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ABSTRACT 

The ongoing use of various mineral additions along with chemical admixtures such as 

superplasticizers justifies the need for further research. Understanding and quantifying 

their effects and possible synergies on the fresh and hardened properties of cement-

based materials is necessary, especially if some of these components are known to have 

a pozzolanic effect. This paper describes and models the fresh and hardened properties 

of cement mortars including nanosilica and fly ash, and relates their properties to the 

proportioning of these materials and the superplasticizer dosage. Mini-slump, Marsh 

cone and Lombardi cone tests were used to examine the properties of the fresh mortars, 

and to assess density, plastic shrinkage, and drying shrinkage up to 20 days. The 

equations presented in this paper make it possible to optimize mortar proportionings to 

the required levels of performance in both fresh and hardened states. 
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1. INTRODUCTION 

 

1.1 Nanosilica as a supplementary cementitious material 

The use of active and inert powders as materials for concrete production has been 

prompted by two main factors: 1) an increasing interest in high-performance cement-

based materials such as high-performance grouts, self-compacting concrete, or ultra-

high strength concretes that typically include significant amounts of powders other than 

cement [1-4], and 2) the demand for sustainable construction and for the reduction of 

energy consumption associated with cement production [5].  

As a response to these two factors, cement replacement materials, also known as 

supplementary cementitious materials, have attracted much interest from researchers 

and industry. These terms refer to raw materials such as fly ash (FA), silica fume (SF), 

ground granulated blast-furnace slag (GGBS) and limestone powder (LSP) that are 

generated as by-products of other industries and added to concrete.  

Nanosilica (nano-SiO2 or simply nS) can be considered as one of these 

supplementary cementitious materials [6] but it also falls into the category of 

nanomaterials or nanoparticles. The nanoparticles most commonly used in cement-

based materials are nS, TiO2, Al2O3 and carbon nanotubes [7]. Most of the research 

published to date has dealt with nS [8], and it is reportedly the most widely used variety 

of nanoparticles nowadays [9]. Nanoparticles in general have attracted considerable 

interest as a result of their ability to improve concrete properties by modifying the 

structure of the cementitious matrix at the micro and nano levels [10,11], despite the 

fact that their market price is still higher than that of fly ash or silica fume [6]. 

Nanosilica consists of ultra-fine particles of amorphous silica, which is usually 

distributed and used in aqueous solution, in the form of a slurry or hydrosol [12]. It can 

be produced via several methods, and the production method affects its properties by 

determining the degree of dispersion in the slurry or gel [13]. This variable, along with 

the impact of fineness and particle size on nanosilica performance as a supplementary 

material, highlights the convenience of referring to “types” of nS when comparing 

different results [10]. 

 

1.2 Mechanisms of action 

The reactivity of nS is attributed to two main factors: its high purity in terms of 

SiO2 content and its high specific surface area [11]. The effect of nS on the 
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enhancement of fresh and hardened properties of cement-based materials is exerted 

through a variety of simultaneous mechanisms: 

 

•! Filler effect or pore-filling effect. As a result of the extremely reduced size of nS 

particles, they function as a filler in the cementitious matrix, improving its 

microstructure [11]. As nS particles fill the voids between cement grains, they 

potentially increase the packing density when correctly dosed and dispersed [9]. 

•! Acceleration of cement hydration through nucleation effect. Nanosilica particles, 

when dispersed in the pore solution during cement hydration, act as highly 

efficient nucleation sites for the silica units released from cement particles [14] 

and also for the first C-S-H seeds [8,11]. The hydration products accummulate 

not only on the surface of cement grains but also around these additional 

nucleation sites dispersed in the pore solution. As a result, upon good dispersion 

of nS particles, the production of the C-S-H phase also takes place in voids 

between grains, producing a potentially more compact matrix [9]. 

•! Pozzolanic effect. Calcium hydroxide in the pore solution forms as a by-product 

of cement hydration and eventually forms portlandite, a crystalline phase that 

has no relevant contribution to strength [9]. The maximum concentration of 

calcium hydroxide in the liquid phase is reached during the dormant period of 

cement hydration [15]. Nanosilica particles react very quickly with the calcium 

hydroxide, which is a product of cement hydration, to form additional C-S-H. 

This was confirmed by monitoring the evolution of the free portlandite content 

through time in cement pastes, which was significantly decreased in mixes with 

nS. 

•! Synergy between the acceleration of cement hydration and the pozzolanic effect. 

Calcium hydroxide in the pore solution results from the hydration of C3S and 

C2S. Besides, since cement hydration is accelerated by the nS particles as a 

result of the nucleation effect, the rate of C3S consumption is accelerated [11,14]. 

As a result, the rate of calcium hydroxide release is also accelerated. This means 

that the nucleation effect and the consequent acceleration of cement hydration 

provoked by nS particles makes the calcium hydroxide more readily available, 

thus favoring the pozzolanic effect of nS. In consequence, the induction period 

of cement hydration is shortened when nS is present, as a result of this 
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accelerated relase of calcium ions and their rapid consumption by the pozzolanic 

action of nS [13].  

 

1.3 Influence of nanosilica on the properties of cement-based materials. 

Nanosilica has been extensively reported to be a material that potentially enhances 

density, strength development and the mechanical properties of cement-based materials 

in general [9,16-19]. However, contradictory results are found in literature in relation to 

the following two key concerns: whether or not the use of nS implies substantial 

improvement, and the advisable range for the nS contents. 

Two main factors contribute to these discrepancies. One is the fact that the 

nanosilicas used in different studies are of different types, have a different particle size, 

a different specific surface, or have been produced by different methods [13]. The 

second is the difficulty of dispersing nS particles in the fresh cement grout, paste, 

mortar or concrete [6]. 

The dispersion of nS particles cannot be completely explained on mechanistic 

grounds. It is true that varying the mixing energy can affect the initial aggregation or 

dispersion state of these particles in a pure water solution [20]. However, even if nS 

particles are stable and well dispersed in their original slurry or hydrosol form, once 

they come in contact with the pore solution of a cement-based material they tend to 

aggregate as a result of the presence of ions such as Ca
2+

, Na
+
 and K

+
 released into the 

pore solution by cement upon contact with water. The high concentration of these ions 

in the liquid phase compresses the double layer [21] surrounding the nS particles, and 

the adsorption of Ca
2+

 ions onto the surface of nS particles causes a reduction in their 

negative electrostatic charge. Furthermore, these ions have a bridging effect, 

agglomerating silica units according to the pattern (SiO
-
)–(Ca

2+
)–(SiO

-
) [13]. All of 

these mechanisms tend to destabilize the distribution of nS particles in the pore fluid 

and prevent their homogeneous dispersion. 

The rheology of cement pastes and mortars with nS presents another issue: the 

introduction of nS potentially affects the compatibility between the cement and 

superplasticizers or any other chemical admixture or mineral additions [6,22]. In these 

systems, increasing nS contents results in significantly higher yield stress values [22], 

and using superplasticizers at dosages higher than the saturation point has been reported 

as a convenient way of obtaining better performance in the fresh state [18].  
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Different conclusions concerning the effect of nS have been reported with respect 

to the compressive strength of mortars. Some studies have found that it has a limited or 

negligible impact on compressive strength [12]. In other cases, increasing nS contents 

increased compressive strength values up to a certain dosage, with further increases 

causing a reduction in compressive strength, leading to the determination of an 

intermediate optimum dosage for nS [18,23]. There is no consensus regarding this 

optimum nS dosage, as the values reported are not congruent. However, even though nS 

contents of 10% over cement weight or even higher have been considered in some 

studies, it appears that a rule-of-thumb maximum dosage acceptable for nS has been 

established as 5% over cement weight [6]. 

 

2. OBJECTIVES AND RESEARCH SIGNIFICANCE 

The aim of this study was to evaluate the effects of different contents of nS, FA 

and different SP dosages on the fresh properties and plastic and drying shrinkage of 

cement mortars. A series of cement mortars was produced and tested, and the 

experimental results were analyzed and modelled in a semi-empirical manner following 

a statistical approach. Key parameters and synergies with a statistically significant 

impact on the reheology and shrinkage of the mortars were detected, and their effect 

quantified. The equations obtained can be used to evaluate the potential influence of the 

proportioning of the different components, and to adjust their dosages to ensure the 

stability of mortar proportionings that include nS and FA. These tools can facilitate the 

protocol needed to optimize mortar with a given set of performance criteria. 

 

3. EXPERIMENTAL PROGRAMME 

 

3.1 Factors and levels considered 

The factors considered in this research were:  

•! Nanosilica added to the mortar. Its solid weight, expressed as percentage of the 

cement weight in the mortar, was varied between 0.5% and 3.0%. 

•! Fly ash as partial replacement of cement. It was used in amounts between 5% 

and 20% over the weight of cement. 

•! Superplasticizer dosage, varying between 0.3% and 0.9% over total binder 

weight, or over total weight of cement and fly ash. 
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Three different values were considered for each one of these factors, as summarized in 

Table 1. 

 

3.2 Materials 

The materials used to produce the mortars were tap water, cement, FA, nS, a PCE-

based SP, and sand. Table 2 presents the equivalent oxide composition of cement and 

FA and the composition of the solid fraction of the colloidal nS. All values are 

expressed as percentage relative to total mass. 

The cement used was Portland cement type CEM I 42.5N, as specified by the 

standard EN 197-1:2000 [24]. The FA used conforms with the standard EN 450-1:2005 

[25]. Nanosilica was used in a commercially available colloidal form: an aqueous 

solution with a SiO2 content of 50% by mass. The SP used was a modified 

polycarboxylate. The same well-graded siliceous sand was used for all mortars, with a 

density of 2.7 Mg/m
3
, a water absorption capacity of 1%, and a maximum particle size 

of 1.18 mm. 

 

3.3 Design of the experimental program 

A total of eleven mortar proportionings were considered, as summarized in Table 

4. Mortars 1 to 8 corresponded to all possible combinations of the maximum and 

minimum values of the factors considered, as shown in Table 1. Mortars 9 to 11 were 

selected as center points in this experiment and were all proportioned identically: the 

value for each factor is the central or average value shown in Table 1. The introduction 

of the center points in the experimental program makes it possible to detect quadratic 

trends, if any. 

Two batches of each of the mortars in Table 4 were prepared and tested according 

to the details and procedures described in the following section. 

 

3.4 Experimental methods 

A water-to-binder ratio (w/b) of 0.35 was kept constant throughout the experiment. 

All mortars were prepared in seven minutes using a planar-action high-shear mixer with 

a maximum capacity of 4.5 litres.  

The sequence and timing of operations was exactly the same in all cases. Water, 

nS and SP were first poured into the mixer and mixed for one minute at low speed (140 

rpm). After that, cement and FA were added to the mixer and mixing went on for two 
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more minutes. Then, the mixer was stopped and any lumps were crushed and any solids 

adhered to the surfaces of the mixer were rehomogenized. The time for these operations 

was less than one minute. Subsequently, the mortar was mixed for two more minutes at 

high speed (285 rpm), then for one more minute at low speed (140 rpm). 

Given the number of tests to be performed for each mortar proportioning, it was 

decided to prepare two batches of each. First, one 2 litre batch of of mortar was 

produced to carry out the following tests: mini-slump, Marsh cone, and Lombardi plate. 

A second 1.8 litre batch of of mortar was produced for the cone shrinkage test (to 

evaluate plastic shrinkage) and the drying shrinkage test. 

The mini-slump flow test was carried out immediately after mixing, using a 

truncated cone with an upper diameter of 19 mm, a lower diameter of 38 mm, and a 

height of  57 mm [26]. The value of spread measured was the average of two 

perpendicular measurements. 

The Marsh cone test was carried out after the slump-flow test, measuring the time 

it took for the mortar to flow out of its 10-mm orifice. One litre of mortar was poured 

into the Marsh cone, and the time it took for 700 ml of mortar to flow out of the cone 

was measured. 

The density of the fresh mortar was determined by measuring the grout with a 

mud balancer. Cohesion was measured 30 minutes after mixing using a Lombardi plate 

cohesion meter. A thin galvanized steel plate (100×100×1 mm) was immersed in the 

grout and hung on a stand placed on an electronic balance. The weight of the grout still 

adsorbed to the plate when the mortar stopped dripping was retained, and with this 

value, along with the density of the mortar, the average thickness of the mortar adhered 

to the plate was obtained. 

The plastic shrinkage of the mortar up to 20 hours after mixing was determined 

using the shrinkage cone, shown in Figure 1. It is based on the measurement of the 

distance between a laser emitter and a reflector placed on the surface of the mortar 

sample and the variation of this distance with time was monitored over a period of 

20 hours. The sample of mortar was put in a thin cone-shaped plastic bag, which was 

then placed in a clean and a dry conical stainless steel mould. The plastic bag 

minimized the friction between the sample and the mould surface so that when the 

sample shrank, a downward movement of the upper surface was registered. The 

reflector (a plastic plate of 20×20 mm) was placed on the top surface of the sample. The 

reflector displacement over the measurement time was converted to volume change. 
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4. RESULTS AND DISCUSSION 

Several outputs from the tests carried out to characterize the behavior and 

performance of fresh and hardened mortar were obtained. All results are given in Tables 

5 to 8. Each one of these parameters was related to the values of the factors considered 

in this research by means of Multiple Linear Regression (MLR). The threshold p-value 

for selecting statistically significant effects was 0.05. The equations obtained are 

presented and discussed in the following subsections. 

 

4.1 Flowability: Marsh cone test results 

Experimental results obtained from the Marsh cone test are given in Table 5. To 

model the flow time in the Marsh cone test t700 in relation to the mortar components, the 

inverse of this time was considered instead, 1/t700, in order to include those cases when 

the mortar was too thick to flow (in such cases, 1/t700 = 0). The following relationship 

was obtained (R-squared = 0.97): 

 

1000

�∃%%
= −8.75 + 30.4	�� + 1.49	�� − 4.96	��	�� 

(1) 

 

Where: t700 is the flow time for 700 ml of mortar coming out of the Marsh cone, 

SP is the dosage of superplasticizer expressed in percentage over binder weight, and nS 

is the amount of nanosilica added, expressed in percentage over cement weight. As the 

equation reflects, the Marsh cone flow time is significantly affected by nS content and 

SP dosage. FA content is not included in the equation because it did not have a 

statistically significant effect on 1/t700. 

Figure 2 plots the modelled response surface as given by equation (1). It was 

assumed, in agreement with the experimental results, that t700 values higher than 140 

seconds as predicted by equation (1) correspond to mortars that are too thick to flow 

through the Marsh cone. Only the part of the response surface corresponding to mortars 

with this level of acceptable flowability is presented in Figure 2. It is observed that 

increasing nS contents make the mortar less flowable, that is: higher amounts of nS 

require higher SP dosages to maintain a certain degree of flowability. This is a 

consequence of the high specific surface of nS particles, giving an increase in water 

demand and/or SP dosage to maintain a certain flowability. If the w/c ratio of the mortar 
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is maintained, as was the case in this research, the minimum SP dosage required for the 

mortar to be able to flow through the Marsh cone is 0.54% o/b when nS is used at 0.5% 

o/c. This minimum SP dosage is raised to 0.82% o/b when nS is used at 3.5% o/c. 

If the aforementioned limitation (t700 < 140 seconds) is introduced in equation (1), 

the following criterion is obtained to ensure that the fresh mortar is flowable enough to 

flow through the Marsh cone: 

 

−8.75 + 30.4	�� + 1.49	�� − 4.96	��	�� < 7.14 (2) 

 

Equation (2) is a useful tool for estimating the minimum SP dosage required to 

assure an acceptable degree of flowability depending on nS content. More conservative 

versions of equation (2) can be obtained if the threshold value 7.14 (which is the ratio 

1000/t700 when t700 = 140 seconds) is modified. Figure 3 shows different curves relating 

the minimum SP dosage required, as a function of the nS content, when the target value 

of t700 is set to 100, 120, and 140 seconds.  

 

4.2 Mini-slump results 

Experimental results obtained from the mini-slump test are shown in Table 5. The 

mini-slump test completes the information obtained through the Marsh cone test 

concerning the rheology of fresh mortar. The Marsh cone test results are informative in 

regards to the mix viscosity, while the mini-slump test results provide information on 

yield stress [27-29]. 

For the spread obtained in the mini-slump test, sf (expressed in mm), the 

following equation was obtained (R-squared = 0.99): 

 

�� = −8.167 + 49	�� − 14.33	��8 + 175.83	�� (3) 

 

Nanosilica content and SP dosage are the parameters affecting sf, while the 

addition of FA was not found to have a statistically significant effect. Figure 4 plots the 

response surface given by equation (3). It is observed that the effect of varying the SP 

content is more important in magnitude than varying the nS content, although both 

factors have a statistically significant effect on sf. The increase in sf with higher SP 

dosages may be attributed to the enhanced adsorption mechanisms of SP when nS 
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particles are present in the mix: the lubrication and deflocculation effects of SP are 

more efficient and  the steric and electrostatic repulsion between cement particles and 

between cement and nS particles are enhanced, resulting in better defflocculation of the 

particles in the mortar [30,31]. 

Since the effect of nS on sf follows a quadratic trend, using equation (3) it is 

obtained that its impact on this parameter is maximized when the content is 1.71% o/c: 

 

���

�(��)
= 0 → 49 − 14.33	×	2	×	�� = 0 → �� = 1.71%	�/� 

(4) 

 

4.3 Cohesiveness: Lombardi plate test results 

Experimental results obtained from the Lombardi plate test are given in Table 5. 

For thickness values resulting from the Lombardi plate, h (expressed in mm), the 

following equation was obtained (R-squared = 0.88): 

 

ℎ = 0.0257 + 0.0567	�� + �� 0.131�� − 0.0487�� − 0.00681	��	�� (5) 

 

In terms of mortar cohesion, the three factors considered not only have a 

statistically significant effect but each one of them interacts with the others, revealing 

important synergies between them. This relationship, modelled by equation (5), is 

plotted in Figure 5, in which the two horizontal axes correspond to the two powders (nS 

and FA), and the vertical dimension plots cohesion values. The figure plots two 

response surfaces, corresponding to the two extreme values considered for the SP 

dosage in this research. The effect of varying nS contents on cohesion is altered by the 

FA content, as shown in Figure 5. When FA is used at 5% o/c, the effect of variations in 

nS content is not very important in magnitude, regardless of the SP dosage. However, 

variations in the nS content become more important when the FA content is increased. 

Therefore, increasing the nS content appears to be effective at improving mortar 

cohesiveness, thus reducing the tendency to segregation. Increasing the SP dosage 

reduces the impact that either FA and/or nS contents have on cohesion: Figure 5 shows 

that the thickness obtained from the Lombardi plate is practically constant when SP is 

used at 0.9% o/c. 
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4.4 Density of the fresh mortars 

Experimental results for the density of the fresh mortars are given in Table 6. For 

the density of fresh mortars, �  expressed in g/cm
3
, the following relationship was 

obtained (R-squared = 0.95):  

 

� = 2.1056 + 0.0329	�� − 0.00965	��8 + 0.0982	�� − 0.00383	�� (6) 

 

Figure 6 shows the response surface for the mortar density as given by equation 

(6), plotted for the two extreme values considered for the FA content in this research. 

The effect of increasing nS contents on mortar density follows a quadratic trend. It is 

worth noting that the density of fresh mortar, with respect to the factors considered, was 

highly consistent with the factors affecting mini-slump spread values, as the trends 

observed in Figure 6 are very similar to those in Figure 4. In fact, the nS content that 

maximizes the mini-slump spread, which is 1.71% o/c based on equation (4), is very 

close to the nS content that maximizes the density of fresh mortar, which is 1.7% o/c:  

 

��

�(��)
= 0 → 0.0329 − 0.00965	×	2	×	�� = 0 → �� = 1.7%	�/� 

(7) 

 

4.5 Volume change due to plastic shrinkage 

The cone test was used to measure the volume change of the mortar due to plastic 

shrinkage during the first day after mixing. Experimental results for the plastic 

shrinkage are provided in Table 7. For the volume change of the mortar due to plastic 

shrinkage as measured by means of the cone test, ∆� , the following equation was 

obtained (R-squared = 0.84): 

 

�� ∆� = 0.0649 − 0.0334	� + 0.396 �� � + 0.612	�� − 0.17	�� + 0.00958	�� (8) 

 

Where: ∆� is the volume change expressed in percentage, and t is the time since 

the completion of mixing, expressed in hours. 

Equation (8) is plotted assuming different scenarios in Figures 7 and 8. It is 

generally observed that increasing the nS content significantly reduces plastic shrinkage. 
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Plastic shrinkage increases with time, as expected, although it clearly tends to 

stabilisation with time. 

Figure 7 compares the evolution of plastic shrinkage with time for the two FA 

contents considered in this research. It is observed that plastic shrinkage at any age is 

only slightly affected by varying the FA content between 5% and 20% o/c. Contrarily, 

plastic shrinkage is more sensitive to variations in the SP dosage: Figure 8 shows that 

increasing the SP dosage from 0.3% to 0.9% o/b gives increases shrinkage at 20 hours 

from 2.08% to 2.99%. 

Therefore, only variations in nS content or the SP dosage have an important 

influence on plastic shrinkage: the effect of FA is less relevant in magnitude, as shown 

in Figures 7 and 8. Increasing the SP dosage results in an increase of plastic shrinkage. 

On the other hand, increasing the nS content gives a reduction in plastic shrinkage. This 

effect can be linked to the filler effect of nS particles and their impact on cement 

hydration kinetics. As the cementitious matrix is densified by nS particles, they 

contribute to restrain volume changes due to plastic shrinkage. In addition to that, the 

presence of nS tends to decrease the rates of sedimentation and bleeding.  

 

4.6 Volume change due to drying shrinkage 

Volume changes caused by drying shrinkage of the mortar were monitored for 20 

days after mixing. Experimental results are shown in Table 8. For the volume change 

due to the drying shrinkage, ∆�, the following relationship was obtained (R-squared = 

0.88): 

 

�� ∆� = −4.789 − 0.00797	� + 0.553 ln � + 0.294	�� − 0.061	��8 + 0.035	�� (9) 

 

Where ∆� is the volume change due to drying shrinkage, expressed in percentage, 

and t is the time since the conclusion of mixing, expressed in days. 

Nanosilica and FA contents have been found to have a statistically significant 

effect on drying shrinkage, while the SP dosage does not have a significant influence. 

Figure 9 plots the relationship given by equation (9), where the drying shrinkage 

is related to nS content and age for the two extreme values considered for FA content in 

this research. Increasing FA contents give slightly higher drying shrinkage at all ages. 

With respect to the effect of nS contents, a quadratic trend has been detected, giving that 
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the highest value for drying shrinkage is obtained for an intermediate nS content. 

However, the effect of variations in nS or FA, though statistically significant, is not 

comparable in magnitude to the effect of the age of mortars, which is clearly the most 

relevant parameter. 

 

5. CONCLUSIONS 

•! Mortar flowability, measured with the Marsh cone, was significantly affected by 

nS content and SP dosage, but not by FA content. Increasing the amount of 

added nS required higher SP dosages to maintain mortar flowability at 

acceptable levels. An equation has been provided to estimate the minimum SP 

dosage required depending on nS content. 

•! The spread obtained from the mini-slump test has been analyzed as informative 

of the yield stress of the mortars. The amount of nS and SP had a significant 

effect on this parameter, while variations in FA content had no impact. The 

effect of SP dosage was more important in magnitude than that of nS content, 

which can be attributed to the increased efficiency of SP in terms of lubrication 

and deflocculation when nS particles are present. 

•! Cohesion of the mortar, evaluated with the Lombardi plate, was affected by nS 

and FA contents as well as by the SP dosage. Important synergies between these 

factors were detected; increasing the nS content improved  mortar cohesiveness, 

and this effect was more important with high FA content. On the other hand, 

increasing SP dosage reduced the impact of both nS and FA on cohesiveness. 

•! Plastic shrinkage was evaluated by means of the cone shrinkage test. Plastic 

shrinkage was shown to be relatively sensitive to nS content and SP dosage, 

while FA had less of an effect. Increasing nS content significantly reduced 

plastic shrinkage. In terms of drying shrinkage, however, the influence of these 

factors was less evident. 

•! In terms of the density of fresh mortars, the trends detected were very similar to 

those observed in the mini-slump test results. Increasing SP dosage resulted in 

higher mortar density, while higher FA content tended to decrease it. The 

optimum nS content in terms of the mini-slump test and the density of the fresh 

mortars was 1.7% over cement weight. 
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•! It is inferred from the above conclusions that nS has only a moderate effect on 

most of the parameters analyzed compared to the effect of FA and SP, when 

these are varied between the ranges considered in this research. However, 

variations in nS content have a more prominent effect on flowability (Marsh 

cone flow times), and on plastic shrinkage, which is significantly reduced when 

nS content is increased. 
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FIGURES 

 

 

 

 

Figure 1. Diagram and picture of the “shrinkage cone” apparatus. 

 

 

 

Figure 2. Marsh cone results. 
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Figure 3. SP dosages depending on nanosilica content for different targeted levels of 

flowability in the Marsh cone test. 

 

 

 

Figure 4. Mini-slump results. 
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Figure 5. Cohesion results (Lombardi). 

 

 

 

Figure 6. Density of the fresh mortars. 
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Figure 7. Plastic shrinkage, assuming constant SP dosage of 0.3% o/b. 

 

 

 

Figure 8. Plastic shrinkage, assuming constant FA replacement of 5% o/c. 
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Figure 9. Drying shrinkage. 
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TABLES 

Table 1. Factors and levels considered. 

Factor Levels (*) 

Nanosilica addition, nS 

(solid content) 

0.5% o/c 

2.0% o/c 

3.5% o/c 

Fly ash, FA 

(cement replacement) 

5.0% o/c 

12.5% o/c 

20.0% o/c 

Superplasticizer, SP 

0.3% o/b 

0.6% o/b 

0.9% o/b 

(*) o/c: over cement weight 

(*) o/b: over binder weight (cement+FA) 

 

 

Table 2. Chemical composition of the materials used. 

 Cement Fly ash Nanosilica 

SiO2 (%) 21.01 55.95 99.40 

Al2O3 (%) 4.92 23.3 0.08 

Fe2O3 (%) 2.84 4.84 -- 

MgO(%) 2.20 1.85 -- 

CaO (%) 64.52 4.76 -- 

Na2O (%) 0.20 0.91 0.45 

K2O (%) 0.71 1.82 -- 

SO3 (%) 2.53 0.65 -- 

P2O5 (%) 0.11 0.73 -- 

LOI (%) 1.26 3.47 0.10 

 

 

Table 3. Physical properties of nS, FA and cement. 

 Cement Fly ash Nanosilica 

Specific gravity 3.08 2.21 1.40 

% passing 45 µm sieve 85% 85% -- 

Mean particle size 22 µm -- 50-60 nm 

Specific surface area [m
2
/kg] 360 -- -- 

Specific surface area (BET) -- -- 80 m
2
/g 

Solid content (SiO2-content) -- -- 50 wt % 

pH -- -- 9.5 

Viscosity -- -- <15 cPas 
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Table 4. Proportionings of the mortars tested. 

 Ref. w/b Nanosilica (%) Fly ash (%) SP (%) 

Selected 

mixes 

1 0.35 0.5 5.0 0.3 

2 0.35 3.5 5.0 0.3 

3 0.35 0.5 5.0 0.9 

4 0.35 3.5 5.0 0.9 

5 0.35 0.5 20.0 0.3 

6 0.35 3.5 20.0 0.3 

7 0.35 0.5 20.0 0.9 

8 0.35 3.5 20.0 0.9 

Center 

points 

9 0.35 2.0 12.5 0.6 

10 0.35 2.0 12.5 0.6 

11 0.35 2.0 12.5 0.6 

 

 

 

Table 5. Fresh properties of mortars. 

	

Ref.	

Marsh	cone	

Mini-slump 

(mm)	

Cohesion, 

thickness 

(mm)	

 Flow time 

t700 (s) 

Inverse 1/t700 

(s
–1

) 

Selected 

mixes 

1 n/a (*) 0 76 0.19090 

2 n/a (*) 0 38 (**) 0.33946 

3 68 0.014706 171 0.18295 

4 118 0.008475 148 0.30265 

5 n/a (*) 0 60 0.89920 

6 n/a (*) 0 38 (**) 0.44311 

7 53 0.018811 166 0.19707 

8 139 0.007194 149 0.30758 

Center 

points 

9 129 0.007752 137 0.38624 

10 136 0.007353 140 0.33369 

11 134 0.007463 137 0.33423 

(*)   Grouts did not flow through the Marsh cone. 

(**) Grouts did not spread. 
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Table 6. Density of the fresh mortars. 

 

Ref. 

Density 

(g/cm
3
)  

Selected 

mixes 

1 2.14249 

2 2.11218 

3 2.18638 

4 2.16257 

5 2.06239 

6 2.05367 

7 2.13127 

8 2.12627 

Center 

points 

9 2.15412 

10 2.14718 

11 2.13029 

 

 

Table 7. Plastic shrinkage results (volume change, in percentage). 

 Ref. 2 hours 5 hours 20 hours 

Selected 

mixes 

1 1.70 2.01 2.13 

2 0.81 0.93 0.98 

3 2.68 2.75 2.74 

4 1.36 1.77 2.00 

5 1.88 2.48 2.52 

6 1.12 1.37 1.41 

7 2.44 2.52 2.49 

8 1.37 2.27 2.42 

Center 

points 

9 1.27 1.93 2.04 

10 1.44 2.23 2.41 

11 1.56 2.38 2.55 
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Table 8. Drying shrinkage results (volume change, in percentage). 

 Ref. 14 days 21 days 28 days 42 days 56 days 

Selected 

mixes 

1 0.037586 0.050524 0.053576 0.059407 0.063921 

2 0.041558 0.052244 0.055041 0.060721 0.067038 

3 0.031343 0.042595 0.044260 0.052044 0.054594 

4 0.046980 0.049886 0.056886 0.063767 0.065731 

5 0.039369 0.049842 0.053544 0.059724 0.064179 

6 0.041099 0.054154 0.055297 0.063907 0.067971 

7 0.035770 0.046639 0.048287 0.054095 0.058524 

8 0.049690 0.056568 0.062439 0.070663 0.074299 

Center 

points 

9 0.048530 0.054466 0.058016 0.065473 0.069765 

10 0.054677 0.061000 0.067863 0.072816 0.078127 

11 0.045320 0.051912 0.060731 0.064860 0.067379 
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