched regions in absence of TNF), the consensus κB motif occurred 2,116 times defined by 103 different sequence representations (Original Data Set - Table 7). Of the 2,116 occurrences, 2,064 were seen to reside in non-repetitive elements of the genome. These were chosen for further study. In turn, these motifs were also represented by 65 different sequence instances (Table 1). The remaining 52 occurrences, whilst not studied further as they were from highly repetitive sequences, were defined by 38 different sequence instances many of which were also observed in the non-repetitive dataset (data not shown). Of the 2,116 consensus κB motif occurrences in the Criteria-C dataset, 1,089 (51.5%) were identified within intronic regions (Original Data Set - Table 7).

Overall, the consensus κB motif was observed a total of 3,783 times in anti-RelA serum-enriched genomic regions with 3,720 κB motifs identified in non-repetitive elements of the genome of PHM1-31 myometrial myocytes. Alignment of the 65 representations of the κB sequence was performed using WebLogo 3 open access software (Crooks et al. 2004; http://weblogo.threeplusone.com/). Consensus κB sequence variability was seen to be 5'GGG(A/G)(A/C/T/G)(C/T)(C/T)(C/T)CC-3' but no difference was observed with this between Criteria-A (TNF-induced enrichment) and Criteria-C (un-stimulated enrichment) (Fig. 6).

Expression Array Analysis of PHM1-31 Gene Expression Induced by TNF

As illustrated thus far, promoter occupancy by RelA-containing NF-κB dimers per se, does not provide information on associated transcriptional levels (i.e. expressed, repressed or quiescent; akin to chromatin-bound RNA polymerase II and promoter-proximal stalling (Core and Lis, 2009)). Consequently, we undertook expression array analyses in PHM1-31 cells utilising total RNA extracted from cells exposed to TNF for one hour (an identical time course to those used to isolated chromatin for ChIP-on-chip studies).

A statistically significant change in expression of 2,963 genes was induced by TNF (Supplementary Information - Data Table 8 p-value region<0.05). Expression of six genes remained unchanged between unstimulated and TNF-treated cells (SLC35F5, DEFB106A, RFTN1, DTWD2, SLC34A3 and SEZ6L). Removal of duplicates from the original data gave a total of 2,223 genes that were differentially expressed when PHM1-31 cells were stimulated with TNF for one hour (Fig. 7; Criteria-B1, p<0.05; and Original Data Set - Table 8). Of this total, 51 genes were seen to have a fold-induction of >2. Of these, two were discounted as they

were not annotated, leaving a total of 49 genes; these were termed Criteria-Al. Physiologically relevant genes identified in this dataset were EGR 1-4, FOS, FOSB, JUN, JUNB, ATF3, NFKIBIA, NFKBIZ, TNFAIP3, COX2, CXCL2, CXCL3, CCL20, LIF, IL-6, MAP3K8, THBS1 and TNF. Eighteen genes were seen to have a fold repression of >1.5. Of these, one was not annotated and was thus excluded leaving a total of 17 genes; these were termed Criteria-C1 (Fig. 7). Included in this dataset were HOXA11, COL1A2 and STAT2. To summarise, Table II lists those genes whose expression was induced by at least two-fold in response to TNF while Table III lists those genes subject to repression by at least 1.5 fold in the presence of TNF. Further details from the expression array analyses can be viewed in (Original Data Set - Tables 8-10).

Combined Analysis of PHM1-31 Promoter Occupancy and Gene Expression

Merging the Criteria-A TNF-enriched promoter dataset with Criteria-A1 (TNF-induced gene expression), 14 TNF-induced, RelA-enriched genomic regions from the promoter array screen also encoded TNF-inducible genes (Table II; genes annotated with * and Supplementary Information - Data Table 11). These included known NF-κB-regulated genes IL-6, Jun, NFKBIA, PTGS2, TNC and TNFAIP3. Genes not yet conclusively demonstrated to be under NF-κB control included DUSP-2, DUSP-5, ERRFI1, THBS1 and CTGF (Table II; genes annotated with * and Original Data Set - Table 11). Moreover, by combining the Criteria-A promoter array dataset with the expression array Criteria-C1 dataset (TNF-repressed genes), we also identified five RelA-enriched genomic regions that harboured TNF-repressed genes, including COL1A2 (Table III; genes annotated with * and Original Data Set - Table 12).

Gene Ontology and Validation of Selected RelA-enriched Regions Modulated by TNF

PGS Gene Ontology analysis identified two functional groups of interest in the Biological Processes category: Intra-cellular Signal Transduction and Cell Surface Receptor Protein Signalling. These included TNFAIP3 (Cytokine-Induced Signalling) and IkB α (NIK/NF- κ B Signalling; Fig. 8A). These targets were subsequently used to validate the expression array data because both have important roles in governing TNF signalling and NF- κ B function respectively (Perkins, 2007; Chen and Ghosh, 1999; Hayden and Ghosh, 2012). Real-time qRT-PCR on total RNA from PHM1-31 cells treated with TNF for one hour demonstrated that both IkB α and TNFAIP3 were expressed in response to TNF. Good agreement was observed for induction of gene expression for IkB α (Fig. 8B; 2.94 on array vs. 4.43 for qRT-PCR) while a slightly greater margin of difference was noted for TNFAIP3 expression (Fig. 6B; 7.96 on array vs. 3.85 for qRT-PCR).

Discussion

NF-κB Binding and Distribution in the Genome of TNF-stimulated and Unstimulated Cells This report is the first to describe a promoter array-based approach to define chromatin regions of myometrial myocytes occupied by RelA-containing NF-κB dimers. Our data demonstrated that in PHM1-31 myometrial cells, NF-κB-mediated enrichment of 13,300 chromatin regions in the presence of TNF and 11,110 in unstimulated cells. Some of these regions were juxtaposed to genes known to function in human labour, for example PTGST2 (Chan et al., 2014) and KCNMB3. NF-κB-controlled regulation of PTGS2 in the myometrium and amnion is well documented (Allport et al., 2001; Soloff et al., 2004; Lindström and Bennett, 2005) while a putative role in governing gene activity of the potassium channel subunit KCNMB3 is less so. In contrast, other RelA-enriched regions were decidedly more remote from the nearest transcription start with distances being measured in numbers of kilobases. Many of these loci

were also noted to be within intronic regions as discussed below. We did not examine the influence of such remote binding events in this study but we cannot rule out that they represent enhancer sequences or non-coding RNA transcriptional units. Indeed, supporting this notion are the observations that many transcription factor binding sites are arranged many kilobases from the transcription start site of the genes they regulate (Deaton and Bird, 2011).

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

453

454

455

456

457

kB Binding Site Loci

Intriguingly, RelA appeared to exhibit stimulus dependent binding to different loci of the same gene; this was evidenced with PTGS2, IL6RN and KCNMB3. In contrast, however, a section of the promoter region for Jun was only enriched in the presence of TNF while for CACNB3 and KCNB1, sections of promoter regions for these respective genes were only enriched by RelA-containing dimers in the absence of TNF; the molecular mechanisms accounting for these observations remain to be established. We did, however, determine that in both datasets, the consensus kB motif was represented a total of 3,783 times, including 1,859 (49.14%) sites identified within intronic regions. A number of studies in various cell lines have reported such intronic binding by NF-κB (Martone et al., 2003; Schreiber et al., 2006; Lim et al., 2007; Wong et al., 2011; Satohn, 2013; Xing et al., 2013) and, given that the early work describing its function demonstrated it was bound to the first intron of the κ -light chain enhancer (Schjerven et al., 2001), our observations support such previous data. Interestingly there are reports of transcription of certain regulatory proteins initiating from within the 3'-intronic regions of the parental gene. The calcium channel associated transcriptional regulator (CCAT), for example, is generated through initiation of independent transcription of exons 46 and 47 at a 3'-intronic site of the parental C_{av}1.2 calcium channel gene (Gomez-Ospina et al., 2013). Clearly, our data does not illustrate if such NF-kB binding directly modifies gene activity in this manner but it offers a likely rationale for such intronic binding, perhaps as a means of governing post-transcriptional RNA splicing, and a further avenue for investigating the complexities of myometrial gene activity as labour commences. Due to the apparent promiscuity of RelA binding to multiple loci and limited sensitivity of the ChIP-on-chip methodology, ChIP-exo (see below) would be a superior means by which to narrow down the precise binding location of RelA-containing dimers to near single base pair resolution (Rhee and Pugh, 2012).

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

477

478

479

480

481

482

Selection of kB Motifs

The consensus κB binding motif is viewed as 5'-G-5G-4G-3R-2N-1Y0Y+1Y+2C+3C+4-3' with many functional variants on this being reported (Perkins, 2007; Hayden and Ghosh, 2012; Chen and Ghosh, 1999). This motif does offer a level of subunit selectivity and crystallographic studies of various NF-kB dimers bound to different kB DNA sequences support this (Ghosh et al., 1995; Müller et al., 1995; Cramer et al., 1997; Huang et al., 1997; Chen et al., 1998a; Chen et al., 1998b; Phelps et al., 2000; Huang et al., 2005; Moorthy et al., 2007; Trinh et al., 2008). The actual kB DNA sequence clearly does impose binding constraints upon certain dimers; for example, within the κB motif, the 5'-G₋₅G₋₄G₋₃R₋₂N₋₁-3' half site is bound by p50; in contrast, the 5'-Y₊₁Y₊₂C₊₃C₊₄-3' half site is necessary for RelA binding (Huang et al., 2005 and references therein). Whether region-enrichment is dimer-specific and dependent on the nature of the stimulus (in this case TNF or not) could not be determined herein. Since we focussed on immunoprecipitated RelA, this would recover four possible groups of RelA-containing dimers; RelA:RelA, RelA:c-Rel RelA:p50 and RelA:p52 (RelA:RelB heterodimers are not thought to bind DNA; Marienfeld et al., 2003). Given the published physical constraints imposed upon certain NF-κB dimer:κB motif interactions (Phelps et al., 2000; Huang et al., 2005) one could propose that, at this time-point of one hour, it is likely the RelA:p50 or RelA:p52 heterodimers

are being physiologically favoured. Given that we focussed on RelA, the obvious confounder of our work is that those enriched regions would likely reflect only contributions from such RelA-containing dimers; other non-RelA dimers would be missed. As above, further studies employing ChIP-seq would be required to provide the higher resolution data defining whether dimer composition on individual promoters/loci changed over multiple time points.

Limitations of ChIP-on-chip

While ChIP-on-chip is a robust, well-documented method to analyse transcription factor-mediated chromatin enrichment on a whole genome scale, it is associated with limitations when compared with more recent sequencing technologies including ChIP-seq (reviewed in Hurd and Nelson, 2009; Park, 2009). The obvious corollary, therefore, is that we cannot rule out the possibility that bias occurred in our system and influenced the data presented herein. A comparison between both ChIP-on-chip and ChIP-seq methodologies has been highlighted in Ho et al. (2011) who address the limitation and benefits associated with both technologies. With whole genome sequencing now available in most institutions, and methods including ChIP-exo (essentially ChIP-seq but using lambda exonuclease to trim the immunoprecipitated DNA to within a few base pairs of the binding residues on a given transcription factor) being developed, the next step would be to conduct ChIP-seq with all NF-κB subunit antisera, at different time points to obtain an unbiased genome-wide signature of binding events taking place within myometrial cells.

In our study, we employed the GeneChip 1.0R Human Promoter array. This contains 25,500 human promoter regions but it lacks full genomic coverage of the corresponding tiling arrays. Consequently, we cannot rule out the possibility that the low correlation between region

enrichment and subsequent transcription expression/repression could arise because the Human 1.0R Promoter array was not fully representative of the complete human genome.

PHM1-31 cultures were not cell-cycle synchronised prior to the ChIP assay because the induction of synchronisation itself (serum starvation) has been documented to effect expression of key genes involved in cell function and ion transport including the MaxiK potassium channel as well both the L- and T-type calcium channels (Woodfork et al., 1995; Panner et al., 2005; Patel et al., 2005). Essentially, potassium channels are responsible for hyperpolarising the plasma membrane, an event necessary for the cells to move from G1 to S (Wonderlin and Strobl, 1996; Ouadid-Ahidouch and Ahidouch, 2013). Calcium channels are thought to provide transient signals at checkpoints within the cell cycle which are necessary for the cell to continue cycling (Whitaker, 2006). We believe it highly likely that these events would have influenced those TNF-induced effects reported herein (Perkins, 2012).

Promoter Occupancy and Transcriptional Activity

Occupancy of a given promoter by NF- κ B does not necessarily mean transcriptional activity directed by that promoter will change and there is robust data to support this notion (Hoffman et al., 2003; Leung et al., 2004; Wan and Lenardo, 2009; Wang et al., 2012). Of the TNF-induced NF- κ B-enriched regions identified in our work, 14 were correlated with an increase in gene expression while five targets were repressed. Therefore, one must ask why the disparity between the number of enriched regions and the number of genes with altered activity? Clearly under normal physiological conditions, the myometrium would be bathed in a milieu rich in cytokines including IL-1 β , IL-6, IL-8 and TNF to name but a few (Aguilar and Mitchell, 2010; Golightly et al., 2011; Webster et al., 2013). The manner by which these other proinflammatory

stimulants influence NF-κB activity was not examined herein but it is reasonable, based on published evidence, to assume these factors would also moderate myometrial gene activity. Secondly, it is without doubt that we will have missed many key binding events at promoters at immediate early time points, ranging from seconds to minutes, as well as more prolonged stimuli after a number of hours. Indeed, this approach may underlie why we did not observe enrichment of regions that encoded genes for IL-1β, oxytocin or oxytocin receptor, all of which have previously been shown to require NF-κB for induction of expression (Belt et al., 1999; Lee et al., 2003; Soloff et al., 2006; Terzidou et al., 2006).

Differential Gene Expression

In the context of premature birth research, many authors have published expression array studies in attempts to define genes responsible for promoting myometrial quiescence and myometrial contraction. Such studies have focussed on native tissues (amnion, decidua and myometrium) as well as both immortalised and primary cell lines (Charpigny et al., 2003; Bethin et al., 2003; Bailey and Europe-Finner, 2005; Bailey et al., 2005; Esplin et al., 2005; Havelock et al., 2005; Han et al., 2008; Khanjani et al., 2011; Lim et al., 2012).

A recent study by Chan et al. (Chan et al., 2014), used a robust RNA-seq-based approached to define 764 differentially expressed genes in human myometrium from pregnant, non-labouring women and those women in active labour. Salient examples of up-regulated genes from that list included IL6, IL8, IL13, MCP, enzymes governing prostaglandin biosynthesis (PTGS2), THBS2, DUSP family members, members of the NF-κB family of proteins, and intermediates in the TGF-β and TNF-signalling pathway (Chan et al., 2014). Significantly, our study of TNF-stimulated differential gene expression identified 49 induced genes; of these expressed genes,

17 were also represented in the list of genes up-regulated in labouring human myometrium documented by Chan et al. (Chan et al., 2014). Furthermore, 14 of the TNF-induced genes were also seen to be in regions of chromatin enriched by RelA. This is a key observation because it indirectly validates our own expression array work. Moreover, it supports the notion that NF-κB plays a pivotal role in controlling expression of genes involved in human parturition since many of those targets identified by Chan et al. are documented to be regulated by NF-κB (www.bu.edu/nf-kb/gene-resources/target-genes/).

Interestingly, a recent meta-analysis of gestational tissue-based transcriptomic studies highlighted significant variation in expression of individual genetic regions; essentially only 23 common sites were identified out of 10,993 unique transcriptionally active units (Eidem et al., 2015). Focussing on studies of myometrial gene expression, Eidem et al. identified 15 genes present in four or more studies. In our study, four TNF-induced genes were also present in the myometrial group identified by Eidem et al., including FOSB, NR4A1, LIF and PTGS2. Moreover, those genes reported to act as biomarkers of pre-term birth, including IL6 and TNF, were also represented in our work giving further validation of the TNF-induced gene expression data presented herein (Table II and Eidem et al., 2015). The meta-analysis described by Eidem et al., does not, however, consider changes in promoter occupancy of those gene targets, essentially because, other than our work, there are no data in the reproductive field describing such investigations.

TNF-Induced Gene Expression

In terms of NF-κB function, the NFKBIA gene, which encodes the IκBα protein, was induced 2.9 fold by TNF. As our positive control, this observation also validates the data presented

here. A second IkB family member, NFKBIZ, which encodes the IkB ζ protein, was induced 5.2-fold in response to TNF. Significantly, other groups (Eto et al., 2003) have observed that IkB ζ induction is not TNF-mediated. The differences in these observations may be accounted for through cell-type specific effects (macrophage or kidney versus myometrium) but it is noteworthy that one effector, TNF, can exert diametrically opposed effects on the same gene in different cell types, suggesting other nuclear-based factors are influencing the NF-kB-mediated gene regulation process. Significantly, IkB ζ is known to bind specifically to p50 homodimers forming a robust ternary complex on the IL6 promoter activating expression of this gene (Trinh et al., 2008). Indeed, in our study TNF stimulation also caused a three-fold induction of IL-6 expression and we speculate this is mediated by p50 homodimer:IkB ζ complex although further experimental analyses would be required to confirm this. TNFAIP3 (also termed A20) was also up-regulated. This protein also plays a significant role in termination of the NF-kB signal by inhibiting NF-kB DNA binding (Perkins, 2012; Hayden and Ghosh 2012).

Our study also identified various transcription factors that were significantly up-regulated in response to TNF, including members of the early growth response transcription factor family, Egr-1, -2, -3 and -4, as well as those of the AP1 family, namely ATF3, Fos, FosB, Jun, JunB. The Egr family are well-described zinc-finger containing proteins recognising the consensus sequence of 5-GCGG/TGGGCG-3' (Christy and Nathans, 1989). The function of the Egr family in human myometrium is not clear but they have been shown to co-operate with the RelA subunit of NF-κB in embryonic kidney cells through an interaction between the RelA Rel Homology Domain and the zinc-finger region of Egr-1 (Chapman and Perkins, 2000), as well as competing for Sp1 sites in pro-inflammatory promoters such as PDGF-B (Khachigian

et al., 1996). Many of the promoters identified in our study were GC-rich and up-regulation of factors which readily bind to such regions offers a potential insight into the control of complex myometrial gene expression networks.

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

623

621

622

Members of the AP1 transcription factor family, including Fos, FosB and Jun, bind to the consensus AP1 motif 5'-TGAG/CTCA-3' or 5'-TGACGTCA-3' (Shaulian and Karin, 2002) and have been shown to be differentially expressed in pregnant versus labouring rat myometrium. Importantly, studies in rat myometrium have described the differential expression of members of this family, between pregnant and labouring states. The salient observation is that peak levels of Fos, FosB, Jun and JunB occur during active labour (Mitchell and Lye, 2002; Mohan et al., 2007); importantly, those observations are in keeping with our data from human cells. Moreover, since Fos/Jun are immediate early genes (Shaulian and Karin, 2002), they are likely regulators of more extensive transcriptional networks within the cell and it is therefore interesting to speculate that NF-kB dimers may orchestrate a hierarchy of transcriptional activity within the myometrial cell. Interestingly, NF-κB has also been shown to play a key regulatory role in JunB expression as part of the JunB-mediated induction of VEGF in response to hypoxia (Schmidt et al., 2007). It is well documented that uterine contractions during labour do induce local hypoxic regions (Bugg et al., 2006); whether such myometrial hypoxia initiates NF-κB-induced AP1 family expression remains unclear at present but induction of such factors may be how the uterus responds to such a hypoxic stress and utilises NF-κB to instigate this protective mechanism.

642

643

Conclusions

In conclusion, our data demonstrate that RelA-containing dimers of NF-κB bind to numerous loci throughout the genome of PHM1-31 myometrial myocytes. For some promoters, this binding occurred in the presence of TNF as well as in unstimulated cells; this was mediated by different regions of the same promoter. Occupancy of other promoters was seen either only in unstimulated conditions or only after cells were stimulated by TNF. The consensus κB motif was identified 3,783 times in this study with over 100 different sequence instances potentially mediating NF-κB DNA binding. Of these κB motifs, 41% were found within intronic regions of the PHM1-31 cell chromatin. Of the 49 TNF-induced genes, 17 were shown to have promoters enriched by NF-κB in response to TNF. Interestingly, five genes with promoters occupied by NF-κB were repressed by TNF. Together, our data illustrate that NF-κB influences a wide range of regulatory gene networks within myometrial cells; we must decipher how these interactions govern myometrial function during pregnancy and labour if we are to begin to understand the syndrome of premature birth.

660	References
661	Aguilar HN and Mitchell BF. Physiological pathways and molecular mechanisms regulating
662	uterine contractility. Hum. Reprod. Update, 2010;16:725-744.
663	
664	Allport VC, Pieber D, Slater DM, Newton R, White JO and Bennett PR. Human labour is
665	associated with nuclear factor- κB activity which mediates cyclo-oxygenase-2 expression and
666	is involved with the "functional progesterone withdrawal". Mol. Hum. Reprod. 2001;7:581-
667	586.
668	
669	Bailey J, Tyson-Capper (née Pollard) AJ, Gilmore K, Robson SC and Europe-Finner GN.
670	Identification of human myometrial target genes of the cAMP pathway: the role of cAMP-
671	response element binding (CREB) and modulator (CREM α and CREM $\tau_2\alpha$) proteins. J. Mol.
672	Endocrinol. 2005a; 34 :1-17.
673	
674	Bailey J and Europe-Finner GN. Identification of human myometrial target genes of the c-Jun
675	NH ₂ -terminal Kinase (JNK) pathway: the role of activating transcription factor 2 (ATF2) and
676	a novel spliced isoform ATF2-small. J. Mol. Endocrinol. 2005b;34:19-35.
677	
678	Belt AR, Baldassare JJ, Molnár M, Romero R and Hertelendy F. The nuclear transcription
679	factor NF- κB mediates interleukin-1 β -induced expression of cyclooxygenase-2 in human
680	myometrial cells. Am. J. Obstet. Gyneacol. 1999;181:359-366.
681	

682	Bethin KE, Nagai Y, Sladek R, Asada M, Sadovsky Y, Hudson TJ and Muglia LJ. Microarray
683	analysis of uterine gene expression in mouse and human pregnancy. Mol. Endocrinol.
684	2003; 17 :1454–1469.
685	
686	Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A, Garcia
687	CV, Rohde S, Say L, et al. National, regional, and worldwide estimates of preterm birth rates
688	in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and
689	implications. Lancet, 2012; 379 :2162-2172.
690	
691	Brockington A, Ning K, Heath PR, Wood E, Kirby J, Fusi N, Lawrence N, Wharton SB, Ince
692	PG and Shaw PJ. Unravelling the enigma of selective vulnerability in neurodegeneration:
693	motor neurons resistant to degeneration in ALS show distinct gene expression characteristics
694	and decreased susceptibility to excitotoxicity. Acta Neuropathol, 2013;125:95-109
695	
696	Bugg GJ, Riley MJ, Johnston TA, Baker PN and Taggart MJ. Hypoxic Inhibition of Human
697	Myometrial Contractions in vitro: Implications for the Regulation of Parturition. Eur. J. Clin.
698	Invest. 2006; 36 :133-140.
699	
700	Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T,
701	Pfaffl MW, Shipley GL, Vandesompele J, and Wittwer CT. The MIQE Guidelines: Minimum
702	Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem.
703	2009; 55 :611–622.
704	

705	Campbell KJ, Chapman NR and Perkins ND. UV stimulation induces NF-κB DNA-binding
706	activity but not transcriptional activation. Biochem. Soc. Trans. 2001;29:688-691
707	
708	Chan YW, van den Burg HA, Moore JD, Quenby S and Blanks AM. Assessment of myometrial
709	transcriptome changes associated with spontaneous human labour by high-throughput RNA-
710	seq. Exp. Physiol. 2014; 99.3 :510-524.
711	
712	Chang HH, Larson J, Blencowe H, Spong CY, Howson CP, Cairns-Smith S, Lackritz EM, Lee
713	SK, Mason E, Serazin AC et al. Preventing preterm births: analysis of trends and potential
714	reductions with interventions in 39 countries with very high human development index. Lancet,
715	2013; 381 :223-234.
716	
717	Chapman NR and Perkins ND. Inhibition of the RelA(p65) NF-κB subunit by Egr-1. J. Biol.
718	Chem. 2000; 275 :4719-4725.
719	
720	Chapman NR, Webster GA, Gillespie PJ, Wilson BJ, Crouch DH and Perkins ND. A novel
721	form of the RelA nuclear factor-κB subunit is induced by and forms a complex with the proto-
722	oncogene c-Myc. Biochem. J. 2002; 366 :459-469.
723	
724	Chapman NR, Europe-Finner GN and Robson SC. Expression and DNA-binding activity of
725	the nuclear factor kappaB (NF-κB) family in the human myometrium during pregnancy and
726	labour. J. Clin. Endocrinol. Metab. 2004; 89 :5683-5693.
727	

728	Chapman NR, Smyrnias I, Anumba DOC, Europe-Finner GN and Robson SC. Expression of
729	the GTP-binding protein (Gαs) is repressed by the nuclear factor kappaB (NF-κB) RelA
730	subunit in human myometrium. Endocrinology, 2005; 146 :4994-5002.
731	
732	Charpigny G, Leroy MJ, Breuiller-Fouche' M, Tanfin Z, Mhaouty-Kodja S, Robin Ph, Leiber
733	D, Cohen-Tannoudji J, Cabrol D, Barberis C, et al. A Functional Genomic Study to Identify
734	Differential Gene Expression in the Preterm and Term Human Myometrium. Biol. Reprod.
735	2003; 68 :2289–2296.
736	
737	Chen FE, Huang DB, Chen YQ and Ghosh G. Crystal Structure of p50/p65 heterodimer of
738	transcription factor NF-κB bound to DNA. Nature, 1998a; 391 :410-413.
739	
740	Chen YQ, Ghosh S and Ghosh G. A novel DNA recognition mode by the NF-kappaB p65
741	homodimer. Nat. Struct. Biol. 1998b;5:67-73.
742	
743	Chen FE and Ghosh G. Regulation of DNA binding by Rel/NF-κB transcription factors:
744	structural views. Oncogene, 1999; 18 :6845-6852.
745	
746	Christy B and Nathans D. DNA binding site of the growth factor-inducible protein Zif268.
747	Proc. Natl. Acad. Sci. USA. 1989; 86 :8737-8741.
748	
749	Cookson VJ and Chapman NR. NF-κB function in the human myometrium during pregnancy
750	and parturition. Histol. Histopathol. 2010;25:945-956.

Core LJ and Lis JT. Paused Pol II captures enhancer activity and acts as a potent insulator. 752 Genes Dev. 2009;23:1606-1612. 753 754 Costeloe KL, Hennessy EM, Haider S, Stacey F, Marlow N. and Draper NS. Short term 755 outcomes after extreme preterm birth in England: comparison of two birth cohorts in 1995 and 756 2006 (the EPICure studies). BMJ, 2012;345:e7976. 757 758 Cramer P, Larson CJ, Verdine GL and Müller CW. Structure of the human NF-κB p52 759 homodimer-DNA complex at 2.1 Å resolution. EMBO J. 1997;**16**:7078-7090. 760 761 Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo generator. 762 Genome Research, 2004;**14**:1188-1190. 763 764 Deaton AM and Bird A. CpG islands and the regulation of transcription. Genes Dev. 765 2011;**25**:1010-1022. 766 767 768 Dignam JD, Lebovitz RM and Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucl.Acids Res. 769 1983;**11**:1475-1489. 770

771

Fidem HR, Ackerman IV WE, McGary KL, Abbot P and Rokas A. Gestational tissue transcriptomics in term and preterm human pregnancies: a systematic review and meta-

analysis. BMC Medical Genomics, 2015;8:27.

776	Elliot CL, Allport VC, Loundon JAZ, Wu GD and Bennett PR. Nuclear factor kappa-B is
777	essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial
778	cells. Mol. Hum. Reprod. 2001; 7 :787-790.
779	
780	Esplin MS, Fausett MB, Peltier MR, Hamblin S, Silver RM, Branch DW, Adashi EY and
781	Whiting D. The use of cDNA microarray to identify differentially expressed labor-associated
782	genes within the human myometrium during labor. Am. J. Obstet. Gynecol. 2005;193:404–13.
783	
784	Eto A, Mutaa T, Yamazakia S and Takeshigea K. Essential roles for NF-κB and a Toll/IL-1
785	receptor domain-specific signal(s) in the induction of IkB- ζ . Biochem. Biophys. Res. Comm.
786	2003; 301 :495-501.
787	
788	Fitzgibbon J, Morrison JJ, Smith TJ and O'Brien M. Modulation of human uterine smooth
789	muscle cell collagen contractility by thrombin, Y-27632, TNF alpha and indomethacin.
790	Reprod. Biol. Endocrinol. 2009;7:2.
791	
792	Ghosh G, Duyne GV, Ghosh S and Sigler PB. Structure of NF-κB p50 homodimer bound to a
793	κB site. Nature, 1995; 373 :303-310.
794	
795	Golightly E, Jabbour HN and Norman JE. Endocrine immune interactions in human parturition.
796	Mol. Cell. Endocrinol. 2011; 335 :52-59.
797	

798	Gomez-Ospina N, Panagiotakos G, Portmann T, Pasca SP, Rabah D, Budzillo A, Kinet JP and
799	Dolmetsch RE. A Promoter in the Coding Region of the Calcium Channel Gene CACNA1C
800	Generates the Transcription Factor CCAT. PLoS One, 2013;8:e60526.
801	
802	Han YM, Romero R, Kim JS, Tarca AL, Kim SK, Draghici S, Kusanovic JP, Gotsch F, Mittal
803	P, Hassan SS and Kim CJ. Region-Specific Gene Expression Profiling: Novel Evidence for
804	Biological Heterogeneity of the Human Amnion. Biol. Reprod. 2008; 79 :954-961.
805	
806	Havelock JC, Keller P, Muleba N, Mayhew BA, Casey BM, Rainey WE, and Word RA.
807	Human Myometrial Gene Expression Before and During Parturition. Biol. Reprod.
808	2005; 72 :707–719.
809	
810	Hayden MS and Ghosh S. NF-κB, the first quarter-century: remarkable progress and
811	outstanding questions. Genes Dev. 2012;26:203-234.
812	
813	Ho JWK, Bishop E, Karchenko PV, Nègre N White KP,4 and Park PJ. ChIP-chip versus ChIP-
814	seq: Lessons for experimental design and data analysis. BMC Genomics 2011;12:134
815	doi:10.1186/1471-2164-12-134
816	
817	Hoffmann A, Leung TH and Baltimore D. Genetic analysis of NF-kappaB/Rel transcription
818	factors defines functional specificities. EMBO J. 2003;22:5530-5539.

820	Huang DB, Huxford T, Chen YQ and Ghosh G. The role of DNA in the mechanism of NFκB
821	dimer formation: crystal structures of the dimerization domains of the p50 and p65 subunits.
822	Structure, 1997; 5 :1427–1436.
823	
824	Huang DB, Phelps CB, Fusco AJ and Ghosh G. Crystal Structure of a Free κB DNA: Insights
825	into DNA Recognition by Transcription Factor NF-κB. J. Mol. Biol. 2005; 346 :147–160.
826	
827	Hurd PJ and Nelson CL. Advantages of next-generation sequencing versus the microarray in
828	epigenetic research. Brief.Func.Genom.Prot. 2009;8:174-183.
829	
830	Johnson WE, Li W, Meyer CA, Gottardo R, Carroll JS, Brown M and Liu XS. Model-based
831	analysis of tiling-arrays for ChIP-chip. Proc.Natl.Acad.Sci.USA 2006;103:12457-12462.
832	
833	Khachigian LM, Lindner V, Williams AJ, Collins T. Egr-1-induced endothelial gene
834	expression: a common theme in vascular injury. Science, 1996;271:1427-1431.
835	
836	Khanjani S, Kandola MK, Lindström TM, Sooranna SR, Melchionda M, Lee YS, Terzidou V,
837	Johnson MR and Bennett PR. NF-κB regulates a cassette of immune/inflammatory genes in
838	human pregnant myometrium at term. J. Cell. Mol. Med. 2011;15:809-824.
839	
840	Khashan AS, Baker PN, and Kenny LC. Preterm birth and reduced birth weight in first and
841	second teenage pregnancies: a register-based cohort study. BMC Pregnancy Childbirth, 2010;
842	10 :36.

844	Kirby J, Ning K, Ferraiuolo L, Heath PR, Ismail A, Kuo SW, Valori CF, Cox L, Sharrack B,
845	Wharton SB, Ince PG, Shaw PJ, Azzouz M. Phosphatase and tensin homologue/protein kinase
846	B pathway linked to motor neuron survival in human superoxide dismutase 1-related
847	amyotrophic lateral sclerosis. Brain, 2011; 134 :506-517.
848	
849	Lim S, MacIntyre DA, Lee YS, Khanjani S, Terzidou V, Teoh TG and Bennett PR. Nuclear
850	Factor Kappa B Activation Occurs in the Amnion Prior to Labour Onset and Modulates the
851	Expression of Numerous Labour Associated Genes. PLoS ONE, 2012;7:e34707.
852	
853	Lappas M, Permezel M and Rice GE. N-acetyl-cysteine inhibits phospholipids metabolism,
854	proinflammatory cytokine release, protease activity and Nuclear Factor-κB deoxyribonucleic
855	acid-binding activity in human fetal membranes in vitro. J. Clin. Endocrinol. Metab.
856	2003; 88 :1723-1729.
857	
858	Lappas M, Permezel M, Geogiou HM and Rice GE. Regulation of phospholipase isozymes by
859	Nuclear Factor-κB in human gestational tissues in vitro. J. Clin. Endocrinol. Metab.
860	2004; 89 :2365-2372.
861	
862	Lappas M and Rice GE. Phospholipase-A2 isozymes in pregnancy and parturition.
863	Prostaglandins, Leukotrienes and Essential Fatty Acids, 2004;70:87-100.
864	
865	Le Bail O, Schmidt-Ullrich R and Israel A. Promoter analysis of the gene encoding the IκΒ-
866	c/MAD3 inhibitor of NF-κB: positive regulation by members of the rel/NF-κB family. EMBO
867	J. 1993; 12 :5043-5049.

868	
869	Lee Y, Allport V, Sykes A, Lindström T, Slater D and Bennett PR. The effects of labour and
870	of interleukin-1 beta upon the expression of nuclear factor kappaB related proteins in human
871	amnion. Mol. Hum. Reprod. 2003; 9 :213-218.
872	
873	Leung TH, Hoffmann A and Baltimore D. One Nucleotide in a kB Site Can Determine Cofactor
874	Specificity for NF-κB Dimers. Cell, 2004; 118 :453–464.
875	
876	Lim CA, Yao F, Wong JJY, George J, Xu H, Chiu KP, Sung WK, Lipovich L, VegaVB Chen
877	J, et al. Genome-wide mapping of RELA(p65) binding identifies E2F1 as a transcriptional
878	activator recruited by NF-kappaB upon TLR4 activation. Mol. Cell, 2007;27:22-635.
879	
880	Lindström TM and Bennett PR. 15-Deoxy- $\Delta^{12,14}$ -Prostaglandin J $_2$ Inhibits Interleukin-1 β -
881	Induced Nuclear Factor-kB in Human Amnion and Myometrial Cells: Mechanisms and
882	Implications. J. Clin. Endocrinol. Metab. 2005;90:3534-3543.
883	
884	Lindström TM, Mohan AR, Johnson MR and Bennett PR. Histone Deacetylase Inhibitors Exert
885	Time-Dependent Effects on Nuclear Factor-kB but consistently Suppress the Expression of
886	Proinflammatory Genes in Human Myometrial Cells. Mol. Pharmacol. 2008; 74 :109-121.
887	
888	Mangham LJ, Petrou S, Doyle SW, Draper ES and Marlow N. The cost of preterm birth
889	throughout childhood in England and Wales. Pediatrics, 2009;123:e312-327.

891	Marienfeld R, May MJ, Berberich I, Serfling E, Ghosh S and Neumann M. RelB Forms
892	Transcriptionally Inactive Complexes with RelA/p65. J. Biol. Chem. 2003;278:19852-19860.
893	
894	Marlow N, Wolke D, Bracewell MA, and Samara M. Neurologic and developmental disability
895	at six years of age after extremely preterm birth. N. Engl. J. Med. 2005;352:9-19.
896	
897	Martone R, Euskirchen G, Bertone P, Hartman S, Royce TE, Luscombe NM, Rinn JL, Nelson
898	FK, Miller P, Gerstein M, et al. Distribution of NF-kappaB-binding sites across human
899	chromosome 22. Proc. Natl. Acad. Sci. USA. 2003; 100 :12247-52.
900	
901	Mitchell JA and Lye SJ. Differential expression of activator protein-1 transcription factors in
902	pregnant rat myometrium. Biol. Reprod. 2002;67:240-246.
903	
904	Mohan AR, Sooranna SR, Lindström TM, Johnson MR, and Bennett PR. The effect of
905	mechanical stretch on cyclooxygenase type 2 expression and activator protein-1 and nuclear
906	factor-kappaB activity in human amnion cells. Endocrinology, 2007; 148 :1850-1857.
907	
908	Monga M, Ku CY, Dodge K and Sanborn BM. Oxytocin-stimulated responses in a pregnant
909	human immortalized myometrial cell line. Biol. Reprod. 1996;55:427-432.
910	
911	Moorthy AK, Huang DB, Wang VYF, Vu D and Ghosh G. X-ray Structure of a NF-κΒ
912	p50/RelB/DNA Complex Reveals Assembly of Multiple Dimers on Tandem κB Sites. J. Mol.
913	Biol. 2007; 373 :723–734.

915	Müller CW, Rey FA, Sodeoka M, Verdine GL and Harrison SC. Structure of the NF-κB p50
916	homodimer bound to DNA. Nature, 1995; 373 :311-317.
917	
918	Natoli G, Saccani S, Bosisio D and Marazzi I. Interactions of NF-kappaB with chromatin: the
919	art of being at the right place at the right time. Nat. Immunol. 2005;6:439-445.
920	
921	Oei SG. Calcium channel blockers for tocolysis: a review of their role and safety following
922	reports of serious adverse events. Eur. J. Obstet. Gynecol. Reprod. Biol. 2006;126:137-145.
923	
924	Opsjln SL, Wathen NC, Tingulstad S, Wiedswang G, Sundan A, Waage A and Austgulen R.
925	Tumor necrosis factor, interleukin-1, and interleukin-6 in normal human pregnancy. Am. J.
926	Obstet. Gynecol. 1993; 169 :397-404.
927	
928	Ouadid-Ahidouch H. and Ahidouch A. K ⁺ channels and cell cycle progression in tumor cells.
929	Front. Physiol. 2013;4:220.
930	
931	Panner A, Cribbs LL, Zainelli GM, Origitano TC, Singh S and Wurster RD. Variation of T-
932	type calcium channel protein expression affects cell division of cultured tumor cells. Cell
933	Calcium, 2005; 37 :105-119.
934	
935	Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet.
936	2009; 10 :669-680.
937	

938	Patel MK, Clunn GF, Lymn JS, Austin O and Hughes AD. (2005). Effect of serum withdrawal
939	on the contribution of L-type calcium channels (CaV1.2) to intracellular Ca2+ responses and
940	chemotaxis in cultured human vascular smooth muscle cells. Br. J. Pharmacol. 2005;145:811-
941	817.
942	
943	Perkins ND, Schmid RM, Duckett CS, Leung K, Rice NR and Nabel GJ. Distinct combinations
944	of NF-κB subunits determine the specificity of transcriptional activation. Proc. Natl. Acad. Sci.
945	USA.1992; 89 :1529-1533.
946	
947	Perkins ND. Integrating cell-signalling Pathways with NF-κB and IKK Function. Nat. Rev.
948	Mol. Cell. Biol. 2007; 8 :49-62.
949	
950	Perkins ND. The diverse and complex roles of NF-κB subunits in cancer. Nat. Rev. Cancer,
951	2012; 12 :121-132.
952	
953	Phelps CB, Sengchanthalangsy LL, Malek S and Ghosh G. Mechanism of kB DNA binding by
954	Rel/NF-κB dimers. J. Biol. Chem. 2000; 275 :24392–24399.
955	
956	Raman R, Allen SP, Goodall EF, Kramer S, Ponger L-L, Heath PR, Milo M, Hollinger HC,
957	Walsh T, Highley, Olpin S, McDermott CJ, Shaw PJ and Kirby J. Gene expression signatures
958	in motor neurone disease fibroblasts reveal dysregulation of metabolism, hypoxia-response and
959	RNA processing functions. Neuropathology and Applied Neurobiology 2015; 41 :201–226
960	

961	Rhee S and Pugh FB. ChIP-exo: A Method to Identify Genomic Location of DNA-binding
962	proteins at Near Single Nucleotide Accuracy. Curr. Protoc. Mol. Biol. 2012;21:Unit 21.24. doi:
963	10.1002/0471142727.mb2124s100.
964	
965	Rocha S, Campbell, KJ and Perkins ND. p53- and Mdm-2Independent Repression of NF-κB
966	Transactivation by ARF Tumor Suppressor. Mol. Cell, 2003;12:15-25.
967	
968	Rodriguez MS, Wright J, Thompson J, Thomas D, Baleux F, Virelizier JL, Hay RT and
969	Arenzana-Seisdedos F. Identification of lysine residues required for signal-induced
970	ubiquitination and degradation of IkB α in vivo. Oncogene, 1996; 12 :2425-2435.
971	
972	Saccani S, Pantano S and Natoli G. Modulation of NF-κB activity by exchange of dimers. Mol.
973	Cell, 2003; 11 :1563-1574.
974	
975	Satohn JI. Molecular network of ChIP-Seq-based NF-κB p65 target genes involves diverse
976	immune functions relevant to the immunopathogenesis of multiple sclerosis. Multiple Sclerosis
977	and Related Disorders, 2013; 3 :94-106.
978	
979	Schjerven H, Brandtzaeg P and Johansen FE. A Novel NF-κB/Rel Site in Intron 1 Cooperates
980	with Proximal Promoter Elements to Mediate TNF-α-Induced Transcription of the Human
981	Polymeric Ig Receptor. J. Immunol. 2001; 167 :6412-6420.
982	

983	Schmidt D, Textor B, Pein OT, Licht AH, Andrecht S, Sator-Schmitt M, Fusenig NE, Angel P
984	and Schorpp-Kistner M. Critical role for NF-κB-induced JunB in VEGF regulation and tumor
985	angiogenesis. EMBO J. 2007; 26 :710–719.
986	
987	Schreiber J, Jenner RG, Murray HL, Gerber GK, Gifford DK and Young RA. Coordinated
988	binding of NF-kappaB family members in the response of human cells to lipopolysaccharide.
989	Proc. Natl. Acad. Sci. USA. 2006; 103 :5899-5904.
990	
991	Shaulian E and Karin M. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 2002;4:E131-
992	E135.
993	
994	Simpson JE, Ince PG, Shaw PJ, Heath PR, Raman R, Garwood CJ, Gelsthorpe C, Baxter L,
995	Forster G, Matthews FE, Brayne C, Wharton SB*, on behalf of the MRC Cognitive Function
996	and Ageing Neuropathology Study Group Microarray analysis of the astrocyte transcriptome
997	in the aging brain: relationship to Alzheimer's pathology and APOE genotype. Neurobiol
998	Ageing, 2011; 32 :1795-1807.
999	
1000	Soloff MS, Cook Jnr DL, Jeng Y-J and Anderson GD. In situ analysis of interleukin-1 induced
1001	transcription of cox-2 and il-8 in cultured human myometrial cells. Endocrinology,
1002	2004; 145 :1248-1254.
1003	
1004	Soloff MS, Izban MG, Cook Jr DL, Jeng Y-J and Mifflin RC. Interleukin-1-induced NF-
1005	kappaB recruitment to the oxytocin receptor gene inhibits RNA polymerase II-promoter
1006	interactions in cultured human myometrial cells. Mol. Hum. Reprod. 2006;12:619-624.

1007	
1008	Terzidou V, Lee Y, Lindström T, Johnson M, Thornton S and Bennett PR. Regulation of the
1009	Human Oxytocin Receptor by Nuclear Factor- κB and CCAAT/Enhancer-Binding Protein- β .
1010	J. Clin. Endocrinol. Metab. 2006; 91 :2317 - 2326.
1011	
1012	Trinh DV, Zhu N, Farhang G, Kim BJ and Huxford T. The Nuclear I κ B Protein I κ B ζ
1013	Specifically Binds NF- κB p50 Homodimers and Forms a Ternary Complex on κB DNA. J.
1014	Mol. Biol. 2008; 37 :122-135.
1015	
1016	Wan F and Lenardo MJ. Specification of DNA Binding Activity of NF-κB Proteins. Cold
1017	Spring Harb. Perspect. Biol. 2009;1:a000067.
1018	
1019	Wang VYF, Huang W, Asagiri M, Spann N, Hoffmann A, Glass C, and Ghosh G. The
1020	Transcriptional Specificity of NF- κB Dimers Is Coded within the κB DNA Response Elements.
1021	Cell Reports, 2012; 2 :824–839.
1022	
1023	Waite SL, Gandhi SV, Khan R and Chapman NR. The Effect of Trichostatin-A and Tumour
1024	Necrosis Factor on Expression of Splice Variants of the MaxiK and L-Type Channels in
1025	Human Myometrium. Front. Physiol. 2014;5:261. DOI: 10.3389/fphys.2014.00261.
1026	
1027	Webster SJ, Waite SL, Cookson VJ, Warren A, Khan R, Gandhi SV, Europe-Finner GN and
1028	Chapman NR. Regulation of GTP-binding protein (Gas) expression in human myometrial
1029	cells: a role for tumor necrosis factor in modulating $G\alpha s$ promoter acetylation by transcriptional
1030	complexes. J. Biol. Chem. 2013; 288 :6704-6716.

1031	
1032	Whitaker M. Calcium microdomains and cell cycle control. Cell Calcium 2006;40:585-592.
1033	
1034	Wonderlin WF and Strobl JS. Potassium channels, proliferation and G1 progression. J. Membr.
1035	Biol. 1996; 154 :91-107.
1036	
1037	Wong D, Teixeira A, Oikonomopoulos S, Humburg P, Lone IN, Saliba D, Siggers T, Bulyk
1038	M, Angelov D, Dimitrov S, et al. Extensive characterization of NF-κB binding uncovers non-
1039	canonical motifs and advances the interpretation of genetic functional traits. Genome Biology,
1040	2011; 12 :R70.
1041	
1042	Woodfork KA, Wonderlin WF, Peterson VA and Strobl JS. Inhibition of ATP-sensitive
1043	potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue
1044	culture. J. Cell. Physiol. 1995; 162 :163-171.
1045	
1046	www.bu.edu/nf-kb/gene-resources/target-genes/
1047	
1048	Xing Y, Yang Y, Zhou F and Wang J. Characterization of genome-wide binding of NF-κB in
1049	TNFα-stimulated HeLa cells. Gene, 2013; 526 :142-149.
1050	
1051	Yan X, Xiao CW, Sun M, Tsang BK and Gibb W. Nuclear factor kappaB activation and
1052	regulation of cyclooxygenase type-2 expression in human amnion mesenchymal cells by
1053	interleukin-1β. Biol. Reprod. 2002a; 66 :1667-1671.

1055 Yan X, Sun M and Gibb W. Localisation of Nuclear Factor-κB (NF-κB) and Inhibitory FactorκΒ (IκΒ) in human fetal membranes and deciduas at term and preterm delivery. Placenta, 1056 1057 2002b;**23**:288-293. 1058 Acknowledgements 1059 1060 We are grateful to Prof. Barbra Sanborn for generously providing the PHM1-31 cells utilised in this study. We would like to thank Prof. Nick Europe-Finner and Dr. Gaynor Miller for their 1061 1062 support and critical reviews of the manuscript prior to submission. 1063 **Authors' Roles** 1064 VJC and SLW performed the experimental work, undertook initial data analyses and read and 1065 helped edit the manuscript. PRH performed the array work (promoter and expression) and read 1066 1067 the manuscript. PJH and SVG assisted with the data analysis and manuscript preparation. NRC 1068 conceived the study, obtained study funding, designed the experiments, undertook the data analyses and prepared the manuscript. 1069 1070 **Funding** 1071 This work was funded by: the Sheffield Hospitals Charitable Trust (Grant No. 7858); the Jessop 1072 Wing Small Grants Scheme (Ellen Webster Legacy; Grant No. OGN/06/03); the Department 1073 1074 of Human Metabolism, University of Sheffield; and the Faculty of Medicine Research and 1075 Innovation Fund, University of Sheffield. 1076 **Conflict of Interest** 1077

The authors declare they have no competing interests, financial or otherwise, that would affect the publication of this data.

1080

1078

1079

1081

1082

1083

1084

Figure Legends

Fig. 1: Schematic Representation of the Work-flow used to Generate Chromatin for this

1085 Study.

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

Fig 2: TNF Induces RelA NF-KB Activity in PHM1-31 Myometrial Cells. Immunostaining was used to demonstrate TNF-mediated induction of RelA nuclear localisation in PHM1-31 myometrial cell lines (A; Panel-II, unstimulated; Panel-II, negative control; Panel-III, TNFstimulated; scale bar = 100 µm). Nuclear extracts were prepared from PHM1-31 cells and incubated with α -³²P-labelled oligonucleotide harbouring the 3'-HIV-LTR κ B site. Three main complexes were seen to form and, using supershift analyses, these were demonstrated to be p50:RelA heterodimers, RelA homodimers and a lower non-specific complex. An increased shift in RelA in TNF-treated cells illustrates TNF was inducing RelA NF-κB translocation to the nucleus. Specificity of the experiment was confirmed by including an excess (100 ng) of cold, HIV κB DNA (B). PHM1-31 cells were transfected with 200 ng of either 3x-κB-ConAluc (NF-κB-responsive; C; Panel-II) or ΔκB-ConA-luc (NF-κB unresponsive; C; Panel-II). After 24 hours cells were stimulated with TNF (10 ng/ml) for one hour. Promoter activity was quantified using a Berthold Sirius tube luminometer. All experiments were performed three times in triplicate. Data were analysed using an unpaired, two-tailed t-test and results are expressed as the mean \pm S.E.M. (error bars); p<0.05 was considered statistically significant.

As expected, TNF induced NF- κ B activity (**C**; **Panel-I**; p = 0.0001). No NF- κ B activity was observed in a control reporter lacking the κ B site (**C**; **Panel-II**). Nuclear extracts were prepared from PHM1-31 cells and subjected to immunoprecipitation with anti-RelA anti-serum. RelA was recovered from both control and TNF-stimulated samples, illustrating the effectiveness of the antiserum. Minimal non-specific binding was observed with IgG (**D**). RelA occupancy of the I κ B α promoter was seen under basal conditions. In the presence of TNF, both RelA and RNA Pol II were seen to be associated with the I κ B α promoter (**E**; **Upper Panels**). No RelA occupancy of the control G α s promoter was observed, illustrating the specificity of the ChIP assay (**E**; **Lower Panels**).

Fig. 3: Comparison of RelA-enriched Chromatin Regions. The Criteria-B dataset represents all regions with a p-value <0.05. Within this, the Criteria-A dataset (red circle) represent those regions where p<0.05 and the MAT score is >0; essentially, these regions are enriched over the control in response to TNF. The Criteria-C dataset (blue circle) represents those regions where p<0.05 and the MAT score is <0; essentially, these regions are enriched in the absence of TNF stimulation (**A**). An illustrative heat map of chromosome 14 illustrating the loci of Criteria-A regions (red bars) and Criteria-C regions (blue bars). Known transcripts from each strand are represented by green blocks (**B**).

Fig. 4: Genes within Criteria-A and Criteria-C Enriched Regions and Associated κB Motif loci. Schematic representation of the loci of both Criteria-A (TNF-induced NF-κB enrichment) and Criteria-C (unstimulated NF-κB enrichment) regions around selected genes including COX-2 (A); Jun (B), IL6RN (C); KCNMB3 (D); CACNB3 (E) and KCNB1 (F). For COX-2 and Jun, κB motifs corresponding to the consensus were found in the TNF-induced RelA

enriched regions (**3A**; **3B**). With IL6RN and KCNMB3, both TNF-induced RelA enriched regions and unstimulated RelA-enriched regions were observed. The former were not associated with a consensus κB motif while the latter, unstimulated RelA-enriched, both harboured consensus κB motifs (**3C**; **3D**). Regions around CACNB3 and KCNB1 were not enriched by RelA in the presence of TNF but were enriched by RelA in unstimulated cells, possibly by the consensus κB motifs identified (**3E**; **3F**). Arrows indicate the direction of transcription, not actual transcription start sites.

Fig. 5: Differential Enrichment of Regions around the NFKBIA (IκBα) Gene Locus on Chromosome 14. Low resolution schematic illustration of the IκBα locus and surrounding regions. In the absence of TNF, no enrichment around the IκBα promoter is observed (A; blue bars). In the presence of TNF, a number of regions around the promoter are enriched by the anti-RelA antiserum (A; red bars). High resolution schematic illustration of the IκBα promoter illustrating TNF-induced regions enriched by the anti-RelA antiserum. One region encompasses the IκBα promoter and harbours the three reported κB motifs in that region. A second intra-genic region, encompassing the 3' portion of exon 2 and all of exons 3 and 4, is also enriched but no consensus κB motifs were identified therein (B).

- Fig. 6: Sequence Logo to Illustrate the Variability of κB Consensus Motif in Chromatin from PHM1-31 Cells.
- The consensus κB motifs presented in Table I were aligned in the open-access software

 WebLogo 3. The probability of a given bases occurring at the proscribed position is illustrated.

No difference in κB motif variability was noted between Criteria-A (TNF-induced) and Criteria-C (unstimulated) datasets.

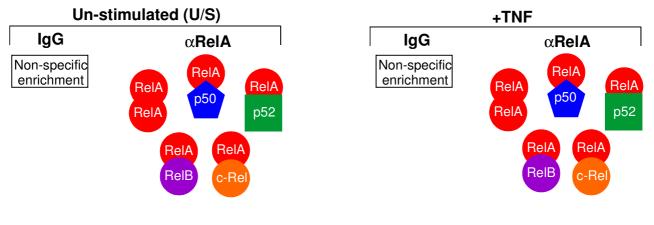
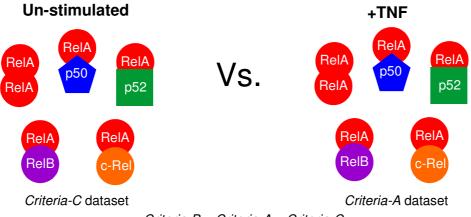
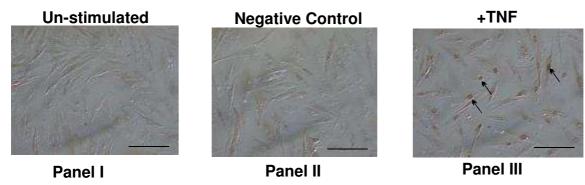

Fig. 7: Comparison of TNF-Induced Differential Gene Expression. The Criteria-B1 dataset represents 2,223 genes modified by TNF with a p-value <0.05. The Criteria-A1 and -B1 dataset (red circle) represent those genes where p<0.05 and expression was increased 2-fold or more; 49 genes populated this intersection. The Criteria-C1 and -B1 (blue circle) represents those genes regions where p<0.05 and expression was repressed by more than than 1.5 fold; 17 genes populated this intersection.

Fig. 8: GO Enrichment – **Biological Process and Validation of Expression Array Analyses by qRT-PCR.** Within the Biological Processes group, two functional groups of interest were Intra-cellular Signal Transduction and Cell Surface Receptor Protein Signalling. This included TNFAIP3 (Cytokine-mediated Signalling) and $I\kappa B\alpha$ (NIK/NF- κB Cascade) (**A**). qRT-PCR on total RNA from PHM1-31 cells treated with TNF for one hour demonstrated that both $I\kappa B\alpha$ and TNFAIP3 were expressed in response to TNF (**B**). A close agreement was seen for induction of gene expression for $I\kappa B\alpha$ (4.43 for qRT-PCR; stippled bars vs. 2.94 on array; diagonal stripes) while a slightly greater margin of difference was noted for TNFAIP3 expression (3.85 for qRT-PCR; stippled bars vs. 7.96 on array; diagonal stripes).


Figure 1

Work-flow for ChIP-on-chip Experiments

1) Initial ChIP assays. Four groups of chromatin: U/S IgG, U/S α ReIA; TNF IgG, TNF α ReIA:


- 2) Chromatin processed and quality-control PCR undertaken
- 3) Chromatin labelled; used to probe four Human Promoter 1.0R arrays (repeated three times)
 - 4) Arrays scanned and raw data (.CEL files) processed by Partek Genomics Suite.
 - 5) Values ascribed to IgG from three individual experiments deemed as non-specific and subtracted giving a new control baseline
- 6) PGS analysis between α RelA-enriched U/S chromatin and TNF-induced, α RelA-enriched chromatin:

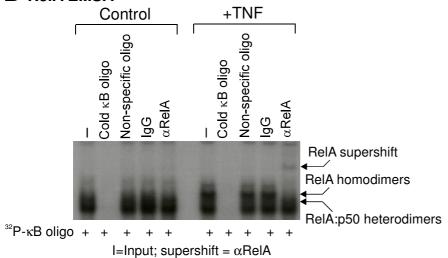
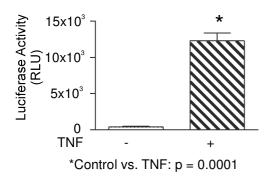
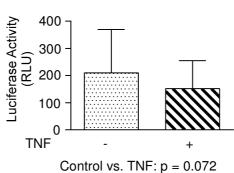
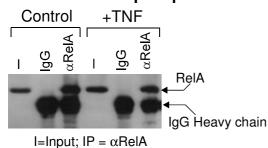

Criteria-B = Criteria-A + Criteria-C

Figure 2
TNF Induces ReIA NF-κB Activity in PHM1-31 Myometrial Cells


A Anti-RelA Staining


B RelA EMSA



$\Delta \kappa$ **B-luc**

D RelA Immunoprecipitation

E RelA ChIP Analysis

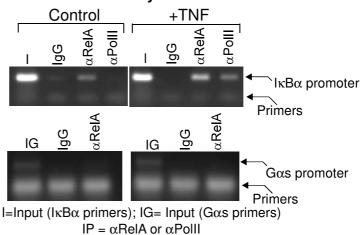
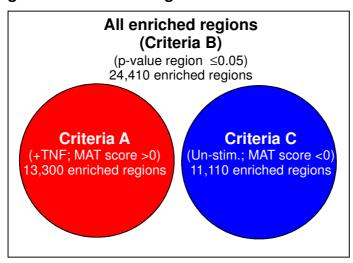



Figure 3
Comparison of Enriched Regions

A Venn Diagram of Enriched Regions

B Heat Map of Chromosome 14 Illustrating Enriched Regions with a Positive MAT score (TNF-stimulated; *Criteria-A*; Red) and Enriched Regions with a Negative MAT Score (Un-stimulated; *Criteria-C*; Blue)

RefSeq Transcripts (plus strand) 10/05/2013:

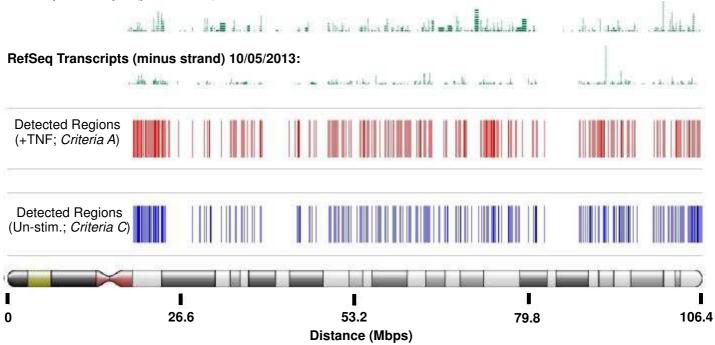


Figure 4
Genes Associated with *Criteria-A* and *Criteria-C* Enriched Regions

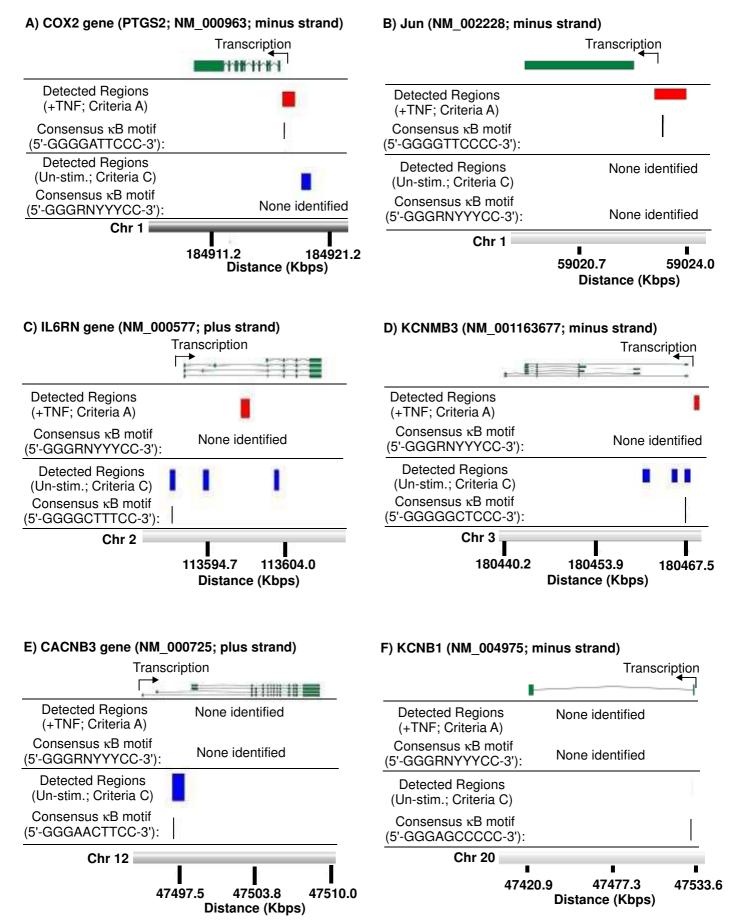
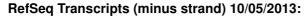
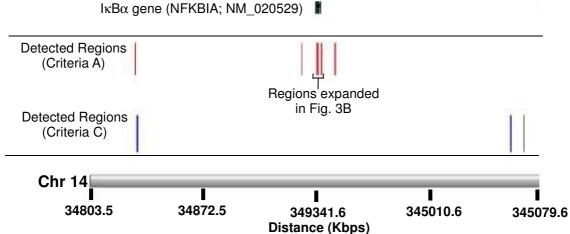




Figure 5 Differential Enrichment of Regions around the NFKBIA ($I\kappa B\alpha$) Gene Locus on Chromsome 14

A Chromosome 14 Enriched Regions and the NFKBIA ($I\kappa B\alpha$) Promoter

B NFKBIA ($I\kappa B\alpha$) Promoter and κB -binding Motifs

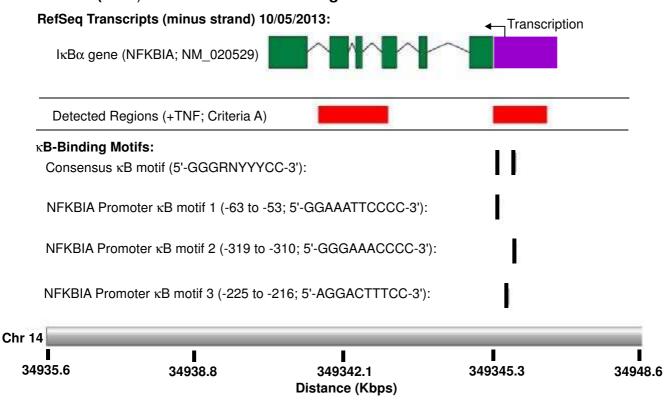


Figure 6 Summary of κB Sequence Motif Variability in PHM1-31 Cells

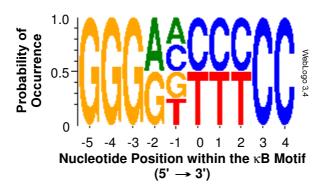


Figure 7
Comparison of TNF-Induced Differential Gene Expression

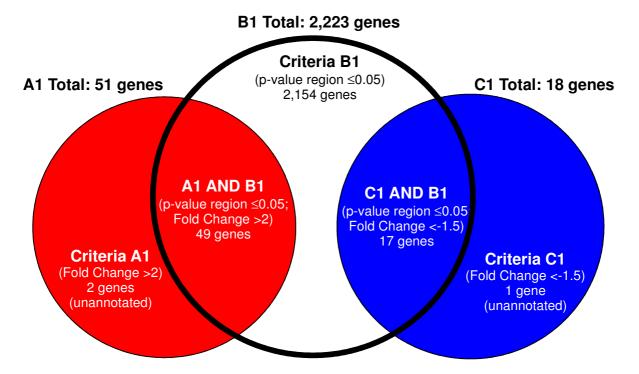


Figure 8

A GO Enrichment Biological Processes - Signal Transduction Groups

Biological Processes

➤ Response to Stimulus ➤ Signal Transduction

► Intra-cellular Signal Transduction

Small GTPase-mediated Signal Transduction (2.2) Inositol lipid-mediated Signalling (2.8)

NIK/NF-κB Cascade (4.1)

Cytoplasmic Pattern Recognition Receptor Signalling (5.7) Intra-cellular Protein Kinase Cascade (6.1)

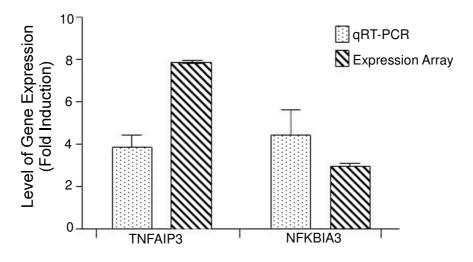
Second Messenger-mediated Signalling (8.3)

➤ Cell Surface Receptor Signalling Pathway

GPCR Signalling (0.83)

Immune response-regulating Cell Surface Receptor Signalling (0.88)

Neurotrophin Signalling (1.7)


Extrinsic Apoptotic Signalling (2.9) Integrin-mediated Signalling (4.0)

Cytokine-mediated Signalling (4.7)

LPS-mediated Signalling (5.9)

Enzyme-linked Receptor Protein Signalling (11.0)

B Validation of Expression Array Analyses by qRT-PCR

