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Introduction

Let M Dbe a compact differentiable manifold without boundary. A
Riemannian structure on K is called flat if all sectional curvatures
vanish at each point; then il is called a flat manifold. A diffeomorphism

f : M-+ ¥ is called an Anosov diffeomorphism if for some (and hence any)

Riemannian metric on M there exist constants ¢ > 0, A <1 such that at
any point m of 1II the tangent space T?%l decomposes as the direct sum
of a contracting part and an expanding part; more precisely TM& =8 o Eu,
where HTfrvH < clrlhﬂ for all v & ¥ and all integers r > 0 and
HTf-rw” < cAr“wH tor a1l w € E© and all integers r > 0 (the letters

s and u stand, as usual, for stable and unstable; they are also used
for the dimensions of the spaces involved),

Example If we write g?' = 13'2/;'2 for the flat torus, then the automorphism
of E? given by the matrix (i 2) induces an Anosov diff'eomorphism on
2?. On the Klein bottle, however, it is impossible to construct an Anosov
diffeomorphism.

This raises the obvious question : On which manifolds can we construct
Anosov diffeomorphisms ? c.f, Smale [14] p.760. Smale gives examples of
Anosov diffeomorphisms on nilmanifolds (p.761). Shub [13] gives examples
on a four-dimensional flat manifold which is not a torus, a2nd on a six-
dimensional infranil manifold.

le give below a complete algebraic characterization of those flat
manifolds which support Anosov diffeomorphisms (see Theorem 2.3.1). Each
flat manifold comes prepacked with its own finite group F (the linear
holonomy group) and a representation T of this group into GL(n, g), where
n is the dimension of the manifold.

In chapter 1 we find nccessary and also sufficicent conditions for M

to support an Anosov diffeomorphism, and show that these depend only on



the representation T .

In chopter 2 we examine these conditions, as a problem in abstract
representation theory and arrive at the surprising conclusion that the
conditions are equivalent. They depend on the manner in which T decomposes

as we enlarge the coefficient domain first from Z to , and then to ‘E .

D 4D

"hat we do ig this : first we decompose T over

« If any pieccs
occur more than once in the decomposition we ignore them. We now take those
pieces vhich occur precisely once and attempt to decompose them over R .

If we are successful -very time, the manifold will support an Anosov
diffeomorphism, but if any of them is irreducible over R , then the manifold
will not support an Anosov diffeomorphism,

In chapter 3 we apply our results to specific problems, generate lots
of examples and finally use onc of the examples to illustrate a formula of
Williams [15] on zeta functions of diffeomorphisms,

To reduce the weight of the proofs in chapters 1 and 2, we have assembled
those parts of the proofs vhich have nothing to do with Anosov diffeomorphisms
into a chapter O which we call "Prerecquisites", It is used heavily for
reference, and to establish notation.

I should like to teke this opportunity to extend my thenks to the many
people vho gave ne help and encouragement, especially to my supervisors
David Epstein and iiike Shub, who have shovm more patience with me than I
deserve, I should also like to thank the management of I.H.E.S. for their
wonderful hospitality during Easter 1970, when a significant portion of

this work was accomplished,



Chapter O Prerequisites

§0.1 Cohomology of Groups

The easiest reference for this section is Eilenberg and Maclane [7].

Let A be an abelian group, written additively , and I' be an
arbitrary group, written multiplicatively, which acts on A on the left,
the action being written multiplicatively, but with a dot, to distinguish
it from the multiplication in T . We define‘ Hl(r, A) to be the group of
all maps ¢ : I - A which satisfy the equation t/!(xlx2) =X .¢'(x2) +¢(X1),
{these are usually called crossed homomorphisms, although they are not
homomorphisms) modulo the group of maps ¢ of the form ¢(x) = x .,a - a
for some a € A (usually called the principal crossed homomorphisms).

H2(P, A) 1is the group of all maps ¢ ¢ I x ' > A which satisfy the
equation ¢(x1x2, x3) - w(xl, x2x3) =x .¢(x2, x3) - ¢(x1, x2) modulo the
group of those of the form x, . g(x2) - g(xlxz) + g(xl) where g : I = A
is an arbitrary map.

e shall be considering the svecial case where A is an sbelian normal
subgroup of ', and I acts on A on the left by conjugation, Then since
the action of A on itself is irivial, the crossed homomorphisms
¢ : A» A are just the usual homomorphisms and the only principal crossed
homomorphism is zero ., So Hl(A, L) = Hom (4, A). Ve define Hl(A, A)r
to be the subgroup of H;(A, A) given by the restriction ¢(x.a) = x.¢(a)
for all xeT, aeh . Then Hl(./\., F = HomP(A, A) the TI-module
homomorphisms : 4 — A,

If F =T/L then the action of T on A induces a natural action of

F on A, We shall need the following
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Theorem 0.1.1 There exists an exact sequence

0 - Hl(F, L) - Hl(I‘, A) —»Homr(A, L) - HZ(F, A) - HZ(I‘, A)

where the map Hl(I‘, L) - Homr(A, A) is the restriction map.
Proof see Hochschild - Serre [10] ]
Lemma 0.1.2 If F 1is a finite group, and a € HZ(F, L) then |Fla =0

Proof Let f be a representative cocycle for a.

Then f :F xF - L satisfics f(xlxz,xj) -f(x1,x2x3) =x .f(x2x3) -f.(xl,x2)

Now 1lct g : F » A be defined by
glx) = ) £lx,x;)

(Y
*3

then x .g(x,) - g(xx,) + &(x)
x| o Z f(xz, x3) - 2 f(xlxz, x5) + Z f(ll,XB)

x3EF xBEF xBE?‘
= Z xl.f(xz,x3) - Z f(xlxz, xj) + Z f(xl,x2x5)
xBEF xjeF XBEF
= Z f(x.l.’ x2)
X3EF
= IF' f(xls x2)

so |F| £ is a coboundary and |Fla = 0 € H2(F, A) .
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$0.2 Linear Algebra

In this section we collect together several umrelated results wvhich
we shall need, but which are not well knowmn,
Notation By g¢(n, R) we shall mean the n x n matrices with coefficients
in a commutative ring R .

By GL(n, R) we shall mean that subset of gt(n, R) of matrices
whose inverses are also in gf¢(n, R).
Lerme 0.2.1 If He GL(n, 2) end ¢ €3 then Jke 2 ={kez:k> 0]
such that Hk - Ie gt(n, tg).
Proof There is a natural map q : GL(n, 2) -+ GL(n, -%e)’ which latter is
e finite group, So Jke 2 such that (qi)¥ = 14 . n
Lemma 0.2.2 If A, Be gt(n, F) where F is a field of characteristic

o

prime to n , and AB -BA =ulI , then u=0.

Proof The trace of the left-hand-side is 0, of the right-hand-side
is np . i

Lemme 0.2.3 If A, Be gl(n, ) F any field ,

then det ("I A} = det(AuI - AB)
B ul
Froof If A =0 this is trivial.

If A#0 we have

det M A)
3 ur’

i

dot (A.I Ay 1 I 0)

\ i
‘pour’ ‘a/u T

det

]

AL - AB/u A .
( ;e L

0 ul



£0,3 Number Theory

=1
We call E the rational integers. If a.o + eee t B4 2 4 X0

is 2 monic polynomial with coefficients in 2 we call the roots in 9,

algebraic integers, The set of all algebraic integers, é , forms a ring

and ANQ =2 . The units in A, vhich we call U, the algebraic units

are the roots of the polynomials ag t oeee an_lxn—l + x° vhere
a, = % 1.

Let K = Q(C) be an algebraic extcnsion of 2 , and suppose that ¢
has r, conjugates in R and 2r, conjugates in S\ R (in the Galois

theory sense). e shall be interested in whether K N E contains elements
all of whose conjugates are different from 1 in absolute value. Now it is
dlear that such elements must be of infinite order, and this suggests that
we use the famous

Theorem 0.3,1 (Dirichlet)

Under the above conditions, KNJU is an abelian group with
rank r, +r, - 1.

For the proof, see Pollard [12] 11.4 or Artin [2] Chapter 13. [

This, however, is not quite strong enough, since, although it is true
that, if an element of K ng_ has all its conjugates equal to 1 1in
absolute value, then it must be a root of mity and so of finite order, it
is possible for an element of infinite order to be of absolute value 1 ,
For example, the polynomial xl" - 3::3 + 3x2 - 3% + 1 has two roots on the

real line, and two on the unit circle. However, there is a stronger version

of the theorem. ”
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Theorem 0,3,2

Ir r;tr, - 1> 0 in the above situation, then K N H does

contain elements none of whose conjugates have absolute value 1 ,
To prove this, we look again at the proof of Theorem 0.3.1 and use

the fact that a lattice in Rn which does not lie in a hyperplane

|

cannot be confined to the n hyperplanes x; = 0. Lo

-

Corollary 0.3.3 !
The complex quadratic extensions of Q are the only extcnsions of

Q vhich do not coniain units all of whose conjugates have absolute value

~

different from 1 .

]
. N
o



§0.4 Representation Theory

This section is a survey of the representation theory we need,
meinly in Chapter 2. The principal refercnce for this section is
Curtis and Reiner [6] .

Let G be a finite group. A representation of G 1is a homomorphism

T: G- AutV or GL(n, R) where V is a left R-module and R is a

ring, We shall consider only the cases R=2 , and R=F a subfield

of C , and V=Rn, for some n .

Let us now suppose, then, that R=F . T is said to be irreducible

if there is no subspace V, of V (except {0} and V) such that

T(g) V, €V, forell geG. If T is not irreducible, it is said to

be rcducible . By a theorem of Maschke [C & R 10.8), if T : G — Aut V
is a representation, we may write V = Vl B eee & Vk with T(g) Vi= Vi

for 211 ge G, and T, = tnlvi irreducible for cach 1 1 ¢ i<k, Ve
call 'I‘i the irreducible components of T, and write T = Tl @ ... ® 'l'k.

If now E’ is a larger field than F, we get a new representation,

which we also call T : G — Aut (V aFg'), defined in the obvious manner,
T may now become reducible, even if it was irreducible before, We say T

is irreducible over F , but reducible over _E;' . In general, the

larger the field, the more T will split. We call T gbsolutcly irreducible

if it is irreducible over E . If K is a subfield of E such that every
irreducible component of T over K 1is absolutely irreducible, we call K
a splitting field for T or for G. By a theorem of Brauer [C & R 141.1]
if n is thec exponent of G , and { 1is a primitive nth root of unity,

then ~Q(g) is a splitting field for G . We restrict ourselves to subficlds

of ‘;{(C)-
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If Ti and Tj are two components of T , we say they are
equivalent, written '1‘i ~ Tj s if there is an isomorphism J : Vi - Vj
such that JTi(g) = TJ.(g)J for all g € G. Ve need not specify the

field, since if E‘ O F then two representations are equivalent over F

if and only if they are equivalent over F! [c&RrR 29,7). If T, and

i
Tj are equivalent, and we choose a basis {vik} for V:.L and the basis
k
{Jvik} for Vj , then the matrices of Ti(g) and Tj(g) with respect
k

to these bases will be identical.
If T is an irreducible representation over Qs and K is a

minimal splitting field for T, and T, is an irreducible component of

1
T over X (or indeed Q_) , then if we choose a basis for Vl in
X°, {vl vtf say, then {v;} , where o €T (K/Q) the Galois
i

group of K over Q , span a space iwariant under T . Since T is
~ and P{XIQ) i abshin,
irreducible over Q and K is minimal,\ the v; for all i, 1 <1<t

and all o € T (K/Q) are distinot and sre a basis for K, With respect
to this basis the matrix of T will bLe a bloeck matrix, with blocks equal
to T‘l7 o Ifnow T and T' are two inequivalent irreducible
representations of G over 8 and if {Ti}i are the irreducible
components of T over g and {T;} are irreducible components of T!
over C , then Ti is inequivalent io T.'i for any i, j.

"¢ shall be especially interested in those elements of GL(n, E)

which comute with all the matrices in imT . The key theorem here is

Schur's Lemma [C & R 27.3] . If F is algebraically closed (c.g. F = C)
and T and U: G - GL(n, ;i) are irreducible representations of G , and
S € GL(n, F) is such that T(g)sS = SU(g) for all ge G, then £ =0

if TAU and S =¢I for same §eF if T=U,
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From this we deduce directly that if T : G - GL(n, g) is a
representation of G , and QF has been referred to a suitable basis
so that T appears as the direct sum of irreduciblerepresentations in such
a way that equivalent ones are adjacent and actually equal, then if
S e GL(n,‘g) comnutes with all the elements in im T then S is a block
matrix, all non-diagonal blocks being zero, one diagonal block corresponding
to each equivalence class.of equivalent components and each of these blocks
being itself a block matrix, the size of the blocks being the size of the

corresponding components and each block being a scalar matrix,

T
1
For example, if T is decomposed as ( Tl ) with Tl'% T2
Té
al I O
then S must be of the form i eI aI o a, b, c,d, e € C.
0 0 eI

The result holds also if we replaoce c by K, a splitting field for T.

If nom T and T' are inequivalent irreducible representations of
G over Q » then since their irreducible components over L are also
inequivalent, the only matrix S such that T(g)8 = 8T7'(g) for all
g € G is the zero matrix. Consequently if T is any representation of
G into GL(n,.g) and we choose a basis for gn so that T appears as
the direct sum T = Tl @ .. B Tk of irreducible representations arranged
80 that equivalent ones are adjecent and equal, then S must be a block
matrix, zero off the diagonal blocks, with one diagonal block corresponding
to each class of equivalent components, this block being itself a block

matrix, the blocks being of the size of the appropriate Ti and commuting

with it,
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For example, if T is decanposed as T

with T, # T, then £ must be of the form

1
S S 0 .
1 2 8; Tl(g) = Tl(g) 8, for ge G l<igh
S S 0
3 I S5 Tz(g) = T2(g) S5 for ge G ,
0 0 S
5

We must now, therefore, consider what can commute with a representation
T of G which is irreducible over a. To do this, we extend our field
to X, a.minimal splitting field for T, and then express T as the
. o3 K/
direct sum Tl D oo @ ‘I‘k with 'I‘i = Tl where o, € T( 2). Let us

suppose first that the Ti are all inequivalent, Then the only matrices

T, (&)
which can commute with . for all ge G are

7, (&)

of the form .- and this matrix comes from a

v,
rational one when referred to the original basis if and only if )\i = 7\11 .
If the Ti are not all inequivalent they are equivalent in classes of

H components where 4 is called the Schur index of T [C & R §70].

However, a matrix like the one above will still commute with T . If we



12,

arrange the Ti to put equivalent ones adjacent (to do this we must of
course also rearrange TI'(K/9)) then if S commutes with T(g) for all

g8 € G, it must be a block matrix, zero off the diagonal blocks, of which
there is one for each equivalence class, Each diagonal block is itself

a block matrix, of size corresponding to the Ti s each diegonal block

of which is a multiple of the identity and each off-diagonal block a matrix
S;; such that Sy 3 T,(8) = Tj(g) S;; for each ge G . Since Ty, T

are irreducible, Sij is unique up to constant multiples.

J

Let us look at the special case vhere [K: 9l =2, K \f:'l'\{' , and the
Schur index is also 2. An example of this is G = EB » which is given in
C &R p.470, and worked out in detail below ($3.4). I‘(K/g) then has two
elements, the non-irivial one corresponding to complex conjugation, Ve

vrite the revresentation as T =T, @ T, . Then there is a matrix

1771
J € GL(n, K) such that JT, = TlJ . So 3'551 = Tll'l‘ , which gives
3JT1 = 3@1.7 = leJ o Since 'I‘l is irreducible over ¢, we must
have JJ= kI for some k€& K. Now let J = 3 +13,, 3, J, real
k=K +ik, , K, k, € R . Then (J - iJz)(Jl + iJ2) =i +1k,T .
2 .2 _
50 Jl + J2 = xlI and -Jle + J1J2 = KzI s 80 by Lemme 0,2.2 Ky = 0

Now if T is irreducible over R, then Ky < 0, as the following

argument shows. Repeat the above construction, replacing a3 by R and
X by C . Then by multiplying J by l//lxll we may assume JJ = + I,
“le shall show JJ =-I ,

Suppose JJ = I, Define ¢ : VoV by ¢lV1 : V=V, has matrix

J, ¢lv2 : V, >V, has matrix J , and extend linearly to V. If v hes

real coordinates, v=v, +%v, , v, €V, and ¢(v) = vy +3Jv

1 1 1 1 y which

1
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also has real coordinates ¢2lvi =3J=1, ¢21v2 =33=T=1, so

¢2 =1, Then ¢ has eigenvalues + 1. Suppose now that ¢ has an
eilgenvalue e(= * 1) corresponding to the eigenvector v s Vhich can
be chosen with real coordinates ¢(v) = ev . Now T 1is irreducible
over R, so T(g)v span V, and ¢T(g)= T(g)¢ by definition of ¢.
So ¢(v,) = ev, form a basis for R eand ¢ = 4 id. But this is
impossible as ¢(vl) =V, anl V, NV, = {0} . This proves that
Ji=-1, oOf course, if we wish to keep J € GL(n, X) we must replace

Kl-K.

It follows that the only matrices which can commute with T(g) are of

AL vJ
the form with JJ= kI, and such a matrix will come from
£J ul

a rational one when referred to the original basis for gn if and only

if p=AXx , €=y, Notice that by lemma 0,2.3

AL vJ —
det | _ _ = det AAT = vvJJ)
vJ Al

m
= det (AX~xvV)I = (ARekvV) vwhere n=2m .,
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§0.5 Bieberbach Theorems

The principal reference for this section is Wolf [16] Chapter 3.

Let E(n) be the Buclidean group for real n-dimensional space. Then
E(n) 1is the semi-direct product O0(n).T(n) where O0(n) is the
orthogonal group and T(n) the translation group for n-dimensional space,
Of course T(n) 5‘3? . A closed subgroup I of E(n) is called
uniform if %(n)/T is compact. If a closed subgroup T of E(n) acts
on EF in the usual way, the orbit space, ‘gn/T, with the quotient
topology, is a compact manifold if and only if I is a discrete, uniform,
tcrsion free subgroup of E(n), and alllcompact flat manifolds are obtained
in this way. The group T , wvhich is the fundamental group of the
quotient manifold, is often called the crystallographic or Bieberbach group
of the menifold, We shall use the following three theorems of Bieberbach,

Theorem 0,5.1 If T CE(n) is a crystallographic group then

A=TNT(n) is a normal subgroup of finite index in T , and any minimal
set of generators of A is a vector space basis of EP relative to which

the 0(n) components of the elements of I' have all entries integral
cy

(-

c.f. Wolf [16] 3.2.1.

Theorem 0.5,2 Any isomorphism f ¢ T+ 2 of crystallographic subgroups

of Z(n) is of the form y-a'ByB-l for some affine transformation

B:R"-R", s

Lt

Theorem 0,5.3 There are only finitely many isomorphism classes of

n-dimensional Bieberbach groups. c.f. Wolr [16] 3.2.2. i
Note In the first thecrem above we must be careful to notice that

the 0(n) components of the elements of I need not be orthogonal when
referred to the new basis. For example, one of the 3-dimensional flat

manifolds given in Wolf [16] 3.5.5 is given by quotienting the 3-torus by
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the group generated by the affine transformation

"1 0 O\E + 1/3\
X ~> o 0 - j 0 , & group of order 3 , and the matrix
0 1 - 0

&iven is no longer orthogonal, nor can it be replaced by onc which is.
0 1 O

For essentially the only possibility for such a matrix is 0 o0 1

1 0 O
o 1 o a
and the transformation x ~> 0 1 |2 [y is of period 3
1 0 0 c
;0
only if a +b +¢ = ne Z in which case[ -a is mapped to
.-a ~b

-n / 0

which is not permitted as the

1

®

8]

1

©

]
o O B

-8a~b . -a-b

condition for T to be torsion free is oquivalent to T/A acting on the
torus without fixed points, c¢.f. ¥olf [16] 3.1.3 (i1).

“ere it not for this fact, much of this work would become trivial, as
the only orthogonal matrices with integer coefficicents are monomial
matrices with all the non-zero elements equal to + 1 .,

We write A for TNT™n), F for T/A, w ¢t T » F for the natural
projection and ¥ for gn/r ="£n/F . Note that F 4is isomorphic to the
linear holonomy group of M (c.f, Wolf [16] 3.4.6). e then have an
exact sequence

0 -« A>T 5 F - 0

which we call the exact sequence associated with I,
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If we refer En to the basis given by Theorem 0.5,1 then the
group A is simply translated by the elements of the integral lattice
‘%n , and En/A is the usual flat torus :.En . If B is an affine
automorphism : ‘Ij..n - Bn then we may write f =B + b where B is a
linear map, b an n-vector, and the equation mecans fx = Bx +b for all

EERn. If aeA, €T, thenwriting a =1 +2a,y =0+ ¢ we have

2 € En and C € GL(n, E,) when referred to the above basis,

vy = (C+ )T +a)0 46 e)=T+CneA. ¢eF canbe written
as C+¢c vhere y € 1r-1(¢) and ¢ € En/zn is the projection of ¢ .

So the left-action of F on A induced by conjugationdby I on A
induces a representationof ¥, T ¢ F - 6L(n, g) given by T¢p =C .,
Write ¢ =im T .

Since the elements of F other than 1 act on gn without fixed
points, an element ¢ € F, ¢ #1 , such that y =C + ¢ € 1r-l(¢), must
have the property that Cx + ¢ #x forall x € B‘n . So (C=-I)x#-c.
But this says that € - I is singular, otherwise the eguation (C—-I)_J_:_ ==c
would have a solution, and go 1 is an eigenvalue of C and -c 1is not
in the image of C - I for any choice of y € 1r-1(¢) .

The affine automorphism p above projects to an automorphism of N if
the map 7y ~~> ﬁyﬁnl , €T, maps T onto itself; in other words if
fret=T .

Since A is a characteristic subgroup of I we must have BA ﬁ-l = A
which is truc if and only if B e GL(n, 2). Then we must have that

-1 -1

BCB~ € & foreach Ced, or B&B =%,
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Chapter 1 - Characterization Theorem - commenced

§1.1 First reduction

We can now proceed with our analysis of which flat manifolds support
Anosov diffeomorphisms. Let X" be the n-dimensional flat manifold
associated with the exact sequence 0 -5 A~-»T - F -0 and let
T : F - GL(n, g) be the representation of F described in §0.5.

Let B : En—»‘l\i'n be an affine automorphism of En which projects to an
eautomorphism of M ., ¥rite, es before, f =B +b , This automorphism
will be an Anosov diffeomorphism of M if the eigenvalues of B are
all different from one in absolute value., An Anosov diffeomorphism

obtained in this way will be called an Anosov automorphism of M .

If p satisfies the weaker condition that none of the eigenvalues of B

are roots of unity, we shall call B an ergodic automorphism of M .

(c.fo Arnold and Avez [1]).

Theorem 1,1,1 If M is a flat manifold, then a necessary condition for

M to support an Anosov diffeomorphism is that it supports an ergodic

automorphism, a sufficient condition is that it support an Anosov

automorphism,
Proof Let ¢ : M> M be an Anosov diffeomorphism of M. Then

¢* : 1r1M-—> 1rlM is an isomorphism. 3But ﬂli‘i =T , and A is maximal
ebelian normal in T' with finite index, So ¢ A =4 (see Tolf [16]

342.9). Hence we can 1lift ¢ to @ : En __’zn and consider the induced

mep on homology $* : }I]_(gn) - Hl(g"n) . But Hl(gn) Egn ; 80 $* may be
represented by an clament S of GL(n, %). Now S defines an ergodic
automorphism of En’ e.f. Franks [9]. Since ¢ arises from a diffeomorphism
of M ,$F$-1 =T and so, since F dis finite, some power of S commutes
with each element in im T, Then by theorem 1.2.2 below, whose proof is

independent of this, M supports an ergodic automorphism.

The second part of the theorem is trivial, D
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§1.2 Second reduction

e shall now show that the condition that M should support an
Anosov automorphism depends only on the representation T . The proof
follows closely that of the main thcorem in Epstein and Shub [8] . The
same proof, with trivial modifications gives us a corresponding theorem
for ergodic automorphisms of I .

Theorem 1,2,1 A flat compact connected Riemannian manifold 1 of
dimension n associated with the exact sequence 0+ A>T +F >0 and
the represcntation T : F = GL(n, E) supports an Anosov automorphism S
if and only if there exists H € GL(n, E) with no eigenvalues of absolute
value cne vhich commutes with all elements of @ = im T ,

Note Yle are not saying that H =B ,

Theorem 1.,2.,2 If I is as in the precvious theorem then M supports an

ergodic automorphism B' if and only if there exists H' e GL(n,'g) with
no eilgenvalues which are roots of unity which commutes with all elements
of ¢ =4dm T .

We shall give a proof of Theorem 1,2.1 ; the proof of Theorem 1.2.2

;
is similar.

Proof Let us first assume that such a matrix cxists, and construct an

Anosov automorphism . We shall need

Lemma 1.2.3 If H 1is a matrix of the above type, then Hk is elso of
the above type for each integer k 2 1, end 3 integer k such that all
entries of HX - I are divisible vy |F| .

i

Proof This is a triviel conseguence of Lemma 0.2.1. ,

From now on k will be an integer with the above property.
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Je now look for a commutative diagram

where L = HklA . For, if one exists, since L and IF are
isomorphisms, f is an isoporphism by the 5-lemma, i.e. an automorphism
of T . Then by Thecrem 0.5.2, there is an affine transformation

B : En_)‘%n such that f£(y) =ﬁyﬁ~l for yel, and so ﬁI‘ﬁ-'l =T,
Thus pf projects to an automorphism of ! and we have only to prove that
it is Anosov, e shall prove that B = HX , which is of the correct

form,

Lomme 1.2.4  B|2” =L where A is identified with 2" .
Proof B=B+b = pfx = Bx+db for g:_eg_n

571 (px - b)

> x =
= plax -3ty
so 1 = BE a3y
if eeA,a=I+a 80 & = X + 8
and faf - x = BBl x-B"p +a)+b
= X + Ba

or f(a) =Bz since A=32 .

But f|A =1, A
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Now, since B|A =1L = HklA, and A contains a vector-space
basis for B.n , we can deduce thet B = Hk .

We must now show that such a commutative diagram exists.

Lemma 1,2,5 If ¢ : T—- A is a crossed homomorphism, then the

following diagram is commutative, with all maps homomorphisms.

0 » A % r B P o5 o

e I U

0-+A5I‘-1-Y)F—>0

where g(a) = ¢(a) +2 and £(y) =¢@Gl .

Proof e have to show that f is a homomorphism,
-1
But £(y8) = g(ys)ys= o(y) v #(8) ¥~ vs= #(¥) v ¢(8) 8 = £(y)£(s).

g 1s just fIA written in additive notation; the left-hand square
therefore commutes, To show that nf = IF1r =w , we show
nt(y) = x(y) or ﬂ'(f‘(y)y-l) = IF . Since the sequence 0 +A T —+F -0
is exact, this condition is equivalent to  f(y) y—l €eIm ( or
o(y) vy y—l = ¢(y) € A . But that is true by definition of ¢ . 7

We must now find such a crossed homomorphism . (Hk - 1)/|F| is the
matrix of a I'-module endomorphism of A , since Hk and I are, and it has
integer entries by definition of k . Therefore H - T e Hom ¥ (A, A)
is sent to zero in }{2(F, A) 1in the Hochschild - Serre exact sequence
(0.1.1) by Lemma 0,1.,2. By exactness, therefore, there is a crossed
homomorphism ¢ such that :/:IA = Hk -I; soif £(y) = ¢(y)y then

fIA = ¢r|A + I = Hk as required,



To prove the converse, we consider the matrix B associated with
the given Anosov automorphism B . This will satisfy all the requirements
for H except possibly that it may not commute with all the elements of

®. We have, however, B & B”1

=& and so the action of B merely permutes
the elements of & , But & 1is finite, and so there is an integer r > 0
such that B® induces the identity permutation on & , Then we can

take H = BT . . EQ
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§1.3 Applications

It is possible already at this stage to state some tangible consequences
of our results. An easy consequence of theorem 1,2.1 is the following.

Proposition 1,3.1 If M is the flat manifold associated with the exact

sequence 0 - A>T ->F -0 and ' is the manifold which covers M and
is associated with the exact sequence 0+ A - T'-» F'-> 0, where F' is
a subgroup of F , and if I supports an Anosov automorphism, then so does
N 0

Theorem 1,3.2 If M is a flat manifold of dimension n with linear holonony

group F , then there is a flat manifold ' of dimension 2n with linear
holonomy group F which supports an Anosov automorphism.

Proof Let A(F x F) be the diagonal subgroup of F x F and let

M = En X gn/A(F x ¥) with the obvious action, Then Ii' supports an Anosov

automorphism, For T!

(g) © o
A(F x F) - GL(2n, 'g) maps g X g ~> ( } so T' is just
o el
I I
T® T, This commutes with { non ) which is of the correct form to apply
In 2In
theorem 1,2.1, t’}

Corollary 1,3,3 Any finite group F is the linear holonomy group of a
flat manifold which supports an Anosov automorphism.

Proof This follows directly from theorem 1,3.2 and a theorem of
Auslander and Ruranishi [4] that any finite group F is the lincar holonomy
group of a flat manifold, [

Corollery 1,3.4 For each prime p there is a flat manifold of dimension

2p and linear holonomy group E'p which supports an Anosov automorphism,

=

-

Proof from theorem 1,3.2 and a theorem of Charlap [5] .
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Chapter 2 - Characterization Theorem = concluded

§2.1 Third reduction

The third reduction involves finding a criterion for the existence
of the matrix H given by theorem 1.2,1 in terms of the @ - irreducible
components of the representation T : F - GL(n, ,':",) . e find that the only
components that matter are those which occur with multiplicity one,
Theorem 2,1.1 M supports an Anosov automorphism if and only if each
Q-irreducible component of T of multiplicity one has commuting with it an
element X & GL(m, E) (m = dimension of component) with no eigenvalues of
absolute value one.

Theorem 2,1,2 M supports an ergodic automorphism if and only if each

g-—irreducible component of T of multiplicity one has commuting with it an
element X' & GL(m, ,%) with no eigenvalue a root of unity.
Lemma 2,1,3 The existence of such a K[K'] is equivalent to the existence
of K [K?'L] € GL(m, ,9,) whose characteristic polynomial has integer coefficients,
unit constant term and no zeros of absolute value one [a root of unity].
Proof We shall prove the Anosov case - the ergodic case is almost
identical.

If K exists, it will do for Kl .

Ir K1 exists, its rational canonical form R € GL(m, '%). R = P-lKlP
for some P € GL(m, g). Let h Dbe the product of

 the denominators of the clements in P and P o, Then by

lemma 0,2.1 there is an integer k > 1 such that h divides all the entries
of RS = I. Then R'; € GL(m, 2) and will do for K, !

Proof of theorem 2.1,1 (the proof of theorem 2.1.2 is similar)

Let us first suppome that 1! supports an Lnosov automorphism, so that

theorem 1.2.1 guarantees the existence of the matrix H ., e now change the
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becis of g? so that T splits up as Tl & ... & Tk

Q-irreducible for each i and with equivalent Ti identical and adjacent.

with T,
i

Then if some Ti occure with multiplicity one, then the new matrix
H' = P-lHI’, where P is the matrix of the new basis, will have a single

block corresponding to this T, and commuting with it. The characteristic

i
polynomial of this block will divide the characteristic polynomial of H ,
so this block will do for Ki in lemma 2.1.3.

Now let us suppose that we have the various matrices XK. e construct

the natrix H'. If some Ti has multiplicity one, put the corresponding

K in its appropriate place on the diagonal. If some Ti has multiplicity

two, put (I I) in the appropriate place. If sonme Ti has multiplicity
I 21
’ I I I
three, put ( I 2 21 in the appropriate place. If some Ti
I 2I 3T

has even higher multiplicity, we can use a sultable combination of these,

Then H e GL(n,‘E), comnutex with T referred to the basis P and has no
eigenvalues of absolute value one. To show this last fact, we nced only

check that the polynomials: x2 - 3 +1 and X - 6x° 4 5x = 1 have no

geros of absolute value one, The roots of the first are (3 + J%)/? and

the sum of the coefficients of the second is odd which is sufficient on account

of the entertaining

Lemma 2.1.4 A cubic polynomial, monic, with integer coefficients and unit

constant term has no zeros of absolute value one unless 1 or =1 is itself a
zZero, C]
Then if we write H" = PH'P.-l then, as in the proof of lemma 2.1,3

some power of H" will do for H and will guarantee the existence of an

L}
Anosov automorphism on M ., K
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§2.2 Fourth reduction

We can now assume that T is Q-irreducible. In 8§0.4 we discussed
which elements of GL(n,_g) comnuted with a g—irreducible representation
T : F - GL(n, g). Vhen we add the conditions that the matrix must be in
GL(n, g) and that its eigenvalues should not be of absolute value one (or
alternatively should not be roots of unity) we obtain

Theorem 2,2,1 If T : F - GL(n,‘g) is irreducible over Q , then the following

are equivalent
(1) there is in GL(n, 2) & matrix which commutes with im T and has no
eigenvalues of absolute value one
(ii) there is in GL(n, Z) & matrix which commutes with im T and has no
eigenvalues which are roots of unity
(1i1)T 4is reducible over R.
Proof (1) => (ii) is trivial.

(ii) => (4ii) Suppose that T is irreducible over R . We distinguish
3 cases,
Case 1 T 1is absolutely irreducible. Then, by Schur's lemma, the only
matrices commuting with it are scalar matrices., But det (AIn) = A" which
is + 1 only if A 1is a root of unity, and since A 1is an eigenvalue of
AIn we cannot allow this,
Case 2 T decomposes over C with Schur index one. Ir XK is a
minimal splitting field for T, then K is a complex quadratic extegsion of
Q .« Choosing a suitable basis for Kp, the matrix of T will be (01 ;1)

and, as the Schur index is one, Tl,l Tl . By Schur's lemma, the only
AL O

- )’

comnuting matrices which came from GL(n, Q) are of the form (
- 0 AT
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with A € K. But |A] = |X] and if the characteristic polynomial is in
gIX], monic, with unit constant term then |AX| =1, so A is on the unit
circle. But A € K, a quadratic extension of Q , so A is a root of unity,
but since it is an eigenvalue of the matrix, this is not permitted.

Case 3 T decomposes over C with Schur index two. Then if X is a
minimal splitting field for T , then once again X is a complex quadratic
extension of Q + Choosing a suitable basis for Kp, the matrix of T will

0

T
be { 1 _ }, with T, ~ Tl . Then, as we found in §0,4, a2 commuting matrix
0 T
1 AT vl -
which comes from GL(n, Q) must be of the form (;J XI) with JF = «I,

where k < 0 ., If its characteristic equation is in 'g[x], is monic, and has
fI fJ} =+1, s0o (A - V)
vJd Al

+ 1
(it cannot be = 1 as it is positive). Then [A] <1, so |A+X]< 2.

unit constant term, we must have det (

The characteristic polynomial is (x2 - (A +2)x +1)%, and since the zeros

of x2 - 2x + 1, x2 -x +1, x2 + 1, x2 +x+ 1, and x2 +2x +1 are all

roots of unity, a suitable matrix is not available., An example of this case

is given in §3.4.

(iii) = (i) If T dis reducible over R, let K be a minimal splitting

field whose intersection with R is non-trivial. Then K 1is not a complex
quadratic extension of 2, and so, as we sew in §0.3, there are in K algebraic
units none of whose conjugates (in the Galois sense) are on the unit circle.

Let A be such a unit and let {ai}i be the Galois group TI(K/Q). Then

a, o,
ix 1;1 are the conjugates of A. Write A, for A *. If now we choose a
c
i
10 1=Ty

then the block matrix with AiI in the diagonal blocks, and zero elsewhere will

basis for Kp so that T decomposes as the direct sum of T where T
commute with the image of T, it will come from GL(n, 2)» its characteristic
polynomial will be in Z[x] and will have a unit for its constant term and none
of its eigenvalues will be on the unit circle. It will thus satisfy the

conditions of Lemma 2,1.3. Ej
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§2.3 Final Theorem

Theorem 2.3.1 Let M be a flat manifold associated with the exact sequence

0 >A->T—-F-0 and the representation T : F - GL(n,'g). Then the
following conditions on ¥ are equivalent :

(i) M supports an Anosov diffeomorphism.

(ii) ¥ supports an ergodic automorphism.

(iii) Each g-irreducible component of T which occurs with multiplicity one
is reducible over R .

(iv) M supports an Anosov automorphism,

Proof (i) => (ii) see Theorem 1.1.1.

(ii) => (iii) a direct consequence of theorems 2.1.2 and 2,2,1

(iii) = (iv) a direct consequcnce of theorems 2.,1.1 and 2,2,1
(iv) => (1) trivial (see also theorem 1,1.1). by
Note Although we have proved here that every flat manifold which supports

an Anosov diffcomorphism also supports an Anosov automorphism, there is not,

as far as I know, any way of obtaining one directly from the other. It has been
conjectured that if f is an Anosov diffeomorphism on a torus, then the induced
map on homology is hyperbolic, but I have not heard of a proof. In order to
cons¥ruct a counterexample, it would bc necessary to go inlo at least four

dimensions, and attempt to construct an Anosov diffeomorphism whose induced map

0 0 0 =1

on homology was given by the matrix 1 0 0 3 whose charactewistic
0 1 O -3
0o 0 1 3

polynomial, xl+ - 3x3

on the unit circle,

+ 3x2 - 3x +1 , has tw roots, not roots of unity,
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Chapter 3 - Applications and Examples

83.1 Cyclic Linear Holonomy Group.

Let us examine in greater detail the case where the linear holonomy group
F 1is cyclic. The reprcsentation T : F - GL (n,‘g) is completely determined
once we specifly the imege of a generator of F ; let us call this matrix N,
The matrix N is similar to an orthogonal matrix, and is thereforc diagonalizable
over ‘g 3 the decomposition of T decpends only on the eigenvalues of N,
corresponding, in fact, to the decomposition of N over the appropriate field.
Thus the decomposition over Q, will be indicated by grouping each eigenvalue
6 of N with its conjugates under the action of r(g(e)/g). Since F is finite,
each 6 must be a primitive mth root of unity, for some m € gf , and its
conjugates will be the other primitive mth roots of unity. A Q-irreducible
subrepresentation having multiplicity one corresponds to the appropriate root
of unity being a simple eigenvalue of N , and irreducibility of this
representation over R corresponds to the root of unity being in 2 or a complex
quadratic extension of 2,~ So the condition given in Theorem 2.3,1 gives us the
following
Theorem 3.,1,1 If M is a flat manifold whose linear holonomy group F 1is cyclic
and T : F - GL (n, E) is the natural representation, and if N = T(g) where
g 1s a gencrator of F , then M supports an Anosov diffeomorphism if and only
if N has none of the following numbers as simple eigenvalues :
1, -1, i, ~i, o, w2, -w, e (where W = 1). Ry

It may be instructive to give an elementary proof of ii) => iii) in
Theorem 2,3,1 in this special case. Let us suppose therefore that N is as
above, § is a simple eigenvalue of N and H e GL(n, E) is a matrix which

commutes with N and has no eigenvalues which are roots of unity. e change
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basis to the columns of a non-singular matrix P , so that if

N'=PNP,nl =0 ,nl, = nl; =0 i#1. Since H commutes with
1

N, we have H' = P HP commutes with N' and so h:'l.l = a, hii = hil =0

Y

1 #£1. So a is an eigenvalue of H , Writing now PN' = NP and examining

the first column of the two matrices we obtain the equations

= - = S i
Py 0 i Bys Pyy s OF i (nij aije.) Psy 0. Since 6 is a simple
J=1 J=1

eigenvalue of N , there is a one-dimensional set of solutions for the p j1°
and any solution is therefore a multiple of one with entries in Q(G) . By
changing P by a constant, we can ensure that the entries in the first column

are themselves in Q(9) . Now PH' = HP, so Py @ = i hi:j Pjp » 50
j=1

choosing an i so that p, #0 we obtain a = i hijpjl/ Py, € q(e) .
J=1

But since a is an eigenvalue of H , it is an algebraic unit which is not a

root of unity and this is impossible if 6 is eny of 1, -1, 1, -i, w, 02,

-w, -’ . o
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83,2 Dimension less than 6

Theorem 3.1.1 gives us an easy check on the known results about the
existence of Anosov diffeomorphisms on flat manitolds of low dimension.

If n =1 +the condition of the theorem is trivially not satisfied, and §l
therefore does not support an Anosov diffeomorphism.

If n =2 the matrix N must have 1 occurring as an eigenvalue at least
once (see $0.5), and so twice, and N is the identity matrix. Thus no non-
trivial cyelic groups are possible, and so no others either by Prop l.3.1. ©So
the torus 2? is the only 2-dimensional flat manifold which supports an Anosov
diffeomorphism. In particular, the Klein bottle does not.

If n =3 the identity is still the only permissible matrix, and of the
10 three dimensional flat compact 3-manifolds listed in Wolf [16] p.122 only
the torus will support an Anosov diffeomorphism.

If n=14 we must still have 1's as eigenvalues of N, but it is now
possible to have two -1's also, F = 52 is thus a possibility. No other cyclic
group is possible., Aay other F would have to have all its elements of period
2 and wuld therefore be abelian. The matrices of the representation could then
be simultaneously diagonalized and would each then have two 1's and two -1's
(or four 1's) on the diagonal, and sinece (1, 1, -1, -1) with (1, -1, 1, -1)
would give four distipct subrepresentations and (1, 1, -1, -1) with
(-1, -1, 1, 1) would necessitate having (-1, =1, =1, =1) as well, no

groups larger than 'EZ are possible, Although the group N must be similar to

1

1 -1 there is in fact more than one possibility. The

-1

respective quotients of Th by the actions of the affine transformations
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1 1 1 1 %
1 0 1 1 0

-1 + 0 and 1 + 0

- 0 -1 0

are not homeomorphic as the first has first homology group
Hl(M; E) =2 x2%ZxZ,x 2, whereas the second has H].(M'; E) =Zx2Zx2,
(cf. Wolf [16] p.122) . The first of these was the example given by
Shub [13],
If n =5, similar reasoning gives us three possibilities. In
addition to E?, we may have 2?[%2 » where the generator of Z is represent-
ed by a matrix N which has either three 1's and two ~1's or two 1's and
three ~1's. Again there is more than one possibility for M in each case.

It should be noted that any manifold arising in the latter case will be

non~orientable.
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§3.3 Dimension 6

Then the dimension reaches six, there arises suddenly a great
wealth of examples., To claessify them all would be a very long task - I
shall give a representative semple. Notice first that Theorem 1.3.2 taken
in conjunction with $3.5 of ¥olf [16] gives already ten examples, all
orientable. Of special interest is the one obtained from Wolf's 96 as
it is the first known cxample of a flat manifold with first Betti number
zero which supports an Anosov diffeomorphism,

A non-orientable example is formed by taking N with three 1's and
three -1's for eigenvalues,

If F is cyclic its order must be 2, 3, 4, 5, 6, 8, 10 or 12, The

appropriate generators for 5, 8, 10 and 12 are

1 e o v o s r s : A /1/8‘\
I, . . A R .
S | . . | .
R . + . 0 R * .
AR B | . A /
e e e .1 - 1 /

- . - e e e @ . a/
A Y14 s R / 1/12\\
1. ... . A .
. | ) B, | .
e« « 1 . . 1 + . and i + + 1 . . . + .
A B | . e e o1 .1 .
. . A T

respectively.
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The only non-abelian example in dimension 6 which I have been sble to find

is %8 s 8enerated by

, 717\ . A
// l hd - . . o“\‘ ! l/l" \ ! -l » . . . - } /l/l“\
\ / |
» . "1 Y - . . { . - "1 . . - ’1?
i - 1
. l * . L] L] - 2 a nd . 1 Y . . . + ;
. . . 1 . . . . . . -1 . . -
. . . . « =1 - N . e o =1 .
. . . . 1 . % [} [ . [ . l ' =

Here again, the first Betti number, which is easily computed as the
dimension of the intersection of the eigenspaces corresponding to eigenvalue
1, is zero.

Note The above remark gives a proof of the curious

Proposition 3,3,1 No flat manifold with first Betti number one supports

an Anosov diffeomorphism .

For the one-dimensional subspace would give rise to a one-dimensional

l“"‘

sub-representation of multiplicity one defined over Q. i
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83, Example of Schur index 2

We give here in detail the example of Schur index two from
Curtis and Reiner [6] p.470 (see §0.4) and illustrate theorem 2.2.1
ii) => 1ii) Case 3 in this case.
Suppose F =-§8’ the quaternion group and T has a sub-representation

T' : F - GL(4, Q) of multiplicity one given by T'(1) = I, T'(-1) =~ I

//. = /’ e . =1 .
™3 =/1 . . . ™D =] . . . -1
e o 1 1 . « e
.« e« =1 . 1 «

R T
™) = 1. .
1. . .

We decompose T' into its two absolutely irreducible components,

T1 @ T2 s by changing coordinates to the columns of

-1 +1i 1-13 -1 - i 1+14
1+ 1 14+1i 1 -1 1 -4
-1 - i 1 +13 -1 + 1 1-1 ¢
REE l-1 l14+13 R
.y o (1 Sy iy (-1
Then (1) = (T ) m@-={; ) @ ={ )
= {—i \ -i\‘ =1\
LW = Ty W=7 - (1 J
(=L

which arc similar using the matrix
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This lets us write down the most general commuting matrix as, in the

new coordinates

a + bl . . c + di
. a +bi =~c -di . which is
. c - di a - bi .
| -¢ + di . . a - bi
/’a -c b -d
c a -d -b
b d a -C
-b c a

2
in the o0ld coordinates, Its determinant is (a2 + b2 + 02 + d2) , which

is one if and only if only one of a, b, ¢, d is non-zero. But then

it is monomial and so has eigenvalues which are roots of unity.
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§3.5 Dimensions of Expanding and Contracting Manifolds

Our methods here give us a certain amount of information about the
possible dimensions of the stable and unstable manifolds of an Anosov
automorphism of a flat manifold M . The dimension of the unstable manifiolds
will simply be the number of eigenvalues of the matrix which are larger than
one in absolute value. Although in our proofs it has been neccssary on
several occasions to take powers of the matirix in hand, this will not affect
these dimensions. By examining the proof of the theorem 2,1.1 it is easy
to see that the distinct subrepresentations over ? behave independently
and so, in particular, there must be at least onec stable dimension and one
unstable dimension for each of them., Also, if we have an absolutely
irreducible subrepresentation of sige r , then the eigenvalues corresponding
to it must all be equal, and so, in particular, must all be less than one,
or all greater than one, in absolute value., If, therefore, the splitting
is 1, n -1 then all subreprcsentations must be of size one, and must all
be equal, so that the group is abelian and each matrix in its image has all
its eigenvalues equal, But each such matrix must have at lecast one 1 as
eigenvalue, and so is the identity, and the manifold is a torus. In the
non-toral four-dimensional examples, therefore, the splitting must be 2, 2
and in thc non-toral five-dimensional examples it must be 2, 3 or 3, 2,

In the six-dimensional cxamples some of the manifolds with F = 52 will

admit a 2, 4 splitting, but all the larger groups demand a 3, 3 splitting.
The ge X ge case, for example, has 3 distinet subrcpresentations, the

@8 case has only two, but one of them is two-dimensional, and the various

cyclic groups, although they have only two distinct subrepresentations over

E » must have a 2, 2 splitting on the non-trivial one becausc of the paucity



of algebraic units in the appropriate ficld. This discussion, of
course, only refers to Anosov automorphisms, but in view of thec note

in §2,3, we make the following

Conjecture 3.5,1 The splittings which are possible for Anosov

diffeomorphisms are the same as those for Anosov automorphisms.
See Newhouse [11] for a detailed study of the case where the

)""7‘

splitting is 1, n - 1, which he calls codimension one.

37.
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£3,6 Zeta functions

The concept of the zeta function of a diffeomorphism, as developed by
Artin and iazur [3] is discussed in Smale [14]. If £ : M =L isa
diffeomorphism and all positive powers ' of f have only finitely many
fixed points (Nﬁ, say) then the i?ta function of f is defined as the
formal power series £(t) = exp EE: % N £ . "illiams [15] has

m=1
obtained a formula for the zeta function of an Anosov diffeomorphism, This
formula has two distinct forms, denmending on whether the unstable part, Eu,
of the tangent bundle is orientcble or not. Now the zeta function of f is
the same as that of f-l, as the formula above shows, and if M is
non-orientable then E° for £ , and E° for £ T (which is just E° for f),
will have the property that one is orientable and the other is not.
Williams suggested to me, therefore, that as I had an example of a
non~orientable manifold which supported an Anosov diffeomorphism, I might
calculate the zeta function using both fomulae and discover what
algebraic fact their equality was equivalent to.

The example I shall use then is a quotient of E? by ‘§2 » where the

action of ge on T5 is via the affine transformation

e R 70

B = / e =1 . . . + 0
e o =1 . . 0

e .o 1, 3

B 0
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The Anosov automorphism I use is

PR
W N
L ]

*

+
o o o o

/ 2 41 0 ., . /0
whose inverse is ;=1 2 -1 . . + 0 .
( 011 . . 0
e« . 5 -2 0
\\ . « . =21 0

Williams' formulae are obtained as follows:

Let £, ¢ Hi(M, E) - Hi(M’ R) be the nap on homology induced by
M . Now Hi(N, R) = B‘m for some m depending on i, and f*i is therefore
& linear map. Let X5 be the characteristic polynomial of f*i’ and let
Pi(t) = (-t)m xi(l/t). Let ¥ be the orientable double-cover of 1.
Then Hi(ﬂ, ;3‘) = H: ® H: where @, has eigenvalue + 1 on H: and
eigenvalue -1 on H; « Let ;Ei(t) be the characteristic polynomial
of ?*iIH; and ?i(t) = (-t)m' xi(l/t) where n' is the dimension of
H; . Then if a) E" is orientable and Df preserves orientation,

u

u
b) E is orientable and Df reverses orientation or c) T is

non-orientablc then

(= o) ﬁ HONS b)ﬁ pre(t) o) ﬁ pet)
i=0 i=0 i=0

where €(i) = (-)rert



40,

In our example the zcta-function of f is obtained by using forrzula
(¢) and that if £t by using formula (a). The unstable dimension for f
is 2 and that for £ s 3 (this is becausc A - el 5A =1 has

two zeros in 10,1[ ) so the formula for {p 1is

P, P_P P F P
Pll’ 7 that of ¢ -1 is Q2 L .
072, f ?lii‘}i‘B

Now for f the induced maps on homology are given by the matrices

AN

2 1 0 0 21 04 2 0 5 1 0
(1)(12\1210 1 21 2 2 ¢
’25)’0110’011022’121 ’
0 60 0 1 L, 2 0105 O 0 1 1
2 4 2 5100
0 2 2 05 5

and for f-l the induced maps on H arc given by the matrices

. 10 -5 0 -4 2 0 :
2 10 -5 10 -5 2 -4 2 e 228
6,1 -1 2 2], 0 5 5 0 2 -2 , ,
0-1 2 -1
0 -1 1 4 2 0 2 -1 0 0 0 -1 1
2 o 2 -1 2 -
0 2 -2 0 -1 1

and the zeta-function works out in both cases to be

(A2 = 6 + DO - 361° 4+ 206A = 37807 + 2292° - 302 + 1)
(A - J,)(AL* -+ 1102 - 6 + 1)(A3 - 6% 45 - 1)

28 2ol 4 1238 -~ 165007 4 27030 - 178203 4 13007 - 361 + 1
A8 1l . 78 22660 + 20mk - mar + 5@ - 12a 4 1

or

The algebraic fact which causes these two to have the same formula is
sinply that the inverse of a matrix may be computed by evalunting the

deteruinants of the minors,
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