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Parallel-in-Space-and-Time Simulation of the
Three-Dimensional, Unsteady Navier-Stokes
Equations for Incompressible Flow

Roberto Croce and Daniel Ruprecht and Rolf Krause

Abstract The Parareal parallel-in-time method is combined with spatial paral-

lelization by domain decomposition into a space-time parallel scheme for the

three-dimensional incompressible Navier-Stokes equations. Parallelization of time-

stepping provides a new direction of parallelization and allows to employ additional

cores to further speed up simulations after spatial parallelization has saturated. We

report on numerical experiments performed on a Cray XE6, simulating a driven

cavity flow with and without obstacles. Distributed memory parallelization is used

in both space and time, featuring up to 2048 cores in total. It is confirmed that the

space-time-parallel method can provide speedup beyond the saturation of the spatial

domain decomposition.

1 Introduction

Simulating three-dimensional flows by numerically solving the time-dependent

Navier-Stokes equations leads to huge computational costs. In order to obtain a

reasonable time-to-solution, massively parallel computer systems have to be uti-

lized. This requires sufficient parallelism to be identifiable in the employed solution

algorithms. Decomposition of the spatial computational domain is by now a stan-

dard technique and has proven to be extremely powerful. Nevertheless, for a fixed

Roberto Croce

Institute of Computational Science, Via Giuseppe Buffi 13, CH-6906 Lugano, Switzerland, e-mail:

roberto.croce@usi.ch

Daniel Ruprecht

Institute of Computational Science, Via Giuseppe Buffi 13, CH-6906 Lugano, Switzerland, e-mail:

daniel.ruprecht@usi.ch

Rolf Krause

Institute of Computational Science, Via Giuseppe Buffi 13, CH-6906 Lugano, Switzerland, e-mail:

rolf.krause@usi.ch

1



2 R. Croce, D. Ruprecht, R. Krause

problem size, this approach can only push the time-to-solution down to some fixed

threshold, below which the computation time for each subdomain becomes com-

parable to the communication time. While pure spatial parallelization can provide

satisfactory runtime reduction, time-critical applications may require larger speedup

and hence need additional directions of parallelism in the used numerical schemes.

One approach that has received increasing attention over recent years is paral-

lelizing the time-stepping procedure typically used to solve time-dependent prob-

lems. A popular algorithm for this is Parareal, introduced in [10] and compre-

hensively analyzed in [6]. Its performance has been investigated for a wide range

of problems, see for example the references in [11, 12]. A first application to the

2D-Navier-Stokes equations, focussing on stability and accuracy without reporting

runtimes, can be found in [5]. Some experiments with a combined Parareal/domain-

decomposition method for the two-dimensional Navier-Stokes equations have been

conducted on up to 24 processors in [14, 15]. While they successfully established the

general applicability of such a space-time parallel approach for the Navier-Stokes

equations, the obtained speedups were ambiguous: Best speedups were achieved ei-

ther with a pure time-parallel or a pure space-parallel approach, depending on the

problem size.

In the present paper, the combined Parareal/domain-decomposition space-time

parallel approach is used to solve a quasi-2D and a fully 3D driven cavity flow prob-

lem on a state-of-the-art HPC distributed memory architecture, using up to 2,048

cores. The capability of the approach to reduce time-to-solution below the satura-

tion point of a pure spatial parallelization is demonstrated. Also it is shown that the

addition of obstacles into the computational domain, leading to more turbulent flow,

leads to slower convergence of Parareal. This is likely due to the reported stability

issues for hyperbolic and convection-dominated problems, see [4, 12].

2 Physical Model and its discretization and parallelization

The behavior of three-dimensional, incompressible Newtonian fluids is described

by the incompressible Navier-Stokes equations. In dimensionless form the accord-

ing momentum- and continuum equation read

∂tu+u ·∇u =
1

Re
∆u−∇p

∇ ·u = 0
(1)

with u = (u,v,w) being the velocity field consisting of the Cartesian velocity-

components, p being the pressure and Re the dimensionless Reynolds number.

The Navier-Stokes solver is based on the software-package NaSt3DGP [2, 8]

and we further extended it by an MPI-based implementation of Parareal [10]. In

NaSt3DGP, the unsteady 3D-Navier-Stokes equations are discretized via standard

finite volume/finite differences using the Chorin-Temam [1, 13] projection method
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on a uniform Cartesian staggered mesh for robust pressure and velocity coupling.

A first order forward Euler scheme is used for time discretization and as a building

block for Parareal, see the description in 2.1.2. Second order central differences are

used for the pressure gradient and diffusion. The convective terms are discretized

with a second order TVD SMART [7] upwind scheme, which is basically a bounded

QUICK [9] scheme. Furthermore, complex geometries are approximated using a

first order cell decomposition/enumeration technique, on which we can impose slip

as well as no-slip boundary conditions. Finally, the Poisson equation for the pressure

arising in the projection step is solved using a BiCGStab [16] iterative method.

2.1 Parallelization

Both the spatial as well as the temporal parallelization are implemented for distribu-

ted-memory machines using the MPI-library. The underlying algorithms are de-

scribed in the following.

2.1.1 Parallelization in space via domain decomposition

We uniformly decompose the discrete computational domain Ωh into P subdomains

by first computing all factorizations of P into three components, i.e. P = Px ·Py ·Pz,
with Px,Py,Pz ∈N. Then we use our pre-computed factorizations of P as arguments

for the following cost function C with respect to communication

C(Px,Py,Pz) =
I

Px
·

J

Py
+

J

Py
·

K

Pz
+

I

Px
·

K

Pz
(2)

with I,J and K as the total number of grid-cells in x-, y- and z-direction. Finally,

we apply that factorization for the domain decomposition for which C is minimal,

i.e. the space decomposition is generated in view of the overall surface area mini-

mization of neighboring subdomains. Here, P is always identical to the number of

processors Npspace , so that each processor handles one subdomain. Since the stencil

is five grid-points large for the convective terms and three grid-points for the Pois-

son equation, each subdomain needs two ghost-cell rows for the velocities and one

ghost-cell row for the pressure Poisson equation. Thus our domain decomposition

method needs to communicate the velocities once at each time-step and the pressure

once at each pressure Poisson iteration.

2.1.2 Parallelization in time with Parareal

For a given time interval [0,T ], we introduce a coarse temporal mesh

0 = t0 < t1 < .. . < tNc = T (3)
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with a uniform time-step size ∆ t = ti+1 − ti. Further, we introduce a fine time-step

δ t < ∆ t and denote by Nf the total number of fine steps and by Nc the total number

of coarse steps, that is

Nc∆ t = Nfδ t = T. (4)

Also assume that the coarse time-step is a multiple of the fine, so that

∆ t

δ t
=: Nr ∈ N. (5)

Parareal relies on the iterative use of two integration schemes: a fine propagator

Fδ t that is computationally expensive, and a coarse propagator G∆ t that is compu-

tationally cheap. We sketch the algorithm only very briefly here, for a more detailed

description see for example [10].

Denote by F (y, tn+1, tn), G (y, tn+1, tn) the result of integrating from an initial

value y at time tn to a time tn+1, using the fine or coarse scheme, respectively. Then,

the basic iteration of Parareal reads

yk+1
n+1 = G∆ t(y

k+1
n , tn+1, tn)+Fδ t(y

k
n, tn+1, tn)−G∆ t(y

k
n, tn+1, tn) (6)

with super-scripts referring to the iteration index and yn corresponding to the ap-

proximation of the solution at time tn. Iteration (6) converges to a solution

yn+1 = Fδ t(yn, tn+1, tn), (7)

that is a solution with the accuracy of the fine solver. Here, we always perform some

prescribed number of iterations Nit. We use a forward Euler scheme for both Fδ t

and G∆ t and simply use a larger time-step for the coarse propagator. Experimenting

with the combination of schemes of different and/or higher order is left for future

work.

Once the values yk
n in (6) from the previous iteration are known, the computa-

tionally expensive calculations of the values Fδ t(y
k
n, tn+1, tn) can be performed in

parallel for multiple coarse intervals [tn, tn+1]. In the pure time-parallel case, the

time-slices are distributed to Nptime
cores assigned for the time-parallelization. Note

that in the space-time parallel case, the time-slices are not handled by single cores

but by multiple cores, each handling one subdomain at the specific time, see Sec-

tion 2.1.3.

The theoretically obtainable speedup with Parareal is bounded by

s(Np)≤
Nptime

Nit

(8)

with Nptime
denoting the number of processors in the temporal parallelization and

Nit the number of iterations, see for example [11]. From (8) it follows that the

maximum achievable parallel efficiency of the time parallelization is bounded by

1/Nit. Parareal is hence considered as an additional direction of parallelization to

be used when the spatial parallelization is saturated but a further reduction of time-
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t t t tt time

space

1 N −1N −2 Nc cc0

Fig. 1 Decomposition of the time interval [0,T ] into Nc time-slices. The spatial mesh at each

point ti is again decomposed into P subdomains, assigned to Npspace cores. Because the spatial

parallelization does not need to communicate across time-slices, the cores from every spatial mesh

are pooled into one MPI communicator. Also, in the time parallelization, only cores handling the

same subdomain at different times have to communicate. Note that for readability the sketched

spatial mesh is 2D, although the simulations use a fully 3D mesh.

to-solution is required or desirable. Some progress has recently been made deriving

time-parallel schemes with less strict efficiency bounds [3, 11].

2.1.3 Combined parallelization in space and time

In the combined space-time parallel approach as sketched in Figure 1, each coarse

time interval in (6) is assigned not to a single processor, but to one MPI commu-

nicator containing Npspace cores, each handling one subdomain of the corresponding

time-slice. The total number of cores is hence

Nptotal
= Nptime

×Npspace . (9)

Note that the communication in time in (6) is local in the sense that each processor

has only to communicate with the cores handling the same subdomain in adjacent

time-slices. Also, the spatial parallelization is not communicating across time-slices,

so that for the evaluation of F or G in (6), no communication between proces-

sors assigned to different points in time is required. We thus organize all available

cores into two types of MPI communicators: (i) Spatial communicators collect all

cores belonging to the solution at one fixed time-slice, but handling different subdo-

mains. They correspond to the distributed representation of the solution at one fixed

time-slice. There are Nptime
spatial communicators and each contains Npspace cores.

(ii) Time communicators collect all cores dealing with the same spatial subdomain,

but at different time-slices. They are used to perform the iterative update in (6) of

the local solution on a spatial subdomain. There are Npspace time communicators,

each pooling Nptime
cores. No special attention was paid to how different MPI tasks

are assigned to cores. Because of the very different communication pattern of the

space- and time-parallelization, this can presumably have a significant effect on the

overall performance. More detailed investigation of the optimal placement of tasks

is planned for future studies with the here presented code.
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Table 1 Simulation parameters for the quasi-2D driven cavity flow (Simulation 1) and the fully

3D driven cavity flow with obstacles (Simulation 2).

Sim. 1 : Ωh = [0,1]× [0,1]× [0,0.1] Sim. 2 : Ωh = [0,1]× [0,1]× [0,1]
Sim. 1 : Nx ×Ny ×Nz = 32×32×5 Sim. 2 : Nx ×Ny ×Nz = 32×32×32

Sim. 1 : T = 80 Sim. 2 : T = 24

Both : ∆ t = 0.01 Both : δ t = 0.001

Both : Re = 1000 Both : uboundary = 1

Sim. 1 : Npspace = 1,2,4,8 Sim. 2 : Npspace = 1, . . . ,128

Sim. 1 : Nptime
= 4,8,16 Sim. 2 : Nptime

= 8,16,32

Fig. 2 Arrows and color plot of the Euclidean norm of the quasi two-dimensional driven cavity

flow field along the center plane at three points in time t = 0.8 and t = 8.0 and t = 80.0.

3 Numerical Examples

In the following, we investigate the performance of the space-time parallel ap-

proach for two numerical examples. The first is the classical driven-cavity problem

in a quasi-2D setup. Figure 2 shows the flow in a xy-plane with z = 0.05 at times

t = 0.8,8.0 and 80.0. The second example is an extension where several obstacles

are inserted into the domain, leading to fully 3D flow. Figure 3 sketches the obsta-

cles and the flow at T = 24. Both problems are posed on a 3D-domain with periodic

boundary conditions in z-direction (note that x and z are the horizontal coordinates,

while y is the vertical coordinate). Initially, velocity and pressure are set to zero. At

the upper boundary, a tangential velocity uboundary = 1 is prescribed, which gener-

ates a flow inside the domain as time progresses. No-slip boundary conditions are

used at the bottom and in the two yz-boundary planes located at x = 0 and x = 1

as well as on the obstacles. The parameters for the two simulations are summarized

in Table 1. To assess the temporal discretization error of Fδ t , the solution is com-

pared to a reference solution computed with Fδ t/10, giving a maximum error of

1.2×10−5 for the full 3D flow with obstacles. That means that once the iteration of

Parareal has to reduced the maximum defect between the serial and parallel solution

below this threshold, the time-parallel and time-serial solution are of comparable

accuracy. We use this threshold also for the quasi-2D example, bearing in mind that

the simpler structure of the flow in this case most likely renders the estimate too

conservative. The code is run on a Cray XE6 at the Swiss National Supercomputing
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Fig. 3 Arrows and color plot of the Euclidean norm of the fully three-dimensional driven cavity

flow field with obstacles along the center plane at time t = 24.0.
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Fig. 4 Maximum difference to time-serial solution versus number of Parareal iterations for the

quasi 2D driven cavity problem at time t = 80.0 for Nptime
= 4 (left), Nptime

= 8 (middle) and

Nptime
= 16 (right).

Centre, featuring a total of 1496 nodes, each with two 16-core 2.1GHz AMD In-

terlagos CPUs and 32GB memory per node. Nodes are connected by a Gemini 3D

torus interconnect and the theoretical peak performance is 402 TFlops.

3.1 Quasi-2D Driven Cavity Flow

Figure 4 shows the maximum difference between the time-parallel and the time-

serial solution at the end of the simulation versus the number of iterations of

Parareal. In all three cases, the error decreases exponentially with Nit. The thresh-

old of 1.2×10−5 is reached after a single iteration, indicating that the performance

of Parareal could probably be optimized by using a larger ∆ t. Figure 5 shows the

total speedup provided by the time-serial scheme running Fδ t with only space-

parallelism (black dashed line) as well as by the space-time parallel method for dif-

ferent values of Nptime
(grey lines). All speedups are measured against the runtime of

the time-serial solution run on a single core. The pure spatial parallelization reaches

a maximum speedup of a little over 6 using 8 cores. For Nit = 1, the space-time par-
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Fig. 5 Total speedup of the combined space-time parallelization for quasi 2D driven-cavity flow

with Nit = 1 (left) and Nit = 2 (right) iterations.

allel scheme reaches a speedup of 14 using 64 cores. This amounts to a speedup of

roughly 14/6 ≈ 2.33 from Parareal alone. For Nit = 2 the speedup is down to 8, but

still noticeably larger than the saturation point of the pure space-parallel method.

Note that because of the limited efficiency of the time parallelization, the slopes of

the space-time parallel scheme are lower for larger values of Nptime
.

3.2 Full 3D Driven Cavity Flow with Obstacles

Figure 6 shows the maximum difference between the time-parallel and the time-

serial solution depending on the number of Parareal iterations for four different val-

ues of Nptime
. In general, as in the quasi-2D case, the error decays exponentially with

the number of iterations, but now, particularly pronounced for Nptime
= 32, a small

number of iterations has to be performed without large effect before the error starts

to decrease. This is likely due to the increased turbulence caused by the obstacles,

as it is known that Parareal exhibits instabilities for advection dominated problems

or hyperbolic problems [6, 12]. A more detailed analysis of the performance of

Parareal for turbulent flow and larger Reynolds numbers is left for future work. Fig-

ure 7 shows the total speedup measured against the runtime of the solution running

Fδ t serially with Npspace = 1. The black line shows the speedup for a pure spatial

parallelization, which scales to Npspace = 16 cores and then saturates at a speedup of

about 18. Adding time-parallelism can significantly increase the total speedup, to

about 20 for Nptime
= 4, about 27 for Nptime

= 8 and to almost 40 for Nptime
= 16 for

a fixed number of Nit = 3 iterations (left figure). However, as can be seen from Fig-

ure 6, the solution with Np = 32 is significantly less accurate. The right figure shows

the total speedup for a number of iterations adjusted so that the defect of Parareal

in all cases is below 10−5 in all solution components (cf. Figure 6). This illustrates

that there is a sweet-spot in the number of concurrently treated time-slices: At some

point the potential increase in speedup is offset by the additional iterations required.
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Fig. 6 Maximum difference to time-serial solution at end of simulation versus number of Parareal

iterations for the 3D driven cavity flow with obstacles for Nptime
= 8 (left), Nptime

= 16 (middle),

Nptime
= 32 (right). The horizontal line indicates an error level of 10−5.
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Fig. 7 Total speedup of the combined space-time parallelization for 3D cavity flow with obstacles

for a fixed number of Nit = 3 iterations (left) and a number of iterations chosen to achieve a defect

below 10−5 in all solution components (right). Note that the solutions in the left figure are not

comparable in accuracy.

In the presented example, the solution with Np = 16 is clearly more efficient than

the one with Np = 32.

4 Conclusions

A space-time parallel method, coupling Parareal with spatial domain decomposi-

tion, is presented and used to solve the three-dimensional, time-dependent, incom-

pressible Navier-Stokes equations. Two setups are analyzed: A quasi-2D driven cav-

ity example and an extended setup, where obstacles inside the domain lead to fully

3D flow. The convergence of Parareal is investigated and speedups of the space-time

parallel approach are compared to speedups from a pure space-parallel scheme. It is

found that Parareal converges very rapidly for the quasi-2D case. It also converges in

the 3D case, although for larger numbers of Parareal time-slices, convergence starts

to stagnate for the first few iterations, likely because of the known stability issues

of Parareal for advection dominated flows. Results are reported from runs on up to

128 nodes with a total of 2,048 cores on a Cray XE6, illustrating the feasibility of
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the approach for state-of-the-art HPC systems. The results clearly demonstrate the

potential of time-parallelism as an additional direction of parallelization to provide

additional speedup after a pure spatial parallelization reaches saturation. While the

limited parallel efficiency of Parareal in its current form is a drawback, we expect the

scalability properties of Parareal to direct future research towards modified schemes

with relaxed efficiency bounds.
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