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This paper considers the problem of blind image deconvolution
(BID) when the blur arises from a spatially invariant point
spread function (PSF) H, which implies that a blurred image
G is formed by the convolution of H and the exact form F

of G. Since the multiplication of two bivariate polynomials
is performed by convolving their coefficient matrices, the
equivalence of the formation of a blurred image and the
product of two bivariate polynomials implies that BID can
be performed by considering F , G and H to be bivariate
polynomials on which polynomial operations are performed.
These operations allow the PSF to be computed, which is then
deconvolved from the blurred image G, thereby obtaining a
deblurred image that is a good approximation of the exact
image F . Computational results show that the deblurred
image obtained using polynomial computations is better than
the deblurred image obtained using other methods for blind
image deconvolution.
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1. Introduction

The removal of blur from an image is an important problem that has many applica-

tions, including the diagnosis of medical conditions, the analysis of astronomical data,

and security and surveillance. Image interrogation for, for example, feature extraction

and segmentation, is easier if the image on which these operations are performed is of

high quality, and thus image deblurring can be regarded as a preprocessing operation for

subsequent image interrogation. The importance of this preprocessing stage, the many

applications in which blurred images arise and the ill-conditioned nature of the problem

provide the motivation for the continued development of numerically stable methods for

the removal of blur from an image.

The point spread function (PSF) models the blur, and if this function is spatially

invariant, which is assumed in this paper, then a blurred image is formed by the convo-

lution of the PSF and the exact image. The problem of blind image deconvolution (BID)

is characterised by partial knowledge, or the absence of knowledge, of the PSF, in which

case BID is difficult because it reduces to the separation of two convolved signals, either

or both of which are not fully specified. This paper describes a method for the solution

of the problem of BID in which the blurred and deblurred images, and the PSF, are con-

sidered to be bivariate polynomials whose coefficients are the pixel values. Polynomial

operations, in particular, approximate greatest common divisor (AGCD) computations

and deconvolutions, are used to compute a deblurred image, and it is shown that the

deblurred images obtained from this method are of higher quality than the deblurred

images obtained from other methods.

There exist several methods for the solution of the BID problem, including probabilis-

tic methods [6,18], autoregressive moving average parameter estimation methods [19] and

zero sheet separation [20,29]. Carasso [7] uses Fourier techniques to deblur an image, but

the PSF and blurred image must satisfy specified conditions. The work described in this

paper uses the Sylvester resultant matrix1 [2] to deblur an image, and it is therefore

similar to the deblurring methods described in [12,22,25], but there are two significant

differences between the work described in this paper and other work:

• In this work, a blurred image is formed by the addition of noise to the exact image,

such that the signal-to-noise ratio (SNR) spans one order of magnitude across the

blurred image. This feature is included because it cannot be assumed in practical

image deblurring problems that the SNR is constant across the blurred image, and

furthermore, the lower and upper bounds of the SNR may be known approximately

and not exactly. These features cause difficulties in deblurring algorithms that involve

an iterative procedure in which the termination criterion requires the comparison of

the norm of an error vector against a given scalar threshold that is a measure of

the SNR. In particular, the specification of this threshold for deblurring an image

1 This matrix will, for brevity, be termed the Sylvester matrix in the sequel.
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in which the SNR varies across the image is difficult because the deblurred image

will contain significant noise if the threshold is too small, and significant parts of the

exact image will be absent from the deblurred image if the threshold is too high. It

is, however, shown in this paper that a high quality deblurred image can be obtained,

even if the SNR is low and spans one order of magnitude across the blurred image.

• Structured matrices, for example, the Kronecker product of two matrices that have

Tœplitz and Hankel forms [5], the Sylvester matrix [12,22,25] and the Bézout matrix

[13,21], arise in the solution of the BID problem when the PSF is spatially invariant.

Also, the penalty method is used in [24,26] to solve a constrained minimisation prob-

lem in which the coefficient matrix has structure and the constraint is a regulariser

that controls the magnitude or smoothness of the pixel values of the deblurred image.

This paper uses the method of structured non-linear total least norm (SNTLN) [28],

which is a method for the preservation of a non-linear structure in a matrix, to

solve a constrained minimisation problem in which the coefficient matrix in the

objective function is derived from the Sylvester matrix. It is shown that a non-linear

method, rather than a linear method, allows the introduction of two parameters

that can be optimised to yield very good results for the AGCD computations, which

are important for the determination of the PSF. A non-linear structure-preserving

matrix method has not been used for the solution of the BID problem, and it defines

the second difference between this work and other work.

It is assumed in this paper that the PSF is separable, and it is shown in [22,25,32] that

the extension of the work described in this paper from a separable PSF to a non-separable

PSF requires more computations of the same type as are required for a separable PSF,

and extra computations that are not required when a separable PSF is used.

A parameter study of four functions in Matlab that implement BID is considered

in Section 2, and it is shown in Section 3 that the convolution operation defines the

formation of a blurred image by a spatially invariant PSF, and the multiplication of

two polynomials. This allows the problem of BID to be posed in terms of polynomial

computations in which the exact image, blurred image and PSF are written as bivariate

polynomials. The application of the Sylvester matrix to the computation of an AGCD of

two polynomials is considered in Section 4, and Section 5 contains results that show the

effectiveness of polynomial methods for image deblurring. Section 6 contains a summary

of the paper.

2. Other methods for blind image deconvolution

A blurred image G that is formed by the convolution of its exact form F and a spatially

invariant PSF H, in the presence of additive noise N , is given by

G = H ∗ F + N , (1)
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where ∗ denotes convolution. This section considers the four methods for the solution of

this equation that are implemented in the image processing toolbox in Matlab. These

methods and their functions in Matlab are [17]:

• Blind image deconvolution, deconvblind.m

This function maximises the likelihood that the convolution of the computed PSF

and deblurred image is an instance of the blurred image, assuming Poisson noise

statistics. It uses an accelerated, damped procedure that is similar to the procedure

implemented in the function deconvlucy.m. The procedure is iterative, and the

function requires an initial estimate of the PSF and returns an improved estimate of

the PSF.

• The Lucy–Richardson algorithm, deconvlucy.m

This function implements an accelerated, damped form of the Lucy–Richardson al-

gorithm. This algorithm is iterative, assumes Poisson noise statistics and requires

that the PSF be known.

• Regularisation, deconvreg.m

This function performs a constrained least squares minimisation in which the Lapla-

cian is the default regularisation operator. The function requires that the noise power

and PSF be known.

• Wiener filter, deconvwnr.m

This function uses a minimum mean-squares error criterion to reduce the noise in

the blurred image. It is assumed the PSF and the ratio of the noise power to the

signal power (PNSR) are known, but the function implements an ideal inverse filter

if the PNSR is omitted from the function call.

The function deconvblind.m implements BID because only an estimate, and not the

exact form, of the PSF need be specified in the function call. The other three functions

implement, however, linear deconvolution because the exact form of the PSF must be

included in their function calls.

The functions deconvreg.m and deconvwnr.m require that the noise power be known

in order to obtain a deblurred image. If F and G are the matrix forms, of order M × N ,

of the exact and blurred images, then the error matrix is P = G−F , and it is required to

calculate the power of the image P represented by this matrix. In particular, the mean

µ and the standard deviation σ of each entry Pi,j of P are, respectively,

µ =

∑M
i=1

∑N
j=1 Pi,j

MN
and σ =

√

∑M
i=1

∑N
j=1 Q2

i,j

MN − 1
, Qi,j = Pi,j − µ,

and the average value of the power of each entry Pi,j is

E
{

P 2
i,j

}

= E
{

((Pi,j − µ) + µ)
2
}

= E
{

(Pi,j − µ)2
}

+ µ2 = σ2 + µ2.
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Fig. 1. (a) The PSF that is applied to the image (b).

An estimate of the noise power of the error image P is therefore

MN(σ2 + µ2) ≈ ‖G − F‖F , (2)

where the subscript F denotes the Frobenius norm and ‖G − F‖F is the exact value of

the noise power in P.

Example 2.1 considers some properties of the four deblurring functions in Matlab.

Example 2.1. Fig. 1(a) shows the PSF H that is applied to the exact image in Fig. 1(b).

The image is M × N pixels, where M = N = 128, and the column and row components

of the PSF extend over p + 1 = 11 and q + 1 = 9 pixels respectively. If the pixel values

of H ∗ F and the noise N are (H ∗ F)i,j and Ni,j respectively, then the noise Ni,j was

chosen to satisfy

Ni,j ≤ ε ri,j(H ∗ F)i,j , i = 0, . . . , M + p − 1, j = 0, . . . , N + q − 1,

where ri,j is a uniformly distributed random number in the interval [0, 1] and ε is the

upper bound of the componentwise relative error. The experiments were repeated for

seven values of ε,

{

10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3
}

, (3)

and thus a blurred image G was obtained for each value of ε.

The power of the image in Fig. 1(b) is ‖F‖2
F = 3.50 × 108, and although the compo-

nentwise relative error ε spans six orders of magnitude, the noise power and the square
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Fig. 2. The relative error in (a) the PSF and (b) the deblurred image, as a function of the number of iterations
and the componentwise relative error ε, from deconvblind.m.

of the normwise relative error of the blurred images G are approximately independent

of ε,

‖G − F‖2
F ≈ 1.70 × 107, ε = 10−9, 10−8, . . . , 10−4, 10−3,

‖G − F‖2
F

‖F‖2
F

≈ 4.86 × 10−2, ε = 10−9, 10−8, . . . , 10−4, 10−3. (4)

Blurred images display ringing effects at their boundaries, and the function edgetaper.m

was therefore applied to the blurred images before the four deconvolution functions were

called [17]. The function call is

[EDGEI] = edgetaper(I,PSF),

where I and EDGEI are blurred images, but EDGEI has less ringing than I along the

borders. The PSF is specified in the argument PSF, and its inclusion necessarily implies

that the function edgetaper.m can only be used when the linear deconvolution problem

is solved. It follows that the exact PSF, and not an estimate of the PSF, is specified in

the call to the function deconvblind.m.

The function call to deconvblind.m is

[J,PSF] = deconvblind(EDGEI,INITPSF,NUMIT),

where EDGEI is defined in the function edgetaper.m and J is the deblurred image,

INITPSF and PSF are the initial and final estimates of the PSF, NUMIT is the number of

iterations required, and the default values of the other arguments were used. Figs. 2(a)

and (b) show, respectively, the variation of the relative error in the PSF and the deblurred

image, as a function of the number of iterations and the componentwise relative error ε.

The figures show that as the number of iterations increases, the error in the PSF may
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Fig. 3. (a) The relative error in the deblurred image from (a) deconvlucy.m, as a function of the number of
iterations and the componentwise relative error ε, and (b) deconvreg.m, as a function of the lower bound λ

of the Lagrange multiplier and the estimated noise power.

increase or decrease, but the error in the deblurred image decreases. Furthermore, the

errors in the PSF and deblurred image are independent of ε.

The function call to deconvlucy.m is

[J] = deconvlucy(EDGEI,PSF,NUMIT),

where EDGEI, J and NUMIT are defined above, PSF is the exact PSF, and the default values

of the other parameters were used. Fig. 3(a) shows the variation of the relative error in the

deblurred image with the number of iterations and the componentwise relative error ε.

It is seen that the error is independent of ε and that the error in the deblurred image

decreases as the number of iterations increases. Also, Figs. 2(b) and 3(a) are very similar,

which is expected.

The function call to deconvreg.m is

[J] = deconvreg(EDGEI,PSF,NP,LRANGE),

where EDGEI, J and PSF are defined above, NP is the noise power, LRANGE is the range

of the Lagrange multiplier within which an optimal solution is sought, and the default

values of the other parameters were used. The noise power is estimated from (2) and

LRANGE is a vector of length two whose entries, λ and λ−1, λ < 1, are the lower and

upper bounds of the range of the Lagrange multiplier. A deblurred image was obtained

for eleven values of λ,

LRANGE =
[

λ λ−1
]

, log10 λ = −10, −9.5, −9.0, . . . , −6.0, −5.5, −5.0. (5)

The aim of the experiment was the determination of the dependence of the error in

the deblurred image with the accuracy with which the noise power of the blurred image

is known. Fig. 3(b) shows the variation of the relative error in the deblurred image as a

function of the estimated noise power and λ, which is defined in (5). Equation (4) shows
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Fig. 4. The error in the deblurred image as a function of the estimated PNSR for the Wiener filter,
deconvwnr.m.

that the noise power of the blurred image is about 1.70 × 107 for all values of ε, but

Fig. 3(b) shows that the noise power NP specified in the function call to deconvreg.m

that yields the smallest error in the deblurred image is about 1000, which is several

orders of magnitude smaller than the true noise power. Also, the error in the deblurred

image is independent of the range (5) of the Lagrange multiplier, but this result does not

imply that the visual appearance of the deblurred images is the same for all the values

of λ defined in (5). More generally, computational experiments must be performed to

determine the values of the parameters that return the best deblurred image. This is

consistent with an example in [17] because the best deblurred image, using visual inspec-

tion, is obtained when the noise power specified in the function call is 10% of its true

value and the optimal value of λ is 100λ0, where λ0 = 10−9 is the default value of λ.

The function call to deconvwnr.m is

[J] = deconvwnr(EDGEI,PSF,NSR),

where EDGEI and J are defined above and NSR is the estimated value of the PNSR. Fig. 4

shows the variation of the relative error in the deblurred image with the estimated value of

the PNSR of the blurred image. Equation (4) shows that PNSR = 4.86×10−2, but Fig. 4

shows that the best deblurred image is obtained when PNSR = 10−4.5 = 3.16 × 10−5,

which is about three orders of magnitude smaller than the true value of the PNSR. ✷

Figs. 2(b), 3 and 4 show that, using the optimal values of the parameters for each

method, the relative error of each deblurred image obtained by the four methods is

about 10−0.9 = 0.13 for all the values of ε specified in (3). It follows from (4) that the

relative error of each blurred image is (4.86 × 10−2)
1
2 = 0.22, which is about twice the

relative error of the deblurred images. Fig. 3(b) shows that a change of about five orders

of magnitude in the estimated noise power causes a change of less than one order of

magnitude in the error in the deblurred image from deconvreg.m, and Fig. 4 shows

that a change of six orders of magnitude in the estimated value of the PNSR causes a

change of less than one order of magnitude in the error in the deblurred image from
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deconvwnr.m. The example in Section 5 shows, however, that the specification of an

incorrect value of NP in deconvreg.m, and the specification of an incorrect value of NSR

in deconvwnr.m, lead to deblurred images that have large errors.

Example 2.1 shows that different values of the arguments of the four functions in

Matlab must be considered in order to obtain the best deblurred image, and that it

may be necessary to use visual inspection to compare different deblurred images. Finally,

the omission of the function edgetaper.m before the four functions were called caused an

increase in the errors in the deblurred images, and the estimated PSF from the function

deconvblind.m, which shows its effectiveness in reducing ringing at the borders of a

blurred image.

3. The computation of an AGCD

Polynomial computations can be used for image deblurring because the convolution

operation defines the multiplication of two polynomials and the formation of a blurred

image by a spatially invariant PSF [12–14,21,22,25,32]. The formation of a blurred image

by a spatially invariant PSF in the presence of additive noise is defined in (1), and these

polynomial computations require that F , G, H and N be represented as polynomials. It

is assumed the PSF is separable, in which case the polynomial representation H(x, y) of

H can be written as

H(x, y) =

p
∑

k=0

q
∑

l=0

hc(k)xp−khr(l)yq−l = Hc(x)Hr(y), (6)

where the vertical and horizontal extents of the PSF are p+1 and q+1 pixels respectively,

and

Hc(x) =

p
∑

k=0

hc(k)xp−k and Hr(y) =

q
∑

l=0

hr(l)yq−l,

are the polynomial forms of the column and row components of the PSF. It is shown

in [32] that the coefficients hc(k) and hr(l) can be obtained by computing an AGCD of

two arbitrary columns, and an AGCD of two arbitrary rows, respectively, of G, where

the pixel values of each row and each column are the coefficients of a polynomial. The

deblurred image is then obtained by deconvolving H from G [32].

Many methods for the computation of an AGCD of two polynomials have been devel-

oped, including methods based on the QR decomposition of the Sylvester matrix [11,37],

methods based on the singular value decomposition (SVD) of the Sylvester matrix [10,

15], optimisation methods [9,38] and methods that exploit the structure of the Sylvester

matrix [3,4,33,34]. In this paper, the method of SNTLN is applied to the Sylvester matrix

in order to compute an AGCD of two inexact (noisy) polynomials.

There are several definitions of an AGCD and they all involve a tolerance ǫ that

is a measure of the error in the given inexact polynomials. For example, the following
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definition of an AGCD of the polynomials f(y) and g(y), termed an ǫ-divisor of f(y)

and g(y), is used by Bini and Boito [4].

Definition 3.1. Let f(y) and g(y) be polynomials of degrees m and n respectively. A poly-

nomial d(y) is an ǫ-divisor of f(y) and g(y) if there exist polynomials f̃(y) and g̃(y), of

degrees m and n respectively, such that

∥

∥f(y) − f̃(y)
∥

∥ ≤ ǫ ‖f(y)‖ and ‖g(y) − g̃(y)‖ ≤ ǫ ‖g(y)‖ , (7)

and d(y) divides f̃(y) and g̃(y). If d(y) is an ǫ-divisor, of maximum degree, of f(y)

and g(y), then it is called an ǫ-GCD (greatest common divisor) of f(y) and g(y). The

polynomials u(y) = f̃(y)/d(y) and v(y) = g̃(y)/d(y) are called ǫ-cofactors.

This definition is stated in terms of the normwise error ǫ and it is therefore instructive

to consider the conditions under which a normwise error in the coefficients of f(y) and

g(y) is a good approximation of the componentwise errors. Let these polynomials, and

the polynomials f̃(y) and g̃(y), be given by

f(y) =

m
∑

i=0

aiy
m−i and f̃(y) =

m
∑

i=0

ãiy
m−i,

and

g(y) =
n

∑

i=0

biy
n−i and g̃(y) =

n
∑

i=0

b̃iy
n−i,

and thus if the componentwise errors λi and µj in f(y) and g(y) are approximately

constant and equal to λ and µ respectively,

|ai − ãi| ≈ λi |ai| ≈ λ |ai| and
∣

∣bj − b̃j

∣

∣ ≈ µj |bj | ≈ µ |bj | , (8)

for i = 0, . . . , m, and j = 0, . . . , n, then

∥

∥f(y) − f̃(y)
∥

∥ ≈ λ ‖f(y)‖ and ‖g(y) − g̃(y)‖ ≈ µ ‖g(y)‖ .

If (8) is satisfied and λ ≈ µ, then the componentwise errors are approximately equal to

the normwise error ǫ, which is defined in (7). If, however, (8) is not satisfied, that is, the

coefficients ai, ãi, bj and b̃j are such that

maxi=0,...,m
|ai−ãi|

|ai|

mini=0,...,m
|ai−ãi|

|ai|

≫ 1 or
maxj=0,...,n

∣

∣bj−b̃j

∣

∣

|bj |

minj=0,...,n

∣

∣bj−b̃j

∣

∣

|bj |

≫ 1,
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then the normwise error ǫ does not yield information on the componentwise errors λi

and µj .

This discussion has implications for the work considered in this paper because the

row and column components of the PSF are computed from AGCD computations, where

the polynomials f(y) and g(y) are, respectively, two arbitrary rows and two arbitrary

columns, of the blurred image G. The noise in a blurred image obtained in practical

problems is not uniformly distributed across the image, and thus a normwise threshold

ǫ may yield poor results because it is not a good approximation of the relative error of

each pixel in the blurred image. In particular, ǫ may be too small in some regions of the

blurred image, in which case not all the blur will be filtered, and it may be too large in

other regions of the blurred image, in which case some of the exact image will be filtered.

Furthermore, it cannot be assumed that the value of ǫ is known, and even if it is known,

it may only be known approximately and not exactly, which makes the specification of

a value of ǫ difficult.

Methods for the computation of an AGCD of f(y) and g(y) usually require that ǫ−1 be

a measure of the SNR. These methods attempt to compute common divisors of degrees

min(m, n), min(m, n) − 1, min(m, n) − 2, . . . , 2, 1, and the computations are terminated

when (7) is satisfied. The discussion above shows, however, that it is not possible to

assign ǫ a meaningful interpretation when deblurring an image because the error varies

widely across the image. A method for the computation of an AGCD of two polynomials

when this condition is satisfied is discussed in Section 4.

4. The Sylvester matrix for AGCD computations

This section considers the application of the Sylvester matrix to the calculation

of an AGCD of two polynomials. This computation is implemented in two stages,

where the degree of an AGCD is computed in the first stage and the coefficients

of an AGCD of this degree are computed in the second stage. These stages are de-

scribed in Sections 4.1 and 4.3 respectively, and Section 4.2 considers some prop-

erties of the orthogonal matrix Q and upper triangular matrix R from the QR

decomposition of the Sylvester matrix because this decomposition is used in Sec-

tion 4.1.

4.1. The degree of an AGCD

The degree of an AGCD of the inexact polynomials f(y) and g(y) is computed

using their Sylvester matrix S(f, g) and its subresultant matrices Sk(f, g), k =

2, . . . , min(m, n), where S1(f, g) = S(f, g) [2]. These polynomials are, by definition,

subject to error, but it is appropriate to consider initially the use of the Sylvester matrix

for the calculation of the degree of the GCD of the polynomials f̂(y) and ĝ(y) that are

the exact forms of f(y) and g(y),
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f̂(y) =
m

∑

i=0

âiy
m−i and ĝ(y) =

n
∑

i=0

b̂iy
n−i, (9)

and then consider the modifications required for the computation of the degree of an

AGCD of f(y) and g(y).

The Sylvester matrix S(f̂ , ĝ) ∈ R
(m+n)×(m+n) is formed by the concatenation of two

Tœplitz matrices G1(f̂) ∈ R
(m+n)×n and H1(ĝ) ∈ R

(m+n)×m,

S(f̂ , ĝ) = S1(f̂ , ĝ) =
[

G1(f̂) H1(ĝ)
]

=



























â0 b̂0

â1
. . . b̂1

. . .
...

. . . â0

...
. . . b̂0

âm

. . . â1 b̂n

. . . b̂1

. . .
...

. . .
...

âm b̂n



























.

The kth subresultant matrix Sk(f̂ , ĝ) ∈ R
(m+n−k+1)×(m+n−2k+2),

Sk(f̂ , ĝ) =
[

Gk(f̂) Hk(ĝ)
]

, k = 2, . . . , min(m, n),

where Gk(f̂) ∈ R
(m+n−k+1)×(n−k+1) and Hk(ĝ) ∈ R

(m+n−k+1)×(m−k+1), is formed by

deleting the last k−1 columns of G1(f̂), the last k−1 columns of H1(ĝ), and the last k−1

rows of S1(f̂ , ĝ). It follows that the update formula of the QR decomposition allows the

QR decomposition of Sk+1(f̂ , ĝ) to be computed efficiently from the QR decomposition

of Sk(f̂ , ĝ), and this property is used for the computation of the degree of an AGCD of

two inexact polynomials.

The application of Sk(f̂ , ĝ) to the calculation of the degree t̂ of the GCD d̂(y) of f̂(y)

and ĝ(y) is considered in Theorem 4.1.

Theorem 4.1. Let f̂(y) and ĝ(y) be defined in (9). The value of t̂ = deg d̂(y) is equal to

the largest integer k such that Sk(f̂ , ĝ) is singular,

rank Sk(f̂ , ĝ) < m + n − 2k + 2, k = 1, . . . , t̂,

rank Sk(f̂ , ĝ) = m + n − 2k + 2, k = t̂ + 1, . . . , min (m, n),

and S(f̂ , ĝ) is non-singular if and only if f̂(y) and ĝ(y) are coprime.

The application of Theorem 4.1 to the inexact polynomials f(y) and g(y) requires that

they be preprocessed by three operations [33–35], where the second and third operations

introduce the parameters α0 > 0 and θ0 > 0 respectively, such that y = θ0w where w

is the new independent variable, that is, an AGCD of the polynomials f̄(w) = f(θ0w)

and α0ḡ(w) = α0g(θ0w) is computed. The values α0 and θ0 are refined in the iterative
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procedure for the calculation of an AGCD of f̄(w) and α0ḡ(w), and if θ∗ is the value

of θ0 at the termination of this procedure, then the inverse transformation w = y/θ∗ is

applied to the results of the AGCD computation in order that the results be expressed

in the same independent variable, y, as the specified polynomials f(y) and g(y).

Theorem 4.1 shows that the computation of the degree t of an AGCD of f̄(w) and

α0ḡ(w) requires the calculation of the rank of their Sylvester matrix S(f̄ , α0ḡ) and each

subresultant matrix Sk(f̄ , α0ḡ). Computational experiments in [35] show that the SVD

of S(f̄ , α0ḡ) does not yield a good estimate of t, but two other methods, which yield good

results and are based on Theorem 4.1, are described in [31,35,36]. They are, however,

expensive because they require the computation of the SVD of Sk(f̄ , α0ḡ) for each value

of k = 1, . . . , min(m, n), and the update formula for the SVD is more complicated than

its equivalent for the QR decomposition. It is therefore better to determine the value of

t from the QR decomposition of each matrix Sk(f̄ , α0ḡ), as noted above, and this issue

is now considered.

Let QkRk be the QR decomposition of Sk(f̄ , α0ḡ), where the diagonal entries of Rk

are Rk,i,i, i = 1, . . . , m+n−2k +2. The singularity, or otherwise, of Sk(f̄ , α0ḡ) manifests

itself in the value of µk because if

µk =
maxi |Rk,i,i|

mini |Rk,i,i|
, k = 1, . . . , min(m, n), (10)

then the conditions µk ≫ 1 and µk ≈ 1 imply Sk(f̄ , α0ḡ) is, respectively, numerically

singular and of full rank. It follows that the degree t of an AGCD of f̄(w) and α0ḡ(w)

can be calculated from the values of µk, and the criterion for its determination is derived

by considering the values of µk for the exact polynomials f̂(y) and ĝ(y), whose GCD is

of degree t̂. In this circumstance, it follows from Theorem 4.1 and (10) that the values

of µk satisfy

µk =

{

∞, k = 1, . . . , t̂,

γk < ∞, k = t̂ + 1, . . . , min(m, n),

because at least one diagonal entry of Rk is zero for k = 1, . . . , t̂. The value of t̂ is

determined by the change from an infinite value of µk to a finite value of µk, and the

extension of this criterion from the exact polynomials f̂(y) and ĝ(y) to the inexact

polynomials f̄(w) and α0ḡ(w) is therefore given by

t = arg min
k

(µk − µk+1) , k = 1, . . . , min(m, n) − 1. (11)

An incorrect value of t may be computed because the values of µk are subject to error,

in which case the computed PSF will have a large error. This error can be minimised

by recalling that the horizontal and vertical components of the PSF are computed by

choosing two arbitrary rows and two arbitrary columns, respectively, of the blurred
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Algorithm 1 The calculation of the degree of the horizontal or vertical component of the

polynomial form of the PSF.
Input A blurred image G.
Output The degree t of the horizontal or vertical component of the polynomial form of the PSF.
Begin

% Calculate the size of G and define the number of pairs of rows or columns
% of G used for the calculation of t.
[MG,NG] = size(G)
trials = 25 % the number of trials for the calculation of t

% Initialise the array that stores the results. The size of the array depends
% on whether the row or column component of the PSF is considered.
if row component

upperlimitk = NG-1

else

upperlimitk = MG-1

end if

results = zero(upperlimitk,1)

for s=1:1:trials % loop for the number of pairs of rows or columns
1. Select two rows or two columns from G and denote their polynomial forms f(y) and g(y).
2. Preprocess f(y) and g(y) to yield the polynomials f̄(w) and α0ḡ(w).
3. Calculate Q1R1, the QR decomposition of S1(f̄ , α0ḡ) = S(f̄ , α0ḡ).
4. Calculate µ1 from (10).
% Calculate µk for the subresultant matrices.
5. for k=2:1:upperlimitk

Form Sk(f̄ , α0ḡ) from Sk−1(f̄ , α0ḡ).
Calculate the QR decomposition QkRk of Sk(f̄ , α0ḡ) from the QR decomposition
Qk−1Rk−1 of Sk−1(f̄ , α0ḡ).
Calculate the value of µk from (10).

end

% Calculate the value of t from (11) for the trial.
results(t) = results(t)+1

end

% The computed value of t is equal to the mode of the entries in the vector results.
t = mode(results)

End

image G. If the computation of the degrees of the components of the PSF is performed

several times, for different pairs of rows and different pairs of columns, then the modes

of the results enable the values of t for these components to be computed reliably. This

calculation for t is described in Algorithm 1.

It is shown by Stewart [30] that an error of order ǫ in an arbitrary matrix A = QR

can induce an error of order ǫκ(A) in Q and R, where κ(A) is the condition number

of A. Chang and Paige [8] show, however, that the bound ǫκ(A) is a large overestimate

for most problems, and they develop a bound that more accurately reflects the condition

of R. Example 4.1 confirms the improved bound in [8].

Example 4.1. Fig. 1(a) shows the PSF to which uncertainty E was added, and this

perturbed PSF was convolved with the image shown in Fig. 1(b). Noise N was then

added, and thus the blurring model is an extension of (1),

G = (H + E) ∗ F + N . (12)
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Fig. 5. The blurred image for Example 4.1.

If the coefficients of the polynomial forms E(x, y), H(x, y) and N(x, y) of E , H and N

are e(i, j), h(i, j) and n(i, j) respectively, and the coefficients of

S(x, y) =
(

H(x, y) + E(x, y)
)

F (x, y),

are s(i, j), then the uncertainty e(i, j) and error n(i, j) were chosen to satisfy

0 <
e(i, j)

h(i, j)
≤ ri,j , i = 0, . . . , p, j = 0, . . . , q, (13)

and

0 <
n(i, j)

s(i, j)
≤ si,j , i = 0, . . . , M + p − 1, j = 0, . . . , N + q − 1, (14)

where ri,j and si,j are uniformly distributed random variables in the range
[

10−5, 10−4
]

.

Fig. 5 shows the blurred image that results from these perturbations.

Definition 3.1 of an AGCD cannot be applied because the upper bounds of the relative

errors of the PSF and additive noise are not constant, and it is therefore difficult to set a

threshold for a termination criterion in an iterative procedure for the calculation of the

degree of an AGCD.

Figs. 6 and 7 show the variation of log10 µk with k for the calculation of the degree

of the row component of the PSF, where the graphs are obtained with different pairs

of randomly selected rows of G. Fig. 6 yields the correct result because the value of t,

computed from (11), is equal to 8. Fig. 7 yields, however, t = 4, which is incorrect,

although the graph in the figure is identical in shape to the graph in Fig. 6. Since
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Fig. 6. The ratio log10 µk against the order k of the subresultant matrix. The correct result, k = t = 8, for
the degree of the row component of the PSF is obtained.

Fig. 7. The ratio log10 µk against the order k of the subresultant matrix. An incorrect result, k = t = 4, for
the degree of the row component of the PSF is obtained.

Fig. 8. The histogram of the results for the computation of the degree of the row component of the PSF for
the image in Fig. 5.

there does not exist a feature that enables the results in Figs. 6 and 7 to be classified

as, respectively, correct and incorrect, the experiment was performed 25 times, using

randomly selected pairs of rows of G. The histogram of the results is shown in Fig. 8,

and Fig. 9 shows the histogram for the degree of the column component of the PSF.

The correct results for the degrees of the row and column components of the PSF, t = 8

and t = 10 respectively, are obtained in 17 of the 25 experiments, and 23 of the 25
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Fig. 9. The histogram of the results for the computation of the degree of the column component of the PSF
for the image in Fig. 5.

Fig. 10. The diagonal entries Rk,i,i of Rk of the kth subresultant matrix for the situation shown in Fig. 6.

Fig. 11. The diagonal entries Rk,i,i of Rk of the kth subresultant matrix for the situation shown in Fig. 7.

experiments. It follows that the correct degrees of the row and column components of

the PSF are obtained when all the results from the 25 trials are considered.

Figs. 6, 7, 8 and 9 show that the diagonal entries of Rk are important for the calculation

of the degrees of the row and column components of the PSF. Figs. 10 and 11 show the

diagonal entries Rk,i,i of Rk for each value of the order k of the subresultant matrix.

They correspond to, respectively, the situations in which the QR decomposition yields

the correct value and an incorrect value of the degree of the row component of the PSF,
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and they are therefore associated with Figs. 6 and 7 respectively. Figs. 10 and 11 are

very similar in form, and they therefore confirm that the computation of the horizontal

and vertical extents of the PSF from one pair of rows, and one pair of columns, may

yield incorrect results. ✷

4.2. Properties of the QR decomposition of Sk(f̄ , α0ḡ)

It was shown in Section 4.1 that the computation of the degree of an AGCD of f̄(w)

and α0ḡ(w) uses the QR decomposition of their Sylvester matrix and subresultant matri-

ces Sk(f̄ , α0ḡ), k = 1, . . . , min(m, n). The structured nature of these matrices manifests

itself in properties of Qk and Rk, and this section considers some of these properties.

Since the first n − k + 1 columns and last m − k + 1 columns of Sk(f̄ , α0ḡ) contain

the coefficients of f̄(w) and α0ḡ(w) respectively, and these polynomials are, in general,

independent, some results must be stated separately for these two groups of columns.

Equation (10) requires that the diagonal entry of maximum absolute value of each

matrix Rk, k = 1, . . . , min(m, n), be calculated, and Theorem 4.2 shows that if
∥

∥f̄
∥

∥

2
≥

α0 ‖ḡ‖2, then these values are constant and equal to
∥

∥f̄
∥

∥

2
, where p is the vector of the

coefficients of the polynomial p(y).

Theorem 4.2. Let QkRk be the QR decomposition of Sk(f̄ , α0ḡ) and let Rk,i,j be element

(i, j) of Rk. If
∥

∥f̄
∥

∥

2
≥ α0 ‖ḡ‖2, then

max |Rk,i,j | = |Rk,1,1| =
∥

∥f̄
∥

∥

2
, (15)

for i = 1, . . . , m + n − 2k + 2, j = i, . . . , m + n − 2k + 2, and k = 1, . . . , min(m, n).

Proof. Consider the ith column Sk,i = Skei = QkRkei of Sk, where ei is the ith unit

basis vector. It follows that Rk,i = Rkei is the ith column of Rk, and thus

‖Sk,i‖2 = ‖Rk,i‖2 =

{

∥

∥f̄
∥

∥

2
, i = 1, . . . , n − k + 1,

α0 ‖ḡ‖2 , i = n − k + 2, . . . , m + n − 2k + 2,
(16)

for k = 1, . . . , min(m, n). Consider this equation for the first column, i = 1, of Rk,

‖Rk,1‖2 = |Rk,1,1| =
∥

∥f̄
∥

∥

2
, k = 1, . . . , min(m, n), (17)

that is, the absolute value of entry (1, 1) of Rk is equal to
∥

∥f̄
∥

∥

2
for all k =

1, . . . , min(m, n). Equation (15) then follows from (16) and (17). ✷

Theorem 4.3 shows that the first n−k +1 columns of Rk are related by an orthogonal

matrix.
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Theorem 4.3. The (i+j)th column Rk,i+j of Rk is formed by a rotation of the ith column

Rk,i of Rk, where i = 1, . . . , n − k + 1, and j = 0, . . . , n − k + 1 − i.

Proof. Let H be a square matrix of order m + n − k + 1, such that if ci ∈ R
m+n−k+1

is the ith column of Sk(f̄ , α0ḡ), then the lower triangular Tœplitz structure of the first

n − k + 1 columns of Sk(f̄ , α0ḡ) implies

ci+1 = Hci, H =

[

01,m+n−k 1

Im+n−k 0m+n−k,1

]

,

where the subscripts on the zero matrices indicate their order, H is orthogonal,

ci+j = Hjci, ei+j = Hjei, (18)

ei ∈ R
m+n−k+1, i = 1, . . . , n − k + 1, and j = 0, . . . , n − k + 1 − i. It follows from the

definition of ci that ci = QkRkei, and thus (18) yields

QkRkei+j = HjQkRkei,

and since Rk,i is the ith column of Rk,

Rk,i+j = QT
k HjQkRk,i, (19)

where QT
k HjQk is an orthogonal matrix. It therefore follows that the (i + j)th column

of Rk is formed by a rotation of the ith column of Rk. ✷

Equation (19) is valid for the first n − k + 1 columns of Rk only, and an equation

of the same form, with different limits on the subscripts, applies to the last m − k + 1

columns of Rk,

Rk,i+j = QT
k HjQkRk,i, (20)

for i = n − k + 2, . . . , m + n − 2k + 2, and j = 0, . . . , m + n − 2k + 2 − i. Equations (19)

and (20) are refined forms of (16) because they show explicitly the relationship between

the columns of Rk, rather than merely the relationship between the norms of the vectors

formed from these columns.

Interest in this work is focused on the diagonal entries Rk,i,i of Rk, and it follows from

(18) and (19) that for i = 1, . . . , n − k + 1, and j = 0, . . . , n − k + 1 − i,

Rk,i+j,i+j = eT
i+jRk,i+j = eT

i+jQT
k HjQkRk,i = eT

i

(

QkHj
)T

HjQkRk,i,

which shows that entry (i + j, i + j) of Rk is a weighted combination of the non-zero

entries in the ith column Rk,i of Rk, where the weights are equal to the first i entries in

the ith row of the orthogonal matrix
(

QkHj
)T

HjQk.
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4.3. The coefficients of an AGCD

The computation of the degree t of an AGCD of f̄(w) and α0ḡ(w) was considered

in Section 4.1, and this section describes the method of SNTLN for the computation of

the coefficients of an AGCD of degree t. This computation must be performed twice,

once for the row component, and once for the column component, of the PSF, and the

selection of the pair of rows and the pair of columns of the blurred image G to be used for

this computation must be considered. Specifically, it was shown in Section 4.1 that the

computation of the degrees of the row and column components of the PSF is performed

25 times, and as shown in Figs. 8 and 9, the degree of the AGCD is equal to the mode

of the distribution of t for each component of the PSF. The indices of the pairs of rows

and the pairs of columns are recorded for each of the 25 experiments, and the computed

value of t is also recorded for each of these pairs. The coefficients of the row component

of the PSF are computed from a randomly selected pair of rows that returned the mode

of the distribution of t for this component of the PSF, and the same procedure is used

for the computation of the coefficients of the column component of the PSF.

It is shown in [32–34] that the computation of the coefficients of an AGCD, as de-

scribed above, requires the solution a non-linear constrained minimisation problem. The

linearisation of this problem leads to a least squares minimisation with an equality con-

straint, the LSE problem, at each iteration,

min
δy(j)

∥

∥

∥
δy(j) − h(j)

∥

∥

∥

2
subject to E(j)δy(j) = t(j), j = 1, 2, . . . , (21)

where y(j) = y(j−1) + δy(j), and y(j) contains the coefficients of the coprime polyno-

mials of the AGCD computation at the jth iteration. The matrices E(j) in (21) are

derived from the Sylvester matrix of the polynomial representations of two rows or two

columns of the blurred image, as stated above. The LSE problem (21) is solved by the

QR decomposition [16], but it can also be solved by the penalty method. The QR de-

composition is preferred because it does not require a parameter τ ≫ 1, the use of

which may cause numerical problems because although the constraint is imposed more

severely as τ increases, the coefficient matrix of the linear algebraic equation becomes

more ill-conditioned [1,23]. The penalty method is used in [24,26] for the solution of a

constrained minimisation problem that arises when regularisation is used for the solution

of the BID problem. These numerical issues are not addressed in [24], and the procedure

adopted in [26] requires the computation of deblurred images for several values of τ and

the selection of the image for which the relative error is a minimum. The authors note

that the deblurred image may be sensitive to the value of τ , which confirms the potential

ill-conditioning that may arise, as noted above.

The discussion above shows that the same computation is used for the coefficients

of the row and column components of the PSF because of the separable form of the

PSF (6). The PSF is then deconvolved from G by solving two sets of least squares

problems, thereby forming a deblurred image [32].
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Fig. 12. The deblurred image obtained from deconvreg.m with NP = 1.70 × 107 and λ = 10−9.

5. Results

This section compares the deblurred images obtained from the method considered

in this paper and the four functions in Matlab discussed in Section 2. The exact and

blurred images are shown in Figs. 1(b) and 5 respectively, where the blurred image is

formed by the addition of random noise N , and uncertainty E to the PSF H, as shown

in (12), and (13) and (14) are satisfied.

The noise power and PNSR of the blurred image are 1.70 × 107 and 4.86 × 10−2

respectively (4), and Figs. 12 and 13 show the deblurred images from deconvreg.m and

deconvwnr.m obtained with these parameters, after the function edgetaper.m was called.

The reason for the poor result obtained from deconvreg.m can be seen from Fig. 3(b),

which shows that the value NP = 1.70 × 107 yields a large error in the deblurred image.

Similarly, Fig. 4 shows that the value NSR = 4.86 × 10−2 for deconvwnr.m is too large.

Fig. 2 shows the variation of the errors in the deblurred image and computed PSF

with the number of iterations and the componentwise relative error ε for the function

deconvblind.m. It is seen that the error in the deblurred image is large and the error in

the PSF is small if the number of iterations is small, and that the error in the deblurred

image decreases as the number of iterations increases. Fig. 14 shows the deblurred image

from deconvblind.m with NUMIT = 100, which achieves a compromise between the

fidelity of the deblurred image and the computed PSF.

Fig. 3(a) shows that the value NUMIT = 200 for deconvlucy.m yields a deblurred

image with a small error, and Fig. 15 shows the deblurred image from deconvlucy.m

with this parameter value. Figs. 3(b) and 4 show that the optimal parameter values

for the functions deconvreg.m and deconwnr.m are NP = 1000 and NSR = 10−4.5 =

3.16 × 10−5 respectively, and Figs. 16 and 17 show the deblurred images obtained from
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Fig. 13. The deblurred image obtained from deconvwnr.m with NSR = 4.86 × 10−2.

Fig. 14. The deblurred image obtained from deconvblind.m with NUMIT = 100.

these functions. The improvement with respect to the images in Figs. 12 and 13 is clear,

particularly for the function deconvreg.m. It follows that the selection of the correct

parameter values is important, and that the true values of, for example, the noise power

and the PNSR, may not yield the best deblurred image [17].

Fig. 18 shows the deblurred image obtained using the method discussed in this paper,

and its improvement with respect to the deblurred images obtained by the four functions

in Matlab is quantified in Table 1, which shows the relative errors in the deblurred

images in Figs. 12–18. The method discussed in this paper yields a deblurred image
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Fig. 15. The deblurred image obtained from deconvlucy.m with NUMIT = 200.

Fig. 16. The deblurred image obtained from deconvreg.m with NP = 1000 and λ = 10−9.

whose relative error is about two orders of magnitude smaller than the relative errors

in the deblurred images produced by the other methods, even though it is totally blind,

and, as explained in Section 2, the PSF was specified in the calls to the four functions

in Matlab.

The deblurred images in Figs. 14–17 still have dark edges, even though the function

edgetaper.m was used before the four functions in Matlab were called. These dark

edges are not present in the original image, which is shown in Fig. 1(b), and the deblurred

image in Fig. 18, which is obtained using the method discussed in this paper. These dark
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Fig. 17. The deblurred image obtained from deconvwnr.m with NSR = 3.16 × 10−5.

Fig. 18. The deblurred image obtained from the method of image deblurring discussed in this paper.

edges contribute to the errors in the deblurred images, which are equal to, from Table 1,

about 0.13 for the deblurred images obtained from the functions in Matlab when the

optimal parameter values are used. This error must be compared with the relative error

of the blurred image, which is equal to, from (4),
(

4.86 × 10−2
)

1
2 = 0.22.

The AGCD computations and polynomial deconvolutions used in this paper are im-

plemented by the method of SNTLN, and its effectiveness for the numerically robust

implementation of these operations is shown in [31,36], where it is used for the computa-

tion of multiple roots of a polynomial. The results in Table 1 also show the effectiveness
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Table 1

The results of four deblurring methods applied to the image in Fig. 5. The method discussed in this paper
is denoted ‘Polynomial’.

Method PSF Relative error of
deblurred image

Regularised filter, Fig. 12 PSF specified 3.40 exp −01
Wiener filter, Fig. 13 PSF specified 1.89 exp −01
Blind deconvolution, Fig. 14 PSF specified 1.32 exp −01
Lucy–Richardson, Fig. 15 PSF specified 1.30 exp −01
Regularised filter, Fig. 16 PSF specified 1.38 exp −01
Wiener filter, Fig. 17 PSF specified 1.24 exp −01
Polynomial, Fig. 18 PSF not specified 5.55 exp −03

of this method for polynomial computations, and in particular, computations on the

Sylvester matrix. This matrix is linear and it may therefore be thought that the method

of structured total least norm (STLN) [27], which is the simplification of the method of

SNTLN to the preservation of a linear structure in a matrix, is adequate. The following

discussion shows, however, that it is advantageous to use the method of SNTLN rather

than the method of STLN.

It was stated briefly in Section 4.1 that the polynomials f(y) and g(y) must be pro-

cessed before computations are performed on their Sylvester matrix and subresultant

matrices Sk(f, g), k = 1, . . . , min(m, n), in order to avoid computational problems that

may arise [33–35]. Two of these operations introduce the parameters α0 and θ0, whose

initial values are computed from the solution of a linear programming problem. Their

introduction implies that the Sylvester matrix has a non-linear structure for which the

method of SNTLN must be used, and they can be considered as degrees of freedom that

can be optimised to obtain improved results. They are refined in the iteration (21), and

the examples in [35] compare the results from the method of STLN, which is equivalent

to the specification α0 = θ0 = 1 for all values of j in (21), and the method of SNTLN.

These examples show that the method of STLN may return an incorrect value for the

degree of an AGCD, that is, the horizontal and vertical extents of the PSF may be in

error, and that significantly better results are obtained when the method of SNTLN

is used. The work described in this paper differs, therefore, from the work in [24,26]

because the method of STLN is used in these papers and, as discussed in Section 4.3,

a constrained minimisation problem is solved by the penalty method.

The normwise relative error in the computed PSF using the method discussed in

this paper is 1.08 × 10−4, which is approximately equal to the upper bound of the

componentwise relative error in the PSF (13).

6. Summary

This paper has considered the application of polynomial computations for the removal

of blur from an image. It has been shown that the degrees of the row and column compo-

nents of the PSF can be computed efficiently by the QR decomposition of the Sylvester

matrix and its subresultant matrices. The coefficients of the PSF are computed from two
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applications, one for the row component of the PSF and one for the column component

of the PSF, of the method of SNTLN to an approximate linear algebraic equation whose

coefficient matrix and right hand side vector are derived from a Sylvester subresultant

matrix. The deblurred image is then obtained from two sets of deconvolutions, which are

solved in the least squares sense.

A parameter study of the four functions in Matlab that perform BID was performed

and it was shown that computational experiments are required to determine the param-

eters that yield the best deblurred image for each function. These deblurred images were

then compared with the deblurred image obtained from the method discussed in this

paper, and it was shown that the relative error of this deblurred image is much smaller

than the relative errors of the deblurred images obtained from the functions in Matlab.

References

[1] A. Anda, H. Park, Self-scaling fast rotations for stiff and equality-constrained linear least squares
problems, Linear Algebra Appl. 234 (1996) 137–161.

[2] S. Barnett, Polynomials and Linear Control Systems, Marcel Dekker, New York, USA, 1983.
[3] D.A. Bini, P. Boito, Structured matrix-based methods for polynomial ǫ-GCD: analysis and compar-

isons, in: Proc. Int. Symp. Symbolic and Algebraic Computation, Waterloo, Canada, 2007, pp. 9–16.
[4] D.A. Bini, P. Boito, A fast algorithm for approximate polynomial GCD based on structured matrix

computations, in: D.A. Bini, V. Mehrmann, V. Olshevsky, E. Tyrtshnikov, M. Van Barel (Eds.),
Numerical Methods for Structured Matrices and Applications: The Georg Heinig Memorial Volume,
Birkhäuser, 2010, pp. 155–173.

[5] A. Bouhamidi, K. Jbilou, A Kronecker approximation with a convex constrained optimization
method for blind image restoration, Optim. Lett. 6 (2012) 1251–1264.

[6] A.S. Carasso, Linear and nonlinear image deblurring: a documented study, SIAM J. Numer. Anal.
36 (6) (1999) 1659–1689.

[7] A.S. Carasso, Direct blind deconvolution, SIAM J. Appl. Math. 61 (6) (2001) 1980–2007.
[8] X. Chang, C. Paige, A perturbation analysis for R in the QR factorization, Technical report,

No. SOCS-95.7, School of Computer Science, McGill University, Montreal, Canada, 1995.
[9] P. Chin, R.M. Corless, Optimization strategies for the approximate GCD problem, in: Proc. Int.

Symp. Symbolic and Algebraic Computation, Rostock, Germany, 1998, pp. 228–235.
[10] R.M. Corless, P.M. Gianni, B.M. Trager, S.M. Watt, The singular value decomposition for polyno-

mial systems, in: Proc. Int. Symp. Symbolic and Algebraic Computation, ACM Press, New York,
1995, pp. 195–207.

[11] R.M. Corless, S.M. Watt, L. Zhi, QR factoring to compute the GCD of univariate approximate
polynomials, IEEE Trans. Signal Process. 52 (12) (2004) 3394–3402.

[12] A. Danelakis, M. Mitrouli, D. Triantafyllou, Blind image deconvolution using a banded matrix
method, Numer. Algorithms 64 (2013) 43–72.

[13] G. Diaz-Toca, S. Belhaj, Blind image deconvolution through Bezoutians, in: 8th International
Congress on Industrial and Applied Mathematics, Beijing, China, 2015.

[14] S. El-Khamy, M. Hadhoud, M. Dessouky, B. Salam, F. El-Samie, A greatest common divisor ap-
proach to blind super-resolution reconstruction of images, J. Modern Opt. 53 (8) (2006) 1027–1039.

[15] I. Emiris, A. Galligo, H. Lombardi, Certified approximate univariate GCDs, J. Pure Appl. Algebra
117 (1997) 118.

[16] G.H. Golub, C.F. Van Loan, Matrix Computations, John Hopkins University Press, Baltimore,
USA, 2013.

[17] R.C. Gonzalez, R.E. Woods, S.L. Eddins, Digital Image Processing Using Matlab, Gatesmark
Publishing, 2009.

[18] B. Gunturk, X. Li, Image Registration: Fundamentals and Advanves, CRC Press, Florida, USA,
2013.

[19] D. Kundur, D. Hatzinakos, Blind image deconvolution, IEEE Signal Process. Mag. 13 (3) (1996)
43–64.



ARTICLE IN PRESS

U
N

C
O

R
R
E
C
T

E
D

P
R
O

O
F

Please cite this article in press as: J.R. Winkler, Polynomial computations for blind image
deconvolution, Linear Algebra Appl. (2015), http://dx.doi.org/10.1016/j.laa.2015.10.010

JID:LAA AID:13421 /FLA [m1L; v1.161; Prn:20/10/2015; 15:54] P.27 (1-27)

J.R. Winkler / Linear Algebra and its Applications ••• (••••) •••–••• 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

[20] R.G. Lane, R.H.T. Bates, Auotmatic multidimensional deconvolution, J. Opt. Soc. Amer. 4 (1)
(1987) 180–188.

[21] Z. Li, Z. Yang, L. Zhi, Blind image deconvolution via fast approximate GCD, in: Proc. Int. Symp.
Symbolic and Algebraic Computation, 2010, pp. 155–162.

[22] B. Liang, S. Pillai, Blind image deconvolution using a robust 2-D GCD approach, IEEE Int. Symp.
Circuits Syst. (1997) 1185–1188.

[23] C. Van Loan, On the method of weighting for equality-constrained least squares problems, SIAM
J. Numer. Anal. 22 (5) (1985) 851–864.

[24] S. Oh, S. Kwon, J. Heon Yun, A method for structured linear total least norm on blind deconvolution
problem, J. Appl. Math. Comput. 19 (2005) 151–164.

[25] S. Pillai, B. Liang, Blind image deconvolution using a robust GCD approach, IEEE Trans. Image
Process. 8 (2) (1999) 295–301.

[26] A. Pruessner, D.P. O’Leary, Blind deconvolution using a regularized structured total least norm
algorithm, SIAM J. Matrix Anal. Appl. 24 (4) (2003) 1018–1037.

[27] J. Ben Rosen, H. Park, J. Glick, Total least norm formulation and solution for structured problems,
SIAM J. Matrix Anal. Appl. 17 (1) (1996) 110–128.

[28] J. Ben Rosen, H. Park, J. Glick, Structured total least norm for nonlinear problems, SIAM J. Matrix
Anal. Appl. 20 (1) (1998) 14–30.

[29] B.L. Satherley, C.R. Parker, Two-dimensional image reconstruction from zero sheets, Opt. Lett. 18
(1993) 2053–2055.

[30] G.W. Stewart, On the perturbation of LU, Cholesky, and QR factorizations, SIAM J. Matrix Anal.
Appl. 14 (4) (1993) 1141–1145.

[31] J.R. Winkler, Structured matrix methods for the computation of multiple roots of a polynomial,
J. Comput. Appl. Math. 272 (2014) 449–467.

[32] J.R. Winkler, The Sylvester resultant matrix and image deblurring, in: Lecture Notes in Computer
Science (LNCS), vol. 9213, 2015, in press.

[33] J.R. Winkler, M. Hasan, A non-linear structure preserving matrix method for the low rank approx-
imation of the Sylvester resultant matrix, J. Comput. Appl. Math. 234 (2010) 3226–3242.

[34] J.R. Winkler, M. Hasan, An improved non-linear method for the computation of a structured low
rank approximation of the Sylvester resultant matrix, J. Comput. Appl. Math. 237 (1) (2013)
253–268.

[35] J.R. Winkler, M. Hasan, X.Y. Lao, Two methods for the calculation of the degree of an approximate
greatest common divisior of two inexact polynomials, Calcolo 49 (2012) 241–267.

[36] J.R. Winkler, X.Y. Lao, M. Hasan, The computation of multiple roots of a polynomial, J. Comput.
Appl. Math. 236 (2012) 3478–3497.

[37] C.J. Zarowski, X. Ma, F.W. Fairman, QR-factorization method for computing the greatest com-
mon divisor of polynomials with inexact coefficients, IEEE Trans. Signal Process. 48 (11) (2000)
3042–3051.

[38] Z. Zeng, The approximate GCD of inexact polynomials. Part 1: a univariate algorithm, preprint,
2004.


