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Abstract: 

Background: 

Prediction models for trauma outcome routinely control for age but there is uncertainty about 

the need to control for comorbidity and whether the two interact. This paper describes recent 

revisions to the Trauma Audit and Research Network (TARN) risk adjustment model 

designed to take account of age and comorbidities. In addition linkage between TARN and 

the Office of National Statistics (ONS) database allows patient’s outcome to be accurately 

identified up to 30 days after injury. Outcome at discharge within 30 days was previously 

used. 

 

Methods: 

Prospectively collected data between 2010 and 2013 from the TARN database were analysed. 

The data for modelling consisted of 129 786 hospital trauma admissions. Three models were 

compared using the area under the receiver operating curve (AuROC) for assessing the ability 

of the models to predict outcome, the Akaike information criteria to measure the quality 

between models and test for goodness-of-fit and calibration. Model 1 is the current TARN 

model, Model 2 is Model 1 augmented by a modified Charlson comorbidity index and Model 

3 is Model 2 with ONS data on 30 day outcome. 

 

Results: 

The values of the AuROC curve for Model 1 were 0.896 (95% CI 0.893 to 0.899), for Model 

2 were 0.904 (0.900 to 0.907) and for Model 3 0.897 (0.896 to 0.902). No significant 

interaction was found between age and comorbidity in Model 2 or in Model 3 

 

Conclusions: 

The new model includes comorbidity and this has improved outcome prediction. There was 

no interaction between age and comorbidity, suggesting that both independently increase 

vulnerability to mortality after injury. 
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WHAT THIS PAPER ADDS 

 

What is already known on this subject? 

 

• The trauma population is getting older and the incidence of pre-existing diseases is 

rising but the interaction between age and comorbidity is unclear. 

 

• Outcome prediction models are useful in the assessment of patient care and system 

development. However, the complexities of data collection and the lack of a 

comorbidity scale designed specifically for the trauma population limits their 

applicability to the new trauma demographic. 

 

What this study adds 

 

• The incorporation of a modification of the Charlson comorbidity index into our 

outcome prediction model improved its performance; using data linkage to measure 

30 day outcome on all patients did not. 

 

• There was no significant interaction between age and comorbidity; both appear to be 

independent and separate influences on outcome. 
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Background 

Trauma is a global disease affecting people of all ages and the leading cause of death in the 

first four decades of life. Care is improving [1, 2] but in order to understand the relative 

effectiveness of individual patient treatment and of trauma systems generally it is necessary 

to develop outcome prediction models and apply them to large data sets in trauma registries. 

The development of the trauma score/injury severity score methodology [3, 4] has been 

pivotal to these advances. This and other prediction models have been reported recently in a 

systematic review. [5] 

 

The trauma population in the UK is ageing; the average age of patients on the Trauma Audit 

and Research Network (TARN) database has increased from 47 years to 57 years since 

2008.[6] Recorded comorbidity has also increased in the same period, from 37% to 62%.[6] 

It therefore seems appropriate to include comorbidity in addition to age as a risk factor in 

outcome prediction models. Previous work suggests that comorbidity and age are 

independently associated with increased mortality after trauma but has not examined their 

interaction.[7-9] A presence of interaction would mean that the effect of comorbidity on 

outcome is highly dependent of patient’s age, for example, the impact of the presence of a 

serious comorbidity in reducing odds of survival after injury, could be higher in a younger 

patient than an older patient, or vice versa - if an interaction is present. If there is no 

interaction the relative reduction in odds of survival associated with serious comorbidity is 

the same regardless of patient age. 

 

The outcome prediction model currently used by TARN [6] defines survival as either ‘alive at 

hospital discharge’ or ‘alive in hospital at 30 days’; there is no accounting for the outcome of 

those discharged alive before 30 days.[10] The model is ‘casemix adjusted’ using age, gender 

(and their interaction), injury severity score (ISS) and GCS as predictors. The 30-day 

threshold is considered appropriate because later death is less likely to be associated directly 

with the injuries which prompted hospital admission. However, including all deaths up to 30 

days (not just those occurring in hospital up to 30 days) has been proposed as being more 

logical, despite demanding more complex data acquisition. [11] 

 

This paper describes a new prediction model which uses ‘30 day outcome’ for all patients 

rather than just those still in hospital and incorporates a new comorbidity measure. It 
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investigates the interaction between age and comorbidity and compares the new model’s 

performance with that currently used by TARN for trauma quality assurance within England 

and Wales, Republic of Ireland and some hospitals in continental Europe. 

 

Patients and Methods 

The TARN database is the largest trauma registry in Europe, holding data from all trauma 

receiving hospitals in England and Wales and some in Denmark, Switzerland and the 

Republic of Ireland. Patients of all ages are included on the database if they sustain injury 

resulting in any of: immediate admission to hospital for 3 days or longer, intensive or high 

dependency care, inter-hospital transfer for further care or death in hospital within 30 days. 

Patients aged over 65 years with an isolated fracture of the femoral neck or pubic ramus and 

those with isolated closed limb injuries (excepting the femoral shaft/condyles) are excluded. 

If transfers can be matched using data from both hospitals, these are linked for one patient to 

avoid duplication. Transfers out of the first hospital without a linked submission from a 

receiving hospital are excluded from mortality analyses.  

 

Prospectively collected data were used in the current cohort study which includes eligible 

patients submitted to TARN from 1 January 2010 to 31 December 2013; presenting with 

blunt or penetrating trauma during those dates. A matching exercise was conducted in an 

attempt to obtain the records of patients transferred to a second hospital for specialist care. 

Where matching could not be accomplished the patients were excluded. The characteristics of 

the excluded and included patients were compared. 

 

Comorbidity 

Various comorbidity indices have been used in outcome prediction models. The Charlson 

comorbidity index (CCI) is one of the most frequently used as demonstrated in a recent 

systematic review. [12] CCI uses weighted International Classification of Diseases (ICD) 10 

based diagnoses summed to give a score for each patient. The original weights [13] were 

updated by Dr Foster Intelligence in 2011 and incorporated into the hospital standardised 

mortality ratio. [14] The CCI was also used in the recently developed Summary Hospital 

Mortality Index. [15] 
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The original 17 Charlson codes were developed from a sample of 559 patients; [13] these did 

not cover the whole spectrum of medical conditions seen in trauma patients. The comorbidity 

dictionary separately developed earlier by TARN, and also based on ICD 10, contained many 

additional diagnoses. An extensive mapping exercise was therefore carried out to convert the 

TARN data points to Charlson compatible data points. The wider reach of the TARN data 

required the creation of five new groups which had not been represented in the original 

Charlson codes (in bold in table 1). 

 

The resulting 22 conditions were used as binary factors along with age and gender in a 

logistic regression model to derive the weights of each comorbidity group within the patients 

used for this study. The weights were obtained by dividing each of the regression coefficients 

by the coefficient with the smallest absolute value and then rounded up to the nearest whole 

number. [16] The comorbidity index derived from this exercise can be described as a 

modified version of the original CCI and is therefore denoted as ‘mCCI’. 

Outcomes at 30 days 

TARN does not hold data on patients’ outcome after hospital discharge. The Office of 

National Statistics (ONS) database does have such information and permission was given to 

carry out a data linkage exercise to obtain the outcome at 30 days after admission for all 

TARN registered patients (defined as ‘true’ 30 day outcome). The results were compared 

with the current TARN model [7] which is based on a model using outcome at 30 days from 

admission or at discharge, whichever comes first. 

 

Missing Data 

The GCS was not recorded in 10% of the selected cases. Previous studies [17] have suggested 

that these patients are often the more seriously injured and must be included in the analyses. 

An imputation technique, based on chained equations and Rubin's rules, was therefore used 

on the assumption that the mechanism of missingness is random.[18] Age, gender, mCCI and 

GCS were used as categorical variables. When GCS was missing for a specific non-random 

reason, for example, intubation, an extra category was added to GCS accordingly.  

Comorbidity status was not recorded in 16% of patients. These were identified by adding a 

‘missing’ category to the mCCI variable. 
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Statistical analysis 

Three statistical models were compared each on the same number of TARN cases where the 

outcome from the last acute hospital was known.  

 

• Model 1 represents the current TARN model. It uses age and gender and their 

interaction, ISS, GCS and outcome at 30 days or at discharge, whichever comes first; 

[7] 

 

• Model 2 is the same as Model 1 with the addition of the TARN mCCI; 

 

• Model 3 is the same as Model 2 but using ‘true’ outcome at 30 days from admission 

as the dependent variable. 

 

The outcome prediction models are based on multiple logistic regressions using age, gender, 

ISS, GCS, mCCI and age by gender interaction as predictors. The non-linearity of the ISS 

was corrected using fractional polynomials (FPs) [7] to enable its inclusion in the logistic 

regression model, [7] and was used as a continuous variable in the model, whereas age (eight 

levels), gender (two levels), age by gender interaction, GCS (seven levels) and mCCI (five 

levels) were used as categorical variables. The significance of the interaction between age 

and comorbidity was also assessed.  

 

All the analyses were performed with Stata V.13.0 and R software. [19, 20] 

 

Validation 

An internal validation for the model was carried out using a bootstrap [21] procedure where 

200 samples of the same size as the original data set were drawn with replacement using the 

library ‘bootstrap’ from the R package. [20] The advantage of this procedure over split 

sample cross validation is that model performance and calibration are assessed in the original 

sample using the models developed in the bootstrap samples. A model which is developed on 

the whole sample produces stable estimates of the regression coefficients. [22] 

 

Model performance or discriminant power was assessed through the area under the receiver 

operating curve (AuROC). Model calibration was assessed using calibration graphs instead of 
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the Hosmer-Lemeshow (H-L) test. [23] While the Hosmer-Lemeshow (H-L) test does not 

demonstrate poor calibration it is too sensitive with large sample sizes—any tiny deviation 

from perfect fit is detected. The same bootstrap technique used previously for the validation 

of the models was used to internally validate the modified Charlson weights.  

 

TARN holds Health Research Authority Confidentiality Advisory Group (CAG) Section 251 

approval. 

 

Results 

In the 4 years studied 129,786 patients meeting the TARN inclusion criteria from 207 trauma 

receiving hospitals were recorded with known outcomes; 10,810 patients were excluded 

because of unknown outcome after hospital transfer. Excluded patients were younger (51 

years vs 57 years), more severely injured (ISS 16 vs 9), more likely to be male (68% vs 59%) 

but had similar GCS and comorbidity distributions (table 2). The characteristics of the 

patients used for the model derivation are shown in table 2. 

 

The sample mortality rate was 7%, median age 57 years, median ISS 9 and median GCS 15. 

Fifty-nine per cent of patients were male. More than 50% of the patients in the sample were 

recorded as having comorbidity; in 16% the comorbidity status was not recorded. Figure 1 

shows the functional form of ISS on outcome (death) after FP transformation where the 

optimal powers obtained are (−0.5) and (0), representing the reciprocal of the square root and 

the (natural) logarithm of ISS, respectively. Female gender was associated with lower 

survival but as there was a significant interaction between age and gender which identified 

poorer survival in men than women over 65 years, the main effect for gender cannot be 

interpreted independently from age. 

 

The data linkage between TARN and ONS enabled the determination of the true final 

outcome of all patients within 30 days of admission. Five hundred and seventy-two patients 

died after discharge but within 30 days of admission; their characteristics are shown in table 

3. The average age was 84 years, the GCS normal and the ISS low; the majority was female 

and most had a recorded comorbidity. 
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Each of the outcome predictors was significant in each of the models. Model 2, incorporating 

our modification of the CCI, showed better prediction performance than Model 1 and Model 

3. Model 2 was found to have a Brier score of 0.0451, demonstrating a good calibration and 

goodness-of-fit and validating the use of bootstrap simulation in its calibration. Model 2 also 

showed a significantly better discriminant power by means of AuROC=0.904 (95% CI 0.901 

to 0.907, p value <0.001). The comparison between the three models is displayed in table 4. 

 

The regression coefficients of Model 2 are shown in table 5; the effect of mCCI on outcome 

for the category ‘not known’ is similar to that of the ‘1–5’ group. Patients in this ‘not known’ 

category were younger (median age 48 years vs 65 years) but had similar median ISS and 

GCS. 

 

The effects of the age/comorbidity interaction terms were not statistically significant; this is 

shown in figure 2 where the effect of mCCI on outcome is not modified by age. 

 

Discussion 

We have augmented our trauma score/injury severity score based trauma outcome prediction 

model and shown that the incorporation of a modified comorbidity index significantly 

improves its prediction power (in terms of AuROC and other model performance statistics) 

for survival to discharge from acute care. Incorporating 30 day outcome data on all patents 

through data linkage was possible in 80% of cases. However, this did not improve outcome 

prediction. No significant interaction was found between age and comorbidity in their effect 

on survival to discharge.  

 

The model retains the FP transformations of the ISS that we previously published. [7] It also 

preserves the interaction between age and gender and suggests that increasing age and male 

gender related frailty independently predict adverse rates of survival after adjustment for 

comorbidity.  

 

Some studies have shown that prediction of outcome after trauma has improved by including 

pre-existing medical conditions in models [10,11] but one study found no benefit by adding 

the CCI and commented that the index was not developed specifically for trauma. [24] In our 
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study we have modified the original CCI and recalculated the weights specifically for trauma 

patients.  

 

Two scoring components were examined in our study: the outcome at 30 days from 

admission for all patients, not just those remaining in hospital, and comorbidity using a 

modification of the CCI. Having demonstrated the added prognostic value of our ‘Model 2’, 

which incorporates comorbidity but not comprehensive 30 day outcomes, we have now 

adopted it in the TARN registry. We have updated the major trauma survival probability 

calculator for individual patients on our website [6] and incorporated it in our institutional 

comparisons.  

 

Strengths and limitations 

Our study has a number of strengths. The data were extracted from the TARN database which 

is the largest registry in Europe; it uses standardised and centralised data coding and includes 

all hospitals in England and Wales and some in Denmark, Switzerland and the Republic of 

Ireland. Our outcome prediction models have shown good performance in terms of 

discrimination, calibration and internal validation.  

 

There are some limitations. The outcome status of 8.3% of patients was not known. This is 

chiefly due to patients being transferred to other hospitals and lost to follow-up. Selection 

bias analysis showed that excluded patients were more severely injured; this is often the case 

with patients transferred to specialised centres. The effect of excluded patients on the model's 

performance cannot be assessed as their final outcome is unknown. However, transferred 

patents are referred for specialist and hopefully more effective care; this could impact on their 

outcome and therefore on the model's predictive power.  

The problem of missing GCS data has been overcome by using the multiple imputation 

technique available in Stata. 

 

Missing comorbidity data (16%) is recognised by creating a special category in the mCCI. 

Data linkage was successful in 80% of cases; failure to match the remainder was due to 

invalid patient identification numbers.  
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External validation of our models is currently being conducted in a collaborative project with 

the German trauma registry. This work will also compare our models with the model recently 

developed by the German trauma registry team. [25] This uses a wider range of variables than 

the TARN model and represents the totality of sustained trauma with the worst and the 

second worst injuries rather than ISS. Risk Injury Severity Classification (RISK) II showed a 

good discrimination (AuROC=0.953) albeit in a more severely injured trauma population 

when compared with TARN. [25] 

 

Conclusion 

The accuracy of trauma outcome predictions, as assessed by the AuROC, was improved by 

adding comorbidity to the current TARN ‘survival to discharge’ model. However, using data 

linkage to derive 30 days postadmission outcome status for all patients and including this 

with comorbidity did not improve the model's accuracy; analysis of deaths after hospital 

discharge showed that they do not relate to severity of injury. We did not find a statistically 

significant interaction between comorbidity and age. If our data set is representative of the 

wider trauma population it suggests that both factors predict outcome after major injury 

independently. 

 

Authors Contribution 

OB wrote the manuscript and analysed the data. TJ and TL extracted and organised the data 

set. AE and MW mapped the TARN pre-existing medical conditions to the Charlson 

comorbidity index and directed the collection of data. DWY, RJ and FL reviewed this article 

for methodological content and made critical revisions to the final draft. All authors 

participated in the critical review of all versions of this article. 

 

Conflict of interest: None declared 

  



12 

 

References 

1. Lecky F, Woodford M, Yates DW. Trends in trauma care in England and Wales 1989-

97. Lancet 2000;355:1771-1775. 

 

2. Fuller G, Bouamra O, Woodford M, et al. Temporal trends in head injury outcomes 

from 2003 to 2009 in England and Wales. British Journal of Neurosurgery 

2011;25:414 - 421. 

 

3. Champion HR, Sacco WJ, Hunt TK. Trauma severity scoring to predict mortality. 

World J Surg 1983;7:4-11. 

 

4. Boyd CR, Tolson MA, Copes WS. Evaluating trauma care: the TRISS method. Trauma 

Score and the Injury Severity Score. J Trauma 1987;27:370-378. 

 

5. Tohira H, Jacobs I, Mountain D, et al. Systematic review of predictive performance of 

injury severity scoring tools. Scand J Trauma Resusc Emerg Med 2012;20:63. 

 

6. The Trauma Audit & Research Network (TARN). Available at: 

 https://www.tarn.ac.uk/Content.aspx?c=3521. 

 

7. Hollis S, Yates DW, Woodford M, et al. Standardized comparison of performance 

indicators in trauma: a new approach to case-mix variation. J Trauma 1995;38:763-766. 

 

8. Bergeron E, Rossignol M, Osler T, et al. Improving the TRISS methodology by 

restructuring age categories and adding comorbidities. J Trauma 2004;56:760-767. 

 

9. Wutzler S, Maegele M, Marzi I, et al. Association of preexisting medical conditions 

with inhospital mortality in multiple-trauma patients. J Am Coll Surg 2009;209:75-81. 

 

10. Bouamra O, Wrotchford A, Hollis S, et al. A new approach to outcome prediction in 

trauma: A comparison with the TRISS model. J Trauma 2006;61:701-710. 

 



13 

 

11. Nicholl J, Jacques R, Campbell MJ. Mortality indicators used to rank hospital 

performance. BMJ 2013;347:f5952. 

 

12. Sharabiani MT, Aylin P, Bottle A. Systematic review of comorbidity indices for 

administrative data. Med Care 2012;50:1109-1118. 

 

13. Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic 

comorbidity in longitudinal studies: development and validation. J Chronic Dis 

1987;40:373-383. 

 

14. Dr.FosterIntelligence. 2011. Available at:  

 http://drfosterintelligence.co.uk/wpcontent/uploads/2011/10/HSMR-Toolkit-Version-6-

October-2011.pdf. 

 

15. Campbell MJ, Jacques RM, Fotheringham J, et al. Developing a summary hospital 

mortality index: retrospective analysis in English hospitals over five years. BMJ 

2012;344:e1001. 

 

16. van Walraven C, Austin PC, Jennings A, et al. A modification of the Elixhauser 

comorbidity measures into a point system for hospital death using administrative data. 

Med Care 2009;47:626-633. 

 

17. van Buuren SB, H C. Knook, D L. Multiple imputation of missing blood pressure 

covariates in survival analysis. Stat Med 1999;18:681- 694. 

 

18. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues 

and guidance for practice. Stat Med 2011;30:377-399. 

 

19. StataCorp. Stata Statistical Software: Release 13.0. College Station, Corporation; TS, 

2013. 

 

20. R Development Core Team 2010. R: A language and environment for statistical 

computing. Available at: http://www.R-project.org.Vienna, Austria. 

 



14 

 

21. S original and from StatLib by Rob Tibshirani. R port by Friedrich Leisch. bootstrap: 

Functions for the Book “An Introduction to the Bootstrap”. R package version 2012.04-

0. 2012. Available at: http://CRAN.R-project.org/package=bootstrap 

22. Steyerberg EW. Clinical Prediction Models. Springer New York; 2009; 299-315. 

23. Kramer AA, Zimmerman JE. Assessing the calibration of mortality benchmarks in 

critical care: The Hosmer-Lemeshow test revisited. Crit Care Med 2007;35:2052-2056. 

24. Gabbe BJ, Magtengaard K, Hannaford AP, et al. Is the Charlson Comorbidity Index 

useful for predicting trauma outcomes? Acad Emerg Med 2005;12:318–21. 

25. Lefering R, Huber-Wagner S, Nienaber U, et al. Update of the trauma risk adjustment 

model of the Trauma Register DGU: the Revised Injury Severity Classifi cation, 

version II. Crit Care 2014;18:476. 

 

  



15 

 

 

Table 1.  Modified Charlson comorbidity index with updated weights 

Conditions n Weights 

Not classified 3,177 0 

Other conditions 29,723 0 

Acute Myocardial Infarction 5,111 4 

Cerebral Vascular Accident 5,019 1 

Congestive Heart failure 7,435 5 

Connective Tissue Disorder 10,369 0 

Dementia 5,903 4 

Diabetes 8,993 0 

Liver Disease 1,312 13 

GU Diseases/ Peptic Ulcer 3,277 0 

Peripheral Vascular Disease 2,201 2 

Pulmonary Disease 13,123 0 

Cancer 4,167 3 

Paraplegia 199 0 

Renal Disease 2,293 6 

Metastatic Cancer 480 9 

HIV 176 0 

Mental Health 49,847 0 

Blood Disease 2,312 2 

Bone Disease 5,453 0 

Neurological disorders 4,325 0 

Alcohol Abuse 9,415 4 
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Table 2. Characteristics of the patients. 2010 -2013  

    Outcome  within 30 days from admission 

Total 

included 

  

    Dead Alive   

    Recorded GCS Missing GCS Recorded GCS Missing GCS 

Excluded cases 

with missing 

outcome 

  N 8658 958 106211 13959 129786 10810 

Age Median(IQR†) 77.8 (53.1 - 86.7) 66.3 (43.8 - 80.4) 56.2 (34.3 - 75.7) 48.4 (24.6 - 66.7) 56.6 (34.1 - 76.6) 51 (30 - 70) 

ISS Median(IQR†) 25 (12 - 29) 25 (16 - 26) 9 (9 - 16) 9 (9 - 16) 9 (9 - 17) 16 (9 - 25) 

GCS Median(IQR†) 12 (3 - 15)   15 (15 - 15)   15 (15 - 15) 15 (13 - 15) 

Gender 

Male n (%) 5021 (58%) 616 (64.3%) 62114 (58.5%) 8979 (64.3%) 76730 (59.1%) 7372 (68.2%) 

Female n(%) 3637 (42%) 342 (35.7%) 44097 (41.5%) 4980 (35.7%) 53056 (40.9%) 3438 (31.8%) 

Comorbidity 

Yes n(%) 5880 (67.9%) 574 (59.9%) 57438 (54.1%) 6448 (46.2%) 70340 (54.2%) 5802 (53.7%) 

No n(%) 1020 (11.8%) 142 (14.8%) 32121 (30.2%) 4912 (35.2%) 38195 (29.4%) 3397 (31.4%) 

Not recorded n(%) 1758 (20.3%) 242 (25.3%) 16652 (15.7%) 2599 (18.6%) 21251 (16.4%) 1611 (14.9%) 

 †Interquar@le range  
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Table 3.  Characteristics of the patients who died after discharge within 30 days 

from admission 2010 -2013 

 

N 572 

Age Median (IQR†) 84.7 (75.2 - 91.45) 

ISS Median (IQR†) 9 (9 - 17) 

GCS Median (IQR†) 15 (14 - 15) 

Gender 

Male n(%) 238 (41.6%) 

Female n(%) 334 (58.4%) 

Comorbidity 

Yes n(%) 483 (84.5%) 

No n(%) 19 (3.3%) 

Not Known n(%) 70 (12.2%) 

                      †Interquar@le range 
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Table 4. Models comparison     

Models AuROC (95% CI) Brier score R
2
 

Model 1 0.896 (0.893 – 0.899) 0.0456 0.35 

Model 2 0.904 (0.900 – 0.907) 0.0451 0.363 

Model 3 0.897 (0.896 – 0.902) 0.0452 0.352 

 AuROC: Area under the ROC curve; AIC: Akaike information criteria; H-L: Hosmer- Lemeshow  
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Table 5. Coefficents of the prediction model (Model 2) for Outcome 

Predictors Coefficients p-value 
95% CI for Odds 

ratios 

 
-2.79052 <0.001 0.0464 0.0812 

 

 

-2.57574 <0.001 0.0659 0.0879 

GCS=3 -3.79637 <0.001 0.0203 0.0248 

GCS 4 - 5 -2.73865 <0.001 0.0557 0.0751 

GCS 6 - 8 -1.87664 <0.001 0.1361 0.1722 

GCS 9 - 12 -1.29443 <0.001 0.2477 0.3033 

GCS 13 - 14 -0.46062 <0.001 0.5853 0.6801 

GCS 15  (reference) 0       

GCS "Intubated" -2.62397 <0.001 0.0595 0.0884 

CCI NotKnown -0.449 <0.001 0.5919 0.6882 

CCI 0 (reference) 0       

CCI 1 - 5 -0.49572 <0.001 0.5692 0.6519 

CCI 6 - 10 -0.96308 <0.001 0.3474 0.4195 

CCI > 10 -1.59703 <0.001 0.1791 0.2289 

Age 0  - 5 -0.00483 0.977 0.7206 1.3745 

Age 6 - 10 0.25323 0.275 0.8174 2.03 

Age 11 - 15 -0.08435 0.578 0.6825 1.2378 

Age 16 - 44 (reference) 0       

Age 45 - 54 -0.41388 <0.001 0.5795 0.7542 

Age 55 - 64 -0.93229 <0.001 0.3457 0.4482 

Age 65 - 74 -1.58082 <0.001 0.1814 0.2335 

Age >=75 -2.6752 <0.001 0.0621 0.0765 

Gender Male  (reference) 0       

Gender Female -0.17252 0.029 0.7211 0.9821 

Age 0  - 5 x Female -0.13805 0.582 0.5322 1.4255 

Age 6 - 10 x Female 0.43973 0.32 0.6518 3.697 

10 0.8686
ISS

−

( )10
log 0.2817ISS

e
−
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Age 11 - 15  x Female 0.21675 0.463 0.6961 2.216 

Age 45 - 54 x Female -0.06972 0.6 0.7183 1.211 

Age 55 - 64 x Female 0.17164 0.159 0.935 1.5075 

Age 65 - 74 x Female 0.25829 0.022 1.0376 1.6155 

Age >=75+ x Female 0.3477 <0.001 1.1928 1.6806 

Constant  5.28621 <0.001     
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Figure 1. Fractional polynomials transformation for ISS 
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Figure 2.  

 

 


