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High-dimensional Ordinary Least-squares Projection for

Screening Variables

Xiangyu Wang and Chenlei Leng ∗

Abstract

Variable selection is a challenging issue in statistical applications when the number

of predictors p far exceeds the number of observations n. In this ultra-high dimensional

setting, the sure independence screening (SIS) procedure was introduced to significantly

reduce the dimensionality by preserving the true model with overwhelming probability,

before a refined second stage analysis. However, the aforementioned sure screening

property strongly relies on the assumption that the important variables in the model

have large marginal correlations with the response, which rarely holds in reality. To

overcome this, we propose a novel and simple screening technique called the high-

dimensional ordinary least-squares projection (HOLP). We show that HOLP possesses

the sure screening property and gives consistent variable selection without the strong

correlation assumption, and has a low computational complexity. A ridge type HOLP

procedure is also discussed. Simulation study shows that HOLP performs competitively

compared to many other marginal correlation based methods. An application to a

mammalian eye disease data illustrates the attractiveness of HOLP.

Keywords: Consistency; Forward regression; Generalized inverse; High dimensionality; Lasso;

Marginal correlation; Moore-Penrose inverse; Ordinary least squares; Sure independent

screening; Variable selection.

1 Introduction

The rapid advances of information technology have brought an unprecedented array of large

and complex data. In this big data era, a defining feature of a high dimensional dataset
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is that the number of variables p far exceeds the number of observations n. As a result,

the classical ordinary least-squares estimate (OLS) used for linear regression is no longer

applicable due to a lack of sufficient degrees of freedom.

Recent years have witnessed an explosion in developing approaches for handling large

dimensional data sets. A common assumption underlying these approaches is that although

the data dimension is high, the number of the variables that affect the response is relatively

small. The first class of approaches aim at estimating the parameters and conducting variable

selection simultaneously by penalizing a loss function via a sparsity inducing penalty. See,

for example, the Lasso (Tibshirani, 1996; Zhao and Yu, 2006; Meinshausen and Bühlmann,

2008), the SCAD (Fan and Li, 2001), the adaptive Lasso (Zou, 2006; Wang, et al., 2007;

Zhang and Lu, 2007), the grouped Lasso (Yuan and Lin, 2006), the LSA estimator (Wang

and Leng, 2007), the Dantzig selector (Candes and Tao, 2007), the bridge regression (Huang,

et al., 2008), and the elastic net (Zou and Hastie, 2005; Zou and Zhang, 2009). However,

accurate estimation of a discrete structure is notoriously difficult. For example, the Lasso can

give non-consistent models if the irrepresentable condition on the design matrix is violated

(Zhao and Yu, 2006; Zou, 2006), although computationally more extensive methods such as

those combining subsampling and structure selection (Meinshausen and Bühlmann, 2010;

Shah and Samworth, 2013) may overcome this.

In ultra-high dimensional cases where p is much larger than n, these penalized approaches

may not work, and the computation cost for large-scale optimization becomes a concern. It

is desirable if we can rapidly reduce the large dimensionality before conducting a refined

analysis. Motivated by these concerns, Fan and Lv (2008) initiated a second class of ap-

proaches aiming to reduce the dimensionality quickly to a manageable size. In particular,

they introduce the sure independence screening (SIS) procedure that can significantly reduce

the dimensionality while preserving the true model with an overwhelming probability. This

important property, termed the sure screening property, plays a pivotal role for the success

of SIS. The screening operation has been extended, for example, to generalized linear models

(Fan and Fan, 2008; Fan, et al., 2009; Fan and Song, 2010), additive models (Fan, et al.,

2011), hazard regression (Zhao and Li, 2012; Gorst-Rasmussen and Scheike, 2013), and to

accommodate conditional correlation (Barut et al., 2012). As the SIS builds on marginal

correlations between the response and the features, various extensions of correlation have

been proposed to deal with more general cases (Hall and Miller, 2009; Zhu, et al., 2011; Li,

Zhong, et al., 2012; Li, Peng, et al., 2012). A number of papers have proposed alternative

ways to improve the marginal correlation aspect of screening, see, for example, Hall, et al.

(2009); Wang (2009, 2012); Cho and Fryzlewicz (2012).
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There are two important considerations in designing a screening operator. One pinnacle

consideration is the low computational requirement. After all, screening is predominantly

used to quickly reduce the dimensionality. The other is that the resulting estimator must

possess the sure screening property under reasonable assumptions. Otherwise, the very

purpose of variable screening is defeated. SIS operates by evaluating the correlations between

the response and one predictor at a time, and retaining the features with top correlations.

Clearly, this estimator can be much more efficiently and easily calculated than large-scale

optimization. For the sure screening property, a sufficient condition made for SIS (Fan and

Lv, 2008) is that the marginal correlations for the important variables must be bounded

away from zero. This condition is referred to as the marginal correlation condition hereafter.

However, for high dimensional data sets, this assumption is often violated, as predictors are

often correlated. As a result, unimportant variables that are highly correlated to important

predictors will have high priority of being selected. On the other hand, important variables

that are jointly correlated to the response can be screened out, simply because they are

marginally uncorrelated to the response. Due to these reasons, Fan and Lv (2008) put

forward an iterative SIS procedure that repeatedly applies SIS to the current residual in

finite many steps. Wang (2009) proved that the classical forward regression can also be used

for variable screening, and Cho and Fryzlewicz (2012) advocates a tilting procedure.

In this paper, we propose a novel variable screener named High-dimensional Ordinary

Least-squares Projection (HOLP), motivated by the ordinary least-squares estimator and the

ridge regression. Like SIS, the resulting HOLP is straightforward and efficient to compute.

Unlike SIS, we show that the sure screening property holds without the restrictive marginal

correlation assumption. We also discussed Ridge-HOLP, a ridge regression version of HOLP.

Theoretically, we prove that the HOLP and Ridge-HOLP possess the sure screening property.

More interestingly, we show that both HOLP and Ridge-HOLP are screening consistent in

that if we retain a model with the same size as the true model, then the retained model is

the same as the true model with probability tending to one. We illustrate the performance

of our proposed methods via extensive simulation studies.

The rest of the paper is organized as follows. We elaborate the HOLP estimator and

discuss two viewpoints to motivate it in Section 2. The theoretical properties of HOLP and

its ridge version are presented in Section 3. In Section 4, we use extensive simulation study

to compare the HOLP estimator with a number of competitors and highlight its competitive-

ness. An analysis of data confirms its usefulness. Section 5 presents the concluding remarks

and discusses future research. All the proofs are found in the Supplementary Materials.
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2 High-dimensional Ordinary Least-Squares Projection

2.1 A new screening method

Consider the familiar linear regression model

y = β1x1 + β2x2 + · · ·+ βpxp + ε,

where x = (x1, · · · , xp)T is the random predictor vector, ε is the random error and y is the

response. Alternatively, with n realizations of x and y, we can write the model as

Y = Xβ + ε,

where Y ∈ Rn is the response vector, X ∈ Rn×p is the design matrix, and ε ∈ Rn consists

of i.i.d. errors. Without loss of generality, we assume that εi follows a distribution with

mean 0 and variance σ2. Furthermore, we assume that XTX is invertible when p < n and

that XXT is invertible when p > n. Denote M = {x1, ..., xp} as the full model and MS as

the true model where S = {j : βj 6= 0, j = 1, · · · , p} is the index set of the nonzero βj’s

with cardinality s = |S|. To motivate our method, we first look at a general class of linear

estimates of β as

β̃ = AY,

where A ∈ Rp×n maps the response to an estimate and the SIS sets A = XT . Since our

emphasis is for screening out the important variables, β̃ as an estimate of β needs not be

accurate but ideally it maintains the rank order of the entries of |β| such that the nonzero

entries of β are large in β̃ relatively. Note that

AY = A(Xβ + ε) = (AX)β + Aε,

where Aε consists of linear combinations of zero mean random noises and (AX)β is the

signal. In order to preserve the signal part as much as possible, an ideal choice of A would

satisfy that AX = I. If this choice is possible, the signal part would dominate the noise part

Aε under suitable conditions. This argument leads naturally to the ordinary least-squares

estimate where A = (XTX)−1XT when p < n.

However, when p is large than n, XTX is degenerate and AX cannot be an identity

matrix. This fact motivates us to use some kind of generalized inverse of X. In Part A of

the Supplementary Materials we show that (XTX)−1XT can be seen as the Moore-Penrose

inverse of X for p < n and that XT (XXT )−1 is the Moore-Penrose inverse of X when p > n.
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We remark that the Moore-Penrose inverse is one particular form of the generalized inverse

of a matrix. When A = XT (XXT )−1, AX is no longer an identity matrix. Nevertheless,

as long as AX is diagonally dominant, β̂i (i ∈ S) can take advantage of the large diagonal

terms of AX to dominate β̂i (i 6∈ S) that is just a linear combination of off-diagonal terms.

To show the diagonal dominance of AX = XT (XXT )−1X, we quickly present a comparison

to SIS. In Fig 1 we plot AX for one simulated data set with (n, p) = (50, 1000), where X

is drawn from N(0,Σ) with Σ satisfying one of the following: (i) Σ = Ip, (ii) σij = 0.6 and

σii = 1, (iii) σij = 0.9|i−j| and (iv) σij = 0.995|i−j|.

SIS: σij = 0 SIS: σij = 0.6 SIS: σij = 0.9|i−j| SIS: σij = 0.995|i−j|

XT(XXT)−1X: σij = 0 XT(XXT)−1X: σij = 0.6 XT(XXT)−1X: σij = 0.9|i−j| XT(XXT)−1X: σij = 0.995|i−j|

Figure 1: Heatmaps for AX = XTX in SIS (top) and AX = XT (XXT )−1X for the proposed
method (bottom).

We see a clear pattern of diagonal dominance for XT (XXT )−1X under different scenarios,

while the diagonal dominance pattern only emerges for AX = XTX in some structures. To

provide an analytical insight, we write X via singular value decomposition as X = V DUT ,

where V is an n × n orthogonal matrix, D is an n × n diagonal matrix and U is an p × n
matrix that belongs to the Stiefel manifold Vn,p. See Part B of the Supplementary Materials

for details. Then

XT (XXT )−1X = UUT , XTX = UD2UT .

Intuitively, XT (XXT )−1X reduces the impact from the high correlation of X by removing

the random diagonal matrix D. As further proved in Part C of the Supplementary Materials,

UUT will be diagonal dominating with overwhelming probability.
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These discussions lead to a very simple screening method by first computing

β̂ = XT (XXT )−1Y. (1)

We name this estimator β̂ the High-dimensional Ordinary Least-squares Projection (HOLP)

due to the similarity to the classical ordinary least-squares estimate. For variable screening,

we follow a very simple strategy by ranking the components of β̂ and selecting the largest

ones. More precisely, let d be the number of the predictors retained after screening. We

choose a submodel Md as

Md = {xj : |β̂j| are among the largest d of all |β̂j|’s} or Mγ = {xj : |β̂j| ≥ γ}

for some γ. To see why the HOLP is a projection, we can easily see that

β̂ = XT (XXT )−1Xβ +XT (XXT )−1ε,

where the first term indicates that this estimator can be seen as a projection of β. However,

this projection is distinctively different from the usual OLS projection: Whilst the OLS

projects the response Y onto the column space of X, HOLP uses the row space of X to cap-

ture β. We note that many other screening methods, such as tilting and forward regression,

also project Y onto the column space of X. Another important difference between these

two projections is the screening mechanism. HOLP gives a diagonally dominant projection

matrix XT (XXT )−1X, such that the product of this matrix and β would be more likely

to preserve the rank order of the entries in β. In contrast, tilting and forward regression

both rely on some goodness-of-fit measure of the selected variables, aiming to minimize the

distance between fitted Ŷ and Y . An important feature of HOLP is that the matrix XXT

is of full rank whenever n < p, in marked contrast to the OLS that is degenerate whenever

n < p. Thus, HOLP is unique to high dimensional data analysis from this standpoint.

We now motivate HOLP from a different perspective. Recall the ridge regression estimate

β̂(r) = (rI +XTX)−1XTY,

where r is the ridge parameter. By letting r →∞, it is seen that rβ̂(r)→ XTY . Fan and Lv

(2008) proposed SIS that retains the large components in XTY as a way to screen variables.

If we let r → 0, the ridge estimator β̂(r) becomes

(XTX)+XTY,

6



where A+ denotes the Moore-Penrose generalized inverse. An application of the Sherman-

Morrison-Woodbury formula in Part A of the Supplementary Materials gives

(rI +XTX)−1XTY = XT (rI +XXT )−1Y.

Then letting r → 0 gives

(XTX)+XTY = XT (XXT )−1Y,

the HOLP estimator in (1). Therefore, the HOLP estimator can be seen as the other extreme

of the ridge regression estimator by letting r → 0, as opposed to the marginal screening

operator XTY in Fan and Lv (2008) by letting r → ∞. In real data analysis where X and

Y are often centered (denoted by X̃ and Ỹ ), the ridge version of HOLP X̃T (rI + X̃X̃T )−1Ỹ

is the correct estimator to use as X̃X̃T is now rank-degenerate. Theory on the ridge-HOLP

is studied in next section and comparisons with HOLP are provided in the conclusion.

Clearly, HOLP is easy to implement and can be efficiently computed. Its computational

complexity is O(n2p), while SIS is O(np). In the ultra-high dimensional cases where p� nc

for any c, the computational complexity of HOLP is only slightly worse than that of SIS.

Another advantage of HOLP is its scale invariance in the signal part XT (XXT )−1Xβ. In

contrast, SIS is not scale-invariant in XTXβ and its performance may be affected by how

the variables are scaled.

3 Asymptotic Properties

3.1 Conditions and assumptions

Recall the linear model

y = β1x1 + β2x2 + · · ·+ βpxp + ε,

where x = (x1, · · · , xp)T is the random predictor vector, ε is the random error and y is the

response. In this paper, X denotes the design matrix. Define Z and z respectively as

Z = XΣ−1/2, z = Σ−1/2x,

where Σ = cov(x) is the covariance matrix of the predictors. For simplicity, we assume xj’s

to have mean 0 and standard deviation 1, i.e, Σ is the correlation matrix. It is easy to see

that the covariance matrix of z is an identity matrix. The tail behavior of the random error

has a significant impact on the screening performance. To capture that in a general form,
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we present the following tail condition as a characterization of different distribution families

studied in Vershynin (2010).

Definition 3.1. (q-exponential tail condition) A zero mean distribution F is said to

have a q-exponential tail, if any N ≥ 1 independent random variables εi ∼ F satisfy that for

any a ∈ RN with ‖a‖2 = 1, the following inequality holds

P

(
|
N∑
i=1

aiεi| > t

)
≤ exp(1− q(t))

for any t > 0 and some function q(·).

For example, if εi ∼ N(0, 1), then
∑N

i=1 aiεi ∼ N(0, 1). With the classical bound on the

Gaussian tail, one can show that the Gaussian distribution admits a square-exponential tail

in that q(t) = t2/2.

This characterization of the tail behavior is an analog of Proposition 5.10 and 5.16 in Ver-

shynin (2010) and is very general. As shown in Vershynin (2010), we have q(t) = O(t2/K2)

for some constant K depending on F if F is sub-Gaussian including Gaussian, Bernoulli,

and any bounded random variables. And we have q(t) = O(min{t/K, t2/K2}) if F is sub-

exponential including exponential, Poisson and χ2 distribution. Moreover, as shown in Zhao

and Yu (2006), any random variable satisfies q(t) = 2k log t + O(1) if it has bounded 2kth

moments for some positive integer k.

Throughout this paper, ci and Ci in various places are used to denote positive constants

independent of the sample size and the dimensionality. We make the following assumptions.

A1. The transformed z has a spherically symmetric distribution and there exist some c1 > 1

and C1 > 0 such that

P

(
λmax(p

−1ZZT ) > c1 or λmin(p−1ZZT ) < c−11

)
≤ e−C1n,

where λmax(·) and λmin(·) are the largest and smallest eigenvalues of a matrix respec-

tively. Assume p > c0n for some c0 > 1.

A2. The random error ε has mean zero and standard deviation σ, and is independent of x.

The standardized error ε/σ has q-exponential tails with some function q(·).

A3. We assume that var(y) = O(1) and that for some κ ≥ 0, ν ≥ 0, τ ≥ 0 and c2, c3, c4 > 0,

min
j∈S
|βj| ≥

c2
nκ
, s ≤ c3n

ν and cond(Σ) ≤ c4n
τ ,
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where cond(Σ) = λmax(Σ)/λmin(Σ) is the conditional number of Σ.

The assumptions are similar to those in Fan and Lv (2008) with a key difference. The strong

condition on the marginal correlation between y and those xj with j ∈ S required by SIS to

satisfy

min
j∈S
|cov(β−1j y, xj)| ≥ c5 (2)

for some constant c5, is no longer needed for HOLP. This marginal correlation condition,

as pointed out by Fan and Lv (2008), can be easily violated if variables are correlated.

Assumption A1 is similar to but weaker than the concentration property in Fan and Lv

(2008). See also Bai (1999). They require all the submatrices of Z consisting of more than

cn rows for some positive c to satisfy this eigenvalue concentration inequality, while here we

only require Z itself to hold. The proof in Fan and Lv (2008) can be directly applied to show

that A1 is true for the Gaussian distribution, and the results in Section 5.4 of Vershynin

(2010) show that the deviation inequality is also true for any sub-Gaussian distribution.

It becomes clear later in the proof that the inequality in A1 is not a critical condition for

variable screening. In fact, it can be excluded if the model is nearly noiseless. In A3, κ

controls the speed at which nonzero βj’s decay to 0, ν is the sparsity rate, and τ controls

the singularity of the covariance matrix.

3.2 Main theorems

We establish the important properties of HOLP by presenting three theorems.

Theorem 1. (Screening property) Assume that A1–A3 hold. If we choose γn such that

pγn
n1−τ−κ → 0 and

pγn
√

log n

n1−τ−κ →∞, (3)

then for the same C1 specified in Assumption A1, we have

P

(
MS ⊂Mγn

)
= 1−O

{
exp

(
− C1

n1−2κ−5τ−ν

2 log n

)}
− s · exp

{
1− q

(√
C1n

1/2−2τ−κ
√

log n

)}
.

Note that we do not make any assumption on p in Theorem 1 as long as p > c0n,

allowing p to grow even faster than the exponential rate of the sample size commonly seen

in the literature. The result in Theorem 1 can be of independent interest. If we specialize

the dimension to ultra-high dimensional problems, we have the following strong results.

Theorem 2. (Screening consistency) In addition to the assumptions in Theorem 1, if p
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further satisfies

log p = o

(
min

{
n1−2κ−5τ

2 log n
, q

(√
C1n

1/2−2τ−κ
√

log n

)})
, (4)

then for the same γn defined in Theorem 1 and the same C1 specified in A1, we have

P

(
min
j∈S
|β̂j| >γn > max

j 6∈S
|β̂j|
)

= 1−O
{

exp

(
− C1

n1−2κ−5τ−ν

2 log n

)
+ exp

(
1− 1

2
q

(√
C1n

1/2−2τ−κ
√

log n

))}
.

Alternatively, we can choose a submodel Md with d � nι for some ι ∈ (ν, 1] such that

P

(
MS ⊂Md

)
= 1−O

{
exp

(
− C1

n1−2κ−5τ−ν

2 log n

)
+ exp

(
1− 1

2
q

(√
C1n

1/2−2τ−κ
√

log n

))}
.

The first part of Theorem 2 states that if the number of predictors satisfies the condition,

the important and unimportant variables are separable by simply thresholding the estimated

coefficients in β̂. The second part simply states that as long as we choose a submodel with

a dimension larger than that of the true model, we are guaranteed to choose a superset of

the variables that contains the true model with probability close to one. If we choose d = s,

then HOLP indeed selects the true model with an overwhelming probability. This result

seems surprising at first glance. It is, however, much weaker than the consistency of the

Lasso under the irrepresentable condition (Zhao and Yu, 2006), as the latter gives parameter

estimation and variable selection at the same time, while our screening procedure is only

used for pre-selecting variables.

When the error ε follows a sub-Gaussian distribution, HOLP can achieve screening con-

sistency when the number of covariates increases exponentially with the sample size.

Corollary 1. (Screening consistency for sub-Gaussian errors) Assume A1–A3. If the stan-

dardized error follows a sub-Gaussian distribution, i.e., q(t) = O(t2/K2) where K is some

constant depending on the distribution, then the condition on p becomes

log p = o

(
n1−2κ−5τ

log n

)
,

and for the same γn defined in Theorem 1 we have

P

(
min
i∈S
|β̂i| > γn > max

i 6∈S
|β̂i|
)

= 1−O
{

exp

(
− C1

n1−2κ−5τ−ν

2 log n

)}
,
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and with d � nι for some ι ∈ (ν, 1], we have

P

(
MS ⊂Md

)
= 1−O

{
exp

(
− C1

n1−2κ−5τ−ν

2 log n

)}
.

The next result is an extension of HOLP to the ridge regression. Recall the ridge regres-

sion estimate

β̂(r) = (XTX + rIp)
−1XTY = XT (XXT + rIn)−1Y.

By controlling the diverging rate of r, a similar screening property as in Theorem 2 holds

for the ridge regression estimate.

Theorem 3. (Screening consistency for ridge regression) Assume A1–A3 and that p satisfies

(4). If the tuning parameter r satisfies r = o(n1−(5/2)τ−κ) and in addition to (3), γn further

satisfies that γnp/(rn
(3/2)τ )→∞, then for the same C1 in A1, we have

P

(
min
i∈S
|β̂i(r)| >γn > max

i 6∈S
|β̂i(r)|

)
= 1−O

{
exp

(
− C1

n1−5τ−2κ−ν

2 log n

)
+ exp

(
1− 1

2
q

(√
C1n

1/2−2τ−κ
√

log n

))}
.

With d � nι for some ι ∈ (ν, 1] we have

P

(
MS ⊂Md

)
= 1−O

{
exp

(
− C1

n1−2κ−5τ−ν

2 log n

)
+ exp

(
− 1

2
q

(√
C1n

1/2−2τ−κ
√

log n

))}
.

In particular, for any fixed positive constant r, the above results hold.

Theorem 3 shows that ridge regression can also be used for screening variables. We

recommended to use ridge regression for screening when XXT is close to degeneracy or

when n ≈ p. Otherwise, HOLP is suggested due to its simplicity as it is tuning free. It is

also easy to see that the ridge regression estimate has the same computational complexity

as the HOLP estimator. A ridge regression estimator also provides potential for extending

the HOLP screening procedure to models other than in linear regression.

One practical issue for variable screening is how to determine the size of the submodel.

As shown in the theory, as long as the size of the submodel is larger than the true model,

HOLP preserves the non-zero predictors with an overwhelming probability. Thus, if we can

assume s � nν for some ν < 1, we can choose a submodel with size n, n− 1 or n/ log n (Fan

and Lv, 2008; Li, Peng, et al., 2012), or using techniques such as extended BIC (Chen and

Chen, 2008) to determine the submodel size (Wang, 2009). For simplicity, we mainly use n
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as the submodel size in numerical study, with some exploration on the extended BIC.

4 Numerical Studies

In this section, we provide extensive numerical experiments to evaluate the performance of

HOLP. The structure of this section is organized as follows. In Part 1, we compare the

screening accuracy of HOLP to that of (I)SIS in Fan and Lv (2008), robust rank correlation

based screening (RRCS, Li, et al. 2012), the forward regression (FR, Wang, 2009), and the

tilting (Cho and Fryzlewicz, 2012). In Part 2, Theorem 2 and 3 are numerically assessed

under various setups. Because computational complexity is key to a successful screening, in

Part 3, we document the computational time of various methods. Finally, we evaluate the

impact of screening by comparing two-stage procedures where penalized likelihood methods

are employed after screening in Part 4. For implementation, we make use of the existing R

package “SIS” and “tilting”, and write our own code in R for forward regression.

Although not presented, we have evaluated two additional screeners. The first is the

Ridge-HOLP by setting r = 10. We found that the performance is similar to HOLP and

therefore report its result only for Part 2. Motivated by the iterative SIS of Fan and Lv

(2008), we also investigated an iterative version of HOLP by adding the variable correspond-

ing to the largest entry in HOLP, one at a time, to the chosen model. In most cases studied,

the screening accuracy of Iterative-HOLP is similar to or slightly better than HOLP but the

computational cost is much higher. As computation efficiency is one crucial consideration

and also due to the space limit, we decide not to include the results.

4.1 Simulation study I: Screening accuracy

For simulation study, we set (p, n) = (1000, 100) or (p, n) = (10000, 200) and let the random

error follow N(0, σ2) with σ2 adjusted to achieve different theoretical R2 values defined as

R2 = var(xTβ)/var(y) (Wang, 2009). We use either R2 = 50% for low or R2 = 90% for

high signal-to-noise ratio. We simulate covariates from multivariate normal distributions

with mean zero and specify the covariance matrix as the following six models. For each

simulation setup, 200 datasets are used for p = 1000 and 100 datasets are for p = 10000.

We report the probability of including the true model by selecting a sub-model of size n. No

results are reported for tilting when (p, n) = (10000, 200) due to its immense computational

cost.

(i) Independent predictors. This example is from Fan and Lv (2008) and Wang (2009)

with S = {1, 2, 3, 4, 5}. We generate Xi from a standard multivariate normal distribution

12



with independent components. The coefficients are specified as

βi = (−1)ui(|N(0, 1)|+ 4 log n/
√
n), where ui ∼ Ber(0.4) for i ∈ S and βi = 0 for i 6∈ S.

(ii) Compound symmetry . This example is from Example I in Fan and Lv (2008) and

Example 3 in Wang (2009), where all predictors are equally correlated with correlation ρ,

and we set ρ = 0.3, 0.6 or 0.9. The coefficients are set to be βi = 5 for i = 1, ..., 5 and βi = 0

otherwise.

(iii) Autoregressive correlation . This correlation structure arises when the predictors

are naturally ordered, for example in time series. The example used here is Example 2 in

Wang (2009), modified from the original example in Tibshirani (1996). More specifically, each

Xi follows a multivariate normal distribution, with cov(xi, xj) = ρ|i−j|, where ρ = 0.3, 0.6,

or 0.9. The coefficients are specified as

β1 = 3, β4 = 1.5, β7 = 2, and βi = 0 otherwise.

(iv) Factor models. Factor models are useful for dimension reduction. Our example

is taken from Meinshausen and Bühlmann (2010) and Cho and Fryzlewicz (2012). Let

φj, j = 1, 2, · · · , k be independent standard normal random variables. We set predictors

as xi =
∑k

j=1 φjfij + ηi, where fij and ηi are generated from independent standard normal

distributions. The number of the factors is chosen as k = 2, 10 or 20 in the simulation while

the coefficients are specified the same as in Example (ii).

(v) Group structure . Group structures depict a special correlation pattern. This example

is similar to Example 4 of Zou and Hastie (2005), for which we allocate the 15 true variables

into three groups. Specifically, the predictors are generated as

x1+3m = z1 +N(0, δ2), x2+3m = z2 +N(0, δ2), x3+3m = z3 +N(0, δ2),

where m = 0, 1, 2, 3, 4 and zi ∼ N(0, 1) are independent. The parameter δ2 controlling the

strength of the group structure is fixed at 0.01 as in Zou and Hastie (2005), 0.05 or 0.1 for

a more comprehensive evaluation. The coefficients are set as

βi = 3, i = 1, 2, · · · , 15; βi = 0, i = 16, · · · , p.

(vi) Extreme correlation . We generate this example to illustrate the performance of

HOLP in extreme cases motivated by the challenging Example 4 in Wang (2009). As in

Wang (2009), assuming zi ∼ N(0, 1) and wi ∼ N(0, 1), we generate the important xi’s as
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xi = (zi + wi)/
√

2, i = 1, 2, · · · , 5 and xi = (zi +
∑5

j=1wj)/2, i = 16, · · · , p. Setting the

coefficients the same as in Example (ii), one can show that the correlation between the

response and the true predictors is no larger than two thirds of that between the response

and the false predictors. Thus, the response variable is more correlated to a large number

of unimportant variables. To make the example even more difficult, we assign another two

unimportant predictors to be highly correlated with each true predictor. Specifically, we let

xi+s, xi+2s = xi + N(0, 0.01), i = 1, 2, · · · , 5. As a result, it will be extremely difficult to

identify any important predictor.

Table 1: Probability to include the true model when (p, n) = (10000, 200)

Example HOLP SIS RRCS ISIS FR Tilting

R2 = 50%

(i) Independent predictors 0.900 0.940 0.890 0.620 0.570

(ii) Compound symmetry
ρ = 0.3 0.310 0.310 0.250 0.060 0.020 —
ρ = 0.6 0.020 0.020 0.010 0.000 0.000 —
ρ = 0.9 0.000 0.000 0.000 0.000 0.000 —

(iii) Autoregressive
ρ = 0.3 0.810 0.860 0.760 0.740 0.740 —
ρ = 0.6 1.000 1.000 1.000 0.580 0.680 —
ρ = 0.9 1.000 1.000 1.000 0.480 0.390 —

(iv) Factor models
k = 2 0.450 0.010 0.010 0.020 0.240 —
k = 10 0.050 0.000 0.000 0.000 0.010 —
k = 20 0.030 0.000 0.000 0.000 0.000 —

(v) Group structure
δ2 = 0.1 1.000 1.000 1.000 0.000 0.000 —
δ2 = 0.05 1.000 1.000 1.000 0.000 0.000 —
δ2 = 0.01 1.000 1.000 1.000 0.000 0.000 —

(vi) Extreme correlation 0.580 0.000 0.000 0.000 0.040 —

R2 = 90%

(i) Independent predictors 1.000 1.000 1.000 1.000 1.000

(ii) Compound symmetry
ρ = 0.3 1.000 0.820 0.710 1.000 1.000 —
ρ = 0.6 0.960 0.550 0.320 0.420 0.960 —
ρ = 0.9 0.100 0.030 0.000 0.000 0.000 —

(iii) Autoregressive
ρ = 0.3 0.990 0.990 0.980 1.000 1.000 —
ρ = 0.6 1.000 1.000 1.000 1.000 1.000 —
ρ = 0.9 1.000 1.000 1.000 1.000 1.000 —

(iv) Factor model
k = 2 0.990 0.010 0.020 0.350 0.990 —
k = 10 0.850 0.000 0.000 0.060 0.700 —
k = 20 0.540 0.000 0.000 0.010 0.230 —

(v) Group structure
δ2 = 0.1 1.000 1.000 1.000 0.000 0.000 —
δ2 = 0.05 1.000 1.000 1.000 0.000 0.000 —
δ2 = 0.01 1.000 1.000 1.000 0.000 0.000 —

(vi) Extreme correlation 1.000 0.000 0.000 0.000 0.210 —

Brief summary of the simulation results

The results for (p, n) = (1000, 100) are shown in Table S.1 in the Supplementary Materials

and those for (p, n) = (10000, 200) are in Table 1. We summarize the results in following

three points. First, when the signal-to-noise ratio is low, HOLP, RRCS and SIS outperform

ISIS, FR and Tilting in Example (i), (ii), (iii), and (v). For the factor model (iv), neither

SIS nor RRCS works while HOLP gives the best performance. In addition, HOLP seems

to be the only effective screening method for the extreme correlation model (vi). The poor

performance of ISIS, forward regression and tilting in selected scenarios of Example (ii),
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(iii), and (v) might be caused by the low signal-to-noise ratio, as these methods all depend

on the marginal residual deviance that is unreliable when the signal is weak. In particular,

they require each true predictor to give the smallest marginal deviance at some step in order

to be selected, imposing a strong condition for achieving satisfactory screening results. By

contrast, SIS, RRCS and HOLP select the sub-model in one step and thus eliminate this

strong requirement. The poor performance of SIS and RRCS in Example (iv) and (vi) might

be caused by the violation of marginal correlation assumption (2) as discussed before.

Second, when the signal-to-noise ratio increases to 90%, significant improvements are

seen for all methods. Remarkably, HOLP remains competitive and achieves an overall good

performance. There are occasions where forward regression and tilting perform slightly better

than HOLP, most of which, however, involve only relatively simple structures. The superior

performance of forward regression and tilting under simple structures mainly benefit from

their one-at-a-step screening strategy and the high signal-to-noise ratio. In the simulation

study that is not presented here, we also implemented an iterative version of HOLP, which

achieves a similar performance as forward regression and HOLP in most cases. Yet this

strategy fails to a large extent for the group-structured correlation in Example (v).

Another important feature of HOLP, RRCS and (I)SIS is the flexibility in adjusting the

sub-model size. Unlike forward regression and tilting, no limitation is imposed on the sub-

model size for HOLP, RRCS and (I)SIS. There might be an advantage to choose a sub-model

of size greater than n, so that a better estimation or prediction accuracy can be achieved.

For example, in Example (ii) when (p, n, ρ, R2) = (10000, 200, 0.9, 90%), by selecting 200 co-

variates, HOLP preserves the true model with probability 10%. This probability is improved

to around 50% if the sub-model size increases to 1000, a ten-fold reduction in dimensionality

still. In contrast to HOLP, it is impossible for forward regression and tilting to select a

sub-model of size larger than n due to the lack of degrees of freedom.

As shown in Section 3, HOLP relaxes the marginal correlation condition (2) required

by SIS. We verify this statement by comparing HOLP and SIS in a scenario where some

important predictors are jointly correlated but marginally uncorrelated with the response.

We take the setup in Example (ii) with the following model specification

y = 5x1 + 5x2 + 5x3 + 5x4 − 20ρx5 + ε.

It is easy to verify that cov(x5, y) = 0, i.e., x5 is marginally uncorrelated with y. We simulate

200 data sets with (p, n) = (1000, 100) or (p, n) = (10000, 200) with different values of ρ.

The probability of including the true model is plotted in Fig 2. We see that HOLP performs

universally better than SIS for any ρ.

15



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p = 1000, n = 100

pr
ob

ab
ilit

y

correlation ρ
 

 

HOLP
SIS

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p = 10000, n = 200

pr
ob

ab
ilit

y

correlation ρ
 

 

HOLP
SIS

Figure 2: Probability of including the true model for the example where x5 is marginally
uncorrelated but jointly correlated with y.

4.2 Simulation study II: Verification of Theorem 2 and 3

Theorem 2 and 3 state that HOLP and its ridge regression counterpart are able to separate

the important variables from those unimportant ones with a large probability, and thus

guarantee the effectiveness of variable screening. In particular, the two theorems indicate

that by choosing a sub-model of size s, we are guaranteed to exactly select the true model.

In this study, we revisit the examples in Simulation I by varying n, p, s to provide numerical

evidences for this claim. Since there are multiple setups, for convenience we only look at

Example (ii), (iii), (iv) and (v) by fixing the parameters at ρ = 0.5, k = 5, δ2 = 0.01 for

R2 = 90% and ρ = 0.3, k = 2, δ2 = 0.01 for R2 = 50% respectively. Because Example (vi) is

difficult, in order to demonstrate the two theorems for moderate sample sizes, we relax the

correlation between the important and unimportant predictors from 0.99 to 0.90 and use a

different growing speed for the number of parameters for this case. To be precise, we set

p =

 4× bexp(n1/3)c for examples except Example (vi)

20× bexp(n1/4)c for Example (vi)

and

s =

 1.5× bn1/4c for R2 = 90%

bn1/4c for R2 = 50%
,
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where b·c is the floor function. We vary the sample size from 50 to 500 with an increment of

50 and simulate 50 data sets for each example. The probability that mini∈S |β̂i| > maxi 6∈S |β̂i|
is plotted in Figure 3 for HOLP and in Figure S.1 in Part D of the Supplementary Materials

for the ridge HOLP with r = 10.
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Figure 3: HOLP: P (mini∈S |β̂i| > maxi 6∈S |β̂i|) versus the sample size n.

The increasing trend of the selection probability is explicitly illustrated in Fig 3. Although

not plotted, the probability for example (vi) when R2 = 50% also tends to one if the sample

size is further increased. Thus, we conclude that the probability of correctly identifying the

importance rank tends to one as the sample size increases. A rough exponential pattern

can be recognized from the curves, corresponding to the rate specified in Corollary 1. In

addition, the probability of identifying the true model is quite similar between HOLP and

Ridge-HOLP, echoing the statement we made at the beginning of Section 4.

4.3 Simulation study III: Computation efficiency

Computation efficiency is a vital concern for variable screening algorithms, as the primary

motivation of screening is to assist variable selection methods, so that they are scalable to

large data sets. In this section, we use Example (ii) in Simulation I with ρ = 0.9, n = 100

and R2 = 90% to illustrate the computation efficiency of HOLP as compared to SIS, ISIS,

forward regression, and tilting. In Figure 4, we fix the data dimension at p = 1000, vary the

select sub-model size from 1 to 100, and record the runtime for each method, while in Figure

5, we fix the sub-model size at d = 50 and vary the data dimension p from 50 to 2500. Note

that the R package ’SIS’ computes XTY in an inefficient way. For a fair comparison, we
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write our own code for computing XTY . Because the computation complexity of tilting is

significantly higher than all other methods, a separate plot excluding tilting is provided for

each situation.
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Figure 4: Computational time against the submodel size when (p, n) = (1000, 100).
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Figure 5: Computational time against the total number of the covariates when (d, n) =
(50, 100).

As can be seen from the figures, HOLP, RRCS and SIS are the three most efficient

algorithms. RRCS is actually slightly slower than HOLP and SIS, but not significantly.
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On the other hand, tilting demands the heaviest computational cost, followed by forward

regression and ISIS. This result can be interpreted as follows. When p is fixed as in Figure

4, HOLP, RRCS and SIS only incurs a linear complexity on sub-model size d, whereas the

complexity of forward regression is approximately quadratic and tilting is O(k2d2 + k3d)

where k is the size of active set (Cho and Fryzlewicz, 2012). When d is fixed as in Figure

5, the computational time for all methods other than tilting is linearly increasing on the

total number of predictors p, while the time for tilting increasing quadratically with p.

We thus conclude that SIS, RRCS and HOLP are the three preferred methods in terms of

computational complexity.

4.4 Simulation study IV: Performance comparison after screening

Screening as a preselection step aims at assisting the second stage refined analysis on pa-

rameter estimation and variable selection. To fully investigate the impact of screening on

the second stage analysis, we evaluate and compare different two-stage procedures where

screening is followed by variable selection methods such as Lasso or SCAD, as well as these

one-stage variable selection methods themselves. In this section, we look at the six examples

in Simulation study I, where the parameters are fixed at ρ = 0.6, k = 10, δ2 = 0.01 and

R2 = 90%. To choose the tuning parameter in Lasso or SCAD, we make use of the extended

BIC (Chen and Chen, 2008; Wang, 2009) to determine a final model that minimizes

EBIC = log
RSS

n
+
d

n
(log n+ 2 log p),

where d is the number of the predictors in the full model or selected sub-model. For all two-

stage methods, we first choose a sub-model of size n, or use extended BIC to determine the

sub-model size (only for HOLP-EBICS), and then apply either Lasso or SCAD to the sub-

model to output the final result. We compare HOLP-Lasso, HOLP-SCAD, HOLP-EBICS

(abbreviation for HOLP-EBIC-SCAD) to SIS-SCAD, RRCS-SCAD, ISIS-SCAD, Tilting,

FR-Lasso, FR-SCAD, as well as Lasso and SCAD. The reason we only apply SCAD to SIS

and ISIS is that SCAD is shown to achieve the best performance in the original paper (Fan

and Lv, 2008).

Finally, the performance is evaluated for each method in terms of the following measure-

ments: the number of false negatives (#FNs, i.e., wrong zeros), the number of false positives

(#FPs, i.e., wrong predictors), the probability that the selected model contains the true

model (Coverage), the probability that the selected model is exactly the true model (Exact,

i.e., no false positives or negatives), the estimation error (denoted as ‖β̂ − β‖2), the average
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size of the selected model (Size), and the algorithm’s running time (in seconds per data set).

As in Simulation study I, we simulate 200 data sets for (p, n) = (1000, 100) and 100 data

sets for (p, n) = (10000, 200). There will be no results for tilting in the latter case because

of the immense computational cost. The results for SIS is provided by the package ’SIS’,

except for the computing time, which is recorded separately by calculating XTY directly as

discussed before. All the simulations are run in single thread on PC with an I7-3770 CPU,

where we use the package “glmnet” for the Lasso and “ncvreg” for the SCAD.

Results of the nine methods are shown in Table S.2 in the Supplementary Materials

and Table 2. As can be seen, most methods work well for data sets with relatively simple

structures, for example, the independent and autoregressive correlation structure; likewise,

most of them fail for complicated ones, for example, the factor model with 10 factors. The

results can be summarized in four main points. First, HOLP-SCAD achieves the smallest

or close to the smallest estimation error for most cases. Second, SCAD has the overall best

coverage probability and the smallest number of false negatives, followed closely by HOLP-

SCAD and FR-SCAD. One potential caveat is, however, the high false positives for SCAD

in many cases. Third, using extended BIC to determine the sub-model size can significantly

reduce the false positive rate, although such gain is achieved at the expense of a higher false

negative rate and a lower coverage probability. It is also worth noting that using extended

BIC can further speed up two-stage methods. Finally, Lasso, HOLP-Lasso, HOLP-SCAD,

RRCS-SCAD and SIS-SCAD are the most efficient algorithms in terms of computation.

The simulation results suggest that HOLP can not only speed up Lasso and SCAD,

but also maintain or even improve their performance in model selection and estimation.

In particular, HOLP-SCAD achieves an overal attractive performance. We thus conclude

that HOLP is an efficient and effective variable screening algorithm in helping down-stream

analysis for parameter estimation and variable selection.

4.5 A real data application

This data set was used to study the mammalian eye diseases by Scheetz et al. (2006) where

gene expressions on the eye tissues from 120 twelve-week-old male F2 rats were recorded.

Among the genes under study, of particular interest is a gene coded as TRIM32 responsible

for causing Bardet-Biedl syndrome (Chiang et al., 2006).

Following Scheetz et al. (2006), we choose 18976 probe sets as they exhibited sufficient

signal for reliable analysis and at least 2-fold variation in expressions. The intensity values of

these genes are evaluated in the logarithm scale and normalized using the method in Irizarry,

et al. (2003). Because TRIM32 is believed to be only linked to a small number of genes, we
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Table 2: Model selection results for (p, n) = (10000, 200)

example #FNs #FPs Coverage(%) Exact(%) Size ||β̂ − β||2 time (sec)

(i) Independent
predictors

s = 5, ||β||2 = 3.8

Lasso 0.00 0.20 100.0 78.0 5.20 1.21 1.15
SCAD 0.00 0.00 100.0 100.0 5.00 0.26 18.79
ISIS-SCAD 0.00 0.00 100.0 100.0 5.00 0.26 211.6
SIS-SCAD 0.04 0.00 96.0 96.0 4.96 0.42 0.88
RRCS-SCAD 0.07 0.00 93.0 93.0 4.93 0.53 18.12
FR-Lasso 0.00 0.32 100.0 78.0 5.32 1.04 5246.6
FR-SCAD 0.00 0.00 100.0 100.0 5.00 0.26 5247.2
HOLP-Lasso 0.02 0.20 98.0 78.0 5.18 1.21 0.45
HOLP-SCAD 0.02 0.00 98.0 98.0 4.98 0.29 0.97
HOLP-EBICS 0.19 0.00 82.0 82.0 4.81 0.55 1.19
Tilting —

(ii) Compound
symmetry

s = 5, ||β||2 = 8.6

Lasso 1.56 2.41 34.0 0.0 5.85 9.00 1.51
SCAD 0.01 3.65 99.0 6.0 8.64 4.10 251.5
ISIS-SCAD 1.20 5.25 38.0 15.0 9.05 7.24 465.1
SIS-SCAD 1.51 6.19 26.0 19.0 9.68 7.97 3.84
RRCS-SCAD 1.72 6.27 22.0 17.0 9.55 8.23 25.26
FR-Lasso 0.14 6.89 86.0 0.0 11.95 7.61 6904.2
FR-SCAD 0.20 3.35 85.0 6.0 8.15 4.80 6909.3
HOLP-Lasso 1.24 2.65 45.0 4.0 6.41 8.55 0.60
HOLP-SCAD 0.04 3.61 96.0 10.0 8.57 2.79 4.30
HOLP-EBICS 0.25 1.22 77.0 45.0 4.97 3.72 1.43
Tilting —

(iii) Autoregressive
correlation

s = 3, ||β||2 = 3.9

Lasso 0.00 1.06 100.0 0.0 4.06 0.62 2.41
SCAD 0.00 0.00 100.0 100.0 3.00 0.16 34.53
ISIS-SCAD 0.00 0.00 100.0 100.0 3.00 0.16 342.8
SIS-SCAD 0.00 0.00 100.0 100.0 3.00 0.16 1.44
RRCS-SCAD 0.00 0.00 100.0 100.0 3.00 0.16 23.13
FR-Lasso 0.00 1.13 100.0 0.0 4.13 0.56 10251.2
FR-SCAD 0.00 0.00 100.0 100.0 3.00 0.16 10252.1
HOLP-Lasso 0.00 1.12 100.0 0.0 4.12 0.60 1.10
HOLP-SCAD 0.00 0.00 100.0 100.0 3.00 0.16 1.78
HOLP-EBICS 0.00 0.00 100.0 100.0 3.00 0.16 2.21
Tilting —

(iv) Factor Models

s = 5, ||β||2 = 8.6

Lasso 4.79 6.17 0.0 0.0 6.38 11.32 1.46
SCAD 0.11 21.08 91.0 4.0 25.97 9.41 76.30
ISIS-SCAD 3.09 18.06 3.0 3.0 19.97 14.27 409.8
SIS-SCAD 4.49 7.95 0.0 0.0 8.46 12.45 3.34
RRCS-SCAD 4.47 8.16 0.0 0.0 8.69 12.50 25.80
FR-Lasso 3.54 4.45 13.0 0.0 5.91 19.40 7340.1
FR-SCAD 1.12 21.89 58.0 6.0 25.77 17.18 7341.8
HOLP-Lasso 3.91 6.00 1.0 0.0 7.09 11.36 0.58
HOLP-SCAD 0.54 14.02 68.0 7.0 18.48 8.83 3.00
HOLP-EBICS 1.70 9.30 25.0 10.0 22.60 10.56 1.69
Tilting —

(v) Group
structure

s = 5, ||β||2 = 19.4

Lasso 7.82 0.10 0.0 0.0 7.27 13.14 1.51
SCAD 11.99 115.40 0.0 0.0 118.44 25.22 65.67
ISIS-SCAD 12.00 26.06 0.0 0.0 29.06 22.70 490.4
SIS-SCAD 11.98 21.73 0.0 0.0 24.75 22.68 2.19
RRCS-SCAD 11.98 21.13 0.0 0.0 24.15 22.77 20.13
FR-Lasso 11.75 0.89 0.0 0.0 4.14 19.43 6916.9
FR-SCAD 11.96 21.50 0.0 0.0 24.54 25.40 6918.0
HOLP-Lasso 7.75 0.11 0.0 0.0 7.36 13.14 0.62
HOLP-SCAD 11.98 21.95 0.0 0.0 24.97 22.48 2.46
HOLP-EBICS 11.98 0.92 0.0 0.0 3.94 23.23 1.43
Tilting —

(vi) Extreme
correlation

s = 5, ||β||2 = 8.6

Lasso 1.06 11.46 0.0 0.0 15.40 8.60 1.34
SCAD 0.00 0.00 100.0 100.0 5.00 0.54 105.2
ISIS-SCAD 4.97 3.81 0.0 0.0 3.85 13.18 507.4
SIS-SCAD 4.93 2.67 0.0 0.0 2.74 12.10 3.55
RRCS-SCAD 5.00 2.70 0.0 0.0 2.70 12.10 27.75
FR-Lasso 2.41 6.32 3.0 0.0 8.89 10.30 7317.6
FR-SCAD 2.54 2.54 3.0 3.0 5.00 11.21 7319.2
HOLP-Lasso 0.89 10.72 42.0 0.0 14.83 7.82 0.43
HOLP-SCAD 0.00 0.00 100.0 100.0 5.00 0.54 2.70
HOLP-EBICS 0.70 0.70 40.0 40.0 5.00 2.17 1.51
Tilting —
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confine our attention to the top 5000 genes with the highest sample variance. For comparison,

the nine methods in simulation study IV are examined via 10-fold cross validation and the

selected models are refitted via ordinary least squares for prediction purposes. We report

the means and the standard errors of the mean square errors for prediction and the final

chosen model size in Table 3. As a reference, we also report these values for the null model.

Table 3: The 10-fold cross validation error for nine different methods

Methods Mean errors Standard errors Final size (median)
Lasso 0.011 0.009 5
SCAD 0.015 0.011 4
ISIS-SCAD 0.012 0.006 4
SIS-SCAD 0.010 0.004 3
RRCS-SCAD 0.010 0.006 2
FR-Lasso 0.016 0.019 4
FR-SCAD 0.014 0.014 3
HOLP-Lasso 0.012 0.006 5
HOLP-SCAD 0.010 0.006 5
HOLP-EBICS 0.010 0.006 5
tilting 0.017 0.021 6
NULL 0.021 0.025 0

From Table 3, it can be seen that models selected by HOLP-SCAD, SIS-SCAD and RRCS-

SCAD achieve the smallest cross-validation error. It might also be interesting to compare

the selected genes by using the full data set, of which a detailed discussion is provided in Part

E and Table S.3 in the Supplementary Materials. In particular, gene BE107075 is chosen by

all methods other than tilting. As reported in Breheny and Huang (2013), this gene is also

selected via group Lasso and group SCAD.

5 Conclusion

In this article, we propose a simple, efficient, easy-to-implement, and flexible method HOLP

for screening variables in high dimensional feature space. Compared to other one-stage

screening methods such as SIS, HOLP does not require the strong marginal correlation

assumption. Compared to iterative screening methods such as forward regression and tilting,

HOLP can be more efficiently computed. Thus, it seems that HOLP holds the two keys at the

same time for successful screening: flexible conditions and attractive computation efficiency.

Extensive simulation studies show that the performance of HOLP is very competitive, often

among the best approaches for screening variables under diverse circumstances with small

demand on computational resources. Finally, HOLP is naturally connected to the familiar

22



least-squares estimate for low dimensional data analysis and can be understood as the ridge

regression estimate when the ridge parameter goes to zero.

When n ≈ p, concerns are raised for the HOLP as XXT is close to degeneracy. While

the screening matrix XT (XXT )−1X = UUT remains diagonally dominant, the noise term

XT (XXT )−1ε = UD−1V T ε explodes in magnitude and may dominate the signal, affecting

the performance of HOLP. We illustrate this phenomenon via Example (ii) in Section 4.1

with p fixed at 1000 and R2 = 90% for various sample sizes. The probability of including

the true model by retaining a sub-model with size min{n, 100} is plotted in Fig 6 (left). It
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Figure 6: Performance of HOLP, Ridge-HOLP and Divide-HOLP for p = 1000.

can be seen that the screening accuracy of HOLP deteriorates whenever n becomes close to

p. We propose two methods to overcome this issue.

• Ridge-HOLP: As presented in Theorem 3, one approach is to use Ridge-HOLP by

introducing the ridge parameter r to control the explosion of the noise term. In fact,

one can show that σmax(X
T (XXT +rIn)−1) ≤ r−1σmax(X), where σmax(X) ≈ O(

√
p+

√
n) ≈ O(

√
n) with large probability. See Vershynin (2010). We verify the performance

of Ridge-HOLP via the same example and plot the result with r = 10 in Fig 6 (middle).

• Divide-HOLP: A second approach is to employ the “divide-conquer-combine” strat-

egy, where we randomly partition the data into m subsets, apply HOLP on each to

obtain m reduced models (with a size of min{n/m, 100/m}), and combine the results.

This approach ensures Assumption A1 is satisfied on each subset and can be shown to

achieve the same convergence rate as if the data set were not partitioned. In addition,

it reduces the computational complexity from O(n2p) to O(n2p/m). The result on the

same example is shown in Fig 6 (right) with m = 2. The performance of Divide-HOLP

is on par with Ridge-HOLP when n is close to p.

There are several directions to further the study on HOLP. First, it is of great interest

to extend HOLP to deal with a larger class of models such as generalized linear models.
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To address this problem, we may make use of a ridge regression version of HOLP and

study extensions of the results presented in this paper. Second, we may want to study

the screening problem for generalized additive models where nonlinearity is present. Third,

HOLP may be used in compressed sensing (Donoho, 2006) as in Xue and Zou (2011) for

exactly recovering the important variables if the sensing matrix satisfies some properties.

Fourth, we are currently applying the proposed framework for screening variables in Gaussian

graphical models. The results will be reported elsewhere.

6 Acknowledgement

We thank the three referees, the Associate Editor and the Joint Editor for their constructive

comments. Wangs research was partly supported by grant NIH R01-ES017436 from the

National Institute of Environmental Health Sciences.

References

Bai, Z. D. (1999). Methodologies in spectral analysis of large dimensional random matrices,
A review. Statistica Sinica, 9, 611–677.

Barut, E., Fan, J., and Verhasselt, A. (2012). Conditional sure independence screening.
Technical report. Princeton University, Princeton, New Jersey, USA.

Breheny, P. and Huang, J. (2013). Group descent algorithms for nonconvex penalized linear
and logistic regression models with grouped predictors. Technical report.

Candes, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much
larger than n (with discussion). Annals of Statistics, 35, 2313–2351.

Chen, J. and Chen, Z. (2008). Extended Bayesian information criteria for model selection
with large model spaces. Biometrika, 95, 759–771.

Chiang, A., Beck, J., Yen, H., Tayeh, M., Scheetz, T., Swiderski, R., Nishimura, D., Braun,
T., Kim, K., Huang, J., Elbedour, K., Carmi, R., Slusarski, D., Casavant, T., Stone, E.,
and Sheffield, V. (2006). Homozygosity mapping with SNP arrays identifies TRIM32, an
E3 ubiquitin ligase, as a BardetBiedl syndrome gene (BBS11). Proceedings of the National
Academy of Sciences, 103, 6287-6292.

Chikuse, Y. (2003). Statistics on Special Manifolds. Lecture Notes in Statistics. Springer-
Verlag, Berlin.

Cho, H. and Fryzlewicz, P. (2012). High-dimensional variable selection via tilting. Journal
of the Royal Statistical Society Series B, 74, 593–622.

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52,
1289–1306.

24



Fan, J. and Fan, Y. (2008). High-dimensional classification using features annealed indepen-
dence rules. The Annals of Statistics, 36, 2605–2637.

Fan, J., Feng, Y. and Song, R. (2011). Nonparametric independence screening in sparse
ultra-high dimensional additive models. Journal of American Statistical Association, 116,
544-557.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American Statistical Association, 96, 1348–1360.

Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature
space (with discussion). Journal of the Royal Statistical Society B, 70, 849–911.

Fan, J., Samworth, R. J., and Wu, Y. (2009). Ultrahigh dimensional feature selection: Be-
yond the linear model. Journal of Machine Learning Research, 10, 1829–1853.

Fan, J. and Song, R. (2010). Sure independence screening in generalized linear models with
NP-dimensionality. Annals of Statistics, 6, 3567–3604.

Gorst-Rasmussen, A. and Scheike, T. (2013). Independent screening for single-index hazard
rate models with ultrahigh dimensional features. Journal of the Royal Statistical Society
B, 75, 217–245.

Hall, P. and Miller, H. (2009). Using generalized correlation to effect variable selection in
very high dimensional problems. Journal of Computational and Graphical Statistics, 18,
533–550.

Hall, P., Titterington, D. M., and Xue, J. H. (2009). Tilting methods for assessing the
influence of components in a classifier. Journal of the Royal Statistical Society B, 71, 783–
803.

Huang, J., Horowitz, J. L., and Ma, S. (2008). Asymptotic properties of bridge estimators
in sparse high-dimensional regression models. The Annals of Statistics, 36, 587–613.

Irizarry, R. A., Hobbs, B., Collin, F., Beazer-barclay, Y. D., Antonellis, K. J., Scherf, U. and
Speed, T. P. (2003). Exploration, normalization, and summaries of high density oligonu-
cleotide array probe level data. Biostatistics, 4, 249–264.

Li, G., Peng, H., Zhang, J., and Zhu, L. (2012). Robust rank correlation based screening.
The Annals of Statistics, 40, 1846–1877.

Li, R., Zhong, W., and Zhu, L. (2012). Feature screening via distance correlation learning.
Journal of American Statistical Association, 107, 1129–1139.
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Supplementary Materials to ”High-dimensional
Ordinary Least-squares Projection for Screening

Variables”

A: Additional results

The Moore-Penrose inverse

Definition 6.1. For A ∈ Rm×n, a Moore-Penrose pseudo-inverse of A is defined as a matrix
A+ ∈ Rn×m such that

AA+A = A, A+AA+ = A+, (AA+)∗ = AA+, (A+A)∗ = A+A,

where A∗ is the conjugate of A.

Using this definition, we can verify X+ = XT (XXT )−1 for p ≥ n and X+ = (XTX)−1XT

for p ≤ n are both the Moore-Penrose inverse of X.

The ridge regression estimator when r → 0

Applying the Sherman-Morrison-Woodbury formula

(A+ UDV )−1 = A−1 − A−1U(D−1 + V A−1U)−1V A−1,

we have

r(rIp +XTX)−1 = Ip −XT (In +
1

r
XXT )−1X

1

r
= Ip −XT (rIn +XXT )−1X.

Multiplying XTY on both sides, we get

r(rIp +XTX)−1XTY = XTY −XT (rIn +XXT )−1XXTY.

The right hand side can be further simplified as

XTY −XT (rIn +XXT )−1XXTY

= XTY −XT (rIn +XXT )−1(rIn +XXT − rIn)Y

= XTY −XTY + r(rIn +XXT )−1Y = rXT (rIn +XXT )−1Y.

Therefore, we have
(rIp +XTX)−1XTY = XT (rIn +XXT )−1Y.

B: A brief review of the Stiefel manifold

Let P ∈ O(p) be a p× p orthogonal matrix from the orthogonal group O(p). Let H denote
the first n columns of P . Then H is in the Stiefel manifold (Chikuse, 2003). In general, the
Stiefel manifold Vn,p is the space whose points are n-frames in Rp represented as the set of
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p× n matrices X such that XTX = In. Mathematically, we can write

Vn,p = {X ∈ Rp×n : XTX = In}.

There is a natural measure (dX) called Haar measure on the Stiefel manifold, invariant under
both right orthogonal and left orthogonal transformations. We standardize it to obtain a
probability measure as [dX] = (dX)/V (n, p), where V (n, p) = 2nπnp/2/Γn(1/2p). Let Rp,n

be the space formed by all p × n nonsingular matrices. There are several useful results for
the distributions on Rp,n and Vn,p, which will be utilized in the following sections.

Lemma 1. (Fan and Lv, 2008) An n×p matrix Z can be decomposed as Z = V DUT via the
singular value decomposition, where V ∈ O(n), U ∈ Vn,p and D is an n× n diagonal matrix.
Let zTi denote the ith row of Z, i = 1, 2, · · · , n. If we assume that zis are independent and
their distribution is invariant under right orthogonal transformation, then the distribution of
Z is also invariant under O(p), i.e,

ZT
(d)
= Z, for T ∈ O(p).

As a result, we have

UT (d)
= (In, 0p−n)× Ũ ,

where Ũ is uniformly distributed on O(p). That is, U is uniformly distributed on Vn,p.

Consider a different matrix decomposition. For a p× n matrix Z, define Hz and Tz as

Hz = Z(ZTZ)−1/2, Tz = ZTZ.

Then Hz ∈ Vn,p and Z = HzT
1/2
z . This is called matrix polar decomposition, where Hz is

the orientation of the matrix Z. We cite the following result for the polar decomposition.

Lemma 2. (Chikuse, 2003, Page 41-44) Supposed that a p × n random matrix Z has the
density function of the form

fZ(Z) = |Σ|−n/2g(ZTΣ−1Z),

which is invariant under the right-orthogonal transformation of Z, where Σ is a p×p positive
definite matrix. Then its orientation Hz has the matrix angular central Gaussian distribution
(MACG) with a probability density function

MACG(Σ) = |Σ|−n/2|HT
z Σ−1Hz|−p/2.

In particular, if Z is a p× n matrix whose distribution is invariant under both the left- and
right-orthogonal transformations, then HY , with Y = BZ for BBT = Σ, has the MACG(Σ)
distribution.

When n = 1, the MACG distribution becomes the angular central Gaussian distribution,
a description of the multivariate Gaussian distribution on the unite sphere (Watson, 1983).

Lemma 3. (Chikuse, 2003, Page 70, Decomposition of the Stiefel manifold) Let H be a p×n
random matrix on Vn,p, and write

H = (H1 H2),
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with H1 being a p× q matrix where 0 < q < n. Then we can write

H2 = G(H1)U1,

where G(H1) is any matrix chosen so that (H1 G(H1)) ∈ O(p); as H2 runs over Vn−q,p, U1

runs over Vn−q,p−q and the relationship is one to one. The differential form [dH] for the
normalized invariant measure on Vn,p is decomposed as the product

[dH] = [dH1][dU1]

of those [dH1] and [dU1] on Vq,p and Vn−q,p−q, respectively.

C: Proofs of the main theory

The framework of the proof follows Fan and Lv (2008), but with many modifications in
details. Recall the proposed HOLP screening estimator

β̂ = XT (XXT )−1Y = XT (XXT )−1Xβ +XT (XXT )−1ε := ξ + η,

where ξ can be seen as the signal part and η the noise part.

Consider the singular value decomposition of Z as Z = V DUT , where V ∈ O(n), U ∈ Vn,p
and D is an n by n diagonal matrix. This gives X = ZΣ1/2 = V DUTΣ1/2. Hence, the
projection matrix can be written as

XT (XXT )−1X = Σ1/2UDV T (V DUTΣUDV T )−1V DUTΣ1/2

= Σ1/2U(UTΣU)−1UTΣ1/2 := HHT ,

where H = Σ1/2U(UTΣU)−1/2 satisfying HTH = I. In fact, H is the orientation of the
matrix Σ1/2U . Because Z is sphere symmetrically distributed and thus invariant under right
orthogonal transformation, by Lemma 1, U is then uniformly distributed on the Stiefel man-
ifold Vn,p, meaning that it is invariant under both left- and right-orthogonal transformation.
Therefore, by Lemma 2, the matrix H has the MACG(Σ) distribution with regard to the
Haar measure on Vn,p as

H ∼ |Σ|−n/2|HTΣ−1H|−p/2,

and we can write ξ in terms of H as

ξ = HHTβ.

The whole proof depends on the properties of ξ and η, where ξ requires more elaborate
analysis. Throughout the whole proof section, ‖ · ‖ denotes the l2 norm of a vector. The
following preliminary results are the foundation of the whole theory.

Property of HHTβ

In this part, we aim to evaluate the magnitude of HHTβ. Let ei = (0, · · · , 1, 0, · · · , 0)T

denote the ith natural base in the p dimension space and ẽ1 denote the n-dimensional column
vector (1, 0, · · · , 0)T . We have the following two lemmas.
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Lemma 4. If assumption A1 and A3 hold, for C > 0 and for any fixed vector v with ‖v‖ = 1,
there exist constants c′1, c

′
2 with 0 < c′1 < 1 < c′2 such that

P

(
vTHHTv < c′1

n1−τ

p
or vTHHTv > c′2

n1+τ

p

)
< 4e−Cn.

In particular for v = β, whose norm is not 1 though, a similar inequality holds for one side
with a new c′2 as

P

(
βTHHTβ > c′2

n1+τ

p

)
< 2e−Cn.

Lemma 5. If assumption A1 and A3 hold, then for any C > 0, there exists some c, c̃ > 0
such that for any i ∈ S,

P

(
|eiHHTβ| < c

n1−τ−κ

p

)
≤ O

{
exp

(
−Cn1−5τ−2κ−ν

2 log n

)}
,

and for any i 6∈ S,

P

(
|eiHHTβ| > c̃√

log n

n1−τ−κ

p

)
≤ O

{
exp

(
−Cn1−5τ−2κ−ν

2 log n

)}
,

where τ, κ, ν are the parameters defined in A3.

Lemma 6. Assume A1–A3 hold, we have for any i ∈ {1, 2, · · · , n},

P

(
|ηi| >

√
C1c1c′2c4√

log n

n1−κ−τ

p

)
< exp

{
1− q

(√
C1n

1/2−2τ−κ
√

log n

)}
+ 3 exp

(
− C1n

)
where C1, c1, c4 are defined in the assumption, and c′2 is defined in Lemma 4.

Proof of the three lemmas

To prove Lemma 4, we need the following two propositions, first of which is Lemma 3 and
the second of which is similar to Lemma 4 in Fan and Lv (2008). For completeness, we
provide the proof for the second proposition right after the statement.

Proposition 1 (Lemma 3 in Fan and Lv (2008)). Let ξi, i = 1, 2, · · · , n be i.i.d χ2
1-distributed

random variables. Then,

(i) for any ε > 0, we have

P

(
n−1

n∑
i=1

ξi > 1 + ε

)
≤ e−Aεn,

where Aε = [ε− log(1 + ε)]/2 > 0.

(ii) for any ε > 0, we have

P

(
n−1

n∑
i=1

ξi < 1− ε
)
≤ e−Bεn,
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where Bε = [−ε− log(1− ε)]/2 > 0.

In other words, for any C > 0, there exists some 0 < c′3 < 1 < c′4 such that

P

(
n−1

n∑
i=1

ξi > c′4

)
≤ e−Cn,

and

P

(
n−1

n∑
i=1

ξi < c′3

)
≤ e−Cn,

Proposition 2. Let U be uniformly distributed on the Stiefel manifold Vn,p. Then for any
C > 0, there exist c′1, c

′
2 with 0 < c′1 < 1 < c′2, such that

P

(
eT1UU

T e1 < c′1
n

p
or eT1UU

T e1 > c′2
n

p

)
≤ 4e−Cn.

Proof. First, UT can be written as (In 0n,p−n)Ũ , where Ũ is uniformly distributed on O(p).
Apparently, Ũe1 is uniformly distributed on the unite sphere Sp−1. Thus, letting {xi, i =
1, 2, · · · , p} be i.i.d random variables following N(0, 1), we have

Ũe1
(d)
=

(
x1√∑p
j=1 x

2
j

,
x2√∑p
j=1 x

2
j

, · · · , xp√∑p
j=1 x

2
j

)T
.

Hence UT e1 is the first n coordinates of Ũe1. It follows

eT1UU
T e1

(d)
=

x21 + · · ·+ x2n
x21 + x22 + · · ·+ x2p

.

From Proposition 1, we know that for any C > 0, there exist some c̃1 and c̃2 such that

P

(∑n
i=1 x

2
i

n
> c̃1

)
< e−Cn, P

(∑n
i=1 x

2
i

n
< c̃2

)
< e−Cn,

and

P

(∑p
i=1 x

2
i

p
> c̃1

)
< e−Cp, P

(∑p
i=1 x

2
i

p
< c̃2

)
< e−Cp.

Letting c′1 = c̃2/c̃1, c
′
2 = c̃1/c̃2 and by Bonferroni’s inequality, we have

P

(
eT1UU

T e1 < c′1
n

p
or eT1UU

T e1 > c′2
n

p

)
≤ 4e−Cn.

The proof is completed.

Proof of Lemma 4. Recall the definition of H and

vTHHTv = vTΣ
1
2U(UTΣU)−1UTΣ

1
2v.
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There always exists some orthogonal matrix Q that rotates the vector Σ
1
2v to the direction

of e1, i.e,
Σ

1
2v = ‖Σ

1
2v‖Qe1.

Then we have

vTHHTv = ‖Σ
1
2v‖2eT1QTU(UTΣU)−1UTQe1 = ‖Σ

1
2v‖2eT1 Ũ(UTΣU)−1Ũe1,

where Ũ = QTU is uniformly distributed on Vn,p, since U is uniformly distributed on Vn,p (see
discussion in the beginning) and Haar measure is invariant under orthogonal transformation.
Now the magnitude of vTHHTv can be evaluated in two parts. For the norm of the vector
Σ

1
2v, we have

λmin(Σ) ≤ vTΣv = ‖Σ
1
2v‖2 ≤ λmax(Σ), (5)

and for the rest part,

eT1 Ũ(UTΣU)−1Ũe1 ≤ λmax((U
TΣU)−1)‖Ũe1‖2 ≤ λmin(Σ)−1‖Ũe1‖2,

and
eT1 Ũ(UTΣU)−1Ũe1 ≥ λmin((UTΣU)−1)‖Ũe1‖2 ≥ λmax(Σ)−1‖Ũe1‖2.

Consequently, we have

vTHHTv ≤ λmax(Σ)

λmin(Σ)
eT1UU

T e1, vTHHTv ≥ λmin(Σ)

λmax(Σ)
eT1UU

T e1. (6)

Therefore, following Proposition 2 and A3, for any C > 0 we have

P

(
vTHHTv < c′1c4

n1−τ

p
or vTHHTv > c′2c

−1
4

n1+τ

p

)
≤ 4e−Cn.

Denoting c′1c4 by c′1 and c′2c
−1
4 by c′2, we obtain the equation in the lemma.

Next for v = β, it follows from Assumption A3 that

var(Y ) = βTΣβ + σ2 = O(1). (7)

Equation (5) then can be updated as

βTΣβ ≤ c′

for some constant c′, and (6) now becomes

βTHHTβ ≤ c′

λmin(Σ)
eT1UU

T e1.

Since the trace of the covariance matrix Σ is p, which entails that λmax(Σ) ≥ 1 and λmin(Σ) ≤
1. Now with assumption A3, we have

λmin(Σ) ≥ λmin(Σ)

λmax(Σ)
> c−14 n−τ . (8)
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Combining the above two equations, we have that for some new c′2 > 0, it holds

P

(
βTHHTβ > c′2

n1+τ

p

)
< 2e−Cn.

The proof of Lemma 5 relies on the results from Stiefel manifold. We first prove following
propositions, which can assist the proof of Lemma 5.

Proposition 3. Assume a p×n matrix H ∈ Vn,p follows the Matrix Angular Central Gaus-
sian distribution with covariance matrix Σ. From Lemma 3 we can decompose H = (T1, H2)
with T1 = G(H2)H1, where H2 is a p × (n − q) matrix, H1 is a (p − n + q) × q matrix and
G(H2) is a matrix such that (G(H2), H2) ∈ O(p). We have following result

H1|H2 ∼MACG(G(H2)
TΣG(H2)) (9)

with regard to the invariant measure [H1] on Vq,p−n+q.

Proof. Recall that H follows a MACG(Σ) on Vn,p,which possesses a density as

p(H) ∝ |HTΣ−1H|−p/2[dH].

Using the identity for matrix determinant∣∣∣∣A B
C D

∣∣∣∣ = |A||D − CA−1B| = |D||A−BD−1C|,

we have

P (H1, H2) ∝ |HT
2 Σ−1H2|−p/2(T T1 Σ−1T1 − T T1 Σ−1H2(H

T
2 Σ−1H2)

−1HT
2 Σ−1T1)

−p/2

= |HT
2 Σ−1H2|−p/2(HT

1 G(H2)
T (Σ−1 − Σ−1H2(H

T
2 Σ−1H2)

−1HT
2 Σ−1)G(H2)H1)

−p/2

= |HT
2 Σ−1H2|−p/2(HT

1 G(H2)
TΣ−1/2(I − T2)Σ−1/2G(H2)H1)

−p/2,

where T2 = Σ−1/2H2(H
T
2 Σ−1H2)

−1HT
2 Σ−1/2 is an orthogonal projection onto the linear space

spanned by the columns of Σ−1/2H2. It is easy to verify the following result by using the
definition of G(H2),

[Σ1/2G(H2)(G(H2)
TΣG(H2))

−1/2, Σ−1/2H2(H
T
2 Σ−1H2)

−1/2] ∈ O(p),

and therefore we have

I − T2 = Σ1/2G(H2)(G(H2)
TΣG(H2))

−1G(H2)
TΣ1/2,

which simplifies the density function as

P (H1, H2) ∝ |HT
2 Σ−1H2|−p/2(HT

1 (G(H2)
TΣG(H2))

−1H1)
−p/2.

Now it becomes clear that H1|H2 follows the Matrix Angular Central Gaussian distribution
ACG(Σ′), where

Σ′ = G(H2)
TΣG(H2).
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This completes the proof.

Proposition 4. Assume H ∈ Vn,p. Write H = (T1, H2) where T1 = (T
(1)
1 , T

(2)
1 , · · · , T (p)

1 )T

is the first column of H, then we have

eT1HH
T e2

(d)
= T

(1)
1 T

(2)
1

∣∣∣∣ T (1)2
1 = eT1HH

T e1.

Proof. Notice that for any orthogonal matrix Q ∈ O(n), we have

eT1HH
T e2 = eT1HQQ

THT e2 = eT1H
′H
′T e2.

Write H ′ = HQ = (T ′1, H
′
2), where T ′1 = [T

′(1)
1 , T

′(2)
1 , · · · , T

′(p)
1 ], H ′2 = [H

′(i,j)
2 ]. If we choose

Q such that the first row of H ′2 are all zero (this is possible as we can choose the first column
of Q being the first row of H upon normalizing), i.e.,

eT1H
′ = [T

′(1)
1 , 0, · · · , 0] eT2H

′ = [T
′(2)
1 , H

′(2,1)
2 , · · · , H

′(2,n−1)
2 ],

then immediately we have eT1HH
T e2 = eT1H

′H
′T e2 = T

′(1)
1 T

′(2)
1 . This indicates that

eT1HH
T e2

(d)
= T

(1)
1 T

(2)
1

∣∣∣∣ eT1H2 = 0.

Next, we transform the condition eT1H2 = 0 to the constraint on the distribution of T
(i)
1 .

Letting t21 = eT1HH
T e1, then eT1H2 = 0 is equivalent to T

(1)2
1 = eT1HH

T e1 = t21, which implies
that

eT1HH
T e2

(d)
= T

(1)
1 T

(2)
1

∣∣∣∣ T (1)2
1 = eT1HH

T e1.

Proposition 5. Assume the conditional number of Σ is cond(Σ) and Σii = 1 for i =
1, 2, · · · , p, then we have

λmin(Σ) ≥ 1

cond(Σ)
and λmax(Σ) ≤ cond(Σ).

Proof. Notice that p = tr(Σ) =
∑p

i=1 λi. Therefore, we have

p/λmax ≥
p

cond(Σ)
and p/λmin(Σ) ≤ p · cond(Σ),

which completes the proof.

We now turn to the proof of Lemma 5.

Proof of Lemma 5. Notice that to quantify eiHH
Tβ is essential to quantify the entries

of HHT . The diagonal terms are already studied in Lemma 4 as taking v = ei we have

P

(
eTi HH

T ei < c′1
n1−τ

p
or eTi HH

T ei > c′2
n1+τ

p

)
< 4e−Cn. (10)
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The remaining task is to quantify off diagonal terms. Without loss of generality, we prove
the bound only for eT1HH

T e2, then the other off-diagonal terms should follow exactly the
same argument. According to Proposition 3 with q being 1, we can decompose H = (T1, H2)
with T1 = G(H2)H1, where H2 is a p×(n−1) matrix, H1 is a (p−n+1)×1 vector and G(H2)
is a matrix such that (G(H2), H2) ∈ O(p).The invariant measure on the Stiefel manifold can
be decomposed as

[H] = [H1][H2]

where [H1] and [H2] are Haar measures on V1,n−p+1, Vn−1,p. H1|H2 follows the Angular Central
Gaussian distribution ACG(Σ′), where

Σ′ = G(H2)
TΣG(H2).

Let H1 = (h1, h2, · · · , hp)T and let xT = (x1, x2, · · · , xp−n+1) ∼ N(0,Σ′), then we have

hi
(d)
=

xi√
x21 + · · ·+ x2p−n+1

.

Notice that T1 = G(H2)H1, a linear transformation on H1. Defining y = G(H2)x, we have

T
(i)
1

(d)
=

yi√
y21 + · · ·+ y2p

, (11)

where y ∼ N(0, G(H)Σ′G(H)T ) is a degenerate Gaussian distribution. This degenerate
distribution contains an interesting form. Letting z ∼ N(0,Σ), we know y can be expressed
as y = G(H)G(H)T z. Write G(H2)

T as [g1, g2] where g1 is a (p− n+ 1)× 1 vector and g2 is
a (p− n+ 1)× (p− 1) matrix, then we have

G(H2)G(H2)
T =

(
gT1 g1 gT1 g2
gT2 g1 gT2 g2

)
.

We can also write HT
2 = [0n−1,1, h2] where h2 is a (n − 1) × (p − 1) matrix, and using the

orthogonality, i.e., [H2 G(H2)][H2 G(H2)]
T = Ip, we have

gT1 g1 = 1, gT1 g2 = 01,p−1 and gT2 g2 = Ip−1 − h2hT2 .

Because h2 is a set of orthogonal basis in the p − 1 dimensional space, gT2 g2 is therefore an
orthogonal projection onto the space {h2}⊥ and gT2 g2 = AAT where A = gT2 (g2g

T
2 )−1/2 is a

(p− 1)× (p− n) orientation matrix on {h2}⊥. Together, we have

y =

(
1 0
0 AAT

)
z.

This relationship allows us to marginalize y1 out with y following a degenerate Gaussian
distribution.
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Now according to Proposition 4 and assuming t21 = eT1HH
T e1, we have

eT1HH
T e2

(d)
= T

(1)
1 T

(2)
1

∣∣∣∣ T (1)2
1 = t21.

Because the magnitude of t1 has been obtained in (10), we can now condition on the

value of T
(1)
1 to obtain the bound on T

(2)
1 . From T

(1)2
1 = t21, we have

(1− t21)y21 = t21(y
2
2 + y23 + · · ·+ y2p). (12)

Notice this constraint is imposed on the norm of ỹ = (y2, y3, · · · , yp) and is thus independent
of (y2/‖ỹ‖, · · · , yp/‖ỹ‖). Equation (12) also implies that

(1− t21)(y21 + y22 + · · ·+ y2p) = y22 + y23 + · · ·+ y2p. (13)

Therefore, combining (11) with (12), (13) and integrating y1 out, we have

T
(i)
1 | T

(1)
1 = t1

(d)
=

√
1− t21yi√

y22 + · · ·+ y2p

, i = 2, 3, · · · , p,

where (y2, y3, · · · , yp) ∼ N(0, AATΣ22AA
T ) with Σ22 being the covariance matrix of z2, · · · , zp.

To bound the numerator, we use the classical tail bound on the normal distribution as
for any t > 0, (σi =

√
var(yi) ≤

√
λmax(AATΣ22AAT ) ≤ λmax(Σ)1/2),

P (|yi| > tσi) ≤ 2e−t
2/2. (14)

For any α > 0 choosing t =
√
C n

1
2−α√
logn

we have,

P (|yi| >
√
Cλmax(Σ)√

log n
n

1
2
−α) ≤ 2 exp

{
−Cn1−2α

2 log n

}
.

For the denominator, letting z̃ ∼ N(0, Ip−1), we have

ỹ = AATΣ
1/2
22 z̃ and ỹT ỹ = z̃TΣ

1/2
22 AA

TΣ
1/2
22 z̃

(d)
=

p−n∑
i=1

λiX 2
i (1),

where X 2
i (1) are iid chi-square random variables and λi are non-zero eigenvalues of matrix

Σ
1/2
22 AA

TΣ
1/2
22 . Here λi’s are naturally upper bounded by λmax(Σ). To give a lower bound,

notice that Σ
1/2
22 AA

TΣ
1/2
22 and AΣ22A

T possess the same set of non-zero eigenvalues, thus

min
i
λi ≥ λmin(AΣ22A

T ) ≥ λmin(Σ).

Therefore,

λmin(Σ)

∑p−n
i=1 X 2

i (1)

p− n
≤ ỹT ỹ

p− n
≤ λmax(Σ)

∑p−n
i=1 X 2

i (1)

p− n
.

The quantity
∑p−n
i=1 X

2
i (1)

p−n can be bounded by Proposition 1. Combining with Proposition 5,
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we have for any C > 0, there exists some c′3 > 0 such that

P

(
ỹT ỹ/(p− n) <

c′3
λmin(Σ)

)
≤ e−C(p−n).

Therefore, noticing that cond(Σ) = λmax(Σ)/λmin(Σ) ≤ c4n
τ , T

(2)
1 can be bounded as

P

(
|T (2)

1 | >
√

1− t21
√
Cc4n

1
2
+ τ

2
−α√

c′3
√
p− n

√
log n

∣∣T (1)
1 = t1

)
≤ e−C(p−n) + 2 exp

{
−Cn1−2α

2 log n

}
.

Using the results from (10), we have

P

(
t21 > c′2

n1+τ

p

)
≤ 2e−Cn. and P

(
t21 < c′1

n1−τ

p

)
≤ 2e−Cn.

Consequently, defining M =
√
Cc4√

c′3(c0−1)
we have

P

(
|eT1HHT e2| >

M√
log n

n1+τ−α

p

)
= P

(
|T (1)

1 T
(2)
1 | >

M√
log n

n1+τ−α

p

∣∣T (1)
1 = t1

)
≤ P

(
T

(1)2
1 > c′2

n1+τ

p
|T (1)

1 = t1

)
+ P

(
|T (2)

1 | >
√
Cc4n

1
2
+ τ

2
−α√

c′3(c0 − 1)
√
n
√

log n

∣∣T (1)
1 = t1

)
≤ e−C(c0−1)n + 4e−Cn + 2 exp

{
−Cn1−2α

2 log n

}
= O

{
exp

(
−Cn1−2α

2 log n

)}
.

This result provides an upper bound on off diagonal terms. Using this result, we have for
any i 6∈ S

|eTi HHTβ| =
∣∣∣∣∑
j∈S

eTi HH
T ejβj

∣∣∣∣ ≤∑
j∈S

|eTi HHT ej||βj|

≤
√∑

j∈S

|eTi HHT ej|2 · ‖β‖2 ≤
√
c′c4M√
log n

n1+3τ/2+ν/2−α

p
, (15)

with probability at least 1−O
{
nν exp

(
−Cn1−2α

2 logn

)}
. The last inequality is due to Assumption

3 that var(Y ) = O(1), which implies

c−14 ‖β‖2n−τ ≤ ‖β‖2λmin(Σ) ≤ βTΣβ = var(Y )− σ2 ≤ c′ (16)

for some constant c′. Taking α = (5/2)τ + κ+ ν/2 in (15), we have

P

(
|eTi HHTβ| > c̃√

log n

n1−τ−κ

p

)
= O

{
exp

(
−C ′n1−5τ−2κ−ν

2 log n

)}
, (17)

where c̃ =
√
c′c4M and C ′ is any constant that is less than C (C is also an arbitrary constant).
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Next, for i ∈ S, combining (15) with (10) and using the same value of α yields

|eTi HHTβ| ≥ |eTi HHT ei||βi| −
∑
j∈S

|eTi HHT ej||βj|

≥ c′1c2
n1−τ−κ

p
− c̃√

log n

n1−τ−κ

p

≥ c′1c2
2

n1−τ−κ

p
,

with probability at least 1 − 2e−Cn − O

{
nν exp

(
−Cn1−5τ−2κ−ν

2 logn

)}
. Letting c = c′1c2/2 we

have

P

(
|eTi HHTβ| < c

n1−τ−κ

p

)
= O

{
exp

(
−C ′n1−5τ−2κ−ν

2 log n

)}
, (18)

which completes the proof.

Proof of Lemma 6. Recall the random variable ηi = eTi η = eTi X
T (XXT )−1ε. If we define

a = eTi X
T (XXT )−1/‖eTi XT (XXT )−1‖2,

then a is independent of ε and

ηi
(d)
= ‖eTi XT (XXT )−1‖2 · σw,

where w is a standardized random variable such that w = aT ε/σ. Now for the norm we have

‖eTi XT (XXT )−1‖22 = eTi X
T (XXT )−2Xei = eTi X

T (XXT )−1/2(XXT )−1(XXT )−1/2Xei

≤ λmax((XX
T )−1)‖(XXT )−1/2Xei‖2 ≤ λmax((XX

T )−1)eTi HH
T ei

= λmax((ZΣZT )−1)eTi HH
T ei. (19)

The first term follows that

λmax((ZΣZT )−1) = (λmin(ZΣZT ))−1 ≤ λmin(ZZT )−1λmin(Σ)−1 = p−1λmin(p−1ZZT )−1λmin(Σ)−1

<
c4n

τ

p
λmin(p−1ZZT )−1, (20)

where the last step is due to equation (8). According to A2, for some C1 > 0 and c1 > 1, we
have

P

(
λmax(p

−1ZZT ) > c1 or λmin(p−1ZZT ) < c−11

)
< exp

(
− C1n

)
,

which together with (20) ensures that

P

(
λmax

(
(ZΣZT )−1

)
>
c1c4n

τ

p

)
< P

(
c4n

τ

p
(λmin

(
p−1ZZT )

)−1
>
c1c4n

τ

p

)
= P

(
λmin(p−1ZZT ) < c−11

)
< e−C1n. (21)

38



Combining Lemma 4 and (21) entails that for the same C1 > 0,

P

(
‖eTi XT (XXT )−1‖22 > c1c

′
2c4

n1+2τ

p2

)
< 3 exp

(
− C1n

)
. (22)

For w, according to the q-exponential tail assumption, we have

P (|
n∑
i=1

aiεi/σ| > t) ≤ exp(1− q(t)).

By choosing t =
√
C1n

1/2−2τ−κ
√
logn

, we have

P

(
|w| >

√
C1n

1/2−2τ−κ
√

log n

)
< exp

{
1− q

(√
C1n

1/2−2τ−κ
√

log n

)}
.

Combining it with (22), taking the union bound, we have

P

(
|ηi| >

σ
√
C1c1c′2c4√
log n

n1−κ−τ

p

)
< exp

{
1− q

(√
C1n

1/2−2τ−κ
√

log n

)}
+ 3 exp

(
− C1n

)
. (23)

The proof is completed.

Proof of the theorems

By now we have all the technical results needed to prove the main theorems. The proof of

Theorem 1 follows the basic scheme of Fan and Lv (2008) but with a modification of their

step 2 by using our Lemma 5. The proof of Theorem 2 is a direct application of Lemma

5 and step 4 in the proof of Theorem 1. Theorem 3 mainly use the properties of Taylor

expansion on matrix elements.

Proof of Theorem 1. Applying Lemma 5 and Lemma 6 to all i ∈ S, we have

P

(
min
i∈S
|ξi| < c

n1−τ−κ

p

)
= O

{
s · exp

(
−Cn1−5τ−2κ−ν

2 log n

)}
(24)

and

P

(
max
i∈S
|ηi| >

σ
√
C1c1c′2c4√
log n

n1−τ−κ

p

)
= s · exp

{
1− q

(√
C1n

1/2−2τ−κ
√

log n

)}
+ 3s · exp

(
− C1n

)
.

(25)

Because s = c3n
ν with ν < 1, taking C = 2C1, (24) can be updated as

P

(
min
i∈S
|ξi| < c

n1−τ−κ

p

)
= O

{
exp

(
−C1n

1−5τ−2κ−ν

2 log n

)}
. (26)
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Therefore, if we choose γn such that

c̃+ σ
√
C1c1c′2c4√

log n

n1−τ−κ

p
< γn <

c

2

n1−τ−κ

p
, (27)

or in an asymptotic form satisfying

pγn
n1−τ−κ → 0 and

pγn
√

log n

n1−τ−κ →∞, (28)

then we have

P

(
min
i∈S
|β̂i| < γn

)
= P

(
min
i∈S
|ξi + ηi| < γn

)
≤ P

(
min
i∈S
|ξi| < c

n1−τ−κ

p

)
+ P

(
max
i∈S
|ηi| >

σ
√
C1c1c′2c4√
log n

n1−τ−κ

p

)
= O

{
exp

(
−C1n

1−5τ−2κ−ν

2 log n

)}
+ s · exp

{
1− q

(√
C1n

1/2−2τ−κ
√

log n

)}
.

This completes the proof of Theorem 1.

Proof of Theorem 2. According to Lemma 5, for any i 6∈ S and any C > 0, there exists

a c̃ > 0 such that

P

(
|eiHHTβ| > c̃√

log n

n1−τ−κ

p

)
≤ O

{
exp

(
−Cn1−5τ−2κ−ν

2 log n

)}
.

Now with Bonferroni’s inequality, we have

P

(
max
i 6∈S
|ξi| >

c̃√
log n

n1−τ−κ

p

)
= P

(
max
i 6∈S
|eiHHTβ| > c̃√

log n

n1−τ−κ

p

)
< O

{
p · exp

(
−Cn1−5τ−2κ−ν

2 log n

)}
. (29)

Also, applying Bonferroni’s inequality to (23) in the proof of Lemma 6 gives

P

(
max
i
|ηi| >

σ
√
C1c1c′2c4√
log n

n1−κ−τ

p

)
< p · exp

{
1− q

(√
C1n

1/2−2τ−κ
√

log n

)}
+ 3p · exp

(
−C1n

)
.

Now recall that

log p = o

(
min

{
n1−2κ−5τ

2 log n
, q

(√
C1n

1/2−2τ−κ
√

log n

)})
, (30)
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we have for the same C1 specified in A2 (with the corresponding c),

P

(
max
i 6∈S
|ξi| >

c̃√
log n

n1−τ−κ

p

)
< O

{
exp

(
− C1

n1−5τ−2κ−ν

2 log n

)}
, (31)

P

(
max
i
|ηi| >

σ
√
C1c1c′2c4√
log n

n1−κ−τ

p

)
< O

{
exp

(
1− 1

2
q

(√
C1n

1/2−2τ−κ
√

log n

))
+ exp

(
− C1

2
n

)}
.

(32)

Now if γn is chosen as the same as in Theorem 1, we have

P

(
max
i 6∈S
|β̂i| > γn

)
< O

{
exp

(
− C1

n1−5τ−2κ−ν

2 log n

)
+ exp

(
1− 1

2
q

(√
C1n

1/2−2τ−κ
√

log n

))}
.

Therefore, combining the above result with Theorem 1 and noticing that s < p, we have

P

(
min
i∈S
|β̂i| > γn > max

i 6∈S
|β̂i|
)

= 1−O
{

exp

(
−C1

n1−5τ−2κ−ν

2 log n

)
+exp

(
1−1

2
q

(√
C1n

1/2−2τ−κ
√

log n

))}
.

Obviously, if we choose a submodel with size d that d ≥ s we will have

P (MS ⊂Md) = 1−O
{

exp

(
− C1

n1−5τ−2κ−ν

2 log n

)
+ exp

(
1− 1

2
q

(√
C1n

1/2−2τ−κ
√

log n

))}
,

(33)

which completes the proof of Theorem 2.

Proof of Corollary 1. Replacing q(t) by C0t
2/K2 for some C0 > 0, the condition (4)

becomes

log p = o

(
n1−2κ−5τ

log n

)
, (34)

and the result becomes

P

(
min
i∈S
|β̂i| > γn > max

i 6∈S
|β̂i|
)

= 1−O
{

exp

(
− C1

n1−2κ−5τ−ν

2 log n

)
+ exp

(
− C0C1

K2

n1−2κ−4τ

2 log n

)}
= 1−O

{
exp

(
− C1

n1−2κ−5τ−ν

2 log n

)}
. (35)

The proof of Corollary 1 is completed.

Proof of Theorem 3. It is intuitive to see that when the tuning parameter r is sufficiently

small, the results in Theorem 2 should continue to hold. The issue here is to find a better

rate on r to allow a more flexible choice for r. Following the ridge formula in Part A of the
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Supplementary Materials, the HOLP solution can be expressed as

β̂(r) = XT (XXT + rIn)−1Xβ +XT (XXT + rIn)−1ε := ξ(r) + η(r). (36)

We look at ξ(r) first. Using the notations in the very beginning of this section, we write

XT (XXT + rIn)−1X = Σ1/2UDV T (V DUTΣUDV T + rIn)−1V DUTΣ1/2

= Σ1/2U(UTΣU + rD−2)−1UTΣ1/2 = Σ1/2UA−1(In + rA−TD−2A−1)−1A−TUTΣ1/2,

where A = (UTΣU)1/2, the square root of a positive definite symmetric matrix, i.e., UTΣU =

ATA = AAT = A2. In order to expand the inverse matrix by Taylor expansion, we need to

evaluate the largest eigenvalue of the matrix A−TD−2A−1, where

λmax(A
−TD−2A−1) ≤ λmax(D

−2)λmax
(
(AAT )−1

)
= λmin(D2)−1λmin(UTΣU)−1.

According to A1 and A3, we have

P (p−1λmin(D2) < c−11 ) < e−C1n

for some c1 > 1 and C1 > 0 and

λmin(UTΣU) ≥ λmin(Σ)λmin(UTU) ≥ c−14 n−τ .

Therefore, with probability greater than 1− e−C1n, we have

λmax(A
−TD−2A−1) ≤ c1c4n

τ

p
, (37)

meaning that when r < pc−11 c−14 n−τ , the norm of the matrix rA−TD−2A−1 is smaller than 1,

and that the inverse of the matrix can be expanded by the following Taylor series as

Σ1/2UA−1(In + rA−TD−2A−1)−1A−TUTΣ1/2 = Σ1/2UA−1(In +
∞∑
k=1

rk(A−TD−2A−1)k)A−TUTΣ1/2

= HHT +
∞∑
k=1

rkΣ1/2UA−1(A−TD−2A−1)kA−TUTΣ1/2 = HHT +M.

The largest eigenvalue for each component of the infinite sum in the above formula can be
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bounded as

λmax(Σ
1/2UA−1(A−TD−2A−1)kA−TUTΣ1/2)

≤ λmax(Σ
1/2UA−1A−TUTΣ1/2)λmax

(
(A−TD−2A−1)k

)
= λmax(HH

T )λmax(A
−TD−2A−1)k

≤ λmax(A
−TD−2A−1)k,

and so is their infinite sum as

λmax(M) ≤
∞∑
k=1

rkλmax(A
−TD−2A−1)k ≤ rλmax(A

−TD−2A−1)

1− rλmax(A−TD−2A−1)
. (38)

The last step in the above formula requires rλmax(A
−TD−2A−1) to be less than 1, and

according to (37), it is true with probability greater than 1− e−C1n. Now with equation (37)

and (38), we have

P

(
λmax(M) >

c1c4rn
τ

p− c1c4rnτ

)
< P

(
rλmax(A

−TD−2A−1)

1− rλmax(A−TD−2A−1)
>

c1c4rn
τ

p− c1c4rnτ

)
= P

(
λmax(A

−TD−2A−1) >
c1c4n

τ

p

)
< e−C1n. (39)

With the above equation, the following steps are straightforward. By choosing an appropriate

rate of r, the entries of M will be much smaller than the entries of HHT , and the results

established in Theorem 2 will remain valid. For any i ∈ {1, 2, · · · , p}, according to (16) we

have

max
i∈{1,··· ,p}

|eTi Mβ|2 ≤ βTM2β ≤ ‖β‖2λmax(M)2 ≤ c′c4n
τλmax(M)2.

Hence if r satisfies rn5/2τ+κ−1 → 0 to ensure

c1c4
√
c′c4rn

5/2τ+κ−1

1− c1c4rnτ/p
= o(1),

we can obtain an upper bound on maxi |eTi Mβ| following (39) as

P

(
max

i∈{1,··· ,p}
|eTi Mβ| >n

1−τ−κ

p
· c1c4

√
c′c4rn

5/2τ+κ−1

1− c1c4rnτ/p

)
< P

(√
c′c4nτλmax(M) >

c1c4
√
c′c4rn

3
2
τ

p− c1c4rnτ

)
< e−C1n.
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Thus,

P

(
max

i∈{1,··· ,p}
|eTi Mβ| > o(1)

n1−τ−κ

p

)
< e−C1n.

Recall the fact that ξi(r) = ξi + eiMβ. Combining the above equation and the results

obtained in (26) and (31), similar properties for ξi(r) can be established as

P

(
max
i 6∈S
|ξi(r)| > o(1)

n1−τ−κ

p

)
< O

{
exp

(
− C1

n1−5τ−2κ−ν

2 log n

)}
,

P

(
min
i∈S
|ξi(r)| <

c

2

n1−κ−τ

p

)
< O

{
exp

(
− C1

n1−5τ−2κ−ν

2 log n

)}
, (40)

where c is some positive constant and o(1) represents c̃√
logn

+ c1c4
√
c′c4rn5/2τ+κ−1

1−c1c4rnτ/p .

Second, we look at η(r). By a similar argument, the previous results on η in Theorem 2

can be generalized. Because

ηi(r) = eTi X
T (XXT + rIn)−1ε,

it follows

var(ηi(r)|X) = σ2eTi X
T (XXT + rIn)−2Xei

= σ2eTi X
T (XXT + rIn)−1/2(XXT + rIn)−1(XXT + rIn)−1/2Xei

≤ σ2λmax((XX
T + rIn)−1) · eTi XT (XXT + rIn)−1Xei

= σ2(λmin(XXT + rIn))−1 · eTi XT (XXT + rIn)−1Xei.

Using the same notation in the ξ(r) part, we have

eTi X
T (XXT + rIn)−1Xei = eTi HH

T ei + eTi Mei ≤ eTi HH
T ei + λmax(M),

and for λmin(XXT + rIn), it can be expressed as

λmin(XXT + rIn) = r + λmin(XXT ) ≥ λmin(XXT ).

Therefore, the conditional variance of ηi(r) can be reformulated as

var(ηi(r)|X) ≤ σ2
(
λmin(XXT )

)−1
(eTi HH

T ei + λmax(M))

= σ2
(
λmin(XXT )

)−1
eTi HH

T ei + σ2
(
λmin(XXT )

)−1
λmax(M)

= σ2
(
λmin(ZΣZT )

)−1
eTi HH

T ei + σ2
(
λmin

(
ZΣZT )

)−1
λmax(M). (41)
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The first term in the above formula appears as var(ηi|X) in (19) in the proof of Lemma 6,

while the second term σ2(λmin(ZΣZT ))−1λmax(M) is introduced by the ridge parameter r.

If we are able to show that this new conditional variance has the same bound as specified

in equation (22) (with a different constant), then a similar result of Lemma 6 can also be

established for ηi(r), i.e.,

P

(
|ηi(r)| >

σ
√

2C1c1c′2c4√
log n

n1−κ−τ

p

)
< exp

{
1− q

(√
C1n

1/2−2τ−κ
√

log n

)}
+ 5 exp

(
− C1n

)
.

(42)

and therefore,

P

(
max
i
|ηi(r)| >

σ
√

2C1c1c′2c4√
log n

n1−κ−τ

p

)
< O

{
exp

(
1− 1

2
q

(√
C1n

1/2−2τ−κ
√

log n

))
+ exp

(
− C1

2
n

)}
.

(43)

In fact, a similar equation as (22) can be verified for this new variance directly from (21)

and (39). Since
(
λmin(ZΣZT )

)−1
= λmax

(
(ZΣZT )−1

)
, by inequality (21) and (39) we have

P

(
σ2
(
λmin(ZΣZT )

)−1
λmax(M) > σ2 c1c4n

τ

p
· c1c4rn

τ

p− c1c4rnτ

)
< 2e−C1n.

Rearranging the lower bound in the probability gives

P

(
σ2(λmin

(
ZΣZT )

)−1
λmax(M) >

n1+2τ

p2
· σ2c21c

2
4rn

−1

1− c1c4rnτ/p

)
< 2e−C1n.

If r satisfies the condition stated in the theorem ensuring

σ2c21c
2
4rn

−1

1− c1c4rnτ/p
= o(1),

then it holds that

P

(
σ2
(
λmin(ZΣZT )

)−1
λmax(M) > o(1)

n1+2τ

p2

)
< 2e−C1n,

which combined with (22) and (41) entails that

P

(
var(ηi(r)|X) > 2c1c

′
2c4

n1+2τ

p2

)
< 5e−C1n,

and thus proves equation (43) (by following the argument in Lemma 6).
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Finally, combining (40) and (43) we have,

P

(
min
i∈S
|β̂i(r)| <

c

4

n1−τ−κ

p

)
< O

{
exp

(
− C1

n1−5τ−2κ−ν

2 log n

)
+ exp

(
1− q

(√
C1n

1/2−2τ−κ
√

log n

))}
P

(
max
i 6∈S
|β̂i(r)| > o(1)

n1−τ−κ

p

)
< O

{
exp

(
− C1

n1−5τ−2κ−ν

2 log n

)
+ exp

(
1− q

(√
C1n

1/2−2τ−κ
√

log n

))}
.

where o(1) is used to denote
c̃+σ
√

2C1c1c′2c4√
logn

+ c1c4
√
c′c4rn5/2τ+κ−1

1−c1c4rnτ/p , which is an infinitesimal.

Therefore, if we choose γn such that(
c̃+ σ

√
2C1c1c′2c4√
log n

+
c1c4
√
c′c4rn

5/2τ+κ−1

1− c1c4rnτ/p

)
n1−κ−τ

p
< γn <

c

4

n1−κ−τ

p
, (44)

or in asymptotic form,

γnp

n1−κ−τ → 0 and
γnp
√

log n

n1−κ−τ →∞ and
γnp

rn
3
2
τ
→∞. (45)

Then we can conclude similarly as Theorem 1 and 2 that

P

(
min
i∈S
|β̂i(r)| >γn > max

i 6∈S
|β̂i(r)|

)
= 1−O

{
exp

(
− C1

n1−5τ−2κ−ν

2 log n

)
+ exp

(
1− 1

2
q

(√
C1n

1/2−2τ−κ
√

log n

))}
.

Obviously, if we choose a submodel with size d that d ≥ s we will have

P

(
MS ⊂Md

)
= 1−O

{
exp

(
− C1

n1−5τ−2κ−ν

2 log n

)
+ exp

(
1− 1

2
q

(√
C1n

1/2−2τ−κ
√

log n

))}
.

(46)

The proof is now completed.

D: Additional simulation

This section contains the plots for ridge-holp in Simulation study 2 in Section 4.2 as well as

the detailed simulation results for (p, n) = (1000, 100) in Simulation Study 1 in Section 4.1

and Simulation Study 4 in Section 4.4.
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Figure S.1: ridge-HOLP (r = 10): P (mini∈S |β̂i| > maxi 6∈S |β̂i|) versus sample size n.

Table S.1: The probability to include the true model when (p, n) = (1000, 100) for Simulation
Study 1 in Section 4.1

Example HOLP SIS RRCS ISIS FR Tilting

R2 = 50%

(i) Independent predictors 0.685 0.690 0.615 0.270 0.370 0.340

(ii) Compound symmetry
ρ = 0.3 0.195 0.135 0.195 0.050 0.005 0.000
ρ = 0.6 0.020 0.010 0.040 0.005 0.000 0.000
ρ = 0.9 0.000 0.000 0.000 0.000 0.000 0.010

(iii) Autoregressive
ρ = 0.3 0.810 0.810 0.790 0.510 0.555 0.525
ρ = 0.6 0.970 0.985 0.970 0.560 0.390 0.355
ρ = 0.9 0.990 1.000 1.000 0.500 0.185 0.160

(iv) Factor models
k = 2 0.295 0.000 0.000 0.045 0.135 0.105
k = 10 0.060 0.000 0.000 0.000 0.000 0.025
k = 20 0.010 0.000 0.000 0.000 0.000 0.000

(v) Group structure
δ2 = 0.1 0.935 0.970 0.950 0.000 0.000 0.000
δ2 = 0.05 0.950 0.970 0.950 0.000 0.000 0.000
δ2 = 0.01 0.960 0.980 0.970 0.000 0.000 0.000

(vi) Extreme correlation 0.305 0.000 0.000 0.000 0.000 0.020

R2 = 90%

(i) Independent predictors 1.000 0.995 0.990 0.990 1.000 1.000

(ii) Compound symmetry
ρ = 0.3 0.980 0.815 0.705 0.955 1.000 0.990
ρ = 0.6 0.830 0.580 0.435 0.305 0.575 0.490
ρ = 0.9 0.100 0.030 0.055 0.005 0.000 0.050

(iii) Autoregressive
ρ = 0.3 0.990 0.965 0.945 1.000 1.000 1.000
ρ = 0.6 1.000 1.000 1.000 1.000 1.000 1.000
ρ = 0.9 1.000 1.000 1.000 0.970 0.985 1.000

(iv) Factor models
k = 2 0.940 0.015 0.000 0.490 0.950 0.960
k = 10 0.715 0.000 0.000 0.115 0.370 0.455
k = 20 0.430 0.000 0.000 0.015 0.105 0.225

(v) Group structure
δ2 = 0.1 1.000 1.000 1.000 0.000 0.000 0.000
δ2 = 0.05 1.000 1.000 1.000 0.000 0.000 0.000
δ2 = 0.01 1.000 1.000 1.000 0.000 0.000 0.000

(vi) Extreme correlation 0.905 0.000 0.000 0.000 0.150 0.110
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Table S.2: Model selection results when (p, n) = (1000, 100) for Simulation Study 4 in Section
4.4

example #FNs #FPs Coverage(%) Exact(%) Size ||β̂ − β||2 time (sec)

(i) Independent
predictors

s = 5, ||β||2 = 3.8

Lasso 0.05 0.78 95.0 44.5 5.73 2.20 0.09
SCAD 0.00 0.02 100.0 98.0 5.02 0.59 1.37
ISIS-SCAD 0.01 0.05 99.0 94.0 5.04 0.59 11.22
SIS-SCAD 0.10 0.04 91.5 89.5 4.94 0.90 0.19
RRCS-SCAD 0.16 0.07 86.5 85.5 4.91 1.09 0.54
FR-Lasso 0.01 0.78 99.0 55.0 5.62 1.75 67.87
FR-SCAD 0.00 0.04 100.0 96.0 5.04 0.59 68.02
HOLP-Lasso 0.09 0.82 94.0 43.5 5.72 2.23 0.06
HOLP-SCAD 0.06 0.04 95.5 94.0 4.98 0.61 0.20
HOLP-EBICS 0.18 0.02 83.5 83.0 4.84 0.93 0.05
Tilting 0.00 0.05 100.0 95.0 5.05 0.59 294.7

(ii) Compound
symmetry

s = 5, ||β||2 = 8.6

Lasso 2.64 2.38 9.0 0.0 4.74 9.85 0.12
SCAD 0.28 8.15 75.5 1.0 12.97 8.33 5.64
ISIS-SCAD 1.52 5.82 22.0 1.5 9.30 8.68 20.15
SIS-SCAD 1.59 4.58 24.0 5.5 7.99 8.83 0.58
RRCS-SCAD 1.79 4.78 18.5 5.0 7.99 9.22 1.04
FR-Lasso 0.93 5.43 50.0 1.0 9.50 8.51 92.81
FR-SCAD 0.74 6.50 56.0 1.0 10.76 7.26 93.24
HOLP-Lasso 2.41 2.48 12.0 0.0 5.07 9.61 0.10
HOLP-SCAD 0.34 5.58 72.5 3.0 10.24 6.84 0.52
HOLP-EBICS 1.06 2.62 34.0 11.0 6.56 7.16 0.19
Tilting 3.07 5.07 20.0 0.0 7.00 9.82 238.2

(iii) Autoregressive
correlation

s = 3, ||β||2 = 3.9

Lasso 0.00 1.12 100.0 0.0 4.12 0.84 0.12
SCAD 0.00 0.03 100.0 97.5 3.66 0.36 1.31
ISIS-SCAD 0.00 0.01 100.0 99.0 3.01 0.30 14.27
SIS-SCAD 0.00 0.02 100.0 98.5 3.02 0.30 0.16
RRCS-SCAD 0.00 0.01 100.0 99.0 3.01 0.30 0.66
FR-Lasso 0.00 1.12 100.0 0.0 4.12 0.73 96.01
FR-SCAD 0.00 0.04 100.0 96.5 4.70 0.46 96.19
HOLP-Lasso 0.00 1.16 100.0 0.0 4.16 0.83 0.06
HOLP-SCAD 0.00 0.01 100.0 99.0 3.01 0.28 0.15
HOLP-EBICS 0.00 0.00 100.0 100.0 3.00 0.28 0.10
Tilting 0.00 0.01 100.0 99.0 3.01 0.28 233.9

(iv) Factor Models

s = 5, ||β||2 = 8.6

Lasso 4.37 4.89 0.5 0.0 5.52 11.20 0.13
SCAD 0.30 20.18 75.0 0.0 24.88 13.29 3.23
ISIS-SCAD 2.64 14.82 7.0 2.0 17.19 15.50 18.80
SIS-SCAD 3.89 15.94 0.5 0.0 17.05 16.58 0.66
RRCS-SCAD 3.86 16.54 0.5 0.0 17.68 16.62 1.03
FR-Lasso 4.77 3.90 0.5 0.0 6.13 11.92 95.86
FR-SCAD 2.87 12.08 16.0 0.0 14.21 15.80 96.32
HOLP-Lasso 3.83 4.41 0.5 0.0 5.58 11.20 0.07
HOLP-SCAD 0.81 11.22 65.0 2.5 15.41 10.72 0.67
HOLP-EBICS 1.45 7.29 29.0 6.0 10.84 11.37 0.11
Tilting 2.98 3.15 14.3 2.0 5.17 12.02 165.8

(v) Group
structure

s = 5, ||β||2 = 19.4

Lasso 9.34 0.12 0.0 0.0 5.77 14.08 0.13
SCAD 11.94 63.76 0.0 0.0 66.82 26.64 3.74
ISIS-SCAD 11.97 19.20 0.0 0.0 22.24 22.90 21.08
SIS-SCAD 11.93 18.33 0.0 0.0 21.39 22.57 0.54
RRCS-SCAD 11.93 18.03 0.0 0.0 21.10 22.65 0.94
FR-Lasso 11.51 0.73 0.0 0.0 4.22 18.52 96.64
FR-SCAD 11.96 19.48 0.0 0.0 23.84 24.84 97.02
HOLP-Lasso 9.29 0.12 0.0 0.0 5.83 14.07 0.11
HOLP-SCAD 11.93 18.32 0.0 0.0 21.38 22.52 0.42
HOLP-EBICS 11.95 1.03 0.0 0.0 4.08 22.32 0.18
Tilting 11.75 0.37 0.0 0.0 3.62 22.95 175.5

(vi) Extreme
correlation

s = 5, ||β||2 = 8.6

Lasso 2.35 8.20 8.0 0.0 10.84 10.14 0.12
SCAD 0.03 0.10 97.5 92.0 5.07 1.93 3.28
ISIS-SCAD 4.84 3.78 0.0 0.0 3.94 13.80 20.00
SIS-SCAD 4.98 2.07 0.0 0.0 2.09 12.35 0.89
RRCS-SCAD 4.98 2.06 0.0 0.0 2.08 12.35 1.38
FR-Lasso 2.89 6.41 1.0 0.0 8.52 11.28 87.24
FR-SCAD 3.08 3.15 0.5 0.5 5.07 12.41 87.60
HOLP-Lasso 2.26 8.16 8.5 0.0 10.90 10.13 0.09
HOLP-SCAD 0.03 0.08 97.5 93.5 5.05 1.46 0.52
HOLP-EBICS 0.70 0.70 46.0 46.0 5.00 5.91 0.16
Tilting 4.47 3.17 0.0 0.0 3.70 12.54 208.8
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E: An analysis of the commonly selected genes

We summarize the commonly selected genes in Table S.3. The listed genes are all selected

by at least two methods. In particular, gene BE107075 is chosen by all methods other than

tilting. Breheny and Huang (2013) reported that this gene is also selected via group Lasso

and group SCAD, and we find that by fitting a cubic curve, it can explain more than 65%

of the variance of TRIM32. Interestingly, tilting selects a completely different set of genes,

and even the submodel after screening is thoroughly different from other screening methods.

This result may be explained by the strong correlations among genes, as the largest absolute

correlation is around 0.99 and the median is 0.62.

Table S.3: Commonly selected genes for different methods

Probe ID 1376747 1381902 1390539 1382673
Gene name BE107075 Zfp292 BF285569 BE115812
Lasso yes yes yes
SCAD yes yes yes
ISIS-SCAD yes
SIS-SCAD yes yes
RRCS-SCAD yes yes
FR-Lasso yes yes
FR-SCAD yes yes yes
HOLP-Lasso yes yes
HOLP-SCAD yes yes
HOLP-EBICS yes
Tilting
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