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ABSTRACT  

In this work we report on the behavior of ionic liquids (ILs) containing sulfonium cations as 

electrolytes for electrochemical double layer capacitors (EDLCs). Physical properties such as 

viscosity and ionic conductivity are reported over a range of temperatures for ILs containing the 

diethylmethyl sulfonium [S221], triethyl sulfonium [S222] and dimethylpropyl sulfonium [S223] 

cations paired with the bis(trifluoromethanesulfonyl) imide [Tf2N] anion.  The size and structure 

of the cations are shown to influence the physical and electrochemical properties of the ILs, with 
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 2

a significant degree of ionic coordination being evident in [S223][Tf2N].  The electrochemical 

behavior of these ILs in EDLCs was compared with that of a fairly established IL electrolyte, �.

butyl.�.methylpyrrolidinium bis(trifluoromethanesulfonyl) imide ([Pyr14][Tf2N]), and it is 

shown that [S221][Tf2N] can perform better in terms of energy and power at room temperature, 

despite operating at a much reduced potential.    
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Electrochemical double.layer capacitors (EDLCs) are a class of energy storage device known 

for their high power densities (up to 10kW kg.1).1–3 Their ability to accept or deliver charge at 

substantially higher rates than electrochemical cells suitable for use in applications where peak 

demand is substantially greater than the average load.4,5 Other desirable features of EDLCs are 

that they possess long cycle live (in excess of 500,000 cycles) and relatively high energy 

efficiencies.1–7 Consequently, EDLCs can be used to produce systems that require less 

maintenance than those where energy is stored in batteries. 

Conventional EDLCs are comprised of activated carbon based electrodes, an electrically 

insulating separator and an organic electrolyte solution.1–7 The electrolyte is typically a solution 

of tetraethylammonium tetrafluoroborate in acetonitrile or propylene carbonate, restricting the 

use of EDLCs at higher operating temperatures. 

Ionic liquids (ILs) have received a significant a degree of attention as an alternative to organic 

electrolytes, not only for EDLCs8,9 but also for lithium ion batteries.10–13 They are considered to 

be less hazardous than conventional electrolytes due to their non.flammable nature and the fact 

that they tend to exhibit negligible vapour pressures.9,14 

ILs are salts with relatively low melting temperatures (typically <100ºC)8,13 which is a 

consequence of the weak interactions between their constituent ions. Typically the cations and 

anions found in ILs are mismatched in terms of size and frequently display some degree of 

charge delocalization.15,16 The structure of these components and their degree of coordination 

have substantial influence over the physical properties of ILs, with the nature and relative sizes 

of the ions being known to strongly influence viscosity.8,17,18 This in turn affects ionic 

conductivity, which is a crucial parameter in the design of EDLCs as it has a profound influence 

Page 3 of 36

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 4

on the equivalent series resistance (ESR) of the cells. For example, it is known that ILs 

containing the bis(trifluoromethanesulfonyl) imide ([Tf2N]) anion exhibit relatively low 

viscosities and wide electrochemical stability windows (ESWs). This has been attributed to the 

partially delocalized charge in the anion which reduces the strength of anion.cation interactions 

by imparting flexibility into the structure.19 In addition it has been demonstrated that [Tf2N] 

containing ILs can form a stable passivating layer that prevents corrosion of the aluminum 

current collectors’ surface.20  

A wide ESW is a characteristic frequently associated with ILs, which is also of benefit to their 

application as EDLC electrolytes. The energy stored in an EDLC, �, can be determined using the 

relationship E= ½ CV2 where � represents the cell capacitance and � the operating voltage of the 

cell.  The maximum power output, Pmax, is governed by the relationship, Pmax=V2/(4·ESR) where 

ESR represents the equivalent series resistance of the device1. Therefore the operating voltage, 

which is limited by the electrochemical stability of the electrolyte, significantly influences the 

energy and power densities attainable in EDLCs. 

Consequently, one of the most widely studied ILs for use in EDLCs is �.butyl.�.methyl 

pyrrolidinium bis(trifluorosulfonyl) imide ([Pyr14][Tf2N]) with several studies demonstrating 

stable cycling at a remarkably wide operating voltage of 3.6 V.9,21–24 However, due to the high 

viscosity and relatively poor conductivity of [Pyr14][Tf2N] it is mainly operated at elevated 

temperatures (in the region of 60 ºC), and suffers from limited power capability at room 

temperature. 

An alternative family of ILs that has been identified as potentially useful electrolytes are those 

based on the trialkylsulfonium cation (S.ILs), which when coupled with the [Tf2N] anion, 

display relatively low viscosities and high ionic conductivities.25–29 A simple example of this is 
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 5

trimethyl sulfonium [Tf2N] ([S111][Tf2N]) which has been investigated for use as an EDLC 

electrolyte at elevated temperatures (50 ºC and 80 ºC).30 Despite possessing a melting 

temperature of 45.5 ºC, this IL was shown to exhibit specific capacitances as high as 140 F g.1 at 

50 ºC in a system using microporous activated carbon electrodes.  

In order to enable operation at lower temperatures and to improve power capabilities, ILs are 

frequently employed as the conducting salt in an organic.based electrolyte. Concentrated 

solutions exhibiting high conductivity, low viscosity and wide ESWs can be achieved in such 

mixtures, with stable cycling at an operating voltage of 3.5 V having been demonstrated using a 

1:1 (by wt.) mixture of [Pyr14] [Tf2N] with propylene carbonate.31 

The relatively high melting temperature of [S111][Tf2N] has resulted in the majority of studies 

that explore the use of S.ILs as EDLC electrolytes to date, focusing on mixtures of this IL with 

organic solvents such as propylene carbonate,28,32,33 and more recently the development of deep 

eutectic solvent mixtures with formamide and trifluoroamide.34 Despite the former having 

reduced volatility and flammability in comparison with conventional electrolytes, safety during 

operation at elevated temperatures remains a concern. 

The behavior of neat [S222][Tf2N] in an EDLC has been previously shown to exhibit good 

performance in cyclic voltammograms over an operating potential of 2 V, and was reported to 

display a specific capacitance of 244 F g.1 using mesoporous activated carbon electrodes in a 

flexible cell.27 

In a recent investigation we reported that two S.ILs ([S221] [Tf2N] and [S222] [Tf2N]) performed 

substantially better, in terms of specific capacitance and internal resistance, than ILs that 

contained slightly larger ammonium based cations when coupled with several mesoporous 
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 6

carbon electrodes.29 The small cation size results in ILs with a relatively low viscosity (and high 

ionic conductivity) and allows for a greater packing density of ions at the electrode surface. 

In this current work we report on the behavior of neat S.ILs in EDLCs operating at room 

temperature, and investigate the influence that cation structure has on cell performance. Cell 

operating potentials were determined for each IL using the same microporous activated carbon 

used to investigate EDLC performance and importantly, the asymmetry of the operating potential 

was taken into account during EDLC assembly by altering the mass loadings of active material 

on each electrode. Several physical and electrochemical properties of ILs consisting of 

diethylmethyl sulfonium [S221], triethyl sulfonium [S222], and dimethylpropyl sulfonium [S223] 

cations paired with the [Tf2N] anion are reported alongside their performance in EDLCs. For 

comparative purposes, all characterizations were also carried out using [Pyr14] [Tf2N], a 

relatively established IL electrolyte.35  

 

����	��
���
������ 

The ionic liquids used in this study were purchased from Io.Li.Tec GmbH (Germany) and had 

a minimum stated purity of > 99%. Chart 1 illustrates the structure of the ions contained in these 

ILs along with the abbreviated name used throughout this report. 
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�����
 �� Schematic structure of the constituent ions in the ionic liquids under study. �.butyl.�.methylpyrrolidinium [Pyr14], 

bis(trifluoromethanesulfonyl) imide [Tf2N], diethylmethyl sulfonium [S221], triethyl sulfonium [S222], and dimethylpropyl 

sulfonium [S223]. 

Prior to characterisation or cell assembly, ILs were vigorously stirred under heating for several 

hours in an argon filled glovebox (H2O <0.1 ppm, O2 <0.1 ppm). The moisture content of all ILs 

used in these experiments was determined to be less than 10 ppm using Karl Fischer titration 

(KF899 Coulometer, Metrohm). 

���������� ���������������������	�Thermal stability was determined using thermogravimetric 

analysis (TGA/DSC1, Mettler Toledo). Roughly 10 mg of each sample was heated in an 

aluminium pan from room temperature to 600ºC at a rate of 10ºC min.1 under nitrogen flowing at 

50 cm3min.1. 

Differential scanning calorimetry was carried out using a Mettler Toledo DSC1 with liquid 

nitrogen cooling. Roughly 10 mg of each sample was sealed in an aluminium pan in an argon 

filled glovebox. Samples were cooled under a nitrogen atmosphere to .100 ºC at a rate of 10 ºC 

min.1, held at this temperature for 1 hour before heating to 100 ºC at the same rate. 

Density and viscosity measurements were performed with a thermoregulated digital 

densimeter/viscometer (SVM 3000, Anton Paar K.G.). 

Ionic conductivity was determined using the impedance method with a Modulab XCM 

(Solartron) over a frequency range of 100 kHz.10 mHz. The cell constant between two freshly 

polished platinum electrodes was determined before each experiment using a standard KCl 

solution. 

�!��� ���� ���� ���� ���������� ����� ����������������	�EDLC electrodes were produced by 

mixing the activated carbon material (SBET = 2,120 m2 g.1) with a conductive carbon black (Super 

C65) and polymer binder (KynarFlex® 2801) in an 80/10/10 ratio by mass. Homogeneous 

Page 7 of 36

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 8

slurries of this mixture with acetone was spread to varying wet film thicknesses on 15 µm thick 

aluminium foil using a micrometer adjustable gap paint applicator. Sheets were then dried under 

vacuum and punched into individual electrodes 12 mm in diameter. The average mass loading of 

electrodes was in the region of 1.0.2.5 mg. 

Two.electrode button cells (2016) were assembled using stainless steel spacers, carbon based 

electrodes and glass fibre filter paper separator (GF/F, Whatman). The separator was soaked with 

the IL under study and the cell components were then placed under vacuum in the glovebox 

antechamber for roughly 5 minutes to encourage the impregnation of the electrolyte into the 

electrode porosity. Cells were then crimped closed inside the glovebox. 

In order to evaluate the electrochemical stability window of the ILs in EDLCs we used counter 

electrodes with at least twenty times the mass of the conventional working electrodes using the 

same composition as described above with PTFE (Teflon 30.N) as the polymer binder. This 

produced self.supporting electrodes 12.6 mm in diameter that were roughly 0.5 mm thick. Cyclic 

voltammetry was performed on these asymmetric cells from the OCP to 0.5V four times at 5 

mVs.1.  The window was then increased in 0.1V increments to a maximum of 2.0V.  The limit 

was defined by the lowest potential to have at least 97 % coulombic efficiency.  This was 

repeated using fresh cells for the cathodic limit from 0 to .1.0V initially, increasing in 0.1V 

increments to a maximum of .2.5V.  Four cycles were performed in each potential window and 

different cells were used for positive and negative sweeps. The combined limits defined the 

operating potential of the IL. Cyclic voltammetry was carried out using a Solartron Analytical 

1470E Multichannel Potentiostat/Galvanostat. 

Cells were also cycled Galvanostatically between 0 V and the operating voltage at various 

rates between 0.1 and 10 Ag.1 using a Maccor 4000M cell test system. Electrochemical 
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 9

impedance spectroscopy (EIS) was performed on the EDLCs at the open circuit potential�using a 

10mV perturbation over the frequency range 300 kHz to 10 mHz. Specific capacitance values are 

expressed based on cell capacitance and the combined mass of active material unless stated 

otherwise.  

In the case of cyclic voltammetry experiments the specific capacitance, � (Fg.1), was 

determined by considering the quantity of charge delivered during discharge, ∫ �	�� (C), the 

operating potential window, " (V), and the mass of active materials in both electrodes,   (g) as 

shown in Equation 1 below. 

� = � �∙��

�∙	
            (1) 

For Galvanostatic measurements, the capacitance was determined from the current, ��(A) and 

the slope of the discharge curve (��#��) after any “iR drop” was observed as shown in Equation 2 

below.35 

� =
�

�

��� ∙	

            (2) 

Cell capacitance determined by electrochemical impedance spectroscopy was determined 

using Equation 3 where $ represents the perturbation frequency (10mHz) and Zimag the imaginary 

component of the impedance at this frequency. 

��� =
��

��������∙	
           (3) 

Associated values of specific energy, Eave (Wh kg.1), and specific power, Pave (W kg.1), over 

the duration of the discharge, td (s), were determined from Equations 4 and 5 respectively.35 

������ℎ	!"��# = 	$ ∙ �



	∙%.'
∙ ()�         (4) 

*�����	!"��# = 	
��+,∙%'--

�.
          (5) 
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������
���
�	�����	�� 

���� ��� ����%���	 Table 1 lists the melting and decomposition temperatures of the ILs 

alongside that of [Pyr14][Tf2N] for comparison. It is clear that the onset of decomposition of the 

S.ILs is substantially reduced in comparison with [Pyr14][Tf2N] which is thermally stable up to a 

temperature of 445 ºC. There is little difference between the thermal stabilities of the S.ILs, 

however the onset of decomposition can be seen to increase with decreasing cation size. 

����
 �� Physicochemical properties of the ILs [Pyr14][Tf2N], [S221][Tf2N], [S222][Tf2N] and 

[S223][Tf2N] at 25 ºC and melting and decomposition temperatures. 

 
Td 

(ºC)a 

Tm 

(ºC) 

ρ 

(g cm.3) 

η 

(mPa s) 

σ 

(mS cm.1) 

Λ 

(S cm2 mol.1) 

[Pyr14][Tf2N] 445 .6.5 1.40 78.0 3.0 0.913 

[S221][Tf2N] 295 .11.7 1.50 40.6 6.7 1.708 

[S222][Tf2N] 290 .17.6 1.46 33.7 7.3 1.995 

[S223][Tf2N] 280 .6.4 1.42 37.7 5.5 1.596 

aTd represents the onset of thermal decomposition determined by TGA (Heat flow curves for the TGA experiments 
can be seen Figure S 1 in the Supplementary Information.) 

The DSC traces of the ILs are presented in Figure 1 which shows substantially different phase 

behavior between the S.ILs. On heating [S221] [Tf2N] exhibits a solid.solid phase transition at .

20.4 ºC before melting at .11.7 ºC. [S222] [Tf2N] appears to exist in the form of a supercooled 

liquid at .100 ºC, which then undergoes cold crystallization at .58.1 ºC, observed as an 

exothermic peak. On further heating the sample undergoes two further solid.solid transitions at .

32.9 and .10.8 ºC before melting at .6.4 ºC. [S223][Tf2N] trace shows one baseline change at .

68.0 ºC which seems to be the glass transition (Tg), however, this change occurs over a wide 

temperature range and it is difficult conclusively identify this as the glass transition, after this, it 
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 11

is possible to observe one small exothermic peak at .47.9 ºC which could be related to a cold 

crystallization. The melting of this liquid is observed at .6.4 ºC. 

 

�	���
�� Differential scanning calorimetry traces of [Pyr14][Tf2N] (black line), [S221][Tf2N] (red line), [S222][Tf2N] (blue line) 

and [S223][Tf2N] (green line) (from bottom to top).  

���������� �����&��&������	 Figure 2 shows the densities of [Pyr14][Tf2N] and the S.ILs over a 

range of temperatures. The densities follow a linear dependence with temperature over the range 

studied, and is seen to decrease with increasing cation size; the values found are in in good 
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agreement with the literature.36 At 25 ºC, [S222][Tf2N] and [S223][Tf2N] have densities 2.7% and 

5.5% greater than [S221][Tf2N], and in turn, [S223][Tf2N] has a density 2.7% greater than 

[S222][Tf2N]. The decrease of density as a function of increased alkyl chain length has been 

discussed by several groups studying ILs containing similar cations such as the 

tetraalkylammonium group of cations.26,36–38  

 

�	���
 �� Experimental density (symbols) and estimated density (lines) of the ILs [Pyr14][Tf2N] (black square and line), 

[S221][Tf2N] (red circle and line), [S222][Tf2N] (blue up triangle and line) and [S223][Tf2N] (green down triangle and line) at a 

range of temperature.  

Using the extended version of density estimation by Gardas and Coutinho (Equation 6),39 from 

Ye and Shreeve equation,40 it is possible to estimate the liquids density over the studied range of 

temperature: 

/ =
0

1
2�3453678
∙ 10�;          (6) 

where ρ is the calculated density (g cm.3), � is the molecular weight (g mol.1), � is the molecular 

volume (Å3), � is the temperature (K) and & is the pressure (MPa). The coefficients �, � and � are 

0.8005, 6.652 10.4 K.1 and .5.919 10.4 MPa.1. � and � for the ILs presented here can be seen in 

Table S 1, in the Supplementary Information. 

Page 12 of 36

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.5b08241&iName=master.img-008.jpg&w=213&h=176
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.5b08241&iName=master.img-008.jpg&w=213&h=176
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.5b08241&iName=master.img-008.jpg&w=213&h=176


 13

Although the model is suggested for use between temperatures of 288.15 and 353.15 K, we 

applied it over the experimental temperature range (277.85 to 363.15 K), and found that the 

calculated densities are in good agreement with the experimental values. The absolute average 

relative deviations for the ILs [Pyr14][Tf2N], [S221][Tf2N], [S222][Tf2N] and [S223][Tf2N] are 

0.46%, 0.044%, 0.024% and 0.096%, respectively. The trend shows that increasing size of 

sulfonium cation results in reduced density, despite the larger ions having greater mass. 

Figure 3a shows the variation in viscosity with temperature for the four ILs. [Pyr14][Tf2N] 

presents the highest viscosity amongst the ILs studied at each temperature. The S.ILs present 

fairly similar values of viscosity at each temperature studied. For example, at 25 ºC (298 K) 

[S221][Tf2N], [S222][Tf2N] and [S223][Tf2N] present viscosities of 40.6, 33.7 and 37.7 mPa s. 

There is no clear trend seen in viscosity with alkyl chain length. The lines in Figure 3a represent 

the best fits by the Vogel.Tammann.Fulcher (VTF) equation41 for the ILs viscosities, < =

<-=> 5�5?⁄ , where <-, B and T0 are adjustable parameters, given in Table S 2, in Supplementary 

Information. The relationship B/T0 is related to the liquid fragility, or the manner in which 

transport properties vary with changing temperature. Low B/T0 indicates that the liquid is strong 

and its transport properties are influenced to a lesser extent with changes in temperature than 

liquids associated with a high value of B/T0. It is important to clarify that the fragility analysis is 

often performed near the Tg, and changes in the fit profile should be considered at lower 

temperatures than the range presented here.42,43 The viscosity VTF fit indicates that the four ILs 

studied here present similar fragility as they present similar values of B/T0, �	�	 the transport 

properties experience similar changes when the temperature is changed. 
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 14

 

�	���
�� Arrhenius.like plot of (a) viscosity and (b) ionic conductivity for [Pyr14][Tf2N] (black square), [S221][Tf2N] (red circle), 

[S222][Tf2N] (blue up triangle) and [S223][Tf2N] (green down triangle). Lines represent the best fits of the VTF equations for 

viscosity and ionic conductivity. 

Figure 3b shows the ionic conductivity of the four ILs as function of temperature. As is well 

established, ionic conductivity is seen to increase with temperature. The S.ILs present 

significantly higher ionic conductivities than [Pyr14][Tf2N] at each temperature studied. As with 

the case of viscosity, the ionic conductivity does not display a simple relationship with alkyl 

chain length, and surprisingly [S223][Tf2N] is seen to present the lowest values of conductivity of 

the S.ILs, which is a feature that does not correlate with the viscosity measurements. At 25 ºC 

(298 K), [S221][Tf2N], [S222][Tf2N] and [S223][Tf2N] present 6.7, 7.3 and 5.5 mS cm.1 which are 
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in good agreement with the available literature.25,26 The VTF fits for ionic conductivity are the 

lines presented in Figure 3b, the equation for ionic conductivity VTF fit is A = A-=�> 5�5?⁄ , 

where A-, B and T0 are the adjustable parameters, which can be seen in Table S 2, in 

Supplementary Information. The values of B/T0 derived for the S.ILs are slighter lower for the 

ionic conductivity fit in comparison with the viscosity fit. 

Figure 4 shows the molar ionic conductivity (Λ) as a function of fluidity (η.1, inverse 

viscosity). In addition, Figure S 2 presents a conventional Walden plot, (log ionic conductivity as 

function of log fluidity (Poise.1)); in this plot the ideal line for dilute KCl aqueous solution has a 

slope of unity.43 Λ was calculated considering the density at each temperature and the 

concentration of ions. [Pyr14][Tf2N], [S221][Tf2N], [S222][Tf2N] and [S223][Tf2N] present 

concentrations of 3.30, 3.89, 3.66 and 3.44 mmol cm.3 at 25 ºC (298 K) respectively. The slope 

of the linear fit of these points is related with the liquid ionicity; a steeper gradient signifies 

larger ionicity, indicating that more ions are free to participate in the conduction process. The 

parameters from the linear fits can be seen in Table S 3. The ILs [Pyr14][Tf2N], [S221][Tf2N] and 

[S222][Tf2N] present similar slopes and therefore exhibit similar ionicities. On the other hand, 

[S223][Tf2N] presents a substantial deviation from the behavior seen in other ILs indicating that 

this IL tends to form more aggregates that result in decreased molar ionic conductivity at the 

same fluidity.  

However, one must consider that even with a lower ionicity, [S223][Tf2N] presents a higher 

molar ionic conductivity than [Pyr14][Tf2N] when compared at the same temperature. It may be 

the case that the charge distribution around the [S223] cation differs significantly from that of 

[S221] and [S222] due to the propyl chain resulting in more interactions with other ions. These 
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interactions produce a greater quantity of neutral aggregates when compared with the other ILs, 

resulting in a lower ionicity.  

 

�	���
�� Relationship between molar ionic conductivity and fluidity (Λ vs. η.1) of [Pyr14][Tf2N] (black square), [S221][Tf2N] (red 

circle), [S222][Tf2N] (blue up triangle) and [S223][Tf2N] (green down triangle). Lines are the linear fit. 

���������� ����� &��$�� ����	� The electrochemical stability of the ILs was investigated in 

order to ascertain stable operating potentials for EDLCs. It has been shown that electrolytes can 

decompose over much narrower potential windows when coupled with activated carbon 

electrodes in comparison with those obtained in conventional three.electrode setups using planar 

electrodes.44 For this reason we assembled asymmetric cells where the counter electrode had a 

far greater capacitance than the working electrode, and performed cyclic voltammetry (CV) at 5 

mVs.1 over increasingly wide potential windows in either the positive or negative direction. 

Figure 5 shows how the coulombic efficiency of the cells vary with potential (symbols and left y 

axis) and present cyclic voltammograms of the cells measured at the potential limits defined by a 

coulombic efficiency of at least 97% (lines and right y axis).  
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�	���
��
Operating potential determination using cyclic voltammetry. Coulombic efficiency (symbols, left) of cells used in the 

determination of anodic/cathodic limits. Cells cycled from OCP to 0.5V, then in 0.1V increments to 2.0V. Limit defined by the 

potential at which 97% efficiency was observed. Fresh cells used to determine the cathodic limit, cycling from OCP to .1.0V 

initially and in 0.1V increments to .2.5V. Cyclic voltammograms of these “half.cells” expressed in the form of specific 

capacitance (lines, right) for the defined potential limits. 

At the determined operating potential limits (at least 97% efficiency), Figure 5 presents the 

cyclic voltammograms of the cells obtained at a sweep rate of 5 mVs.1. Figure 5a shows the 

behavior of cells using [Pyr14][Tf2N] with a limit of 1.6 V for the positive electrode and .2.2 V 

for the negative electrode. The asymmetry of these potential windows is typical of [Pyr14][Tf2N], 

and the determined operating potential is similar to those found in other studies.21,35,45 

The operating windows of the S.ILs are markedly asymmetric, even more so than that 

observed for [Pyr14][Tf2N]. The positive limits for the S.ILs are substantially smaller than that of 

[Pyr14][Tf2N] which could be a result of a lower charge density associated with the pyrrolidinium 
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cation. The more rectangular form of the CVs exhibited by the S.ILs in Figure 5 when compared 

with [Pyr14][Tf2N] indicates reduced resistances associated with these electrolytes. 

As could be expected, the operating potential of [S223][Tf2N] was the lowest of those tested at 

2.6 V, which can be attributed to the cleavage of the pendant methyl group occurring at the lower 

potential. [S222][Tf2N] was found to be more stable than [S221][Tf2N] (with operating potentials 

of 2.8 V and 2.7 V respectively), possibly due to the more localized charge density of the smaller 

cation. The symmetry and more delocalized charge of the [S222] cation may render this IL 

slightly more stable than [S221][Tf2N] and [S223][Tf2N] with respect to potential. 

Due to the asymmetry of the potential windows, different mass loadings on the electrodes are 

required to ensure that cells are not operating in a region that results in electrolyte 

decomposition.46 The operating limits and mass loading ratios derived from the CVs in Figure 5 

are listed in Table 2.  

����
 �� Operating potential limits and mass loading ratios determined using cyclic 

voltammetry. Limits determined at a coulombic efficiency of 97% from experiments performed 

at 25ºC using a sweep rate of 5mVs.1 (Figure 5). 

 Negative limit 
(V (%� OCP)) 

Positive limit 
(V (%� OCP)) 

m+/m. 

[Pyr14][Tf2N] .2.2 1.6 1.38 

[S221]][Tf2N] .1.9 0.8 2.38 

[S222][Tf2N] .1.8 1.0 1.80 

[S223][Tf2N] .1.8 0.8 2.25 

 

Initially the ratios used were determined by balancing the amount of charge delivered during 

the discharge step on each electrode according to the equation 7 below. 
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	B

	C
=

DC

DB
            (7) 

Where m± represents the mass loading of active material on the positive/negative electrode and 

q± represents the quantity of charge delivered from the positive/negative limit back to the open 

circuit potential (OCP). As the capacitive response at negative potentials is significantly larger 

than that seen at positive potentials, balancing the charge in this manner resulted in relatively 

large mass loading ratios of 4.5, 2.25 and 3.3 for [S221][Tf2N], [S222][Tf2N] and [S223][Tf2N] 

respectively. (As the magnitude of the capacitances using [Pyr14][Tf2N] are similar (see Figure 

5a), this method resulted in a mass loading ratio of 1.45 which is similar to that reported in other 

studies.35,46 However as EDLCs assembled with these ratios exhibited significant electrolyte 

decomposition during cyclic voltammetry at 5 mV s.1 (see Figure S 3 in Supporting Information) 

and remarkably low coulombic efficiencies (��	 80%) it was decided to simply use the ratio of 

negative to positive limit indicated in Table 2. 

 

�	���
 ��
Cyclic voltammograms of EDLCs using different IL electrolytes. [Pyr14][Tf2N] (black full line), [S221][Tf2N] (red 

dashed line), [S222][Tf2N] (blue dotted line) and [S223][Tf2N] (green dash dotted line). Experiments were performed at 25ºC using 

a sweep rate of 5 mVs.1. 

Figure 6 shows typical rectangular CVs obtained for EDLCs using each of the ILs at a sweep 

rate of 5mVs.1. The lack of significant peaks in Figure 6 indicates that no faradaic reactions 
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occur over the operating potentials used, and that there is very little difference between the 

behavior of [S221][Tf2N] and [S223][Tf2N]. It is apparent that the S.ILs exhibit slightly larger 

specific capacitances during discharge than [Pyr14][Tf2N]. This may be a result of the smaller 

cation size enabling a greater density of charge displacement at the electrode surface or 

permitting access to narrower pores in the electrode. The larger specific current associated with 

the charging process may also be an artifact of the relatively slow sweep rate used; at such slow 

rates the increased conductivity of the S.ILs could enhance the effects of competing “self.

discharge” processes. These background and/or leakage currents may also be responsible for the 

limited anodic stability determined using an arbitrary value of coulombic efficiency. To 

investigate the effect of operation at different rates, CVs were collected at different sweep rates 

and are presented in Figure 7. (For comparative purposes an operating voltage of 2.5V was used 

for all cells.) 

 

�	���
�� Comparison of specific capacitance determined using cyclic voltammetry at different sweep rates.
[Pyr14][Tf2N] (black 

squares), [S221][Tf2N] (red circles), [S222][Tf2N] (blue up triangles) and [S223][Tf2N] (green down triangles). Experiments were 

performed between 0 and 2.5 V at 25ºC using sweep rates between 5 and 200 mVs.1.


As can be expected from their physical properties, the S.ILs show improved rate performance 

when compared with [Pyr14] [Tf2N], however this is only marginal in the case of [S222][Tf2N]. At 
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the lowest rate studied, [S223][Tf2N] results in a slightly larger specific capacitance than 

[S221][Tf2N], however as the rate increases [S221][Tf2N] is seen to perform better, and the 

disparity between their specific capacitances is seen to increase with increasing rate. This may be 

a result of the [S223][Tf2N] ion being able to make use of smaller pores in the electrode but only 

if sufficient time is available during charging for the optimal rearrangement of ions at the 

electrode surface.  

[S221][Tf2N] is seen to result in greater specific capacitances than [S222][Tf2N] at all of the rates 

studied which was also shown in our previous study using mesoporous carbon electrodes in 

symmetrical cells.29 It is rather surprising that [S222][Tf2N] performs so poorly in comparison 

with [S221][Tf2N] and [S223][Tf2N] considering that it displays a higher conductivity and lower 

viscosity. In fact, despite the significant differences in physical properties and ion size, the 

performance of [S222][Tf2N] most closely resembles that of [Pyr14][Tf2N]. It may be that the 

aspect ratios of the other cations permit tighter packing at the electrode surface, the utilization of 

narrower pores or a reduced distance between the charge center and the electrode; all of these 

would result in a greater degree of charge being displaced in the electrode resulting in increased 

capacitance. As the activated carbon used in the electrodes is highly microporous (see Figure S 4 

in Supporting Information) it is possible that a fraction of pores inaccessible to the [S222] ion are 

available to the smaller [S221] ion, or are able to be partially occupied by the [S223] ion which is 

slightly larger but has a different aspect ratio.� It is also likely that the physical properties 

observed in the bulk liquid are substantially different to that seen when ions are constricted 

within the pores of an electrode and it has been shown that different charging mechanisms occur 

in porous electrodes when compared with ideal planar electrodes.47–49  
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At 5 mVs.1 all of the cells exhibit a coulombic efficiency of ��	 90% which rises to over 98% 

for sweep rates greater than 50mVs.1. (At 200 mVs.1 the average coulombic efficiency of the 

cells was found to be 99.3%.) This highlights the compromises that are present in the design of 

EDLCs and the majority of electrochemical energy storage devices; increased electrolyte 

conductivity reduces the internal resistance of devices but can result in increased self.discharge 

and diminished efficiency at low rates. 

A wider range of charge/discharge rates was explored using galvanostatic cycling at specific 

currents between 0.1 and 10 Ag.1. The results are presented in Figure 8. 

 

�	���
  �
 Comparison of specific capacitance determined using galvanostatic charge/discharge cycling at different rates.


[Pyr14][Tf2N] (black squares), [S221][Tf2N] (red circles), [S222][Tf2N] (blue up triangles) and [S223][Tf2N] (green down triangles). 

Experiments were performed at 25ºC using rates between 0.1 and 10 Ag.1.


Considering the discharge time of the cells, the range of sweep rates in Figure 7 corresponds to 

values of specific current up to roughly 2 Ag.1 in Figure 8. It is clear that [S222][Tf2N] behaves in 

a similar way to [Pyr14][Tf2N] at all of the rates investigated. At a rate of 0.1Ag.1 [S222][Tf2N] 

produces a smaller specific capacitance than even [Pyr14][Tf2N] which could be a result of 

relatively high background/leakage currents arising from the higher conductivity of this IL. 

At rates below 1 Ag.1 [S223][Tf2N] produces a greater specific capacitance than [S221][Tf2N] 

which is similar behavior to that observed at 5 mVs.1 in Figure 7. This trend is changed at higher 
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rates with [S221][Tf2N] producing greater specific capacitances when the specific current is 

greater than 1 Ag.1. The sharp drop in specific capacitance at rates greater than 2 Ag.1 observed 

for [S223][Tf2N] was unanticipated considering the degree of capacitance retention seen in Figure 

7. At the most aggressive rates used during galvanostatic cycling, [S223][Tf2N] is seen to behave 

in a manner more similar to that of [S222][Tf2N] and [Pyr14][Tf2N]. This may be a result of the 

lower conductivity of [S223][Tf2N] when compared with [S221][Tf2N]. 

Another explanation for the fact that [S223][Tf2N] performs well at low rates but poorly at 

higher rates may be related to the relationship seen in Figure 4 where the existence of aggregated 

ions in [S223][Tf2N] is indicated by the significantly lower molar conductivity determined at the 

same level of fluidity. At low rates it is possible that there is sufficient time during charge and 

discharge for these coordinated ions to be freed from the aggregates, migrate towards the 

electrode surface and be involved charge storage through the double layer mechanism. At higher 

rates there is insufficient time for this process to occur and only the disassociated fraction of ions 

can participate in charge storage. Simulations suggest that there is no bulk movement of ions in 

the pores upon polarization, however the degree of ionic coordination changes as ions are 

exchanged with the bulk electrolyte.49 In the case of [S223][Tf2N] it may be that the timescale 

over which these processes occur overlaps with the discharge times observed during 

galvanostatic cycling. Therefore at shorter timescales the poorer response of [S223][Tf2N] may be 

a result of the greater degree of ionic coordination or stronger interactions being present between 

these ions when compared to the other Ils studied.  

Electrochemical impedance spectroscopy (EIS) measurements were performed on EDLCs 

using each of the ILs, and the obtained Nyquist plots are presented in Figure 9. Each of the 

spectra are of similar form, typical of EDLCs with IL electrolytes, that consist of a semicircle at 
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the high frequency region and a linear region in the low frequency range. In the case of an 

interface displaying pure capacitive behavior, the spectra at low frequencies is parallel to the 

imaginary axis.  The deviation from vertical, as seen in Figure 9 for all of the ILs, indicates that 

there is inhomogeneity in the double layer region.  This is frequently seen when using porous 

electrodes and is a result of slow processes occurring at the interface between the electrode and 

electrolyte such as specific adsorption or the rearrangement of ions and charge redistribution.50–52 

 

�	���
 !�
 Nyquist plots from electrochemical impedance spectroscopy measurements with magnified inset showing high 

frequency behavior.
[Pyr14][Tf2N] (full black line and black squares), [S221][Tf2N] (dashed red line and red circles), [S222][Tf2N] 
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(dotted blue line and blue up triangles) and [S223][Tf2N] (dash.dotted green line and green down triangles). Experiments were 

performed at 25ºC in coin cells using four.point Kelvin connectors.



Characteristic resistances determined from the spectra in Figure 9 alongside values of specific 

capacitance (determined from the imaginary component of the impedance at 10mHz) are given 

in Table 3.  

����
 �� Cell characteristics determined from electrochemical impedance spectroscopy 

measurements. 

 CEIS / F g.1 Rs / ȐȐȐȐ Ri / ȐȐȐȐ 

[Pyr14][Tf2N] 15.1 6.4 15.4 

[S221]][Tf2N] 22.0 3.0 14.1 

[S222][Tf2N] 9.7 3.0 17.2 

[S223][Tf2N] 19.1 3.5 22.0 

CEIS represents cell capacitance from the spectra at 10mHz,  Rs represents the series resistance (identified as the 
real component of the impedance where the spectra crosses the imaginary axis) and Ri represents the ionic resistance 
(defined as the diameter of the high.frequency semicircle). 

There is a marked difference between the spectra of the S.ILs and that of [Pyr14][Tf2N]. The 

series resistance (Rs), identified as the real component of the impedance where the spectra 

crosses the imaginary axis, is substantially greater for [Pyr14][Tf2N] when compared with the 

other spectra. This could be expected as this represents the resistance of the electrolyte and 

[Pyr14][Tf2N] exhibits a markedly lower conductivity at room temp than the other ILs. The value 

of series resistance is similar for [S221][Tf2N] and [S222][Tf2N] whereas [S223][Tf2N] is slightly 

larger. These findings are in rough agreement with the relative ionic conductivity of the ILs since 

[S221][Tf2N] and [S222][Tf2N] present similar ionic conductivities of 6.7 and 7.3 mS cm.1 

respectively, whereas [S223][Tf2N] presents a slightly smaller value of 5.5 mS cm.1 (Table 1). 

Page 25 of 36

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 26

The semicircle seen at high frequencies is attributed to the interactions between the pores of 

the electrode with the ions in the electrolyte.53 In terms of the S.ILs, the diameter of the 

semicircle (Ri), is seen to increase with increasing ion size and the value of Ri for [Pyr14][Tf2N] 

falls between that of [S221][Tf2N] and [S222][Tf2N]. As the value of Ri is influenced by the ionic 

mobility of the electrolyte it can be expected that the conductivity, ion size and degree of 

coordination between the ions influence this property in a complex manner and that behavior 

observed in bulk ILs may not be applicable to situations where the ions are constrained by the 

surfaces of a porous electrode. 

The energy and power characteristics of EDLCs were derived from galvanostatic charge 

discharge experiments at different current densities and are given in Figure 10.  The operating 

voltage of the cells using S.ILs was 2.5 V whereas the cell using [Pyr14][Tf2N] was operated at 

3.6 V to give a better reflection of the capability of this electrolyte.  At a current density of 0.1 

Ag.1, the highest specific energy is exhibited by [Pyr14][Tf2N] which could be anticipated due to 

the substantially larger operating voltage used. At current densities greater than 0.25 Ag.1 

[S221][Tf2N] displays higher values of specific energy and specific power despite the limited 

operating potential. This is due to the smaller resistances associated with the [S221][Tf2N] cells. 

Page 26 of 36

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 27




�	���
 �"�
Ragone plot of EDLCs using
 [Pyr14][Tf2N] at 3.6V (black line and squares), [S221][Tf2N] at 2.5V (red line and 

circles), [S222][Tf2N] at 2.5V (blue line and up triangles) and [S223][Tf2N] at 2.5V (green line and down triangles). Values are 

derived from galvanostatic charge discharge experiments at different current densities.


Figure 10 shows that [S221][Tf2N] can perform better as an EDLC electrolyte than 

[Pyr14][Tf2N] at room temperature despite operating at a lower potential.  The behavior of 

[S222][Tf2N] and [S223][Tf2N] in Figure 10 also shows that despite exhibiting several desirable 

traits (�	�	 higher ionic conductivity and lower viscosity), enhanced electrochemical stability can 

outweigh some of the limitations associated with IL electrolytes. 

 

�������	�� 

In this work we investigate the behavior of ionic liquids containing sulfonium cations as 

electrolytes for EDLCs.  Physical properties such as viscosity and ionic conductivity were 

reported over a range of temperatures, as well as their thermal and electrochemical behavior. The 

S.ILs were shown to exhibit relatively low viscosities and high ionic conductivities (with their 

relative performance being related to the size and structure of the cation) however they also 
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exhibited limited electrochemical stability resulting in an operating voltage of 2.5V. The 

electrochemical performance of the S.ILs was not found to relate to any physical property in a 

simple manner. For example [S222][Tf2N] displays the highest ionic conductivity and lowest 

viscosity, which are desirable traits for an electrolyte, but exhibits comparable performance in 

terms of specific capacitance with [Pyr14][Tf2N] which contains a larger cation and exhibits low 

ionic conductivity and high viscosity. 

The unusual behavior of [S223][Tf2N] which displays relatively high specific capacitances at 

low rates but substantially diminished performance at higher rates, was attributed to the existence 

of aggregated ions that are unable to participate in charge storage at higher rates. This ionic 

coordination is evident when viscosity and conductivity are expressed in the form of a Walden 

plot where [S223][Tf2N] displays a significantly different gradient to the other ILs. 

In conclusion, this work shows that [S221][Tf2N] can perform better as an EDLC electrolyte 

than [Pyr14][Tf2N] at room temperature despite operating at a lower potential. It is also clear that 

despite exhibiting desirable traits such as relatively�high ionic conductivity and low viscosity, 

enhanced electrochemical stability can outweigh some of the limitations associated with IL 

electrolytes in terms of energy and power. 
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