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A (very short) introduction to buildings✩

Brent Everitt

Department of Mathematics, University of York, York YO10 5DD, United Kingdom.

Abstract

This is an informal elementary introduction to buildings – what they are and where they

come from.

This is an informal elementary introduction to buildings – written for, and by, a non-

expert. The aim is to get to the definition of a building and feel that it is an entirely natural

thing. To maintain the lecture style examples have replaced proofs. The notes at the end

indicate where these proofs can be found.

Most of what we say has its origins in the work of Jacques Tits, and our account borrows

heavily from the books of Abramenko and Brown [1] and Ronan [15]. Section 1 illustrates

all the essential features of a building in the context of an example, but without mentioning

any building terminology. In principle anyone could read this. Sections 2-4 firm-up and

generalize these specifics: Coxeter groups appear in §2, chambers systems in §3 and the

definition of a building in §4. Section 5 addresses where buildings come from by describing

the first important example: the spherical building of an algebraic group.

1. The flag complex of a vector space

Let V be a three dimensional vector space over a field k. Let ∆ be the graph with

vertices the non-trivial proper subspaces of V , and an edge connecting the vertices Vi and

V j whenever Vi is a subspace of V j:

Vi V j ks +3 Vi ⊂ V j.

Figure 1 shows the graph ∆when k is the field of orders q = 2 and 3. There are 1+q+q2 one

dimensional subspaces – illustrated by the white vertices – and 1 + q + q2 two dimensional

subspaces, illustrated by the black vertices. Each one dimensional space is contained in 1+q

two dimensional spaces and each two dimensional space contains 1 + q one dimensional

spaces. The duality here might remind the reader of projective geometry. Call the edges

Vi ⊂ V j of ∆ chambers.

Some more structure can be wrung out of this picture: there is an “S3-valued metric”,

with S3 the symmetric group, that gives the shortest route(s) through ∆ between any two

chambers. To see how, suppose c, c′ are chambers and we want a shortest route of edges

connecting them:

c = V1 ⊂ V2
shortest route

///o/o/o/o/o/o/o c′ = V ′
1
⊂ V ′

2
.

Make c and c′ as different as possible by assuming that V1 , V ′
1
, V2 , V ′

2
and V2 ∩ V ′

2
is a

line different from V1,V
′
1
. Changing notation, let L1, L2, L3 be lines with L1 = V1, L3 = V ′

1

and L2 = V2 ∩ V ′
2
. One then gets V2 = L1 + L2 and V ′

2
= L2 + L3.

✩Based on a short series of lectures given at the Université de Fribourg, Switzerland in June 2011. The author

is grateful for the department’s hospitality both then and over the years, and particularly to Ruth Kellerhals for her
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Figure 1: The flag complex ∆ of the three dimensional vector space over the fields of order 2 (left) and 3 (right).

We get a small piece of ∆, a local picture containing c, c′, as in Figure 2. The field k

wasn’t mentioned at all in the previous paragraph, so this is the local picture for ∆ over any

field. The global picture gets more complicated however as the field k gets bigger as Figure

1 illustrates.

Say that chambers are i-adjacent if any difference between them occurs only in the i-th

position, so V1 ⊂ V2 ⊃ V ′
1
, (V1 , V ′

1
) are a pair of 1-adjacent chambers and V2 ⊃ V1 ⊂

V ′
2
, (V2 , V ′

2
) a pair of 2-adjacent chambers (a chamber is also i-adjacent to itself for any

i). Place the label i on a vertex of the local picture in Figure 2 if the two chambers meeting

at the vertex are i-adjacent.

The shortest routes from c to c′ in the local picture are given by

c
s2 s1 s2

s1 s2 s1

// c′

where the route s1s2s1 means cross a 1-labeled vertex, then a 2-labeled vertex and then a

1-labeled vertex. Routes are read from left to right, although it obviously doesn’t matter

with the two above. These routes then take values in the symmetric group S3 by letting

s1 = (1, 2) and s2 = (2, 3), so that both s1s2s1 and s2s1s2 give the permutation (1, 3) ∈ S3.

Our actions will always be on the left, so in particular permutations in S3 are composed

from right to left. Define the S3-distance between c, c′ to be δ(c, c′) = (1, 3).

For an arbitrary pair of chambers define δ(c, c′) to be the element of S3 obtained by

situating the chambers c, c′ in some local picture and taking the shortest route(s) as in

Figure 2. The resulting map δ : ∆ × ∆ → S3 can be thought of as a metric on ∆ taking

values in S3.

We will see in §4 why this map is well defined and doesn’t depend on which local

picture we choose containing c, c′, although an ad-hoc argument shows that an element of

S3 can be associated in a canonical fashion to any pair of chambers. Take the c, c′ above

and write

c = 0 ⊂ L1 ⊂ L1 + L2 ⊂ V = V0 ⊂ V1 ⊂ V2 ⊂ V3

and c′ = V ′
0
⊂ · · · ⊂ V ′

3
similarly. For each i the filtration V0 ⊂ V1 ⊂ V2 ⊂ V3 of V induces

a filtration of the one dimensional quotient V ′
i
/V ′

i−1
:

(V ′i ∩ V0)/V ′i−1 ⊂ · · · ⊂ (V ′i ∩ V3)/V ′i−1 (1)

many kindnesses. He also thanks Laura Chiobanu, Paul Turner, and was partially supported by Swiss National

Science Foundation grant 200021-131967 and Marie Curie Reintegration Grant 230889. He also thanks the

referees for many helpful suggestions and references that significantly improved the exposition.

Email address: brent.everitt@york.ac.uk (Brent Everitt)
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L1+L3

L2+L3L1+L2
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L2

L3

c c′

1

2

1

2

1

2

s2 s1 s2

s1 s2 s1

c

c′

Figure 2: Local picture of ∆ containing the pair of chambers c, c′ and the shortest routes between them (left);

situating the pair c, c′ in a local picture with the shortest routes s1 s2 s1 = s2 s1 s2 = (1, 3) (right).

(by (V ′
i
∩V0)/V ′

i−1
, etc, we mean the image of V ′

i
∩V0 under the quotient map V → V/V ′

i−1
).

Any filtration of a one dimensional space must start with a sequence of trivial subspaces

and end with a sequence of V ′
i
/V ′

i−1
’s. At some point in the middle the filtration jumps from

being zero dimensional to one dimensional; for the c, c′ above:

i V ′
i
/V ′

i−1
filtration (1) “jump index” j

1 L3 0 ⊂ 0 ⊂ 0 ⊂ L3 3

2 (L2 + L3)/L3 0 ⊂ 0 ⊂ (L2 + L3)/L3 ⊂ (L2 + L3)/L3 2

3 V/(L2 + L3) 0 ⊂ V/(L2 + L3) ⊂ V/(L2 + L3) ⊂ V/(L2 + L3) 1

Defining π(i) = j gives π = (1, 3) ∈ S3. Summarizing:

First rough definition of a building A building is a set of chambers with i-adjacency be-

tween them, the i coming from some set S , together with a “W-valued metric” for W some

group.

Returning to the running example, the symmetric group S3 is a reflection group, with

Figure 2 and the resulting metric δ coming from the geometry of these reflections. To

see why suppose we have a three dimensional Euclidean space – a real vector space with

an inner product. Let v1, v2, v3 be an orthonormal basis and let S3 act on the space by

permuting coordinates: π · vi := vπ(i) for π ∈ S3 (and extend linearly). This action is not

essential as the vector v = v1 + v2 + v3 is fixed by all π ∈ S3. This can be gotten around by

passing to the perp space

v⊥ = {
∑

λivi |
∑

λi = 0}.

The picture to keep in mind is the following, where v⊥ is translated off the origin to make

it easier to see:

v1

v2

v3

s1

s1

v⊥ + 1
3
v

s1

s2
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The element s1 = (1, 2) acts as on the left – as the reflection in the plane with equation

x1 − x2 = 0. Similarly s2 = (2, 3) and (1, 3) are reflections in the planes x2 − x3 = 0 and

x1 − x3 = 0. These three planes chop the intersection of v⊥ + 1
3
v with the positive quadrant

into a triangle with its boundary barycentrically subdivided (or hexagon). So we start to

see the local picture of Figure 2 coming from the geometry of these reflecting hyperplanes.

Putting v⊥ into the plane of the page decomposes the plane into six infinite wedge-

shaped regions:

chambers

s1

s2

intersect

with S 1
≈

chambers

In the theory of reflection groups (§2) these regions are also called chambers. The chambers

of our local picture are gotten back by intersecting these regions with the sphere S 1.

(In the next dimension up we can still draw pictures of some of these objects. Let V

be four dimensional over k and ∆ the two dimensional simplicial complex with vertices

the non-trivial subspaces of V , edges (or 1-simplicies) the pairs Vi ⊂ V j and 2-simplicies

the triples Vi ⊂ V j ⊂ Vk. We can get the local picture by working backwards from a

symmetric group action like we did above. If we have a four dimensional Euclidean space

with orthonormal basis v1, v2, v3, v4, then the convex hull of the vi is a tetrahedron lying in

the hyperplane v⊥+ 1
4
v where v = v1+v2+v3+v4. The six reflecting hyperplanes of the S4-

action have equations xi − x j = 0 and slice the boundary of the tetrahedron barycentrically.

Identifying the hyperplane with three dimensions and intersecting the whole picture with

the sphere S 2, we end up with Figure 3 (left). Flattening it out, we can retrospectively label

the simplicies by lines L1, L2, L3, L4 ∈ V and the spaces they generate.)

Returning to the hexagon, the S3-action turns out to be regular on the chambers, i.e.

given chambers c, c′ there is a unique π ∈ S3 with πc = c′. This is most easily seen by brute

force: fix a “fundamental” chamber c0 and show that the six elements of S3 send it to the

six chambers in the decomposition above. In particular there is a one-one correspondence

between the chambers and the elements of S3 given by π ∈ S3 ↔ chamber πc0.

This correspondence gives the adjacency labelings of the hexagonal local picture of

Figure 2: choose the fixed chamber c0 to be one of the two regions bounded by the reflecting

lines for s1 and s2. Starting with the edge of the hexagon contained in c0, label its vertices

by the corresponding reflections as below left:

c0s1

s2

c0s1

s2

π
gives

s1

s2

s1

s2

c1 c2

s1

s2

π1

π2

Now transfer this labeled edge to the other chambers using the S3-action as in the picture

above middle; the result is shown above right, where the i’s have become si’s. Vertices on

opposite ends of the same line have different labels because the antipodal map x 7→ −x is

not in the action of S3 on the plane v⊥.

Finally, to get the metric δ observe that if c is some chamber of the local picture in

Figure 2 and π ∈ S3 sends c0 to c, then π = si1 . . . sik where sik , . . . , si1 are the labels (read

4



≈

L1

L2

L3

L4

L1 + L2

L2 + L3

L1 + L3

L1 + L2 + L3

Figure 3: The local picture for the flag complex of a four dimensional space: the result of intersecting the hyper-

planes xi − x j = 0 with S 2 (left), flattened out (middle), and the picture corresponding to the labelled hexagon of

Figure 2 (right). The shaded 2-simplex corresponds to the triple L1 ⊂ L1 + L2 ⊂ L1 + L2 + L3.

from left to right) on the vertices crossed in a path in the hexagon from c0 to c. So for

chambers c1, c2 we have δ(c1, c2) = π−1
1
π2 where ci = πic0. For our original c1, c2 we have

π1 = s1s2, π2 = s2, hence δ(c1, c2) = s2s1s2 as shown in the picture above.

Second rough definition of building A building is a set of chambers with i-adjacency, the

i coming from some set S , together with a W-valued metric δ, for W a reflection group

generated by S and δ arising from the geometry of W.

In the next sections we will make precise and general the ideas in this rough definition, but

working in the reverse order: we start with reflection groups (§2), then an abstract version

of chambers and adjacency (§3) and finally W-valued metrics (§4).

2. Reflection Groups and Coxeter Groups

Reflection groups arise as the symmetries of familiar geometric objects; Coxeter groups

are an abstraction of them. This section covers the basics. All vector spaces and linear maps

here are over the reals R.

A reflection of a finite dimensional vector space V is a linear map s : V → V for which

there is a decomposition

V = Hs ⊕ Ls (2)

where Hs is a hyperplane (a codimension one subspace); Ls is one dimensional; the restric-

tion of s to Hs is the identity; and the restriction to Ls is the map x 7→ −x. Thus a reflection

fixes pointwise a mirror Hs, the reflecting hyperplane of s, and acts as multiplication by −1

in some direction (the reflecting line) not lying in the mirror. In particular s is invertible

and an involution1.

A reflection group W is a subgroup of GL(V) generated by finitely many reflections.

Example 2.1 (orthogonal reflections). The most familiar kind of reflections are the or-

thogonal ones for which we further assume that V is a Euclidean space, i.e. is equipped

with an inner product. Then s is orthogonal if in the decomposition (2) the line Ls = H⊥s ,

the orthogonal complement. In particular Ls, and hence the reflection, is determined by the

1We will have no need for them in these notes, but one can reflect a vector space over an arbitrary field k:

the definition is identical except that the restriction of s to the reflecting line Ls is the map x 7→ ζx, where ζ is a

primititve root of unity in k. The only such ζ in R is −1, hence the definition we have given of real reflections. By

contrast a complex reflection can have any finite order.
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reflecting hyperplane, unlike a general reflection where both the hyperplane and the line

are needed.

v

−v

Lv

Hvsv

If s is orthogonal then for any vector v in Ls we have s : v 7→ −v with v⊥ fixed pointwise.

Thus an orthogonal reflection s can be specified by just a non-zero vector v, as the reflection

with Hs = v⊥ and Ls spanned by v. We write s = sv, Hs = Hv, Ls = Lv, and by choosing a

sensible basis one gets that an orthogonal reflection is an orthogonal map of the Euclidean

space.

Let H = {Hv1
, . . . ,Hvm

} be hyperplanes in Euclidean V and W the reflection group

generated by the orthogonal reflections sv1
, . . . , svm

. As an exercise the reader can show that

if WH = H , i.e. gHvi
= Hv j

for all g ∈ W and all vi, then W is finite (hint: |W | ≤ (2m)!). It

turns out (although this is harder) that H then consists of all the reflecting hyperplanes of

W.

Example 2.2 (a finite reflection group). Let V be Euclidean with an orthonormal basis

v1, . . . , vn+1 andH the hyperplanes Hi j := (vi − v j)
⊥ for 1 ≤ i , j ≤ n + 1 (in other words,

Hi j is the hyperplane with equation xi − x j = 0). The reflection svi−v j
sends vi − v j to v j − vi,

thus swapping the vectors vi and v j. Any other basis vector is orthogonal to vi − v j, so lies

in Hi j, and is fixed. Thus if π = (i, j) ∈ Sn+1 then svi−v j
Hkℓ = Hπ(k),π(ℓ).

Now let W be the group generated by the reflections svi−v j
. We have just shown that

WH = H , so W is a finite reflection group by the exercise above. Indeed, W is the

symmetric group Sn+1 acting by permuting coordinates as in §1. To make this identification

we have already seen that each svi−v j
, and so every element of W, permutes the basis vectors

v1, . . . , vn+1. This gives a homomorphism W → Sn+1. Injectivity of this homomorphism

follows as the vi span V and surjectivity as the transpositions (i, j) generate Sn+1.

The convex hull of the vi is the standard n-simplex, barycentrically subdivided by its

n(n − 1) hyperplanes of reflectional symmetry (the H), each of which is a reflecting hy-

perplane of W. This is the picture we had for n = 2 and n = 3 in §1. Finite reflection

groups are often called spherical as the geometrical realisation of their Coxeter complexes

(the boundary of the barycentrically divided n-simplex in this case; see Example 3.3 for the

general definition) are spheres.

Example 2.3 (an affine reflection group). Let V be 2-dimensional and consider reflec-

tions s0, s1 where the reflecting hyperplanes and lines are shown below left (there is no

inner product this time). The reflecting hyperplanes are different but both have the same

reflecting line: Ls0
= L = Ls1

. If W is the group generated by s0, s1 then W leaves in-

variant any affine line parallel to L as the si do. But if H = {Hs0
,Hs1
} then WH , H

as s0Hs1
< H . Indeed, we must expand H to the infinite set shown below right before it

becomes W-invariant:

Hs0
Hs1

Ls0
= Ls1

W = 〈s0, s1〉

s0 s1s0s1s0 s1s0s1. . . . . .

invariant affine lineL

6



In fact, by identifying the invariant affine line with the reals, W is isomorphic to the group

of “affine reflections” of R in the integers Z, i.e. to the group of transformations of R

generated by the maps sn : x 7→ 2n− x for n ∈ Z. The element s1s0 acts on the affine line as

the translation x 7→ x + 2 so has infinite order. In particular W is infinite. This also follows

from H being infinite as the reflections in the hyperplanes in H are the W-conjugates of

s0, s1.

Example 2.4 (hyperbolic reflections). Let V be 3-dimensional and again there is no inner

product. Let a, b, c be real numbers such that a2
+ b2 > c2, and consider the reflection s

with reflecting hyperplane Hs having the equation ax + by − cz = 0 and reflecting line Ls

spanned by the vector v = (a, b, c). Then v lies on the outside of the pair of cones with

equation z2
= x2

+ y2 and Hs passes through the interior of this cone:

z2
= x2

+ y2

Hs

v

s

x2
+ y2 − z2

= −1

One can check that s leaves invariant each sheet of the two sheeted hyperboloid with equa-

tion x2
+ y2 − z2

= −1. Either sheet is a model for the hyperbolic plane. Intersecting Hs

with the top sheet gives a hyperbola – a straight line of hyperbolic geometry – and s is the

“hyperbolic reflection” of the plane in this line2.

Returning to the finite orthogonal case, let V be Euclidean, H = {Hi}i∈T a finite set of

hyperplanes and W = 〈si〉i∈T the group generated by the orthogonal reflections in the Hi.

Suppose also that WH = H , so W is finite andH is the set of all reflecting hyperplanes of

W as above.

For each i ∈ T choose a linear functional αi ∈ V∗ with Hi = kerαi. The choice of αi is

unique upto scalar multiple and Hi consists of those v ∈ V with αi(v) = 0. The two sides

(or half-spaces) of the hyperplane consist of the v with αi(v) > 0 or the v with αi(v) < 0.

Fix an T -tuple ε = (εi)i∈T , with εi ∈ {±1}, and consider the set

c = c(ε) = {v ∈ V | εiαi(v) > 0 for all i}. (3)

So each αi(v) is non-zero and αi(v), εi have the same sign for all i. If this set is non-empty

then call it a chamber of W. A non-empty set of the form

a = a(ε) = {v ∈ V |αi0 (v) = 0 for some i0, and εiαi(v) > 0 for all i , i0} (4)

is called a panel. Here is the example from §1:

chambers

+++

+−+

+−−

−++

−+−

−−−

α1
α2

α3

0 − −

0 + +

−0− + − 0

− + 0 +0+

panels

2Although there is no inner product in Examples 2.3 and 2.4, it is possible to endow V with a bilinear form so

that the reflections are “orthogonal” with respect to this form.
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where there are three hyperplanes in H and the αi are chosen so that αi(v) > 0 for those v

on the side indicated by the arrow. The chambers are marked by their T -tuples. There are

23 T -tuples but only 6 chambers because the tuples ++− and −−+ give empty sets in (3).

Extend the notation to include panels (4) by placing a 0 in the i0-th position. There are then

3.22 such tuples but only 6 give non-empty panels, with two lying on each reflecting line.

There is an obvious notion of adjacency between chambers suggested by these pictures.

Say that a is a panel of the chamber c if the corresponding T -tuples are identical except

in one position where the tuple for a has a 0. It turns out that this can also be defined

topologically: a is a panel of c exactly when ā ⊂ c̄, the closures of these sets with respect

to the usual topology on V .

Chambers c1 and c2 are then adjacent if they share a common panel. In the Example

from §1, chambers are adjacent when they share a common edge.

The adjacency relation can be refined by bringing the reflection group W into the pic-

ture. In §1 we saw that S3 acts regularly as a reflection group on the chambers. This

turns out to be true in general for the W-action on the chambers: given chambers c, c′

there is a unique g ∈ W with gc = c′. Fix one of the chambers c0. Then the regu-

lar action gives the chambers are in one-one correspondence with the elements of W via

g ∈ W ↔ chamber gc0.

Now let S = {s1, . . . , sn} be those reflections in W whose hyperplanes H1, . . . ,Hn are

spanned by a panel of the fixed chamber c0. Thus S = {s1, s2} for the c0 in the example

from §1:

c0

s1

s2 c0sc0

c1 c2

s

g

Suppose c1, c2 are a pair of adjacent chambers as above right. Then there is a g ∈ W with

c1 = gc0. Translating the picture back to c0 we have g−1c1 = c0 and g−1c2 are adjacent

chambers, and the common panel of c1, c2 is sent by g−1 to a common panel of c0 and

g−1c2 (these are most easily seen using the topological version of adjacency). If s ∈ S is

the reflection in the hyperplane spanned by the common panel of c0 and g−1c2, then the

chamber g−1c2 is the same as the chamber sc0.

Thus c1 = gc0, c2 = (gs)c0, and we have the following more refined description of

adjancey:

the chambers adjacent to the chamber gc0 are the (gs)c0 for s ∈ S . (5)

When S = {s1, . . . , sn} we say that chambers gc0 and gsic0 are i-adjacent. In our running

example, the chambers adjacent to gc0 are gs1c0 and gs2c0, and these are the two that were

1- and 2-adjacent to gc0 in §1.

Coxeter groups We motivate the definition of Coxeter group by quoting two facts, staying

with the assumptions above where W is generated by orthogonal reflections in finitely many

hyperplanesH with WH = H :

Fact 1. The group W is generated by the reflections s ∈ S in those hyperplanes spanned

by a panel of the fixed chamber c0.

8



In our running example we can see a how a proof might work using induction on the

“distance” of a chamber from c0. If g is an element of W then there is a chamber adjacent

to the chamber gc0 that is closer to c0 than gc0 is. If this closer chamber is g′c0 say, then

by (5) we have g = g′s for some s ∈ S . Repeat the process until g completely decomposes

as a word in the s ∈ S .

Fact 2. With respect to the generators S the group W admits a presentation

〈s ∈ S | (sis j)
mi j = 1〉 (6)

where the mi j ∈ Z≥1 and are such that mi j = m ji, and mi j = 1 if and only if i = j (so in

particular, s2
i
= 1).

If si and s j are reflections in W finite, then the element sis j has finite order mi j ≥ 2.

So the relations in the presentation (6) certainly hold. The content of Fact 2 is that these

relations suffice. Geometrically, sis j is a rotation “about” the intersection Hi ∩ H j of the

corresponding hyperplanes.

In Example 2.2 we have S = {s1, . . . , sn} where si = svi−vi+1
. The sisi+1 have order 3

and all other sis j have order 2. Moreover W is isomorphic to Sn+1 via the map induced by

(i, i + 1) 7→ si. Our running example of the action of S3 on 3-dimensional V is the n = 2

case of this.

Here is the promised abstraction of reflection group: a group W is called a Coxeter

group if it admits a presentation (6) with respect to some finite S , where the mi j ∈ Z
≥1∪{∞}

satisfy the rules following (6). Sometimes the dependency on the relations S is emphasized

and (W, S ) is called a Coxeter system.

We want the new concept to cover all the examples we have seen so far in this section,

including the affine group in Example 2.3 where the element s1s0 had infinite order. This is

why in the definition of Coxeter group the conditions on the mi j are relaxed to allow them

to be infinite. A relation (sis j)
mi j = 1 is omitted from the presentation when mi j = ∞.

There is a standard shorthand for a Coxeter presentation (6) called the Coxeter symbol.

This is a graph with nodes the si ∈ S , and where nodes si and s j are joined by an edge

labeled mi j if mi j ≥ 4, an unlabeled edge if mi j = 3 and no edge when mi j = 2:

mi j = 2 mi j = 3

mi j

mi j ≥ 4

The examples from §1 and Example 2.3 are then:

s1

s2

s1 s2

s0 s1

∞

s0 s1

Remark 2.1. What is the relationship between the concrete reflection groups defined at the

beginning of this section and the abstract Coxeter groups defined at the end? The answer

is that the Coxeter groups are discrete reflection groups: for a Coxeter system (W, S ) one

can construct a faithful representation (W, S )→ GL(V) for some vector space V , where the

s ∈ S act on V as reflections, and the image of (W, S ) is a discrete subgroup of GL(V).
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3. Chamber Systems and Coxeter Complexes

We have seen several examples of sets of chambers with different kinds of adjacency

between them. This section introduces the formalization of this idea: chamber systems.

A chamber system over a finite set I is a set ∆ equipped with equivalence relations ∼i,

one for each i ∈ I. The c ∈ ∆ are the chambers and two chambers are i-adjacent when

c ∼i c′.

The generic picture to keep in mind is below where chambers are i-adjacent if they

share a common i-labeled edge. Thus, c0 ∼1 c1, c0 ∼2 c2, etc.

12

3

c0

c1c2

c3

A gallery in a chamber system ∆ is a sequence of chambers

c0 ∼i1 c1 ∼i2 · · · ∼ik ck (7)

with c j−1 and c j i j-adjacent and c j−1 , c j. The last condition is a technicality to help with

the accounting. We say that the gallery (7) has type i1i2 . . . ik, and write c0 → f ck where

f = i1i2 . . . ik. If J ⊆ I then a J-gallery is a gallery of type i1i2 . . . ik with the i j ∈ J.

A subset ∆′ ⊆ ∆ of chambers is J-connected when any two c, c′ ∈ ∆′ can be joined by

a J-gallery that is contained in ∆′. The J-residues of ∆ are the J-connected components

and they have rank |J|. Thus the chambers themselves are the rank 0 residues. The rank 1

residues are the equivalence classes of the equivalence relations ∼i as i runs through I. Call

these rank 1 residues the panels of ∆. The chamber system itself has rank |I|.

A morphism α : ∆ → ∆′ of chamber systems (both over the same set I) is a map of

the chambers of ∆ to the chambers of ∆′ that preserves i-adjacence for all i: if c ∼i c′ in ∆

then α(c) ∼i α(c′) in ∆′. An isomorphism is a bijective morphism whose inverse is also a

morphism.

Example 3.1. The local picture from §1 (below left) is a chamber system over I = {1, 2},

with chambers the edges, and two chambers i-adjacent when they share a common i-labeled

vertex. The {i}-residues, or panels, are the pairs of edges having a i-labeled vertex in

common; in particular each panel contains exactly two chambers and there is a one-one

correspondence between the panels and the vertices:

{2}-residue or panel
1

2

1

2

1

2

2

2

2

1

3

1

1

123

23

1

11

23

23

The example above right has chambers the 2-simplicies, I = {1, 2, 3}, and two chambers

i-adjacent when they share a common i-labeled edge. The six highlighted 2-simplicies are

a {2, 3}-residue and the pair of 2-simplicies a {1}-residue or panel (so again, each panel con-

tains two chambers). The six chambers in the rank 2 residue have a single common vertex

at their center, and there is a one-one correspondence between the rank 2 residues and the

vertices; similarly there is a one-one correspondence between the panels and the edges. So

the chambers are the maximal dimensional simplicies and the residues correspond to the

lower dimensional ones. We will return to this point below.
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Example 3.2 (flag complexes). Generalizing the example of §1, let V be an n-dimensional

vector space over a field k. A flag is a sequence of subspaces Vi0 ⊂ · · · ⊂ Vik with Vi j
a

proper subspace of Vi j+1
. Let ∆ be the chamber system over I = {1, . . . , n − 1} whose

chambers are the maximal flags V1 ⊂ · · · ⊂ Vn−1 with dim Vi = i, and where

(V1 ⊂ · · · ⊂ Vn−1) ∼i (V ′1 ⊂ · · · ⊂ V ′n−1)

when V j = V ′
j

for j , i, i.e. any difference between the maximal flags occurs only in

the i-th position. The chambers in the panel (or {i}-residue) containing V1 ⊂ · · · ⊂ Vn−1

correspond to the 1-dimensional subspaces of the 2-dimensional space Vi+1/Vi−1. If k is

finite of order q then each panel thus contains q + 1 chambers; if k is infinite then each

panel contains infinitely many chambers.

Example 3.3 (Coxeter complexes). In §2 we defined chambers, panels and i-adjacence

for a finite reflection group W acting on a Euclidean space: the chambers were in one-one

correspondence with the elements of W via g↔ gc0 (c0 a fixed fundamental chamber), and

gc0 and g′c0 were i-adjacent when g′ = gsi.

Now let (W, S ) be a Coxeter system with S = {si}i∈I . The Coxeter complex ∆W is the

chamber system over I with chambers the elements of W and

g ∼i g′ if and only if g′ = gsi in W. (8)

Thus g ∼i gsi and also gsi ∼i gsisi = g. The {i}-panel containing g is thus {g, gsi}, so each

panel contains exactly two chambers (which can be thought of as lying on either side of the

panel). This is the picture the geometry was giving us in §2. A gallery in ∆W has the form

g ∼i1 gsi1 ∼i2 gsi1 si2 ∼ · · · ∼ik gsi1 si2 . . . sik .

If f = i1i2 . . . ik and s f = si1 si2 . . . sik , then there is a gallery g → f g′ in ∆W exactly when

g′ = gs f in W.

If si, s j ∈ S then starting at the chamber g we can set off in the two directions given by

the galleries:

g ∼i gsi ∼ j gsis j ∼i gsis jsi · · · and g ∼ j gs j ∼i gs jsi ∼ j gs jsis j · · ·

If the order of sis j is finite, then (sis j)
mi j = 1 is equivalent to the relation

sis jsi · · · = s jsis j · · · ,

where there are mi j symbols on both sides, so the two galleries above, despite starting out

in opposite directions, nevertheless end up at the same place: the chamber gsis jsi · · · =

gs jsis j · · · . Thus the {i, j}-residues in ∆W are circuits containing 2mi j chambers when sis j

has finite order. If the order is not finite then the residue is an infinitely long line of cham-

bers stretching in “both directions” from g. The two Coxeter groups from the end of §2

have Coxeter complexes illustrating both these phenomena:

1

2

1

2

1

2

1s1

s2s1s2

s2s1s1s2s1 = s2s1s2 s1 s2

1 0 1 0 1 0 1

s0s1s0 s0s1 s0 1 s1 s1s0

s0 s1

∞
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Aside. In all our pictures of chamber systems, the chambers, panels and lower dimensional

cells have been simplicies. It turns out that chamber systems are particularly nice exam-

ples of simplicial complexes where the chambers are the maximal dimensional simplicies.

Moreover in all the chamber systems arising in these lectures there is a correspondence

between the lower dimensional simplicies and the residues.

To see why, recall that an abstract simplicial complex X with vertex set V is a collection

of subsets of V such that

(a). σ ∈ X and τ ⊂ σ⇒ τ ∈ X and (b). {v} ∈ X for all v ∈ V.

A σ = {v0, . . . , vk} is a k-simplex of the simplicial complex X. The empty set ∅ is by

convention the unique simplex of dimension −1.

Now let ∆ be a chamber system over I and let V be the set of residues of rank |I| − 1

(recall that there is only one residue of rank |I|, namely ∆ itself). Then let X∆ be the

simplicial complex with vertex set V and such that if R0, . . . ,Rk are rank |I| − 1 residues

then

σ = {R0, . . . ,Rk} is a k-simplex of X∆ ⇔
⋂

Ri , ∅.

In other words, X∆ is the nerve of the covering of ∆ by rank |I| −1 residues. Take the empty

intersection to be the union
⋃

V Ri, and observe that the maximum dimension a simplex can

have is |I| − 1.

If ∆ is the flag complex chamber system of Example 3.2 with chambers the maximal

flags, then the k-simplicies of X∆ correspond to the flags Vi0 ⊂ · · · ⊂ Vik containing k + 1

subspaces.

We illustrate with the Coxeter complex ∆W of the Coxeter system (W, S ) with the sym-

bol shown below left. Some elements of W have been written down in a suggestive pattern,

grouped into three rank 2 residues. The simplicial complex X∆ acquires a 2-simplex from

these residues as any two intersect in a residue of rank 1 and all three intersect in a residue

of rank 0. In fact XW is the infinite tiling of the plane from Example 3.1:

s1

s2

s3

(W, S )

s1s3

s1s2 1

s1 s3

s3s1

s1s3s1s1s3s2

s1s2s3

s1s2s3s2

s2s1s2s1

s2s1

{1, 3}-residue{2, 3}-residue

{1, 2}-residue

∆W

X∆

It would seem from this example that if R0, . . . ,Rk are rank |I| − 1 residues over J0, . . . , Jk

with
⋂

Ri , ∅, then
⋂

Ri is a residue over
⋂

Ji. In fact this is always true for a Coxeter

complex and indeed any building, although not for an arbitrary chamber system. As
⋂

Ji

has |I| − (k + 1) elements, there is a one-one correspondence between the simplicies of X∆
and the residues of ∆:

codimension ℓ simplicies σ = {R0, . . . ,Rm} ↔ residues

m
⋂

i=0

Ri of rank ℓ,

where m = |I| − (ℓ + 1). So for buildings the chambers of a chamber system ∆ are the top

dimensional simplicies of X∆, with the lower dimensional simplicies given by the residues.
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Returning to the general discussion, we now have all the properties of chamber systems

that we need. We finish the section by defining a W-valued metric on a Coxeter complex

∆W .

If (W, S ) is a Coxeter system and f = i1i2 . . . ik with s f = si1 si2 . . . sik , then we have

seen that there is a gallery g → f g′ in ∆W exactly when g′ = gs f in W. Call such a gallery

minimal if there is no gallery in ∆W from g to g′ that passes through fewer chambers. Call

an expression s f = si1 si2 . . . sik reduced if there is no expression in W for s f involving

fewer s’s (counted with multiplicity). Thus a gallery g → f g′ is minimal if and only if the

expression s f is reduced.

Define δW : ∆W × ∆W → W by δW (g, g′) = g−1g′. Then

δW (g, g′) = s f ⇔ g′ = gs f ⇔ there is a gallery g→ f g′. (9)

Moreover, δW (g, g′) is reduced if and only if the gallery g → f g′ is minimal. A slight

relaxation will define the metric on an arbitrary building. Here are two examples, one of

which is our running one:

1

2

1

2

1

2

g′ = s2g = s1s2

s1 s2

δW (g, g′) = s2s1s2 (= s1s2s1)

2 3 1

123

23 1

3

3
g

g′

δW (g, g′) = s2s3s2s1s3 (= s3s2s1s3s1 = etc)

s1

s2

s3

Another way to draw chamber systems. A chamber system over I can be drawn as a graph

whose edges are “coloured” by I. The vertices of the graph are the chambers, and two

vertices are joined by an edge labeled i ∈ I iff the corresponding chambers are i-adjacent.

These graphs are essentially the 1-skeletons of the duals of our simplicial complexes. If

∆W is the Coxeter complex of the Coxeter system (W, S ) then this graph is the Cayley

graph of W with respect to the generating set S . Figure 4 (left) shows the graph for the

local picture of the flag complex of a four dimensional space of Figure 3 (or the Coxeter

complex of ) and (right) the graph for the Coxeter complex of the group

of symmetries of the dodecahedron (with Coxeter symbol
5

).

4. Buildings and Apartments

Let (W, S ) be a Coxeter system with S = {si}i∈I . A building of type (W, S ) is a chamber

system ∆ over I such that:

(B1). every panel of ∆ contains at least two chambers;

(B2). ∆ has a W-valued metric δ : ∆ × ∆ → W such that if s f = si1 . . . sik is a reduced

expression in W then

δ(c, c′) = s f ⇔ there is a gallery c→ f c′ in ∆.

Example 4.1 (Coxeter complexes). There is at least one building for every Coxeter sys-

tem (W, S ), namely the Coxeter complex ∆W with δ = δW in (9), hence (B2). For (B1) we

observed in Example 3.3 that the panels in ∆W have the form {g, gs} for g ∈ W and s ∈ S .

Such a building, where each panel has the minimum possible number of chambers, is said

to be thin. It turns out that the thin buildings are precisely the Coxeter complexes.

13



Figure 4: Chamber systems as edge coloured graphs. The local picture for the flag complex of a four dimensional

space (left) and the Coxeter complex of the group of symmetries of a dodecahedron (right). Both are chamber

systems over I = {1, 2, 3}.

Example 4.2 (a spherical building of type ). For (W, S ) hav-

ing this symbol (n − 1 vertices) we put a W-valued metric on the flag complex of Example

3.2. First identify (W, S ) with Sn as in §2, with si 7→ (i, i + 1) for 1 ≤ i ≤ n − 1. Let

c = (V1 ⊂ · · · ⊂ Vn−1) and c′ = (V ′1 ⊂ · · · ⊂ V ′n−1)

be chambers and write V0 = V ′
0
= 0, Vn = V ′n = V . We can define δ(c, c′) ∈ Sn using the

filtration of V ′
i
/V ′

i−1
of §1 in the obvious way. Alternatively, for 1 ≤ i ≤ n, let

π(i) = min{ j |V ′i ⊂ V ′i−1 + V j}

and define δ(c, c′) = π. We show that we have a building (when dim V = 3) at the end of

this section.

Example 4.3 (an affine building of type
∞

). An affine building has type (W, S )

an affine reflection group as in Example 2.3. Taking this example, with S = {s0, s1} and

Coxeter symbol
∞

, let ∆ be the chamber system over I = {0, 1} shown below –

an infinite 3-valent tree. The edges are the chambers, and two chambers are 0-adjacent

when they share a common black vertex and 1-adjacent when they share a common white

vertex. Each panel thus contains three chambers, hence (B1). The Coxeter complex ∆W is

in Example 3.3 (also a tree).

= 0-adjacent

= 1-adjacent

∆
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To define the W-metric on ∆ recall that in a tree there is a unique path between chambers

without “backtracking”: a backtrack is a path that crosses an edge and then immediately

comes back across the edge again. For chambers c, c′ ∈ ∆, match this unique path between

c and c′ with the same path starting at 1 in the Coxeter complex ∆W :

unique path

∆

∆W

1 g

c c′

and define δ(c, c′) to be the resulting g. To see (B2), let δ(c, c′) = g ∈ W and suppose that

g = s j1 . . . s jℓ . Then by (9) there is a gallery in ∆W from 1 to g of type j1 . . . jℓ. As ∆W is also

a tree this gallery differs from the unique minimal one only by backtracks. First transfer

this minimal gallery to ∆ to get the minimal gallery from c to c′, and then transfer the

backtracks to obtain a gallery of type j1 . . . jℓ from c to c′. Conversely if there is a gallery

from c to c′ of type ji . . . jℓ with s j1 . . . s jℓ reduced, then in particular no two consecutive

s’s are the same and so the gallery has no backtracks. Thus it is the unique minimal gallery

from c to c′ giving δ(c, c′) = s j1 . . . s jℓ by definition.

In a Coxeter complex we have δW (c, c′) = si1 . . . sik if and only if there is a gallery of

type i1 . . . ik from c to c′, but in an arbitrary building there is the extra condition that the

word si1 . . . sik be reduced. We can see why in the example above: if there is a gallery of

type i1 . . . ik from c to c′ with si1 . . . sik not reduced, then δ(c, c′) need not necessarily be

si1 . . . sik . For example, if we have three adjacent chambers:

c

c′

f=1 f ′=11

then there is a gallery of type 1 from c to c′ with s1 reduced, hence δ(c, c′) = s1. The

non-reduced gallery c→11 c′ does not give δ(c, c′) = s1s1, as s1s1 = 1 , s1.

Examples 4.2-4.3 are our first of thick buildings: one where every panel contains at

least three chambers. “Thick” is generally taken to be synonymous with interesting.

It turns out that there are quite naturally arising Coxeter groups for which there are

no thick buildings. One such example is the group of reflectional symmetries of a regular

dodecahedron having symbol
5

.

In §1 (as well as Example 4.3) we defined the W-metric δ by situating a pair of chambers

c, c′ inside a copy of the Coxeter complex ∆W and transferring the metric δW defined in (9).

We need to see that this process is well defined – although this is obvious in Example 4.3

– and that the resulting δ satisfies (B2). This leads to an alternative definition of building

(Theorem 4.2 below) based on this idea of defining δ locally.

Let (∆, δ) and (∆′, δ′) be buildings of type (W, S ) and X ⊂ (∆, δ),Y ⊂ (∆′, δ′) be subsets.

A morphism α : X → Y is an isometry when it preserves the W-metrics: for all chambers

c, c′ in X we have δ′(α(c), α(c′)) = δ(c, c′). A simple example is if g0 ∈ W, then g 7→ g0g

is an isometry ∆W → ∆W .

The following result guarantees the existence of copies of the Coxeter complex in a

building:
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Theorem 4.1. Let ∆ be a building of type (W, S ) and X a subset of the Coxeter complex

∆W . Then any isometry X → ∆ extends to an isometry ∆W → ∆.

An apartment in a building ∆ of type (W, S ) is an isometric image of the Coxeter com-

plex ∆W , i.e. a subset of the form α(∆W ) for α : ∆W → ∆ some isometry. Apartments are

precisely the local pictures we saw in §1.

We are particularly interested in the following two consequences of Theorem 4.1:

Any two chambers c, c′ lie in some apartment A. (10)

(If δ(c, c′) = g ∈ W, then X = (1, g) ⊂ ∆W 7→ (c, c′) ⊂ ∆ is an isometry. It extends by

Theorem 4.1 to an isometry ∆W → ∆ and hence an apartment containing c, c′.) So the

W-metric on ∆ can be recovered from the metric on the Coxeter complex; moreover, the

metrics on overlapping Coxeter complexes agree on the overlaps:

If chambers c, c′ ∈ A and c, c′ ∈ A′ then there is an isometry A→ A′ fixing A ∩ A′. (11)

(We leave this to the reader with the following hints: use the apartments to get an isometry

A → A′ fixing a chamber c0 ∈ A ∩ A′; then show that every chamber in the intersection is

fixed by showing that in an apartment there is a unique chamber a given W-distance from

c0.)

It turns out that any chamber system covered by sufficiently many Coxeter complexes

in a sufficiently nice way so that (10) and (11) hold can be made into a building by patching

together the local metrics on the Coxeter complexes ala §1.

To formulate this properly we need to replace isometries by maps not involving metrics.

Let ∆,∆′ be chamber systems over the same set I. We leave it as an exercise to show that

(i). α : (∆, δ)→ (∆′, δ′) is an isometry of buildings if and only if α : ∆→ ∆′ is an injective

morphism of chamber systems, and (ii). α is a surjective isometry of buildings if and only

if α an isomorphism of chamber systems.

Theorem 4.2. Let (W, S ) be a Coxeter system with S = {si}i∈I and ∆ a chamber system

over I. Suppose ∆ contains a collection {Aα} of sub-chamber systems over I, called apart-

ments, with each subsystem isomorphic (as a chamber system) to the Coxeter complex ∆W .

Suppose also that

(B1′). any two chambers c, c′ of ∆ are contained in some apartment A, and

(B2′). if chambers c, c′ ∈ Aα and ∈ Aβ, then there is an isomorphism Aα → Aβ fixing

Aα ∩ Aβ.

Define δ : ∆ × ∆ → W by δ(c, c′) = δW (α(c), α(c′)) where α : ∆W → A is an isomorphism

with c, c′ ∈ A. Then (∆, δ) is a building of type (W, S ).

Example 4.4 (the flag complex of §1 revisited). The chamber system structure on the flag

complex ∆ of §1 was given there (and in Example 3.2, where we saw that ∆ is thick). If

L1, L2, L3 are lines in V spanned by independent vectors, then we get a hexagonal configu-

ration as in §1. Let the apartments be all the hexagons obtained in this way. If c = V1 ⊂ V2

and c′ = V ′
1
⊂ V ′

2
are chambers, then they can be situated in an apartment by extending

V1,V
′
1

to a set L1, L2, L3 of independent lines. If V1 , V ′
1
, V2 , V ′

2
and V2 ∩V ′

2
is a line dif-

ferent from V1,V
′
1

as for the c, c′ of §1, then this extension is unique, so c, c′ lie in a unique

apartment. Otherwise (e.g. if V2 ∩ V ′
2

is one of V2 or V ′
2
) there is some choice. In any case,

if L1, L2, L3 and L′
1
, L′

2
, L′

3
are two such extensions corresponding to apartments Aα, Aβ con-

taining c, c′, then any g ∈ GL(V) with g(Li) = L′
i

induces an isomorphism Aα → Aβ that

fixes Aα ∩ Aβ.
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〈e1, e3〉

〈e2, e3〉〈e1, e2〉

〈e1〉

〈e2〉

〈e2〉

c0

Figure 5: Apartment A0

5. Spherical Buildings

So far our supply of thick buildings is a little disappointing: only the flag complex of

§1 and the affine building of Example 4.3. In this section we considerably increase the

library by extracting a building from the structure of a reductive algebraic group. These

guys really are the motivating examples of buildings.

Call a building of type (W, S ) spherical when the Coxeter system (W, S ) is spherical (i.e.

finite). It turns out that there is a uniform construction of a large class of thick spherical

buildings. To motivate this we reconstruct the flag complex building ∆ of §1 inside the

general linear group G = GL(V) � GL3(k).

First, let P ⊂ G be the subgroup of permutation matrices – those matrices with exactly

one 1 in each row and column and all other entries 0; alternatively, the aπ =
∑

j eπ j, j, where

π ∈ S3 and ei j is the 3 × 3 matrix with a 1 in the i j-th position and 0’s elsewhere. The map

π 7→ aπ is an isomorphism S3 → P with

s1 = (1, 2) 7→





















0 1 0

1 0 0

0 0 1





















and s2 = (2, 3) 7→





















1 0 0

0 0 1

0 1 0





















. (12)

For the rest of this section we will blur the distinction between the symmetric group S3,

the group of permutation matrices P, and the Coxeter system (W, S ) with the symbol

.

Assume for the moment that:

(G1). The action of G on the flag complex ∆ given by a : V1 ⊂ V2 7→ aV1 ⊂ aV2 for

a ∈ G, is by chamber system isomorphisms (hence via isometries by the comments

immediately prior to Theorem 4.2).

(G2). Fix g ∈ (W, S ) and let X(g) = {(c, c′) ∈ ∆ × ∆ | δ(c, c′) = g}. Then for any g

the diagonal action a : (c, c′) 7→ (ac, ac′) of G on X(g) is transitive (thus G acts

transitively on the ordered pairs of chambers a fixed W-distance apart).

(G3). Let A0 ⊂ ∆ be the apartment given by the lines Li = 〈ei〉 with {e1, e2, e3} the usual

basis for V , and c0 the chamber 〈e1〉 ⊂ 〈e1, e2〉 – see Figure 5. Then P acts on A0.

Moreover, the isometry ∆W → A0, g 7→ gc0 is equivariant with respect to the (W, S )-

action g
g0

7→ g0g on the Coxeter complex ∆W and the P-action on the apartment A0

(thus, the (W, S )-action on ∆W is the same as the P-action on A0).

These three allow us to reconstruct the chambers, adjacency and S3-metric of ∆ inside G:

Reconstructing the chambers of ∆ in G. For a ∈ G we have ac0 = c0 with c0 = 〈e1〉 ⊂

〈e1, e2〉, exactly when

a ∈ B :=







































• • •

0 • •

0 0 •





















∈ G



















,
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the subgroup of upper triangular matrices. It is easy to show that (G2) is equivalent to

(G2a): the G-action on ∆ is transitive on the chambers, and (G2b): for any g ∈ (W, S ) the

action of the subgroup B is transitive on the chambers c such that δ(c0, c) = g.

Combining (G2a) with the fact that the chamber c0 has stabilizer B, we get a 1-1 corre-

spondence between the chambers of ∆ and the left cosets G/B:

chambers ac0 ∈ ∆ oo
1-1

// cosets aB ∈ G/B.

Reconstructing the i-adjacency. Let c1, c2 ∈ ∆ be 1-adjacent chambers: c1 = V1 ⊂ V2 and

c2 = V ′
1
⊂ V2, and let ci = aic0 with the ai ∈ G. Then a−1

1
a2 stabilizes the subspace 〈e1, e2〉,

hence

a−1
1 a2 ∈







































• • •

• • •

0 0 •





















∈ G



















. (13)

The reader can show that for s1 the permutation matrix in (12), the subgroup of matrices in

(13) is the disjoint union B〈s1〉B := B ∪ Bs1B, where BaB = {bab′ | b, b′ ∈ B} is a double

coset. Thus, if we are to replace the chambers c1, c2 by the cosets a1B, a2B, then we need

to replace c1 ∼1 c2 by a−1
1

a2 ∈ B〈s1〉B. Similarly

c1 ∼2 c2 exactly when the ci = aic0 with a−1
1 a2 ∈







































• • •

0 • •

0 • •





















∈ G



















= B〈s2〉B.

Reconstructing the S3-metric δ. Let c1, c2 ∈ ∆ be chambers with ci = aic0. Suppose that

δ(c1, c2) = g ∈ (W, S ). As G is acting by isometries (G1), we have δ(c0, a
−1
1

a2c0) = g. In

the Coxeter complex ∆W we have by (9) that δW (1, g) = g, so that by (G3), δ(c0, gc0) = g

also. Thus by (G2b) there is a b ∈ B with (bc0, bgc0) = (c0, a
−1
1

a2c0), so in particular,

bgc0 = a−1
1

a2c0. As the elements of G sending c0 to bgc0 are precisely the coset bgB, we

get a−1
1

a2 ∈ bgB ⊂ BgB.

Conversely, if a−1
1

a2 ∈ BgB then

δ(c1, c2) = δ(a1c0, a2c0) = δ(c0, a
−1
1 a2c0) = δ(c0, bgb′c0) = δ(c0, bgc0),

for some b ∈ B, and so

δ(c0, bgc0) = δ(bc0, bgc0) = δ(c0, gc0) = δW (1, g) = g,

(the first as B stabilizes c0, the second by (G1) and the third by (G3)). We conclude that

δ(c1, c2) = g ∈ (W, S ) if and only if a−1
1 a2 ∈ BgB.

Summarizing, let the left cosets G/B be a chamber system over I = {1, 2} with ad-

jacency defined by a1B ∼i a2B iff a−1
1

a2 ∈ B〈si〉B and S3-metric δ(a1B, a2B) = g iff

a−1
1

a2 ∈ BgB. Then G/B is a building of type , isomorphic to the flag complex of

§1.

We leave it to the reader to show that the assumptions (G1)-(G3) hold (hint: for (G2)

with δ(c1, c2) = δ(c′
1
, c′

2
), situate c1, c2 in a hexagon as in §1 and c′

1
, c′

2
similarly. Then use

the fact that GL(V) acts transitively on ordered bases of V).

We are feeling our way towards a class of groups in which we can mimic this recon-

struction of the flag complex. It turns out to be convenient to formulate the class abstractly

first, and then bring in the natural examples later.

A Tits system or BN-pair for a group G is a pair of subgroups B and N of G satisfying

the following axioms:

(BN0). B and N generate G;
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(BN1). the subgroup T = B ∩ N is normal in N, and the quotient N/T is a Coxeter system

(W, S ) for some S = {si}i∈I ;

(BN2). for every g ∈ W and s ∈ S the product of double cosets3 BsB·BgB ⊂ BgB
⋃

BsgB;

(BN3). for every s ∈ S we have sBs , B.

The group W is called the Weyl group of G, and is in general not finite.

Example 5.1. G = GLn(k); B = the upper triangular matrices in G; N = the monomial

matrices in G (those having exactly one non-zero entry in each row and column),

T = {diag(t1, . . . , tn) | t1 . . . tn , 0},

and W = the permutation matrices with

si =
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for i ∈ {1, . . . , n − 1}, where the number of 1’s on the diagonal before the 2 × 2 block is

i − 1. Let ei be the n-column vector (0, . . . , 1, . . . , 0)T with the 1 in the i-th position and

Li = {tei | t ∈ k}. Then N permutes the set of lines {L1, . . . , Ln} and W is isomorphic to the

symmetric group on this set (hence � Sn). This example is misleadingly special in that the

extension 1 → T → N → W → 1 splits, so that the Weyl group W can be realised, via the

permutation matrices, as a subgroup of G. In general this doesn’t happen.

Theorem 5.1. Let G be a group with a BN-pair and let ∆ be a chamber system over I with

chambers the cosets G/B and adjacency defined by a1B ∼i a2B iff a−1
1

a2 ∈ B〈si〉B. Define

a W-metric by δ(a1B, a2B) = g ∈ W iff a−1
1

a2 ∈ BgB. Then (∆, δ) is a thick building of type

(W, S ).

Example 5.2. G = the symplectic group Sp2n(k) = {g ∈ GL2n(k) | gT Jg = J} where

J =

(

0 In

−In 0

)

,

with In the n × n identity matrix; B = the upper triangular matrices in Sp2n(k); N = the

monomial matrices in Sp2n(k), and

T = {diag(t1, . . . , tn, t
−1
1 , . . . , t

−1
n ) | ti , 0}.

Let {e1, . . . , en, e1, . . . , en} be 2n-column vectors (0, . . . , 1, . . . , 0)T with the 1 in the i-th

position for ei and the (i + n)-th position for ei. Let Li = {tei | t ∈ k} and Li = {tei | t ∈ k},

writing L = L. Then N permutes the set {L1, . . . , Ln, L1, . . . , Ln} and W is isomorphic to the

“signed” permutations S±n = {π ∈ S2n | π(Li) = π(Li)}.

3A g ∈ W is not an element of G but a coset gT for some representative in g ∈ N for g. As T ⊂ B, if g1T = g2T

then Bg1B = Bg2B, so we can unambiguously write BgB to mean BgB.
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A0

L1L2

L1 L2

L1 + L2

L1 + L2

L1 + L2L1 + L2

Figure 6: The spherical building of the symplectic group Sp4(F2) and apartment A0.

This can be reformulated geometrically as follows. Let V be a 2n-dimensional space

over k and (u, v) a symplectic form on V – a non-degenerate alternating bilinear form4. Let

O(V) be those linear maps preserving the form, i.e. O(V) = {g ∈ GL(V) | (g(u), g(v)) =

(u, v) for all u, v ∈ V}. The form can be defined on a basis {e1, . . . , en, e1, . . . , en} by

(ei, e j) = 0 = (ei, e j) and (ei, e j) = δi j = −(e j, ei),

so that O(V) � Sp2n(k). Call a subspace U ⊂ V totally isotropic if (u, v) = 0 for all u, v ∈ U.

It turns out that the maximal totally isotropic subspaces are n-dimensional. A (maximal)

flag in V is a sequence of totally isotropic subspaces V1 ⊂ · · · ⊂ Vn with dim Vi = i. Let ∆

be the chamber system with chambers these flags and adjacencies over I = {1, . . . , n} as in

the flag complex of Example 3.2: (V1 ⊂ · · · ⊂ Vn) ∼i (V ′
1
⊂ · · · ⊂ V ′n) when V j = V ′

j
for

j , i. Let c0 be the chamber

〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, e2, . . . , en〉

and A0 the set of images of c0 under the signed permutations S±n = {π ∈ S2n | π(ei) = π(ei)}

(writing e = e). Finally, let {Aα} be the set of images of A0 under Sp2n(k). Then this set of

apartments ∆ gives a building isomorphic to the spherical building of Sp2n(k) arising from

Theorem 5.1 and Example 5.2.

We finish where we started by drawing a picture. Let V be four dimensional over

the field of order 2 and equipped with symplectic form (u, v). Let ∆ be the graph with

vertices the proper non-trivial totally isotropic subspaces of V , with an edge connecting

the (white) one dimensional vertex Vi to the (black) two dimensional vertex V j whenever

4Alternating means (u, u) = 0 for all u, and non-degenerate that V⊥ = {0}.
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Vi is a subspace of V j. Any one dimensional subspace (of which there are 15) is totally

isotropic, and is contained in 3 two dimensional totally isotropic subspaces, each of which

in turn contains 3 one dimensional subspaces. There are thus 15 two dimensional vertices.

The local pictures/apartments are octagons (or barycentrically subdivided diamonds). The

apartment A0 above has white vertices L1, L2, L1, L2, using the notation of Example 5.2,

and black vertices L1 + L2, L1 + L2, L1 + L2 and L1 + L2. See Figure 6.

Remark 5.1. Examples 5.1 and 5.2 are of classical groups of matrices. This can be gener-

alized. Let k = k be algebraically closed and G a connected algebraic group defined over

k. Suppose also that G is reductive, i.e. that its unipotent radical is trivial. Let B be a Borel

subgroup (a maximal closed connected soluble subgroup) and T ⊂ B a maximal torus – a

subgroup isomorphic to (k×)m for some m. Finally, let W = N/T be the Weyl group of G,

where N is the normalizer in G of T . This is isomorphic to a finite Coxeter group (W, S )

with S = {si}i∈I . The result is a BN-pair for G. For a general non-algebraically closed k a

BN-pair can still be extracted from G, but one has to tread more carefully.

Notes and References

As mentioned in the Introduction, most of what we have said has its origins in the

work of Tits, and we start by listing his (many) original contributions. Coxeter groups as a

notion first appeared in his 1961 mimeographed notes, Groupes et géométries de Coxeter.

These were reproduced in [7, pages 740–754]. The name is a homage to [8]. The Bourbaki

volume [2] dealing with Coxeter groups was produced after “numerous conversations” with

Tits. Buildings as simplicial complexes go back to the very beginnings of the subject, but

the first complete account can be found in [20]. Buildings as chamber systems with a W-

metric have their origins in [23]. The earliest reference to BN-pairs that we could find in

Tits’s work is in [18]; they start to prove an essential tool in [19].

Section 1. This is mostly folklore. The reader is to be minded of projective geometry as

∆ is the incidence graph of the standard projective plane over k. The ad-hoc argument

(essentially the Jordan-Hölder Theorem) for associating the permutation (1, 3) to the pair

of chambers is from [1, §4.3].

Section 2. Standard references on reflection groups and Coxeter groups are [2] (still the

only place you can find some things), [12] and [13]. The definition of reflection in (2) is

from [2, V.2.2]. That H consists of all the reflecting hyperplanes of W is [12, Proposition

1.14]. The general theory of finite reflection groups, including their classification, can be

found in Chapters 1 and 2 of [12]. Example 2.3, although fairly standard, is taken from

[1, §2.2.2]. The general theory of affine groups is in [12, Chapter 4]. For the hyperboloid

or Minkowski model of hyperbolic space, hyperbolic lines, etc, see [14, Chapter 3]. The

standard reference on hyperbolic reflection groups is [24]. The treatment of chambers,

panels and adjacency is taken from [1, §1.1.4]. That W acts regularly on the chambers is

[12, Theorem 1.12]. Fact 1 is [12, Theorem 1.5] and Fact 2 is [12, Theorem 1.9]. For the

general theory of Coxeter groups see [12, Chapter 5]. The representation (W, S ) → GL(V)

described in Remark 2.1 is called the geometric or reflectional or Tits representation, and

is one of the crucial results of [7]. See [12, §5.3] for its definition; faithfulness is [12,

Corollary 5.4] or [1, Theorem 2.59] (where it is also shown that the image in GL(V) of

(W, S ) is discrete).

Section 3. Apart from the aside, this section is based mainly on Chapters 1-2 of [15]; the

initial chamber system notions and Example 3.2 are directly from [15, §1.1]. Chapter 2 of

this book is entirely devoted to Coxeter complexes. A thorough exploration of the general

connections between chambers systems and simplicial complexes is given in [1, Appendix

A]. The building specific set-up is in [1, §5.6]. The construction of the simplicial complex
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X∆ as the nerve of the covering by rank |I| − 1 residues is [1, Exercise 5.98]. The statement

about the intersection of residues being a residue is [1, Exercise 5.32]. The edge coloured

graph way of viewing chamber systems is a point of view adopted in [25].

Section 4. This section is based on Chapter 3 of [15] from which the definition of building

is taken. That the Coxeter complexes comprise the thin buildings is from [15, §3.2]. The

alternative definition of the permutation associated to a pair of chambers of a flag complex

in Example 4.2 is taken from [25, Example 7.4]. The infinite 3-valent tree of Example 4.3

is an example of a building that does not have much structure as a combinatorial object.

Nevertheless it can be constructed in an interesting way from a vector space over a field

with a discrete valuation (and as such is an important special case of the Bruhat-Tits theory

[6]) in the following way. Let K be a non-archimedean local field with residue field k and

valuation ring A (for example K is the p-adics Qp with k = Z/pZ and A the p-adic integers).

If V is a 2-dimensional vector space over K, then a lattice L ⊂ V is a free A-module of rank

2. Consider the equivalence classes Λ of lattices under the relation L ∼ Lx for x ∈ K×,

and let ∆ be the graph with vertices these classes and an edge joining Λ,Λ′ iff there are

L ∈ Λ, L′ ∈ Λ′ with L′ ⊂ L and L/L′ � k. Then ∆ is a tree, and Example 4.3 is the case

where k has two elements (K = Q2 for example). See [17, II.1.1] for details. In general

there is a construction that extracts a BN-pair, and an affine building, from an algebraic

group defined over such a K, and Example 4.3 is this affine building for SL2Q2. For affine

buildings in general see [26]. The fact that the affine building for SL2Qp is a tree was used

by Serre to reprove a theorem of Ihara that a torsion free lattice in SL2Qp is a free group

[17]. A theorem of Walter Feit and Graham Higman [10] has consequence that a finite thick

building has type (W, S ) a finite reflection group where each irreducible component of W is

of type An, Bn/Cn,Dn, E6, E7, E8, F4,G2 or I2(8) (see [1, Theorem 6.94]; see [12, Chapter

2] for a description of these types of finite reflection group). Hence there can be no finite

thick buildings of type the symmetry group of the dodecahedron, for which (W, S ) has type

H3. That there are no infinite thick buildings of type H3 is shown in [22]. Theorem 4.1 is

[15, Theorem 3.6] and Theorem 4.2 is [15, Theorem 3.11]. Prior to [23] axioms (B1′) and

(B2′) of Theorem 4.2 provided the standard definition of building.

Section 5. This section is based on [15, Chapter 5]. Properties (G1)-(G3) are the spe-

cialization to GL3 of a strongly transitive group action [15, §5.1]. The argument that re-

constructs the W-metric is taken from the proof of [15, Theorem 5.2]. The axioms for a

BN-pair are from [15, §5.1]. A proof that Example 5.1 is a BN-pair using nothing but

row and column operations can be found in [1, §6.5]. Theorem 5.1 is [15, Theorem 5.3].

The flag complex of a symplectic space is from [15, Chapter 1]. Figure 6 has several

names: in graph theory circles it is called Tutte’s eight-cage, and is the unique smallest

cubic graph with girth 8 (where these minimal 8-circuits are, of course, the apartments). It

is a pleasantly mindless exercise to label the vertices of the Figure with the totally isotropic

subspaces (hint: start with the 8-circuit at the top as the apartment A0). There is also a very

simple construction that goes back to Sylvester (1844) – this (and much else) is engagingly

described in [9]. There are 30 odd permutations of order 2 in S6: 15 transpositions – like

(1, 2) – and 15 products of three disjoint transpositions, like (1, 2)(3, 4)(5, 6). Let these be

the vertices of the eight-cage, and join a vertex σ in one of these two groups to the three

τ1, τ2, τ3 in the other group for which σ = τ1τ2τ3. That the B (Borel subgroup) and N

(normalizer of a maximal torus) extracted from a reductive group G in Remark 5.1 are a

BN-pair for G is shown in [11, §29.1].

Further reading. Surely the shortest introduction to buildings is [5]; [4], [16] and [21]

are slightly longer. The book [1] is a greatly expanded version of [3], while [15] is an

updated version of the 1988 original. A nice introduction to spherical buildings, including

an account of Tits’s classification [20] of the thick spherical buildings of type (W, S ) for

|S | ≥ 3, is [25]; the sequel [26] treats affine buildings.
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