
http://wrap.warwick.ac.uk

Original citation:
Coetzee, Peter and Jarvis, Stephen A., 1970- (2015) Goal-based analytic composition
for on- and off-line execution at scale. In: The 9th IEEE International Conference on Big
Data Science and Engineering, Helsinki, Finland, 20-22 Aug 2015

Permanent WRAP url:
http://wrap.warwick.ac.uk/72354

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/42611619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/72354
mailto:publications@warwick.ac.uk

Goal-Based Analytic Composition for On- and
Off-line Execution at Scale

Peter Coetzee
Department of Computer Science

University of Warwick
Coventry, CV4 7AL

United Kingdom
Email: p.l.coetzee@warwick.ac.uk

Stephen Jarvis
Department of Computer Science

University of Warwick
Coventry, CV4 7AL

United Kingdom
Email: s.a.jarvis@warwick.ac.uk

Abstract—Crafting scalable analytics in order to extract action-
able business intelligence is a challenging endeavour, requiring
multiple layers of expertise and experience. Often, this expertise
is irreconcilably split between an organisation’s engineers and
subject matter or domain experts. Previous approaches to this
problem have relied on technically adept users with tool-specific
training. These approaches have generally not targeted the levels
of performance and scalability required to harness the sheer
volume and velocity of large-scale data analytics.

In this paper, we present a novel approach to the automated
planning of scalable analytics using a semantically rich type
system, the use of which requires little programming expertise
from the user. This approach is the first of its kind to permit
domain experts with little or no technical expertise to assemble
complex and scalable analytics, for execution both on- and off-
line, with no lower-level engineering support.

We describe in detail (i) an abstract model of analytic assembly
and execution; (ii) goal-based planning and (iii) code generation
using this model for both on- and off-line analytics. Our imple-
mentation of this model, MENDELEEV, is used to (iv) demonstrate
the applicability of our approach through a series of case studies,
in which a single interface is used to create analytics that can be
run in real-time (on-line) and batch (off-line) environments. We
(v) analyse the performance of the planner, and (vi) show that
the performance of MENDELEEV’s generated code is comparable
with that of hand-written analytics.

I. INTRODUCTION

Large organisations rely on the craft of engineers and domain
expert data scientists to create specialist analytics which provide
actionable business intelligence. In many cases their knowledge
is complementary; the engineer has specific knowledge of con-
currency, architectures, engineering scalable software systems,
etc., and the domain expert understands the detailed semantics
of their data and appropriate queries.

Transferring skills from one group into the other can be chal-
lenging, and so typically organisations are left with two options.
They either make use of a traditional development model,
in which engineers attempt to elucidate requirements from
stakeholders, develop a solution to meet those requirements,
and then seek the approval of their customers; or they aim to
empower the domain experts by offering increasingly high-level
abstractions onto their execution environment, concealing the
difficulty (and often the power) of hand-tuning an analytic.

Flickr User Data

Fetch Photo

Facial
Recognition Person Details

Join on
person_id

Write to
Accumulo

Fig. 1: A sample analytic, reading profile pictures from Flickr
and using facial recognition to populate an Accumulo table.

Consider, for example, the Flickr1 analytic described in Figure 1.
Each component of the analysis is described here by a box,
with arrows indicating the flow of data from one component
to another. There are many runtime environments in which
this analytic could be run, depending on the wider system
context (e.g., if user data is being crawled, a streaming (on-line)
analytic engine such as Apache Storm [1] or IBM InfoSphere
Streams [2] might be used; alternatively, if the data is already
present in an HDFS (Hadoop Distributed File System) [3] store,
an off-line MapReduce [4] or Apache Spark [5] runtime might
fit better). Each of these runtime environments specify their
own programming model, and have their own optimisation
constraints and engineering best practices, which a domain
expert may not be aware of.

There are additionally challenges in even a relatively simple
analytic such as this through which an engineer could misun-
derstand the requirements of their users (using the wrong input
data, persisting the wrong fields to the Accumulo [6] datastore,
bad parameters for the facial recognition system, etc.).

1http://www.flickr.com/, a photo sharing website

This divide between engineering expertise and domain knowl-
edge has led researchers to consider approaches which will
make the best use of the available skills, without the risks
inherent in traditional models of cooperation. This paper
presents a new approach, which for the first time will enable
domain experts to compose scalable analytics without any
engineering knowledge. This approach composes an analytic
from primitives crafted by engineers, which can be immediately
deployed in a scalable and performant streaming and batch
context, without any additional engineering required.

The specific contributions of this work are as follows:

• A new abstract model of analytic assembly and
execution, centred around a semantically rich type
system (Section IV);

• Goal-based planning of on- and off-line analytic
applications using the above model, requiring little
programming ability or prior knowledge of available
analytic components from the user (Section V);

• Code generation for execution of planned analytics
at scale, with equivalent semantics, in both on- and
off-line scenarios (Section VI);

• Validation of the applicability and performance of the
types-based planning approach using four case studies
from the domains of telecommunications and image
analysis (Section VII);

• An analysis of the performance of the planning engine
over each of these case studies (Section VIII-A);

• Performance analysis of analytics at scale in both
on- and off-line runtime environments, demonstrating
comparable performance with equivalent hand-written
alternatives (Section VIII-B).

The remainder of this paper is structured as follows: Section II
describes related work; Section III outlines the methodology
adopted in this research; Sections IV and V detail the approach
to modelling analytics, and planning their execution respec-
tively; Section VI discusses code generation; while Section VII
discusses the application of this approach through four case
studies. Finally, Sections VIII and IX provide a performance
evaluation and conclude the paper.

II. RELATED WORK

A variety of approaches to the problem of analytic planning
exist in the literature. Historical research in this area tends
to be in the context of web-based mashups, but some of the
requirements behind such systems are relevant. Yu et al. [7]
provide a rich overview of a number of approaches, including
Yahoo! Pipes [8] – one of the first in a number of recent
dataflow-based visual programming paradigms for mashups
and analytics. These require enough technical knowledge from
their users to be able to navigate and select the components of
a processing pipeline, as well as connecting those components
together, without requiring the use of a programming language.
This removes the challenges of learning programming syntax,
but does not obviate the need for a detailed understanding of
the available components, their semantics, and their use.

Pipes has inspired a number of extensions and improvements,
such as Damia [9], PopFly [10], and Marmite [11]. The work of
Daniel et al. [12] aims to simplify the use of tools like Pipes by
providing recommendations to a non-expert on how to compose
their flows. Others, such as Google’s (discontinued) Mashup
Editor [13] take a more technical approach, requiring an in-
depth knowledge of XML, JavaScript, and related technologies,
but permit a greater degree of flexibility as a result. Finding
domain experts with sufficient expertise in these areas to express
their queries can be challenging.

Some vendors offer more technical solutions to the problem of
creating analytics by non-engineers, without entering the realm
of full programming languages. SQL is a common vehicle for
this; Apache Spark SQL [5], [14] and Cloudera Impala [15]
both offer an SQL-style interface onto NoSQL data stores. The
work of Jain et al. [16] aims to standardise the use of SQL for
streaming analysis, but its techniques have not been applied to
both on- and off-line analytics. Furthermore, other than through
the introduction of User Defined Functions, there exist entire
classes of analytics that cannot be represented in SQL [17].
Approaches which assemble general-purpose code into complex
analytics do not suffer these limitations.

Whitehouse et al. [19] propose a semantic approach to com-
posing queries over streams of sensor data using a declarative
mechanism to drive a backward chaining reasoner, solving
for possible plans at execution time. Sirin et al. [20] intro-
duce the use of OWL-S for query component descriptions
in the SHOP2 [21] planner (a hierarchical task network
planner). Another common approach, taken by Pistore et al. in
BPEL4WS [22], uses transition systems as a modelling basis
for planning. A recurring theme in these approaches is that of
composing queries by satisfying the preconditions for executing
composable components. The runtime composition approach is
flexible, but has implications for performance at scale.

There has been considerable work in the area of web service
composition for bioinformatics; BioMOBY [23] specifies a
software interface to which services must adhere, then permits
a user to perform discovery of a single service based on their
available inputs and desired outputs. It does not manage the
planning and composition of an entire workflow. Taverna [24]
offers a traditional “search” interface (making use of full-text
and tag-based search) to locate web services which a user
may manually compose in the Taverna interface. This form
of manual search and assembly requires considerable user
experience, and an understanding of the art of the possible,
which a general-purpose analytic planner does not.

Research in Software Engineering has examined a related
problem to this: searching for an existing code sample to
perform some desired function. Stolee et al. [25] examined
the use of semantic models of source code as an indexing
strategy to help find a block of code that will pass a set of test
cases – one form of goal-based search. Such semantic searches
have additionally been used in web service composition [26],
[27]. However, the complexity of the semantic model and the
uncertainty in its retrieval accuracy make assembly of multiple
blocks of code on this basis risky – there is little guarantee
that the retrieved code samples are compatible.

These web services based systems typically involve considerable
user training (whether in the composition interface, or the

Fig. 2: Steps in composing an analytic.

formal specification of their query language), and at their core
aim to answer a single question at a time through service-
oriented protocols like WSDL and SOAP. Often, large-scale
data analytics workflows aim instead to analyse a huge amount
of data in parallel – an execution model which is closer to
High Performance Computing simulations than web mashups.

One noteworthy approach to the problem is that taken by
IBM’s research prototype, MARIO [28], which builds on SPPL,
the Streaming Processing Planning Language [29], [30]. IBM
characterises MARIO as offering wishful search, in which a
user enters a set of goal tags. The MARIO planning engine
then aims to construct a sequence of analytical components
for deployment on InfoSphere Streams that will satisfy those
goals. These tags correspond to those applied to the individual
analytical components by the engineers responsible for their
creation. In practice, due to the tight coupling between the
engineer-created tagsonomy of patterns and the flows available
to the end user (components are often manually tagged as
compatible), it is rare for MARIO to create a novel or
unforeseen solution to a problem.

This research builds on the wishful search concept behind
MARIO, permitting the composition of complex analytics while
using a more granular model of analytic behaviour, by making
use of existing techniques in AI planning. It additionally targets
execution of these analytics equivalently in both on- and off-
line runtime environments. As such, it is the only automated
planning engine of its type to offer this degree of applicability
for its analytics, regardless of runtime, without also requiring
significant technical ability and input from the end-user.

III. HIGH-LEVEL OVERVIEW

To compose an analytic from a user’s goals, the components
outlined in Figure 2 are used. An abstract Analytic Model
(detailed in Section IV) generates a knowledge-base of process-
ing elements. With this knowledge-base in place, the system
collects goals from the user as input to the planning process.
There are three types of goals that can be used to constrain
the planning process (see Section V):

• Types that the analytic must produce in its output;

• The datasource with which the analytic must begin;

• The type of data sink to terminate the analytic.

For example, to create the sample analytic described in Figure 1,
the user might specify:

• Types: person_id, person_name,
postal_address, email_address

• Source: FlickrUserData

• Sink: Accumulo

The planning process generates a set of possible analytics,
which can be presented to the user. Any unbound configuration
options are then supplied by the user to the assembly process
(e.g., which Accumulo table to write to, or tunable parameters
for the facial recognition), which makes the abstract plan
concrete and resolves any ambiguities. Finally, code generation
is invoked on the concrete plan to create an executable analytic.

The approach described in this paper has been implemented and
tested using real analytics in a system we call MENDELEEV,
named after the scientist responsible for composing and
organising the periodic table as we know it today.

IV. MODELLING ANALYTICS

The first contribution of this paper is a model of analytic
behaviour, used to separate the planning process from the
concrete implementation of an analytic. This research models
an analytic as a set of communicating sequential processes,
called Processing Elements (PEs). These pass tuples of data
(consisting of a set of named, strongly typed elements) from
one PE to the next. When a PE receives a tuple, it causes
a computation to occur, and zero or more tuples are emitted
on its output based on the results of that computation. Unlike
existing modelling languages, such as S-NET [18], this abstract
analytic model makes no assumptions about the statefulness
or atomicity of each PE. While this may limit the scope of
potential optimisations during code generation, it significantly
enhances the expressivity and applicability of the model.

The model is encoded in an RDF [31] graph describing the
available types and PEs2. Types may exhibit polymorphic
inheritance, as in a typical second-order type system. This
inheritance is indicated using the mlv:parent relationship,
and may form an inheritance graph provided each type cycle
declares only one mlv:nativeCode; that is, the name of the
type in the target language that is represented by this concept
(in the case of our target language, this is a Java class). For
example, a buffer of bytes might represent more than one type
of information (e.g., a PDF file or an image), even though the
data underlying it is the same type, as in Listing 1.

Listing 1: RDF graph for a simple type hierarchy
The "raw" ByteBuffer parent type
type:byteBuffer rdf:type mlv:type ;
mlv:nativeCode "java.nio.ByteBuffer" .

2RDF types are given in this paper using W3C CURIE [32] syntax. The
following RDF namespaces are used:

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
mlv http://go.warwick.ac.uk/crucible/mendeleev/ns#
type http://go.warwick.ac.uk/crucible/mendeleev/types#

An image encoded in a ByteBuffer
type:image rdf:type mlv:type ;
mlv:parent type:byteBuffer .

A PDF file encoded in a ByteBuffer
type:pdfFile rdf:type mlv:type ;
mlv:parent type:byteBuffer .

In addition to this basic polymorphism, a type may contain
an unbound variable with an optional type constraint (akin to
a generic type in Java [33], or a template in C++ [34]). This
is used in PEs which transform an input type to an output
without precise knowledge of the information encoded in the
data. For example (see Listing 2), a PE for fetching data over
HTTP might take an input of type:URL parameterised with
〈?T mlv:parent type:byteBuffer〉, and output data
with the same type as the variable ?T, an as-yet unbound
subtype of type:byteBuffer. A priori, ?T is known to be
a type:byteBuffer; during planning it may be bound to a
more specific type (e.g., type:image in the Flickr analytic
described above).

Listing 2: Modelling unbound type variables in RDF
Declaration of a generic type
type:URL rdf:type mlv:genericType ;
mlv:nativeCode "java.net.URL" .

PE input declaration for url<?T>
(bnode _:urlType represents variable)
_:sampleInput rdf:type [

mlv:parent type:URL ;
mlv:genericParameter _:urlType

] .
Variable for the type parameter to URL
_:urlType rdf:type type:byteBuffer .
PE output parameter using the variable
_:sampleParameter rdf:type _:urlType .

A visualisation of the RDF graph resulting from this type
hierarchy (along with a subset of the PE model described
in Listing 3) can be seen in Figure 3. The unbound variable
_:urlType is highlighted as a filled black circle in this figure.

As suggested by the types used above, the engineers who
describe their PEs are encouraged to do so using the most
specific types possible. For example, the more precise semantics
of type:image are to be preferred to type:byteBuffer,
even though both result in the same mlv:nativeCode.

A. PE Formalism

We consider a PE χn to have a set of declared input types µn,
and a set of declared output types νn. For a data source, µn = ∅
(it produces data without any inputs being present), while for a
sink νn = ∅ (it receives inputs of data, but produces no output).
Tuple data generally accumulates as it passes through each PE,
treating it as an enrichment process on the data it receives. No
specific knowledge about the processing performed is encoded
in the model. More formally, a PE χn has an accumulated
output type (denoted as τn) based on the type of the tuple
received on its input, τn−1. Thus, to determine τn for a given
PE, the entire enrichment chain must be known:

τn = ν0 ∪ ν1 ∪ ... ∪ νn−1 ∪ νn (1)

Or, inductively:

τn = τn−1 ∪ νn (2)

type:byteBuffer

type:image

mlv:parent

type:pdfFile

ml
v:
pa
re
nt

type:URL

m
l
v
:
p
a
r
e
n
t

m
l
v
:
p
a
r
e
n
t

ml
v:
ge
ne
ri
c

Pa
ra
me
te
r

“url”
rdf:type

“body”

rdf:type

mlv:parameter

mlv:parameter

pe:fetch_url

m
l
v
:
i
n
p
u
tml

v:
ou
tp
ut

Fig. 3: Graph visualisation of the RDF description of a portion
of the example model. _:urlType bnode represented by .

This model can be extended to include PEs (e.g., complex
aggregations) that clear the accumulated data in a tuple
declaration before emitting their outputs; this extension will
not be considered here, in order to simplify the description of
the planning process.

One important extension to this model is in support of join
operators (discussed in further detail in Section V). These must
receive two sets of input types, and emit the union of their
accumulated inputs. Thus, for join operator χn with inputs χi
and χj , τn is given as follows:

τn = τi ∪ τj (3)

PE connectivity utilises a form of subsumption compatible with
the type model described above. A type u can be said to be
subsumed by a type v (u / v) if one of the following cases
hold true:

u / v ⇐
{
u mlv:parent v

u mlv:parent t, t / v
(4)

u〈t〉 / v〈s〉 ⇐ u / v ∧ t / s (5)

A PE χx is considered fully compatible with χy, and is thus
able to emit tuples to PE χy , if the following holds true:

∀t ∈ µy,∃u ∈ τx | u / t (6)

In the RDF model, each PE definition includes the native
type name associated with the PE, as well as the set of
(typed) configuration parameters, and input and output ports.
Additionally, the model may include user-friendly labels and
descriptions for each of these definitions. Unlike other planning
engines (particularly HTN planners such as MARIO), which
require the engineer to additionally implement prototype code
templates, this RDF model is the only integration that is required
between a PE and the MENDELEEV system. For example, a
more complete version of the HTTP fetching PE described
above is shown in Listing 3.

Listing 3: Modelling the HTTP Fetch PE in RDF
pe:fetch_url rdf:type mlv:pe ;

mlv:nativeCode "lib.web.FetchURL" ;
mlv:input [
mlv:parameter [# url is a URL<?T>

Algorithm 1 Bidirectional Planning, searching for a given set
of target types (φ), source PE (σ), accumulated types (τ), and
backwards search set (β)

1: procedure SOLVE(φ, σ, τ, β)
. Every 3 levels of forward search, advance backwards

2: if search level % 3 == 0 then
3: β ← β ∪ providers of(φ)
4: end if
5: if σ not given then
6: results← ∅
7: for all source s in model do
8: results← solve(φ, s, τ, β)
9: end for

10: return results
11: end if

. Update τ with outputs of σ, and check for completion
12: τ ← τ ∪ νσ
13: if τ satisfies φ then
14: return [[σ]]
15: end if

. Depth-first search of PEs in β
16: forward← consumers of(τ)
17: candidates← dfs search(forward ∩ β, φ, σ, τ)
18: results← ∅
19: for all candidate in candidates do
20: results← results ∪ [σ, candidate]
21: end for

. Depth-first search of remaining candidates
22: if results == ∅ then
23: results← dfs search(forward− β, φ, σ, τ)
24: end if

. If nothing found still, join with other paths

. EXPLORE JOINS is mutually recursive with SOLVE
25: if results == ∅ then
26: results← explore joins(σ, φ, τ)
27: end if
28: return results
29: end procedure

rdfs:label "url" ;
rdf:type [

mlv:parent type:URL ;
mlv:genericParameter _:fetch_type

]
]

] ; # End input declaration
mlv:output [

rdfs:label "HttpOut" ;
mlv:parameter [# httpHeaders is a header_list

rdfs:label "httpHeaders" ;
rdf:type type:header_list

] ;
mlv:parameter [# body is a ?T

rdfs:label "body" ;
rdf:type _:fetch_type

]
] . # End output declaration

byteBuffer is the parent type of ?T
_:fetch_type rdf:type type:byteBuffer .

Algorithm 2 Type Pruning

1: procedure PRUNE TYPES(pe, φ)
. Remove types from τpe that are not in the φ set

2: τpe ← τpe ∩ φ
. Add types to the φ set that are required by this PE

3: φ← φ ∪ µpe
. Recurse to all publishers of data to this PE

4: for all σ in publishers(pe) do
5: prune types(σ, φ)
6: end for
7: end procedure

V. GOAL-BASED PLANNING

The second contribution of this paper is a goal-based planner
based around the semantically rich type system described
above. The goal of this planner is to explore the graph of
possible connections between PEs using heuristics to direct the
search, accumulating types in the τ set until the user-supplied
constraints have all been satisfied, or the planner determines
that no solution exists.

Given the RDF model of the PE knowledge-base, a suite of
forward inference rules are pre-computed before any planning
may occur. These rules are applied using a forward chaining
reasoner (the FuXi [35] RETE-UL algorithm), and compute
three key types of closure. First, a subset of RDFS-style reason-
ing is applied to the types in the knowledge base (primarily to
compute the closure over second-order types). Next, unbound
type variables are compared, to compute potential subsumption.
Finally, candidate PE matches are inferred based on rules
derived from the full compatibility rules described in Section IV,
Equation 6. A PE χx is considered partially compatible with
χy , and is thus a candidate for sending tuples to PE χy , if one
of the following holds true:

∃t ∈ µy, u ∈ νx | u / t (7)
∃t ∈ µy, u〈v〉 ∈ µx, v ∈ νx | v / t (8)

∃s〈t〉 ∈ µy, u〈v〉 ∈ νx | u / s, v / t (9)

For example, consider pe:fetch_url described above; it
requires a URL parameterised with any type:byteBuffer.
Consider also pe:exif, which requires a type:image on
its input (where type:image / type:byteBuffer), and
outputs a number of Exif3-related fields:

µfetch url ={type:url〈?T / type:byteBuffer〉} (10)
νfetch url ={?T} (11)

µexif ={type:image} (12)
νexif ={type:camera,type:lat,

type:lon,type:fstop, ...} (13)

Through Equation 8 above, the ?T output by pe:fetch_url
can potentially be used to satisfy the input to pe:exif. In
this case, pe:fetch_url is considered partially compatible
with pe:exif, and is marked as a candidate connection when
?T is bound to type:image.

In practice, this closure is calculated offline and stored for future
use. The search through the graph of partially compatible PEs is

3Exchangeable image file format; image file metadata

outlined in Algorithm 1. This algorithm finds a set of pathways
through the graph of candidate PE connections which will
generate the required set of types, while fulfilling the input
requirements of each PE. In order to minimise the search-
space explosion, the search is performed bi-directionally, with
an empirically selected heuristic expanding the search space
backwards for every three levels of forward search. Similarly, if
a source or a sink constraint is specified, it is used to optimise
the search process. The algorithm has six stages:

L2-4: Every 3 levels of forward search, expand the set
of backward search candidates by one more step;

L5-11: If the call to SOLVE does not provide a bound on
the source, launch a solver to generate results for
all sources in the model;

L12-15: Update the set of accumulated type data (τ), and
test to see if all required types are satisfied; if so,
this branch of the search terminates;

L16-21: Attempt to search the next level (recursively), using
only the set of backwards candidates;

L22-24: If the above step did not yield any new paths,
repeat the search with PEs not in the set of
backwards candidates;

L25-27: If the above steps still have not yielded any results,
attempt to explore joins (see below).

A simple heuristic ranking may be applied to this set of
candidate pathways e.g., based on the number of PEs in the
path (if two paths accumulate the same τ , it can be considered
that their results are similar, and thus the shorter, “simpler”
path should be preferred). It is not sufficient to automatically
select and assemble one of the available paths arbitrarily.

The EXPLORE JOINS procedure, referenced in Algorithm 1 on
line 26, explores non-linear analytic assembly, by joining the
current accumulated type τ with other sources in the knowledge-
base. This automated join process is calculated on the basis
of identity-joins; if two PEs output data with a common sub-
type of the built-in type:identifier, then they can be
considered for a join operation. The implementation of this
join PE is runtime-dependent; MENDELEEV uses an adaptive
windowed join which is sensitive to data source types.

Once an execution plan is selected from the generated options, it
must be assembled into a concrete plan. This process involves
binding keys from each tuple to the required output types.
For example, if a tuple of Flickr user data contained two
type:url〈type:image〉 parameters, a profile background
and a user avatar, and it was passed to the aforementioned
pe:fetch_url, the assembly process must bind one of these
parameters on its input. In practice, no reliable heuristic is
available for this, and user configuration is required. For a
domain expert this should not present a difficulty, as they can
be expected to understand the nature of the fields in their data.

This planning and assembly process generates an acyclic graph
of PEs as its output, with a single goal state node and one or
more source nodes. The goal node will have a τ of the union
of all PE outputs up to that point in the analytic – however,
many of these types may not be needed in order to correctly
complete the computation. During assembly, a second pass is
therefore taken backwards across the topology (in a breadth-first
traversal from the goal node) using the type pruning algorithm
outlined in Algorithm 2 to prevent the topology from passing

Fig. 4: Top: MENDELEEV message passing model for a process
f. Bottom: CRUCIBLE model of tuple field copying semantics.

unnecessary data forwards. This helps to control the otherwise
unlimited expansion of tuple width, improving the space, time,
and message passing complexity of the resultant analytic.

VI. CODE GENERATION

Once the concrete execution plan is assembled, it is passed
to a pluggable code generator; this is the third contribution
of this paper. MENDELEEV’s planner produces a concrete
plan, which the code generator must turn into native code
for execution on both on- and off-line runtimes. To achieve
this, it may either generate native code for each runtime directly,
or use an intermediate representation to manage the differences
in runtime models. MENDELEEV currently generates code
using the CRUCIBLE [36] domain specific language (DSL)
as such an intermediate representation. CRUCIBLE offers a
DSL and suite of runtime environments, adhering to a common
runtime model, that provide consistent execution semantics for
an analytic across on- and off-line runtimes. A performance
evaluation of CRUCIBLE [36] showed consistent scalability of
CRUCIBLE topologies in a standalone environment, in batch
mode on Apache Spark, and in streaming mode on IBM’s
InfoSphere Streams. CRUCIBLE’s DSL is source-to-source
compiled through CRUCIBLE to optimised native code for
each runtime environment on which it can be executed.

There is one key difference between the MENDELEEV and
CRUCIBLE execution models: whereas MENDELEEV assumes
that all keys in the input tuple are passed through on the output,
CRUCIBLE does not perform this pass-through automatically. It
is possible to implement these semantics in CRUCIBLE, however.
Figure 4 illustrates how this might be achieved in the basic
CRUCIBLE execution model. MENDELEEV’s conceptual model
(top) shows a PE f(a, b) which generates the tuple 〈e, f〉
as its results, passing through the full input tuple along with
those results. On the bottom of Figure 4, an implementation
of the MENDELEEV tuple field copying semantics in the basic
CRUCIBLE model shows how each functional PE is wrapped
in one which stores the input tuple fields, and appends them
to the output of each tuple from that functional PE.

Analytic Types

Flickr

FetchURL

FFT

HDFS

flickrUser,
timestamp, url〈image〉

image, httpstatus

fft2d

(a) Flickr Photo FFTs

Analytic Types

Flickr

ExpandUserDetails

FetchURL

FaceDetect PersonDetails

Join

Accumulo

flickrUser,
timestamp, url〈image〉

username, whenJoined,
url〈image〉

image, httpstatus

personID

personID,
emailaddress,

fullname

(b) Profile Picture Face Detection

CDR Stream

Analytic Types

CliToCellID TowerLocations

Join

GoogleMaps

msisdn, imsi,
call_length,
dest_number

cellID

cellID,
tower_lat,
tower_lon

(c) CDR Call Locations

IPNetflow

Analytic Types

GeoIP

LocationClustering

GoogleMaps

srcIP, destIP,
timestamp, payload

lat, lon

cluster_lat,
cluster_lon,

cluster_density

(d) Customer Endpoint Clustering

Fig. 5: Planned analytics for Flickr Image Analysis and Telecommunications analytics.

While this theoretical approach produces correct results, the
extra message passing it involves would slow topologies down
considerably. Instead, MENDELEEV generates a synthetic parent
PE in Java for each PE in the CRUCIBLE topology, overriding
a small portion of the base CRUCIBLE runtime on a per-
PE basis with generated code. This parent is responsible for
intercepting received and emitted tuples, recording the inputs
in local state, and appending the relevant outputs of that PE’s
pruned accumulated type on tuple output. To use the example
of pe:fetch_url in the Flickr analytic above, this synthetic
parent might record the type:profile_image URL on its
input, and append it to the output tuple. At this time it will also
prune out unused tuple fields from the output per Algorithm 2.

VII. CASE STUDIES

To better understand the composition process in MENDELEEV,
we present here our fourth contribution; a series of case studies
and an evaluation of this technique. Figure 5 illustrates the
generated analytics for each case study below; each figure
shows the PEs in an analytic (as boxes), the tuple subscriptions
between those PEs (arrows indicate the direction of flow), and
the set of types added to the result, given beside each PE.
These analytics have been generated with MENDELEEV, using
a small library of general-purpose PEs.

A. Case Study: Flickr Image Analysis

The user wishes to compute and store the Fourier transform
of a series of images from Flickr, and store those results as
HDFS files for use elsewhere in their workflow. Engineers have
exposed a datasource consisting of a Flickr photo metadata
stream, and described it to the MENDELEEV system. The user
selects the following bounds from the user interface:

1) Sink: HDFS
2) Requested Types: image, fft2d4

With each refinement of a bound, the MENDELEEV UI plans
a new set of plausible analytics to answer that query. It is
interesting to note here, that the query does not explicitly

4The output of a Fourier transform on 2-D input data

require data from Flickr; any data sources in the system which
can be used to return an image may be offered to complete
this query. In this instance, MENDELEEV produces a single
result: the analytic shown in Figure 5(a).

Another analyst has an interest in annotating people from their
Flickr profile images with their email addresses from another
source using a facial recognition system, sending their results
to an Accumulo table (as described in the original example in
Figure 1). They configure MENDELEEV to search as follows:

1) Sink: Accumulo
2) Requested Types: person, emailaddress

The user is presented with a number of analytics, but on closer
inspection none of these use Flickr as a datasource. They refine
their query interactively to bind the source to “Flickr”. This
returns a small number of candidate analytics, and the user
selects that shown in Figure 5(b). During the assembly stage,
there are two image URLs to choose between; the Flickr photo,
and the user’s profile picture. They configure the FetchURL
PE to use the latter and complete their assembly.

B. Case Study: Telecommunications Visualisations

An analyst for a mobile telecommunications company wishes
to display a live map of call events for a video wall in their
Network Operations Centre. They configure the following
query:

1) Sink: GoogleMaps
2) Requested Types: msisdn5, tower_latitude,

tower_longitude

Figure 5(c) shows their selected analytic. This result particularly
highlights the importance of a strong adaptive join capability;
as this is a live streaming analytic, the rate at which CDRs
arrive is likely to be far slower than that of the (offline)
TowerLocations datasource. While MENDELEEV represents
this as a join operation, in practice the join PE operates akin
to an in-memory lookup against the TowerLocations dataset.

5A unique telecoms subscriber identifier

FFT Face CDR IP
0

0.02

0.04

0.06

Case Study
(Bounded / Unbounded)

E
xe

cu
tio

n
Ti

m
e

(s
)

Planning
Assembly
Code Generation

Fig. 6: Benchmark results for the MENDELEEV planner when
applied to the case studies.

Another analyst, with an interest in IP traffic and routing, wishes
to determine hotspots with which their customers communicate,
for both network layout purposes and to check the telco has
the right peering agreements in place. They configure a query:

1) Sink: GoogleMaps
2) Requested Types: ipaddress,

cluster_latitude, cluster_longitude

Their resulting analytic is shown in Figure 5(d). However,
their analytic is not fully assembled until the GeoIP PE has
its ipaddress parameter bound to the source or destination
IP. As the analyst is interested in determining the locations
their connections terminate, they select the destination IP, and
complete the analytic assembly. Note here that this same
analytic can be employed against streaming IP Netflow data, or
against an historical database of events without any further user
interaction. The generated code is simply deployed to either
their streaming or their offline platform, and the CRUCIBLE
framework selects the relevant instance of the datasource.

VIII. PERFORMANCE EVALUATION

In order to better understand the performance characteristics
of the MENDELEEV implementation, and thus demonstrate its
viability for real-world use, two key aspects of performance
are examined; the time taken for the planning and assembly
process, and the runtime performance of its resulting output.

A. Planner Performance

As the fifth contribution of this work, the performance of the
planning process has been examined using the previously dis-
cussed four case studies. Each case study has been benchmarked
as a bounded query (with a fixed source), and as an unbounded
query (no source specified, forcing the planner to attempt to
infer possible sources). The performance of the planner against
a test knowledge-base of 20 PEs can be seen in Figure 6. These
experiments were performed on a system with a 4-core Intel
Core i7 CPU and 8GB RAM.

The backwards search optimisations used in the planning
algorithm prevent many of the unbounded queries from taking
significantly longer than their bounded equivalents. The two

0 100 200 300 400 500

0.02

0.04

0.06

0.08

Number of PEs

Pl
an

ni
ng

Ti
m

e
(s

)

FFT (b) Face (b) CDR (b) IP (b)
FFT (u) Face (u) CDR (u) IP (u)

Fig. 7: Scaling of the MENDELEEV planner with knowledge-
base size for both (b)ounded and (u)bounded case studies.

notable exceptions to this are in the FFT query (which does
not list any grounded types in its goal to inform the choice of
source), and the Face Detection query, which fails to generate
a correct solution altogether in its unbounded form (but does
so very quickly). The bounded Face Detection query is, in fact,
the longest-running assembly and generation process. This is
due to the complexity of the resulting analytic; both in terms
of the number of tuple fields to be processed in the pruning
analysis, and the number of PEs in the resulting analytic.

In order to better understand how the bidirectional search in the
planning phase scales as the knowledge-base expands, further
benchmarks were run against knowledge bases of varying size.
The PEs in this expanded knowledge base were all “reachable”
in the graph search, and as such could be expected to have
an impact on planning time. The results of these benchmarks
for both the bounded (b) and unbounded (u) query variants
can be seen in Figure 7. They show that in scaling the size of
the knowledge-base from 20 to 50 PEs there is a noticeable
performance impact. However, as the search is bidirectional,
beyond this scale there is little negative impact on the search
time. At no point does the planning take longer than 0.08
seconds in the tested case studies. Further detail about the
number of plans considered in the search, and the number
found and returned, can be seen in Table I below.

Plans Plans Planning
Query Considered Returned Time (s)

FFT (b) 53 9 0.017
FFT (u) 126 14 0.072
Face (b) 16 4 0.051
Face (u) 1 1 0.013
CDR (b) 40 31 0.019
CDR (u) 40 31 0.025

IP (b) 8 3 0.012
IP (u) 9 3 0.022

TABLE I: Number of plans considered and returned in the 500
PE stress test knowledge-base.

Records Processed (millions)
5 10 20 30 40 50

Code Type Time Latency Time Latency Time Latency Time Latency Time Latency Time Latency

Standalone
Runtime

Auto-generated DSL 296.73 0.13 591.69 0.11 1179.93 0.13 1770.09 0.11 2359.72 0.10 2948.60 0.12
Hand-written DSL 333.53 0.16 664.23 0.16 1324.30 0.17 1983.13 0.16 2644.04 0.16 3305.23 0.16
Hand-written Java 227.52 0.40 453.88 0.38 906.48 0.40 1360.02 0.39 1813.83 0.40 2265.44 0.38

Spark
Runtime

Auto-generated DSL 131.69 0.14 208.44 0.14 326.59 0.16 444.34 0.14 561.01 0.14 677.45 0.13
Hand-written DSL 177.22 1.52 268.73 0.24 442.72 0.29 608.24 0.29 768.83 0.24 939.39 0.40
Hand-written Spark 117.75 1.24 186.86 1.56 286.40 1.58 384.19 1.38 482.51 1.93 579.88 1.54

Streams
Runtime

Auto-generated DSL 1274.68 1.03 2509.74 1.09 4977.64 1.06 7443.37 1.08 9906.07 1.04 12369.67 1.00
Hand-written DSL 1401.68 1.20 2762.88 1.18 5476.11 1.20 8181.20 1.15 10886.18 1.15 13595.48 1.14
Hand-written SPL 1041.24 1.00 2063.17 0.98 4103.68 0.97 6143.75 1.00 8173.90 1.01 10195.93 1.01

TABLE II: Benchmarking results (makespan time and per-tuple latency) for each runtime mode and code type.

B. Runtime Performance

It is valuable to compare the performance of MENDELEEV’s
generated code to analytics hand-written in both the CRUCIBLE
DSL and in native code. For this, hand-written native and
CRUCIBLE code for each runtime is compared to MENDELEEV,
using a shared library of basic Java operations to implement the
“IP Communications Endpoints” case study described above
(Figure 5d). These analytics were executed against 194 offline
packet capture files, corresponding to 100GB of raw capture
data (5.8GB of packet headers).

Five equivalent variants of this analytic were created: (i)
MENDELEEV-generated CRUCIBLE; (ii) hand-written CRU-
CIBLE; (iii) a multi-threaded Java analytic; (iv) a Spark topology
written in Java; and (v) an SPL topology, with associated Java
primitive operators. Results were collected on a small test
cluster, consisting of three Data Nodes, one NameNode, and
two Streams nodes. Each node hosts 2x3.0GHz CPUs, 8GB
RAM, and 2x1GbE interfaces. Table II shows the performance
and scalability (makespan time, and latency per tuple) of the
analytic on each runtime type in turn; Standalone, Apache
Spark (HDFS mode), and on IBM InfoSphere Streams.

These benchmark results show that MENDELEEV’s auto-
generated code consistently outperforms the hand-written CRU-
CIBLE topology by as much as 1.4×, without any engineering
expertise from the user. Due to the additional compile-time
knowledge that MENDELEEV infers about the input and output
tuples, it is able to make stronger assumptions about the input
data; and thus generate more efficient tuple processing methods,
with less data copying and validation required than in the base
CRUCIBLE runtime’s implementation.

Equivalent analytics, hand-written and tuned for each runtime,
outperforms MENDELEEV by a maximum of 1.3× in these
experiments. Furthermore, the per-tuple latency remains low,
with a variance of between 10−3 and 10−5. The relative speedup
of MENDELEEV to CRUCIBLE and a manually written topology
on each runtime environment is detailed in Table III below.

MENDELEEV vs MENDELEEV vs
Environment CRUCIBLE Manual

Standalone 1.12× 0.77×
Spark 1.39× 0.87×

Streams 1.10× 0.82×

TABLE III: Relative speedup of MENDELEEV to CRUCIBLE
and manually implemented runtimes.

IX. CONCLUSIONS & FURTHER WORK

This work has demonstrated (i) a new abstract model for the
assembly and execution of analytics, based on a semantically
rich type system, along with (ii) a novel approach to goal-
based planning using this model, requiring little engineering
expertise from the user. It has shown (iii) how code generation
for these analytics can be leveraged for execution at scale
in both on- and off-line scenarios. It has (iv) validated the
applicability of the approach, as well as (v) its performance for
interactive use. Finally, (vi) performance results have shown
MENDELEEV-generated analytics offer runtime performance
comparable with hand-written code. The performance penalty
over a completely hand-written and tuned analytic has been
shown to be a maximum of 1.3× in these experiments – a
potentially acceptable cost for enabling domain experts to
compose scalable analytics without the need for any prior
programming or engineering experience.

There are a number of avenues to be explored in future work.
One promising area of research is in the automated learning of
analytic design patterns. As a MENDELEEV instance is deployed
over an extended period of time, analysis of usage patterns
may permit the system to recommend to the user analysis for a
given data source, or to alter rankings based on those analytics
users end up deploying for a given type of query.

It would additionally be valuable to investigate an analytic
design approach with a shorter gap between generating and
validating an analytic, by demonstrating an example set of
results a user can expect to receive from candidate analytics
before the assembly is completed. This would necessitate some
engineering around the automated compilation and deployment
of analytics in an interactive timeframe, but could significantly
aid a user’s understanding of available plans.

Finally, there are currently two primitives used in the planning
algorithm; basic PEs and the join operator. We propose that
there may be value in modelling more advanced primitives
(e.g., reductions or filters) and exploring their impact on both
usability and the range of analytics MENDELEEV can express.

ACKNOWLEDGMENTS

With thanks to Graham Cormode and Steven Wright for their
insightful comments and feedback on early drafts of this paper.
This work was funded under an Industrial EPSRC CASE
Studentship, entitled “Platforms for Deploying Scalable Parallel
Analytic Jobs over High Frequency Data Streams”.

REFERENCES

[1] N. Marz, “Apache Storm.” [Online]. Available: http://storm.apache.org/
[2] R. Rea and K. Mamidipaka, “IBM InfoSphere Streams: Enabling

Complex Analytics with Ultra-Low Latencies on Data in Motion,” 2009.
[3] K. Shvachko, H. Kuang et al., “The Hadoop Distributed File System,”

in Proceedings of the 26th Symposium on Mass Storage Systems and
Technologies (MSST). IEEE, 2010.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Communications of the ACM, vol. 51, 2008.

[5] M. Zaharia, M. Chowdhury et al., “Spark: cluster computing with
working sets,” in Proceedings of the 2nd USENIX conference on Hot
topics in cloud computing, 2010.

[6] A. Fuchs, “Accumulo - Extensions to Google’s Bigtable Design,”
National Security Agency, Tech. Rep., March 2012.

[7] J. Yu, B. Benatallah, F. Casati et al., “Understanding mashup develop-
ment,” Internet Computing, IEEE, vol. 12, no. 5, 2008.

[8] M. Pruett, Yahoo! Pipes, 1st ed. O’Reilly, 2007.
[9] M. Altinel, P. Brown et al., “Damia: a data mashup fabric for intranet

applications,” in Proceedings of the 33rd international conference on
Very large data bases. VLDB Endowment, 2007.

[10] T. Loton, Introduction to Microsoft Popfly, No Programming Required.
Lotontech Limited, 2008.

[11] J. Wong, “Marmite: Towards end-user programming for the web,” in
IEEE Symposium on Visual Languages and Human-Centric Computing,
2007.

[12] F. Daniel, C. Rodriguez et al., “Discovery and reuse of composition
knowledge for assisted mashup development,” in Proceedings of the
21st International Conference on World Wide Web. New York, NY,
USA: ACM, 2012.

[13] Google, Inc., “Google Mashup Editor,” http://editor.googlemashups.com.
[14] R. Xin, J. Rosen et al., “Shark: SQL and Rich Analytics at Scale,” in

Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. New York, NY, USA: ACM, 2013.

[15] M. Kornacker and J. Erickson, “Cloudera Impala: real-time queries in
Apache Hadoop,” 2012. [Online]. Available: http://blog.cloudera.com/

[16] N. Jain, S. Mishra et al., “Towards a streaming SQL standard,”
Proceedings of the VLDB Endowment, vol. 1, no. 2, 2008.

[17] Y. Law, H. Wang et al., “Query languages and data models for database
sequences and data streams,” in Proceedings of the 30th International
Conference on Very Large Data Bases. VLDB Endowment, 2004.

[18] C. Grelck, S.-B. Scholz, and A. Shafarenko, “S-Net: A typed stream
processing language,” in Proceedings of the 18th International Sym-
posium on Implementation and Application of Functional Languages
(IFL’06), Budapest, Hungary, ser. Technical Report 2006-S01, Z. Horváth

and V. Zsók, Eds. Eötvös Loránd University, Faculty of Informatics,
Budapest, Hungary, 2006, pp. 81–97.

[19] K. Whitehouse, F. Zhao et al., “Semantic streams: A framework for
composable semantic interpretation of sensor data,” in Wireless Sensor
Networks. Springer, 2006.

[20] E. Sirin and B. Parsia, “Planning for semantic web services,” in Semantic
Web Services, 3rd International Semantic Web Conference, 2004.

[21] D. Nau, T. Au et al., “SHOP2: An HTN planning system,” Journal of
Artificial Intelligence Research, vol. 20, 2003.

[22] M. Pistore, P. Traverso et al., “Automated synthesis of composite bpel4ws
web services,” in Proceedings of the IEEE International Conference on
Web Services. IEEE, 2005.

[23] M. D. Wilkinson and M. Links, “Biomoby: an open source biological
web services proposal,” Briefings in bioinformatics, vol. 3, no. 4, 2002.

[24] T. Oinn, M. Addis et al., “Taverna: a tool for the composition and
enactment of bioinformatics workflows,” Bioinformatics, vol. 20, 2004.

[25] K. T. Stolee, S. Elbaum et al., “Solving the search for source code,”
ACM Transactions on Software Engineering and Methodology, 2014.

[26] R. Bergmann and Y. Gil, “Retrieval of semantic workflows with
knowledge intensive similarity measures,” in Case-Based Reasoning
Research and Development. Springer, 2011.

[27] I. Constantinescu, B. Faltings et al., “Large scale, type-compatible service
composition,” in Proceedings of the IEEE International Conference on
Web Services. IEEE, 2004.

[28] A. Riabov, E. Boillet et al., “Wishful search: Interactive composition of
data mashups,” in Proceedings of the 17th International Conference on
World Wide Web. New York, NY, USA: ACM, 2008.

[29] A. Riabov and Z. Liu, “Planning for stream processing systems,” in
Proceedings of the National Conference on Artificial Intelligence, vol. 20,
no. 3, 2005.

[30] A. Riabov and Z. Liu, “Scalable planning for distributed stream
processing systems,” in Proceedings of The International Conference
on Automated Planning and Scheduling. AAAI Press, 2006.

[31] O. Lassila, R. Swick et al., “Resource Description Framework (RDF)
model and syntax specification,” 1998.

[32] M. Birbeck and S. McCarron, “CURIE Syntax 1.0: A syntax for
expressing Compact URIs,” 2008.

[33] G. Bracha, “Generics in the Java programming language,” Sun Microsys-
tems, java.sun.com, 2004.

[34] T. Veldhuizen, “Expression templates,” C++ Report, vol. 7, no. 5, 1995.
[35] C. Ogbuji et al., “FuXi 1.4: A Python-based, bi-directional logical

reasoning system for the semantic web,” https://code.google.com/p/fuxi/.
[36] P. Coetzee, M. Leeke, and S. Jarvis, “Towards unified secure on- and

off-line analytics at scale,” Parallel Computing, vol. 40, no. 10, 2014.

