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ABSTRACT -

. A
~l

¢
This work has as its object the study of a rather

neslected objéct, the Lie ring. The general method and type
of problem tackled are suggested by analogy with the theory
of infinite groups.
A recurring theme is the study of residual properties
( mainly residual finiteness ) of Lie rings, with particular
emphasis on soluble rings. However this by no meané presents
the whole picture. Relate? problems in the field of ILie
algebras are tackled in the first few chapters, chapters 3, 6,
and 7 are not concerned with residual properties at all, and
throughout many results are presented for lie rings which are
ﬂot hecessarily sbluble. lany of the results ( mainly in the
second half ) will alsoc hold in geneial nonassociative rings
with suitable reétrictions impoced, but presentation in this
form would make many results which eppear natural in the
present context seem technical and obscure. Occasional
reference is made to general nonassociative rings however.
éhapter 1 sets up the notation and a few of the most
useful technical tools that are used in the sequel.
Chapters 2 and 3 are cvoncerned with Fertain classes of
finitely generated soluble Lie ring ( and Lie algebras ).
The approach is through associative ring theory using the
universal enveloping ring., Chapter 2 looks at maximal
‘conditions and residual finiteness while chapter 3 examires
the Frattini theory of these lie rings,
Chapter 4 exanines the residual properties of certain

classes of Lie rings, notably nilpotent lLie rings and Lie



rings of matrices over iptegral domains.

Chapter 5 conside;s Iie rings whose underlying'abelian
groups satisfy certain rank restrictions. Necessary and
sufficient 6onditions for resid.al finiteness are established
for these rings.

In chapter 6 we examine which properties when shared
by all the abelian subrings of a soluble Lie ring are inherited
by the ring itself.

| Chapter 7 gives a characterization of certain Lie rings

which have the subideal intersection property ( i,e., an

arbitrary intersection of subideals is once again a subideal ).
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NOTATION

oy

'l'he-following abbreviations and notation are used throughout

without further definition

f.z. ' finitely generated

iff _ if and only if

L the cardinality of 1L

Z the ring of integers

@ the field of rationals

Cn the cyclic group of order n
Cp'.o "~ the Prufe;' 7 - g'roup

If R is a commtative ringand A and B are R - modules :

HomR(A . B). the ring of R -‘ homomorphisms from
A to B

End.R(A) the ring of R - endomorphis‘,msy of A

Mn(R) the full ring.of nX n matrices
over R

If R = Z then we write Hom(A , B) and End(A) instead

“of Hom (A, B) and End , (4) .
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CHAPTTR 1 PRELTMINARTES

P
-
Y

The notation of this thesis is nonstandard, but is in-
fluenced by that used by Stewart [31] and Amayo[4] for Lie
algebras, and also by analogy with infinite group theory.
Since no sﬁi’cable reference exists basic definitions have

been included for completeness.

§ 1.1 BASIC DEFINITIONS

A Lie ring is au abelian group ( L , + ) with a bilinear
" multiplication [ ,]:LXL —>L satisfying
(a) fa, a] = 0
(v) [a, .[b,c]] + [c, [a,b]] + [b, [c,an=0
foralla,b, c € L. '
Note that (a) implies that [a, b) = - [b , a] .
A Lie subring of L is an additive subgroup of L, which is
closed under multiplication. We write H L if H is a Lie
. subring ( not necessarily proper ) of L. If X& L then{X»
is the subring generated by X. If A, BS L we define [A, B]

addtwe subgroun
to be the ,swbming generated by all products (=, b}, 2 € A,

b € B.

A subring H of L is an ideal of L, denoted by HS L, if
[L,x] € m

A subring H € L is an ascendant subring if there exists an

ordinal number O and a collection {H.‘ ]os o QV'} of subrings

of L such that Ho =H, Hge= L and HHe<Q Hgy, for all

O¢f® €0 and H, = U H for limit ordinals A . Ve
A ol<A <



write HQ”L.

If I{<ﬂnI; for a finite ordinal n we say H is a subideal
of L and write H si L. If it is wished to emphasise the role
of the integer n we refer to H a3 an n-step subideal of L.
EXAPLES
(1) #n abelian group A with triviél multiplication is a Lie ring

Such fings are said to be abelian, Clearly an abelian Lie

ring with any given additive group exists.

(2) If R is an associative ring, then R can be made into a Lie
. 'ring by.defining [a ’ b] = ab - ba . We denote R
with the new multiplication by RL o It should be noted
that Lie subrings of RL need not arise from associative
subrings of R . .In view of this example theorems about

lie rings may also be considered theorems a£out associative

rings.

(3) Bvery Lie algebra ( over any field ) can be considered as

a Jie ring by restricting scalsr multiplication to the

inteéers. Lie subalgebras of such a lLie ring are Lie sub-

rings, but the conversé.need not be true,

A Tie rincg homomorphism \P:I.-—)Ii is an abelian sroup

homomorphism such that ‘
Pll2,1]) -[%=), P)] | a,v€ s
Standard facts about homomorphisms, quotients, and direct sums
are valid ( e¢.f Higgins ([17] ).
If L, M are Lie rings we denote their underlying abelian

* *
groups by L and M . A map © : L—»M is called a *-homomorphism

) . o * *
if it is an abelian group homomorphism I =—»1M , Clearly if

E) is a Lie homomorphism it is a *~-homomorphism, but the converse



i

. *
need not hold. If (P is a Lie homomorphism we write tP for

‘P com,l Jered as a *-homomornhl

By abuse of language we do noi dlstlnmush L and the a.bella.n

Lie ring with underlying group L.

If H€L then the index of H in L denoted |L : I{

the index of I in L. Clearly if HQ L then |L : Hl = {1/ H|.
Ve say L is a torsion ( respectively torsion free, divisible

reduced ) ring according as L* has these properties ( ¢.f Fuchs [I0]

for definitions ). Similarly L is a p-ring for some prime p

if L* is a p—lg’roup.

A lie ring L is said to be of finite exvponent if there exists

n € Z such that nL = 0. Clearly if L is of finite exponent
then it is torsion.
If X &= L then the centraliser of X in L is

ey® - fyen | [x,y] -o}.

C;(X) is a subring of L and if X< L then ()< L.

The centre of L is

z,(1) =§x€1|[t,x] =o}

( that is 2,(1) = CL(L) ).

§ 1.2 CLASSES OF LIE RINGS AMD CLOSURS OPWRATIORS

By a class of Lie rin~vg we shall mean a class .% in the

usual sense whose elements are Lie rings with the further
properties

(1) o € X

(2) L. €% anda 8 ' L implies Ke%
where O denotes the trivial Lie ring.

The symbols X , g will be reserved for arbitrary classes



- of Lie rings. Lie rings belonging to a class 3€ will often be
called X -rings.

- If x is a class of Lie rings we definé .a.m ne: c.?-L-a:ss; 3‘.* .
by; L€ 3{” irr 1 e X ( where L' is here being con;-
sidered as an abelian Lic ring ).

A ( noncommutative and nonassociative ) binary opcration on
cla.sées of-Lie rings is defined as follows ; if % .and "g,
are two classes,‘ then let 3( be the class consisting of Lie
rings L having an ideal H such that H € X anda L/ 1 € y "

Ve often refer to such rings as % by y rings. The defin-

ition can be extended to products of n classes by defining

x‘.oox“ = (x. uoox )x . We ma,yput all x' '—'%
n-t n .

n

and denote the result by x .

(0) will denote the class of trivial Lie rings. Other

frequently encountered classes are

abelian Lie rings

finitely generated lie rings

torsion Lie ringé

torsion free Lie rings

finite Iie rings

Lie rings of finite exponent

cm QNG

cyclic ( i.e. one generator ) Lie rirgs ( note C < U‘ ).

A closure operation A assigns to each class another class

A x in such a way that for all classes 3‘. ’ y the
following axioms hold

(2)  a(0) = (o)

(v) X ¢ 1 X

() aaX) = 2 X

(a) 3(5‘% implies A J% $ Au.



( where € denotes ordinary class inclusion ).

‘Ax is called the A-closure of x and 35. is s2id to
be A-closed if K& = AKX .

It is often easier to definc a closure operation A by spec-
ifying which classes are A-closed., Suppose d is a ccilectien.
of classes such that (0) eaf and Qf is closed under arbitrary
intersections. Then we can define for each class x the class

X - N{Yed| X< Y}
( where the empty intersection is the universal class ). It is
easily éeen tﬁat A is a closure operation and that 1 is
A—ciosed iff %G ef . Conversely if Ais a closure operation
the set ‘d of all A-closed classes contaiﬁs (0), is closed
~under arbitrary intersections and t.ietermines A,

Standard examples of closure operations are. s,1,Q,B,
L and R which are defined as follows ; x ‘is S-closed
( I-closed, Q-closed ) if every subring ( ideal, quotient ) of
an 3€ ring is always an x ring 3 36 is E=closed if every
extension of an x ring by an 3& ring is an X ring
( equivalently if £ = 361 ) ; L€ e JETY, every
finite su'bsei_; of L is contained in an x subring of L. Lx
is the class of locally X rings ; L € Rx iff for each
x € L, x £ 0, there exists T« L such that x ¢ I ana
L / I ex . R% iskthe class of residually x rings.

Suppose A , B are closure operations. Then the product
AB defined by AB;x = A(B e 3 ). need not be a closure
- operation ( the third axiom need not hold ). Define {A , B}
to be the closure' operation whose closed classes are those
classes % which are both A-closed and B-closed., If we

partially order operations on classesby writing A € B iff
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f

Ax € 3X for any class t3 , then {A . Bk is the small-
. est closure operation greater than both A and E. It is easy to
"seé”{h'at' “A.'Bv = {Ah ', B} - ( ahd hence is a closure operation )

iff BA € AB .
$ 1.3  DERIVATIONS

Amap d : L=>L is called a derivation of L if it is a

*~homomorphism and for all x , y € L
A fx,y]) = [a@,v] + [z, el

The set of all derivations of L forms a Lie ring under the

usual map operations with Lie product definéd by
[a,,4,] = 44, - &4,

We denote this Lie ring by Der(L).

If x€ L themap ad : L—>L ( called the 2djoint
map ) defined by adx(y) = [y x] , v €L, isaderivation

of L. We call such derivations innei derivations and denote the

collection of all of them by Inn(L). Inn(L) <3 Der(L) and
the map L =P Der(L) defined by xk—>ad_ is a Lie homomorphisn
with kernel 2 (L) and image Inn(L) so we have

Inm(L) = 1/ 32,(1)

The following innocuous looking lemmas prove very uscful.

LEINA  1.3.1

(a) ~Der(L) <€ 'End(L*)L
That is Der(i) is a subring of the Lie ring formed from the
associative ring of endomorphisms of its underlying additive
group.

(b) If LE€UYU] then Der(r) = End(L*)L



PROOF

Derivations are ¥*-homomorphisms. - o a

IRMA _1.3.2
If IAQ L then L/ ‘CL(I) < Dex(I).
PROOF
For any x € L +the map "e‘:I—’kI defined by
('P,,(y) = Ly, x] y €1
is a derivation of I ( ‘@, = adxl 1 ). The map ¥ : L —%Dder(1)
given by x P—’P"P,‘ is a Lie homomorphism with kernel CL(I) and

the result follows. : [ i}

COROLLARY 1.3.3

It 1L and T€F then L/ C (1) € F L

An ideal T of L is said to be characteristic if it is

invariant under derivations of L, We write I ch L.
Two important properties of characteristic ideals are that
IchK<d L implies I QL
and IchKchlL implies IchlL
Recall that ’a subgroup B of an abelian group A is called
fully invariant if it is sent into itself by every endomorphism

of A,

* .
If H€ L and H is a fully invariant subgroup of L
then H ch L,

PROCF

If 4 is a derivation of L then d is a *-homomorphism ané



the result follows. ' o

ﬁXAMPLES
(1) write T (L) for the torsion subgroup of L , then
T (L). ch L.

(2) Write O (L) for the divisible subgroup of L , then

D (L) ch I

(3) nLchLforall n €Z .

(4) Let L[n] be the set of all x € L such that nx =0
where n €Z , then L[n] chb L.

(5) et I be the set of all x € I such that % = 0
for some positive integer k, where p is a prime. Then
Lp ch L. We call Lp the 2- component of L. Yote that

T kLiju 1l

and T (L) DL
P P

where p ranges over

all primes.

If Lisaliering, I<dL, K €L such that T +K = I,

IN X = 0 thenwe say L is a split extension of I by K. As

* * *
ebelian groups we have L = I @ X and each k€ K

induces a derivation d(k)

adkl I of I, and we obtain a
Lie homomorphism d : K =—>»Der(I) given by k=»d(k).
Further if x, y€ I and k, 1 € K-
[x+k,;,r +1] = ([x, y] + xd(1) - ya(x) )

| + [x,1] ceeee(1)
Conversely given any Lie rings I , K and a Lie homomorphism
d ¢+ K=—»Der(I), then (1) can be used to define a Lie product
on I*Q K* making it into a Lie ring. Consequently split
extensions correspond to such homomorphisms and this provides

us with a way of constructing split extensions.



§ 1.4  SIRIES

.

Tet 2. be a totally ordered set and L a Lie ring. A series

of L of type Z is a set

s ={(I\°.,V,.) la.ez-')/\ vrsL }

o
such that

(a) Vc' < Ad"
(v) T <0  implies A-c € Ag-
(¢) LN{o} = }e)z (/\,.\Vr)
" The Lie rings Ag/Vg are called the factors of the
series. The sets Ad'\\,ﬁ' are called the layers of the
series., A series with each factor in a class % is called an

XK ceries. Note that each O £ x 1lies in a unique layer.

A series is said to be invariant ( or an ideal serics )

if Ar'vf <@ L for all @ ; and central if [Ar.L] S\/a.
for all @ ; and characteristic if Ar R Vr ch L for all & .

if 8 = {(/\r,\/,. )‘ G‘EZ‘\' Wherez is a well

ordered set, then the Ad' 's are superfluous. If we let

vl° = L then S may be written
0 =V°< V\ < eoe VP = L
where if ‘N is a limit ordinal £ p then V, -UVe .

<A
We say S is an ascending series. Dually we can define a

descending series,

If Z is a finite set then we have a finite series which

we may write
0 = L° q L| q eeoe q L“ = L
and which is both ascending and descending.
For more details concerning general series see Robirson (30],

the methodology for Lie rings beinz the same as for groups.



Ln 'will denote the n-th term of the lower central series of

L defined by Vi

-

' ' et

oon, ™. [l

th

L“)( for all ordinals o ) will denote the & = term of

the (_transfini’ce ) derived series of L defincd by

’ ) t
(°)= L, L“‘-"z [L”, L(‘)]

L
and LMo N 1™ for limit ordinals A .
< th
Z,(L) will denote the o = term of the (transfinite )

upper central series of L defined by

Z2,(1) =0, Z.(L) is the centre of L ,
2 () /2D = 2, (1) 2,(0))
Za(1) = U 2,(L) for limit ordinals A .
[ &Y
Note that 1", L), and 2,(L) are all characteristic
ideals of L. '
Ve say that L is nilpotent of class € n (or L e’nn )

(34}
if L = 0., If L is nilpotent of some class then Le’n .

Wwe say that L is soiuble ( of derived length £ n ) if
(n)
L

0. It is easy to see that L is soluble iff L € Em

and that M < =] .

g 1.5  RTPRESENTATIONS AMD MODUILRS

Let L be a Lie ring and A an abelian group. A representation

of L is a Lie homomorphism A : L =—> End(A)L such that
P(mx+ny) = npx) + npP(y)
P(Lx, 7)) =p&pk) - pH) e

forall x,y€ L, m,neZ .
e can define an L - action A X L—PpA by

ax = O (x)(a) a€ A x € L... (1)



Then ( na + mb )x

nax + mbx

]

al nx +my ) =

a[x.,y]

forall a,b€ A, x,y€L, n,n €2 .

nax + may e (2)

(ax )y - (ay )x

An abelian group with an L - action satisfying (2) is
called an I, - module. Using (1) we can pass back and forth from
representations to modules,

Submodules, quotient modules etc. are defined in the
. obvious way and standard facts regarding them ( e.g. the Noether
isomorphism theorems ) hold.

Modules arise naturally as follows : suppose 1 <Q L
Now define an L - action on I by

w = [x,7] , x €I, y€ L
‘Then I is an L - module. Similarly if I , J <9 L and JEI
then I /Jisan L - module ( and alsoan L/ J - module ).

Given an L -« module A wé let

c,(2) ={x€ L I ax = 0 for all a € A}
Then CL(A) < L. Thus CL(I / J) is defined if I ,J4q L
and J £ I. ‘

An L - module A is faithful if CL(A) = 0, In this
case we say the associated representation p is faithful.
Clearly CL(A) is the kernel of /O .

A is irreducible if its only submodules are O and A

and A £ 0 (and L@ is irreducible iff A 1is ).
§ 1.6  COMPIETTONS

Iet L be a Lie ring, ¢& a field of characteristic O,

then the 4& - cornletion of L is the Lie algebra _ ‘&(L) with



underlying abelian group /’{ @z L and Lie multiplication
defined by -
(1) [s®x+s'® *,t®y+t' @ y'] |
= st @[x , ¥] +st'@® [x, v']
+s5't ® [x' , y] +s+' @[ x , Y']
(ii) s(t® x) = st ® x
forall s, t, s' .t'ek and x,x',y, ¥y € L.

A 1.6.1 ( Moran (291 pi10ff )

Let L be a torsion free lie ring then
(2) L is canonically isomorphic via the map x —1® x
to a subring of ‘e‘k(L). |
(v) ‘6*(1;) satisfies mkizagméal relation f(xl,..;,xn) =0

iff L satisfies the same relation. : o

COROLLARY  1,6.2 {( Moran (29 p10:f )

If L is a torsion free Lie ring then
a) € €eN, iur 1€ N,
® Crme? i 1 ey
(¢) If Hel L then f*(H) < Y:‘&(L). -

Note in general that given M £ e A (L) there may not
exist H € L such that ¥ = R ®4 H. However if & - Q
then ( by identifying x and 1 ® x ) given y € f&(L),
theré exists n € Z  such that ny € L and so given
‘n € ea (L) there exists H é L such that M = @ @, H.
The @ - completion is also known as the rational completion,

For details about completions see Moran ([297 .

12



§ 1.7 CHAIN CONDITIONS

o !

Let A beha.n a'belian g'i‘.oup,/ —Qf a cndiiéctiorl 6f ‘subsets of
A. We szy that A has Max -QP if d’ satisfies the maximal
condition i.e. every ascending chain
» S°§ S‘S Sz_C_' sesee
of elements Si € .QF stops after a finite number of steps.

That is S_ = S = ... for some r. Dually we define
s rét

Min - g R

If L is a Lie ring and Q? is fespectively the set of
subrings, ideals, or subideals we write Max, Max - < ,
Max - si for lax - Qf and Min, Min -4 y Min - si for
ivh’.n - Qf . These symbols also denote the corresponding classes
of Lie rings.,

If 1 is an L - module we say M has Max — L or Min -~ L

acrording as M .has the maximal or minimal condition for

L - submodules,

The following result is standard.

IEA  1.7.1

(2) L € Max iff every subring of L is f.g.
(b}) L € Max - < iff every ideal is f.g. as an ideal.

(c) M € Max - L iff every submodule of I is f.g. as an

L - module.

§ 1.8 LINEAR LIE RINGS

By analogy with group theory we say that a Lie ring L is

R — linear of decsree n , where R is a commutative ring with 1,

|3



and n >0, if L has a faithful rcpresentation as a Lie
rinz of nX n matrices over R .
Let 6120 denote the class of all linear Lie rings over

integral dorains of characteristic 0 . We are able to describe

the structure of soluble rings in this class guite explicitly.

PROPOSITION  1.8,1

R, ~ 0l £ NUI

PROOT A

Let L € &r\ EU] say L is R =~ linear where R
ig an integral domain of characteristic 0 . Let Jz be the
field of fractions of R . Consider the '& - completion of L .
L is torsion free and its completion is a finite dimensional
soluble Lie algebra over ’& . Yence by Lie's theorenm
( Jacobson 0i9] pS1 ) it is nilpotent by abelian, Corollary 1.6.2

then ensures that L € 11U .




CHAPTER 2 FINITELY GENERATED SOLUBLE LIE RINGS

o d
-

In [12) and [#3] Hall studied finitely generated soluble
groups using ring theoretic methods., He obtained the following
results ;

(2) Finitely generated abelian by polycyclic groups
satisfy the maximal condition for normal subgroups.

(v) Finitely generated abelian by nilpotent groups are
residually finite.

Certain analogous results have been obtained for Lie algebras:

(a) Finitely generated abelian by finite ( dimensional') Lie
algebras satisfy the.maximal conditica for ideals ( Amayo
and Stewart [2] )
(v)  Finitely generated metabelian Lie algebras are resid-
ually finite and in characteristic O there exist f.g.
' abelian by nilpotent Lie algedbras which are not
residually finite ( Amayo [13 ).

In the first section of this chapter we give a basis free
version of the proof in [2] therety extending (a) to a class
of generalised Lie algebras which includes Lie rings.

Using methods’based upon Hall's f.g. abelian by nilpotent
.Lie rings are shown to be residually finite. The question of

whethgr f.g. abelian by polycyclic Lie rings are residuzlly
finite is not answered but in this direction we prove that they
’ are residually of finite exponent. |
Finally the partial breakdown in the analogy for characteristic O
Lie algebras in (b) is shown not to hold for fields of prime

characteristic. Using results of Curtis [7] on the universal



enveloping algebra it is shown that f.g. abelian by finite Lie
algebras over fields of characteristic p > 0 are residually
finite. A new proof is also provided for Amayo's result.

" Hence for Lie rings and Lie algebras of characteristic p>» O

analogous or stronger results than for groups are obtained.

§ 2.1 PBY7 ALCEBRAS AYD Max - <3

Let L denote a Lie algebra over a commutative ring with 1,

say R, The universal envelopins alegebra U(L) of L is an

associative unitary R - algebra and a map € : L—>U(L)

such that & is a Lie homomorphim L——-)U(L)L, and if A is
any associative unitary R - algebra and o : L-—)AL is any
Lie homomorphism then there exists a unique associative algebra

homomorphism P : U(L)——>A such that

- B(L) —==-n- feme> A
| ET /
. L .

commutes,

For details regarding the exisience and properties of U(L)
see Serre ([3§) and Bourbaki (4] ..

We define a filtration of U(L) as follows; let U be the
, submodule of U(L) generated by the products 8(x.)..; E(xﬂ),
‘m S‘n and x5 € 1L, i=1,,..m« Then we have Uo = R,
U = RO CE(L)Y ( module direct sum ) and

U,C U,C...CU.CT_G..

Now define
(7o)

gr (L) = 2. gr.U

n=0 o
where. grnU = Un_/ Un—1 and multiplication is defined

6



componentwise by

(x, + Ui ) X + Uj-t) = ( xXix; + U'uj-l)

gr U(L) is called the graded algebra associated to U(L),

It is éssocia.’cive, has a 1 and is commutative ( Serre[3s]LA 3.5 )
Further the canonical map L —> gr U(L) extends to a

homomorphism g : S(L) = gr U(L) where S(L) is the

symmetric algebra of T ( i.e. S(L) = U(LY) of Serre (35714 3.3 )

We will call L a PBW - almebra ( for Poincare, Birkhoff,

Witt ) if the map & defined above is an 1somrphism.fovall homomophic wmeges of L -

The original Poinca.re/, Birkhoff, Witt theorem shows that
L is a PBW - algebra if it is a free R - module ( whick is
always true if R is a field ) cf Serre [35§] LA 3.5, Lazard (23]
proves that L is a PBW - algebra if R is a principal ideal
domain ( and consequently that Lie rings are PBY - algebras ).
Not all Lie algebras are PBW - algebras ( Sirfov [3¢] ).

It follows easily that if L is a PBW - algebra the map &
is an injection and in this case we will identify L with its
image under & in U(L). Then U(L) is generated as an R - module
by 1 € R and the monomials of degree = 1 in the elements
of L. That is the elements of the form Yeeesu, with n 31,
W € I, i =1,....n and multiplication in U(L) denoted by
Juxtaposition.

If ¥ is an L - module then M has a natural U(L)-module
‘structure defined by

m(u,ee00y,) = (...(mu,)‘...un) m€ M, u, € L

&nd conversely any U(L) - module can be interpreted as an L =
module, 'i‘his correspondence preserves sub%nodules ( Serre (35)
LA 3.2 ),

Ve will often write U = U(L) from now on.



IriA 2.1.1 ( Amayo and Stewart (2] p700 )

- If I is a Lie ideal of L, then IU = UIU.

The following lemma appears as an exercise attributed to

Bergman in Serre [3§] 1A 3.2,

IEDIA  2.1.2

R iff L.= 0.

o
1]

LESA _ 2.1.3
Let L be a PBW - algebra ( over R ) and B < I,

BSASL and UV =U(L) then BU = AU implies A = B,

PROOF
By Ja.éobson {181 p159 - 62 and lemna 2.1.1
W(L/B) = vuv/uwU = U/EU
= U/ AU by hypothesis.
N¥ow consider A / B as a subalgebra of L / B. Then U(A/ B)
is the subalgebra of TU(L / B) generated by (A + BU) / SU and
1 ( Jacobson (4] p1‘53 ).
 Now (A+3BU)/BU = (A+AU)/ AU = O. Thus

U(A/3B) = R and by lemma 2,1.2, A/ 3B = O. -

let lax - u denote the class of Lie algebras L such that
U(L) is right Noetherian ( i.e. it satisfies the maximal

condition on rigut ideals ).



IRTA  2.1.4

If L is a PBY - algebra then L € llax - u implies
LElax -7
FROOTF
~ Consider a sequence of ideals in L
0<H < I, ¥ 4evus
Then O € HU € HUS ...... is a sequence nf (right)
ideals in U = U(L) so there exists ‘r > 0 such that
HrU = HruU = sees
Thus by lemna 2.1.3 H'_ = H = ,.0e and the result

r+4

is proved. o

The following result is well known and the proof is similar

to the corresponding result for commutative rings.

ILENA  2.1.5

(1) If R is a right Noetherian rirz and M is a f£.g. right
R - module then M satisfies Max - R ( i.e. Mis a
Noetherian module ).
(ii) If L is a Lie algebra over a commtative ring ( R is an
associative ring ) and
0 —>A—>»B—>C—>0
is a short exact sequence of L - modules ( R = modules )

such that A and C satisfy Max - L ( ¥ax - R ) then B

satisfies Max =L ( Max - R ). -]

For the rest of this section L = < X jeeesX,»> will
denote a f.g. PV - algebra over R with U = U(L).

Let 2 Ye the ideal of U spanned by all monomials of

<



gegree > 1 ( i.c. spanned by L ).

je £initely presented

A Lic alpedre over 2 ring R

if it can te gencerated by finitelrs many clcments

X, geee:X_ subdject to a finite number of defining
*“m

{

relations f‘ (x. ,uo-,xm) = O geoey fn(x' ’cooyxm) = 0.

Thus it is the quotient of a frce Lie algebra on the set

{'x| ,...,xm} by the idenl generated by the clements

£, (x, ,...,xm) yooes fn(x‘ ,...,xm) . ( Por a discussion

on frce Lie algebras including the question of existence

cee 'Free Rings' by P. !f. Cohn ).

 ANRIAY 2.1.6

A finite presentation for a Lie algebra L 1is
independent of the finite set of generators chosen.
PROOF |

Carry over the notation from the definition above
and suppose that ¥ seees¥y is any other finite set
of generators for L

Then for certain words %D i and '\+’j
., = P i(y‘ ,...,ys) i ® ljyeeaym

1

ya = '\{/‘ j(x| ,oco’xm) j = 1'000'5

Then the relations
yj = ’\Pj( kPl (y. 'ooo,ys)OOOOO “Pm(yl ""’ys))

£0P, () veeeay dreeer P oy aeeeay)) = 0

for J = ljyeeey8 4y k = l,eesyn certainly hold in L .

Let T be the Lie algebra gencrated by T jeees¥g



say subject to the relutions above ( in the ¥
in fact L

i

T.'s The
s ). Then
L . Indeed the defining relations of

|

hold in L so the map 373. —> ¥ extends to a homomorphism
© of T onto L . Now let
x5 0= &Pi(y‘ 10-'t3f—s)

Then from above we have

= —
7, = P )
and so 1 = <3c"' ,...,'im . Then since

fk(f ,o-.,gc-rn) = O
the map x,+—> X, extends to a homonmorphism N

. Finally NO ana O] are the

identity maps of L anld T respectively, so 9 and /L
are isomorphism

of L onto L

If LE€G ang I < L suchthat L/ is

finitely presented then I is f.g. &5 an ideal of L .
PROOP

Let a; ,...ya2_  generate L . Then L/1 is
generated by a, + I,00092

m * I ( in fact finitely
presented by Lemma 2.1.6 ).

Let F be the free Lie algebra on the set

{x‘ ,...,xm}

by xit-——> a

Define a homomorphism 9

{+ Llet ¥ = e ') .

xit——-——)a. + I

.

¢t P —>1L

The map

extends to a homomorphism
of F onto L/I with kernel K . Now as L/I is

finitely presented XK is f.g. as an ideal of F by



Yy veser¥y say with yié I . llence I is gencrated

as an ideal of L bty O(y, )seeer B -

THECREY 2.1.10

Let L bYbe a PBJ - algebra., If L € ’g_ with an
abelian ideal 4 such that L/A &€ Max - u and is
finitely presented then L € lax - <] .

PROCF

Since A is abclian we can consider it as an L/A -
and hence U(L/A) - module., By Lemma 2.1.7 A is a f.g.
ideal of L and henne is f.g. as a U(L/A) - module. But
U(L/4) is Noetherian by hypothesis so by Lemma 2.1.5 (i)
A &€ Hax - U(L/A) and hence A € lax - L/A . Thus
A & lax - L since the L - submodules are just the L/A -
submodules ( since Az = 0 ).

By Lemma 2,1.4 L/A € HMax - u < HMax - <I and so
L/A € Max =L . lience L & Max - L by Lemma 2.1.5.

That is L € Max - <] .

It is shown in [2] that if L is a f.g. Lie algehbra
over a field with an abelian ideal A and Z is the ideal of
U = U(L) generated by L then A M ZA = 0 but this is not
true in general and the proof in [2] cannot be used. Indeed
let L be the Lie ring given by L = ZOZ®Cr= <x>@®<x>@<x)
say, with [x ,x-2] = X34 [x, ,x3] = 0 and [xz,x3] = 0,
Then LEGAT] and A = pL € U tut

0 £ p(x| Xn = XX ) = x | (pxz) - x2(px‘ ) = p[x| ,x2]

= PX, (= AMNzr .



COROILARY  2.1.11

*- Theorem 2.1.10 holds whenr L is a Lie ring : S -

We will now show a way of finding algebras which satisfy
Max - u.
‘Iet Max - s denote the class of Lie algebras L such that

the symmetric algebra S(L) of L is Noetherian.

LEIDA 2.1.12

A PCY -~ élgebra, which satisfies lax - s satisfies lYax - u .
PROOF
If L is a PBY - algebra s(L) = gr U(L). But by
Jacobson {#4) p164 Theorem 4 if gr U(L) is right Noetherian

then so is U(L) as required. [ |

Suppose that L is f.g. as an R - module, say by Xpreseskpy
then S(L) is a quotient of R [x',...,x,‘] and consequently

by the Hilbert basis theorem ( Lang (24] p144 Theorem 1 ) is
Noetherian if R is Noetherianawd cleaV‘j L ‘m\k\‘»’ pnxwkd .

Since Z is Toetherian this enables us to state immediately ;

THEOREM _ 2.1.13

’
Iet L be a lie ring. If L € g_r\ '(J]’g_ then
L € Max - <] . - [+

" COROLLARY  2.1.14

If Lis a lie ringand L € gﬂmy then L. € llax - 4 .
‘ - |

23



COROLLARY  2,1.15

If L is a Lieﬂ ring and L = %nUl'n. then L € I'[ax - 4
PROOT |

2
It is sufficient to prove that gf\n < g- , but this

COROLLARY  2.1.16

If L is a Iie ring and 1 € GAm(Ee)then L € Max - .

PROOF

E 3 .
Since Ee - rUl f'\\% . _ B

§ 2,2 RESIDUAL FINITENESS — THm FIRST STEP

We now return to the consideration of lLie rings‘. Following
. Hall [v3] .we define classes m('ﬂ') of Z - modules
( i.e. abelian groups ). Recall that if A is a & - module
and Ao is the free submodule generated by a maximal family
of Z - linearly independent elements of A then A /Ao is
a torsion module. -
We say a Z - module A is contained in Tﬂ(n) where TU
is a set of primes iff the free submodule Ao of A defined
above, can be chosen so thé.t A /Ao is a TU - torsion module
( i.e. the order of every element of A /Ao is a TT - number ).
'Note that if T is the complete set of primes then Ol s
the class of all Z - modules ( i.e. by abuse of language N ).
» Nso if T = ﬁ then Ol(T) is the class of free
Z - nodules.
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IEniA 2.2.1 ((Hall 3] lemmas 4.1, 4.2, 4.3 )

(1) If AE @ (as Z - modules Y then A € QW) ... . .
1ff TT is the complete set of primes, o T
(ii) 1f. A € ‘UI(T) then every Z - submodule of A also
belongs to JI(TT) .
(iii) Let A be expressed as the union of a well ordered ascending
series of submodules {Aa} <p where
b= Ay, A =0 , Mg hg, X<SEpP
U Ay for limit crdinals A .
(<A _
Then if Ay, /Ay € Ul(M)for all <o we have

A eUl(w) . - : |

When L is a Lie ring we can consider L as a ZZ - module
and could reinterpret the above lemma in terms of L. For
example (ii) would imply that if I € U((W) ( as a Z -module )

thon every Lie subring also belongs to U](T[),

PROPOSITION  2,2,2

Let L € B€  and et P be any right ideal of U(L) = U.
Then T /P € UI(W) for some finite set of primes ™.
( Considering U /P as a & - module ).
PROOF
' The proof is by induction on the number n of cyclic factors.
If n = 0, wehave L = O and () = Z e @) .

Now suppose n > O and let

0 = 1,4 L,<A ... 9L, = L, 1/1,, €€

be a cyclic series for L. Put X = L . T™en L = <X, x) .

n-t

By the induction hypothesis we may suppose that if Q is any

right ideal of U(K) then U(K) /Q € UI(TT,) for some
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finite set of primes Ti_ = TI,(Q) . We will think of T(K)

o
as the subring of VU(L),generated by 1 and K. T w quprW‘s{MQ{A UO‘\_ __
- Now consider multiplication inside U(L). Ify € X then
xy = yx + [x,7] ceee (1)
and [x,y] € KQ L.
Thus we can always express a monomial of U(L) as a sum of

monomials in which all powers of x ( if any ) always occur

on the right hand side. Hence since U(L) = < U(X) , x >

L) = UK) + U(K)X + eeee

-

i=0

¢
Now define U = UK) , U, = SZ_O T®)x°
. —n k
l.€a Uk = Uk-‘ + U Kx
Pllt Pk = P + Uk-' for k = 1, 2,.0.. Nand PO = Po
‘Then P = P_< P, < vvoo. and U(L) = U P_. Then the
o ! i ko X

Z - moduies Pk /P form an ascending chain of submodules
of U(L) /P with union U(L) /P . The Zassenhaus Butterfly
lemma ( Lang (243 p102 ) now givés

PkH/Pk; (P+Uk)/(P+Uk )
E’Z U, /( U, + (P N Uk) )
Yow if weUmAthen w = Zm.,cixi ’ ciém.

i-o

-Let Qm .be the set of elemenfs cn (S 'I'I-(T{) which occur as
coefficients of X" in the elements w € P N Um « Then
: an is an additive abelian group. We will now show that Q‘m

is a right ideal of U(XK) . Let Yy € K and w€ PN U_

then
‘ - .
wy = ( % c;¥ )y
" L3
= Z. oxx™
) ¢L= 0 1l
vhere c} € U(K) , i = Oyeeeeym ( using the same argument

23 for (1) ). Thus wy€ P N U . The coefficient of X"



is cr"r‘l = cy a.nd y can be any element of X so Qm is |

‘a right ideal of U(X) by induction. e e e
Vow consider the map

Y2 k U, /( Uk + o0
Z C. x + + Q’k

i=0

xk)—>m/%-.‘

xk))t———»ck+Qk_'

We must first check that Y is well defined. Suppose
K
i k
“oclx +(U |+Qk|x)) =
k
(gdx +(U \+Qk_|x))
then
3 . ,
i
%( ;-4 )x € T +Q_,
i.e. . Ck - d.k (S %{_'
Hence ck + Q’k-u = dk + Q,k_' as required.

The map is clearly a Z. - module homomorphism and clearly

onto. Also “P is a monomorphism since if

ZCX +(U Lt xk)G xer P

[ X

i
.then Cy ' Qk-_t and so < ;X < Uk -

+ Qk-—n xk . Thus
LP is a &Z - module isomorphism and so

O /(0 +PN T ) =z 0K /o,

for all k.,
- .
Now (P N v )x < Pn LU and hence
Q° S Q‘ é L I
Also E E < g* and so by lemma 2.1.12 UZK) is right
Noetherian and so Q.. = Q,',ﬂ = 4ees Jfor some r. Hence

there exists an integer m suchthat each P_/P, _ ~ 1is

Z - isomorphic to at least one of the additive groups

'3

WK) /oy » i = 0, T,ueeeym.
By induction there exists for each i a finite set of
primes Tri such that T(X) /Q'i € Z]'I(TT;) . Let T Dbe the

union of all the sets TV, , i = 0, Tyseee,m



Then P /1>k_I € Ul(w) for all- kX = 1, 2,.s.. , Lemma 2,2,1(1ii)

| now gives U(L) /p € UI(T) .

’

We now define a class B by saying an abelian Lie ring
3 e B iff B can be extended to a f.g. Lie ring L such

that L/B € EC .

PROPOSITION - 2.2.3

1r 3B then B € {J(TT) for some finite set of
primes T = T (B) . |
PROCF

et B<1L€g_ and H = L /8 € E€ ( since BE€ B ),
Then by corollary 2.1.,16 L € lax -<d , Since I €UT we
can regard B as a f..g. H - module and hence as a f.g.
U(H) - module, with generators b, yeceesd,. say.

Now define Bo = 0 and inductively
<By v %5, 7 o 0 i r-1

By + by, U(H)

o
#

™Men B = 3B .
r

Bach B, /13i is U(H) - isomorphic with U(H) /Ri
where R, is some right ideal of U(H) . Now by Proposition 2.2.2
u(m) /Ri € UlI(1r) for i = Oyeeeeyr where 1T is a finite

‘set of primes.

Lemma 2.2,1(iii) now gives B € UJ](Tm) . o

" COROLLARY  2.2.4

If B € B then B contains no subgroups isomorphic

with @ .

=€
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PROOF

Proposition 2.2,3 and lemma 2,.2.1(i).

IZMA  2.2.5

Suppose H < L with H€g and L/H€R€f\7€.
Then L € Ré .
PRCOF

[ ]

Clearly L € RE iff Q n., = 0, dbut if L is
hut 2

torsion free then O nl, is divisible and it is easy to deduce
that in this case L € RG is equivalent to 1 'beiné'
reduced.
Now let. L be as .in the hypotheses of the lemma and suppose
ni = O . Consider themap P :L—>L, x+>nx, x € L.
\P is a * - homomorphism and inf = nL. Cleaily nL, is

torsion free and is a * - quotient of L /H . Hence by the

discussion above nlL is reduced and so nlL € RE . Hence

LERE . ]

THECRGM  2.2.6 . ’

If L is a Lie ring and Lé‘g,nm(E 8) then
L € R E .
FROOF ‘
‘ By Corollary 2.1.16 , g, NUOEE) € mx-<9  and
hence T (L) satisfies the maximal condition for characteristic
ideals ( i.e. Max -c ). If n is an integer > 0 , the
elements x € T(L) such that nx = O form a characteristic
ideal L of T (@) (ecf Lp with p a prime ). We must
have T (L) = L, for some n since otherwise there would

exist an infinite sequence of integers n , n,,.... such that
. . ) -~



L < L < +eeee and T (L) would not satisfy Max - c .
) 2

20

Tus T (L) is of finite exponent n> 0, and T EE ~ . T

By Corollary 2.2.4 L /T (L) is reduced and hence R &, since

it is torsion free. Yow apply lemma 2,2,5 and L € RE .

The importance of Theorzm 2,2,6 is that it reduces the
problem of residual finiteness to considering p - rings. To
see this, note that the thgorem allows us to locate any honzero
element in a periodic top factor which involves only finitely
many primes ( because of finite exponent ). This can be
further reduced to a p - ring because a torsion ring is a direct
sum of its primary components. Thus we have isolated our
nonzero element in a top factor which is a p - ring of finite

exponent, -

j% 2.3 RESIDUAL FINTTENESS FOR LIS RINGS

A Lie ring L is said to be monolithic if the intersection
of its nonzero ideals is nonzero. The intersection is called
the monolith of L and is denoted by M (L).

Following Hall [13] p597 lemma 1 , we have ;

CIEMA C 2.3.1

Iet .% be a Q - closed class of Lie rings. Then
\% <R ? iff every monolithic 3{ - ring is finite.

PROOF

Exactly as for groups. ~ : )

~Iet R be an associative ring and 1 an ideal of R.




K4

Then I has a centralisins set of generators if T is

generated. ( as an ideal ) by a finite set of elements .

TyseewesT, such that

(1) r, € Z(R), the centre of R.

(ii) r, € 2(R) mod < r, ,....,r.w‘> fOr i = 24000090

( where ry ,eeee,ry,) is the ideal of R
generated by T, yeeee,Tiy ).

Recall that a submodule N of a right R - module M is

essential if it has a nontrivial intersection with every

nontrivial submodule of M . -
We can now state some results which will be needed for the

proof of the main theorem.

LESA  2.3.2

Iet I be an ideal of an associative ring R . Suppose
I has a centralising set of generators. let N be a right
R - module with the maximal condition on submodules ( M is
Noetherian ). Iet E be an essential submodule of M .
Then if E is amnihilated by some power of I , then
M is annihilated by some power of I .
PROOF
Hajarnavis [15] p146-147 in the proof of Theorem 6.46 and’

attributed to llcConnell.

IETA  2.3.3

Iet L e\jn’fl and U = U(L) . Then every ideal of
U has a centralising set of generators.

FROOF

McConnell {25] Theorem 2.3 and Theorem 3.2 ., &

31\
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And finally a result which is crucial to the argument. This
result is not true for fields of characteristic 0 , and this is
the point that causes the divergence of results for Lie algebras

that we observe ih § 2.4 .

PROPOSITION  2.3.4

Let L be a Lie algebra over a field ﬁ of characteristic p > O.
If I is . finite dimensional then every irreducible 'representation
of L is finite dimensional,
PROCF

Curtis [7] p952 Theoren 5.1 . |

PROPOSTITION _ 2.3.5

Every torsion, monolithic gnU”’l Lie ring is finite.
PROOF

Iet L be torsion, monoliihic and L € gﬂwn . Say
vA<L, A €Ul and T = L/A€Tl . mt 1 = M (L),
Yow M < A and is a characteristically simple abelian group,
and hence is an elementary p -ring ( and hence L rmust be a
p - ring ).
| Yow T, /pf is a finite dimensional Lie algebra over ZP
and M is an irreducible ’i’/ p‘I\: - module ( since p’i’ annihilates
M and M is an T - module ), By Proposition 2,3.4 I is
finite dimensional over Zp and hence is finite.

Now et U = U(L /A) « Then A is a Noetherian
U - module and U - submodules of 4 Aa,re Jjust the ideals of L
contained in A ( cf § 2.1 ). So M is an essential submodule
of A since it is the monolith of 11 -,

Consider the associated representation P ; y —>mna(1).

37
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End(M) is finite and so puttiné‘ P = ker ¥ we have that
U /P ‘- is finite. P is the annihlator of M  and is a ( two =
sided ) ideal and so by lemma 2.3.3 P has a centralising set
of genera'i;ors. Applying lemma 2.3.2 we get A" = 0 for
some n . ' |

Thus we have a series

0 = AP" < 0w <A < A

where each factor T, = w2t /2t is a fig. U - module
( since A is Noetherian ),

But P annihilates Fi S0 we can considef Fi as a
f.g. U /P - module. Thus for each i , F, is a f.g. module over
a finite associative ring and hence Fi is finite., Thus A
is finite, |

L /A is torsion and L./A € gﬂn so L /AE F .
Hence L € F . B

THEOR®M  2,3.6

Every gf\mn Lie ring is residually finite.
PROCF
By Theorem 2,2.6 we need only consider the torsion case.

The result then follows by Proposition 2.3.5 and lemma 2,3,1 . I§

- The question of residual finiteness for g N Ul(z E)

lie rings is still open but we can say the following ;

’

THEORTM _ 2.3.7

let L € Ee o If M 4is an irreducible 1 - module

then I}. is finite.



PROOF

M is an irreducifié U = U(L).— module and is generated
ove}: U by a single element (any 0 # m € M will do ).
Form the split extension E = L +1M, Then E is a
monolithic g_ N Ol(z€) 1ie ring with monolith 1} and the

result follows by Theorem 2,2.6 and lemma 2.3.1 . < |

A chief factor of L is a pair (H , X) of ideals of L

such that no ideal of 1 1lies strictly between H and K, and

such that H £ K. A chief series for L is an invariant series

for L all of whose factors are chief factors.

COROLLARY 2,%.8

If Legn UT(EE) then every chief factor of L is
finite.
PROOF

Suppose H , K4 L and H /K is a chief factor of L .
Then we can consider K trivial,. so that H is a minimal
abelian ideal of I.

Let A be maximal such that A <L, H £ A and A €Ul .
Then L /A € E€and H is an irreducible L /A - module.

The result now follows from Theorem 2.3.7 . B

§ 2.4 THE LIE ALGT®RA PROBLITM

Throughout this section we consider Lie algebras over fields
with notation carrying over in an obvious manner., MNote that we
are using 3 to mean the class of finite dimensional Lie

algef)ras .



Let S %Ye a noncomrmtative iing with 1 and R a subring

of the centre of S containing 1. Ve say S is an extension

of R and we call it an intersral extension if S is a

Noetherian R - modulec.

A revresentation of a noncomrmutative ring S is a ( ring )

‘homomorphism of S onto a subring T of the ring of endo -
morphisms of some abelian group. A representation is
irreducible if the group ( which clearly can be regarded a2s a
T - module ) has no proper T - submodules. An ideal of S
is called primitive if it is the kernel of some irreducible
representation ofr S.

In the usual manner representations and modules are
associated. Ve say that an S - module is irreducible if its
associated representation is irreducible. .

We now have the following important lemma of Curtis.

=14 2.4,1  ( Curtis [7] p947 1lerma 3.1 )

If S is an integral extension of R and P is a

primitive ideal of S then P A R is a maximal ideal of R .,

We will say S is a Curtis ring over a field 4& if s

is an integral extension of a licetherian ring R where @
(1) R is.an extension of the field
and (2) If I is a moximal ideal of R then the dimension

of R /I over AR is finite.

 ADIAA 2.4.2

Let S be an integral extension of the loetherian ring R,

Suppose I is a Foetherian S - module which has an essential
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irreducible submodule M . If P = ann(1)  then
HRA P)' = 0 for some n . |
PROOF

P is a prinmitive ideal of § and so by lemma 2.4.1
PN R is a maximal ideal of R. Now R is Noetherian and
so PA R is generated ( as an ideal of R ) by a finite
set of elements of R , say Xq seeeey X Let Po be the
ideal of S5 generated by Xy geeeey X Then Po < P and
so Po annihilates the essential submodule Mo and has é
centralising ( in fact central ) set of generators Xy geecay X

1

and so by lemma 2.3.2 MPO = 0 for some m . Clearly

RAP £ P and so A P)" = 0.

PROPOSITION 2.4.3

Let S be a Curtis ring over a field 8 . Suppose X
is a Noetherian S - module with an essential irreducible
submodule, then ! is finite dimensional over ’ﬁ .
PROOF

Suppose S - is an integral extension of the Noetherian
.ring R where R is an extension of the field «& such
that if .I is a maximal ideal of R - then the dimension of
' R /T over & is finite. X is a Hoetherian S - module
and S is a Hoetherian R - module so it follows easily
that M is a Noetherian R - module. et P = Amg(M) ,
then by lemma 2.4.2 MR A P)? = 0 for some n . So
there exists a ( finite ) sequence

u > urANAP> ... >ucn p’ = 0

I

of R - submodules of M . Each factor

(R P)l/:.t(Rr\P)“1 , L o= 1 ,.444y 01



is a f.g. R /@@ Py P) - module. ‘Rr\ P is a2 maximal ideal

in R by lemna 2.4.1 and so by hypothesis R /(R ﬁ‘ P) is
finite dimensional over ’ﬁ . Thus each factor is a f.g.
nodule for a finite dimensional ring and hence is finite dimens-

ional. Hence 1I is finite dimensional. =

COROLLARY  2.4.4 ( Curtis €73 p949 Theorem 4.2 )

Iet S Ye a Curtis rinz over a field ’& « Then every
irreducible 'S - module is finite dimensional over & .

FROOF

An irreducible module is clearly Noetherian.

Iet L be a Lie algebra of dimension n over a field 'ﬁ .
If char R = p> 0 then Curtis £7] §5 p952 shows
that U(L) is an integral extension of a subring R of its
centre where R 1is isomorphic to ’g ['x1 resesy X ( the
polynomial ring in n indeterminates over ‘& ) By the
Hilbert Mullstellensatz if I is a meximal ideal of R
then R /I is finite dimensional over £ , and so U(L) is
a Curtis ring over ’ﬁ. .

If L is abelian and char ’Q = 0 then in fact
u(n) = /é[}{1 reeees X and so once again U(L) is
a Curt;'.s ring over 1?-2 .

A lie algebra I is said to be monolithic if the
intersection of its nonzero ideals is valso nonzero., The
intersection is called the monolith of L and is denoted
o M@ -

Once again (cf lemma 2,3.1 ) we obtain :
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hasXald
Vi 2 . 4 o5

Iet :f. be a Q -~ closed class of ILie algebras. Then
X, < nF  ifr every monolithic X - algebra is finite

dimensional . ' B

FROPOSITION  2.4.6

Suppose L is a Lie algebra over a field «le: , L mono-
lithic with monolith  AA (L). Then if either

(i) char £ . p>0 and L € gf\m:;'
0 and I € Q/\mz

then L is finite dimensional.

n

or (ii) char £

PROCTF ‘

let AdL, A€Ul suhthat L/A€TF if
char‘&:p,and L /s € FAUL - ir char R = 0.
Then in the usual manner A is an L /X ~ and hence U(L /4) -
nodule and is Yoetherian by Theorem 2.1.10. By the discussion
above U(L /A) is a Curtis ring over ’& . M (L) is
an essential irreducible submodule of A by definition, and
so by Proposition 2.4.3 A is finite dimensional. IHence

L is finite dimensional. i

TUEORET 2.4.7

SﬁPPose L is a Lie algebra over a field '& . If
either
. _ (i) ¢char fz
or (ii) char '&
then L€ RF .

PROOF

p> 0 a"na' L € g_/\mg'
0 and L € gf‘mz

Iemma 2.4.5 and Proposition 2,4.6 . - |



Pjart (ii) of Theoren 2.4.7 'wa,s f_irst_provcd 1?:{ lma;ro Cl] )
p111 Theéx:énvé}.ZBV ﬁsiﬁg-different methods, and in characteristic O
he gives an example due to ilartley which shows hat not even

'g_ nD’]’YL - algebras need be residually finite.

It is worth noting that we have not used Proposition 2.3.4
and in fact going through Corollary 2.4.3 gives an_a.lfernative
proof to Curtis's. It is also rot hard to see that we have
essentially proved that if .8 is a Curtis ring over ’&
and M is a lNoetherian S = module then 1I is residually

,& ~ finite dimensional in the sense that to each 0 £ x € I
there is a submodtile L such that x ¢ ¥ and M /N is

finite dimensional over ‘& .
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EERATIM

The proof of Theorem 3.2,1 is incorrect. On p50

\ ! . '
line 9 the statement  M/K is an irreducible U - module

is wrong. However in the case L = 1Y (L) we have

that U and U, coincide and the difficulty above is trivially
avoided. Consequently the results of .§ 3.4 in which only
this version of Theorem 3.2.1 is used are still true.

However Lemma 3,3.1 and Theorem 3.3.2 are not proven.
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CHAPTIER TR FRATTINI STRUCTURE OF FINITOLY CGEVERATLID

SOLUBLE LIE RITGS

This chapter is a continuation of the investigation

besun in chapter 2. Hall in (j4] showed that f.g. metanilpotent

groups have 'GoodvFrattini structure' in a sense which is
explained below., Once again some Lie algebra analogues of the
group theoretic results exist. Towers {341 p71 showed that
f.z. nilpofent by abelian Lie algebras have good Frattini
structure and Stewart in an unpublished paper [38) extended
this result to f.g. metanilpotent Lie algebras in prime
characteristics. Using different techniques we show that in
fact in characteristic p > 0 , soluble f.g. abelizn by finite
algebras have good Frattini structure, obtaining at the same
time Tower's result for characteristic 0.

Using methods more akin to Hall's for groups we then
show that f.g. metanilpotent Lie rings have good Frattini
structure. As in chapter 2 we have thus obtained a good
enalogy with groups in the case of Lie rings and even stronger
results for characteristic p Lie algebras,

The first section below owes a great deal to Stewart's
paper (39) mentioned above and that in turn to Towers [393 .,

Since both are unpublished full proofs are given, the results

here being, in general, slight generalisations with essentially

the same proofs.



jé 3.1 DEOFINITIONS AND TINITTAL REDUCTION

T‘qroughout this section L will denote either a Lie ring
or a Lie algebra and the resul‘ts and proofs are 1dentlca_ in
each case.

We now define the various radicals we will be considering.

The Frattini subring (subalrsebra ) of L , denoted by F(L),

is the intgrsection of the maximal proper subrings ( subalgebras )
of L, oris L itself if none such exist. If 1L is f.g.
then ( easily ) F(L) < L .

Now PF(L) need not be an ideal of L and so we define the

Frattini ideal @ (L) of L to be the largest ideal

contained in F(L) .

Now define ('P fL}

section is taken over all chief factors H /K of L.

' C,(H /K) vhere the inter -

The Hirsch - Plotkin radiecal ,o(L) is the unique

maximal locally nilpotent ideal of L ( cf Hartley [16) p265 ).

The Fitting radical (L) is the sum of the nilpotent

ideals of L . Clearly U(L) =< /O(L) .
Finally we define _’IT_QQ by
v/ dw - ve/d @)
and this corresponds to Hall's S mod é .
Now we say that L has pood Frattini structure if
v = e - PO - T

and if all four are nilpotent.

If L has good Frattini structure then (1) is nilpotent

being contained in AS (L)



TEA  3.1.1 ( Stewart (37] p317 Theorem 3.2.3 )
Let I <L, then if both I and L /IZ are nilpotent

then L is nilpotent. o« |

LTTA 3,1.2

If L € ¥l¥ax =<1 then (L) is nilpotent;
PROCF
There exists N <3 L such that N € ¥]  while
L /N € Ma# -<d , sowe can find ! maximal with respect to

2N, <L, NEN . Then clearly M = U (L) .3

LEMIA  3,1.3

If L€ M Max-<1 and N = AF (L) then ¥ g o).
FROOF | '

Let M be a maximal subring ( subalgebra ) of L and
suppose I‘Iz # M . Since N is nilpotent by lemma 3.1.2 there .
exists k 2 2 maximal with respect to e £ 1 ( since
L/N €lax-<4 ). Tus L = N +U. But then

s 1 - (e = Y osn* o< ox
A contradiction.

Now since N2<d L we have N < é(L) . '

CIEDMA C 3.1.4

If L€ MNMax-<d and I = AJ(L) then
U@L/ = U@ /1F
PROOF '
Ar (L /1%) = B/I* is nilpotent by lemma 3.1.2.
Purther B 2 I . Dy lerma 3.1,1 B is nilpotent and so

BS I, Hence B = I = AF(1). - | o



We now iniroduce a temporary notation by defining
® - :01N gx
Thus in the case of Lie rings P is the class I e of
polycyclic Li;e rings, and in the case of Lie algebras p is

the class of finite dimensional soluble Lie algebras. Clearly

P < tax-<a .

1f L€ NP then p@ < P .
FROCF
let A /B be a chief facfor. We wish to show that 0 (1)
centralises A /B.. We may work modulo B , =0 assume B = O.
and A is a minimal ideal of L. Let B = O (1),
K = AU(L)S€R. Then L/K € g* . Thus for finite =r
R = <K tye00ey £, with t;,.000yt. € R . Since 4
is abelian A € K € R, Now X is nilpotent so by Schenkman (32]
lemma 4, AN 2,(X) # 0. Hence ty minimality A £ Z;(K).
Let 0 £ 2a€ A. Ten N = < a,tyeeee,t,.» € R
and so is nilpotent ( since © (L)€ LM ), therefore
AN 2,(K) £ 0. Thus there exists ¢ € A such that
[N,cj - 0. But [x, c]

whence A N Z’(R) # 0 and we have A < Z|(R) . So

0, so [ R, c] = 0
[ A ,.RJ = 0. as required. ]
. PROPOSITION 3%,1.6

et LE€NP , 1 = U@. 1f L/ has good

Frattini structure, then L has good Frattini structufe.




PROCF ;
Ve have I €7 'by lemma 3.1.2 and by hypothesis = = .
/) - p/T) = P/ - Ta/) €N
Now A (L) /12 €P] by lemma 3.1.4 , so that U (1) € Y]
( lemma 3.1.1 ). Further 0 (1) § P (1) by lemma 3.1.5
and clearly ( P @) +T) /1% < @@ /1*) so that
P (1) s U(L) and we have (L) = Y@ - P (n).
Finally I° & @(L) by lemma 3.1.3 which implies
that é (L JI°) = (b (1) /1% vhence
(/) = U@ /1"
and so V(L) = v (L) and all are nilpotent since U (L) is.
This result enables us to concentrate on L /I" which lies
in the class (J](P . Furthermore its Fitting radical is I /I
vhich is abelian.
Pollowing Towers [34) we make the following definition.
We define for any b € L the Encel subring ( subalgebra )

EL(b)={x€L[v[x,er =Osomer}

( often called the null component of b ). By Liebniz's rule

for derivations it follows that EL(b) is a2 subrinzg ( subalgebra ).

Iz 3.1.7
et b€ L besuchthat [L, b} = [L, , v]
for some integer n , then

L= B(®) + [1, _b]

’

PROOF

.[L’an]

et x € L . Then [L,nb]

S0 there exists Y€ I such that

[.x’nbj = [y 'an]



Therefore x = (x - [Y;nb]) + b’snbl

€ () + [Ly,p]

TLIORTT 3.1.8

Let L G'n} be monolithic with monolith A , then cither
1) G =o
or (ii) U(L/8) = U (L)/A
PROOF
Let ~ (L/A) = N¥/A . If X < ¢ (A) then (ii) holds.
Assume N §f CL(A) . If J(L) = 0 then L

L € Ul and the result is trivial.

= 0 sgince

lience we may assume A €7U(L) , A being the monolith.

Thus A € %,(V (L)) and v @) € CL(A) . Choose a

nonzero element of (N + CL(A).')/CL(A) central in L/CL(A) y say

b+ € (4) ( possible since L/C (A) € YU ). Then

b € ¥~ c/(4), ana [L,v] < ¢ (A). Let D = <bY 4 ¢ (1)
which is an ideal of L. Since [D,A] # O we have [D,A] = A,

so [b,A] = A. Then there exists n such that [L,nb] = A,

50 by lemma 3.1.7 L = E;(b) + L, 2] =E(b) + A . Now in

fact L = EL(b) ®P~ A is an R - module direct sum ( vhere

R = & ora field ), 80 EL(b) is a maximal subring (subalgebra)
(any larger subring intersects A nontrivially and this inter -

section is an ideal of L contradicting the minimality of A ),

Hence @ (L) < EL(b). But if @(L) # O we have

A= @(L) , & contradiction. So @(L) = 0.

Q

We say that L has the property (&) if Q‘P (L/X) = U (r/x
for all ideals X of L . |



THEORT 3.1.9

If Légf\ Um ;gnd L has broperty (A) then
(1) = (D)

PROOF ‘

Assume the contrary. 3By Theorem 2,1,10, L € Max - <]
and so there exists an ideal T of I maximal with respect to
’G’(L /1) # AS(L/1). Replacing L by L /I we may
assume AT (L /3) = AF(L/I) forall O £ J< L.,
By hypotheéis_ thei'e exists some chief factor A /B of L not
centralised by AU (L) . If B £ O then A /B is a chief
factor of L /B and so is centralised by S (L /B) = Ar (1 /B),
and hence is centralised by U (L) . Therefore B = 0 and
A is a minimal ideel of L . If there is an ideal C ‘such
that AN C = O then 4 T (a+¢C)/C and a similer
argument applies. Hence L is monolithic with monolith A.
If é (L) = 0 we are finished, Otherwise by Theorem 3.1.8
AT (L/8) = U(L) /A |

Since A = (L) it is clear that O (L /8) = P (L) /A
Put then, since a (L/A) = U(L/A) , we have |

'\FJ"(L) = A (L) a contradiction. Hence the result. [

COROLLARY  %,1,10

If L€\§AU7T1 has property (A) then L has good
Prattini structure.

PROCF L |
We have V(L) & p (1) € @W(I) . By (D) we have
W ¢ v@ . ms U= po@= PE
clearly these are nilpotent. Finally by Theorem 3.14.9 we have

@ = (). | » =



There is one case in which (A) holds trivially.

FROPOSITIOCN  3,1.11

If L has a finite chief series then L has (A) .
PR0O07
| If XK<d1L then L /K has a finite chief series. Since
(P (L /¥) centralises the factors we have P /e n
Thus A (L /K) € P /r) € v /X)) . B

§ 3.2 THEZ CHITF AWWIHITATOR PRCPERTY

Throuchout this section we continue to allow L +to be
-either a Lie ring or a Lie algebra over a field & .
Iet S be on associative ring and Il a right S - module.

A chief factor of I is a module of the form H /K where

H and K are submodules of ! and H /X is irreducible.

let ‘P () be the intersection of the annihilators
in S of all chief factors of M,

tow consider a Lie ring ( or algebra ) I and let
¥ = ‘U(L) » U = U(L) . Then ve may consider U = U(X
to be the subring ( subalgebra ) of U generated by 1 and X .
11;1 this way any U - mociule is also a Uo - module.

Ve say I has the chief anmihilator nroverty if whenever

1 is a Noetherian U - module and 2z € Z(Uo) m kPU(?:T)
then there exists an integer n such that M2" = 0 ( where

Z(Uo) is the centre of U ).

mmonl  3,2.1

.If any of the following hold :



(g

(1) L isalieringand L € €
(2) L isalie algebra over a field B, ond cither
(a) char ‘& - p>0 ad L€ F M U]
or (b) char ﬁ. 0 and L € :}f\m

then I has the chief annihilator property.

]

"PROOF
Let 1lI be a Ncatherian U - module. We must show that
if z € Z_(Uo) e LPU(H) then 2" = 0 for some n .
If =" # O for all n we can choose a submodule I of MU
maximal with respect to Liz" ¢ I forall n. By
replacing i1 by M /I we can assume that 1z~ < T for-
every nonzero submodule J of M.
let X = {méM’mz =o} . If X £ O then
" £ K for some n and then mz“” = 0, Thus ¥ = 0,
Now consider If as a U_ - module ( note that N £ ©
for othsrwise L = 0 since L is soluble ). The map
B8 U —> , n+—>nz
is a Uo - module monomorphism ( since 2z is central in UO ).
We can therefore. define a sequence
ﬂl /32. ./GJ
I'-‘I = }T ’—", I«: — I-I ——P seeoe
' o] 1 2
of Uo - submodules all isomorphic to 1, as follows :
Lét mv———)mk be a Uo— isomorphism M ——->I.I.K . Define
/G'k(mkgn B (mz)k
" Iet 1 be the direct limit of this sequence. Ve may assume
that
M =M € I, € ... £ H
o 1
and that each 'I.’Ei. is a Uo ~ submodule of 11, Let Y be

an indeterminate and make i into a UO[YJ - module by

- — —
letting Y actas /B where B : UT—>1H , nbH>m



is now an autonorphism. .

We will show that there exist maximal UO[Y] - submodulés
in . Let B be a moximal U - submodule of I ( M is
a Noetherien U - modwle ). Then ¥ /3 is firnite by
Theorent 2.3.7 when L is a Lie ring and ‘finite dinengsional
‘by Proposition 2.3.4 in the cases when L is a Lie algebra.
‘B 1is also a Uo - submodule of I and so there exists a
maximal Uo - submoduvle containinz B, say A . We can now

define a sequence of Uo - subrmodules

2 <
A = A i‘? A —-—-—-’d A hi’) e0 e
o) 1 2
where X e = ﬂ]’ R y . and
“ A . :
A < I, for all k . Turther for each i, A; Iis

isomorphic to A and If /Ai ig isomorphic to M /A .
For each 1
0 —>4, —>, —> U, /A, —m>0
i i 1771
is a short exact sequence. So the direct limit A is such that
0 —»> A —>7F —»T1 /£ —>0
is exact. The elememts of 11 are equivalence classes of

ad
elements in UT.Ii ( disjoint union ) indexed by the elements

=0
of M. Thus T /E is finite wvhen L is a Iie ring and
finite dimensional when L is a Lie algebra. A is clearly
a UO[Y] - module and so there exists a maximal UO(Y] -
submodt‘lle containing s

Fence there exists a maxinal Uo[Y] subnodule X say ,
end 1 F K ( since if M < K then X = w ] = W
contradicting maximality ). A |

Yow UO[Y] is the universal enveloping ring ( algebra )

of a direct sun L @ 7 vwhere T ’-::'Z. (or T = ’é ).

Then. ¥ /X is an irreducible UO[Y] - module and hence is



finite by Thecren 2.3.7 vhen L "is a Lie rins and finite

dimensional by Proposiﬁtion 2.3.4 when L 1is a Lie ‘a.lgebra.
Let Ko = MAX, then K, is a Uo - module and

b /Ko Z (1 + ) /X vhich is finite ( respectively finite

dimensional ). Now Ko £ 1 and we can take a Uo -~ submodule

'K1 < I naximal with respect to X < K, . Since

1

z € kPU(LI) we have Mz <€ K, ( since if M /H is an

R
irreducidble Uo - modu;te theré exists 2 U - module XK' maximal
with respect to X' =< 1I and then ¥ /XK' is an irreducidle

U - module ). Further Kz € K. Tence the endomorphisn
irduced by ,3 on I.I./Ko is not an automorphism. There -
exists m € M such that nz € Ko but m ¢ Ko ( vy
finiteness in the lie ring case and finite dimensionality in

the Lie algedbra case ). Iowever ﬁ’-'(mz) = n, so nmn€ K
since K is a Uo[Y] - module., This is a contradiction.

Hence the result.

§ 3.3 113 ALGITRAS

Te now restrict our attention throushout this scciion to

Lie algebras L over a field 'ﬁ .

IZ0A 3,31

Iet L bYe a Lie algebra over a field '& « Suppose that
_ either
(i) char’& = i>>o and ‘L €gf\’n,(p
or (ii) char /& = 0 and L égf\ﬂm
then AT (L) = kP(L) .
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PROOP
Iet A = AY(L) . By lemma 3.1.4 we mey assune that
A is abelian. Ve know  U(L) < &f)(L) . We now proceed
by induction on the derived length 4 of L ., V%hen d = 1
the result is trivial. Suppose the 1emmd is proved fof d-1.
'Then L /4 hes derived lencth & - 1 and further by ‘
‘Theoren 3.2.1 U = U(L /A) has the chief annihilator
property.
By the remarks before lemma 2.4.5 U is an integral
extension of a Noetherian subrinz R of its centre. Then A
is a Noetherian R - module. Since R is ceniral in U we
can consider U as acting on A as a subring of EndR(A) .
We now make use of the follawing result of Small's
( Fiscﬂer 9] p77 Theorem 2.1 ) : = If R 1is an associative
ring and ¥ is a Noetherian right R - module then each nil
subring of EndR(M) is nilpotent.
By the remarks aboﬁe and the chief annihilator property
2(0) A P (4) isanil subring of Indy(4) end so by
Small's result acts nilpotently on A ( where U, = u( U (L 74))
Ir U@ A P (1) then P(L) /A is rontrivial.
clearly P() /2 < P(1/4) . Since by the induction
hypothesis ‘{)(L /A) = AU(L /A) and both are nilpotent
we can.find an elenent a + A € Z1( VU (L /A)) vwhere
a € W)\ a. remceif W/& = 2,(AT(L/4) then
poewm o~ P> AL I teT and 2 = t+AE U
then z € Z(Uo) ~ kPU(A) and so fromAabove T /A‘ acts
nilpotently oni A. T /A is nilpotent by the induction

hypothesis and so T is a nilpotent ideal sirictly containing

A vwhich is a contradiction. Fence the result.

5
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eI 3.3.2

- T ieta e
-l e

Iet 1 be a Lie alcebra over a field £ . Suopose that -

either .

(i) cher & p> 0 and I €‘gnﬂd‘)
or (ii) char R = 0 and L € ‘gnﬂm

then I has good Prattini structure.

PROOF
By lemma 3.1.6 we can assume 1S (L) € ) . Then

L has properiy (43) by lemma 3.3.1 . The result now follows

by Corollary 3.1.10 ,

Part (ii) of Theorem 3.3.2 was originally obtained by
Towers [34].

. It is worth noting that the situation may be different
here from Chapter 2 vhere there were counterexamples to show
that the characteristic O case was essentially nore restricted
then the characteristic p case. The standard counterexamples
do not worz as such and ve know of no 'éifﬁfylF' Lie algebra
( of any characteristic ) which does not have food Frattini

"structure. A possibility for characteristic 0 is that

soluble f;g. nilpotent by trigonalisable ( in the sense of
¥cConrell Eléﬂ ) Lie algebras have good TFrattini structure.
In the énveloping algebras of trigonalisable algebras ( and
also in Curtis rings ) the Jacobson radical and the nilradical
, coincide and so the chief annihilator property ( ip, a stronger
form ) would follow if a primitive ideal containiﬁg the
armihilator of a ( lNoetherian ) module always ennihilated

som? chief factor of the rmodule. This is true in the abelian

case by Iakayama's lemma.



_‘9 3.4 LT3 RINGS

From now on L will be a Lie ring.

Suppose that L = AJ (L) ( for example if L is
nilﬁotent ). In this case the chief armiﬁilato: property
means that if 1 is a Ioetherian U = U(L)- module and
'z € 2(U) @U(I.I) then there exists an integer n such
that 12" = 0.

It is in this form that Hall (/4] malkes use of the chief
anmihilator property in the group alrsebra over an absolutely

algebraic field of prime characteristic of a f.7. nilpotent

&roup.

LIIIA 3 .. 4,1

: 2
Iet L. € gﬁ n and suppose that A = AJ(1).
If U(L /A) has the chief annihilator property then

5 (1) P(1)

PROOF

By lemma 3.1.4 we can assune that A € U-I . llow
L/A € ’VL co the chief annihilator property tales the
form mentioned above.

We know that AS(1) < gP(L) . If these are not
equal then we can find an elenent a + A € Z1(L /A) where
a€ PE)NA. Towlet z = a+A € UL /L) .

* Cleorly z € 2(U) and since a € LP(L) it follows
that z € ‘PU(M . Tow A is a lloetherian U - module
by lemma 2.1.9‘. By the chief annihilator preperty Azt = 0

for some n. Wence <A, ad isa nilpotent ideal of

L contrary to the definition of A .
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COROLLARY  3.4.2 .

Ilet L & “gﬂ } l . Suppoze that for every ideal
K of I the universal envelopinz ring U((L /X) / v (L /X))
has the chief annihilatior property. Then L has good
Frattini structure.
PROCF

By lemma 3.4.1 L has property (&) and the result

follows from lerma 3.1.6 and Corollary 3.1.10 .

THZOMTT  3.4,3

et L eg,\/nl . Then L has good Frattini
structure.
PROOF

Corollary 3.4.2 and Theorem 3.2.1 . . 3|

fote that in obtaining Theorer 3.4.3 we have not used
the full pover of Theorém 3.2.1 and it seems possidle that the
result can be extended to the class % ~ Nz 6 )

although we have not been able to do this.



- CHAPTIR 4 RTSIDUAL PROPIRTIES OF CIRTATY CLASSES OF

LI® RINGS

Ve exami.ne enalogues of results of Gruemberg (1],
Higman (/8] , and Wehrfritz (40] on residual properties of
r.lilpotent groups. As might be expected nilpotent Lie rings are
especially well behaved. The methods of [40) are followed
although the linear structure of Lie' rings enables us to
strengthen and simplify many results.

Ve also prove a Lie ring analogue of lMal'cev's result (27]
that f.g. linear groups are residually finite. The proof is

based on a module theoretic argument of Wehrfritisz (4] .

§ 4.1 RESIDUAL PROPERTIES OF NILPOTENT LIZ RINGS

ImoA  4.1.1-

let B be 2 Lie ring, A S B and B> < A . Further
suppose that A has exponent m > 0 and that B /A contains
no m- torsion ( i.e. forall x€ B, mx € A implies
that x € A ).

Then AAmB = 0 and mB € U] .
PROOF

If a€ AN mB then a = mb for some b € B .
But B /A contains no m - torsion and so b€ A and a = 0
. ( since A has exporent m ).
Further

(A + mB) /A

n

m £ m3/(AN mB)

= B /A

and so is abelian,
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TEORTY  4.1.2

.Let L be a Lie ring. Supnoze

= < X < L =
0 L, £ L, £ s 5 L
is an invariont series of L and foreach i = 1, 2,..4yn

let I.’[i be a set of integers. Suppoze that each factor
Lj /Lj-1 is one of the following two types ;
(1) Lj /Lj_1 is torsion, and each primary component is of
finite exponent ﬁ.ividing come menber of 1IN, .
J-t
(ii) L. /L. ., € Ul ond contains no \UJ I, - torsion
J J=1 = 1 .
and there exists j < J§ such that I, /I'i-1 is of
type (i) vhenever jo <i<J and

f\(L’j+ij) = L

J
. [o]
meMJ

(o]

Then for each 0 # x € L there exist m, yerens m with
n; € ¥; such that if d = mp.....m then x ¢ dL.
PROOT

Let x € LN{0} . Te proof will use inductior on the
number of factors of type (ii) . Suppose that there are nore

of these, Then L is torsion and is a direct sum of its .

s,
h
.

primaxy components. Let p be a2 prime divildirgs the order of

Then for each i there exists an element my e I.’Ii such

that :ni(Li /Li__1)‘ has no p -~ torcion and so (m1....mn)L

e - - \

has no p - torsion and hence = ¢ (m1....mn,L . |
Supposz now that I‘j+1 /Lj is the first factor of type (ii) .

If x € Lj , J 20 and =x is of finite order then let »p

be a prime dividing the order of x . Since X ¢ <LJ)P’

( where Lp, denotes the sun of 211 the primary components

of L for all primes not equal to p ) ve nay facter out



by (Lj)p' and so assume Lj is a p - ring., Then for each
o = ) . . - - . P - < . .
i = 1,000y there exists m, c hi such that miLi < Li_|

By lemna 4.1.1
( LJ’-\

Replace the original series by

+ mibsy )N Ly = Iy, .

0 = L, € veee S L, = (L,
-1 J-

<t.00 \<L0
0 =~ J

<
+ miju) € Ly

Repeat the process a further Jj - 1 times, so that there exists

an ideal Y  of L such that Yo‘n Lj = L 0 ( and

(o]

so x ¢ Y ) and an invariant series

< < = <
Yo — LN ) ~ Yj Ljf" -~ IJ

wher Y. £ Y.
ere lel = YJ.-I

{oo.oa éL = L

J+2 n

This is a series of the given type for L /‘1'0 s where for

1= 14000003, Yy /Yi- is of type (i) with associated

integer Set {mi} » a.rld fOI‘ i = j + 2,....,11 ? Li /Li-l
has the same type and integer set as in the original series.

By induction .there exists mj gg 2o with m. S I.Ii such

that x¢ d‘L where dl = m. veee mjmj+zoooo mn .

Supi)ose now that x L, . There exists m, & 1,
J JH Jtl

#
= L say ( where

such that x ¢ (L(jH )o + omyy Loy )

(3 + 1)o is as in the statement of the theorem ). Apply the

induction hypothesis to the series
L# é L- é evs e e \< L = IJ
i+ n :
vhere L. /L% has type (i) and integer set {mjﬂ} and for
i>3, L’.“ /Lj has the same type and integer set as in the
original series. Apply lemma 4.1.1 with B = L 0 /Lj_' ,

' ‘ 2
= <
A Lj /Lj-| . Then Lj“ /LJ.EU] so B"< 4,

< =
mI;, € L . so md 0, and B /A contains no

mj - torsion by hypothesis. Iience

A .B = . 1. =A . 'o
N mJ LJ N mJL;jﬂ LJ_‘ 5



IEITIA  4.1,.3

¢

If L is torsion free then L /Zi(L) is torsion free - = TR

for all i <¢D .

PROOT

Let .

But

It is clearly sufficient to consider the case i = 1.
x€L and nx € Z,(L) ,n # 0. If y&€ L then

0 = [mx,y]) = nfx,y]

L is torsion freeso [x,y] = 0 and x € 'Z‘(L) .

Iet L be a Lie ring.” Then the torsion spectrum 6f L,

denoted by TT (L) , is the set of primes p such that L.

contains an element of 6rder P .

1o me

Suppose that TT is a set of primes. We write L € R3.n.

an that L is residually a finite TT - ring. Ve write

R 3? for R £ey .

THEORET  4.1.4

(a)
(v)
(e)

*

PROCF

let L €‘%.f\/n

If (L) £ @  then LE R?vm  and if
T7(L) = @ then L € RGP  for all primes D .

If TT is any infinite set of primes then

N €F

pew
Suppose that the exponent of T (L) divides m > 0 .

Then for any infinite set of primes TV

mb A (Y 3pL) =0 .
pPEeEW

Consider the series

where

0 é LO < L‘ S N K) é L = IJ
n

'Lo = T@ ad I, /1 = 2(3/1) .

5 ¢



Now L € Max so in particular - T (L) € F and there is

79

T2 Tr(L) = rumbsr m  such that nL = 0. By lemma 4,1.3 -7

the factors Li /Li—\ are 211 torsion free and thus are free
abelian of finite rank.

(2) If p is any prime each I, /Li_ . is residually a finite

p - ring. 3By Theorem 4.1.2 if m # 1 +then
o

nmSL = 0

Sz

and if m = 1 then
. (]

MNPL = 0
s
for each prime p .
(b) and (c). Iet TT be any infinite set of primes. There
exist infinite disjoint subsets Trl yeoosey ’(T,‘ of TV
n
such that every prime in U]TC does not lie ir TI (L) .
L=t
By Theorem 4.1.2
- 0 = --n (mp‘ XEX) pn)L
where p, ranges over T .
Now m is a TT (L) - number and none of the p, is
contained in TT (L) so
(mp‘ cese pn )L = anP'Lr\ 'oo.nan
( T (L) is a direct sum of its primary components ).

Hence (c¢) follows,

Now apply Theorenm 4.1.2 to L /Lo to get

<
A( P, +see P )L < Lo
and (b) follows.

Iet TU te a set of primes. A ILie ring L 4is said to be

TV - divisible if for each p € TT  every element of L

is a multiple of p ; or equivalently I = mL for all m > 0O

with m a TV - number., If TV is the set of all primes



then L 4is divisible. The join of Tl - divisible subrings

is 2lways Tl - divisible. MNence every ring - I has a unique’ -’ = es

maximal TT - divisible ideal which we denote Bn(L) . If

this is O then I is said to bve TT = reduced . Thus a

TT - reduced ring contains no nontrivial T - divisible.
subrings.

Let 8“ be the class of all TT - Lie rings of finite
exponent ( i.e. of exponent a finite TT - number ).

Now ilf L € RETT then so is every subring and clearly
L must be TT - reduced. However reduced Lie rings need not
be residually of finite exponent in general. There exist
reduced abelian p = groups which contain elements of infinite
height ( Fuchs [4] p118 ) and considering such a group as
an abelian Lie ring provides the necessary counterexample.
We will now investigate how far the converse of this result

is true.

ILEA - 4.1.5

Iet L be a Lie ring then if

(i) Z‘(L)p has finite exponent dividing p° , then so does

(z‘i“ (L) /Zi(L))p for all i <w.
(ii) 1f Z2,(1) is T - reduced for some set of primes
"then so is Ziﬂ(L) /Zi(L) for 2ll i < ,
PROOF )
(1) let xe€ 2,(L) and y€ L. If P'x€ %,(L) then
0 = Cy,pox] = o"Lv.,x]
Hence [y, x] € Z,(L)p so for all y € L
0 = o"[y,x] = [v,o%]

So p'x € ZI(L) .



(ii) Let R /Z;(1) be a TI =~ divisible subring of
| 2;(L) /Zl(L) . If y€ L then the map '
x + 2,(1) ——>[x, v] , x €R
is a Lie horr;omorphism of R /Z'(L) onto [R,y] = z,(1)
( since both are abelian ). [R, y] is hence TI' - divisible

and so is trivial. Thus R = Z'(L) and the result follows. gg

Our first theorem is a simplev rewrite of the corresponding
result for abelian groups ( Wehrfritz (40} p4 lemma 3 ). It is
worth noting that the Lie ring result is considerably sironger
than any corresponding result for groups and in fact is true
( with the same proof ) with the obvious reinterpretation, for

generalised rings in the sense of Fuchs (a7 Chapter XII .

. . - o o e
.-

THSORES  4.1.6.

» TLet L bYe a Lie ring and TT a set of primes such that
for each p €T the p - component of I has finite
exponent, Then L € Réﬂ- iff L is TV -~ reduced.

FROOF

Every member of ETK is TV - reduced and so if L € RE.“,

then L is TI - reduced.

Suppose that L is T - reduced and let R = Cl mL
lwhere ‘m ranges over all positive T - numbers. Clearly it
suffices to prove that R isdivisible . Iet a € R and
P (S | S Lp has finite exponent p' . say. Then
Lpf\ an = 0, Since a € R there exists for each i an

element a, € an such that pia, = a, lNow

1
i n
P (pa.i‘H - ai) =.0 and yet (pa.i‘_l - ai) € p L ,hence

a; = Pag., for i = 1, 2,¢0000 and in particular

ol



a; € piL for each i . Let m be any TI - number and write
m = prs for some = >/ 0 with s prime to p . Now |

a, € PL, pa, = a € R < nL. Hovever p'L /mL has
exponent dividing s and therefore no elements of order p .

Thus a, € mL for every positive T -« rnumber n and so

a, € R. Thus R is TI ~ divisible and the result is proved.

COROLLARY  4.1.7

let L be a Lie ring and suppose that TV is a set of
primes such that for every p € T the p - component‘ of
L has finite exponent. Then L/ a.n (L)€ =r E‘ﬂ' .
PROOF | _
By Theorem 4.1.6 we have only to prove thét for p €T
if Lp has exponent dividing p° say then so does (L / B‘II'(L))p'
Suppose x € L and p'x € D.“(L) for some n > @ .
Then there exists y € Bn(L) such that p™x = py. Then
Plx-4) 10 P pUY):0 P phx e ply  (p1L,:0)

Thus (L / J;-(L)), has exponent dividing p" . .

COROLLARY _ 4.1.8 ' .
Let L be a Lie ring and suppose that each primary

component of L has finite exponent. Then

2@ = N m . n

Mzy

THZORT!  4.1.9

Iet L €Tl and T a set of pfimes such that for all
PET the p - component of L has finite exponent. Then

the following are equivalent

(1) 1€ RE



(ii) L is Tr - reduced.

(ii1) ’z'(L) is 1T - reduced.

PROCF

(i) iff (ii). Theorem 4.1.6 .

(ii) .implies (iii). Clear . '

(iii) implies (ii). Let 2z, = Zi(L) and let

T /zi = T (2, /2.) .

1+ 1

Now suppose Z, is T - reduced. By lemma 4.1.5 (ii) we have

/%,

i is T - reduced for all i . Dy lemma 4.1.5 (i) for

Z,
1+
all p €T the p - component of Ti /Zi has finite exponent.
Hence by Theorem 4.1.6 we have Zi+| /Zi € R E.n. .

Yow apply Theorem 4,1.2 to the series

ZO 5 TO g Z‘ < T‘ S R Y] é_ ZC = L

where the associated integer sets are all taken to be the set of

all T - numbers. This gives L€ R E‘lr as required.

§ 4.2  LIE RINGS OF MATRICTS

Suppose I is a Lie ring, let K <3 H s' L and T' £ Der(l).

Define |
e (/) = { e | P(x) € x, for a1l xe€ H}
= C say.

Note that X and ¥ are C - invariant, and if x € H
then P € ¢ induces the trivial derivation on H /X .

C is a Lie subring of J' , and in fact is the largest
such that C(H) < X ( where C(H) denotes the collection of
all elements of L of the form  (x) for all P € ¢ and
all x € L).

et 0 = L =< ... € Lc') = L Dbe a finite series



for L . The stabilizer of this series is defined to be
n
.. Z = Q cDer(i;)(Li-l /Ll)
and consists of those derivations of I under which every ternm
of the series is invariant and which induce trivial Qerivations
on each factor. If ﬁ) < Der(L) we say that @ stabilizes
the series if @ < 7, .
We define a class Gn by saying that L € @n iff
L is isomorphic to a subring of the stabilizer of an invariant
sefies of length n for some Lie ring ( i.e. by abuse of
language iff L stabilizes some invariant series of lersth n ).

The following lemma is the reason for introducing

stabilizers ( the version for groups is due to Kaloujrine (20] ).

LA 4.2.1
G"\ < nn-l
PROCF
Suppose V'€ (S, . Then we can find a Lie ring L on
which ™ acts as a Lie ring of derivations, and T has a
Series o = L s eeo o é Il = L ’ L-< L WhiCh
n o] 1
is stabilized by ' .
. n [ )
Recall that T' = [T' , T'_] . e will prove by induction
J
<
on j that T'(1) < Dy,; forall 1.
If 3 = 1 there is nothing to prove since T stabilizes
the series., Suppose Jj 2> 1 and the result is established for Jj .
Then .
, . J . J
THUT @) < T,

) £ L.
i+ i+j+1

and

P (rle)) <€ Ta,) < o

i+] i+3+1



And if ‘~P€T"i, WET'  tnen
Lo, ¥Ia) - Pova) - Woea)

< Li+j+1
JH
<
Fow putting i = 0 and J = n we find that
n n
T (L) = 0 andso T = 0 and T‘éfn'n_'. < |

If R is a cormutative ring with identity, and A is an
R - module then EndR(A) is an associative ring and can be

regarded as a Lie ring in the usual way.

LEITL 4,2.2

Iet R be a commutative ring with identity 1

R ° Further
suppose P is an ideal of R, A is an R - module such that
© .
,f\ AP = 0 and m is a positive integer such that m‘IRG p.
L6

If T' is a Lie ring of R - endomorphisms of A satis -
tying T' (A) € &P, and K, = c (4 /APy | then
(1) P <x <T '

(ii) 1K /Ki is a nilpotent Lie ving of class at most 1 .
o

(ii1) /Y x. = 0.

' tes 7T

PROCF

First we will prove by induction that for all i
| T ) < ottt
If i = 0 then the result is true by hypothesis. Suppose
A > 0 and mi'1-f—' (a) < 2P . Then since ml, € P
T () = ' T @) < mart - A(m)P
< APi+1

Wle can consider A as an abelian Lie ring and then T is

a ILie ring of derivations of A . Now for each

b5



) - W <
So T’/Ki stabilizes the serics

ISP CEP SRR |
and so by lemma 4.2.1 T‘/I--Zi c ’Vli . Hence (ii) . Also
.from above miP < £, siving (i) . Finally if Y € éKi
then X(A) < /.%%Pl - 0 . S Y =o0.

(&Y

THRORT. A.2.3

Let R be a f.g. integral domain and M = I.‘!n(R)L the
full Lie ring of nX n mnatrices over R .
(i) If char R = O then for all but a finite number of
primes p , 11 ‘contains an ideal of finite index which
is residually a firite p - ring .
(11) If char R = p> 0, then 1 contains an ideal of
‘ fini{e index which is residuelly a finite p - ring.
PROOT
If P is a naxizel iceal of R tren R /P is a finite
fiecld of characteristic p say, by Bourbaki [3} V 3.4 Cor 1.
R is loectherian so (:3 Pi = 0 by Zariski ard Samuel £42]
Chapter 4 , Theoren 12 .
I.In(R) is the endomorphisn ring of a free R - module A
of finite ramz n . Trivially (“\ APY = 0. et
H = C(h/4P) . ¥ow R /P isa finite field so H is of finite
index in 1. Let K, = Cy(A /Yy Lok < and vy
: lemma 4.2.2 (:.) I /Ki isa p- ring}.
Ve now claim that R /Pi is finite. The proof is by
induction on i . R /P is finite. Suppose that R ot

. - R . i-1
is finite. lNow R is Yoetherian so P is f.g., as an

bb



R - module., Hence P /P* is f.g. as an R /P - module and
thus is finite. Thus R /P* is finite.
A/t is a free R /P

i+

-~ module of rank n and so,
since R /P is a finite ring, we have that H /Ki is finite.

This shows that H is residually a finite p -~ ring.

If char R = p then char(R /P) = p and this proves (ii).

Suppose char R = 0. If p is a prime of Z and P,
is not a unit of R then p1R is contained in a maximzl ideal
of R, Now suppose that for i = 1, 2,0e0e0e P is a
prime of Z such that Pi1R is a unit of R . Then |
< P, 1q l i = 1, 2,..4. > is a (multiplicative ) free
abelian group of infinite rank. But the group of units of a

f.g. integral domain is f.g. ( Samuel {313 Theorem 1 ). Thus

for all but a finite number of primes »p , p1R is hot a unit

of R and this proves the result.

COROLLARY 4.2.4

Suppose 'ﬁ is a field and let L bYe a f.g. Lie subring
of Mn(ﬁ )L. . Then
(i) If char B = 0 , then for all but a finite number of
primes p, L contains an ideal of finite index which
is residually a finite p - ring.
(1) If char & = p> 0, then L contains an ideal of
finite index which is residually a finite p - ring.
PROOF
’ . (]
Suppose that I is generated by the matrices (xij')),....,(x
ani R is the subring of R generated by all.the xi(;) .
Lie multiplication in Mn(—ﬁ)L is defined only in terms of the

field operations in '& and hence L is a Lie subring of

s
ij
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Mn(R)L . The result now follows from Theorem 4.2.3 .

This corollary is essentially a Lie ring analogue of Mal'cev's
result [27] that f.z. linear groups are residually finite and

we could state the result in this form.

COROLLARY  4.2.5

Suppose ﬁ is a field. Then every f.g. fz - linear

Lie ring is residually finite. B



CHAPTER 5 = SOLUZLE LIT RINGS Oé PINITE RAVK

In‘this chapter we study the residual properties of Lie
rings vwhose ﬁnderlying abelian groups satisfy certain rank
restrictions ( in the sense of Fuchs (10). p385 ) and which
are genreralisations of polycyclic Lie rings‘ in the soluble case.
Our main inspiration is Robinson's work for soluble groups [30) §6.
Because of_tbe linear structure of i,ie rings and the great
influence of the underlying abelian group we are able to obtain
results applicable to Lie rings which are not necessarily soluble.
For soluble Lie rings the results we obtain are stronger than

the corresponding results for groups, for the same reasons.

S; 5.1 mrs crasszs Mo am 2 Ulo

Let L bYe a Lie ring. The torsion free rank of L,

which is denoted by ro(L) , is the cardinal of a maximal
Z - linearly independent set of elements of L of infinite

order ( in other words the dimension of Q ®EL regarded as
a vector space over @ )

If p is a prime, then the p - rank of L , denoted by
.rp(L), is the cardinal of a maximal linearly independent set
of elements of order p in I .

If we consider L* as an abelian group it is clear that
ro(L) and rp(L) are equal to ro(L*) and rp(L*) respectively
( as defined in Fuchs ({16} p385 ) and hence are invariants

for L. Using this equality we can state irmediately ;



IDITIA  5.1.1

Tet 'L be a Lie rirg, B € L then . : ST
¥*

(1) = (1) = r(8) + z(L/5")
(12)0¢ - = (8) + 2,(1) € = (B/%) € = (1) +x ()
for all primes p .

PROOF

As for abelian groups cf Robinson {30] p147. o

It is clear that ro(L) is finite iff (L/ T (L))* is
isomorphic with an additive subgroup of a finite dimensional
vector space over. €3 , and rp(L) is finite iff

T (L); € Min .

Let C]o denote the class of all abelian Lie rings which
have finite torsion free rank and finite p - rank for all p .
By 1emma>5.1.1 Ul, is S - closed and Q - closed.

Ulo* is then the class of all Lie rings with finite torsion
free rank and finite p - rank for all p . Once again
lemma 5.1,1 gives S - closure, Q - closure and also
E - closure. Euo is the class of poly - mo rings,

B Zﬂo isan S-, Q- and E - closed class containing

both polycyclic Lie rings and soluble Lie rings satisfying 1in ,
Basily (U]l m z O, =0l, and 'U'(:éf\ =01 . s, .
| Ir L € (J is of finite exponent then it is finite

(er Robinson f30] p148 considering L as an abelian group ).

' This gives us the very important fact that U:( Lie rings of

finite exponent are finite.

If L is a residually finite T - ring, so is every subring
and hence L must be v - réduced. We will investigatel how

far the converse of this result is true for the classes we



have defined above, In this context compare the results of § 4.1
The example prior to 1émma 4.1.5 shows that reduced Lie rihgs -
need not in general be residually finite ( since elements of

inTinite height lie in every subring of finite index ).

THEORTW  5,1,2

*
Iet L €U]° and TT Dbe a set of primes., Then L € Ryn—

iff L is TV «~ reduced.
PRCOF
x _
let L € U7° and suppose it is TI - reduced.
T (L) is a reduced TI - ring and so each of its primary
components is finite ( since it is of finite rank ). L now
satisfies the hypotheses of Theorem 4.1.6 and so is R E-n- .

*% .
But Uo rings of finite exponent-are finite and so

L€R:71“.. 7]

Theorem 5.1.2 is also true for generalised rings in the

sense of Fuchs ( cf Theorem 4.1.6 ).

CORCLLARY 5.1.3

- Suppose :X is an E - closed subclass of U: then
X A rF is E- closed. In particular Olim RF,
.' and EUL N RG“. are E ~ closed.

PROCF

Suppose N and L /N € X N R?.,.r then L 635,

and L is reduced. Hence by Theorem 5.1.2 L € ng .

We will now examine the soluble case where it turns out

that a considerably stronger result is possible,



IZTIA 5.1.4
| Suppése B <L ;md |L:3] <oco . Then there éxists
H<I L such that H < B and L/HGE .
PROOF |
" If YL : Bl <o then there exists m such that

mL € B and nL< L, soput H = mL. B

IBMA  5.1.5

*
L€ RF, AUl iff forall 0 £ x € L there
_exists a subring H of L such that x ¢ H and H uas
index in I a finite TT - number .
PROQF
: X
Use lemma 5.1.4 and the fact that Uo rings of finite

exponent are finite. 5 ]

LA 5.1.6

Leit 'L be a Lie ring such that nL "= 0. Then for any
derivation \P of L we have n @ = 0.

Thus any Lie ring of derivations of L has exponent
dividing n .

PROOF

Follows from the linearity of (P .

IZMA  5.1.7

Let N<IL and assume that every subideal factor of L
which has finite exponent is firite. Suppose L /N has an
Uo series of finite length in which each factor is
TV - reduced for some set of primes 11U , Then if x is an

element of N which is not contained in every subring of

)

A



index in N a finite T - number, then there is a subring of
I;"o‘i‘ index a finite 'lT - number to which x does not
belong.
PROOF

- Ve can refine the given series for L /¥ by inserting
the torsion ideals in each factor. This gives a series

N = I-!od A I <Nn = L

in which each factor I, , /N, is either forsion free sbelian
of finite rank or a direct sum of finite abelia.n' p - rings
for different primes p € Tr ( since TT -~ reduced implies
R 311— by Theorem 5.1.2 ).

Assume that n > 0 and that the lemma is true for
I = Nn-1 . Thus by hypothesis there is a sib;isng S such
that [M : S| is afinite TT - number m say. )\ Then mif <s
and so by hypothesis M /mM has order a finite TF - number,

et C = C(f/mf) . Then C< L and L/C € F
( Corollary 1.3.3 ). Further |L /C| is a T - number by
lemma 5.1.6 . Thus we can assume x € C,.
Case (i) L /M is a direct sum of finite abelian p - rings
with p € TT .

Write € = C/mf, M = M/mM and ¥ = x + mf.
Then C is a torsion TI - ring and so is a direct sum of its
primary components, each of which is finite.

Let the order of X be a [T, - number where TI_ is
a finite subset of TT . Then if '(_}'1 is the Tl component
of C, we have X € -C-1 . Turthermore ?1 is a finite

T, ( and hence TT ) -ring and T = _C-1 D —5;_ for some
52 (if C, = O then the index of m{ in L is a finite

T - number ). Hence X ¢—C—2 and_E/(J—Z = C1 has

13



order a finite Tr - number. So x is not contained in a subring

" 6f index a finite T - number in I.

Case (ii L /M is torsion free.
Define D = mC + m¥ , D<1L ., Then
(L /o] = [L/cl,lc/nls(L/cl,[c/mc\ < oo

( since [C /mC| is finite by hypothesis ). Further [L /D
divides |n /cl.| ¢ /mc| , ama (L /c| anda {c /mcl
are both TT - numbers. Hence | L /D[ 4is a T - number.
Suppése_ x € D and x = y nod(m) where y € mC.
Then x £ mz mod(mM) where z € C. But x€ N €™M so
mz €1, Since m> 0 and L /I is torsion free, we
have z € I, Hence x € mM and this is a contradiction.

Hence x¢ D .

I=2A  5.1.8

‘Iet L be a Lie ring with Fitting ideal ¥ = S (L) |
and let T %he a set of primes.

If "€ eJUl, and Z1(N) is T - reduced, then every
 abelian ideal of L is T - reduced.
PROOF

By lemma 4.1.5 (ii) , if i <¢o then Zi+1(N) /zi(n)
is TT - reduced and so is R Gﬂ ( Theorem 5.1,2 ).

Suppose Zi(l{) € R?n- , but Zi+1(N) ¢ R ::r’“. .
Then there exists x € Zi+1(N) vhich belongs to every ideal
' of Zi+1(N) of index a2 finite TF - number. Then x € Zi(N)
( since the factors are Tr - reduced ) so x ¢ mZi(N) for
some positive T - number m .

Iet ¢ - cZiH(I'T)(Zi(N) /m3.(¥)) . Since ¥ € 2 Ul

subld:eal factors of I of finite exponeni are finite, and

L



so, by corollary 1.3.3 zi+1(n) /C is finite, and by

lerma 5.1.6 it has exponert dividing m . Fow n is - R AR T

. ' osmfl? o
T - number and hence so is [ Zi+1(N) /C l . x €& ¢ Aand

sc does not belong to a subring of finite T - index in 2, +1( ).
Hence Z,(r) € Ry forall j <@ . (0rjukue s13)
Now suppose I contains an abelian ideal that iz not
T - reduced., Then its maximal T - divisible ideal R
is nontrivial. Also R € N . Let H be any f,g. subring
of N. H. is contained in some nilpotent ideal of L and
[L,AH‘_] = 0 for som n = n(H) .
Let p be any prime and let P be the p - component of R.
If P_ is the maximal divisible ideal of P then P /1»'>o is
finite (since N € 5Ul, ). Also [P ,,‘PH\"] - 0 where
ny = log (IP:?,}) tr,(P,,} . Turther since n, is independeunt
of H we have [ P X ] -0 ana PSSz () which is
I -~ reduced. However P is TV =~ divisible since R} 1is
( whether or not p €T ). So P = 0 and R 1is torsion
free. 4
Now let R = ) ®, R, then R is a vector space
of dimension r = = ro(R) over ) . H acts as aLie'

ring of derivations on R and we can extend the action of

H to R by

(r ® X )x = r ®« , T€ R,x€ H, XER
Thus H acts linearly on R . low since [R ,“H‘] = 0
then

> [z,5]> ... >[%.,0]
is a descending chain of subspaces of R . Since aim(R) = T
we have [.ﬁ ,'HW] = 0, and so [R ,GIIh ] = 0.

[ ]

Since T, is independént of H, [R ,rH\] = 0 and so



R € Z, (%) which is T - reduced, so R = 0.
S o ) S ‘ '

TmoR%. 5.1.9

Let L.€ .EUO and Tr be a set of primes. Then
L € RJy  iff the centre of the Fitting ideal of L is
T ~ reduced.
PROOF

Suppgse L € EUO and thé centre of the TFitting ideal
of L is T - reduced. 2Py lemma 5.1.8 . every abelian ideal
of L is T - reduced.

Yow we define ideals Ai of L as follows : 'Ao = 0,

and if Ai is already defined A,

541 /Ai is the maximal

abelian ideal of L /Ai containing the last nontrivial term
of the derived series of L /Ai . Then
0= A< A< e < A =L

is an UL series of ideals of L .

Iet R /A1 be any T - divisible abelian ideal of L /A‘ .
If m is any positive TT - nwﬁber A /mA1 is finite and
elements of R /A1 induce derivations on A1 /mA1 « Now
R /A1 has no proper subrings of index a finite TI' =~ number
and so R centralises A1 /mA1 . Hence
| Ca,7r] SQmA1 = 0
since "A1 is T - reduced and so by Theorem 5.1.2 is R 3.".
( where m ranges over all positive Tl - numbers )

If y € R the map

x + A, b—m—> [x,y] , x€R

1
is a Lie homomorphism of R /A, onto (zr,v] € 'A1 by

the construction of A‘l . Hence [ R, y] = 0 and R € Zﬂ

By the maximality of A, , R = A, . So L /A1 inherits

o



the properties of L and A2 /A1' is T - reduced. Similarly
every A, . /Ai is Tr - reduced.

Iet 0 £ x € A, then x does not belonz to some

1

subring of index a finite TI - number in A1 and so by

lemma 5.1.7 =x fails to belong to a subring of index a finite

Tr - number in L , Hence L& Rs.n. .

' ax

Theorem 5.,1.9 is not true in general for o - rings.
ILet L be any finite dimensional simple Lie algebra over @D .
Let 'i. be L considered as a Lie ring ( by restricting scalar
multiplication to 2 ). The rational completion ( § 1.6 )
of T is L. L is sinple and so Corollary 1.6.2 ensures
that the Fitting ideal of T is trivial ( and hence reduced ).

~ Y3 ~ . '

However clearly L€ (Jl, and T is divisible and hence by

Theorenm 5.1.2 'f;¢ R3 .

COROLLARY  5.1.10

let L€ EUI, . Then L is T - reduced iff the
centre of the Fitting ideal of L is MW - reduced.
PROOF

Theorems 5,1.2 and 5.1.9 .

COROLLARY  5.1.11

let L € ﬂf\ EU.‘O and TV any set of primes.

Then L € R 3“_ iff the centre of L is T -~ reduced.

Having an important bearing on the problem of residurl
finiteness is the structure of minimal idezls and in the case

of E mc, rings these can be described explicitly.

N




THEQREM 5.1.12

U tet -L€ Bl - . If N is a minimal idedl of L, . . o L.

either

1) YeUlNTF e
or (ii) n < Uln?ﬁ and is
PROOF

\

et N be a minimal ideal .

is of prime exponent

finite rank and divisibdle.

Since L € BZ}(o , N is

cleariy abelian. Then X is either torsion or torsion free

( otherwise the torsion ideal is strictly contained in I )

If N is torsion it is a p -ring for some p ( since primary

components are direct ). Thus X

If N is torsion free it is divis

(a) If it were mixed the aivisi
contained in N .

(v) If it were reduced then the

O< pN < N and pi <L

is finite since r (N) <o .
ible for otherwise

ble ideal of N is strictly

re exists p such that

So N is a direct sum of finitely nmany copies of le . % |

COROLLARY 5.1.13%

If L € EQUI, then all chie

f factors are either

(1) »71rlf\ F  of prime exponent

or (11) Ulndt and fini

Robinson [30] p183 Theoren 6
theory case (ii) does rot arise.

as the following example shows. C
B

I’ = Qe

with the only nonabelian structure

[, 0, 0,0]

te ranlkt divisible , |
.45 shows that in the group

However it is necessary here

onsider

(0, xy)



Then L € E-UL and @ is a minimal ideal of L .

- We can however say the following 3

TEORT!  5.1.14

Iet L € g N EUO then any minimal ideal ( and hence
any chief factor ) of L is contained in OnF .
PROOF

Iet L be generated by X, ,.;.., X, 83y, and suppose
T is a minimal ideal of L which is finite rank divisible.
Let Yy seecees Y, e a basis for I (considered as a vector

space over K8 ). Ve have equations of the form

n

[x . v;5) = .QZ.—. % 51V
where i runs from f to m, and j runs from 1 to n .
The mn2 coefficients qijk are rational numbers. They can
be placed over a common denominator 4 . If r1y1 4+ sses + rnyn
is any vector belonging to the ideal I1 of L generated ty
Vi then none of the rational numbers T when reduced to
their lowest terms can involve in its denominator any prime

not dividing d . Hence I1 is strictly contained in I ,

contradicting minimality. Hence the result. ]

§ 5.2 e crasses b am 3 Oy

let I be a Lie ring. Then the total rank of L,
denoted =r(L) , is defined by
L = L L
r(L) )+ Zo m(n)
Let (JI, ve the class of all abelian Lie rings of finite
total rank., Tms. L € U, ifr T(1) € Min and

L/ _"C (L) has finite torsion free rank,



* :
( Hl is the class of all Lie rings with finite total

" rank.  This classis S --closed and E - closed and = =~ TAgmnai e

E Zﬂ‘ is the class of poly U,- rings and it is a proper
subclass of B Uo containing the polycyclic Lie rings and
soluble Lie rings with Min . B Ul, is S - and E - closed.

None of ml . Zﬂ,¥ and EU, is Q - closed ( consider
the abelian Lie ring with additive subgroup the rationals mod 1
However the torsion subclasses of these classes are @ - closed.
Finally ‘Ul m Em, ‘ = U]l'

Once again ( cf Theorem 4.1.6 ) the theorem for abelian
groups ( Robinson {30] p160 ) provides us with a result which

is also true for generalised rings.

THEOREM  5.2.1

let L GUI,* and suppose L is Tl -reduced for some
set of -primes T . Then L € R?—no where TI, is a
finite subset of T with carciina.lity at most r(L).
PROOF

L is T - reduced and consequently T (L) is finite.
By Karlansky (21) pi8 T (L)* is an abelian group dix"ect
factor of I . By Theorem 5.1.2 L € R3-ﬂ. so there
exists a F - number m . where T is a finite subset
of TT , such that L = WL is torsion free. It suffices
now to find a finite subset TI, of 1T  such that

, (44

is trivial ( since nL ch L ).

s, Where m runs over all positive TT° - nunbers,

Suppbse therefore that L is torsion free and nontrivial,
L is not TI - divisible so there exists p € TI' =such that

. L .
L > pL . Put P = f\ plL . Since L 1is torsion free it

i=©

).



follows easily that L /P is also. 3y lemma 5.1.1
r = rO(L) = rO(P) + ro(L /P)
Hence r(P) < r and by inductionon r», P € R:}Tf‘
vhere TI, €T and |TH| g r-1. Iet T, = T U {0}
so that (T,[ € r and defire R = Q nL, where m rTuns
over all positive TT, - numbers. It is now sufficient to prove

that R is T,

, — divisible for then it will be trivial, since

RSP,PGRH’W' and TN, €T, .

let ¢ € T, and a € R, then a = qa, = q2a2 = eeee
where aie L . L is torsion free so a; = Qa, = q3a3 B seen
and a, € Q'L forall i. Let m be any positive T, - number

and vrite m = qln vhere n is prime to q and i2 O,
a, € q'L and qa, = a€ R <nL. Now qL/ml has
exponent dividing n and so a, € nL . Hence ay € R and
R is T’; - divisible. Hence R = O and the result
follows,

We can now combine this result with those of § 5.1 to

£ind out what happens in the soluble case.

TIDORT!  5.2.2

et L € Em‘ . Then L is residually a finiie
T - ring for some finite set of primes TI , iff the
centre of the Fitting ideal of L is reduced .
TROOF
| (=) If L E€R ’311- then the centre of its Fitting
ideal is T - reduced by Theorem 5.1.9 and hence reduced.
(&< ) Suppose the centre of the Fitting ideal of L is

reduced then since L € EU, < = Ulo , Corollary 5.2.1gives

4



LE R 3.". for some finite set of primes T ( which

can in fact be chosen with cardinality at most r(L) ). |

COROILARY 5.2.3

" A polycyclic Lie ring is residually a finite TT° - ring

for some finite set of primes I . [ |

Now a converse to Theorcm 5.2.2

THROREN 5.2.4

let L € Emo be a residually finite TI' <~ ring for
some finite set of primes T, then L € E(I, .
PROCF »

let L€ BE0lLMN =T, vwhere 1T <eo | Every
element of finite order in L must have its order equal to a

*
T - number. Thus T (L) € Min and consequently

We will now collect together some facts ( not all of which
we will use, but which are worth noting in their own right )

about divisible Lie rings.

IETA  5.2.5

Suppose L is a torsion Iie ring, Then 9 (L) < Z1(L) .

~ PROOF

Let ¥y € L and suppose that ny = 0 . H¥ow o (L)
is divisible so for any x € (L) we can find z € (L)
such that x = nz . Then

[x,v] = Cme,v) - [2,mw] = O

YL



and x € Z,(L) .

PROPOSITION  5,2.5

let L be a divisible Lie ring then
(1) C (L) is divisible and contained in the centre of L .
(ii) Every term of the upper central series of I is
divisible.
PROOF
(1) Since L is divisible and L/ T (L) 1is torsion free
we have that T (L) is divisible.
If y€e L, x € T(L) say nx = 0 . Then
0 = [y,nx] = [ny, x] y for all y€ L
" Thus x € Z1(L) . |

(ii) Ln/ Z, is torsion free, for if not then Z, /2, is

not torsion free and there exists x € 22\ Z1 such that
nx € %y for some n > 0 ( vhere Z; = Zi(L) ). Then
[ny, x] = 0 for 2ll y€ L, s0o x € Z, which is

a contradiction. Since L is divisible and L /Z1 is torsion
free Z1 is divisible.

For any &> 0, 2 (L /z1) = z‘,‘ﬂ/z1 and L /Zy4,
is torsion free by lemma 4.1.3 . Hence Z 4y, 1s divisidle. a

let O] ' be the class of abelian Lie rings with r_(L)

finite .

THEORTIL  5.2.7

If L€ EU]-l then (1) € VLU

FRCOF

Let B = 9 (L) the divisible ideal. Now R /T (R)



_i_s_'tors_ion free oi_' fini:te rank. Consider its @ - comnpletion
w.hic‘h.'is a.' éoluble Lie élgel:;ra of finite dimension ox}er @ .
Lie's theorem and Corollary 1.6.2 give R/ T (R) € ’Y'(lﬂ
( cf Proposition 1.8.1 ), But T R) < z1(n) by

Proposition 5.2.6 (i) , and hence R €71 . 5% |

LEMMA _ 5.2.8

Let L be a divisible Lie ring and ' < Der(L) .

Then if either

(1) I is torsion free and ro(L) < oo
or (ii) L is a p - ring for some prime p ard rp(L) < oo
then ' € &,o .
PROQF
(i) 1¥ is a direct sum of finitely many, say n , copies

of @ and so End(L*) is -the associative ring of nX n
matrices over ) | ( Puchs (€4 55 p210 £f ). Thus
since any Lie ring of dei‘ivations of L i,s a Lie subring of
End(L*)L ( by lemma 1.3.1 ) we have 1Y€ R, .

(i) L' is a direct sum of finitely many, say n , cop:'..eé

~ *
of € o and so End(L ) is the associative ring of n¥X n

-

matrices over the field of p - alic integers ( Fuchs [Q]

55 p210 ££ ). Thus 1’ € R, .

We will now examine in closer detail the structure of

. B ZJ(‘ rings.

LEMA  5.2.9

If L is torsion frec and 1' < Der(L) then T

is torsion free.



PROOTF

e ?
¥

* * S
~If L is torsion free then Erd(L ) is torsion frece

( Puchs (IO} p132 ). Then use lerma 1.3.1 . &}

LIITA ~ 5,2.10

Let LéyCﬁ 2 (UJl . Then I has a finite

characteristic series with torsion free and abelian

factors.

PROOF
Let n YbYe the derived length of L and use induction on n .
If n = 1 +the result is clear. Suppose n > 1 .,

Then L /L‘""’ (= U1 and has derived length n - 1 . Thus
(rn=4)

(n-¢

if T /1 = T( /1) then Tchl and L /T has

a finite characteristic series with %n'&ﬂ factors by
induction,

Iet C = cT(L"‘"‘) . Ten CchL and T /C is a

n-1)

subring of Der(L‘“’n) . Yow L is torsion free and so

by lemma 5.,2.9 T /C is torsion free, However T /C is a

quotient of T /Lm-" and hence is torsion. Thus C = T,
- ~1)

Hence {T , L‘"n] = 0 and 1Y £ Z1(T) .

Suppose T /L £ 0. We also knov that T is

(1)

torsion free and T /L is torsion., MNow T /Z1(T) is a

(n-1)

quotient of T /L and hence is torsion, but by lemma 4.1.3

we lmow it is torsion free, Hence T /Z1(T) = 0 and T €Ul .

» The result now follows by the case n = 1 .

LEMTA  5.2,11

Let L € EOl, . Ten L has a characteristic series

of finite length with m‘ factors,



I?ROOF N
Tet T = T@ . Then L/7 € F A EJl_, and
so by lemma 5.2.10 hes a characteristic series of finite length
with S‘Cn'(ﬁ,, factors.

Let D = J (1) . Then Dch Tchl so Dchi.
Yow D < Z1(T) by lerma 5.2.5 and so D €Ul . Further
since L € EU[‘ , T /D€ JF  so the derived series for
T /D will have finite factors and 'since its terms are characteristic
in (T they will be characteristic in L . This then gives a
series of the required form,

Fote that we could further refine this series by inserting
a series for D whose factors are direct sums of finitely
nany copies of Cp.o vwith g different prime p - for each factor,
This is possible since D is a direct sum of its primary

components and their are only finitely many of these since

» € Ol,. | @

We are now in a position to prove an analogue of a result

of Mal'cev's [28] for groups.

THEOREM  5.2.12

eOl, < MNOIHE

PROOF
By lemma 5.2.11 L € EU, has a characteristic series
of finite length whose factors are either finite, direct sums
of finitely many Cp., groups or torsion free abelian of
finite rank.
Let P bYe any factor of this series and write T = L /CL(F).

If F is finite sois L , If F is a direct sum of finitely



many € ' s then L € 620 by lemma 5.2.8 (ii) and so by
the argument of Proposition 1.8.1 ( that is essentially Lie I
Theorem ) T? acts nilpotertly on I 1i.e.

[r, T*1 = 0
for some m » 0 . If F is tofsion-free abelian of finite
;‘ank then L is torsion free by lemma 5.2.9 , soluble and of
finite rank. Consider the @ - completion of L , then by
the same argument as above ( Lie's Theorem and Corollary 1l.6.2 )
we have [F, m-Lz] = O forsome m P O,

Thu.s for each factor P , there is NF <l L su.éh
that L/NF € 3‘ and (I-IF/CL(F))zacts nilpgtently on F.,
Take N = ﬂ NF with the intersection tzken over all
factors F . Then L/N € F and (», . 112] = 0 for

all factors F and séme ¥ > 0+ Then N2 e'ﬂ. and

s0 Leﬂf)??.
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cmaprz 6 Ol — crosunn

In the first section we investigate the structure of

soluble Lie rings satisfying

subideals and find that these

the minimal condition for

are sonewhat better beshaved

than their group theoretic counterparts.

The rest of the chapter

properties are inherited by s

is devoted to finding what

oluble Lie rings from their

abelian subrings. PFirstly various finiteness conditions are

examined. The group theoreti

¢ version of this work is due to

lal'cev [2€) and Schmidt [331 . Ve then look at the

various rank conditions defin

ed in Chapter 5 and prove

analogues of theorems of Garin (53 , (&) and Kargapolov (22] ,

§ 6.1 SOLURLA LI® RINGS WITH Min - si

IT5A  6.1.1

Let L€ zOl M in -
minimal ideal of finite index
Then N is divisible.

PROOF

VWe will first show that
finite.index. Suppose T 1is
finite index., Then for some

- There is a characteristic abe

si . Let N De the unique

in L ( which exists by idin - si ).

N has no proper subrings of
a proper subring of N of
m, mhb €7 a_ndN/mLGE .

lian series

g = . ' '= N'
_an L < I;< see <L)
( e.g. the derived series of ¥ /L ).
Then. Ln /Ln__"‘| € Uln dn M {‘: and hence is finite.

But -Ln_ gh N and so Ln-1

1

<3 1 , contradictinZ the

£g



dgfinition of ¥ . Hence N has no proper subrings of finite
index. |

If m > 0 and mN < N then as above theré exists a
characteristic abelian series from mN to ¥ . Looking at

the top factor again gives a contradiction and so mN = N

for all m . Hence W is divisible.

COROLLARY  $.1.2

et T€E EUTAN lin-si. If L €E  then 1 €T

THEORTY  6.1.3

et LE EUIMN 1lin-si. Ten L isa finite
extension of a divisibie abelian ring satisfying 1in .
Consequently I is countable and satisfies Ilin .
PROOF

Let L€ EOl M Min- si . Then L has an invariant
abelian series each of whose factors satisfies Min ( since
Ol N 1in - si € Min ), fence L is torsion. ILet
I be the unique minimal ideal of finite index in L ., B}.’..
lemma 6.1.,1 N 4is divisible and hence central by lemma 5.2.5 .

This completes the result.

COROLLARY  6.1.4

Let L € (01 O Min - si , Then L is centre by finite.
PROOF | '

As for Theorem 6.1.3 . . |

COROLLARY 6.1.5 -

Let LE YL M iin- <1 , Then



(i) L € in

(ii) L is centre“ Ey finite .
PRdOF
(1) 1f 2,(1) € B € 2, ,(L) then H<9 L since L 1.
Hence every upper central factor of L and so I itself

satisfies Min .

(ii) Min implies MMin - si and so the result follows by

Corollary 6.1.4 .

= 6,1.6

If L is a divisible Lie ring then any Lie ring of
derivations of L is torsion free.
. PROOYT
If L is divisible then End(L") is torsion free
( Fuchs (4] p207 ). The result follows since any Lie ring

. * .
of derivations of I is a Lie subring of End(L )L . 5 |

PROPOSITION  6.1.7

Let L€ ZOUlI/M itin - si . Suppose 1' is a torsion Lie
ring of derivations of L . Then ™€ 3’ .
PROOF
By Theorem 6.1.3 ,L*;, € Min and hence A - ? A;j 1
where A.'i < Acp"? or,. qu.. for some primes P41y and .integer k > 0.
Hence . (Fuchs [9 ]Jp212 Théorem 55.1 ) End(L*') is isomorphic .
to the associative ring of.all nXn matrices (aij) such that
. each aijé Bom(Ai,Aj). But in this case Hom(Ai,Aj) is always
either torsion free or finite and hence ’C(End(L“)) cF .
The result now follows by Lemma l.3.1. n
We now briefly consider soluble Lie rings satisfying the

Einimal condition for ideals. All we can say is that



such rings are ‘torsion.

LM 6.1.8

Let T"- be a torsion Lie ring of derivations of a Lie
ring L . If L contains no prover nontrivial ' - invariant
subrings then L 1is torsion.

PROOF

Suppose L is not torsion. Tor any n >0, nL is
T' - invariant and so is 7% (L) and hence L is
torsion free and divisible. Thus by lemma 6.1.6 any Lie

ring of derivations of I is torsion free. A'contradiction.‘

PROPOSITION  6.1.9

et LE€ EUOV A 1tin~- <1 ., Then L is torsion.
PROOF

Let L< 201 N in -<3 ., Proceed by induction on the
derived length a4 of L. Write A = L and assume
d> 1 end L /A is torsion. By Min - <] there exists
an ascending chief series of L from O to A, say {A,‘\.ol S‘e} .
Now A4 /Ag has no proper nontrivial L - invariant

subrings. Purther L /C;(Aqw /A« ) 1is torsion ( since

Cr(Aqss /Aq ) 2 4 ). The result now follows fron

Jerma 6.1.8 . ’

§ 6.2 O - crosms anp FIFITRESS COMITIONS

Suppose 2%. and ,g_ are classes of Lie rings closed
with respect to taling abelien subrings., Ve say X is

-(ﬂ - closed relative to ’IZL if given L ey and




every abelian subring of L is contained in 360’14 then

L € 3(./\’(4
In the case :}C\, Sy ve say ’X, is UI - closed

in % if' it is U-’ -~ closel relative to 76{ .

- Throushout the rest of this chapter we will investigate

vhat classes are UT - closed relative to EUT .

THEORT!  6.2.1

Min is Jl - closed relative to E U-l .
PROCF

Let L be soluble with each of its abelian subrings
satisfying Min . Suppose L has derived length 4d 7.1 , and
put ¥ = L2 . By inductionon 4, N € Min . fhe
hypothesis implies that L is torsion ( Jjust look at the
cyclic subring generated by each element ). Hence if we
put C = ( 7) then L /C can be considered as a torsion
lLie rinz of derivations of N and hence by Proposition 6.1.7
L/c € J  and hence satisfies MMin .

I~Iow.C2= [C,C] < [L,L]=L2 a.ndso.

[c®,c¢7 < 0?,c¢] -

and C € ’Vl.2 . Let X denote one of its maximél abelian
ideals. U satisfies Kin and N = Co(1) , so a further
‘application of Proposition 6.1.7 gives C /11 € itin . Fence

LE Min.

ImaA 6.2.2

If 1 €(§n—U1 and TV € Der(l) then T'Ggaéégv.

PROCF

Suppose L = F, @ oo OF @B .., ®T)



~ vhere _Fi:—:’l for 211 i = 1,...0ym and T, = ¢ R:

13

P

for some p, and ki for all 1 = 1,eeeeyn &

By Fuchs [4] p212 Theorem 55,1 if A 1is an abelian
) n

group and A = £ Ai then End(A) is isomorphic to the

[ )

associative ring of all nX n matrices (aij) such that

T
each 2 € Hom(Ai . Aj) . Yow

Ho( Z ,Z) = Z
dom( Z Crk) = ¢ pk
Hom(CFk , Z) = o0

n

Hom(C &, C ¢ 0 e
( P! ‘ﬁ) { ié Q
finite p = q
*
So in particular all are f.g. abelian groups. So End(L ) is
a f.g. additive abelian group and hence so is evéry additive

* x
subgroup. Thus ' < Der(L) = End(L )L € 9 .3

COROLLARY 6.2.3 .
X
If L eg and 1’ € Der(L) then T' € 9 < g .

Lemma 1.3.1 and lemma 6.2.2 .

CORQLLARY 6.2.4
a ¥
et € 2€  anda TV € Dex(l) then ey QC;L
and further if T‘ € E-Zﬂ then Tl € Be .

PROOF

Since gxﬂ g Ol = E\e ) ¥ |

THLOREY  6.2.5

Let L€ = (Ul  and suppose that each of its abelion

subideals is f.z, Then L € E € .




PROOT »

Assume L ﬁém | . Let N be the last nontrlv:Lal
term of the derived series of L . By hypotheéis ¥ € @_ .
Iet H /Y be an abelian subideal of L /¥ and let C = CH(N) .
Since C 2> N, H/C €Ol and by lemma 6.2.2 H /C & g, .

Now G2 € N and so [02,0:‘ = 0 and c€7’L,_.
Let ! be a maximal abelian ideal of C ., Msi L and so
1 € g, . Dy the maximality of M, M = Cy() , and
since €% < Z1(C) < I we have C /it € O] . Hence
by lemma 6.2.2 € /Il is t.g., and so H is also .

Thus H /N € Co" and L /N satisfies the initial -

hypotheses of the theorem. By induction on the derived length

L /N and hence L is polycyclic.
We can restate this result in a2 number of forms.
COROLLARY £.2.6

B ‘6 is U-( - closed relative to E U-] .

PROOF

Since Eeé g. . ) . ‘ [

COROLLARY  6.2.7

If L€ E Ul is such that all its abelien subrings
are f.-g. then L €g .

( ¥ote that we cannot use the terminology of ?ﬂ - closure
since g is not closed with respect to taking abelianlsubrinr*s ).

PROOT

Since E€ < %_ .




CO20LLARY  6,2.8

‘s

Max is U? - closed relative to I U-l .

PROOT

Since E€ é I;Iaxr\m Sq—.

TIZORT!  6.2.9
3 is Z)T - closed relative to Em .

PROOF

et L€ E(J] with all its abelion subrings finite.
Yow F < g N Min and so by Theorem 6,2.1 and Theorem 6.2.5

L € Bﬁ M\ Uin and thus by Theorem 6.1.3 L € F .

§. 6.3 ] - CLOSURZ AT FINITS RANK

We say an abelian Lie ring L is in the class (Jl, iff
r (1) <eo and T(L) c<F .
We have now defined the following classes ( ¢f Chapter 5 )
al, <01, <Ul, <1,
A1l the classes are clearly distinct and all are S -« closed.

U-‘a.nd U’lo are Q - closed but the others are not.

IEA  6.3.1

Let Aégﬁﬁm,l y 52y ro(A) = n, et T' bean

zbelian subring of Der(A) . Further suppose that there are no
) ™ . invariant subrings of A of rank < n . Then if
Ot E € ™ , ker § = 0,
PROOF | |
Put V = @ ®Z A, a vector space over @ of

dimension n , T" acts on V by



| ¥Y(@®a) = qa @ Y(a)
.whAerevq€@ . aéA,XeTﬂ .

Let W be a |' - invariant subspace with dim %7 = r» < n
and with basis 18 Xy peeeey 1 ® x. say. Ve can consider

A as being embedded in V (as 1 ® A ). WN A is

TV - invariant of rank r ( it contains 1 ® Xy geeey 1@ x )
and so r = 0 and V is [' - irreducible in the usual
sense.

Suppose. & €T1' and det E = 0. DPut

v - { vev| B -0F
If U £ O then U 4is a subspace and if u € U, <xcT?
then
(ue)8 = (E)X = 0.
( since (1 €U] ).
'SoUisT_'-invariantandU=V,so § = 0,

Thus if S £ 0, det £ £ 0 and ker § - 0. m

LA 6.3.2

*

Suppose L € Zﬂo and L is torsion, Then every finite
"set of elements of I 1lies in a finite characteristic ideal
of L.

PROOF
. x
Suprose L € UO is torsion, then L = GPB Lp
*
where each Lp is a direct sum of finitely many CPR and CP-o
groups.
Let Xy geveey X € L with each Xs of order my e

Iet m = ;rn1m2...;mn . Clearly m involves only finitely

many primes and so

.L[:m:|={x€'le. m:c=0}

Ab



is finite and characteristic by lemma 1.3.4 . 5

LA 6.3.3

~
——

Iet L egﬁf\u:‘. Suppose I < L and H L
then [L:H[ < oo .
PROCT
This follows irriediately from a result of Carin ([$7] p39%

Theorem 2 which states that if A is a torsion free abelian

group of finite rank and B = A and BT A thén \A:B\<°°. .

IZA 6.3.4

let i<, H€E0l, , 1/8 €UINCL,. hen

L contains a free abelié,n subring of infinite rank.
PROOF
Case (i H = O

men LEUINUL, . Iet T = T (L) then r (L/T)
is infinite. So there exists an infinite Z- linearly
independent set x, + T, X, + T yeeue. of elements of L /T .
Consequently x1 ’ :{2 sessee axre 2~ linearly independent in
I and so gererate a free abelian subring of L of infini.te

rank,
In view of this case, since L /H will always contain
a free abelian subring of infinite rank we may assume without

Jloss of generality that it is such a ring.

Case (ii HE HNUTly and B S 2,(1) .

\/
e o]

Let A be a maxinal abelian subrinz of L with A

Let r,o(}l) = n say. Suppose ro(A) =m (= n).



By. the ‘maximality-of A s A = éL(A) and since L /4 € U
we have A <3 L . Thus L /A may be considered a subring of
Dex(4) . Let x; 5 X5 seeesy X De a maxinal Z - linecarly
independent set in. H and e};tend it to one in A, Then if u € L
Lx; ,ul = { 0 i<g€n
0 mod H i>n
( since H < Z1(L) and L is metabelian ). |
low consider A as being embedded in V = Q)] ®Z A
a vector space over @ of dimension m , Witﬂ basis
1® Xy geseey 18 X Define an action of L on V Dby
(g® a)' = q ® a , €EAQ , a€ 4 u€ 1
This action is represented by a matrix over @ of the form
oo \]-

? | o /I

Go 1) =] - NS

( Note that an additive group of natrices of this form forms an
abelian Lie ring under the usual cormutation ).
L /A is isonmorphic to an abelian Lie ring of matrices of
this form. Thus L /A is isomorphic to an abelian subrirg
of I.’-.n( D, )L ( where Mn( &Y ) 1is the ring of nXn z;latrices
over @8 ). Thus L /A €[, and so ro(L)‘ <ed , a
contradiction,
case (3ii1) H € #n Ols and is rank irreducible in the
sense that if K € H, K<L with r (K) < r (%)
then K = O . |
By case (i1) we can assume that H # Z1(L) .
Choose x € L such that [ 1, Vx] £ 0. Yow

consider the nmap g t H—>H4, h —>{n, x] .



This is 2 derivation of H. Consider ' = S 8§ < Der(i) .
" Then t 1ere are no T' - invariant subrings of A of rank

less than n ( by the initial hypotheses ) , 50 by lemma 6.3.1

ker £ = 0. Ience [H,x] = H ( both are
abelian ). Thus by lemma 6.3.3 . I n: [u, x] l = k¥ <oo,
Suppose L /H = @ <xi + > ( since we
' ¢

are assuning L /I is free abelian of infinite renk ). Tor
each i = [ X, x] € 1 ( since L/ € ] ).
Thus

[}oci,x] = k[xi,x] E[H,x]

So there exists hi€ I such that

[kxi,\x]- = [ n,=2] for all i .
i.e. [(lcxi-hi) , XJ = 0
Put ¥y, = kx; -h; forall i. Take A = ¥y, Yy oeees D

Then ASCL(X) and cI(x)r\ H = 0 so ANH = 0.,
Thus ]
A T (a+nH) /0 = D, +8>
L

which is free abelian of infinite rank.

Case {(iv EE TNUI
Suppose ( as above ) that L /H = ®<Xi +0Y> . Ve .
: (%
. wil; now construct Vi 9 Vo seeees such that Yy = kixi
k;, £ 0 , and [yi,yj] = 0 forall i, j.

Now [x,y] € 4§ forallx,y€ L since‘L H ezﬂ

Take ¥y = X and suppose that y1',...., Yy have been

1
constructed. Now by lemna 6.3.2 [ Yy ' xn+1'] i = T1yeeea,yn
all lie in a finite characteristic subrirg F S H. So

m Then for all 1 = 1 yeseey n

" [ yl ’ Xn+1’] = 0

<1 I, ., BSuppose: lFl

]

[yi ! mJCn+1]



Tale
yn+ mx

1 =
Let & = < ¥y 4y seeeee > . The matural -

and: 3 is as reguired.
n+t  ~ Jn+1 *

homomorphisn & : L —> L /d maps A onto (4 + ) /i
and ker § IA = 0 since L /H 1is torsion free ( i.e.

nxi'Qé H for all n ). Hence A is free abelian of infinite

rank,
Case (v 1 € U]

Let T = T (II) and use induction on io(H /T) = n.
If n = 0, then T = H and case (iv) applies. If n > 0

choose K with T € K S H, XL and X of maximal rank
subject to r (X /T) < r (1 /T) . Ve may assume K is
torsion free ( otherﬁise Just factor out the torsion ideal ).
Case (iii) now applies and L /K Has a subring A‘/K which
is free abelian of infinite rank.
Thé induction hypothesis now shows ﬁhat A has a free abelizn

subring of infinite rank.

Case (vi The general case.
Y¥ow use induction on the derived length 4 of E .,
If &4 = 1 usecase (v) . Suppose d > 1. Then by induction
1)

4-
L /H( has a free abelian subring of infinite rank., Zut

d-1)
g € (Jl and so case (v) firishes the srcument.

Let :}E be any class of torsion abelian Lie rinrgs.

Define a class :ii by ¢ -

——

A € 2% irt A€Ul , T €X and
r(a/ TW) <eoo



'I"EOR’T"’ 6.3.5

Let X be a claés of torsion abelian Lie rin;gs sucﬁ that
1) X F IFnUl
(11) X = sX
(111) <X < Ols L
Then if E3€. is J1 - closed in E Ul =0 is E:X. .
FROOF

Ezﬂ and supposz that 21l its abelian subrings

Iet L €
lie in g ' . We will use induction on the derived length 4
of L.

If 4 = 1 then I € X . If &4 >1 then by

induction we may asswze L° € EX < g U,
If L /L2 & Zﬂ_l then by lemma 6.3.4 L has a free

abelian subring of infinite rank, a contradiction., Thus

1/12 €U, emiso 1€ 80l . et 7 = T (1).
By lemmz 5.2.10 L /T E€ (HnTUl,) £ = i ( since
clearly ge,r\'U]_l < 56-. ). Tow every ebelian subring of T
lies in E—G'C:-}E end so T € T X .

lence L € B% . . 2 |

THOORTY _ 6.3.6 ‘
EUL is m-closedin EUT .
PROOT

taxe X = Olen G . et 1€ T AN 2l

and suppose that all abelian subrings of L are in TN m .

Nov L€ 5O0l, iff I, € MinO EC[  for all primes p .
( Use irduction on the derived lensth of L, together with

the fact that if 'LD has derived length d then

(A-1) .
b GU_-(D{\"C‘ < I,I;Fn ).

L



Since Lp is a direct factor of L , the abelian

subrinrs of Lp are precisely the abelian subrings of L

intersected with Lp . Hence Theorem 6.2.1 together with

Theorenm 6.3.5 gives the result.

THEORTTT  6.3.7
Ezﬂ| is m-closedin Em .

PROOF

Take x = U—{ /N Min in Theorem 6.3.5 and use

Theoren 6.2.1 .

THDORT! _ 6.3.8
g Ol, is Ul - closed in E O .

PRCOF

Take K = Uln'F in Theorenm 6.3.5 and use

Theorem 6.2.9 .




CHAPT™R 7 TIE SUBINSAL INTTRSTECTION PROPIRTY

Ve now have a short chapter in which we examine a class
of Lie rinzs which satisfy the subideal intersection property
( i.e. an arbitrory intérsection of subideals is always a
subideal ). It turns out that we cannot learn as much about
the Lie ring situation as is possible in the group theoretic
counterpart ( cf Robinson C30](7.1) ).

This sort of result ( together with the ‘ylaclc of coalescence
theorems for evample ) would seem to imply that the conéept
of a subideal in the study of Lie rings is not as powerful -

a tool as the subnormal subgroup in group theory.

§ 7.1 THZ SURIDTAT, INTTRSECTION PROPERTY

et I < L, then the ideal closure series of H in

1 is defined as follows ; s 0

L and inductively

. L,i
HL,1+1 - < HH ’ >
the smallest ideal of HL’]' which contains H . We refer to

‘B a5 the 1™ jdeal closure of H in L . It is easy to

see that H si L iff H equals some tern of its ideal closure

" L iff U equals the 2™ idesl closure ).

series in I ( H <«
Ve say L GECJ iff the intersection of an arbitrary

collection of subideals of I is a subideal itzelf. Ve also

say that L has the subideal intersection wronerty.

e 7.1.1

L € a—ﬁ, iff for each H < I there exists a nonnegative



integer n = n(H) such that
| | g ? v gttt oL
PROOF |
Tet L € and H <L . Foreach i, I’ =gt L.

So T € H"® siL ., Suppose that ' 4% 1, then
since I £ HL’C" we get _

HL,r < (HL,w)L,r _ HL,cJ < HL,r
Hence HL’r HL’r+1 = ...;.

Yow let I satisfy the condition and let H = ;\A H,
where Ho, si L for 2ll )G/\ . Tor some n 2 0
gt o plent

Fence if Hy g™* L then ™" ¢ B TR - H) for all
so that ™" = H and T <" I. '

LEIA  7.,1.2

Suppose A<JL, B €L and L = A + B and

[, [z, =]) = 0. Then
L,i =
B = B+ [4, 3]
PROOT
We prove this by induwection on i . If i =, 0 then
3= 0 B + A = 1L

and the result is true.

Suppose i > 0 and the result is proved for i -~ 1.,
L,i L,i-1

Then B'' is the smallest ideal of B
. containing 3B .
Clearly B< 3 + [4, 3] < 30, mso
[» + [ 4,_43] ,B+’[A,i}3]]
= [3,8] + [a, 7]

+ [[a0 03], [a0y3]]+ [3. [44; 3])

-3+ [4,; 3]



( Since [[A ,1;1 B]

SP + [a 'y BJ

[T 5 Can el € G [n.A) - 000
L,iwt

Thus (B. + [ A 'y 3]) < 3B and the result is proved.

I 7.1.3

Iet I be an sbelian Lie ring and f € End(L) . Suppose
there exists k > O such that
LP k(L) \p k+1(L)

and kerk(‘?) = e )

Then L = IGMX .

s e e = I Say

~
:

~ PROOF

A

This is just a special case of Fitting's lemma ( Scott C34]D79 ).

IDMA  T.1.4

Suppose L is a Lie ring, L € Max -<] and 2ll chief
factors of L are finite. lLet AL, A €] . If
x € L such that <x , A>€ L and x+A€Z1(L/A)
then there exists a positive integer m ‘such that
<mx , 4> € 7L
PROCF |

Suppose the result is falss., Then <%D> M A = 0.

et & + be the endomorphism of A given by

a —> f[a, tx] y t >0

Then a € ker( £ J{l) iff [a 'y t}:j = 0. DNow

.*X+A€Z1(L/A) and A€ Ul 5o [A, [i,,x]]:O.

Thus ker( &£ jé)<‘ L forif a € xer( € i) ad y € L then
' [Ya’ ’ JCX] ’ YJ = = [r‘f ] 3] ) t::] + [E’r 4 t:{] 4 ?"J
= [[a ] yj ) tX:]

Tow ker( € ,) € ker( € 5) € vuver SA4



lob

a.x_ml ,I‘A € Max - 4 - so there e}:i;sts an intecer s such tha
” kef( E i) = ker( € i”) = ceee. = Ky say .

Fov easily <mx , AD> <1 x, AD> € L which

implies that mx , AD € eC . Hence by lemma 7.1.1

there exists an integer r such that
T
<tx >H’r = <‘h}t>{’r+1 = ce e e
where H = <tx , A> .

By lemaa T7.1.2

<todBr o >+ [a, =]
= <> o+ EYW
so ELW = ETNW = w2 3 sy (<> Ak o= 0).

By lemma T.1.3 , A = JtG Ky -

By Max -<] we can choose t > O so that K, is
maximal, )

If XK, = A then <tx, AD €Yl , a contradiction.
Hence Kt < A. 3By Max -<J we can choose an A1< L
maximal with respect to Kt < A1 < A. Then A /A.I is a
chief factor of 1 so A /A1 € F . Forsome m >0,

ntx centralises A/A1 so

J, € [A,tx] < A

tm 1
Now K, < K, and by the maximality of Ky o Ky = Koo
= < Thi :
Hence A Jtme Ktm A1 < A is final
contradiction completes the proof. @

CIETA T7.1.5

Iet L be a Liering, A1 L, 4 torsion free with
L = <x,A> . If there exists m & 0 such that

<me, ADETL - then L 2N .



PROCT

If mx, A € /n, then there exists r > 0 bsuch

that E A, < m;:}] = 0
i.e. mrEA,r (x>] = 0
Put A is torsion free which implies
[+, <x>]1 =0
Hence <x, AD> €17 . ' i

THEORT 7.'1 .6 .
Let L be a Lie rin- with L € 9m tOTNF .

Then if L4€£ then L én .

PROCT

If Lege M\ Em then by lemma 5.2,10 L has
a finite characteristic series with.torsionfree abelian
factors. Let
0] <L1< ceees <Ln = L
be such a series. Ve vrill use induction-on the lencth n .
Suppose the theoren is proVed for n=-1 . Then
L /1, < g, A Ul r\}ﬁr\oi,
'a.nd so by the induction hypothesis L /L1 < /n . Thus

L eg_r\mn.

Let N be the Fitting ideal of L. Then ¥ 2> I, ,
and W is rilpotent by lerma 3.1.2 . Iet x + ¥ € 2,(L/X) .
Then <x , ¥» <3 L and so <X,1'7>€£ .
. Apply Lemma 7.1.4 to L /N?' and then for sone m > O

< mx, N> /2’2 is nilpotent., YNow ¥ is nilpotent and so
<nx , I'I> is nilpotent by lemma 3.1.1 . X is torsion free
and so by lemma 7.1.5 x, 1> €Tl and honce by the

definition of ¥, <Lx, N> £ N and x € I and



so 2,(L/7) = 0. Tms I = N since L /N €¥]  and the

result is proved. B

PROPOSITION  7.1.7

1 1€ A ULAL wen 1 €37 .
v

PROOF

(d-1)
Iet I have derived length 4 > 1 and let A = L .

By induction on 4, L /A€ 3’71 and since L /A is f.g.
it is polycyclic.

Thus Légﬂ 0l (Ec) and as in Theorem 2.2.6

TweEl it TEWE Ul andso T(I)ETF .

Then L/ T (L) 6'9’_(\ EULr\'?enI and so by Theorem
T.1.6 L/ T(L) e n . Hence LG?TL» .
( In fact what we have shown is ‘tha.‘é L is polycyeclic ). M

let TE€K (i >0) if Hsil implies that the
subideal index of H in L is less than or equal to i .
( The subideal index of H in L is the length of the ideal
closure séries of H in L),

Define

K - UK

vThis is the class of 2ll Lie rings having an upper bound on

their subideal indices. -

CLETA 7.1.3

L €J( iff given I £ L there exists a nonnegative

integer n ( independent of H ) such that

L,n HL,n+‘l

H



PROOF

As for lemmaz T.1.1 .

Lo2MA  7.1.9

Let N<] L and assume N has a subideal composition
series of finite length. If L /0 € X then I € 7(. .
PROOT
Iet m be the subideal composition length of N and let
L/t €X,. . If HsiL then certainly ¥+ N 3" L.
Let s Dbe the subideal index of E in H + N and write
H=Hs<...... <Ho = H+ N
for the ideal closure seriesof H in I+ N . If Ni‘ = Hi XN
= 1 = ":’. . i . :
then H, H, M (H + ) 0+ X Since H, .~ H;

we have N

A o~ \T \
'i+1< }'i and also of course I.i+1-<l Hi . The

series
T = ) 7 T = )
H f\ IT IIS < I-s-1 < LR WY < I\o IT
may be refined to a subideal composition series of ¥ and the
<n.

Jordan - Holder Theorem ( cf Higgins £ ) implies s <

Thus I <« H+ ¥ ., Hence I <" L and L eX

TH=ORET  7.1.10

L égf\ zUlonI, iff 1 65_,\('3(\ :Ul)n

PROOF

( =>) Proposition 7.1.7 .

(¢) Ry lemma 7.1.8 \7<<0C . Now clearl:-,"n, é-k ’
so ty lemna 7.1.9 :}n SU( gct . ‘

CONOLLARY  T7.1.11

L e gn EUI,,(\L if? L can be embedded in the direct



o

sun of a finite soluble Lie rinz and a f.o. toxjs on free
nilpotent Lie rin~
PROOR

Iet I egf\(Gr\ zsJ1)T] . Then
L/T@egndH AT .

" tow LE C  so T eF and there exists
<L suchthat Y€ H and L/WE€F . Ten
T (@)Y = 0 and so the mapping

y—>(y+T, 7+ T(@))
is a monomorphisnm of L—>(L /M) D (L/ T (L)) ana

the result follows. £33

Peter J NeInexrncy
.
University of Vzrwic!:

1973 -
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