THE UNIVERSITY OF WARWICK

Original citation:

Soni, Rina, Hall, Thomas H., Mitchell, Benjamin P., Owen, Matthew R. and Wills, Martin. (2015) Asymmetric reduction of electron-rich ketones with tethered Ru(II)/TsDPEN catalysts using formic acid/triethylamine or aqueous sodium formate. The Journal of Organic Chemistry, 80 (13). pp. 6784-6793.

Permanent WRAP url:

http://wrap.warwick.ac.uk/72787

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-forprofit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

ACS AuthorChoice - This is an open access article published under an ACS AuthorChoice <u>License</u>, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/

Asymmetric Reduction of Electron-Rich Ketones with Tethered Ru(II)/ TsDPEN Catalysts Using Formic Acid/Triethylamine or Aqueous Sodium Formate

Rina Soni, Thomas H. Hall, Benjamin P. Mitchell, Matthew R. Owen, and Martin Wills*

Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, United Kingdom

Supporting Information

ABSTRACT: The asymmetric transfer hydrogenation (ATH) of ketones under aqueous conditions using tethered $\text{Ru}(\text{II})/\eta^6$ -arene/diamine catalysts is described, as is the ATH of electron-rich substrates containing amine and methoxy groups on the aromatic rings. Although such substrates are traditionally challenging ones for ATH, the tethered catalysts work very efficiently. In the case of amino-substituted ketones, aqueous conditions give excellent results; however, for methoxy-substituted substrates, the more established formic acid/triethylamine system gives superior results.

■ INTRODUCTION

The use of Ru(II) catalysts containing a combination of an η^{6} arene ring and a monosulfonated 1,2-diamine ligand, i.e., **1** (Figure 1), for the asymmetric reduction of ketones to alcohols has become widely adopted in recent years.^{1–3} This class of catalyst is active in both asymmetric hydrogenation (AH),² where hydrogen gas is used as the reducing agent, and asymmetric transfer hydrogenation (ATH),^{3–12} where isopropanol,³ formic acid,³ or sodium formate^{4–12} is typically used as the reducing agent. In our own studies, we recently

Figure 1. Arene/Ru(II)/TsDPEN catalysts used in asymmetric transfer hydrogenation (ATH). The stereochemical description refers to the configurations of the carbon atoms of the ligands. Although one enantiomer of catalyst is illustrated, both enantiomers of each have been prepared and tested.

introduced a series of "tethered" Ru(II) complexes (Figure 1), typified by complex **2**, which additionally contain a covalent linkage between the diamine component and the arene ring.¹³ This increases the stability of the complexes and their activity in reduction reactions, and in some cases, their use may be advantageous. Since our initial reports on tethered complexes, related complexes, including **3** and **4**, have been reported by other researchers.¹⁴ Most recently, we have described the synthesis of methoxy-substituted complexes **5** and **6** (Figure 1) through an arene-displacement strategy.^{13a}

Alongside the development of catalysts such as 1 for reductions in the formic acid/triethylamine system, several researchers have reported their use under aqueous conditions, using sodium formate or a similar salt as the reducing agent, and for the reduction of C=N as well as C=O bonds.⁴⁻ This modification affords a number of potential advantages, most notably the opportunity to use a more environmentally compatible solvent, as well as the potential to extract the product using an organic solvent and thus reuse the catalyst. In many cases, a neutral Ru(II) catalyst, e.g., 1, or the Rh(III) or Ir(III) equivalent can be successfully employed,⁴ although it is likely that a cationic intermediate species may be formed in situ due to replacement of Cl with a molecule of water; the use of the cationic aqua derivatives of $1^{4d,g}$ has been demonstrated. The control of the pH of the reaction has been found to be important for optimal results,⁴ and the pivotal role of hydrogen bonding by the solvent during the reduction has been studied by molecular modeling.^{4k} In some cases the sulphonamide

 Received:
 May 2, 2015

 Published:
 June 12, 2015

Table 1. ATH of Acetophenone Using 2, 5, and 6 in H_2O and $H_2O/MeOH^a$

	o ⊥	Catalyst NaHCO ₂	OH	Major isomer using (<i>R,R</i>) catalyst				
	Ph´`Me -	H₂O or MeOH/H₂O	Ph R Me					
catalyst	S/C	solvent		T/°C	t/h	conv/%	ee/%	
(S,S)- 2	100	H ₂ O		40	24	>99	97 (S)	
(R,R)- 5	100	H ₂ O		40	5	97	98 (R)	
(S,S)- 2	100	H ₂ O		60	1	99	88 (R)	
(R,R)-5	100	H ₂ O		60	2	>99	97 (R)	
(R,R)-6	100	H ₂ O		60	2	>99	77 (R)	
(R,R)-6	500	H ₂ O		60	5	99	81 (R)	
(S,S)- 2	100	$H_2O/MeOH^b$		60	1	>99	96 (S)	
(R,R)- 5	100	$H_2O/MeOH^b$		60	0.5	96	98 (R)	
(R,R)-5	500	$H_2O/MeOH^b$		60	6	99	97 (R)	
(R,R)-6	500	$H_2O/MeOH^b$		60	3	99	85 (R)	
(R,R)-6	500	H ₂ O/MeOH ^c		60	2	99	86 (R)	
(R,R)-5	100	HCO ₂ NH ₄ /H ₂ O		60	22.5	56	98 (R)	
(R,R)-5	100	SDS/H ₂ O		60	22.5	57	97 (R)	
(R,R)-5 ^d	100	H ₂ O		60	1	99	97 (R)	
(R,R)-5 ^d	100	H ₂ O		60	1	99	97 (R)	
(R,R)-5 ^d	100	H ₂ O		60	1.5	99	97 (R)	
(R,R)-5 ^d	100	H ₂ O		60	6.5	97	96 (R)	
	catalyst (S,S)-2 (R,R)-5 (S,S)-2 (R,R)-5 (R,R)-6 (R,R)-6 (R,R)-5	O_{Ph} Me $-$ catalyst S/C (S,S) -2 100 (R,R) -5 100 (R,R) -5 100 (R,R) -5 100 (R,R) -6 100 (R,R) -6 500 (S,S) -2 100 (R,R) -6 500 (R,R) -5 100 (R,R) -5 500 (R,R) -6 100 (R,R) -5 100 (R,R) -5 ^d 100 (R,R) -5 ^d 100 (R,R) -5 ^d 100	$\begin{array}{c cccc} & & Catalyst \\ & & NaHCO_2 \\ \hline \\ H_2O \text{ or } Me \\ \hline \\ H_2O \text{ or } MeOH/H_2O \\ \hline \\ H_2O \text{ or } MeOH/H_2O \\ \hline \\ \\ (S,S)-2 \\ (R,R)-5 \\ (R,R)-5 \\ (R,R)-5 \\ (R,R)-6 \\ (R,R)-6 \\ (R,R)-6 \\ (R,R)-6 \\ (R,R)-5 \\ (R,R)-6 \\ (R,R)-6 \\ (R,R)-6 \\ (R,R)-6 \\ (R,R)-6 \\ (R,R)-5 \\ (R,R)-5 \\ (R,R)-5 \\ (R,R)-5 \\ (R,R)-5 \\ (R,R)-6 \\ (R,R)-5 \\$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c } \hline \begin{array}{c c c c c c c } \hline \begin{array}{c c c c c c } \hline \begin{array}{c} Catalyst \\ NaHCO_2 \\ \hline \end{array} \\ \hline \begin{array}{c c c c c c c c c c c c c } \hline \end{array} \\ \hline \end{array} $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \hline \end{array} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \hline \end{array} \hline \end{array} \\ \hline \end{array} \hline \end{array} \hline \end{array} \hline \end{array} \hline \end{array} \hline \end{array} \\ \end{array} \\ \hline \end{array} \hline \end{array} \hline \end{array} \hline \end{array} \\ \end{array} \hline \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \hline \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

 a H₂O/MeOH or H₂O refers to reduction using HCO₂Na (5 equiv), b 1:1 water/MeOH. c 1:0.5 water/MeOH. d n-Pentane (3 × 2 mL) was used to extract product after each cycle from the reaction mixture. One mole of HCO₂H was added to regenerate HCO₂Na.

diamine component may be modified, for example, by introduction of hydrophobic groups or fluorine-containing groups.^{4f,t} Analogous reduction of aldehydes may be catalyzed by racemic versions of the catalysts.^{4w,x} In several examples, the catalyst has been modified by the introduction of cationic⁵ or anionic⁶ groups, which improves their solubility in water and hence facilitates isolation of the reduction product through extraction with a nonpolar solvent such as hexane, while the catalyst remains in the aqueous phase and can be reused. Another strategy used to improve water solubility (and hence facilitate recyclability) of the catalysts involves their conversion to a derivative containing a poly(ethylene glycol) (PEG) chain, which can be attached to a number of positions on the catalyst structure.⁷ Using this method, even substrates that are normally susceptible to side reactions (e.g., α -bromo ketones) can be reduced efficiently.7b Another widely studied strategy is to include either a surfactant (to form an emulsion) or a phasetransfer catalyst to facilitate the reaction,⁸⁻¹⁰ which is otherwise biphasic. In several cases, addition of a surfactant is reported to give improved results, although this appears to be somewhat catalyst-dependent, since it is not always required. Reductions in water, of ketones and imines, has also been achieved using catalysts supported on polystyrene, silica, proteins, or other media.^{11,12} The use of a support containing an iron salt permits separation of the catalyst from the bulk reaction using a magnet.12

RESULTS AND DISCUSSION

Although the use of complex 1 in water has been extensively described,^{4–12} the same use of the tethered derivatives has not been reported to date. In this article, we describe the results of our studies on the applications of tethered Ru(II) catalysts to the ATH of ketones under aqueous conditions, which can, in some cases, be advantageous for the reductions of certain classes of substrates. Initially, we investigated the reduction of acetophenone using tethered catalysts 2, 5, and 6 containing

three-carbon linkers because these have proven to be highly versatile (Table 1).¹³ Although almost complete reduction was achieved at 40 °C using **2** and **5**, the reaction was slow (entries 1 and 2); however, raising the temperature to 60 °C gave full reduction within 1 to 2 h. While there was only marginal loss of enantioselectivity using **5** (entries 2 and 4), complex **2** appeared to be more sensitive to the temperature change (entries 1 and 3). Complex **6** containing two methoxy groups was tested, and this also gave almost complete reduction even at S/C up to 500, although with a lower ee, as had been previously observed (entries 5 and 6).^{13a}

Improved results were obtained using a 1:1 mixture of methanol and water,^{11j,1} which improves catalyst solubility (entries 8-11). In this case, essentially complete reduction of acetophenone was achieved at 60 $^\circ C$ after 1 h or less at S/C 100 using each of the catalysts, with enantioselectivities matching those obtained at the lower temperatures in each case. The reaction using 5 at S/C 500 required 6 h for complete reduction and was followed over time (entry 9; see Supporting Information). Again, catalyst 6 exhibited high activity, possibly due to improved aqueous solubility (entries 10, 11), but moderate enantioselectivity. When using ammonium formate in place of sodium formate under purely aqueous conditions, the reaction was also incomplete, although a product of high ee was obtained (entry 12). The addition of sodium dodecyl sulfate (SDS) did not lead to an improved result, and incomplete conversion was observed after 22.5 h (entry 13). Following literature precedents on catalyst recycling in aqueous systems,⁴⁻¹² the formation of the product of the reduction in water was monitored, and this was then isolated after the completion of the reduction by extraction with a nonpolar organic solvent such as pentane or hexane. Addition of formic acid and fresh substrate to the remaining aqueous phase facilitated further reduction cycles (entries 14-17 for npentane; other examples are in the Supporting Information).

Figure 2. ATH of ketones using complexes (R_1R_2)-5 and (R_1R_2)-6 in water; S/C = 100, 60 °C, 5.0 equiv HCO₂Na.

Table 2. ATH of Amino Acetophenone Using 2 and 5^{b}

		R ₂ N-	Me -	catalyst HCO ₂ H/Et ₃ N or R ₂ N ↓ HCO ₂ Na/H ₂ O	OH R Me Major (R,R)	isomer using catalyst		
entry	NR ₂	catalyst	S/C	solvent ^c	T/rt or $^{\circ}\mathrm{C}$	t/h	conv (yield)/% ^d	ee/%
1	pNH ₂	(S,S)- 2	100	H ₂ O/MeOH	40	7.5	80 (72)	92 (S)
2	pNH ₂	(S,S)- 2	100	H ₂ O/MeOH	60	4.5	99 (79)	94 (S)
3	pNH ₂	(R,R)-5	100	H ₂ O/MeOH	60	4.5	99 (75)	94 (R)
4	pNH_2	(R,R)- 1	100	H ₂ O/MeOH	60	15.5	78 (ND^a)	91 (R)
5	pNH_2	(R,R)- 5	100	FA/TEA	60	24	ND	е
6	pNH ₂	(S,S)- 2	100	<i>i</i> -PrOH	rt	144	50 (ND)	ND
7	pNMe ₂	(S,S)- 2	100	H ₂ O	28	3	76 (41)	88 (S)
8	pNMe ₂	(S,S)- 2	100	H ₂ O/MeOH	40	5	99 (76)	92 (S)
9	pNMe ₂	(R,R)- 5	100	H ₂ O/MeOH	60	4	97 (78)	91 (R)
10	pNMe ₂	(S,S)- 2	250	FA/TEA	45	6	93 (68)	91 (S)
11	pNMe ₂	(R,R)-2	100	FA/TEA	40	45	95 (60)	93 (R)
12	pNMe ₂	(R,R)-2	100	<i>i</i> -PrOH	28	26	35 (17)	ND
13	$N(CH_2)_4$	(R,R)-2	100	FA/TEA	40	72	100 (81)	87 (R)
14	$N(CH_2)_4$	(R,R)-2	100	H ₂ O/MeOH	40	69	98 (78)	89 (R)
15	$N(CH_2)_4$	(S,S)- 2	100	H ₂ O/MeOH	40	70	98 (72)	89 (S)
16	$N(CH_2)_5$	(R,R)-2	100	FA/TEA	40	69	99 (68)	94 (R)
17	$N(CH_2)_5$	(S,S)- 2	100	H ₂ O/MeOH	40	24	99 (84)	95 (S)
18	$N(CH_2)_2$	(R,R)-2	100	FA/TEA	40	23	99 (74)	94 (R)
	$O(CH_2)_2^f$							
19	$N(CH_2)_2$	(S,S)- 2	100	$H_2O/MeOH$	40	45	100 (88)	91 (S)
	$O(CH_2)_2^f$							

^{*a*}ND, not determined. ^{*b*}H₂O/MeOH or H₂O refers to reduction using HCO₂Na (5 equiv), FA/TEA refers to a 5:2 HCO₂H/Et₃N mixture. ^{*c*}1:1 H₂O/MeOH throughout. ^{*d*}Isolated yield given in parentheses. ^{*e*}Polymerization observed. ^{*f*}Morpholine.

In each case, however, the conversion took longer for each repeated run, reflecting the deactivation of the catalyst.

A series of ketones was reduced using the methoxysubstituted tethered complexes **5** and **6** under aqueous conditions in order to demonstrate further applications of these catalysts (Figure 2). The conversions were almost complete in most cases, and the ee's reflected those obtained in ATH reactions in formic acid/triethylamine.^{13,14} In the majority of cases, the ee's of the products exceeded 95% and in some cases were as high as 99%. Good results were observed for some substrates with functionality at the *ortho* position (tetralone, 1-acetylnaphthylene), which are also known to be reduced by **5** in high ee using the more established FA/TEA system.^{13a} In contrast, the reduction of *ortho*-trifluoromethyl acetophenone gave a product in modest ee (69%), unlike that with the *para* equivalent, which was reduced in 94% ee. In most cases, the reactions were monitored over time, and this revealed little change to the ee as the reaction progressed (see Table 3. Reductions of ortho-Hydroxy- and -Methoxy-Substituted Ketones Using Complexes 2 and 5^a

entry	OR	Х	catalyst	S/C	solvent	$T/^{\circ}C$	t/h	conv (yield)/% ^b	ee/%
1	OH	Me	(S,S)- 2	200	FA/TEA	40	5.5	99 (72)	94 (S)
2	OH	Me	(R,R)- 5	200	FA/TEA	40	23	100 (100)	95 (R)
3	OH	Cl	(S,S)- 2	200	FA/TEA	40	4.75	99 (72)	90 (S)
4	OH	Cl	(R,R)- 5	200	FA/TEA	40	23	97 (94)	93 (R)
5	OH	Br	(S,S)- 2	200	FA/TEA	40	4	>99 (65)	91 (S)
6	OH	Br	(R,R)- 5	200	FA/TEA	40	5.5	98 (42)	94 (R)
7	OH	OMe	(S,S)- 2	200	FA/TEA	40	5.5	92 (24)	93 (S)
8	OH	OMe	(R,R)- 5	200	FA/TEA	40	6.5	91 (84)	93 (R)
9	OMe	Н	(S,S)- 2	200	FA/TEA	40	3.75	>95 (64)	68 (S)
10	OMe	Н	(S,S)- 2	200	H_2O	60	4	89	55 (S)
11	OMe	Н	(S,S)- 2	100	H_2O	60	5	98	58 (S)
12	OMe	Н	(R,R)- 5	200	FA/TEA	40	3.75	>98 (70)	96 (R)
13	OMe	Н	(R,R)- 5	100	H_2O	60	2	99	95 (R)
14	OMe	Н	(R,R)- 5	200	H_2O	60	3.5	92	96 (R)
15	OMe	OMe	(S,S)- 2	200	FA/TEA	40	3.75	>99 (80)	69 (S)
16	OMe	OMe	(R,R)- 5	200	FA/TEA	40	3.75	>99 (87)	90 (R)

 ${}^{a}H_{2}O/MeOH$ or $H_{2}O$ refers to reduction using HCO₂Na (5 equiv); FA/TEA refers to a 5:2 HCO₂H/Et₃N mixture, b Isolated yield, where determined, is given in parentheses.

Supporting Information). In the majority of cases, complex **5** was employed since this is known to give improved results over those obtained with the dimethoxy complex **6**. However, catalyst **6** was used for the reduction of acetyl cyclohexane since it is known to be more suited to alkyl/alkyl ketones for reasons that have been previously described.¹³

An advantage of the tethered catalysts relative to untethered ones is that a higher level of activity and stability is often observed.¹³ Electron-rich substrates, for example, those containing amine-functionalized aromatic rings adjacent to the ketone, are regarded as challenging^{15,16} and have proven to be difficult to reduce under formic acid/triethylamine conditions, primarily due to their low reactivity (see the Supporting Information for an experimental comparison of reduction rates) but also due to the possibility of a competing polymerization due to the reaction between the ketone and amine and subsequent reduction of an imine/iminium intermediate. Indeed, there is currently no report of the application of catalysts such as 1 to the asymmetric reduction of such substrates. Having demonstrated that the more reactive tethered catalyst was compatible with water as a solvent, we investigated the reductions of (aminoaryl)ketones under the same conditions. In this event, reduction under purely aqueous conditions proved to be difficult to reproduce reliably, possibly due to low substrate solubility. However, the use of a water/ methanol combination (1:1) provided a means to achieve complete and asymmetric reduction of para-amino acetophenone, for the first time under ATH conditions, in essentially full conversion using 1 mol % of catalyst 2 or 5 (ca. 99% by GC) and a high ee of 94%, even at 60 °C, which was required for full conversion (Table 2, entries 1-3). In these tests, both 2 and 5 gave comparable results and were more active than the

untethered complex (entry 4). As expected, attempted reduction in FA/TEA gave no significant reduction (entry 5), and the formation of a gum-like precipitate suggested some degree of polymerization. Attempted reduction in *i*-PrOH proved to be very sluggish (entry 6). In contrast, the tertiary amines, 4-dimethylaminoacetophenone, could be reduced efficiently under both aqueous and FA/TEA conditions, although *i*-PrOH was not effective (entries 7-12). A combination of water and methanol gave an improved result over that with pure water, however. Likewise, a series of parasubstituted tertiary amine derivatives could be cleanly reduced in good conversion and ee (entries 13-19). Presumably, with these substrates, there is no possibility of a competing polymerization and hence side product formation is minimized. As far as we are aware, these are the first examples of asymmetric reduction by ATH of such highly electron-rich ketone substrates.

In addition, an extended investigation into asymmetric reductions of relatively unreactive electron-rich ketones containing *ortho*-hydroxy and -methoxy acetophenones under fully aqueous conditions was carried out (Table 3).¹⁷ While we have reported that both **2** and **5** are excellent catalysts for the reduction of *ortho*-hydroxy acetophenone with FA/TEA (ee's commonly >99%),¹³ *ortho*-methoxy ketones are reduced in higher ee using **5** than they are using **2**.^{13a} In this event, all *ortho*-hydroxy acetophenones tested for reduction gave comparable and high ee's using both catalysts **2** and **5** in FA/TEA. 2',5'-Dimethoxyacetophenones under aqueous conditions with either catalyst generally gave products in either lower conversions or ee compared to those with FA/TEA. For

example, with 2-hydroxy-5-methylacetophenone, the best conversion under aqueous conditions was just 80% in 6 h at 60 °C, giving a product with an ee of 87% (R) using catalyst (R,R)-5. For 2-hydroxy-5-chloroacetophenone, the best ee was 63% (with (R,R)-5), and for 2-hydroxy-5-methoxyacetophenone, it was 61% (with (R,R)-5). For 2,5-dimethoxyacetophenone, the product ee's were essentially the same as those in FA/TEA, but the conversions were lower: 47–52% ee at ca. 9 h at 60 °C using either catalyst 2 or 5. An exception was *ortho*-methoxy acetophenone itself (entries 10, 11, 13, and 14), which mirrored the FA/TEA results. Hence, this particular class of electron-rich substrate appears to be, in general, more compatible with reduction under FA/TEA conditions rather than aqueous. This may be due to solubility differences between the substrates.

In conclusion, $\operatorname{Ru}(\operatorname{II})/\eta^6$ -arene/diamine catalysts containing a tethering group have been demonstrated to be effective in the asymmetric reduction of ketones in water and water/methanol mixtures. Amino-substituted ketones, known for their low reactivity, have, for the first time, been reduced by ATH in high conversion and enantioselectivity under aqueous conditions and in the FA/TEA system. The reduction of hydroxyl- and methoxy-substituted ketones, in contrast, is less amenable to aqueous conditions and gives better results in FA/TEA. In certain situations, reductions in aqueous media may offer advantages over the more established FA/TEA conditions, and in these situations, the tethered catalysts are generally active and enantioselective.

EXPERIMENTAL SECTION

General Experimental. All reagents and solvents were used as purchased without further purification. All reactions were carried out under a nitrogen atmosphere, unless otherwise stated, and at the temperature specified in experimental procedures. Temperatures higher than room temperature (28 °C) were controlled using thermostatically controlled oil baths. NMR spectra were recorded on a 300 or 400 MHz instrument. Mass spectra were recorded on an ESIquad instrument. High-resolution mass spectra were recorded on an ESI Q-TOF. IR spectra were recorded by FT-IR. Melting points were recorded using a melting point apparatus. Chiral HPLC measurements were made by HPLC linked to a PC with a chiral column (250 mm × 4.6 mm i.d.). Thin-layer chromatography was carried out on aluminum-backed silica gel 60 (F254) plates and visualized using 254 nm UV light or potassium permanganate solution.

¹H NMR chemical shifts are reported in ppm downfield from TMS at 0 ppm. ¹³C chemical shifts are reported relative to CDCl_3 at 77 ppm. Coupling constants (*J*) are recorded in Hz. Multiplicity in ¹H NMR are reported as singlet (s), broad singlet (br s), doublet (d), triplet (t), quartet (q), and multiplet (m). Infrared peaks are reported in cm⁻¹. Specific rotations are reported in deg dm⁻¹ cm³ g⁻¹. In order to provide a racemic sample to be used as a standard in HPLC, each ketone was reduced racemically using sodium borohydride. Catalyst **2** is commercially available in either enantiomeric form. Catalysts **5** and **6** were prepared as previously reported. ^{13a}

Protocol A: Asymmetric Transfer Hydrogenation (ATH) in Water or Water/Methanol. Catalyst (0.01 mmol) was placed in a Schlenk tube under an inert atmosphere followed by HCO_2Na (0.340 g, 5.0 mmol) and H_2O (1 mL). The mixture was degassed three times, and to this was added solution ketone (1.0 mmol) followed by degassing two times. The mixture was stirred at 60 °C. For chiral GC analysis during the course of a reaction, a small sample from the reaction mixture was diluted with Et_2O and H_2O . The organic layer was separated and filtered through a short column of silica using hexane/EtOAc (1:1). The filtrate was analyzed by chiral GC. After completion of the reaction, the reaction mixture was diluted with H_2O and extracted with Et_2O (2 × 5 mL). The organic layers were combined, dried over anhyd. Na₂SO₄, filtered, and concentrated to give crude product, which was purified by flash column chromatography. For reactions in $H_2O/MeOH$, the same procedure was followed using the solvent ratio (usually 1:1) given in the table.

Protocol B: Recycling of Catalyst Using n-Hexane/Pet.Ether/ n-Pentane. Catalyst (0.01 mmol) was placed in a Schlenk tube under an inert atmosphere followed by HCO₂Na (0.340 g, 5.0 mmol) and H₂O (1 mL). The mixture was degassed three times, and to this was added ketone (1.0 mmol) followed by degassing two times. The mixture was stirred at 60 °C. The reaction was monitored by chiral GC following the procedure described for the aqueous reaction. After completion of the reaction, the reaction mixture was cooled to room temperature and diluted with n-hexane, pet. ether, or n-pentane (2 mL). The organic layers were separated, and this process was repeated again two times with the same solvent (2 mL). During this process, the catalyst separated out as a brown solid. The mixture was degassed two times followed by addition of HCO_2H (1 mmol). To this mixture was added ketone (1 mmol), and the mixture was stirred at 60 °C. The second and later cycles of the reaction were followed by chiral GC analysis.

Protocol C: Asymmetric Transfer Hydrogenation in FA/TEA. To a mixture of catalyst (0.002 mmol) in FA/TEA (5:2) (1.0 mL) was added ketone (2.0 mmol), and the mixture was stirred at the stated temperature under an inert atmosphere. The reaction was monitored by TLC following the same procedure as that for the aqueous reaction and worked up when complete or at the stated time. The reaction mixture was diluted with EtOAc (10 mL) and sat. NaHCO₃ soln (10 mL). The organic layer was separated, washed with H₂O (2 × 10 mL), dried over anhyd. Na₂SO₄, filtered, and concentrated to give a brown residue. The crude compound was analyzed by ¹H NMR to give the conversion and purified by flash chromatography on silica gel, if required.

Protocol D: Synthesis of Amino Ketones.^{15,18} Fluoroacetophenone (1.00 equiv) was combined with aqueous amine (3.68 equiv) in a sealed pressure tube and heated at 100 °C for 24 h. The resulting oil solidified upon cooling on ice and was filtered in vacuo while washing with water to give the ketone. The solid was recrystallized in hot heptane and allowed to crystallize on ice. The pure ketone was collected by vacuum filtration and dried under high vacuum.

Protocol E: Racemic Reduction of Ketone Using Sodium Borohydride. To a solution of ketone (1.00 equiv) in methanol (0.9 mL per mmol ketone) and water (0.1 mL per mmol ketone) was added sodium borohydride (2.00 equiv). The reaction mixture was stirred at rt for 3.5 h. After monitoring by thin-layer chromatography (1:1 petroleum ether/ethyl acetate), the solvent was evaporated in vacuo and water (5 mL) was added. The compound was extracted using ethyl acetate (3×5 mL), and the combined organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo to give the racemic alcohol.

Protocol F: Reduction of Ketone with Isopropanol. Ketone (1.00 equiv), KOH in isopropanol (0.002 mol dm⁻³ 0.02 equiv KOH, 10 mL/mol ketone), and (R,R)-Ru/TsDPEN 2 (0.01 equiv) and were combined in a Schlenk tube, degassed, and stirred under nitrogen at room temperature. The reaction was monitored by thin-layer chromatography (1:1 petroleum ether/ethyl acetate) and visualized under UV light. After completion, the isopropanol was removed in vacuo and the reaction mixture was dissolved in dichloromethane (1 mL), washed with water (5 mL), and concentrated in vacuo to give the crude product, which was purified by flash chromatography on silica gel.

(R)-1-Phenylethanol.

Table 1, entry 4. Preparation using ketone (120 mg, 1.0 mmol) and catalyst (*R*,*R*)-5 (6.5 mg, 0.01 mmol) following protocol A (to the silica filtration step followed by removal of solvent) gave the crude alcohol product as a clear oil (99% conversion by GC analysis). $[\alpha]_D^{28}$ +58.1 (*c* 0.730 in CHCl₃) for 97% ee (*R*) (lit. value $[\alpha]_D^{27}$ +54.9 (*c* 1.0

in CHCl₃) 96% ee (*R*));^{13c} $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.38–7.24 (5H, m, Ph), 4.87 (1H, q, *J* 6.5 Hz), 2.07 (1H, br s), 1.48 (3H, d, *J* 6.5 Hz); $\delta_{\rm C}$ (75 MHz, CDCl₃) 145.2, 127.9, 126.8, 124.8, 69.8, 24.5. Chiral GC analysis (CP-Chirasil -Dex-C β 25 m × 0.25 mm × 0.25 μ m, *T* = 110 °C, *P* = 18 psi, He gas) 6.56 min (ketone), 14.61 min (*R* isomer), 16.50 min (*S* isomer).

(R)-1-(4-Aminophenyl)ethanol.

Table 2, entry 3. Preparation using ketone (134 mg, 1.0 mmol) and catalyst (*R*,*R*)-**5** (6.5 mg, 0.01 mmol) following protocol A gave the alcohol product (102 mg, 0.75 mmol, 75%) as an oil. $[\alpha]_{\rm D}^{24}$ +43.1 (*c* 0.570 in MeOH) for 94% ee (*R*) (lit. value $[\alpha]_{\rm D}^{27}$ +52.0 (*c* 0.54 in MeOH) 99% ee (*R*));^{16b} $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.16 (2H, d, *J* 8.6 Hz), 6.66 (2H, d, *J* 8.6 Hz), 4.78 (1H, q, *J* 6.4 Hz), 3.61 (2H, br s), 1.80 (1H, br s), 1.45 (3H, d, *J* 6.4 Hz); $\delta_{\rm C}$ (75 MHz, CDCl₃) 145.7, 135.9, 126.6, 115.0, 70.1, 24.7. Chiral HPLC analysis (OD-H Column: 0.46 cm × 25 cm, hexane/*i*-PrOH 80:20, 1.0 mL/min, 239 nM, 30 °C) $t_{\rm R}$ (min) = 18.61 min (*R* isomer), 28.76 min (*S* isomer).

1-[4-(Dimethylamino)phenyl]ethanone.

Preparation following protocol D using 4-fluoroacetophenone (0.50 g, 0.44 mL, 3.61 mmol) and 40% aqueous dimethylamine (1.5 mL, 13.3 mmol) for 22 h gave the ketone¹⁹ (393.7 mg, 2.41 mmol, 66.9%) as a light yellow solid. mp 105 °C; ν_{max} 2904, 2811, 2651, 1649, 1585, 1357, 1229, 1068, 832, 593, 560, and 499 cm⁻¹; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.87 (2H, d, J 9.0 Hz), 6.66 (2H, d, J 9.0 Hz), 3.06 (6H, s), 2.51 (3H, s); $\delta_{\rm C}$ (125 MHz, CDCl₃) 196.4, 153.4, 130.5, 125.4, 110.6, 40.0, 26.0; m/z (ESI) 186.1 ([M + Na]⁺), 164.1 ([M + H]⁺).

(R)-1-[(4'-Dimethylamino)phenyl]ethanol.

Table 2, entry 9. Preparation using ketone (81.5 g, 0.50 mmol) and catalyst (*R*,*R*)-**5** (3.3 mg, 0.005 mmol) following protocol A gave the alcohol product (65 mg, 0.39 mmol, 78%) as a clear oil. $[\alpha]_{\rm D}^{27}$ +54.2 (*c* 0.710 in CHCl₃) for 91% ee (*R*) (lit. value $[\alpha]_{\rm D}^{25}$ +51.8 (*c* 21.0 in CHCl₃) 86% ee (*R*));²⁰ $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.25 (2H, d, *J* 8.7 Hz), 6.72 (2H, d, *J* 8.7 Hz), 4.81 (1H, q, *J* 6.4 Hz), 2.93 (6H, s), 1.62 (1H, br s), 1.47 (3H, d, *J* 6.4 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 150.3, 133.7, 126.5, 112.6, 70.1, 40.7, 24.7. Chiral HPLC analysis (OD-H Column: 0.46 cm × 25 cm, hexane/*i*-PrOH 95:5, 1.0 mL/min, 256 nM, 30 °C) $t_{\rm R}$ (min) = 15.21 min (*R* isomer), 17.15 min (*S* isomer).

1-[4-(Pyrrolidin-1-yl)phenyl]ethanone.

Preparation following protocol D using 4-fluoroacetophenone (1.0 g, 0.88 mL, 7.22 mmol), pyrrolidine (2.22 mL, 26.6 mmol), and deionized water (3.34 mL) for 23 h gave the ketone²¹ (1061 mg, 3.90 mmol, 72.3%) as a dark yellow solid; mp 129 °C; ν_{max} 2962, 2849, 1650, 1588, 1351, 1181, 1157, and 820 cm⁻¹; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.87 (2H, d, J 9.0 Hz), 6.53 (2H, d, J 9.0 Hz), 3.40–3.35 (4H, m), 2.50 (3H, s), 2.07–2.02 (4H, m, CH₂CH₂); $\delta_{\rm C}$ (125 MHz, CDCl₃) 196.3, 151.0, 130.7, 124.9, 110.6, 47.6, 26.0, 25.5; *m/z* (ESI) 212.0 ([M + Na]⁺), 190.1 ([M + H]⁺).

(S)-1-[4-(Pyrrolidin-1-yl)phenyl]ethanol.

Table 2, entry 15. Preparation using ketone (76 g, 0.40 mmol) and catalyst (*S*,*S*)-2 (2.5 mg, 0.004 mmol) following protocol A gave the alcohol product (54.6 mg, 0.286 mmol, 72%) as a white solid. mp 67 °C; $[\alpha]_D^{22}$ –17.9 (*c* 0.07 in CH₃OH) 89% ee (*S*); (found (ESI) [M + H]⁺ 192.1398, C₁₂H₁₈NO requires [M + H]⁺ 192.1383); ν_{max} 3400, 2950, 2850, 1650, 1510, 1400, 1300, 1200, 1050, 850, 750, 550 cm⁻¹; δ_H (400 MHz, CDCl₃) 7.25 (2H, d, *J* 8.4 Hz), 6.56 (2H, d, *J* 8.4 Hz), 4.82 (1H, q, *J* 6.5 Hz); δ_C (100 MHz, CDCl₃) 147.6, 132.5 126.6, 111.5, 70.3, 47.7, 25.5, 24.7; *m*/*z* (ESI) 192.1 ([M + H]⁺). Chiral HPLC analysis (IC, 25 cm × 4.6 mm column, *i*-PrOH/hexane 1:9, 1.0 mL/min, *T* = 25 °C, λ = 256 nm) t_R = 23.4 min (*S* isomer), 28.2 min (*R* isomer).

1-[4-(Piperidin-1-yl)phenyl]ethanone.

Preparation following protocol D from 4-fluoroacetophenone (1.0 g, 0.88 mL, 7.22 mmol), piperidine (2.64 mL, 26.6 mmol), and deionized water (3.96 mL) for 26 h gave the ketone²² (0.792 g, 3.90 mmol, 53.9%) as a dark yellow solid; mp 86 °C; ν_{max} 2941, 2924, 2845, 1653, 1589, 1510, 1423, 1354, 1223, 1124, 915, 818 cm⁻¹; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.86 (2H, d, J 9.1 Hz), 6.86 (2H, d, J 9.1 Hz), 3.38–3.34 (4H, m), 2.51 (3H, s), 1.70–1.67 (6H, m); $\delta_{\rm C}$ (125 MHz, CDCl₃) 196.4, 154.4, 130.5, 126.7, 113.2, 48.6, 26.0, 25.4, 24.4; *m/z* (ESI) 226.1 ([M + Na]⁺), 204.1 ([M + H]⁺).

(S)-1-[4-(Piperidin-1-yl)phenyl]ethanol.

Table 2, entry 17. Preparation using ketone (50 mg, 0.25 mmol) and catalyst (*S*,*S*)-2 (1.5 mg, 0.0025 mmol) following protocol A gave the alcohol product (42.7 mg, 0.21 mmol, 84%) as a white solid. mp 82.4 °C; $[\alpha]_D^{22}$ –10.5 (*c* 0.1 in CH₃OH) 95% ee (*S*) (lit.²³ $[\alpha]_D^{21}$ +37.6 (*c* 1.434 in CH₃OH) 97.6% ee (*R*)); ν_{max} 3300, 2950, 2800, 1650, 1510, 1400, 1250, 1200, 1150, 1100, 1075, 1050, 1000, 850, 750, 700 cm⁻¹; δ_H (400 MHz, CDCl₃) 7.25 (2H, d, *J* 8.7 Hz), 6.92 (2H, d, *J* 8.7 Hz), 4.83 (1H, q, *J* 6.5 Hz), 3.18–3.14 (4H, m), 1.76–1.70 (4H, m), 1.60–1.52 (2H, m), 1.48 (3H, d, *J* 6.5 Hz); δ_C (100 MHz, CDCl₃) 151.8, 136.3, 126.3, 116.4, 70.1, 50.7, 25.8, 24.7, 24.3; *m/z* (ESI) 206.1 ([M + H]⁺). Chiral HPLC analysis (IC, 25 cm × 4.6 mm column, *i*-PrOH/ hexane 1:9, 1.0 mL/min, *T* = 25 °C, λ = 256 nm) t_R = 14.04 min (*S* isomer), 15.38 min (*R* isomer).

1-[4-(Morpholin-4-yl)phenyl]ethanone.

Preparation following protocol D from 4-fluoroacetophenone (0.50 g, 0.44 mL, 3.61 mmol), morpholine (2.64 mL, 13.3 mmol) and deionized water (1.72 mL) for 22 h gave the ketone²³ (396 mg, 1.93 mmol, 53.5%) as a light yellow solid; mp 97 °C; ν_{max} 2841, 1657, 1592, 1513, 1425, 1360, 1240, 1170, 927, 817 cm⁻¹; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.90 (2H, d, J 9.1 Hz), 6.87 (2H, d, J 9.1 Hz), 3.86 (4H, t, J 5.0 Hz), 3.31 (4H, t, J 5.0 Hz), 2.53 (3H, s); $\delta_{\rm C}$ (125 MHz, CDCl₃) 196.5,

154.2, 130.4, 128.1, 113.3, 66.6, 47.5, 26.2; m/z (ESI) 228.0 ([M + Na]⁺), 206.1 ([M + H]⁺).

(S)-1-[4-(Morpholin-4-yl)phenyl]ethanol.

Table 2, entry 19. Preparation using ketone (50 mg, 0.24 mmol) and catalyst (*S*,*S*)-2 (1.5 mg, 0.0024 mmol) following protocol A gave the alcohol product (37.3 mg, 0.18 mmol, 88%) as a brown solid. mp 90 °C; $[\alpha]_{\rm D}^{24}$ -25.3 (*c* 0.075 in CHCl₃) 91% ee (*S*) (lit.²⁰ $[\alpha]_{\rm D}^{25}$ 45.9 (*c* 1.0 in CHCl₃) 93% ee (*R*)); $\nu_{\rm max}$ 3343, 2832, 1609, 1514, 1449, 1262, 1208, 1118, 1090, 1062, 920, 818, 624, 560, 446 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.30 (2H, d, *J* 8.7 Hz), 6.88 (2H, d, *J* 8.7 Hz), 4.82 (1H, q, *J* 6.5 Hz), 3.82 (4H, t, *J* 5.0 Hz), 3.12 (4H, m), 1.80 (1H, br s), 1.45 (3H, t, *J* 6.5 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 150.8, 137.3, 126.4, 115.7, 70.0, 66.9, 49.4, 24.9; *m*/*z* (ESI) 230.0 ([M + Na]⁺), 208.1 ([M + H]⁺). Chiral HPLC analysis (IC, 25 cm × 4.6 mm column, *i*-PrOH/ hexane 1:9, 1.0 mL/min, *T* = 25 °C, λ = 256 nm) $t_{\rm R}$ = 29.2 min (*S* isomer), 35.2 min (*R* isomer).

(R)-2-(1-Hydroxyethyl)-4-methylphenol..^{17,24a}

Table 3, entry 2. Preparation using ketone (150 mg, 1.0 mmol) and catalyst (*R*,*R*)-5 (3.3 mg, 0.005 mmol) following protocol C gave the alcohol product (152 mg, 1.0 mmol, 100%) as a clear oil. $[\alpha]_D^{32}$ +24.1 (*c* 0.36 in CHCl₃) 95% ee (*R*); δ_H (300 MHz, CDCl₃) 7.69 (1H, br s), 6.97 (1H, dd, *J* 1.8, 8.2 Hz), 6.80–6.73 (2H, m), 5.01 (1H, q, *J* 6.6 Hz), 2.65 (1H, br s, CHOH), 2.25 (3H, s), 1.57 (3H, d, *J* 6.6 Hz); δ_C (75 MHz, CDCl₃) 152.5, 128.7, 128.4, 127.5, 126.4, 116.3, 71.1, 22.9, 19.9; Chiral HPLC (IA Column: (0.46 × 25 cm), 1 mL/min, 10% *i*-PrOH/90% Hexane; 256 nm UV, 30 °C) t_R = 7.83 min (*S* isomer), 8.53 min (*R* isomer).

(R)-4-Chloro-2-(1-hydroxyethyl)phenol.^{24b}

Table 3, entry 4. Preparation using ketone (170 g, 1.0 mmol) and catalyst (*R*,*R*)-5 (3.3 mg, 0.005 mmol) following protocol C gave the alcohol product (162 mg, 0.94 mmol, 94%) as a clear oil. $[\alpha]_D^{30}$ +18.5 (*c* 0.46 in CHCl₃) 93% ee (*R*); δ_H (300 MHz, CDCl₃) 8.01 (1H, br s), 7.11 (1H, dd, *J* 2.4, 8.7 Hz), 6.95 (1H, d, *J* 2.4 Hz), 6.78 (1H, d, *J* 8.7 Hz), 5.01 (1H, q, *J* 6.6 Hz), 2.80 (1H, br s), 1.56 (3H, d, *J* 6.6 Hz); δ_C (75 MHz, CDCl₃) 153.9, 129.8, 128.7, 126.3, 124.6, 118.4, 71.1, 23.4; Chiral HPLC (IA Column: (0.46 × 25 cm), 1 mL/min, 10% *i*-PrOH/ 90% Hexane; 256 nm UV, 30 °C) t_R = 7.52 min (*S* isomer), 8.10 min (*R* isomer).

(S)-4-Bromo-2-(1-hydroxyethyl)phenol.²⁵

Table 3, entry 5. Preparation using ketone (215 g, 1.0 mmol) and catalyst (*S*,*S*)-2 (3.3 mg, 0.005 mmol) following protocol C gave the alcohol product (141 mg, 0.65 mmol, 65%) as a clear oil. $[\alpha]_D^{30}$ –23.6 (*c* 0.68 in CHCl₃) 91% ee (*S*); δ_H (300 MHz, CDCl₃) 7.97 (1H, br s), 7.26 (1H, dd, *J* 2.4, 8.6 Hz), 7.10 (1H, d, *J* 2.4 Hz), 6.76 (1H, d, *J* 8.6 Hz), 5.04 (1H, q, *J* 6.6 Hz), 2.45 (1H, br s), 1.59 (3H, d, *J* 6.6 Hz); δ_C (100 MHz, CDCl₃) 154.6, 131.6, 130.4, 129.2, 119.0, 111.8, 71.1, 23.4; Chiral HPLC (IA Column: (0.46 × 25 cm), 1 mL/min, 10% *i*-PrOH/90% Hexane; 256 nm UV, 30 °C) t_R = 7.95 min (*S* isomer), 8.75 min (*R* isomer).

(R)-2-(1-Hydroxyethyl)-4-methoxyphenol..^{17,25}

Table 3, entry 8. Preparation using ketone (166 g, 1.0 mmol) and catalyst (*R*,*R*)-**5** (3.2 mg, 0.005 mmol) following protocol C gave the alcohol product (142 mg, 0.84 mmol, 84%) as a clear oil. $[\alpha]_D^{30}$ +9.3 (*c* 0.55 in CHCl₃) 92% ee; (*R*); δ_H (250 MHz, CDCl₃) 7.42 (1H, br s), 6.79 (1H, d, *J* 8.8 Hz), 6.71 (1H, dd, *J* 2.8, 8.8 Hz), 6.54 (1H, d, *J* 2.8 Hz), 5.01 (1H, q, *J* 6.7 Hz), 3.73 (3H, s), 2.39 (1H, br s), 1.57 (3H, d, *J* 6.7 Hz); δ_C (100 MHz, CDCl₃) 153.0, 149.2, 129.2, 117.6, 113.7, 112.3, 71.6, 55.8, 23.3; Chiral HPLC (IA Column: (0.46 × 25 cm), 1 mL/min, 10% *i*-PrOH/90% Hexane; 256 nm UV, 30 °C) $t_R = 11.57$ min (*S* isomer), 12.74 min (*R* isomer).

(S)-1-(2-Methoxyphenyl)ethanol.

Table 3, entry 9. Preparation using ketone (150 mg, 1.0 mmol) and catalyst (*S*,*S*)-5 (3.2 mg, 0.005 mmol) following protocol C gave the alcohol product (98 mg, 0.64 mmol, 64%) as a clear oil. $[\alpha]_D^{32} - 13.9$ (*c* 0.39 in CHCl₃) 68% ee (*S*) (lit²⁶ $[\alpha]_D^{20} + 32.3$ (*c* 2.0 in CHCl₃) 94% ee (*R*)); δ_H (250 MHz, CDCl₃) 7.35 (1H, dd, *J* 1.8, 7.5 Hz), 7.25 (1H, ddd, *J* 1.8, 8.1, 8.1 Hz), 6.97 (1H, ddd, *J* 1.0, 7.5, 7.5 Hz), 6.89 (1H, dd, *J* 1.0, 8.1 Hz), 5.11 (1H, q, *J* 6.6 Hz), 3.87 (3H, s), 1.52 (3H, d, *J* 6.6 Hz); δ_C (100 MHz, CDCl₃) 156.5, 133.5, 128.3, 126.1, 120.8, 110.4, 66.5, 55.3, 22.9; Chiral GC; (CP-Chirasil-Dex-C β , 25 m × 0.25 mm × 0.25 µm column, oven temperature 150 °C, inj.: split 220 °C, det.: FID 250 °C, 18 psi He) t_R = 5.84 min (*S* isomer), 6.30 min (*R* isomer).

(S)-1-(2,5-Dimethoxyphenyl)ethan-1-ol.

Table 3, entry 15. Preparation using ketone (147 g, 1.0 mmol) and catalyst (*S*,*S*)-**2** (3.2 mg, 0.005 mmol) following protocol C gave the alcohol product (147 mg, 0.80 mmol, 80%) as a clear oil. $[\alpha]_{\rm D}^{32}$ –15.8 (*c* 0.60 in CHCl₃) 69% ee (*S*) (lit²⁷ $[\alpha]_{\rm D}^{27}$ –23.6 (c 1.4 in CHCl₃) 76% ee (*S*)); $\delta_{\rm H}$ (300 MHz, CDCl₃) 6.92 (1H, d, *J* 2.8 Hz), 6.79 (1H, d, *J* 8.9 Hz), 6.73 (1H, dd, *J* 2.8, 8.9 Hz), 5.04 (1H, dq, J 5.5, 6.4 Hz), 3.81 (3H, s), 3.76 (3H, s), 2.60 (1H, d, *J* 5.5 Hz), 1.47 (3H, d, *J* 6.4 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 153.8, 150.6, 134.8, 112.4, 112.3, 111.4, 66.4, 55.8, 55.7, 23.0; Chiral GC; (CP-Chirasil-Dex-C β , 25 m × 0.25 mm × 0.25 μ m column, oven temperature 150 °C, inj.: split 220 °C, det.: FID 250 °C, 18 psi He) $t_{\rm R}$ = 15.72 min (*R* isomer), 16.93 min (*S* isomer).

(R)-1-Phenyl-1-propanol.

Preparation using ketone (134 mg, 0.133 mL, 1.0 mmol) and catalyst (*R*,*R*)-**5** (6.5 mg, 0.01 mmol) following protocol A (to silica filtration step followed by removal of solvent) gave the crude alcohol product as a clear oil (99% conversion by GC analysis). $[a]_D^{29} = +53.6$ (*c* 0.75 in CHCl₃) 98% ee (*R*) (lit.²⁸ $[a]_D^{25} = -47.2$ (*c* 0.65 in CHCl₃) 99% ee (*S*)); δ_H (400 MHz, CDCl₃) 7.36–7.25 (5H, m), 4.58 (1H, t, *J* 6.4 Hz), 2.03 (1H, br s), 1.87–1.68 (2H, m), 1.48 (3H, t, *J* 7.0 Hz); δ_C (125 MHz, CDCl₃) 144.6, 128.4, 127.5, 126.0, 76.0, 31.9, 10.1. Chiral GC analysis (CP-Chirasil-Dex-C β 25 m × 0.25 mm × 0.25 μ m, *T* = 115 °C, *P* = 18 psi, He gas) t_R = 8.48 min (ketone), 19.39 min (*R* isomer), 21.00 min (*R* isomer).

(R)-1-Tetralol.

Preparation using ketone (146 mg, 0.0133 mL, 1.0 mmol) and catalyst (R,R)-5 (6.5 mg, 0.01 mmol) following protocol A (to silica filtration step followed by removal of solvent) gave the crude alcohol product as a clear oil (98% conversion by GC analysis). $[\alpha]_D^{28}$ -30.5 (c 1.000 in CHCl₃) 97% ee (*R*) (lit.²⁹ [α]_D +34.4 (*c* 1.01 in CHCl₃) 98% ee (*S*)); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.47–7.37 (1H, m), 7.22–7.05 (3H, m), 4.78 (1H, br s), 2.89–2.65 (2H, m), 2.03–1.74 (5H, m); $\delta_{\rm C}$ (125 MHz, CDCl₃) 138.8, 137.1, 129.0, 128.6, 127.6, 126.2, 68.2, 32.2, 29.2, 18.8. Chiral GC analysis (CP-Chirasil-Dex-C β 25 m × 0.25 mm × 0.25 μ m, $T = 120 \text{ °C}, P = 18 \text{ psi}, \text{He gas}) t_{\text{R}} = 24.70 \text{ min}$ (ketone), 44.00 min (S isomer), 45.12 min (R isomer).

(R)-1-(4-Chlorophenyl)ethanol.

Preparation using ketone (153.5 mg, 0.130 mL, 1.0 mmol) and (R,R)-5 (6.5 mg, 0.01 mmol) following protocol A (to silica filtration step followed by removal of solvent) gave the crude alcohol product as a clear oil (99% conversion by GC analysis). $[\alpha]_D^{26}$ +45.0 (*c* 0.840 in CHCl₃) 95% ee (*R*) (lit³⁰ $[\alpha]_D$ +38.6 (*c* 1.01 in CHCl₃) 88% ee (*R*)); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.30 (4H, br s), 4.86 (1H, q, J 6.4 Hz), 2.00 (1H, br s), 1.48 (3H, d, J 6.4 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 143.6, 132.4, 128.3, 126.2, 69.1, 24.7. Chiral GC analysis (CP-Chirasil-Dex-Cβ 25 m \times 0.25 mm \times 0.25 μ m, T = 150 °C, P = 18 psi, He gas) t_R = 4.48 min (ketone), 7.75 min (R isomer), 8.56 min (S isomer).

(R)-1-(4-Methoxyphenyl)ethanol.

OH

Preparation using ketone (150 mg, 1.0 mmol) and catalyst (R,R)-5 (6.5 mg, 0.01 mmol) following protocol following protocol A (to silica filtration step followed by removal of solvent) gave the crude alcohol product as a clear oil (99% conversion by GC analysis). $[\alpha]_D^{26}$ +47.4 (c 0.610 in CHCl₃) 97% ee (R) (lit.^{13c} $[\alpha]_D^{27}$ +32.3 (c 1.0 in CHCl₃) 90% ee (R)); $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.30 (2H, d, J 8.7 Hz), 6.88 (2H, d, J 8.7 Hz), 4.85 (1H, q, J 6.4 Hz), 3.80 (3H, s), 1.88 (1H, br s), 1.48 (3H, d, J 6.4 Hz); δ_C (75 MHz, CDCl₃) 158.4, 137.4, 126.0, 113.2, 69.4, 54.7, 24.4. Chiral GC analysis (CP-Chirasil-Dex-C β 25 m \times 0.25 mm \times 0.25 μ m, T = 130 °C, P = 18 psi, He gas) $t_{\rm R}$ = 13.20 min (ketone), 18.04 min (R isomer), 19.81 min (S isomer).

(R)-1-(3-Methoxyphenyl)ethanol.

Preparation using ketone (150 mg, 0.137 mL, 1.0 mmol) and catalyst (R,R)-5 (6.5 mg, 0.01 mmol) following protocol A (to silica filtration step followed by removal of solvent) gave the crude alcohol product as a clear oil (96% conversion by GC analysis). $[\alpha]_D^{28}$ +38.1 (c 0.670 in CHCl₃) 97% ee (R) (lit.^{8b} $[a]_D^{23}$ +31.8 (c 2.0 in CHCl₃) 94% ee (R)); $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.26 (1H, dd, J 8.1, 8.1 Hz), 6.95–6.93 (2H, m), 6.82-6.78 (1H, m), 4.86 (1H, q, J 6.3 Hz), 3.81 (3H, s), 1.94 (1H, br s), 1.48 (3H, d, J 6.3 Hz); δ_C (75 MHz, CDCl₃) 159.2, 147.0, 128.5, 117.0, 112.3, 110.3, 69.7, 54.6, 24.5. Chiral GC analysis (CP-Chirasil-Dex-C β 25 m × 0.25 mm × 0.25 μ m, T = 140 °C, P = 18 psi, He gas) $t_{\rm R} = 6.45 \text{ min}$ (ketone), 11.75 min (R isomer), 12.69 min (S isomer).

(R)-1-(1-Naphthyl)ethanol.

Preparation using ketone (170 mg, 0.152 mL, 1.0 mmol) and catalyst (R,R)-5 (6.5 mg, 0.01 mmol) following protocol A (to silica filtration step followed by removal of solvent) gave the crude alcohol product as a clear oil (99% conversion by GC analysis). $[\alpha]_D^{32}$ +60.3 (c 0.910 in CHCl₃) 99% ee (R) (lit.³¹ $[\alpha]_{D}$ +67.3 (c 0.4 in CHCl₃) 100% ee (R)); $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.10 (1H, d, J 8.4 Hz), 7.86 (1H, dd, J 7.2, 2.0 Hz)7.76 (1H, d, J 8.4 Hz), 7.76 (1H, d, J 7.2 Hz), 7.53-7.44 (3H, m), 5.65 (1H, q, 16.4 Hz), 2.08 (1H, br s), 1.65 (3H, d, 16.4 Hz); δ_{C} (125 MHz, CDCl₃) 141.4, 133.7, 130.3, 128.8, 127.9, 126.0, 125.6, 125.4, 123.1, 122.0, 67.1, 24.3. Chiral GC analysis (CP-Chirasil-Dex-Cβ 25 m $\times 0.25 \text{ mm} \times 0.25 \mu\text{m}$, T = 160 °C, P = 18 psi, He gas) t_{R} = 10.37 min (ketone), 21.01 min (S isomer), 22.40 min (R isomer). (R)-1-(2-Naphthyl)ethanol.

Preparation using ketone (170 g, 1.0 mmol) and catalyst (R,R)-5 (6.5 mg, 0.01 mmol) following protocol A (to silica filtration step followed by removal of solvent) gave the crude alcohol product as a clear oil (99% conversion by GC analysis). $[\alpha]_D^{28}$ +46.4 (c 0.850 in CHCl₃) 96% ee (R) (lit.^{9a} $[\alpha]_D^{23}$ +46.7 (c 1.02 in CHCl₃) 92% ee (R)); δ_H (400 MHz, CDCl₃) 7.87-7.73 (4H, m), 7.54-7.40 (3H, m), 5.04 (1H, q, J 6.4 Hz), 1.98 (1H, br s), 1.48 (3H, d, J 6.4 Hz); $\delta_{\rm C}$ (125 MHz, CDCl₃) 143.1, 133.3, 132.9, 128.3, 127.9, 127.7, 126.2, 125.8, 123.8, 70.6, 25.2. Chiral GC analysis (CP-Chirasil-Dex-C β 25 m \times 0.25 mm × 0.25 μ m, T = 150 °C, P = 18 psi, He gas) $t_{\rm R}$ = 18.92 min (ketone), 30.87 min (R isomer), 33.38 min (S isomer).

(S)-1-Phenyl-2-chloroethanol.

Preparation using ketone (155 g, 1.0 mmol) and catalyst (R,R)-5 (6.5 mg, 0.01 mmol) following protocol A (to silica filtration step followed by removal of solvent) gave the crude alcohol product as a clear oil (99% conversion by GC analysis). $[\alpha]_{D}^{32}$ +61.8 (*c* 0.810 in CHCl₃) 96% ee (*S*) (lit.³² $[\alpha]_{D}^{22}$ +53.8 (*c* 1.0 in CHCl₃) >99% ee (*S*)); δ_{H} (400 MHz, CDCl₃) 7.39-7.31 (5H, m), 4.75 (1H, m), 3.60 (1H, dd, J 11.4, 3.6 Hz), 3.48 (1H, dd, J 11.4, 8.6 Hz), 2.55 (1H, d, J 3.2 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 138.3, 128.1, 127.9, 125.5, 73.5, 50.3. Chiral GC analysis (CP-Chirasil-Dex-C β 25 m × 0.25 mm × 0.25 μ m, T = 150 °C, P = 18 psi, He gas) $t_{\rm R} = 6.96$ min (ketone), 9.00 min (S isomer), 9.60 min (R isomer).

(R)-1-(4-Trifluoromethylphenyl)ethanol.

Preparation using ketone (188 g, 1.0 mmol) and catalyst (R,R)-5 (6.5 mg, 0.01 mmol) following protocol A (to silica filtration step followed by removal of solvent) gave the crude alcohol product as a clear oil (99% conversion by GC analysis). $[\alpha]_D^{29}$ +32.5 (c 0.690 in CHCl₃) 94% ee (R) (lit.³³ $[\alpha]_D^{22}$ +29.3 (c 1.0 in CHCl₃) >99% ee (R)); δ_H (300 MHz, CDCl₃) 7.62-7.60 (2H, m), 7.48-7.46 (2H, m), 4.95 (1H, q, J 6.4 Hz), 2.11 (1H, br s), 1.49 (3H, d, J 6.4 Hz); $\delta_{\rm C}$ (75 MHz, CDCl₃) 149.1, 128.2 (q J 30 Hz, ArCCF₃), 125.3, 124.8, 123.3 (q J 270 Hz, CF₃), 69.3, 24.8. Chiral GC analysis (CP-Chirasil-Dex-C β 25 m × 0.25 mm × 0.25 μ m, T = 120 °C, P = 18 psi, He gas) $t_{\rm R}$ = 5.02 min (ketone), 13.92 min (R isomer), 17.19 min (S isomer).

(R)-1-(2-Trifluoromethylphenyl)ethanol.

Preparation using ketone (188 g, 0.149 mL, 1.0 mmol) and catalyst (R,R)-5 (6.5 mg, 0.01 mmol) following protocol A (to silica filtration step followed by removal of solvent) gave the crude alcohol product as a clear oil (99% conversion by GC analysis). $[\alpha]_D^{25}$ +34.8 (c 1.11 in CHCl₃) 69% ee (R) (lit.²⁸ $[\alpha]_D^{22}$ -45.4 (c 0.661 in MeOH) 97% ee (S)); $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.82 (1H, br d, J 7.8 Hz), 7.61–7.56 (2H, m), 7.36 (1H, d, J 7.5 Hz), 5.37–5.29 (1H, m), 2.03 (1H, br s), 1.48 (3H, d, J 6.6 Hz); $\delta_{\rm C}$ (75 MHz, CDCl₃) 144.4, 131.8, 126.7, 126.5, 124.6, 123.1 (q, ${}^{3}J_{\rm C-F}$ 280 Hz, CF₃; note outer peaks of q weak), 65.1, 25.8 (ArCCF₃ not identified). Chiral GC analysis (CP-Chirasil-Dex-C β 25 m × 0.25 mm × 0.25 μ m, T = 110 °C, P = 18 psi, He gas) $t_{\rm R}$ = 5.30 min (ketone), 16.74 min (R isomer), 19.44 min (S isomer).

(S)-1-Cyclohexylethanol.

Preparation using ketone (126 g, 0.138 mL, 1.0 mmol) and catalyst (*R*,*R*)-6 (1.4 mg, 0.002 mmol) following protocol A (to silica filtration step followed by removal of solvent) gave the crude alcohol product as a clear oil (99% conversion by GC analysis). $[\alpha]_D^{26}$ –3.0 (*c* 0.560 in CHCl₃) 85% ee (lit.³⁴ $[\alpha]_D^{22}$ +2.7 (*c* 0.5 in CHCl₃) 75% ee (*R*)); δ_H (500 MHz, CDCl₃) 3.58–3.50 (1H, m), 1.87–1.65 (5H, m), 1.50 (1H, br s), 1.33–1.18 (4H, m), 1.15 (3H, d, *J* 6.3 Hz), 1.10–0.89 (2H, m); δ_C (125 MHz, CDCl₃) 72.2, 45.1, 28.7, 28.4, 26.5, 26.2, 26.1, 20.4. Chiral GC analysis of acetate derivative (CP-Chirasil-Dex-C β 25 m × 0.25 mm × 0.25 μ m, *T* = 100 °C, *P* = 18 psi, He gas) t_R = 13.80 min (*S* isomer), 18.64 min (*R* isomer).

ASSOCIATED CONTENT

S Supporting Information

Extended tables of results, including time-course studies, comparison of rates of electron-rich and electron-poor substrates, ¹H NMR spectra, and chiral GC/HPLC spectra. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.5b00990.

AUTHOR INFORMATION

Corresponding Author

*Tel.: +44 24 7652 3260. Fax: +44 24 7652 4112. E-mail: m. wills@warwick.ac.uk.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Leverhulme Trust (grant no. RPG-374) for support to R.S. and the Engineering and Physical Sciences Research Council (EPSRC) for support to THH through the Warwick DTC grant. M.R.O. was supported by the Warwick University URSS scheme, and B.P.M. was a final year project student supported by Warwick University. We thank Johnson Matthey for supplying samples of catalyst **2**.

REFERENCES

(1) (a) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248, 2201–2237. (b) Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226–236. (c) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol. Chem. 2006, 4, 393–406. (d) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300–1308. (e) Wang, C.; Wu, X.; Xiao, J. Chem.—Asian J. 2008, 3, 1750–1770. (f) Ito, J.-I.; Nishiyama, H. Tetrahedron Lett. 2014, 55, 3153–3166. (g) Robertson, A.; Matsumoto, T.; Ogo, S. Dalton Trans. 2011, 40, 10304–10410. (h) Zhao, B.; Han, Z.; Ding, K. Angew. Chem., Int. Ed. 2013, 52, 4744–4788. (i) Vaclavik, J.; Sot, P.; Vilhanova, B.; Pechacek, J.; Kuzma, M.; Kacer, P. Molecules 2013, 18, 6804–6828. (j) Wu, X. F.; Xiao, J. L. Chem. Commun. 2007, 2449– 2466. (k) Wu, X. F.; Wang, C.; Xiao, J. L. Platinum Met. Rev. 2010, 54, 3–19. (l) Václavík, J.; Kačer, P.; Kuzma, M.; Červený, L. Molecules 2011, 16, 5460. (m) Malacea, R.; Poli, R.; Manoury, E. Coord. Chem. Rev. 2010, 254, 729–752. (2) (a) Ohkuma, T.; Utsumi, N.; Tsutsumi, K.; Murata, K.; Sandoval, C.; Noyori, R. J. Am. Chem. Soc. 2006, 128, 8724–8725. (b) Sandoval, C. A.; Ohkuma, T.; Utsumi, N.; Tsutsumi, K.; Murata, K.; Noyori, R. Chem.—Asian J. 2006, 1–2, 102–110. (c) Li, C. Q.; Villa-Marcos, B.; Xiao, J. L. J. Am. Chem. Soc. 2009, 131, 6967–6969. (d) Ito, M.; Endo, Y.; Tejima, N.; Ikariya, T. Organometallics 2010, 29, 2397–2399. (e) Arai, N.; Satoh, H.; Utsumi, N.; Murata, K.; Tsutsumi, K.; Ohkuma, T. Org. Lett. 2013, 15, 3030–3033. (f) Wang, T.; Chen, F.; Qin, J.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2013, 52, 7172–7176.

(3) (a) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 7562-7563. (b) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521-2522. (c) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738-8739. (d) Haack, K. J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. Angew. Chem. 1997, 109, 297-300; Angew. Chem., Int. Ed. Engl. 1997, 36, 285-288. (e) Murata, K.; Okano, K.; Miyagi, M.; Iwane, H.; Noyori, R.; Ikariya, T. Org. Lett. 1999, 1, 1119-1121. (f) Corbett, M. T.; Johnson, J. S. J. Am. Chem. Soc. 2013, 135, 594-597. (g) Steward, K. M.; Corbett, M. T.; Goodman, C. G.; Johnson, J. S. J. Am. Chem. Soc. 2012, 134, 20197-20206. (h) Bradley, P. A.; Carroll, R. L.; Lecouturier, Y. C.; Moore, R.; Noeureuil, P.; Patel, B.; Snow, J.; Wheeler, S. Org. Process Res. Dev. 2010, 14, 1326-1336. (i) Carpenter, I.; Clarke, M. L. Synlett 2011, 65-68. (j) Bai, J.; Miao, S.; Wu, Y.; Zhang, Y. Chin. J. Chem. 2011, 29, 2476-2480. (k) Slungård, S. V.; Krakeli, T.-A.; Thvedt, T. H. K.; Fuglseth, E.; Sundby, E.; Hoff, B. H. Tetrahedron 2011, 67, 5642-5650. (1) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. Angew. Chem., Int. Ed. 2011, 50, 8025-8028. (m) Geng, Z.; Wu, Y.; Miao, S.; Shen, Z.; Zhang, Y. Tetrahedron Lett. 2011, 52, 907-909. (n) Dias, L. C.; Ferreira, M. A. B. J. Org. Chem. 2012, 77, 4046-4062. (o) Hems, W. P.; Jackson, W. P.; Nightingale, P.; Bryant, R. Org. Process Res. Dev. 2012, 16, 461-463. (p) Lemke, M.-K.; Schwab, P.; Fischer, P.; Tischer, S.; Witt, M.; Noehringer, L.; Rogachev, V.; Jäger, A.; Kataeva, O.; Fröhlich, R.; Metz, P. Angew. Chem., Int. Ed. 2013, 52, 11651-11655.

(4) (a) Rhyoo, H. Y.; Park, H.-J.; Chung, Y. K. Chem. Commun. 2001, 2064-2065. (b) Wu, X.; Li, X.; Hems, W.; King, F.; Xiao, J. Org. Biomol. Chem. 2004, 2, 1818-1821. (c) Wu, X.; Li, X.; King, F.; Xiao, J. Angew. Chem., Int. Ed. 2005, 44, 3407. (d) Canivet, J.; Labat, G.; Stoeckli-Evans, H.; Süss-Fink, G. Eur. J. Inorg. Chem. 2005, 4493-4500. (e) Li, X.; Blacker, J.; Wu, X.; Xiao, J. Synlett 2006, 1155-1160. (f) Jiang, L.; Wu, T.-F.; Chen, Y.-C.; Zhu, J.; Deng, J.-G. Org. Biomol. Chem. 2006, 4, 3319-3324. (g) Canivet, F.; Süss-Fink, G. Green Chem. 2007, 9, 391-397. (h) Cortez, N. A.; Aguirre, G.; Parra-Hake, M.; Somanathan, R. Tetrahedron Lett. 2007, 48, 4335-4338. (i) Zhou, H.-F.; Fan, Q.-H.; Huang, Y.-Y.; Wu, L.; He, Y.-M.; Tang, W.-J.; Gu, L.-Q.; Chan, A. S. C. J. Mol. Catal. A: Chem. 2007, 275, 47-53. (j) Wu, X.; Li, X.; Zanotti-Gerosa, A.; Pettman, A.; Liu, J.; Mills, A. J.; Xiao, J. Chem.—Eur. J. 2008, 14, 2209-2222. (k) Wu, X.; Liu, J.; di Tommaso, D.; Iggo, J. A.; Catlow, C. R. A.; Bacsa, J.; Xiao, J. Chem.-Eur. J. 2008, 14, 7699-7715. (1) Wang, C.; Li, C.; Wu, X.; Pettman, A.; Xiao, J. Angew. Chem., Int. Ed. 2009, 48, 6524-6528. (m) Evanno, L.; Ormala, J.; Pihko, P. M. Chem.-Eur. J. 2009, 15, 12963-12967. (n) Cortez, N. A.; Aguirre, G.; Parra-Hake, M.; Somanathan, R. Tetrahedron Lett. 2009, 50, 2228-2231. (o) Soltani, O.; Ariger, M. A.; Vazquez-Villa, H.; Carreira, E. M. Org. Lett. 2010, 12, 2893-2895. (p) Kabro, A.; Escudero-Adan, E. C.; Grushin, V. V.; van Leeuwen, P. W. N. M. Org. Lett. 2012, 14, 4014-4017. (q) Ariger, M. A.; Carreira, E. M. Org. Lett. 2012, 14, 4522-4524. (r) Cortez, N. A.; Aguirre, G.; Parrra-Hake, M.; Somanathan, R. Tetrahedron: Asymmetry 2013, 24, 1297-1302. (s) Wang, L.; Zhou, Q.; Qu, C.; Wang, Q.; Cun, L.; Zhu, J.; Deng, J. Tetrahedron 2013, 69, 6500-6506. (t) Wang, W.-W.; Li, Z.-M.; Su, L.; Wang, Q.-R.; Wu, Y.-L. J. Mol. Catal. A: Chem. 2014, 387, 92-102. (u) Bligh, C. M.; Anzalone, L.; Jung, Y. C.; Zhang, Y.; Nugent, W. A. J. Org. Chem. 2014, 79, 3238-3243. (v) Mangion, I. K.; Chen, C.-Y.; Li, H.; Maligres, P.; Chen, Y.; Christensen, M.; Cohen, R.; Jeon, I.; Klapars, A.; Krska, S.; Nguyen, H.; Reamer, R. A.; Sherry, B. D.; Zavialov, I. Org. Lett. 2014, 16, 2310-2313. (w) Ogo, S.; Makihara, N.;

Watanabe, Y. Organometallics **1999**, *18*, 5470–5474. (x) Wu, X.; Liu, J.; Li, X.; Zanotti-Gerosa, A.; Hancock, F.; Vinci, D.; Ruan, J.; Xiao, J. Angew. Chem., Int. Ed. **2006**, *45*, 6718–6722.

(5) (a) Li, L.; Wu, J.; Wang, F.; Liao, J.; Zhang, H.; Lian, C.; Zhu, J.; Deng, J. Green Chem. 2007, 9, 23–27. (b) Zhou, Z.; Yong, S. Catal. Commun. 2009, 10, 1685–1688. (c) Zhou, Z.; Ma, A.; Sun, Y.; Zhang, A.; Li, L. Heteroat. Chem. 2010, 21, 505–514. (d) Zhou, Z.; Ma, Q.; Zhang, A.; Wu, L. Appl. Organomet. Chem. 2011, 25, 856–861. (e) Tang, Y.; Li, X.; Lian, C.; Zhu, J.; Deng, J. Tetrahedron: Asymmetry 2011, 22, 1530–1535. (f) Huo, H.; Zhou, Z.; Zhang, A.; Wu, L. Res. Chem. Intermed. 2012, 38, 261–268. (g) Li, J.; Tang, Y.; Wang, Q.; Li, X.; Cun, L.; Zhang, X.; Zhu, J.; Li, L.; Deng, J. J. Am. Chem. Soc. 2012, 134, 18522–18525. (h) Kalsin, A. M.; Peganova, T. A.; Novikov, V. V.; Zhamoytina, A. I.; Gonsalvi, L.; Peruzzi, M. Chem.—Eur. J. 2014, 20, 846–854.

(6) (a) Thorpe, T.; Blacker, J.; Brown, S. M.; Bubert, C.; Crosby, J.; Fitzjohn, S.; Muxworthy, J. P.; Williams, J. M. J. *Tetrahedron Lett.* **2001**, *42*, 4041–4043. (b) Bubert, C.; Blacker, J.; Brown, S. M.; Crosby, J.; Fitzjohn, S.; Muxworthy, J. P.; Thorpe, T.; Williams, J. M. J. *Tetrahedron Lett.* **2001**, *42*, 4037–4039.

(7) (a) Li, X.; Wu, X.; Chen, W.; Hancock, F. E.; King, F.; Xiao, J. Org. Lett. 2004, 6, 3321–3324. (b) Liu, J.; Zhou, D.; Jia, X.; Huang, L.; Li, X.; Chan, A. S. C. Tetrahedron: Asymmetry 2008, 19, 1824–1828. (c) Zhou, Z.; Sun, Y. React. Kinet., Mech. Catal. 2010, 99, 391–396. (d) Zhou, Z.; Ma, Q. Appl. Organomet. Chem. 2011, 233–237. (e) Shan, W.; Meng, F.; Wu, Y.; Mao, F.; Li, X. J. Organomet. Chem. 2011, 696, 1687–1690.

(8) (a) Rhyoo, H. Y.; Park, H.-J.; Suh, W. H.; Chung, Y. K. *Tetrahedron Lett.* 2002, *43*, 269–272. (b) Deng, F.; Wang, H.; Liu, L.; Cun, J.; Zhu, J.; Deng, Y.; Jiang, Y. *J. Org. Chem.* 2005, *70*, 9424–9429. (c) Zhang, B.; Xu, M.-J.; Lin, G.-Q. *Org. Lett.* 2009, *11*, 4712–4715. (d) Yin, L.; Jia, X.; Li, X.; Chan, A. S. C. *Tetrahedron: Asymmetry* 2009, 20, 2033–2037. (e) Wang, W.; Li, Z.; Mu, W.; Su, L.; Wang, Q. *Catal. Commun.* 2010, *11*, 480–483. (f) Seashore-Ludlow, B.; Villo, P.; Somfai, P. *Chem.—Eur. J.* 2012, *18*, 7219–7223. (g) Seashore-Ludlow, B.; Saint-Dizier, F.; Somfai, P. *Org. Lett.* 2012, *14*, 6334–6337.

(9) (a) Ma, Y.; Liu, H.; Chen, L.; Cui, X.; Zhu, J.; Deng, J. Org. Lett. 2003, 5, 2103–2106. (b) Wu, J.; Wang, F.; Ma, Y.; Cui, X.; Cun, L.; Zhu, J.; Deng, J.; Yu, B. Chem. Commun. 2006, 1766–1768. (c) Li, J.; Li, X.; Ma, Y.; Wu, J.; Wang, F.; Xiang, J.; Zhu, J.; Wang, Q.; Deng, J. RSC Adv. 2013, 3, 1825–1834.

(10) Ahlford, K.; Lind, J.; Mäler, L.; Adolfsson, H. Green Chem. 2008, 10, 832–835.

(11) (a) Liu, P. N.; Deng, J. G.; Tu, Y. Q.; Wang, S. H. Chem. Commun. 2004, 2070-2071. (b) Liu, P.-N.; Gu, P.-M.; Deng, J.-G.; Tu, Y.-Q.; Ma, Y.-P. Eur. J. Org. Chem. 2005, 3221-3227. (c) Li, J.; Zhang, Y.; Han, D.; Jia, G.; Gao, J.; Zhong, L.; Li, C. Green Chem. 2008, 10, 608-611. (d) Liu, G.; Yao, M.; Zhang, F.; Gao, Y.; Li, H. Chem. Commun. 2008, 347-349. (e) Arakawa, Y.; Chiba, A.; Haraguch, N.; Itsuno, S. Adv. Synth. Catal. 2008, 350, 2295-2304. (f) Haraguchi, N.; Tsuru, K.; Arakawa, Y.; Itsuno, S. Org. Biomol. Chem. 2009, 7, 69-75. (g) Haraguchi, N.; Nishiyama, A.; Itsuno, S. J. Polym. Sci., Part A 2010, 48, 3340-49. (h) Dimroth, J.; Schedler, U.; Keilitz, J.; Haag, R.; Schomäcker, R. Adv. Synth. Catal. 2011, 353, 1335-1344. (i) Elias, S.; Goren, K.; Vigalok, A. Synlett 2012, 23, 2619-2622. (j) Babin, M.; Clément, R.; Gagnon, J.; Fontaine, F.-G. New J. Chem. 2012, 36, 1548-1551. (k) Deng, B.; Cheng, T.; Wu, M.; Wang, J.; Liu, G. ChemCatChem 2013, 5, 2856-2860. (1) Ward, T. R. Acc. Chem. Res. 2011, 44, 47-57. (m) Vázquez-Villa, H.; Reber, S.; Ariger, M. A.; Carriera, E. M. Angew. Chem., Int. Ed. 2011, 50, 8979-8981.

(12) (a) Sun, Y.; Liu, G.; Gu, H.; Huang, T.; Zhang, Y.; Li, H. Chem. Commun. 2011, 47, 2583–2585. (b) Liu, G.; Gu, H.; Sun, Y.; Long, J.; Xu, Y.; Li, H. Adv. Synth. Catal. 2011, 353, 1317–1324. (c) Gao, X.; Liu, R.; Zhang, D.; Wu, M.; Cheng, T.; Liu, G. Chem.—Eur. J. 2014, 20, 1515–1519.

(13) (a) Soni, R.; Jolley, K. E.; Clarkson, G. J.; Wills, M. Org. Lett.
2013, 15, 5110-5113. (b) Hayes, A. M.; Morris, D. J.; Clarkson, G. J.;
Wills, M. J. Am. Chem. Soc. 2005, 127, 7318-7319. (c) Hannedouche,

J.; Clarkson, G. J.; Wills, M. J. Am. Chem. Soc. **2004**, *126*, 986–987. (d) Soni, R.; Collinson, J.-M.; Clarkson, G. C.; Wills, M. Org. Lett. **2011**, *13*, 4304–4307. (e) Fang, Z.; Wills, M. Org. Lett. **2014**, *16*, 374–377. (f) Mangion, I. K.; Chen, C.-Y.; Li, H.; Maligres, P.; Chen, Y.; Christensen, M.; Cohen, R.; Jeon, I.; Klapars, A.; Krska, S.; Nguyen, H.; Reamer, R. A.; Sherry, B. D.; Zavialov, I. Org. Lett. **2014**, *16*, 2310–2313. (g) Jolley, K. E.; Zanotti-Gerosa, A.; Hancock, F.; Dyke, A.; Grainger, D. M.; Medlock, J. A.; Nedden, H. G.; Le Paih, J. J. M.; Roseblade, S. J.; Seger, A.; Sivakumar, V.; Morris, D. J.; Prokes, I.; M. Wills, M. Adv. Synth. Catal. **2012**, *354*, 2545–2555.

(14) (a) Touge, T.; Hakamata, T.; Nara, H.; Kobayashi, T.; Sayo, N.; Saito, T.; Kayaki, Y.; Ikariya, T. *J. Am. Chem. Soc.* **2011**, *133*, 14960– 14963. (b) Parekh, V.; Ramsden, J. A.; Wills, M. *Catal.: Sci. Technol.* **2012**, *2*, 406–414. (c) Kišić, A.; Stephan, M.; Mohar, B. Org. Lett. **2013**, *15*, 1614–1617.

(15) (a) Watson, A. J. A.; Fairbanks, A. J. Eur. J. Org. Chem. 2013, 6784–6788. (b) Watson, A. J. A.; Atkinson, B. N.; Maxwell, A. C.; Williams, J. M. J. Adv. Synth. Catal. 2013, 355, 734–740.
(c) Wettergren, J.; Bøgevig, A.; Portier, M.; Adolfsson, H. Adv. Synth. Catal. 2006, 348, 1277–1282.

(16) (a) Chaplin, D.; Harrison, P.; Henschke, J. P.; Lennon, I. C.; Meek, G.; Moran, P.; Pilkington, C. J.; Ramsden, J. A.; Watking, S.; Zanotti-Gerosa, A. Org. Process Res. Dev. **2003**, *7*, 89–94. (b) Ohkuma, T.; Koizumi, M.; Doucet, H.; Pham, T.; Kozawa, M.; Murata, K.; Katayama, E.; Yokozawa, T.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. **1998**, *120*, 13529–13530.

(17) Ramachandran, P. V.; Gong, B.; Brown, H. C. Tetrahedron Lett. 1994, 35, 2141–2144.

(18) Bader, H.; Hansen, A. R.; McCarty, F. J. J. Org. Chem. 1966, 31, 2319–2321.

(19) Chen, H.; Zhong, X.; Wei, J. Molecules 2007, 12, 1170-1182.

(20) Inagaki, T.; Phong, L. T.; Furuta, A.; Ito, J.; Nishiyama, H. Chem.—Eur. J. 2010, 16, 3090–3096.

(21) Nasir Baig, R. B.; Varma, R. S. RSC Adv. 2014, 4, 6568-6572.

(22) Shu, X.-Z.; Xia, X.-F.; Yang, Y.-F.; Ji, K.-G.; Liu, X.-Y.; Liang, Y.-M. J. Org. Chem. 2009, 74, 7464–7469.

(23) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1158–1174.

(24) (a) Prein, M.; Maurer, M.; Peters, E. M.; Peters, K.; von Schnering, H. G.; Adam, W. *Chem.—Eur. J.* **1995**, *1*, 89–94. (b) Wu, S.-Y.; Hirashima, A.; Kuwano, E.; Eto, M. *Agric. Biol. Chem.* **1987**, *51*, 537–547.

(25) Fan, J.; Wang, Z. Chem. Commun.. 2008, 5381-5383.

(26) Kaufman, S. Tetrahedron Lett. 1996, 37, 5329-5332.

(27) Martins, J. E. D.; Morris, D. J.; Wills, M. Tetrahedron Lett. 2009, 50, 688-692.

(28) Nakamura, K.; Matsuda, T. J. Org. Chem. 1998, 63, 8957-8964.

(29) Palmer, M.; Walsgrove, T.; Wills, M. J. Org. Chem. 1997, 62, 5226-5228.

(30) Locatelli, M.; Cozzi, P. G. Angew. Chem., Int. Ed. 2003, 42, 4928-4930.

(31) Ziffer, H.; Kawai, K.; Kasai, M.; Imuta, M.; Froussios, C. J. Org. Chem. 1983, 48, 3017–3021.

(32) Zhu, D.; Mukherjee, C.; Hua, L. Tetrahedron: Asymmetry 2005, 16, 3275–3278.

(33) Zhu, D.; Yang, Y.; Hua, L. J. Org. Chem. 2006, 71, 4202-4205.

(34) Li, G.; Kabalka, G. W. J. Organomet. Chem. 1999, 581, 66-69.