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ABSTRACT'
• I.

~,'

This work has as its object the study of a rather

neJlected object, the Lie ring. The general method and type

of problem tackled are suggpsted by analogy with the theo~J

of infinite groupe,

A recurring theme is the study of residual properties

( mainly residual finiteness) of Lie rings, with particular

emphasis on soluble ring's. However this by no means presents

the whole picture. Relateo:l.problems in the ficlcl of Lie

algebras are tackled in the first few chapters, chapters 3, 6,
and 7 are not concerned with residual properties at all, and

throughout many results are presented for Lie rines which are

not necessarily soluble. Ua."1Yof the results ( mainly. in the

second half) will also hold in general nonassociative rings

with suitable restrictions impoced, but presentation in this

form would make many results which appear natural in the

present context seem technical and obscure. Occasional

reference is made to general nonassociative rings however.

Chapter 1 sets up the notation and a few of the most

useful technical tools that are used in the cequel.

Chapters 2 and 3 are'~oncerned with certain classes of

finitely generated soluble Lie ring ( and Lie algebras ).

The approach is through associative ring theory using the

universal enveloping ring. Chapter 2 looks at maximal
,I

conditions and residual finiteness while chapter 3 eXar.lir..e::;;

the Frattiri theory of these Lie rines.

Chapter 4 exanines the residual properties of certain

classes of Lie rines, notably nilpotent Lie ri~~s and Lie



rings of matrices over integral domains.
-,

Chapter 5 consid.ers Lie rings whose underlyin~ abeLian

groups satisfy certnin ra~ restrictions. Necessary and

sufficient condi tions for resid·..lalfini teness are established

for these rines.

In chapter 6 we exami.ne which properties when shared

by all the abelian subrings of a soluble Lie ring are inherited

by the rine itself.

Chapter1 eives a characterization of certain Lie rings

which have the subideal intersection property ( i.e. an

arbitrary intersection of subid.eals is once acain a subideal ).
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NOTATION

"

The followinc- abbreviations and notrvtf on are used throuehout

wi~hout further definition:

f.e. finitelYeenerated

iff if and only if

IL , the cardina.li ty of L

?L the rinG' of intecers

e the field of rationals

C the cyclic croup of order nn

C~ the Prufer 00

p p - gToup

If R is a commutative rine and A and J3 are R- modu'Iee :

H0r.n(A , :9) the ring of R - homomorphismsfrom

A to ]

En~(A)

M (R)n

the rinG of R - endomorphisms of A

the full ring of n x n matrices

over R

If R = lL then we writ., Hom(A, B) and End (A) instead

of Hom7L (A ,B) and End 7L (A) •

***********·**·It*********-I(·**
.'



CHAPTER 1 PR'ELHrrnA-qIES

"

The notation of this thesis is nonstandard, but is in-

fluenced by that used by Stewart [31] and AJnaya[J] for Lie

algebras, and also by analogy with infinite group the:>ry.

Since no suitable reference exists basic definitions have

been included for coep'Letene se ,

BASIC DEFINITIONS

A Lie ring is an abelian group ( L , + ) with a bilinear

, multiplication [ a 1 : LXL ~ L satisfying

(a)

(b)

[a ,
[a

a] a 0

,[b cl] + [e 1 [a , b]] + [b , rc, all = 0
for dl a , b , c ( L.

Note that (a) implies that la, b] = - [b , a]
A Lie subring of L is an add!tive subgroup of L, whdch is

closed under multiplication. We"Tite il$ L if II is a Lie

subring ( not necessarily proper) of L. If XS L then < X>

is the subring generated by X. If A t B ~ L we define [A , n]
CI\dd"w s.t"o''''~

to be the ~!'HI!@.iisRg generated by all products [a, b] , a C A,'

bE B.

A subring H of L is an ideal of L, denoted by II<J L, if

[L ,ill ~ H.
A subring II ~ L is an ascendant subrin:~ if there exists an

ordinal number' 0"" and a collection {H e( ) 0 ~ 0( tv-} of subrings

')f L such that Ho = H t HG'"= L and HO(<l II"..., for all

Ot 'et E a- and II~ = U HtC. for lirni t ordinals ~ We
o(<.~
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write H <lO-L.
If H <1" L for a finite ordinal n we say H is a subideal

of L and write H si L. If it is wished to emphasise the role
of the integer n we refer to H a3 an n-step subideal of L.
EXA]','lPLES
(1) An abelian group A with trivial multiplication is a Lie ring

Such rings are said to be abelian. Clearly an abelian Lie
ring with any eiven additive group exists.

(2) If R is an associative ring, then R can be made into a Lie
ring by defining [a, bJ = a~ - ba. We denote R
with the new multiplication by RL• It should be noted
.that Lie subrings of RL need not arise from associative
subrings of R. In view of this example theorems about
Lie rings may also be considered theorems about associative
rings.

(3) Every Lie algebra ( over any field) can be considered ~
a Lie ring by restricting scal~r multiplication to the
integers. Lie subalgebras of such a Lie ring are Lie sub-
rings, but the converse need not be true.

A Lie rin;,;homomorphism 'f:L -+M is an abelian group
homomorphism such that

If> ( [a ,b]) = [ tf>( a) . a,bE L

standard facts about homomorphisms, quotients, and direct sums
are valid (c.f Higgins ("J ).

If L, M are Lie rings we denote their underlying abelian
* *groups by L and M • A map e: L__" M is called a *~homomorphism

* *if it is an abelian croup homomo'rphism L ___'1.1. Clearly if
~ is a Lie homomorphism it is a *-homomorphism, but the converse



need not hold. If c.p is a Lie homomorphismwe write c.p * for

«.p conai.ue red as a *-homomorphizm.

*By abuse of language we do not distinguish L and the abelian

*Lie ring with un('1.erlyinc;group L •

If H' L then the inoex of 11 in L denoted \L: IIt is

* * lthe index of H in L. Clearly if H<1 L then IL : nl = 1L / H •

Wesay L is a torsion ( respectively torsion free, divisible

*reduced) ring according as L has these properties ( c.f Fuchs [10]

for definitions). Similarly L is a p-ring for some prime p

*if L is a p-gnoup ,

A Lie ring L is said to be of finite exno~ent if there exists

n € Z such that nL = O. Clearly if L is of finite exponent

then it is torsion.

If X ~ L then the centraliner of X in L is

CL(X) = f yE L \ [X , y] = 0 }.

CL(X) is a eubz'Lng of L and if X <S L then CL(X)<1 L.

The centre of L is

ZI(L) 0: l x ELI [L , xJ = 0 }

( that is Z,(L) = CL(L) ).

§ 1.2 CLASSES OF LIE RInGS AIm CLOSUTI.BOPTo.mATIORS

By a elMs of Lie rinr"s we shall mean a class JE in the

usual sense whose elements are Lie rings with the further

properties

(1) 0 C)£

(2) L E ~ and Ie::- L implies K E3f.
where 0 denotes the trivial Id e ring.

The symbols J( ,1J. Will be reserved for arbitrary classes



4

of Lie rings. Lie rings belonging to a class ~ will often be
called ~ -rings.

If ~ is a class of Lie rings we define a new class jt"
by L C '3(- iff L* e 'J( (where L* is here being con-
sidered as an abelian Lie ring ).

A ( nonco~utative and nonassociative ) bin~J op~ration on
classes of Lie rings is defined as follows if Ji .and 1J.
are two classes, then let 3l.7J be the class consdsting of Lie
rings L having an ideal H such that H € ~ and L / H E V. ..
We often refer to such rings as 3E. by ¥ rin!;s. The defin-
ition can be extended to products of n classes by defining

3€., ... X" = (~, ••• 3(".,) l:", . We ma.yput all l:~= 3(
~'" .and denote the result by ~

(0) will denote the class of trivial Lie rings.· other
frequently encountered classes~e

~ abelian Lie rings
finitely generated Lie rings
torsion Lie rings •
torsion free Lie rings
finite Lie rings
Lie rines of finite exponent
cyclic ( L,e. one generator ) Lie rings ( note ~ <Ul ).

A closure oneration A assiens to each class another class
A 3E. in such a way that for all classes 3( ,'lj. the
following axioms hold

(a) A(O) = (0)

(b) X ~ A~
(c) A(A ~ ) = A3E.
(d) 3(~1J. implies A '3(. E AlJ
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I

(where E- denotes ordinary class inclusion ).

V t 1 ftV' and'X-.A~ is called he A-c osure 0 ~ -_ is acid to

be A-closed if J:. = A Jt .
It is often easier to define a closure operation Aby spec-

ifying which classes are A-closed. Suppose J! is a ccllecticn.

of classes such that (0) £ ~ and ~ is closed under arbitrary

intersections. Thenwe can define for each class ~ the class

A3: = n£1Jer!' J:.~ tJ}
( where the empty intersection is the universal class). It is

" "

easily seen that A is a closure operation and that ~ is

A-closed iff ~ E'. Conversely if A is a closure operation

the set ~ of all A-closed classes contains (0), is closed

under arbitrary intersections and determines A.

Standard examples of closure operations are S, I , ~ ,.E ,

L and R which are defined as follows; .J( is S-closed

(I-closed, Q-closed) if every subring ( ideal, quotient ) of

an 3( rinB' is always an :x. rinc ; 3e. is E-closed if every

extension of an .:le ring by an Je ring is an j£ rins

( equivalently if X = Xl) ; L ~ L')! iff every

fini te subset of L is contained in an ~ subring of L. LX

is the class of locally ~ rings ; L € R~ iff for each

x t: L, x 1= 0, there exists I.IQ L such that x ttl I ana.

L / I E~ R3€ is the class of residually 3( rincs.

Suppose A,] are closure operations. Then the product

.A:B defined by AB"~ = A ( ] 3E. )" need not be a closure

operation ( the third axiomneed not hold ). Define fA, nl
to be the closure operation whose closed classes are those

classes 3E. which are both A-closed and B-closed. If we

partially order operations on classesby wr!ting A ~ B iff



A JE. ~ 13~ for nny class ~ , then {A, n~ is the small-
est closure operation greater the~ both A and B. It is easy to

~';',.'~..'~', ..~,',
see that AB = ( and hence is a closure operation )
iff BA ~ A3 •

DERIVATI01'rs

A map d: L ~L is called a derivation of L if it is a
*-homomorphism and for all x , y E L

d( [x , y J ) :: [d(x) , Y] + [x, d(Y)]
The set of all derivations of L forms a Lie ring un~dr the

usual map operations with Lie product defined by

[ d • ' d,1 = d,d,& - dt d I
We denote this Lie ring by Der(L).

If x E L the map ad L --')t L (called the adjoint
x

~ ) defined by fI.dx(Y)= [y tX 1 ' y C i., is a deriv~t~on
of L. We call such derivations innel derivations and denote the
collection of all of them by Inn(L). Inn(L) <3 Der(L) and

•
the map L~Der(L) defined by x.,_. ad is a Lie homomor-phd.omx
with kernel Z, (L) and image Inn(L) so Vie have

"""In.~(L) = L / z, (L)
The followiIlB'innocuous looking Lemmas prove very uscrul ,

LBlli.iA 1.3. 1

(a) . Der(L) ~End(L*)L
That is Der(L) is a subring of the Lie rin0 formed from the
associative ring of endomorphisms of its underlyinG additive
croup.

If L E"Ul then Der(L)
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PROOF
Derivations are *-homomorphisms. II

If I <l L then L / CL(I) E: DereI).
PROOF

For any x e L the map 't:I __,. I defined by

= [y , xl y E I

is a derivation of I e 'f" = adx II ). The map \f>: L ~ Derer)
given by x ~"P_ is a Lie homomorphism with kernel CL(I) and
the result follows. •
COROLT,MY 1.3.3

If I <3 L and I E "3 then L / CLeI) E ~ •
An ideal I of L is said to be characteristic if it is

invariant under derivations of L. We write I ch L.
Two important properties of characteristic ideals are that

•
I eh K<l L implies I <l L

and I ch K ch L implies I ch L
Recall that a subgroup B of an abelian group A is called

fully invariant if it is sent into itself by every endomorphism
of A.

If IICi L * *and H is a fully invariant subgroup of L
then IIeh L.
PROOF

If d is a derivation of L then d is a *-homomorphism anc..



the result follows. •

*(1) Write 1:(L) for the torsion subgroup of L , then

"C (L) ch L.

(2) Write a (L)

o (L) ch L.

(3) nL ch L for all n E Z. .

*for the divisible subgroup of L ,thE:n

(4) Let L[!l] be the set of all x E L such that nx .... 0

where nEll ,then L[n] ch L.

Let L be the set of all x E L such that pkx .. 0
p

for some positive integer k, where p is a prime. Then

Lp ch L. We call Lp the n - cOT'lEonentof L. lTote that

0L = L(Pk]
P ,,-,

and 1:' (L) = e L where p ranges over
'P p

all primes.

If L is a Lie ring, I <3 L, K E L such that I + K.. L,

I " K = 0 then we say L is a sE1i t extension of I by K. As

. * * *abeHan groups we have L = I e K and each k e K

induces a derivation d(k) = ~ 1 I of I, and we obtain a.

Lie homomorphism d: K~Der(I) given by k ~ d(k).

Further if x, y e I and k, 1 e K

, [x + k , Yo + l] = ([ x , y] + xd(L) - yd(k) )

+ [k,lJ ••••• (1)

Conversely given any Lie rines I , K and a Lie homomorphism

d : K---->Der(I), then (1) can be used to define a Lie product

* *on I CQ K making it into a Lie ring. Consequently split

extensions correspond to such homomorphismsand this provides

us with a way of constructing split extensions.
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Srnlp.s

. '-,

.Let I:. be a .totally ordered set and L a Lie ring. ;.. series

of L of tyPo. Z is a set

s = { (Ao-. v,.) I (1"f: z ; ArrYrr~ L }

such that

(a) VO'" <3 Ar
(b) t;<cr im!)lies A-e ~ Aa-
(c) L'{oj :: U (Ar"Vr)

O'ez:.
The Lie rines f\..1 V,. are called the factors of the

series. The sets Ar" v; are called the layers of the

series.
'"V .

Aseries wiih each factor in a class ~ is called an

~ series. Note that each 0 J x lies in a unique layer.

A series is said to be invariant (or a~ ideal series )

if AfT' V,. ~ L for all rr ; and central if [Arr, L) ~ V,.
for a1l'" and chara.cteristic if Ar, Vr eh L for all fr •

If S = f ("r' Vr ) \ 0- ~ Z J whereZ is a we11

ordered set, then the A r 's are superfluous. If we let

V, = L then S maybe written

o = Vo -=1 V\ <l ... V,_ = L

:whereif" is a limit ordinal ~ I' then

•

v" = U V,.
0-<'>- •

We say S is an ascenddn> series. Dually we can clefine a

descendine series.

If L. is a finite set then we have a finite series which

wemaywrite

!

and which is both ascending and descendine.

For more details concerning general series see Robir.30n (30) ,

the methodolo~J for Lie rines being the same as for groups.
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Ln will denote the nth term of the lower central series of

L defined by

La

. '-. .. ' . :- ~ .. !-,:~.~~~:-.:'::_~:-:'7';:~'_:\.-::'::-:-:-::"i.'
• ~. -_ ',- t:'"'_,_._' ~" ..:~ .•

= L, L""'! =

L(Il) ( for all ordinals o() will denote the 0( th term of

the ( transfinite ) derived series of L defined by

L (0) = (,.-:-1) [ (tL' Lt....) ]L , L = L ,

and L (')) :: f\ Lt..., for limit ordinals A •
oC.<~ thZ«(L) will denote the 0(. term of the (transfinite )

upper central series of L defined by

Zo(L) = 0, Z.(L) is the centre of L ,

Z~,(L) / Z« (L) = Z, ( L / Zoe(L) )

Z 'A (L) :: U Z0( (L) for limit ordinals A.<~
Note that Ln, L("'l, and Z0{ (L) are all characteristic

ideals of L.

We say that L is nilpotent of class ~ n (or Le",,,)
~, M

if L = o. If L is nilpotent of some class then LE· , \, •

V;3say that L is soluble ( of d.erived length ~
(tI.\

L = O. It is easy to see that L is soluble iff

n ) if

L e EVl
and that 'Yl < EVl . •

's 1.5 ~RESENT ATIOITS A}1]) ~mDUL:~S

Let L be a Lie ring and A an abelian group. A representation

of L is a Lie homomorphism fJ : L ~ End(A)L such that

P ( mx + ny) = mf (x) + n f (Y)

P ( [x Y]) = fJ (x) f' (y) - to (y) f' (x)
for all x, Y EL, m ,n c:Z .

Wecan define an L - action A)t. L --+A by

ax = fJ (x) (a) a E A, x Eo L ••• (1)



( I

for all

( na + mb )x = nax + mbx

Ja( nx + my ) :: nax + may •••• (2)

a [x , Y] = ( ax )y - ( ay )x
a,~eA, x , y EL, n , m Ell.

Then

An abelian group with an L - action satisfying (2) is
called an L - module. Using (1) we can pass back and forta from
representations to modules.

Submodules, quotient modules etc. are defined in the
obvious way and standard facts regarding them ( e.g. the Noether
isomorphism theorems ) hold.

Modules arise naturally as follows suppose I ~ L
Now define an L - action on I by

xy = [x, y] x E I yE L

Then I is an L - module. Similarly if I, J <l L and J E: I
then I / J is an L - module ( and also an L / J - module ).

Given an L - module A we let
CL(A) = { x € L I ax = 0 for all a E' A}

Then CL(A) <I L. Thus CL(I / J) is defined if I , J ~ L
and J ~ I.

An L - module A is faithful if CL(A) = O. In this
case we say the associated representation to is faithful.
Clearly CL(A) is the kernel of (J .

A is irreducible if its only submodules are 0 and A

•

and A 1= 0 (n.ndP is irreducible iff A is).

~ 1.6 COHPIJETIOHS

Let L be a Lie ring, ~ a field of characteristic 0,
then the ~ - co~nletion of L is the Lie alcebra. ~~(L) with
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underlying abelian group ~ e~ L and Lie multiplication

defined by . '-, .

(i) [s Gb x + s'. x, , t ~ y + t' e yl]

= ste(x,y)+st'®Cx,y'l

+ s't e [x' ,yl + stt'ca [Xl , y']
(H) s( t • x) = st. x

f or all s tt, s' tt' E -A. and x, x I , Y , YI EL.

LEr.'rru 1.6.1 (Moran (2ql p10ff)

Let L be a torsion free Lie rine then

(a) L is canonically isomorphic via the map x ~1 QD x

to a subring of ~~(L) •
.f) N-Io")C~\
~~(L) satisfi~s anAidentical relation(b)

iff L satisfies the same relation. •
COROILARY 1.6.2 ( 1.!oran (2qj p10ff )

If L is a torsion free Lie rine' then

(a) e-"(L) E 'Yte iff L £ ?le •
(b) e~(L) E. vtd iff L E: Uid
(c) If H-1 L then ~",(H) <S ~-'.(L). •

Note in eeneral that given M ~ eJ.. (L) there maynot

exist H e L such that !.t = ~ ®z. H•. Howeverif k ...~
then ( by identifying x and 1 Cl) x ) given y € ~~ (L),

there exis ts nEll. such that ny ELand so given

, J,{ E '€~ (L) there exists H ~ L such that M ... ~ ®z H.

The ~ - completion is also knownas the rational completion.

For details about completions see l.roran [2'\1
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§ 1.7 CHAIN CO}1})ITIONS

"

Let A be an abelian group, Jt! - _. - - ~.

a collection of subsets of

A. Wesay that A has Max - Rf if rJ satisfies the maximal

condition i.e. every ascendin~ chain

So ~ S, ~ S2, ~ •••••

of elements Si E: ~ stops after a finite number of steps.

That is Sr =

Min - rJ
If L is a Lie ring and R! is respectively the set of

S =r •• ••• for some r. Dually we define

subrines, ideals, or subideals we write Max, Max - <l ,

Max- si for UaX - Ri' and Min, Min - 4 , Min - si for

ian - ~ • Thes~ symbols also denote the corresponding classes

of Lie rings.

If U is an L - module we say U has 1hx - L or Min - L

acl'ordine- as lit has the maximal or minimal condition for

L - submodules.

The followins result is standard.
•

LEI,I!!:~ 1.7.1

L E Max iff

L e Max - <I iff

M E Max - L iff

L - module.

every subring of L is f.g.(a)

(b)

,(0)

every ideal is f.g. as an ideal.

every submodule of liI is f .g. as an

•
§. 1.8 LINEA..'1LIE RInGS

:By analogy with group tlleory we say that a Lie rins L is

R - linear of der,ree n , where R is a commutatjve ring with 1,



and n > 0 t if L has a faithful ropreoent.at.Lonno a Lie
, I

rinG' of n X n ma'tr'Lce a over R •

Let rR..o derio te the class of all linear Lie rines over

inteeral domains of characteristic o. Weare able to describe

the s+ruc turo of coluble rinGs in this class quite explicitly.

~OPOSITION 1.8.1
tf(o (\ EV1

PROOli'

Let L ~ tR...o f\ :3Vl szy L is R - linear where R

is ~" inteGral do~3in of characteristic O. Let ~ be the

field of fractions of R. Consider the ~ - completion of L.

L is torsion freG ~1d its completion is a finite dimensional

soluble Lie alGebra over ~ lIence by Lie's theorem

( Jacobson [Iq] p51 ) it is ni.Lpoterrt by abelia.n. Corollary 1.6.2

then ensures that L € n'Vl •
•



CHAPTSR 2 FINITELY GENBRAT:'JD SOLUBLB LIE Rn~GS

Ih [.2,) and ["3] Hall studied finitely generated soluble
groups using ring theoretic methods. He obtained the following
results

(a) Finitely generated abelian by polycyclic groups
satisfy the maximal condition for normal subgroups.

(b) Finitely generated abelian by nilpotent groups are
residually finite.

Certain analogous res~ts have been obtained for Lie algebras:
(a) Finitely generated abelian by finite ( dimensional) Lie

algebras satisfy the maximal conditic~ for ideals ( !mayo
and Stewart [2] )

(b) Finitely generated metabelian Lie algebras are resid-
ually rinite and in ch:'l..racteristic0 there exist f .g.
abelian by nilpotent Lie algebras which are not
residually finite (Arnayo [11 ).

In the first section of this chapter we give a basis frp.e
version of the proof in [2] there~y extending (a) to a class
.of generalised Lie algebras which includes Lie rings.

Using methods based upon Hall's f.g. abelian by nilpotent
.Lie rings are shown to be residually finite. The question of
whether f.g. abelian by polycyclic Lie rings are residually
finite is not answered but in this direction we prove that they
are residually of finite exponent.

Finally the partial breakdown in the analogy for characteristic 0
Lie algebras in (b) is shown not to hold for fields of prime

•

characteristic. Using results of Curtis [7J en the universal
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enveLopf.ng al.gebr-a it is shown that f .g. abelian by finite Lie

al.geb.raa over fields of characteristic P > 0 are residually

finite. A new proof is also provided for &~ayo's result.

Hence for Lie rinGs and Lie algebras of characteristic n > 0

analogous or stronGer results than for croups are obtaf.ned ,

3> 2.1 PEW ALGEBRAS ANTI Mn..v::- <l

Let L denote a Lie algebra over a commutative ring with 1,
say R. The lmiversal envelopinr, algebra U(L) of L is an

associative unitary R - algebr-a and a map e: : L~U(L)

such that £. is a Lie homomorphim L~ U(L)L' and if A is

any associative unitary R - algebra and cc : L--+~ is any

Lie homomorphismthen there exists a unique associative algebra

homomorphism CP: U(L)----+ A such that

'P'U(L) -----_.---+ A

ET~
L .

conunutes.

For details regarding the exis~ence and properties of U(L)

see Serre [3$") and Bourbaki [41 •

Wedefine a filtratio~ of U(L) as follows; let U be then

I submodule of U(L) generated by the products E(x,)... E(x*,),

m ~ n and x. e L, i ... 1, ••• m, Then we have U = R,~ 0

tJ = R tD <E(L) ( module direct sum) and

UoC U,C ••• Cue U ~ ••
" "'"

l

Nowdefine

gr U(L) ~
'- STnU"=0

and multiplication is defined

=
where ~ U U / U

IJ-n ... n· n-1
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componentwise by

( x- + U· ) ( X· + U
J
._,)

L L-I J =
gr U(L) is called the CEaded alGebra associated to n(IJ).

It is associative, has a 1 and is commut atdve (Serre[JS-]LA 3.5 )

Further the canonical map L _,. gr U(L) extends to a

homomorphism ~ : S(L) ~ er U(L) where S(L) is the

*symmetric alGebra of L (Le. S(L) = U(L) cf Serre fU]LA 3.3 )

Wewill call L a PEW_ alQebra ( for POincare', Birkhoff,

Witt ) if the map S defined above is an L-3omrphismJo-lal\~o",,~,·c. ,";-,c\ ~ t. .

The original Poincare: Eirkhoff, Witt theorem shows that

L is a FBW - algebra if it is a free R - module ( which is

always true if R is a field) cf Serre r35'] LA 3.5. Lazard [.23]

proves that L is a PBVI - algebra if R is a principal i:ieal

domain ( and conseq,uent1y that Lie rincs are PEW - algebras ).

not all Lie algebras are PBW - algebras (Sir~ov [3<.] ).

It follows easily that if L is a PEW - algebra the map E

is an injection and in this case we will identify L with its

imaee unde.r E in U(L). Then U(L) is generated as an R - module

by 1 E R and the monomials of degree ~ 1 in the elements
•

of L. That is the elements of the form u1•••• un with n~1,

ui E Lt i = 1, •••• n and multiplication in U(L) denoted by

juxtaposition.

If tI is an L - module then M has a natural U(L)-mod.ule

structure defined by

! And conversely any U(L) - mod.ulecan be interpreted as an L _

module. This correspondence preserves submodules ( Serre (33)

LA3.2 ).

Wewill ofhm' vl'rite U = U(L) from now on.



L.~r:IA 2.1 .1 (Amayo and Stewart [:2] p700)

If I i~ a Lie ideal of L, then IU = UIU.

The following lemma appears as an exercise attributed to

Bergman in Serre [3S'] LA 3.2.

L'Ei.TIJA 2 • 1 • 2

U = Riff L· = O.

•
m.t'ltA. 2.1 .3

Let L be a PB'lT - algebra (over R ) and B ~ L,

B $ A ~ L and U = U(L) then BU = AU implies A = B.

PROOF
By Jacobson (ICU p159 - 62 and lemna 2.1.1

U(L / B) ';::! U / UJ3U = U / BU

a U / AU by hypothesis.

lIow consider A / 13 as a subale-ebra of L / B. Then U(A / 13)

is the subalgebra of U(L / :s) eenerated by (A + EU) / ~U and

1 (Jacobson (Iq] p153 ).

Now (A + EU) / BU = (A + AU) / AU = O. Thus

U'(A/ B) = R and by lemma 2.1.2, A / 13 = O. •
Let Uax - u denote the' class of Lie ale;ebras L such that

U(L) is right ;ioetherian (i.e. it satisfies the maxiraal.

condi tion on rie~!t ideals).
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mo'1o~\ 2. 1 •4

If L is a PBW- a].ccbra then L e I.lax - u implies

L e !.~ - <l •

PROOF
Consider a se~uence of ideals in L

o e II, ~ !I3, ~ •••••

Then 0 ~ HI U ~ H3,Ue is a sequence nf (right)

ideals in U = U(L) SO there exists or :> 0 such that

HU = H U =,. ..... ••••

Thus by len~a 2.1.3 •••• and the re sul t

is proved. •
The followine result is well known and the proof is similar

to the correspondi~~ result for co~~tative rincs.

m:I!.!.\ 2.1.5

(i) If R is a riGht Noether-Lan rir~ and 1.1 is a £.g. right

R - module then Msatisfies 1.!a.x - R (Le. I.! is a

Noetherian module ).

(ii) If L is a Lie algebra over a comnutative rine (R is an

associative ring) and

O~A~B~C~O

is a short exact sequence of L - modules ( R - modules )

such that A and C satisfy lJax - L (Max - R ) then B

satisfies !.~ - L (1!ax - R ). •
For the rest of this section L = < xI' ••• ,x","> will

denote a f .c. PJJ,7 - aleebra over R witho U = U(L).

Let Z be the idea]. ?f U "panned by all monomials of



deGree ~. 1 (i.e. C?3nned.by L ).

if it C:1n 1:,c Gcncr:l~edby finite·l.T m'my clcr.1cntc

:x., , .•. :xm subject to a fild.te number of defining

reln.tions o , ••• , f (x I ,••• ,x )n In
o •

Thus it is the quotient of a free Lie albcbra on the oct

[xl,···,XmJ
f I (x I ,•••,xm)

by the idei"!.lgcner:1ted 'hy the clements

,••• , f (xI , ••• ,x ) •n TO
( For a discussion

on free Lie ~lGebr:ls incluc.inc;the question of c)~istence

see 'Free Rings' by P. H. Cohn ).

A finite presentation for a Lie algebra L is
indepenicnt of the finite set of gener:ltors chosen.

PROOF
Carryover the notation from the definition above

and BU"nOSe that y~l' I ,····ys is any other finite set

of generators for L.
Then for certain words ~i and "Pj

x. so \f i(y, '•••'Ya) i .. 1,••• ,m
l.

Yj ... "i) j (x I ' • • • ,xm) j ... l, •••,s

Then the relations

Yj so "t' j ( ~l (y I , ••• ,ys) , • • ., tp m(y I

fk('f>, (Y, ,···,ys),···,-~ m(Y' ' ••• 'Ys))

, • • • ,y ))s

... 0

for j ... l, •••,s , k .. l, •••,n certainly hold in L •
Let L be the Lie al~ebra ~enerated b"r y -

t.J I..> .J I' •••,ys



.._tt' t· b (. th - I co) Tht'~say subjec l. 0 he reJ.~~a.ons a »v« an C y i'" •

in fact L L • Indeed the defining relations of L

hold.in L so the map Y·I~ Yj extend3 to a homoIlior;hism
J

8 of L onto L . Now let
x. = ~ iCy. , •.• ,y )
l. S

Then fror.labove we hCl.ve

Yj 0:; ,",/..J /x,
and so L = <XI ,•••,xm>

fk(x ,... ,x ) ==rn

,... ,x )m

Then since
o

extends to a. homomorphism 1L
of L onto L • Finally 1'\.0 and en are the

identity maps of L ar..iL respectively, so e and.11
are isomorphisms.

2.1.~

If L cS ~ and I <l L such that L/I is
finitely presented then I is f.g. 3.S an ide~l of L.
PROOF

Let a, ,•••,am generate L. Then L/l is
generated by a, + I,•••,am + I (in fact finitely
presented by Lemma 2.1.6 ).

Let F be the free Lie algebra on the set

• Define a homomorphism
by

The map x.~a. + I
1. l.

extends to a homomorphism
of F onto L/l with kernel K. Now as L/I is
finitely presented K is f.g. as an ideal of F by



y, , ••• 'Yn say '\-lith Yi E Ie • lIenee I is generated

as an. ideal of L by 8(y, ) , • • • t
e (Yn) • g

2.1.10

Let L be a PKI - algebra. If L E ~ \-lith an

abelian Ldeo.L A such that L/ll. G I·lax - u and is

finitely presented then L E=: Hax - <I

PROOF
Since A is abel ian we can consider it as an L/A -

and hence U(L/A) - module. By Lemma2.1.7 A. is Cl. f.g.

ideal of Land hence is f.g. as a U(L/A) - module. But

UeL/A) is Hoetherian by hypothesis so by Lemma2.1.5 (i)

A E Wl.X - U(L/ A) and hence A E liax - L/A • Thu.s

A 6 lIax - L since t.he L - submodules are juot the L/A -
~

submodules e since A = 0 ).

By Lemma2.1.4 L/ll. E Max - u ~ Uax - <l and so

L/A G Uax -L. llence L G M:ax- L by Lemma2.1.5.

That is L € l·!ax - <l •

It is shown in [2] that if L is a f.g. Lie a16ebra

over a field with an abelian ideal A and Z is the ideal of

u ~ UeL) generated by L then A (\ ZA = 0 but this is not

true in general and the proof in [2] cannot be used. Indeed

let L be the Lie ring given by L = 7.lffiZ@Cp'l.0: <x,~(B<x:'2.'><fXx3.)

say, with [x I ,x2] 0:= x) , [x t ,x)] = 0 and [x2,x)] = o.

Then LE tj_nll and A 0: pL €"U1 but

o f p(x1 x~ - x2x, ) 0: xl (px2) - x2(p:'l:, ) "" p[x, ,x2]

A(\ZA •
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COROLLk~Y 2.1.11
Theorem2.1.10 holds whenL is a Lie ring •
Wewill now show a way of finding algebras which satisfy

Max - u •

.Let J.~a.."{ - s denote the class of Lie algebras L such that

the symmetric algebra S(L) of L is Noetherian.

m.TI.~ 2 •1•12

A pm - algebra whd ch satisfies l!ax - s satisfies lTax - u •

PROOF
If L is a PEW - algebra S(L) -::: gr U(L). But by

Jacobson ['~J p164 'I'heorem4 if gr U(L) is right l~oetherian

then so is U(L) as required. •
Suppose that L is f.g. as an R - module, say by xI' ••• ,A" '

then S(L) is a quotient of R [xI'.'. ,x~] and consequently

by the Hilbert basis theorem ( Lang (24) p144 Theorem 1) is

Noetherian if R is Noetheriane\V,ad~.,.'.J L- \~ ~""'~:, ptt")t."'\tocA •

Since ZL is noetherian this enables us to state immediatel,)'

THEORE!~ 2 • 1•13
If L E ~"VI 'e*Let L be a Lie ring. (J-. , ()- then

L e Max - <J • •
COROLLk~Y 2.1.14

If L is a Lie ring and L € ~ r'\U1'3- then L.€ lIax - <l

•



COROLLklY 2.1.15
If L is a Lie rine and LE· ~ I)V1'Yl. then L E. Max - <:J

PROOF
It is sufficient to prove that '1"1l~ 'E1*" but this

is true by the same arau'lHmt as Hartley ('6) p261 lemma 1(i).
II

COROLLrutY 2.1.16
If L is a Lie ring and L E ~ (\ 1Jl(E'ehhen L E Max - <l

PROOF
Since E ce •

RESIDUAL FINITENESS - THE FIRST STEP

Wenow return to the consideration of Lie rings. Following

. Hall [l"~] we define classes VI (ir) of 7Z - modules

(Le. abelian groups). Recall that if A is a lZ. - module

and A is the free submodule generated by a maximal familyo

of ~ - linearly independent elements of A then A lA iso
a torsion module.

Wesay a 7l - module A is contained in V1(TT) where 1T

~s a set of primes iff the free submodule Ao of A defined

above, can be chosen so thClt A IA is a If - torsion moduleo
. ( i.e. the order of every element of

Note that if 1f

A IA is a rr - number ) •o
is the complete set of primes then ~(Tr) is

the class of all 7L. - modules ( i.e. by abuse of Language -u1 ).
/ Also if 1T = fZj

lZ. - modules.

then ~(1T) is the class of free



rn.~,1A 2.2.1 (Hall [,~] lemmas 4.1,4.2,4.3 )

(i) If A:: ~ (. M ~ - modules ) then A € mClT). .-".- ~'.-- -

iff TT is the complete set of primes.

(ii) If. A EVKrr) then every ll. - submodule of A also

belongs to Vlln).
(iii) Let A be expressed ~E the union of a well ordered ascending

series of submodules { A O(}()(~p where

A = AI' ' Ao = 0 , A oC. ~ A~, 0(

A.,. = U' A for limit c.rdinals
" C« A oC.

and •

Then if ACI(f-I IAd. E U1 ttl) for all Cl( <"t> we have

A € WClT) . •

WhenL is a Lie ring we can consider L as a 7Z. - module

and could reinterpret the above lemmain terms of L. For

example (ii) woul.d imply that if LEU( (If) (as a II -module )

thon every Lie subring also belongs to 'LJ1tlT).

PROPOSITION 2.2.2

Let LEE 'e and let P be any right ideal of U(L) = U.

Then 'J Ip €.Vl(n) for some finite set of primes 1\

•

•

(Considerin~ U Ip as a 2Z - module ).

PROOF
The proof is by induction on the n~~ber n of cyclic factors.

If n = 0, we have L .. 0 and U(L) = 7l EW(2J) •

Nowsuppose n ~ 0 and let

o = Lo<l L, <1 •••• <l Ln = L ,

be ~ cyclic series for L. Put K - Ln_. • Then

Li/Li._1 € e
L =: <K , x> .

~J the ind.uction hypothesis we may suppose that if Q is any

right ideal of U(K) then U(K) IQ e1J1(lTo) for some



finite set of primes no = Tro (Q). Viewill think of U(K)

as the eubrrLng of U(L),eenerated by 1 and K,!",'\~Yo~/p"",t.,~~co{U(j()_.

Nowconsider multiplication inside U(L). If y E K then

xy = yx + [x, y]

and [x, y] ~ K <I L •

Thus we can always express a monomial of U(L) as a sum of

•••• (1)

monomials in which all powers of x (if any ) always occur

on the right hand side. Hence since U(L) = < U(K) , x >
U(L) = U(K) + U(K)x + ••••

ea

= L U(K)xi
""0

.
t-

Nowdefine U = U(K) , u. = L U(K)xs
0 ~ 5-::0

i.e. Uk = Uk_I + U(K~xk

Put Pk = P + Uk_. for k = 1, 2,•••• and Po = P.
CIU

'Then P = P ~ P,~ ••••• and U(L) = U P, • Then the
. 0 . ":0 ..{

LZ - modules Pk Ip form an ascending chain of submodules

of U(L) Ip with union U(L) Ip. The Zassenhaus Butterfly

lemma ( Lang (21#-J p102 ) now gives

= ( P + Uk ) I( P + Uk -I )

Uk I( Uk_. + (p f'l Uk) )
"'" .

l{owif w E U then w = L. c.x~ c. E 'U"'Cm •
m icC) a ~

. Let ~. be the set of elements cm € U(IC) which occur as

coefficients of xm in the elements w € P" U • Thenm

~ is. an additive abelian group. Wewill now show that ~

is a right ideal of U(K). Let y E K and w E P f'\ Um

then
'", ( z; i )ywy = c.x
&."'0 ~....

i= z: ctx
..~o a

where c~ E. U(K) , i = O, •••• ,m ( using the same argumerrt
~

a."l for (1) ). Thus wy e: P I) U •m
The coefficient of xm



is c* = c y and y can be'any. element of K so Q ism m In

a right ideal of U(K) by induction.
lrowconsider the map

VJ :. Uk I( Uk_I
k i I( ~ cix + \ Uk_.

We must first check that
k. •

( ~ cix~ + ( Uk_.

~-I
k ) :> U(~) I~_I+ X

+ ~-I
k ) ) , .,. ck + ~-Ix

¥' is well defined. Suppose

then
k.

~( c. - d. )xi E U + ~-I
kxa ~ k-Il;O

i.e. ck - <\ E ~-I
Hence ~ + ~-I = dk + ~-. as required.

The map is clearly a Z - module homomorphi.sm and clearly
onto. Also ~ is a monomorphism since if

"f.;. cixi + (Uk_. + ~_I xk) E

thEm ck E. Q. and so ;t c. xi E Uk_,le-I i..o ~

lfl is a Zl. - module isomorphism and so

ker c.p
Thus

-zz •

for all k.
!fE P" U• t m~1 and hence

Qo :!f Q. ~ •••••

Also E ~ ~ 'tj.* and so by lemma 2.1.12 U(K) is right
Noetherian and so Q ... I: .... for some r. Hence
there exists an integer m suchthat each Pk /Pk-I is
7Z - isomorphic to at least one of the additive groups

.'
, i = 0, 1,••••,m •

By induction there exists for each i a finite set of
primes ITL such that
union of all the ~~ts

U(K) IQ. E V1 (lTi) •a Let TT be the

n·l i = 0, 1,~•••,m •
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Then Pk IPk_, EC!1(n) for all· k = 1,2, ••••. Lemma 2.2.1.(iii)

now gives U(L) Ip E Vl en) . •
Wenow define a class tI3 by saying an abelian Lie ri!15

iff B can be extended to a f.g. Lie. ring L such

that L IB € E 'e

PROPOSITIon· 2.2.3
If B E a) then B E lJl(Tf) for some finite set of

primes 1T = Tr (B) •

PROOF
Let B <l L E ~ and II = L IB € E '€ (since B E cB ) •

Then by corollary 2. 1 .16 L E Max - <l • Since n EVl we
can reeard B as a f .g. H - module and hence as a f .e,

U(H) - module, with generators bo , •••• ,br say.

Nowdefine B = 0 and inductivelyo

Bi+1 = <v- bitl >
e Bi + bi+1 U(H)

O~i~r-1

Then B = B •r
Each B. lB. is U(H) - isomorphic with U(U) IR.

l.+1 l. l.

where Ri is SOMeright ideal of U(H). Nowby Proposition 2.2.2

U(U) IR. E VHn) for i .. O, •••• ,r where TT is a finite
l.

set of primes.

Lemma2.2.1 (iii) now gives B € VIur) •
COROLLk~Y 2.2.1

If B € d.3
with Q

then B contains no suberoups isomorphic



PROOF . '~.~
Proposition 2.2.3 and lemma 2.2.1(i). II

r;rr:1UA 2 •2 • 5

Suppose H <J L with ITe1::

Then L E. R ~ •
and L /H €: R t I') de .

PROOF
co

Clearly L E R~ iff n nL = o , but if L isn=,
t'O

torsion free then n nL is divisible and it is easy to deduce~:.,
that in this case L E: R~ is equivalent to L being
reduced.

}Towlet. L be as in the hypotheses of the lemma and suppose
nH = O. Consider the map ~ : L ~ L, x ~ nx, x E L.
'P is a * - homomorphism and im <P = nL. Clearly nL is

torsion free and is a * - quotient of L /H. Hence by the
discussion above nL is reduced and so nL € R ~ Hence

THEORE!.! 2.2.6

If L is e. Lie ring and LE '%t1 t.Jl (:8 t:) then
LCRt:
PROOF

J3y Corollary 2.1.16 , ~ () VI (B ~) ~ !,!a,x - <l and
hence 't' (L) satisfies the maximal condition for characteristic
ideals ( i.e. Max - c ). If n is an integer > o , the

.I

elements x €. 7:(L) such that nx = 0 form a characteristic
ideal L of .'t (L) ( ef L with p a prime ). We mustn p

have Z; (L) = L for some n since otherwise there wouldn
exist an infinite sequence of inteGers n"", ••••... such that
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~ L <: .•.•. andnz
t: (L) is of finite eXponent n > 0 , and 'C (L) E· t:- ..~_.._.

z: (L) would not 3atisfy lViax - c •

By Corollary 2.2.4 L / 'C" (L) is reduced and hence R C since
it is torsion free. now apply lemma 2.2.5 and L E. Rt,. •

The importance of Theor~m 2.2.6 is that it reduces the
problem of residual finiteness to considering p - rings. To
see this, note that the theorem allows us to locate any nonzero
element in a periodic top factor which involves only finitely
many primes (because of finite exponent). This can be
further reduced to a p - ring because a torsion ring is a direct
sum of its primary components. Thus we have isolated our
nonzero element in a top factor which is a p - ring of finite
exponent.

RESIDUAL FI}'TJ:TENESS FOR LE RINGS

A Lie ring L is said to be monolithic if the intersection
of its nonzero ideals is nonzero. The intersection is called
the monolith of L and is denoted by .;« (L).

Foliowine Hall (I~) p597 lemma 1 , we have

m.nu· 2 •3. 1

Let .:x.. be a Q - closed class of Lie rings. Then
X ~ R ';J iff every monoli thic X - ring is finite •

.'

PROOF
Exactly as for croups. •
Let R be an associative rin£;and ! an ideal of R.
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Then I has a centralisine set of GenerRtors if I is
eenerated- ( as nnidcal ) ·by a finit8 set of eleme~ts

..-.-.:_,;,.~.. -, .; .....-~'. ;:",

._: .....~"_, __ -- ~--'-.....;:. -~-.
rl, •..•,r~ such that

(t) r, € Z(R), the centre of R.
(ii) r. €~ Z(R) mod < r, , .... ,ri._I'>for i = 2,••••,n.

(where <r I , •••• ,r£-1"> is the ideal of R
generated by r, ,••••,ri-').

Recall that a submodule N of a right R - module 1,[ is
essential if it has a nontrivial intersection with every
nontrivial submodule of M.

We can now state some results which will be needed for the
proof of the main theorem.

LEm.~ 2.3.2
Let I be an ideal of an associative ring R. Suppose

I has a centralising set of generators. Let l.! be a right
R - module with the maximal condition on submodules ( U is
Noetherian). Let E be an essential submodule ofU •

Then if E is ~~ihilated by some power of I, then
M is annihilated by some power of I.
PROOF

Hajarnavis ['5"J p146-147 in the proof of Theorem 6.46 and

attributed to McConnell. •
LE:!!lA 2.3.3

.I

Let .L E ~ (')7l and U = U(L). Then every ideal of
U has a centralising set of generators.
PROOF

McConnell [~5"J Theorem 2.3 and Theorem 3.2 • II



Andfinally a result which is crucial to the argument. This

result is not true for fields of characteristic 0 , and this is

the point that causes the divergence of results for Lie algebras

that we observe in ~ 2.4 •

PROPOSITION 2.3.4

Let L be a LiA algebra over a field ~ of characteristic p > o.
If L is finite dimensional then every irreducible representation

of L is finite dimensional.

PROOF

• Curtis [1] p952 'l'heorer.l5.1 • •
PROPOSITION 2.3.5

Every torsion, monolithic ~ nlJ111 Lie ring is finite.

PROOF
Let L be torsion, monolii.hic and L E. ~ () 1J111. Say

A <l L, A E lJt and L = L / A € 11 Put J;t = )A (L) •

Now M::: A and is a characteristically simple abelian group,

and hence is an elementary p -ring ( and hence L r.rust be a.

p - ring ).

Now'L /pL is a finite dimensional Lie algebra over ZZ p
,.., ..... ( ,..,

and Mis an irreducible L /pL - module since pL annihilates

lit and' M is an ~ - module ). :ByProposition 2.3.4 J,I is

finite dimensional over 22p and hence is finite.

Nowlet U = U(L lA). Then A is a Noethe~ian
l

U - module and U - submodules of A are jUst the ideals of L

contained in A ( ef § 2.1 ). So l.{ is an essential sub!nodule

of A since it is the monolith of L·.

Consider the associa,ted l.'epresentation tp U ~ End(U) •



End(}lr)is finite and so putting P = ker 'f we have that
U Ip - is finite. P is the annihlator of M _and is a ( two -
sided) ideal and so by lemma 2.3.3 P has a centralising set
of generators. Applying lemma 2.3.2 we get APn = 0 for
some n.

Thus we have a series

•••• <AP<A
where each factor F. = APi IAPi~' is a f.e. U - module

a,

(since A is Noetherian ).
But P annihilates F. so we can consider F. ae a~ ~

f.g. U Ip - module. Thus for each i , F. is a f.e. Module over~

a finite associative rine and hence Fi is finite. Thus A
is finite.

L lA is torsion and L'lA e ~f\11. so L lA e :J
Hence L € J •
THEOICU 2.3.6

Every ~ () V111 Lie ring is residually finite.
PROOF

]y Theorem 2.2.6 we need only consider the torsion case.
The result then follows by Proposition 2.3.5 and lemma 2.3.1 ...

The question Cifresidual finiteness for -c; () VI (Ii! 'e)
Lie rinss is still open but we can say the followine ;

_,

THEOTL"!:?J 2 • 3 •7

Let L € E'e If l! is an irreducible L - module
then M is finite.



PROOF
U is an irreducible U U(L) - module and is Generated

over U by a single element ( any 0 .; In b I,t will do ).

Fc.:;:'Inthe split extension E = L + l.!. Then E is a

monolithic c;. () t51( E ~) Lie ring with monolith lot and the

result follows by Theorem 2.~.6 ~~d lemma2.3.1 • •
A chief factor of L is a pair (H, K) of ideals of L

such that no ideal of L lies strictly between H and K, and

such that H:f K • A cr..i.ef series for L is an invariant series

for L all of whose factors are chief factors.

COROLLARY 2.3.8
If Le;~ f"\ VI (E 'e ) then every chief factor of L is

finite.

PROOF
Suppose H t K <l L and H /K is a chief factor of L.

Then we can consider K trivial, so that IT is a minimal

abelian ideal of L.

Let A be maximal such that A 4 L, H ~ A and A € z.n .
.Then L IA E E'e and H is an irreducible L / A - module.

The result now follows from Theorem2.3.7 • ..

§ 2.4 THE LIE ALG:TI3RA PROBLErft

Throu$hout this section we consider Lie alGebras over fields

with notation carrying over in an obvious manner. Note that we

are usinB' 'J- to mean the class of finite dimensional Lie

algebras.



Let S be a noncommut.at.IverinG"with 1 and R a 8ubri'1g

of the centre of S containing 1. Wesay S is an extension'

of R and we call it 8...'1. inten:ral extension if S is a

Noetherian R - module.

A renresentation of a nonco~~utative ring S is a ( ring )

'homomor-phd sm of S onto a subring T of the ring of endo -

morphisms of sone abelian group. A representation is

irreducible if the group (, which clearly can be reearded as a

T - module ) has no proper T - submodules. An ideal of S

is called primitive if it is the kernel of some irreducible

representation of'S.

In the usual manner representations and modules are

associated. Wesay that an S - module is irreducible if its

associated representation is irred.ucible., ,

Wenowhave the following important lemmaof Curtis.

JE.'J'rA 2. <1.1 (Curtis rl] 1'947 Lemma 3.1 )

If S is an integral extension of R and P is a

prim tive ideal of S then P f"'\ R is a maximal ideal of R. •

Wewill say S is a Curtis rins over a field ~ if S

is an integral extension of a ~roetherian rine R where

(1) R is. an extension of the field

and (2) If I is a mnximal ideal of R then the dimension

of R II over,k is finite.

Let S be an inte::;ral extension of the noetherian rinG' ::..

Suppo?e M is a :i'Joetherian S - modul.ewhich has an essential



3b

irreo_ucible subraodul,e !.!
". 0

If P = Ann(U) theno

U(R" p)n = 0 for some n.

PROOF
P is a primitive ideal of S and so by lemma2.4.1

P f'\ R is a maximal ideal of R. Now n is NoebherLan and

so P f"\ R is Generated ( as an Ldea'l, of R) by a finite

set of elements of R, say x1 ,••••, xn Let P be theo

ideal of S generated by x1 , •••• , xn • Then P ~ P ando

so P annihilates the essential submolule H and has ao 0

centralisin0 ( in fact central) set of generators x1 , •••• , xn

and so by lemma2.3.2 Ifi'l'7l = 0 for some m. Clearly .
o

R t"\ P ~ P and so 1.:(R 1"\ p)m = O.o •
PROPOSITIon 2.4.3

Let S be a Curtis rinG' over a field ~ Suppose !~

is a Noetherian S - module with an essential irreducible

submodu'Ia, then 1.1: is finite dimensional oyer ~

PROOF
Suppose S is an inteGral extension of the Noetherian

ring R where R is an extension of the field ~ such

that if I is a maximal ideal of R· then the ddrnenai.onof

R /I over ~ is finite. l.r is a !!oetherian S - module

and S is a Noetherian R - nodul.e so it follows easily

that II is a Noethez-Lan R - module. Let p = An..'1S(Uo) ,

/ then by lemma2.4.2 1.r(R 1"\ p)n = 0 for some 11. So

there exists a ( fir~te ) sequence

};1 > l:I(R" p) > .....
of R - submodules of !.i. Each factor

i = 1 , •••• , n-1
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is a f.g. R /(l{ r\ r) - nodule. Rn P is a maximal ideal

in R by Lemma 2.4-.1 and so by hypothesis R / (R t""\ p) is

fini te dimensional over ~ Thus each factor is a f.g.

module for a finite diMensional ring a~dhence is finite dimens-

ional. Hence !.I is finite dimensional. •
( Curti s ['''7] p9 49 The orem ~1.2 )

Let S be a Curtis rinG over a field -k Then every

irreducibleS - module is finite dimensional over ~

PROOF
An irreducible modul,e is clearly Noetherian. •
Let L be a Lie alsebra of dimension n over a field ~

If char ~ c p '> 0 then Curtis [7J f 5 p952 shows

that U(L) is an inteeral extension of a subring R of its

centre where R is isomorphic to ~ [x1 , •••• , xnl (the

polyno:7lial ring in n indeterninates over ~ ). :By the

Hilbert lrullstellensatz if I is a maximat ideal of R

then R /I is finite dimensional over 1i ,and so U(L) is

a Curtis ring over 1(.
If L is abelian and

U(L) ~ ~rX1 , •••• , xnl
a Curtis rirlG over ~

char = 0 then in fact

and so once acain u(L) is

A Lie aleebra L is said to be monoHthic if the

.' intersection of its nonzero ideals is also nonzero. The

intersection is called the monolith of L and is denoted

by P (L).

Once acain (. ef lemma 2.3.1 ) we obtain



Let X be a Q - closed c'lass of Lie a.lgebras. Then
X ~ n3- iff every monolithic 3( - aleebra is finite

d.i.menai.onal, . II

PROPOSITIo:'r 2.4.6
Suppose L is a Lie algebra over a field ~ L mono-

1ithic with mono'Ld, th P (L). Then if either

(i) char it p> 0 and L ~ -cj." Vl3-
or (ii) chox ~ = 0 and L e ~n15l2

then L is finite dimensional.
PROOF

Let A <l L ,

char ~ = r .

A em such that
and L IA € 31""\(J1

L Ill. E 3- if
if char ~ = O.

Then in the usual manner A is an L lA - and hence U(L lA) -
modul,e and is !'-:oetherianby Theorem 2.1. iO. "Bythe discussion
above U(r. lA) is a Curtis rine over }A (L) is
an essential irreducible subnodule of A by definition, and
so :,y Proposition 2.4.3 A is finite dimensional. Hence
L is finite dimensional. •
~OR:S:T 2.4.1

Suppose L is a Lie alcebra over a field. ~ If
either

, (i) cbar ~ = p/' 0 and L € ~""'lJl3-
or (LL) char ~ = 0 and L € tin -all.
then LE TJ.3-
PROOF

Lemma 2.4.5 and Proposition 2.4.6 • •



Part (ii) of Theorem2.4.7 was first peeved l)y l11Ylayo[I]

p111 Theore:'10.23 usinG different nethode, and in characteristic 0

he gives ~ examp'Ls due to Hartley which shows that not even

~ II 1JJ71 - ali;ebras need he residually finite.

It is worth noting that \'la have not used Proposition 2.3.4

and in fact goir~ tp_roUChCorollary 2.4.3 cives an alternative

proof to Curtis's. It is also rot hard to see that ,,'e have

essentially proved that if -S is a Curtis ring over ~

and M is a Iloe the r'Lan S - module then H is residually

- fi~~te dimensional in the sense that to each 0 x E ].I

there is a aubmodu'Ie H such that x ¢ Nand I:.1 In is

fini te dimensional over ~



'llhepr·oof of Theorem 3.2.1 iD incorrect. On p50

\ J.1/K'
,

line 9 the statC!1lOnt is an irreduci bl e U - modu.I.e

is wrong. However in the case L .. '\J (L) we have

avoided.

and U o
Consequ.ently the results of § 3.4

coincide and the difficulty above is triviallythat U

in which only

this version of Theorem 3.2.1 is used are still true.

However Lemma 3.3.1 and Theorem 3.3.2 are not pro¥en.



CHAPTZ'l 3 ~1E mATTDIT ST.mCTUIlE OF PI1ITTELY G31r.2RATZD

soumrn JJIEaIres

This chapter is a continuation of the investigation
begun in chapter 2. Hall in [141 showed that f.C;. metanilpotent
groups have 'Good Frattini structure' in a sense which is
explained below. Once aeain some Lie alc;ebra analocues of the
group theoretic results exist. Tow·ers (3"] 1'71 showed that
f.e. nilpotent by abelia~ Lie alc;ebras have Good Frattini
structure and Stewart in an unpublished paper [3~] extended
this result to f.e. netan1lpotent Lie algebras in prime
characteristics. Using different techni~ues we show that in
fact in characteris~ic p ~ 0 , soluble f.g. ab~li~ by finite
algebras have good Frattini structure, obtaininG' at the same
time Tower's result for characteristic O.

Usine r.!.ethodsmore akin to Hall's for groups we then
show that f.g. ~etanilpotent Lie rings have good Frattini
structure. As in chapter 2 we have thus obtained a eood
~naloeY with croups in the case of Lie rings and even stronger
results for characteristic l' Lie algebras.

The'first section below owes a great deal to Stewart's
paper [3$") mentioned above and that in turn to Towerr- (act1 •

Since both are unpublished full proofs are given, the results
here being, in general, slieht generalisations with essentially
the aame proofs •

.!



ltl

j)EFnrrTIONS AIm INITIAL TI.'S::-1UCTIOH

ThrouChout this section L will denote either a Lie rinrr
or a Lie algebra and the results and proofs are identical in
each case.

We now define the var-Iousradicals we will be considering.
The Frattini suhring (subalr;ebra) of L, denoted by F(L),

is the intersection of the maximal proper subrincs ( subalgebras )
of L, or is L itself if none such exist. If L is f.g.
then ( easily) . F(L) < L •

Now F(L) need not be an ideal of L and so we define the
Frattini ideal c;P (L) of L to be the larGest ideal
contained in F(L) •

Now define = where the inter -
section is taken over all chief factors II /K of L.

The Hirsch - Plotkin radical f' (L) is the unique
maximal locally nilpotent ideal of L (cf Hartley rl~lp265 ).

The Fittinc radical 11(L) is the sum of the nilpotent
ideals of L. Clearly '\.1(L) .s /' (L) •

'"Finally we define '\r(L)

~(L) / ~ (L)

by
= '\Y(L / g, (L) )

and this corresponds to Hall's '\J mod ~
Now we say tl\at L has C;oodFrattini structure if"

"\T(L) = f' (L) = \p (L) =
,..,
'\.f" (L)

and if all four are nilpotent •
.'

If L has good It'rattinistructure then ~ (J.) is nilpotent
beinc contained in {i- (L) •



I,:SW:TA 3. 1 • 1 (Stewart [31J p317 Theorem 3.2.3 )

Let I <l L then if both I and L 1I2 are nilpotent -.,

then L is nilpotent. •
mUTA 3.1.2

If L c 11.!,Ta.x - <1 then '\.1 (L) is nilpotent.

PROOF
There exists N <J L such that N € 11. while

L In € Max - <J , so we can find 1.1 maximal with resp'ect to

Then clearly M ... 'U" (L) ••

LEr:'J,LA, 3 •1•3

If L € 1l1/!ax - <l and N... -ir (L) then N 2. ~ ~ (L).

PROOF
Let lJ be a maximal subring ( subal.gebr-a ) of L and

suppose ~?i H. Since N is nilpotent by Lemma 3.1.2 there-

exists k ~ 2 maximal, with respect to Nk i U (since

L IIi E Ilax - 4 ) • Thus L <= Nk + lit. But then

n%. ~ L2 = (If + M)2.. -e ~c+1 + M2.. ~ M

A contradiction.

lTow'since U2.<l L we have U2.. ~ q;(L) • •
, L'SMHA ' 3 •1 •4

If L € 11. Max - <l and I = "\J (L) then

'\T (L I 1"2.)... 11 (L) II '2..
.'

PROOF
'1f (L Ill) = B 1I2. is nilpotent by lemma3.1.2.

Further B ~ I. ]y lenma 3.1.1 ] is nilpotent and so

B ~ I. Hence B ... I = '\T (L). •



Wenow introduce a temporary notation by defining

@ = EUl n 'tJ.*
Thus in the case of Lie rings ~ is the class E ~ of

polycyclic Lie rinG's, and in the case of Lie algebras tfJ is

the class of finite dimensional soluble Lie algebras. ClE:arly

(P ~ Max - <J

m,r:!A 3 •1•5

If L € 11.CP then P (L) ~ VJ(L) •

PROOF

Let A IB be a chief factor. Wewish to show that I' (L)

centralises A lB.. Wemaywork modulo B, so assume B = O.
and A is a mi.rumal, ideal of L. Let R = P (L) ,

lC = "\J (L) :! R. Then L lIe €r Thus for finite r

R = < K, t" •••• , t ...> with t" ....,t,. € R. Since A

is abelian A -::: K ~ R. Now lC is nilpotent so by Schenkman(32)

lemma 4 , A f') Z. (K) ~ O. Hence by minimali ty A ~ Z. (K).

Let 0 ~ a€ A. Then N = < a,t" •••• ,tr) ~ R

and so is nilpotent (since P (L) € L11 ) , therefore

At) Z,(}!) ~ o . Thus there exists c € A such that

[N, e] = o • But [ K , oJ = o , so [ R , c] = 0

whence A f') z, (R) ~ 0 and we have A ~ Z, (R) • So

[ A ,. RJ = O· as required. •
. PROPOSITION 3.1 .6

Let L E 11OJ , I 'U (L) • If L II~ has good

Frattini structure, then L has eood Frattini structure.



PROOF
Wehave I En by Lemma3.1.2 and by hypothesis

'\f (L / I 'I. ) = ,f) (L / i" ) = 'f' (L /1
2
) =

No", '\J (L) /1'2. € 11 by lemma 3.1.4 , so that

:tr(L/t) En
'1.J (L) E 'Yl

( lemma 3.1.1 ). Further p (L) ~ lp (L) by lemma 3.1.5

and clearly ( If' (L) + I'%.)/I'l. ::E <P (L /12) so that

<f' (L) :: tr (L) and we have '\S (L) = If' (L) = f' (L).
Finally 12 :s ~ (L) by lemma3.1.3 which implies

that cP (L /IZ.) = q) (L) /12 whence
,.., 'I. ,_, z.
'\1(L /1) = 1)'" (L) /1

,_
and so 1.1 (L) = 1.f (L) and all are nilpotent since '\f (L) is •

•
This result enables us to concentrate on L /14 which lies

in the c'l.aas lJ1 (P. Furthermore its Fi tUne radic~l is I /1'2..

Vlhieh is abelian.

Following Towers [3"1) ;ve make the following definition.

Wedefine for any b € L the Enr;el subril"e,' ( subalc;ebra )

= 0 some r }

( often called the null component of b). By Liebniz's rule

for derivations it follows that EL(b) is a subring ( subalgeQra ).

1_Er.TI·,!A 3•1 .7

Let b € L be such that [L, n b J = [L, n... b]

for some integer n , then

PROOF
Let x € L. Then [L, n b]

So there exists yE L such that

=

= [Y'lnb]



Therefore x = (x - [y 'nb]) + ly ,nb]

Ea EL(b) + [L, 11b]

TET~O.,C~~ i. 1 • 8

Let L en-:.be monolithic ,.,ith monolith A , then either

~ (L) ~ 0(i)
.

or (ii)

PROOF

V(L)/A

Let "\J" (L/ A) ... H/A. If U ~ CL(A) then (ii) holds.

Assume H ~ CL(A). If '\J" (L) ... 0 then L ... 0 since

and the result is trivial.

lIence we may as eume A ~1.J(L), A being the r:lonolith.

Thus A ~ z, (1.1' (L» and V (L) ~ CL(A). Choose a

nonzero element of (n + CL(A) )/eL (A) central in v=.(A), say

b + CL(A) ( possible since L/Ct(A) € n ). Then

b E: 11........ eL(A), and [L, b] ::: CL(A). Let D .. < b~ + CL(A)

\-1hich is an ideal of' L. Since [D,A] f 0 we have [D,A] ... A,

so [b,A] ... A. Then there exists n such that [L'nb] ... A,

60 by lemma 3.1.1 L ... EL(b) + [L'nb] ...EL(b) + A. Now in

fact L ... 1.(b) $\\ A is an R - module direct sum ( l-:here

R &: Zl or a field), 60 EL(b) is a maximal subrine (suba1eebr3.)

(any lareer subring intersects A nontrivially and this inter _
o

section is an ideal of L contradicting the minimality of A ).

liencp. <l> (L) 6 Ex,(b). But if q) (L) f 0 we have

A -'. ~(L) a contradiction. So ~ (L)- , ... o.

\le say that L has the property (.c..) if <f> (L/K) "" .,_,..(L/K

for all ideals K of L.



THEO~,l 3. 1 .9

If L E: t;f) urn and. L has property (.4) then
,_-v (L) = -ir (L)

PROOF
Assumethe contrary. By Theorem2.1.10, L E. Max - <l

and. so there exists an ideal I of L maximal with respect to
,.,
'\f (L /I) ! "\J (L II). Replacing L by L /I we may

I"J

assume -ir (L IJ) = "\f (L / J) for all 0 1= J <l L •

]y hypothesis there exists some chief factor A /B of L not
,...,

centralised. by 'l.f (L). If B 1= 0 then A /B is a chief
"'-

factor of L IB and so is centralised by '1f (L IB) = ~ (L IB),
,v

and hence is centralised by 1) (L). Therefore B = 0 and

A is a minimal LdeaL of L. If there is an ideal e such

that A f) C = 0 then A s: (A + C) Ie and a similar

argument applies. Hence L is monolithic with monolith A.
If ~ (L) = 0 VIeare finished. Otherwise by Theorem 3.1.8

/\T(L/A) = V'(L)/A.

Since A ~ 1) (L) it is clear that ~ (L / A)

But then, since ~ (L IA) = '1.J (L / A) t Viehave

= ~ (L) /A.

,..,
'\J (L) = "l.J (L) a contradiction. Hence the result. IE!

COROLIu~_-qy 3.1 .10

If L € 'tJr)~rt has property (~) then L has cood

Frattini structure.

PROOF
Wehave -v (L) ~ P (L) ~ <.r(L)·. Ily (.6) we have

If' (L) « 'If (L) Thus '\J (L) .:; f' (L): tp (L) and

clearly these are nilpotent. Finally by Theorem 3.1.9 we have
I"V

1) (L) = ~(L). •



4-7

'£here is one case in which (4) holds trivially.

mOPOSITIO!T 3.J..:.!.:!.

If L has a fini te chief series then L has (~) •

moo:;;'
If K <l L then L IF:. has a finite chief series. Since

<.p (L lIe) centralises the factors we have ~ (L Iz) € 11
Thus '\J (L IK) ~ If'(L II{) ~ V(L IK) •

TRE CHI'SF AT'"!'l'IJITT,ATOn Pllcp~rrY

ThroU;_,'iloutthis section we continue to allow L to be

·either a Lie rinG' or a Lie algebra over a field ~

Let S be an associative ring and l.T a rieht S - module.

A chief factor ef U is a module of the form H IF:. where

H anil K are submodules of 11 and H lIe is irred.ucible.

Let ~ S(!.!) be the intersGction of the annihilators

in S of all chief factors of H.

liowconsider a Lie ring ( or alsebra) L and let

N = 11 (L) , U = U(L) • Then we may consider U = u(rr)o
to be the subring ( subal.gebxa ) of U generated by 1 and N.

In tr,is Wa::! any U - nodule is also a U - module.o

Wesay L has the chief an."lihilator "(Iro;pertyif whenever

l.i is a Noetherian U - module and z € Z(U0) n ~u(m

, then there exists an inteser n such that = 0 ( where

Z(Uo) is thG centre of Uo) •

.If a;n:y of the following hold :



(1 ) L is a Lie rinG' and. L tEe

(2) L is a Lie alGebra over a field ~ and either

(a) char 1i = p >0 and L€J-r'\ EVl
or (b) c~ar k = 0 and L € 'J"Ul

then L has the chief annfht.Lat or- property.

PROOF
Let 1.1 be a ~Tcatherian U - nodule. ....7e must Dhowthat

if z E Z(U ) 1\ l.p U(E). 0 t Hnhen nz = 0 for some n •

If !'':zn ~ 0 for all n "Ie can choose a submodule I of Ii!

maximal with respect to l.izn 1: I for all n. By

/
,~n ./ Jreplacing- j,I by H I we can assume that uz .:::: for'

every nonzero submodule J of U.
Let K = {m €:r.r I mz = O}

J.!zn :5 Ie for acne n and then I.!in+1 = 0

If K ~ 0 then

Thus K = 0

Howconsider U as a U - module (note that n ;. 0o

for otherwise L = 0 since L is Goluble). The map

is a Uo - module monomorphism (since z is central in Uo).
We can therefore define a sequence

,<3. tSz. f3:s
11 = :.to ~ I'!1 ~ !'!2 ~ •••••

of U - submodules all isomorphic to l,!, as followso

Let m ~ In. be a U - isomorphism !or ~ 11
k 0 1<

Define

=

l€t TI be the direct limit of this sequence. We may assume

that

-I.! = IJo ~ !.!1 ~ • • • • • ~ 1.1

and that each .J.~. is a U - submoduke of iT. Let Y be
l. 0

a!'! indeterminate and. make T.I into a U [Y) - nodule byo
lett~ne Y act as ;S-I where t!J !!1~ rnz



is now 8..'11 au+onor-phdarn, .

Wewill show that there exist maxf.ma'l U [Y] - submodul.e so

in TI. Let B be a maximal U - eubmodu.l,e of I! ( r.~ is

a Noethcr-Lan U - module ). Then ~.~13 is fi:r.i te by

'l1f1eorem2.3.1 when L is a Lie ring and finite dincnnio!1a1

by Proposi tion 2.3.4 in the cases when L is a Lie alzebra.

'B is also a U - submodule of M and so there exists a
o

maxfmal, U - submodule cont.atnf.n.j :8 ,say A. We can nowo
define a sequence of U - subnoduleso

A A 0(. c(-z. -<3= ~ A1 --"> 1.2----+ .....
0

where 0( ,~ = 13k I ~ , and
~\o '1<:-1

\'.

J\ :!5 11c for aJ.l k . Further for each i , A. isa,

iso:llorphic to A and ~.f lA is isomorphic to !II lA .J'_. •~ ~

For each i

o ~A. ~ 11. ~ U. lA.___"::" 0~ ~ ~ ~

is a short exact sequence. So the direct limit A is such that

o ~ A~:~ __'~I If-7>O

is exact. The elememts of T.f are equivalence classes of
eo

elements in U~·r. ( disjoint und on ) indexed by the elements
,,0 ~

of It . Thus TI lA is finite "Then L is a Lie rinG' and

fini te dimensional when L is a Lie algebra. A is clearly

a Uo[Y] - nodule and so there exists a m2~imal Uo[Y]-

submodule containinIT A.

Hence there exists a m~"{inal U [yl submoduleo x say,

" and l.I t. K ( since if 11 e K then x = 1m [Y]o =
contradictins maxf.mal.I ty ).

HoVlU (Y] is the universal enveloping ring ( alcebra )o

of a direct sum L €I) '2.' where T :: 7L (or T :: ~ ).

Then, IIII{ is an irrecluci ble u [y] - module and hence is
o



fini te by 'l'heoren2.3.7 when L is a Lie rin.:; and fi~i t.e

dimensional by Proposition 2.3.4 when L is a Lie alC0bra.

Let Ko = H '"'K , then Ko is a U - module ando

1r IK ,- (~. I") IT' h· h· f· . t ( t . I .&". : ~I I.. ::; ,,~+ ', ll.. Y! ac: as arn e respec ave ',l ...rn ...co
o

dimensi onal ). !row K ;, 1;! and we can take a U - submodul.eo 0

K1 :::: I.I maxi.mat with respect to Ie ~o Since

z c If'U(!.1) we have l.rz ~ K1 (since if T.1IH is an

irreducible U - nodule there exi.s ta a U - moduleo
Tr,
l\.

vii th respect to K' ~ II and then :.~IK' is an irrcclucible

induced by

).
f3

Further, K_z
v

~ K. Eence the enilo!!lorphisnU - module

on U IK o
is not an auto::lorphis;n. There

exists m €.. J:l such that raz € Ko but m 4- Ko (b:r

.finiteness in the Lie rine case and finite dinensionality in

the Lie algabra case ). However -If3 (mz) = m, so m E K

since Ie is a UofyJ - nodule. This isa contradiction.

Hence the result.

T,n ALGEnRAS

We now restrict our attention throUChout this section to

Lie alcebras L over a field n
LElJ!A 3.3.1

Let L be a Lie c:>.lcebraover a field -k Suppose that

either

(i)

(ii)

andchar
= 0 andor char

tr.en '\.f (L) = tp (L) •



PROOli'

Let A = '\.f (L) DjT Lerma 3.1.4 we may aSSUIJC that

A is abelian. Weknow VeL) ~ ~(L). We now proceed

by induction on the dez'L ved ler.eth d of L. When d = 1

the result is trivial. Suppose t~c lemr:!ais proved for d.- 1 •

Then L / A has (leri ved len._.c-thd - 1 and furthe:!:' by

·Theorem 3.2.1 U = U(L /A) has the chief annihilator

property.

"By the remarks before Lemma 2.4.5 U is an integral

extension of a lioetherian subrinC' R of its centre. l_:n-.enA

is a lToetherian R - module. Since n is central in U we

can consider U as acting on A as a subring of ~1~(A) •

Wenowmakeuse of the follovli!1.C'result of 'Small' s

(Pischer [~] p77 ~1eorem 2.1 ): - If R is an associative

rinrr and l! is a Noetherian rieht R - module then each nil

subrine of En~(!.!) is nilpotent.

By the renarks above and the chief annfh l La'ton pro:perty

z(U0) 1'"\ ~ U(A) is a nil subrinc of Endll(A) and so by

Small's result acts r~lpotently on A (where Uo = u( ~ (L .lA)) ).

If '\J (L) /: If' (L) then If'(L) / A is :r.ontrivial.

Clearly If (L) / A ~ tp (L / A). Since by the Lnduc t.Lon

hypothesis f{' (L /A) = '\.T (L / A) and both are !1~lpotent

Viecan find an eLemerrt Cl. + A e Z1 ( V (L / A)) where

a €. If' (L) '-. A. Hence if W / A = Z1 ( -vr (L / A)) thcn

T = W 1\ "p(t) > A. If t E T and z = t + A € U

then z E Z(Uo) " "'PU(A) and so from above T Ill. acts

nilpotently on A. T /A is nilpotent by the induction

hypothesis and BO· T is a nilpotent ideal strictly cont.ad.ni.ng

A which in Cl. contrad.iction. Hence the rcsul t.



r.r:-:ZO:l"i :~ ~·3·2
-,

~
:-. -r-. "'_",

Let L be a Lie e.lsebra over a field Suppotsevbha t ...'

either

(i) char .fl = p "> 0 and L c ~flntP
o

or (ii) char i{ = 0 and L E
~
,,11m

then L has good Frattini structlITa.

PROOF

:By lemma 3.1.6 'iTe ca.".aasu.me '1J (L) E. l51 Then

L has property (~) by Lerma 3.3.1 • The reoul t now follows

by Corollary 3.1.10 • •

Part (ii) of Theorem 3.3.2 'iTasorieinally obtained by

It is worth notinc that the situation may be different

here fro::lChapte:r 2 where there were courrterexaap'lea to show

that the characteristic 0 cane was essentially narc restricted

than the characteristic p case. The standard courrtcroxarrp'l.es
£ _"'V)2

do not work as such and we know 0: no ""'if" f l Lie alGebra

( of a:ny characteristic ) which does not have Good Frattini

.strttcture. A possibility for characteristic 0 is that

soluble f.e. nilpotent hy trizonali8a1)le ( in the sense of

1.!cColmell (~b]) Lie al.geb'raahave good Frattini structure.

In the envelopin0 alcebras of triconalisable nlcebras ( and

also in Curtis rings ) the Jacobson r2~ical and the ~ilra1ical

,coinciie ~~d so the chief annihilator property ( i~a stroncer

fom ) would follovi if a prir..itive id.eal con t.af.ndng the

anntht l.atcr of a ( noetherian ) nodule always ".rmihilated

so~~ chief factor of the ~odule. This is true in the abelian



T;r:::: 11nrrrs

From now on L will be a. Lie rin.::;.

Suppose that L :. 1.l (L) (for exanp'l.e if L is

nilpotent ). In this case the chief annihilator proper-ty

means that if ]:1 is a l;oetheria...."1U = U(L) - modul,e and

.z ~ z(U) " <.p u(n) then there exists an inteser n such

that l,Izn ::: O.

It is in this fOrr:l that Hall (lIfJ nake s use of the chief

anni.hi.Lat or' property in the group alcebra over an absoll.l.tely

alGebraic field of prine characteristic of a f.0• nilpotent

group.

L."SI,~,'!A 3.4.1
~ _ ~'l.

let L e er' I I l and suppoee that A = 1Y(J.).

If U( L IA) has the chief annfhd I a tor property then

1.1 (L) = ~(L)

mOOl?

By Lemma ,.1.4 we can aasume that A c 1J1 !row

L IA E:: 1'1. co the chief anni.hd Lat.or-property takes the

fOrTI mentioned above.

We know that V (L) ~ <.p(L) If these are not

equal then we can find an ele:1.c~t a + A E Z1(L lA) where

a €' "P (L) " A. 1:0'1 let z = a + A E U(L / A) •

Clearly z €. ztu) and since a € tp (L) it follo",.'s

that z € ~ u(l.) • row A is a lroetherian U - moduLe

by Lerma 2.1.9. :By the chief cnnfhi Lat.or prcpcrt~r Azn = 0

for sono n. !T'?ncc <A , G. ~ is a nilpotent Ldeal, of

L contrary to the definition of A. •



C0'10LLnY

Let L e: ~ 1\ yt'2. Suppose tnat for eve~J ideal
Ie of L the univerc31 enveLopdng ring U«L Ire) I '\.1 (L lIe))

has the chief annihilator propprty. Then L has cood
Frattini structure.
PROOF

By Lemma 3.4.1 L has property (6) and the result
follows from lemma 3.1.6 and Corollary 3.1.10 • II

Let L E ~ 1"\ 11.'2. Then L has good Frattini
structure.
PROOF

Corollary 3.4.2 and Theorem 3.2.1 • •
note that in obtaininG TheorcJ"l3.4.3 Viehave not used

the full power of Theoren 3.2.1 a.rtdit seems possible that the
result can be extended to the cLasa ~ I"'t 1'1. (:8 e )
althouch ~e have not been able to do this.
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~STDUAr~ PtOPT.'l'I'ES OP C'SRTAnr CLASSBS OF

LIE RDTGS

Vieexami.ne anal.oguea of results of Gruenberb [II] ,

Higman ('~J , and Tlehrfri tz (40J on residual properties of

nilpotent [,"roups. As might be expected nilpotent Lie rings are

especially well behaved. The methods of (*0) are followed

although the linear structure of Lie rines enables us to

strengthen and simplify many results.

Wealso prove a Lie rine analogue of 1.raJ.' cev' s res-....2t (21)

that f.g. linear groups are residually finite. T.~e proof is

based on a module theoretic arcument of Wehrfri tz [41J

§ 4.1 RESIDUAL PROP3i1TIES OP NILPOTF.NT J~:GRINGS

~.mA 4.1.1·

Let J3 be a. Lie ring, A ~ B and B 2.::: A. Further

suppose that A has exponent m > 0 and that B IA contains

no m - torsion ( Le. for all x € B, mx EA. implies

that x eA).

Then A f) niB = 0 and. mE e V1
PROOF

If a € A" mB then a = mb for some b € B •

But B IA contains no m - torsion and so b € A and a = 0

(since A has exponent m ).

Further

mE niB /(A f'\ mE)

B lA
(A + roB) / A

..::-
and so is abelian. •



4.1.2 , '

. Let L be 2. Lie rin[;". SUP!lose

o = ..... ~ Ln
L

is an inv~i~t series o~ L and for each i = 1, 2,•••,n
let lL be a set of intece:::-s. Suppo:::ethat each factor~

L. /L. 1J J-
(i)

is one of the followinG two types ;

L. IL. 1J J-
is torsion, nnd e~ch prin~J component is of

(ii)

fini te exnonerrt eliviclin.:; cone nenbe'r of !,:. •_ -i-I J

L. /L. 1 E m and contains no U U. - torsion
J J- ~= I ~ .

and there exists j <: jo such th~t L. /L. 1~ ~- is of

type (i) whenever- jo < i <: j and

(\(l. + mL. ) = L.
J J JomEMo 0

J

Then for each 0 ~ x E L there exist 1il1 ' ...., m with
J1

m, E. l" such that if d 0:: m1• • ••• mn then x ¢ dL.ta. .
.i, ~

PROOF
Let x EL" {ol. The proof ';1i11 use induction on the

nTh~berof factors of t~Te (ii) • ~lppose that there are non~

of these. Then L is torsion and is a clircct STh'":1of its .

prin~.ry conponerrta , Let p be a pr'Lne div5.c!'iI"·Zthe order of x.

Then for each i there exi.s ts an element mt E Vii such

that n.(L. /L. 1) has no p - torsion and so~ ~ ~-
has no p - torsion ani hence

.' Suppose no": that Lj+1 ILj is the ~irst factor of t~,rl'lc(it) .

If x EL, , j > 0 and x is of finite o:r.clcrt11en let p
J

be a pri~c c.ividinc the o:>:derof v-_ . Since

(where Lp' denotes the S11.T1of ell the prima...;rcOr!poncnts

of L for all primes not equal to p) Vle !:1u.y factC"C'out



by (L.) ,
J P and so assume L.

J
is a p - ring. Then for each

i = 1,.· ••• ,j t!1ere exists m; E r.1i such that m.L. ~ L....... ~ ~ ~-,
"By lemma 4.1.1

. (Lj_\ + JIljLjH ) () Lj

Replace the original series by
= •

o .. L 0 ~ •••• e Lj_. ~ (Lj_. + mjLj+l) ~ Lj +1 ~ ••••

Repeat the process a further j - 1 times, so that there exists

~ L •

an ideal Y of L such that Y 'n L. = L .. 0 ( ando o J 0

so x 1- 1 ) and an invariant series
0

Y :If • • • • • ~ Yj .. L. ~ Lj-t, ~ ..... ~L = L
0 J t-I n

where m.Y. ~ Y. 1~ a ~-
This is a series of the ~iven type for L /1 , where foro .

i = 1 , •••• ,j, Yi /Yi-, is of type (i) with associated

integer set {mi 1 ,and for i lIZ j + 2, •••• ,n, Li /Li_1

has the same type and integer set as in the oriainal series.

By induction there exists m. 1., •••• ,m wi th m . E l,r,J+ n 1. ~

that x ¢ d,L where d J .. m, •••• mjmjU! ••• mn

Suppose now that x ¢. Lj There exists mj+. G I,Ij+1

euch that x ¢ (L( j+I) + mjH LjH ) .. L# say ( where
o

(j + 1) is as in the statement of the theorem ).o Apply the

induction hypothesis to the series

L• ..c -c.......Lj+l ....
where .L . .Ie /L 'iF has

J Tt

i > j ,

..... ~ L ..n L

type (i) ~~d intecer set

Ljt! /LJ has the same type and integer set as in the

original series. Apply Lemma -1.1.1 with :B a LjH /L j -I

A .. Lj /Lj_1

miLi ~ Li_,·

Then L.· /L. EVI so
J.... J

so mjA = 0, end B /A

'2B ~ A ,

contains no

m. - torsion by hypothesis. Hence
J

= L. IJ- • •



LEt.'!!'rA <1.. 1 • "

If L is torsion free then L /Z.(L) is torsion freea

for all i <W •

l'R00F

It is clearly sufficient to consider ·the case i = 1

-.. -' ~'.--,.. ._¥ _". ~.:-

Let x €. L and nx€Z.(L) , n ~ o . If yE L then
0 = [ nx , y1 = n [x , y]

But L is torsion freo so [x , y] = 0 and x € 'Z,(L).a

Let L be a Lie ring. Then the torsion spectrum of L
denoted by 1T (L) , is the set of primes p such that L.

contains an element of order p.
Suppose that IT is a set of primes. We write L € R;}Tr

to mean that L is residually a finite IT - rine. We write

for R ~{r}

THEOR:E;,! 11..1.4

Let L €%~n
(a) If n(L) ~ ¢ then L E R 31T(L)

and if
11(L) = ¢ then LE R '3-p for all primes p

(b) If 1T is any infinite set of primes then
n pL E 3-

t>E-lT
(c) Suppose that the exponent of ~ (L) divides m > 0

Then for any infinite set of primes 1T

mL 11 (n pL ) = 0,
pElT

PROOF
Consider the series

0 ~ Lo ~ L, ~ .... ::;; L = Ln

where L = 't:" (L) and L. /L = Z.(L /L)
0 ~ 0 ~ C'



Now L E l.!a.x so in particular . Z' (L) E ;:] and there js

a °rr(L) ~ number- m such that mL = o. By lemma 4.1.3o

the fa.ctors L. /L. \ are all torsion free and thus are free
~ ~-

abelian of finite rank.

(a) If p is any prime each L. /L. " is residually a finite~ ~-
P - ring. By ~eorem 4.1.2 if m ! 1 then

ClIOn r:J.SL = 0
S:;a

and if m = 1 then

= o
for each prime p.

(b) and (c). Let 1T be any infinite set of primes. There

exist infinite disjoint subsets ~, •••• , TT" of 1T
n

such that every }.Irime in V Tfi does not lie ir. IT (L)
&..s I

By Theorem 4.1.2
. 0 = .• n (mpI •••• p" )L

wI.ere Pi ra.."1.{;esover lTi

!-;ow m is a TT (L) - number and none of the p. is
~

contained in TT (L) so

( mpI •••• I'r\ )L = :nL n p L f"\ •••• f'\ P L
I .n

( 't:" (L) is a direct su.-n of its primary components ).

Hence (c) follows.

Now apply Theorer:J. 4.1.2 to L /L to geto

f\ (Pi···· I'n )L ~ Lo
P~ElTi.

follows.and (b) •
!

Let 1\ be a set of primes. A Lie ring L is said to be

1T' - divisible if for each p E 1T every element of L

is a mu1tipl~ of p ; or equivalently L = mL for all m ~ 0

wi th m a Tr - number. If IT is the set' of all primes



then L is divisible. The join of TT - divisible subrincs

is always TT - divisible. Hence every rin~ I, has a ulrl.ciue·

maximal, TT - divisible ideal which we denote OTT (L). If

this is 0 then L is said to be TT - reduced. Thus a

TT - reduced rine contains no nontrivial 1f - divisible

subrings.

Let ell be the class of all IT - Lie rinGs of finite

exponent ( i.e. of exponent a finite 1T - number ).

Now ir L E: Ren then so is every aubr'Lng and clearly

L must be IT - reduced. However reduced Lie rings need not

be residually of finite exponent in ceneral. There exist

reduced abeli~~ p - croups which contain elements of ir1inite

height (Fuchs [q] p118) ~~d considering stich a eroup as

an abelian Lie rine provides the necessary counterexample.

We will now investigate how far the converse of this result

is true.

Let L be a Lie ring then if

(i) Z,(L)p has finite exponent dividinG pn, then so does

(Z'..L (L) /Z. (L» for all i «W •
~TI ~ P

(ii) If Z,(L) is TT - reduced for some set of primes

·then so is Z. I (L) /Z. (I,)~t ~
for all i <W .

PROOF
(i) Let Z2.(L) ye m l;,(L) thenx€ and L • If pxE,

0 = [y , pmxJ = pm [y , x]
lienee [y , x J E: Z, (L)P so for all yE L

0 n [y, x J [y , pnx]= p =
So n

€ Z,(L) •p x



01

(ii) Let R /Z,(L) be a 1T - divisible subring of
Zz(L) /z, (L) If Y G L then the map

x + Z,(L) 1---...:)0)- [x , y] x E R

is a Lie homomorphism of R. /Z ,(L) onto [R, y] ~ Z, (L)
( since both are abelian). [R, v ] is hence Tf - divisible
and so is trivial. Thus R = Z,(L) and the result follows••

Our first theorem is a simple rewrite of the corresponding
result for abelian groups (Wehrfri tz (40J p4 lemma 3 ). It is
worth notinG'that the Lie rine result..il:!.~onsiderablys~ronger
than any corresponding result for groups and in fact is true
( with the same proof) with the obvious reinterpretation, for
generalised rings in the sense of Fuchs (q] Chapter XII •

TH::;;O~ID;~ 4. 1 •6.

Let L be a Lie ring and TT a set of primes such tha~
for each p ell the p - component of L has finite
exponent. Then L € R t.1[ iff L is IT - reduced.
FROOF

Every member of l:..n is IT - reduced and so if L ~ R t..rr
then L is IT - reduced.

Suppose that L is IT - reduced and let R = r, mL
where m ranges over all positive Tf - numbers. Clearly it

~suffices to prove that R isAdivisible. Let a € R and
p €lT L has finite exponent n .say. Thenp

.' P

L () p~ = 0 . Since a€ R there exists for each i an
p

element a. E pnL such that i }Towp ai = a.~

= pa.
l:t\

for i = 1, 2, ••••• and in particular



al E piL for each i . Let m . be any IT - number and write
r for ~ 0 with s prime to N·ow - .m = p s some r p .

a. E prL pal = a € R ~ mL • However' prL /mL has

ex?onent dividing s and therefore no elements of order p

Thus a, E mt for every positive 1T - number m and so

alE R. Thus R is 1T - divisible and the result La r"t'oved.1II

COROLLARY ~.1~
Let L be a Lie ring and suppose that TT is a set of

primes such that for every p E 1T the p - component of

L has finite exponent. Then L / 011 (L) € R!:.ll"

PROOF
By Theorem 4.1.6 we have only to prove that for p E 1f

if Lp has exponent dividing pn say then so does (L / 0lT(L))p'

Suppose x ELand pmx € dlT(L) for some m> " .
Then there exists y E dn(L) such that pmx = pmy. Then

?W\{,,_~) ~ 0 . => pf\{).~) ~O .* rf\:l(. a p"~ (pI'lLp:O)

Thus (L / ~1r(L))n has exponent dividing pn •.. •
COROLtA~Y 4.1.8

Let L be a Lie ring and suppose that each primary

component of

'0 (L)

L has finite exponent.
00

f\ mL

Then

= •
Let L € 11. and IT a set of pr-Lme s such that for all

p E 1T" the p - component of L has finite exponent. Then

the following are equivalent

(r) L E R~



!
I

(ii) L is Tf - reduced.

(iii) Z, (L) is IT - reduced.

PROOF
(i) iff (ii)." Theorem4.1.6 •

(ii) implies (iii). Clear.

(iii) implies (ii). Let Z. = Z.(L) and let~ ~

T. /Z. = 't: (Z. /Z.)~ ~ ~+I ~

now suppose ZI is 1T - reduced. 'By lemma4.1.5 (ii) we have

Z'I/Z, is IT - reduced for all i. By Lemma4.1.5 (i) for~... ~ .

all p ~ 1T· the p - component of T. /Z. has finite exponent.~ ~

Hence by Theorem 4.1.6 we have Z. /Z. E R ~
~+I ~ '-1r

lIowapply Theorem4.1.2 to the series

~ Z = L. c

where the associated intecer sets are all taken to be the set of

all 11" - numbers. This gives L E' R ~ as reQuired. •

LIE RInGS OF ~::ATRIC3S

Suppose L is a Lie rine. Let K<l H ~ L and 1'1 ~ Der(L).

Define

. CT" (H /K) = [~ET1 1 ~(x) € K, for all x € H}

...C say.

note that K and H are C - invariant, and if x E H

then ~ E C induces the trivial derivation on II /K •

C is a Lie subring of" ,and in fact is the larcest
.'

such that C(H) ~ K (where C(Il) denotes the collection of

all elenents of L of the form If' (x) for all <p E C and

all x EL).

Let o .. L
n

<- ..... ~ Lo = L .be a finite series



for L The stahilizer of this series is defined to be
n

-2: = n CDer(L) (Li_, /L)
i'&l

and consists of those derivations of L under which every term

of the series is invariant and w~ich induce trivial derivations

on each factor. If <f? ~ Der(L) we say that if> stc"bUizE's

the series if ~ ~ L:
We define a class Gr'\ by saying that L €' e5" iff

L is isomorphic to a subrins of the- stabilizer of an invariant

series of lenGth n for some Lie ring (i.e. by abuse of

language iff L stabilizes some invariant series of le~~h n ).

The following lemma is the reason for introducing

stabilizers (the version for groups is due to Kaloujnine (2.0J ) •

~'Y1
, l n-'

PROOF
Suppose "E~~ Then we can find a Lie ring L on

which T' acts as a Lie ring of derivations, and L h~q a

saries o = L ::n
.....

is stabilized by 1"1 .
Recall that -r~= [r "_I, rJ '.7ewill prove by induction

J
on j that T' (L.) ~ Li+j for all i .

1.

If j = 1 there is nothing to prove since -r stabilizes

the series. Suppose j"> 1 and the result is established. for j •

Then . .

-r ' ( r J
(L.) ) ~ -r (Li+1)· ~ Li+j+11.

and

r J 1"' (L. .)( P (L.) ) <: ~ Li+j+11. - l.+J



And if <.pE"J, "+'E11 then·

[~ ,"t' J(L) = ~ 0 "P(L)
..'- ..

So
j+1-r (L.) ~~

Nowputting i

L.. 1~+J+
= 0 and j = n we find that

n
T' (L) = 0 and so r-" = 0 and •

If R is a commut atdve rine with identity, and A is an

R - module then En~(A) is an associative ring and can be

regarded as a Lie ring in ~he usual way.

LE1:!1,tA 4.2.2

Let R be a commutative rinG with id-entity 1
R
.• Further

suppose P is an ideal of R, A is an R - module such that
~ .n AP~ = 0 and m is a positive integer such that m1R E P.
""'1

Ii' 11 is a Lie ring of R - endomorphisms of A satis-

fyine 1"' (A) ~ liP , and Ki = C~(A / APi+1) , then

(i)

(ii)

(iii)

~ K. <l 1"1~

"/K. is a nilpotent Lie "t'ing of class at mosti •~
eon K. = 0 •

l':.l ~

PROOF
First we will prove by induction that for all i

mi T' (A) ~ APi+1

If i = 0 then the result is true by hypothesis. Suppose

/1 > 0 and mi-1,., (A) ~ APi •

roi l' (A) = m(mi-1"f1 (A»

~ APi+1

'I'heri since m1RE P

~ mAPi = A(mR)pi

'Wecan consider A as an abeId.an Lie ring and then " is

a Lie .ring of derivations of A. Nowfor each j



::
< ~~j+1
~ rU-

So T' /K. st~bili7,C3 the serics
~

.....
~~d so by lc~~a4.2.1 T' /Ki E: ni' Hence (ii) .. Also

~vinc (L) Finally if -YE (\K.~:, ~

:: o So 'I:: O. •
THr.On.,::.~ ~.• 2 • 3

Let R be a f .e. inte.:;ral donai.n and 1,1 :: l!n(R)L the

full Lie rinc of nX n natrices over R.
(i) If char R = 0 then for all but a finite numberof

pri!!les p, 1.I contains an ideal of finite index which

is residually a fi~ite p - ring •

(ii) If char R :: :p > 0 , t~en I.! contains an ideal. of

fini te index which is residuall:t a fim te p - rinG'.

PROOF
If P i3 a ne..xi:::d ic:.0:l.1of R t!':en R Ip iu a fini to

field of characteristic p say, by :Sourba1d [3] V 3.4- Cor 1 •

R is !Toetheria.."1.so n pi = 0 by Zariski and Sa,nucl[42],~.
~1apter 4 ,Theoren 12 •

1.r (n) is the endo:1orphis:1rinc of a free R - module A
n .. .

f.\ AP~ = O. Let.....of fini to r-ank n • Trivially

1\0,\,[R Ip i3 a rini te fie ld so H is of fini te

index in !I K. -e H and by
~

.' Lerma 4.2.2 (i) II IK. is a :p - rinc •~

Wenow clair.l that R Ipi is finite. The proof is by

I / i-1
induction on i. R P is finite. Suppose that R P

i3 finite. HO\7 n: is l:oethcria."1.30 pi-1 is f.e. as an
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R - module. Hence pi-1 IPi is f.g. as an R Ip - module and

thus is finite. Thus R Ipi is finite.

A IAPi+1. f R Ipi+1 d 1 f ank das a ree - mo u e 0 r ,.n an so,
. R Ipi+1sa nee is a finite rinB', we have that II IKi 1s finite.

This shows that H is residually a finite p - rinc.

If char R = p then char(R Ip) = p and this proves (ii).

Suppose char R = o. If p is a prime of z.. and p1n
is not a unit of R then p1R is contained in a maximal ideal

of R Now suppose that for i = 1, 2 t ••••• Pi is a

prime of 1L such that Vi 1R is a unit of R Then

< Pi1R I i = 1, 2, •••• > is a (multiplicative) free
abelian group of infini te rank. But the eroup of units of a

.f.g. integral domain is f .e. ( Samuel (31) Theorem 1 ). Thus

for all but a finite nR~ber of primes p, p1R is not a unit

of R and this proves the result. II

COROLL~tY 4.2.4
Suppose ~ is a field and let L be a f.e. Lie subring

of J,In(~·)L. Then

(i) If char ~ = 0, then for all but a finite number of

primes p, L contains an ideal of finite index which

is residually a finite p - rinz.

(ii) If char ~ = p > 0 then L contains an ideal of

fini te index which is residually a fin! te p - ring.

PROOF

Suppose that L is generated by the matrices

and R is the· subring of {_ generated by all. the

Lie multiplication in Mn(~)L is defined only in terms of the

field operations in ~ and hence L is a Lie sUQring of



Mn(R)L. The result nowfollows from Theorem11.2.3 •

This corollary is essentially a Lie ring ana'logue of Ual' cev' s

result [21] that f.g. linear groups are residually finite and

we could state the result in this form.

COROLLP.RY

Suppose ~ is a field. Then every f .g. ~ - linear

Lie ring is residually finite •

.I

..
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In this chapter we study the residual properties of Lie
rings whose underlyinG" abelian croups satisfy certain rank
restrictions ( in the sense of Fuchs (10] pB5 ) and which

•are ceneralisations of polycyclic Lie rings in the soluble case.
Our main inspiration is Robinson's work for solubJ.p.groups [30) §6.

Because of the linear structure of Lie rines and the great
influence of the underlying abelian group we are able to obtain
resul ts applicable to Lie rinGs which are not necessari:!.;:,rsoluble.
For ooluble Lie rings the results we obtain are stronger than
the corresponding results for groups, for the same reasons.

Let L be a Lie ring. The torsion free ra~c of L,
which is denoted by r (L) , is the cardinal of a mf~imalo

~ - linearly independent set of elements of L of infinite
order ( in other word.s the dimension of Q ®7£ L regarded as
a vector space over ~ ).

If p is a prime, then the p - ra~ of L, denoted by
r (L), is the cardinal of a maximal linearly independent setp

of elements of order p in L
*If we consider L as an abelian group it is clear that

.'r0(L) and rp (L) are equal
( as defined in Fuchs r,o]

to r (L*) a~d r (L*) respectivelyo p

p85 ) a~d hence are invariants
for L. UsinG this equality we can state immediately;
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I.E! ~i:A 5. 1 • 1

Let L be a Lie rinc,· B ~ L then

* *(i) r (L) = r (B) + r (L IE )000
* *(ii)O!:. - r (:B) + r (L) ~ r (L lB ) ::{ r (L) + r (L)

p P P P 0
for all pri~es p.

FnOOF
Aa for abelian croups cf Robinson [30] p147. •

It is clear that r (L) is finite iff (L I ~ (L»* iso

isomorphic wi th an additive subgr-oupof a finite dimensional

vector space over. ~ , and r (L) is finite iffp

"'t: (L)* E r,linp

Let LJIo denote the cla.ss of all abelian Lie riIlGs which

have finite torsion free ra~ and finite p - raruc for all p.

:By lemma 5.1.1 LJl 0 is S - closed and Q - closed.

~~ is then the class of all Lie rings with finite torsion

free rank and finite p- r-ank for all p. Once a.c;ain

lemma5.1.1 eives S - closure, Q - closure and also

E - closure. E (JJo is the cl aas of poly - lJ10 rincs.

E tn, is an S -, Q - and E - closed class containing

both polycyclic Lie rinGS and soluble Lie rincs satisfying Min •

Easily lJl f\ E VTo = lJ10 and "Vl:n ~Vl = EVlo
If L e ,(Jt is of finite exponent then it is finite

( cf Robinson [30] p148 considerins L as an abelian eroup ) •

.' This eives us the very import8..nt fact that tJl; Lie rincs of

finite exponent are finite.

If L io a residually finite 1T - ring, so is every subrine

and hence L must be 1r - r'educed, Wewill investigate how

far the converse of this result is true for tho classes VIe
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have defined above. In this context compare the results of § 4.1 •
. '

The ex~~ple prior to len~a 4.1.5 shows that reduced Lie rings
need not in general be residually finite ( since elements of
infinite heicht lie in eve~J subrine of finite index ).

THEOH:s:'.! 5. 1 • 2

Let L E L.Jl: and IT be a set of primes. Th~n L E R:::lrr

iff L is IT - reduced.
PROOF

Let in" .LEo and cuppoae it is 1T - reduced.
Z' (L) is a reduced IT - rinG'and so each of its primary

components is finite ( since it is of finite ran~). L now
satisfies the hypotheses of Theorem 4.1.6 and so is R C:Tr

~
But ~o rings of finite exponent-are finite and so
L E R 3-0-

•

•
Theorem 5.1.2 is also true for generalised rings in the

sense of Fuchs (ef Theorem 4.1.6 ).

CO~OLLA!tY

Suppose ~ is an E - closed subclass
~ f'"'\ R '3-Tf is E - closed. In particular

.and El.J1o f"'\ R 'J1f' are E - closed.

oKof lJlo then
Vl;f"l R s,

PROOF

Suppose N and L IN E. X f'\ R "3TT the"'!.L €::t
and L is reduced. Hence by Theorem 5.1.2 LEn '3-~ •

We will now examine the soluble case where it turns out
that a considerably stronger result is possible.
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Suppose J3 ~ L and IL : 13I < OD

H <1 L such that IT ~ B ani L III e l!:,
Then there exists

PROOF
If \ L : ]3 I< 00 then there exists m such that

roL ~ J3 and mL<3 L , so put II = mL. •
I,El,!MA 5. 1 • 5

L E: R::f-rrr..lJl: iff for all 0 1= x E L there

exists a subring II of .L such that x ¢ H and H has

index in L a rini te Tr - number; •

PROOF
V1o~Use Lemma5.1.4 and the fact ths.t rines of finite

exponent are finite. •

Let 'L be a Lie rinG' such that nL = O. Then for any

derivation ~ of L we have n lP = 0 •

Thus any Lie rinG' of derivations of L has exponent ,

dividi:r.g n •

PROOF
Follows from the linearity of lp . ..

t

Let n <l L and aasume that ever-J subideal factor of L

which has finite exponent is finite. Suppose L IN has an

~o series of finite length in which each factor is

Tr - reduced for ,some set of p~ir.les IT Then if x is an

element of N which is not contained in every subring of
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index in N a finite lf - number , then there is a subring of

L of index a fi~ite 1T - number to which x does not

belong.

PROOF
17ecan refine the given series for I, flY by insertj ne

the torsion ideals in each factor. This gives a series

N = 1T <l N <3o .... <J 1T = Ln

in which each factor IT. 1 IN. is either torsion free abelian
l.+ l.

of finite rank or a direct s~~ of finite abelian p - rings

for different primes p E 11 (since IT - reduced !.mplies

R ~Tr by Theorem 5.1.2 ).
Assumethat n > 0 and that the lemrnais true for

u = ~nus by hypothesis there is a subrin~ S such
:lCfS

that I 1.1 : S I is afini te TT - number- m say. A Then mM ~ S

and so by hypothesis H lrill.! has order a finite 1T - number.

N 1n-

Let C = CL(UfrrJ.i). Then C<l L and L Ic € -:g.
( Corollary 1.3.3 ). Further J L ICI is a rr - number- by

Lemma 5.1.6. Thus we can assume x € C.

Case (i) L 1M is a direct sum of finite abelian p - rings

Vii th p E 1T •

Write C = C IrriH, M = 1.r f~ft. and x = x + mU.

Then C is a torsion Tl" - ring and so is a direct sum of its

primarY components, each of which is finite.

Let the order of x be a lTo - number' where no is

a finite subset of TT Then if C1 is the no component

of C we have - € C1
Furthermore C1 is a finitex •

110 ( and hence IT ) -ring and C = C1 ~C; for some

C2 ( if C2 = o then the index of m!,! in L is a finite

1T - number ). Hence ¢C2 and C IC2
,...., C1 hasx



order a finite Tr - n~~ber. Sox is not contained in a subri~~

, 6f, ind~x a fini te 11 - number in L.

Case (H) L II! is torsion fre~.

Define D = 1:1e + mJ.1 , D <l L. Then

'L /n] = ( L le I . I e ID I :=: I IJ le I . I e Ime \ < ~
( since (c /me I is fini te by hypothesis ). further IL In I
divides I L Ie 1.1 e Ime I ,and (L Ie land \ C Imc I
are both 1T - numbers. Hence \ L' ID I is a 1T - number.

Suppose, x € D and x =- y :mod(r.ihr)where y E- mC.

Then x::: mz mod(m}.!)where z ~ e. But x E IT ~ l{ so

mz E I:I. Since ID '> 0 and L Iu is torsion free, we

have z ElI. Hence x E w.! and this is a contradiction.

Hence x ¢ D • •
m.~!A 5.1.8

Let L be a Lie rine with Fitting ideal N = "\1 (L) .

and let If be a set of pri:nes.

and Z1(l~) is Tr - reduced, then every

abel Lan ideal of L is 11 - reduced.

PROOF

By lemma 4.1.5 CH) , if i <W then Z. 1(N) Iz.(lI)
1.+ 1.

1s TT - reduced and so is R ':3-TT (Theorem 5.1.2 ).

Suppose Zi (If) E R '3-lf' but Zi+1 (n) ¢ R 'J1T
Then there exists x € Z. 1(N) which belongs to every ideal

1.+

of zi+1(n) of index a fini te TT - nunbez , Then x E Z. (n)
1.

( since the factors are ir - reduced ) so x ¢ mZ. (n)
1.

for

some posi ti ve lr - number m.

Let C - e ('7 (x) I '7. (v)) SJ.·nc'" ",.T, C .."V1- z. (r) LJ. 1\ In.:.!. _',. v '- J!J 0
i+1 L 1. 1.

subideal factors of 1'~ of finite exponent are i'ini te, and



so, hy corollarJ 1.3.3 Z. 1o» Ie Le fini to t and by1+
Lerma 5.1.6 it has exponent dividinc m. l;ow

1T - number' and hence so is ! Zi+1(n) Ie I .
m isa

0",,,, ~.'.I?
x ¢ C A. and

:-:~~':' -e-, .._-'-_"_ <t' ..t," :'.- __ -.

so does not be l ong to a subrine of finite 1T - index in Z. 1 (IT) •1+
Hence Zj(N) E R In for all j <'LU • (OfjV.\~IA"c. S".\.~\

Nowsuppose L contains an abelian idecl that if:' not

1T _ reduced. Then its maxd.na'l 1r - dLvdeLb'Leicleal R

is nontrivial. Also n ~ IT. Let II be any f .c- subr Lng

of N. H is contained in some nilpotent ideal of L and

so [L '" R' J = 0 for some n = n(H) •

Let p be any pri~e and let P be the p - component of R.
If P is the m?~imal divisible ideal of P then P Ip iso 0

fini te (since N € ZUl, ). Also [p, ""H -. ] = 0 where

n = I03aOP:l>.\) +.rIl(1)o) . ;'further since n is independel1t
p p

of H we have [p , N ] = 0 and p~ Z (n) which is
"''''

n
p

1r - reduced. However P i~ "IT - divisible since }l is

(whether or not p Elt )..So P = 0 and R is torsion

free.

Now let R = ~ ®ll R t then R is 0. vector space

of dimension ro r (R) over ~o
II acts as a Lie

ring of derivations on R and we can extend the action of

H to R by

(r ~ ~ )x = r E R ,x EH, olE ~

Thus H acts linearly on R. lIo"N since [R , ...H] = 0

then
" .... ~ l- .J::;.-- R ,,,H = 0

R Since dim(R) = rois a descend.in.; chain of subspaces of

[ R , H
-t ] rn ]we have = 0 , and so 'ro II := 0 .",

Since r is independent of H , [R n J 0 and. so
''0

'j =0



which is 1f - reduced, so R = O.
, .

'FlBO:ITJ,! 5. 1 •9

Let L 'E ,E lJ10 and 1r be a set of primes. Then
L E RJrr iff the centre of the Fitting ideal of L is
1T - reduced.
PROOF

Suppose LEE lflo and the centre of the Fitting ideal
of L is 1T - reduced. By lemma 5.1.8 .every abelian ideal
of L is 11 - reduced.

Now we define ideals A. of L as follows: A = 0 ,1 .0

and if A.
1

is already defined A. 1 lA.1+ 1 is the maximal
abelian ideal of L lA. containinG the last nontrivial term

1

of the derived series of L lA. • Then
1

..... < Ad = L

is an ZJ10 series of ideals of L.
Let R IA1 be any lr - divisible abelian ideal of L lA••

If m is any positive Tr - number A1 lmA1 is finite and
ele~~nt3 of R IA1 induce derivations on A1 ImA1 • Now
R IA1 has no proper subrines of index a finite 1T - number

Henceand so R centralises

= o

since A1 is 1T - reduced and so by Theorem 5.1.2 is R ~Ir

(where m ranees over all positive Tr - numbers ).

.'
If y E R the map

x + A1 , ') (x , Y] x E R

is a Lie homomorphism of R IA1 onto [ R , yJ « A1 by

the construction of A1 Hence [ R yJ = 0 and R E Vl•

:Bythe maxdma'l.Lty of A1 , R = A1 . So L IA1 inherits
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the properties of L and A2/ A1 is 1T - reduced. Similarly

every A. 1 / AJ.' is 1f - reduced.. J.+

Let 0 f. x E A1 then x does not be Long to some

subring of index a fini te Tr - number in A1 and so by

lea~a 5.1.7 x fails to belonti to a subrinc of index a finite

1T - number in L. Hence L IE R 3rr

_.'. .. -~. __ - -:----_.-

•
Theorem5.1.9 is not true in ceneral for

Let L be any finite dimensional simple Lie alcebra over ~
~

Let L be L considered as a Lie ring ( by restrictinc scalar

multiplication to ?Z ). The rational completion ( f 1.6 )
,...,

of L is L. L is simple and so Corollary 1.6.2 ensures-.that the FittinG" ideal of L is trivial ( and hence reduced ).

- Vl¥Howeverclearly LEo and

Theorem5.1.2 L ¢ RJ

,.. .
L is divisible and hence by

COROLLARY 5.1.10

Let L E- EV10 Then L is 1T - reduced iff the

centre of the Fitting ideal of L is 1f - reduced.

PROOF
Theorems 5.1.2 and 5.1.9 • •

COROLL~'L'1Y 5.1.11

and Tr any set of priMes.

iff the centre of L is rr - reduced • •
HavinGan .Lnpor-tarrtbearine on the prohLen of residu:".l

fLli tene ss is the structure of !!linimal ideals and in the case

of EUt, rin,S's these can be described explicitly.



5.1.12
: .:_~_~_." .: =+: :~-:~~_'.,._~C"·:;_:"_-:,,;:=-;'':''''''~'''-is a min:i.r.alideal of'; L, .. ._...__ --. c:._·

either
(i) N E lJ1 f\ 'J- 2..'1.dis of pr-ime exponent

or (ii) II ~ 1J1"de and is finite r-ank and divisible.
PROOF

Let N be a ntntmat ideal. Since LEE "Vlo II is
clearly abelian. Then H is either torsion or torsion free
( otherwise the torsion ideal is strictly contained in 1;)

If Ii is torsion it is a p -ring for some p (since primary
components are direct ). Thus If is finite since r (n) -< 0.0p

If N is torsion free it is divisible for otherwise
(a) If it were mixed the divisible ideal of N is strictly

contained in H.
(b) If it were reduced then there exists p such that

o < pN < N and pH 4 L •

So N is a direct sum of finitely many copies of & •
COROLLAn.Y 5.1.13

If L E E~o then all chief factors are either
(i) 1J1" 3- of prime exponent
(ii) U1 f"'\ X and fir.ite rank divisible • •or

Robinson [30] p183 Theorem 6.45 shows that in the group
theory case (ii) does !1otarise. However it is necessary here

.'
as the followin~ example shows. Consider

with the only nonabelian structure

=



I
I

Then LEE DC' and ~ is a minimal ideal of L.
O\7ecan however say the following ;

THEO:mI 5.1 • 14

Let L E tJ. (\ El110 then a..'1.y minimal ideal ( and hence
any chief factor) of L is contained in L.J1n J .
PROOF

Let L be generated by x1 ,...., x say, a..'1.dsuppose
I!l

I is a minimal ideal of L which is finite r-ank divisible.
Let Y1 ,•••••, Yn be a basis for I (considered as a vector

space over ~ )• 'Wehave equations of the form
n
L= q.OkYk~ "" ~J.

to m, and j runs from 1 to n.where i runs from 1

2The cm coefficients qo Ok are rational numbers. They can
~J.

be placed over a common denominator d. If r1Y1 + •••• + rnYn
is any vector beloncinc to the ideal 11 of L generated ....y

Y1 ' then none of the rational n~~bers ri when reduced to
their lowest ter~s can involve in its denominator any prime
not dividi~g d. lIenee 11 is strictly contained in I

cont.rad.Lc td.ngninimality. Hence the result.

TH'l'.: CLASSES Vl. A.lm 3 V1,

Let L be a Lie ring. Then the total rank of L ,

denoted r(L) , is defined by.
r(L) :: r (L) + L.. r (L)

0 p p

Let Vl. be the class of al1 abelian Lie rings of finite

total rank. Thus, L E. m, iff "t: (L) E ?1in and

L / "C (L) has finite torsion free rank.



~LJ7, is the class of all Lie rings with fini te total

. r-ank; This" class "is S ~- closed and E - closed and

E ~I is the class of poly <=J1,- rin~s a~d it is a proper

subclass' of E lJ10 con+at.ning the polycyclic Lie rines and

soluble Lie rinG's vii th !.lin. E V1, is S - and E - closed.

None of lJl, ' LJ1,lI 911d EU, is Q - closed (consider

the abelian Lie ring with additive subGroup the rationals mod1 ).

Howeverthe torsion subclasses of these classes are Q - closed.

Finally lJ1" E l.J1, = Vl,.
Once aGain ( cf Theorem4.1.6 ) the theorem for abelian

gToups ( Robinson"(30J p160) provides us with a result which

is also true for generalised rinGS.

THEO:n:s;~ 5 • 2 • 1

Let L E l.Jl,-l(- and suppose L is 1T -reduced for some

set of primes IT Then L E R "::Fifo where ITo is a

fim te subset of IT with cardinality at most -(t).

PROOF

L is lr - reduced and co-isequently \:" (L) is finite.

By Kap'l anaky Cll) p18 *'"C (L) is an abelian croup direct

*factor of L "ByTheorem5.1.2 L E' RJ-rr so there

-exists a n - numbe-r iii. where TT is a finite subset

of 11 ,such that L = mL is torsion free. It suffices

now to find a f'Lrrite subset lTo of IT such that

R = n mL whea-e m runs over all posl ti ve ITc> - nu:nbers,
.'
is trivial (since mL ch L ).

Suppose therefore that L is torsion free and nontrivial.

L is not TT - divisible so there exists pElf such thn.t

L > pL Put P = -n ipL. Since L is torsion free it
i.. .... e



follows easily that L Ip is also. 3y lemma 5.1.1
r = r (L) = r (p) + r (L Ip)

000

Hence -(r) < r and by induction on r,P € RJ1T,

where TIl ~ n and ITT,' ~ r - 1 • Let lTo = IT. LJ {:p)

so that llTo( ~ r and define R = n nL where 1':1 runs
~

over all positive TTD - numbers. It is now sufficient to prove

that R is lTo - divisible for then it will be trivial, since

Let q e lTo and a ER, then a = qa1 = q2a2 = ••••
where ai E t L is torsion free so a1 = qa2 = q3a3 = ••••
and a1 E qit for all i. Let m be any positive Wo - number

PER-::f.
"tT,

andR ~ p ,

and Vlrite im = q n where n is prime to q and i ~ O.

a1 € qit and qa1 = a E R ~ mL. NoVlqiL./mL has

exponent di vidiIlS' n and so a1 E mL. Hence a1 E R and

R is TT;, - divisible. Hence R = 0 and the result •follows.

Wecan now combine this result with those of ~ 5.1 to

find out what happens in the soluble case.

TIEORR'.! 5•2 • 2

Then L is residually a finite

Tf -rine; for some finite set of primes IT ,iff the

centre of the Pitting ideal of L is reduced.

!'ROOF

( => ) If L E R ::I1T then the centre of its Fitting

ideal is 1T - reduced by Theorem 5.1.9 and hence reduced.

(¢ ) Suppose ~he centre of the ~ittinG ideal of L is

reduced then since LEE Ln I <, E 1Jl0 ,Corollary 5.2.1 Cives
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I

fr,r some finite set 'of primes 1T ( which

can in fact be chosen with cardinality at most r(L)').

C0!10LLARY

A polycyclic Lie ring is residually a finite IT - ring

for some finite ae t of primes 1r •
Nowa c~nverse to Theorem5.2.2

~ORZ',~ 5.2.4

Let LEE Vlo be a residually finite IT - ring for

some finite set of primes 1T , then LEE V1,
PROOF

Let LEE V101\ where IITl <00 • Every
element of finite order in L must have its order equal to a

Tr - number. Thus *L:" (L) E J.lin and consequently

•
Wewill now collect to[;ether some facts ( not all of which

we will use, but which are worth noting in their ownriGht )

about divisible Lie rings.

Suppose L is a torsion Lie ring. Then 0 (L) ~ Z1 (L) •

PROOF
!

Let Y ELand suppose that ny = O. Now -c (L)

is divisible so for any x E 0 (L) we can find z E "0 (L)

such that :le = nz Then

[:le , y] - [nz, y] = [ z , ny] o



and x €. Z1(L) •
~ __;.~'7 .•... - ...... ._.-:~.-

F:?OPOSITI01'J 5•2 •6

Let L be a divisible Lie ring then
(i) 1: (L) is divisible and contained in the centre of L.
(ii) Every term of the upper central serie~ of L is

divisible.
PROOF

(i) Since L is divisible and L / 1: (L) is torsion free
we have that 1: (L) is divisible.

If y E- L t X E '"C(L) say nx = o . Then
0 = [ y , nx] = [ ny , x ] t for all yE L

Thus x€ Z1(L) •
(ii) L / Z1 is torsion free, for if not then Z2 /Z1 is
not torsion free and there exists x E Z2 '-. Z1 such that
nx ~ 7,1for some n '> 0 (where Zi = Zi(L) ). Then
[ ny , x] = 0 for all y ELt so x E Z1 which is

a contradiction. Since L is divisible and L /Z1 is torsion
free Z1 is divisible.

For any 0{ '> 0, Zo(L /Z1) = Z..HI/Z1 and L /Zo<+,

is torsion free by lemma 4.1.3 • Hence Z is divisible.
"'tl •

Let ~ be the class of abelian Lie rines with ro(L)
-I

finite •

l

THEOR~.I 5.2 .7

If LEE Vl
-I

then O(L) € nLn
rHeO?

Let R = 0 (L) the divisible ideal. I[ow R / ~ (a)



/

is torsion free of finite rank. Consider i to ~. corrpletion

which is a soluble Lie aleebra of finite dimension over ~

Lie's theorem and Corollary 1.6.2 G'ive n /1:::' (n) E. nl5l
( cf Proposition 1.8.1 ). But

Proposi ti on 5.2.6 (i) , and hence R € run . •
LEI1M'A5 •2 • 8

Let L be a divisible Lie ring and ". ~ Der(L) •

Then if either

(i) L is torsion free and r (L) < 00
0

or (ii) L is a p - ring for someprime p and r (L) <ODp

then 1"1 € 6<0 .
PROOF
(i) *L is a direct sum of finitely maYJ.Y, say n, copies

of e) *and so End(1) is the associative ring of n X n

matrices over ~ (fuchs [q] 55 p210 ff). Thus

since any Lie rinc of derivations of L is a Lie subrinc of

End(L*)1 ( by Lemma 1.3.1 ) we have T' E (Ra

*(ii) L is a direct sun of finitely many, say n, cop~.es

*of C eo and. so End(L) is the associative ring of nX n
p

matrices over the field of p - ad Le integers (Fuchs ['\1

55 p210 ff ). Thus "P € (Ro •
Wewill nowexamine in closer detail the structure of

,'ti'Vl r-!"''''s...:J , "'~-u.

LE'~·':A 5. 2 .9

If L is torsion free and 1'1 ~ Der(L) then ,..,

is torsion free.



PROOF
* *If L is torsion free then End(L) is torsion frGe

(Fuchs C/O) p182). Then use Lemma 1.3.1 •

Let L c ere, 1\ 3lJl. Then L has a finite

characteristic series with torsion f~ee and abeliD.n

factors.
PROOF

Let n be the derive~ lenGth of L and use induction on n.
If n

Then L IL (..,-1)

if T IL (n-.)

1 the result is clear. Suppose n ~ 1 •

6 Ez.n and,has derived Length n - 1 • Thus
1:: (L IL ,..-.~ then T eh L and L IT has=

a finite characteristic series with .~,,~ factors by

induction.

1-9t e Then e eh L and T Ie is a=
• ( (..,.1»subrlnG of TIerL (11-.)lIow L is torsion free and so

by lemma 5.2.9 T Ie is torsion free. However T Ie is a

quotient of T ILlt\-,)and hence is torsion. Thus c = T -.

Hence [ T L(I1-'"] 0 and. (,,-.)
~ Z1(T), L .

Suppose T IL ,n·.) 1= 0 . V!e also YJlO~ that T is

torsion free and T IL" ..··) is torsion. Now T IZ1 (T) is a

T IL(I1-I) 4quotient of and hence is torsion, .but by Lemma .1.3
.

we kno...t it is torsion free. Hence T IZ1 (T) = 0 and T ~ lJl .
,The result now follows by the case n = 1 •

LR'_!!~A 5.2.11

Let L e E1J1, ~~en L has a characteristic se~ies

of finite length vIith CJ1, factors.

......::> ..... ",~-.•... --. ".

•

•



I
i

I

PROOF
Let T = "C (L) Then I, IT E de f\ and

so by lemma 5.2.10 has a characteristic series of finite length

with de f)In_1 factors.

Let D = '0 ('11) Then D eh T ch L so D eh L •

lTow D::( Z1(T) by Lemma 5.2.5 and so D E''Vl.. Further

since L € EVl T ID E 3- so the d.eriv€~. series for
I

T ID will have finite factors ~~d since its terms are characteristic

in T they will be characteristic in L. This then eives a

series of the req,uired form.

Note that we could further refine this series by insertinG'

a series for D whose factors are direct SUr.lS of finitely

many copies of C eop with a different prime p . for each factor.

This is possible since D is a direct sum of its primary

components and their are only finitely many of these since

D € Vl. . •

We are now in a position to prove an analogue of a result

of Ual' cev' s [2i] for groups.

"'.2.12

PROOF
By lemma 5.2.11 LEE lJ1. has a characteristic series

! of finite lenzth whose factors are either finite, direct sums
of finitely many C_

l'
groups or torsion free abe1i?~ of

finite rank.

Let F be any factor of this series a~d v~ite L = L ICL(F).

If F La finite so is L . If F is a direct sum of finitely



many c ~' s then L E 0<...0 by lemma 5.2.8 (ii) and so byp

the areument of Proposition 1.8.1 ( that is eS8cntially Lie's

-l.
Theorem) L acts nilpote~+'ly on P i.e.

[F, -2JL .,.
m o

for some m ~ o. If F is torsion-free abelian of finite

-rank then L is torsion free by lemma 5.2.9 , soluble and of

finftc rank. Consider the ~ - completion of L , then by

the same argument as above (Lie's Theorem and Corollary 1.6.2 )

we have _'- ][F, m L = o for some m '> 0

Thus for each factor F there is IIp <1 L
'l.

and (H! CL(F)) acts nilpotently on

such

that F •
Take

factors F •
lIF lofith the intersection t aken over all

Then Lin € ':J and [F, k N2J -= 0 for

F and some k "> o. Then N2 (; rt andall factors

so L e 11.V1J .



I
I

7 n _ r.LO'"'Fr{", D'!;'T, Hf1I''''''' "'0 "7' 7M"-' I J. ~.'),.J~ ...J :,.L;'.J.l.!';""\._ Y ... .J.1 t.J V I

In the first section we investicate the structure of

soluble Lie rinGs satisfying thp. :ninir.wl condition for

subideals and find that t!1cse are somewhat better behaved

than their croup theoretic counterparts.

The rest of the chapter is devoted to findin~ v:hat

properties are inherited by soluble Lie rinGs from their

abelian subrincs. Firstly various finiteness conditions are

examined. The ~oup theoretic version of this work is iboleto

Mal' cev [2.9) and Schnidt [l~l '. ~"ethen look at the

various rank conditions defined in Chapter 5 and prove

anafogue s of theorems of Carin CS) , (~1 and Kareapolov (22] .

§ 6.1 SOL~LBLI~ :RI1{GS'.'IITFr !'.:in - si

Let L € BlJ1 1\ ::.:in - si. Let U be the unique

minimal ideal of finite index in L (which exists by i.:in - si ).

Then N is divisible.

PROOF
Wewill first show that n has no p:t'oper subrincs of

finite index. Suppose T is a proper subrine of N of

finite iniex. Then for some m, mL ~ T and N Imr. E l:.,
There is a characteristic abelia."1series

1nL = Lo < L1 < .....
( e.IT. the derived s~ries of N /f:'L ).

Then. L IL '1E LJl ("\I.an (\ C,n D- .

< Ln = N

and hence is finite.

)Jut ·Ln-1 ch N and so L 1<l L , contradictinG then-



I
I

defi:r.i tion of !f. Hence N has no proper sul,rinC's of finite

index.

If m '> 0 and mN < N then as above there exists a

characteristic abelian series f.rom mN to N. Looking at

the top factor aCain gives a contradiction and so mU = N

for all n. Hence U is divisible. •
COROLLA1YG.1.2

,

Let LEE t5l (\ Hin - si. If L E ~ then L E. '3. II

THEo~.r 6 •.!.:i

Let L€ EVl f\ Hin - si. Then L is a finite

extension of a divisible abelian ring satisfyinG" Min.

Consequently L is countable and satisfies Hin.

PROOF
Let L € ElJl (\ !.Tin- si. Then L has an invariant

abelian series each of whose factors satisfies Min (since

tJl f"\ I.:in - si ~ !.lin). Hence L is torsion. Let

l~ be the unique ninimal ideal of finite index in L •

lernma6.1.1 n is divisible and hence central by Lemma 5.2.5 •

This completes the result. •
COROLL~~Y 6.1.4

Let L E Ii:lJ1 " lrin - si. Then L is centre by finite.

, PROOF
As for Theorem 6.1.3 • •

COROLLARY6.1.5
.Let LEn ('\ j,:i.n- <l Then



(i) L € t~n . '
: "_. - ~ ~.'-__ .:----:-_ .

(ii) L is centre by finite
PROOF
(i. ) If Z.(L) ~ H ~ Z'1(L) then lI<lL since L E-'Yl.~ ~+
Renee every upper central factor of L and so L itself
satisfies Bin.

(ii) l.lin implies !.rin- si and so the result follows by

Corollary 6.1.4 • •
L~.:!.:A 6.1.6

If L is a divisible Lie ring then any Lie ring of
derivations of L is torsion free.
PROOF

* *If L is divisible then End(L') is torsion free
(Fuchs ['1) p207) • The result f'o'l Lows since ~y Lie rinG'

*of derivations of L is a Lie subring of End(L)L' •
PROPOSI',i1IO"T6.1.7

Let ,LE E"Vl n m.n - si. Suppose Tl is a torsion Lie
-, .c --::z..ring of derivations of L. Then I ~" •

PROOF
*:By Theorem 6.1.3 L ,E. tUn and hence L~ -

,...
where Aj =: Cp~ or:" c__~ for ,some pz-Lme s Pj,qj and.integer k> O.

'l q] ,
Hence.(Fuchs [9] p2l2 Theorem 55.1' ) End(L*) is isomorphio

to the associative ring of.all n)( n matrices (a .. ) such that
1J

each a .. E Hom(A.,A.). But in this case Hom(A
1
.,Aj) is always

1J 1 J
either torsion free or finite and hence 1:(End(L.c) £ 3- •

The result now follows by Lemma1.3.1. •
Wenow briefly consider soluble Lie rings satisfying the

cini~l condition for ideals. All we can say is that



such rinc-sare .,_ .cor-ai.on ,

LE;,'j'iA 6. 1 .8

Let " be a torsio~ Lie ring of derivations of a Lie
ring L. If L contains no proper nontrivial -r - Lnvar'Larrt
subrings then L is torsion.
PROOF

Suppose L is not torsion. For any m:> 0, mL is
-r invariant and so is 't:" (L) and hence L is

torsion free and divisible. Thus by lemma 6.1.6 any Lie
ring of derivations of L is torsion free. A contradiction. II

PR.OPOSITIN~ 6.1 .9

Let LEE m I"") Ia,n - <l Then L is torsion.
PROOF

Let L c: Em 1\ 1.:in- <3

derived lenGth d of L. Write
Proceed by induction on the

~-I)
A = L and assume

d > 1 and L / A is torsion. Ey Min - <l there exists
an ascending chief series of L from 0 to A, say [ AcI. \ 01. ,,S} .
Now A o(tl / Ao(. has no proper nontrivial L - invariant
subri!lJ's.Further L / CL(Ad.H IA e() is torsion (since
CL (Aac ..., / Aa, ) ~ A ). The result now follows from
le~a 6.1.8 • •
~ 6.2 tJl - CLOSUll"SAX!) FHiIT7,!;ESS COEDITIOrS

Suppose ~ and ~ are classes of Lie rincs closed
with respect to takinG"abeLian c'"J.brincs.'Nesay X is
t.JJ - closed relative to 7J-_ if given L €1f- and



every abelian 5ubrine of L is contained in Xn1.J then

L E X"1J
In the case X~1j vie say X is Vl - closed

in 11 if it is m - close': relative to V
ThrouGhout the rest of this chapter we will investicate

what classes are m - closed relative to E IJT .

1.1in is m -closed relative to E 151
PROOF

Let L be soluble with each of its abelian subrings

satisfyine- Hin. Suppose L has derived length d '/ 1 , and

put IT = L2• By induction on d, U E Min. 'l'he

hypothesis implies that L is torsion (just look at the

cyclic subring generated by each element). Hence if we

put e = eL(x) then L Ie can be considered as a torsion

Lie ring of derivations of n and hence by Proposition 6.1.7

L le E-:J and hence satisfies lllin •

lTow e2 = [e e] ~ [L LJ = L2 and so
[ e2. , cl s [L2 , e] = 0

and. e E n'2,.' Let ~.! denote one of its raaxi.mal, abe li.an

ideals. X,! satisfies !iiin and 1.I = ee(H), so a fUl.·ther

application of Proposition 6.1.7 gives e 1!.1 ~ m.n. Eence

LE l'an • •
LB"::t.':}, 6 •2 • 2

If L €. ~ (') lJ1 and l' ~ Der(L) then 11 €~¥ ~ e;
PROOF



where 4'
,_.

~ for all i 1, •••• ,rn and T. ,....,
e- =
f'~'~i ].

"for some Pi and k. for all i = 1 , •••• ,n .
1.

By Fuchs rq] p212 Theore~ 55.1 if A is 2~ abelian

group and A ::
n
$ A. then End(A) is isomorphic to the
l.'" 1

associative rinG of all nX n matrices (a .. )
l.J

such that

each a .. e Hom(A. , A) . Eow
1J 1

Hom( ?l 71.)
,_, 7L

:Clom(1Z. C ~) - C p~r
Rom(e rk , ~)

,..,.- 0-
Hom(Crk , C .) zr1-

rini te

p J. q

p = q

*So in particular all are f .g. abe Li an groups. So End(L) is

a f.e. additive abelian group and hence so is every additive

* ~
subgroup, Thus T' ::£ ::Jer(L) :: End(L)L e ~ · ..

COROLLru1Y 6.2.3

If L E ~ ~ and 1'1 ~ Der(L) then l' E Cj -'J? ~ 'tJ .
PROOF

Lemma 1.3.1 a'rld le~~a 6.2.2 • •
COROLLklY 6.2.A

Let L E- s 'e
and. further if

and T' ~ :Der(L) then T' E cJ* ~~
T' € EV1 then 11 E n 'e

PROOF

.' Since ~-x" Em = E 'e II

THIDRE..r 6. 2 • 5

Let LEE lJl and suppose that each of its abelian

subideals is t ,«, Then LEE 'e.



PROOF
_"-.'

Assume L ¢lJl Let N be the last nontrivial-

term of the derived series of L. By hypothesis N E ~

Let H /N be an abelian subideal of L IN and let C = CH(N) •

Since C '? N, II /C E"Ul and by lemma 6.2.2 H tc E- (j_
Now c2 ~ N and so [C2, C] = 0 and C E 112 .

Let 1.1 be a maxfrnal. abelian ideal of C. Msi L and 00

MEtJ.
since C2 ~

By the maxi.mal.L ty of J.1 11 = CC(ll!) , and

Z1(C) ~ 1.! we have C lu E (5l Hence

by lemma 6.2.2 C 1M is Lg. and so H is also.

T'nus If In e ~ and L In satisfies the initial .

hypotheses of the theorem. By induction on the derived lenGth

L III and hence L is polycyclic. •
We can res-tate this result in a number of f'o'rms,

CO~OLLARY6.2.6
E e is LJl - closed relative to E lJl

PROOF

Since E e ~ CJ. •
COROLLARY6.2.7

If L € E lJ1 is such that all its abelian subrincs

are f. {S. then L E CJ
( Note that we cannot use the te~nology of (J1 - closure

since Cj. is not closed with respect to ta~inb abeli2~ subrincs ).

PROOF

Since E 'e ~ t;. •



COJOLLNW 6.2.8

r,~ax is Ul
PROOF

Since E~ ~

closed relative to E lJl .

Ilax ,.... 01

THZon:::.r 6. 2 •9

~ is 1Jl - closed relative to E lJl .
PROOF

Let vrith all its abelian eubrd.nge rini te.

Now 3-
L € E'C 1\ !:1in and thus by Theorem 6.1.3

Hi n ann so by Theorem 6.2.1 and Theorem 6.2.5

LE J II

(J] - CIOS'lB3 AN;)FI1IJITE RA.NK

Wesay an abelian Lie rinG L is in the class 1Jll, iff

r (L) < 00 ando 1:" (L) € 3-
Wehave now defined the followine classes ( cf Chapter 5 )

All the classes are clearly distinct and all are S - closed.

LJ1_, and l110 are Q - closed but the others are not.

Let AE de.ra Vl_1 , say r (A) = n • Let ,., be an
0

abelian subring of Der(A) • Further suppose that there are no

T1 - invariant subrings of A of rank < n • Then if

Ot 6 E. T' ker S = 0 •

PROOF

Put V = e> ®~ A, a vector SPQceover Q of

dimens,ion n •. acts on V by



where a G A ,

¥ ('1 ® a) =

Let T[! be 0. "f1 - invariant subspace with dim;7 = r <: n
and with basis , •••• , 1 c8> x say.

r We can consider
A as bein[;embedded in V (as 1 ® A ) • Y{ (\ A La

" - invariant of rank r (it contains 1 ~ x1 , ••• , 1 ~ xr )
and so r = 0 and V is r -irreducible in the usual
sense.

Suppose· S EI1 and det 5 = o • Put
U = [ v E V ( '5 (v) = 0 1-

If U I- 0 then U is a subspace and if uE U , o{E'-'

then
(u c( ) 5 = (u 5)0< = o·

( since l' c LJl ) .
So U is l' - invariant and U = V , so 5 = 0

Thus if \~ I- o , det S I- 0 and ker 5 = o • •
LErl1,IA 6 •3 •2

*Suppose L E ZJ10 and L is torsion. Then every finite
set of elements of L lies in a finite characteristic ideal
of L.
PROOF

Suppose L EUo* is torsion, then L = ~ Lp
*where each L
p is a direct sum of finitely many c ~ and C"'obr P

groups.
Let x1 t •••• t X E L with each x. of order m.•n ~ ~

Let Cleaxly m involves only fir~tely
many primes and so

L [m] = { x ELI mx = o}



is finite and ch~xacteristic by lemma1.3.4 •

L~.IJ.!A 6 •3 •3

Let L E de. f\ lJlo¥'
then f L : H I < 00

PROOF

Suppose II ~ L and
~H = L

This follows ir.n.,ediately from a result of Carin (S] p899

Theorem 2 which states that if A is a torsion free abelian

croup of finite r-ank and B ~ A and J3 =- A then \ A : 5l < GO..
W.1J'I ..\ 6.3.4

Let H <l L, H E EZJl 0 L IIi E: Z.J1"1Jl_I• Then

. L contains a free abelian subring of infinite rank.

PROOF
Case (i) II := 0

Then L cEUl\ "'Vl-l • Let T = ,"'t: (L) then r (L IT)o

is infinite. So there exists an infinite Zl-linearly

independent set A1 + T , x2 + T , ••••• of elements of LIT.
Consequently x1 ' x2 ,..... are 22- linearly independent in

L and so generate a free abelian subring of L of infinite

rank.

In view of this case, since L IH will always contain

a free abelian subring of infinite r-ank VIemay assume \.,i thout

.Loas of generality that it is such a rinc.

Case (ii) H e Jeri Lno and H ~ Z1(L) •

Let A be a maxinal abelian subrine of L with A ~ H •

Let r'o(H) = n so:y • Suppose r (A) = m ( ~ n ) .
0



By the naximality of A, A = CL(A) and since L IE E <:Jl
Vie have A <l L. Thus L IA maybe considered a subring of

Der(A) • , •••• , xn be a maximal 7l.- linearly

independent set in II and. extend it to one in A. Tuen if u E L

= { o mod II i > n

o i ~ n

(since II s Z1 (L) and L is metabelian ).

110'<7 consider A as beinc embeddedin V = e) ®zz A

a vector space over ~ of d.Imened on m, with basis

1 ® x1 , •••• , 1 ® x Define an action of L on V bym.

q E ~ , a e A, u € L

This action is represented by a matrix over e) of the form

a
o

.. n ---+04- TIl - n-+

( Note that an additive eroup of natrices of this form forns an

abelian Lie ring under the usual cor.unutation ).

L lA is isomorphic to an abelian Lie ring of matrices of

this form. Thus L lA is isomorphic to an abelian subrinG

of !'!n(~ )L

over e;) ).

(where !.In( ~ )

Thus L I.A. E LYlo
is the rill[; of n X n matrices

and so r (L)· < ~o a

contradiction.

Case (iii) II E Je n Lno and is rank irreducible in the

.' sense that if le" H , K <l L with r (x) < r (H)o 0

then K = 0 •

:By case (ii) we can assume that II ¢ Z1 (L) •

Choose x € L such that CH, x] .; o. Now

consider the map ~ H~H, h~[h, x ]



This is a deriv:l.tion of II. Consider 11 = ~ ~ >~ Der(ii) •

"Then there are no r -invariant subrinc;s of A of r-ank

less than n ( by the initial hypotheses ) , so by Lemma6.3.1

5 [H , x]
,.._.

( both areker = 0 Ilencs II

abelian ) . Thus by leTILTJla6.3.3 H : CH x] I = k <00 .

Suppose L III = ffi <x. + II '> ( since we

"
1.

are aasurai.ng L III is free abelian of infinite r<>.nl:). For

each i II (since L IH ~ ZJl ).
'l1hus

(lac. , x]
1.

= k [xi ' x] E [II, x ]

So there exists h. E. II such that
1.

i.e.

[loc., xJ·
1.

[(lex. - h.) ,x]
1. 1

= [ hi ' x J
= 0

for all i •

Put - h.
1.

for all i 'I'ake ,.... )
Then A ~ CL(x) and CIJ(x) (\ H = 0 so 'A () H = 0 •

Thus

A (A + H) III ,_ EEl <la. + H">L 1

which is free abe l Lan of infinite rank.

Case {iv) H € l: nLJl
Suppose ( as above ) that L IH '"'J (B.(x. +II> . ";le

L 1.

will now construct y , y2 , ••••• such that s, = k.x.
1 1. 1. 1.

k. f 0 and [ y. , y·1 = 0 for all i , j .
1. 1. J

Now (x, yJ E H "for all x , yE L since L IE EVl
Take Y1 and suppose that y1 ,...., y have been

n

constructed. l~owby Lemma 6.3.2 i = 1, ••.• ,n

all lie in a finite characteristic subrir.G' F ~ H. So

F -<J L SUPlloSC' 'F I = TTl. Then for all i = 1 , •••• , n

o



Take = IDXn+1 and y. n+t is as req_uired.

Let A
.. . -;

',-. : ....,_.'_.-
= < Y , Y" ,..... > 'rhe natural1 '-

S L ~ L In maps A onto (A + u) IIIhomomorphism

and ker.s/ A = 0 since L IH is torsion free ( i.e.

!"-X. 4- H for all n)'- Hence A is free abelian of infinite~

rank.

Case (v) H Eul
Let T = "t: (II) and use induction on ~ (H IT)o = n.

If n = 0 then T = H and case (Lv) applies. If n"> 0

choose K wi th r s' Ie ~ H K <l L and K of maximal rank

subject to r (Ie IT) < r (n IT) • VIe may aSSU.''!l9 K iso 0

torsion free (othe~vise just factor out the torsion ideal ).

Case (iii) now applies and L IK has a subrinc A IK which

is free abelian of infinite rank.

The induction hypothesis nowshows that A has a free abe Lf.an

subrin(; of infinite ra.."1k.

Case (vi) The general case.

Now use induction on the derived lencth d of II.

If d = 1 use case (v) Suppose d '> 1. Then by induction

I (d-I)
L H has a free abelian subr-i.ng of infinite r-ank,

H(d-,l E V1 ( )a."ldso case v finishes the ar~~ent.

:Sut ..
Let ~ be any class of torsion abelian Lie rings.

Define a class ~ by

A EX iff AEm Z (A) E 3E
r (A I 1:" (A»o

a"lcl



I
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Let :?E.. be a class of torsion abelian Lie rinss such that

(i) 3: ~ '3-n"Vl
(H) 3:. = sX
(iii) 3:. ~ Vlo
Then if EX is en - closed in E lJl so is E 3(
PROOF

Let L E ElJl and suppose that all its abel Lan eubrd.ngs

lie in 3:. • We will use ind.uction on the derived lencth d

of L •

If d = 1 then L E~ If d >1 then by

L2 € -induction we may aasune E3E. ~ El.Jlo
If L /L 2 et (Jl_. then by Lemma 6.3.4 L has a free

abelian subrinz of infinite rank, a contradiction. Thus

and so LEE Z.JL, Let T = "t: (1).

"By Lemma 5.2.10 1 IT E :8( CIt () "Vl-1) ~ E ~ (since

clearly de.t'\1J1 "f ~ ). row every abe l Lan subrinz of T
-I

lies in :t n Z; = 3:. end so TEE:k

Ilence LEE:::t •
rrm;OIlS',! 6.3.6

E ZJ70 is m - closed in E"Vl
PROOF

Take X = Vlof1 G Let LEt" ELJl
, and suppose that all abelian sub'rLngs of L are in 'L:n lJ7" .

!Iow LEE"Vlo iff 1 E Pin n E157p
for all primes p.

( Use induction on the derived ien~th of 1 ,to~ether with'
p

the fact that if '1 has dcri~e1 lencth
n

("'-,) -
Lp . E 'DJt>1) 'L ~ Jilin ) •

d then



Since L is a direct factor of L, the abelian
p

are precisely the ~beli~~ subrin~3 of Lsubrin"'s of L. ~ p

intersected with Lp Hence Theorl:)m6.2.1 tOGether with•

Theorem 6.3.5 cives the result.

~O~~ 6.3.7

E V1, is lJ1 - closed in E l.n
PROOF

Take X = 'U11l !.!in in 'l"'heorem6.3.5 and use

Theorem 6.2.1 •

TREORB?,l 6. 3 •n
E "Ul"2.. is Vl - closed in E m

PROOF
Take 2( = WI') J in TI1eorem 6.3.5 ~~d use

Theorem 6.2.9 •

/

•

•

•
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CH.AP'D1. 7

Wenowhave a short chapter in which we examine a cl ass

of Lie rinGs which satisfy the subid.eol intersection property

( i.e. an arbitr::!xy intersection of subidcals is always a

subideal ). It turns out that "0 cannot Learn as l'1UC~1 about

the Lie rir.g situation as is possible in the group theoretic

counterpart ( ef Robinson (3OJ(7.1)).
This sort of result ( tocether with the Lack of coalescence

theorems for e~ample ) would seem to.inply that the concept

of a subideal in the study of Lie rinGS is not as powerful'

a tool as the subnormal subgroup in group theory.

Let II ~ L , then the ic't~a.lclosure se:!'ies of II in

L is defined as folloY/S ; = L and ind.uctively

= < >
the s!:lallest ideal of Ii" i which contains II. VIerefer to

.~,i as the ith ideal closure of H in L. It is easy to

see that H si L iff H e~uals sone tern of its ideal closure

Wesay

( H <:]n

L EeL
L iff H e~uals the th

n ideal closure ).series in L
iff the intersection of an arbitrary

collection of subideals of L is a subideal itself. ~e also

say that L h3.8the subidcal intl?r!'1cction llrone:dy.

m~fA 7.1.1

L E:. Iv iff for each H ~ L there exist:) a nonne;ative



iD Lf-
intecer n = Il(R) such that

= =

P:lOOF
Let L e:.ci T· •and II ~ L. For each i, II':';'1.<::J 1. L.

So II ~ UL,W si L. Suppose that nL,W <J r L, then

since II ~ nL,w we e-et

Hence = = .....
Now let· L satisfy the condition and let H = (l II).

"'EA
where RA si L for all AEA For some n ~ 0

HL,n = nL,n+1 = ....
Hence if II" <]r" L then nL,n

~
H L,r). = H). for all A
).

so that HL,n = H and II <]n L. •
LEi.~TA 7.1.2

Suppose A <J L B ~ L and L = A + 13 and

fA, [L, 3]) = 0 Then

= ]3 + ,.
1. .,

PROOF
We prove this by inductio~ on i. If i = 0 then

]L,O = B + A = L
and the re~ult is true.

Suppose i:> 0 and the result is proved for i - 1 •
L i-1is the s~allest ideal of ] , = ] + 'i-1

containing :s •
Clearly B ~ 13 + [A 'i :9] ::: :91, i • Also

[R + [ A 'i-1 13] 13 + r A 'i 13 ]]
= rB, 13] + [A, i :s ]

+ [IA 'i-1 nJ ' [A, in] ] + [J3, rA, i ]]]



lor

" .. _ '_ ~,n_, +. . [A 'i :sJ
- ' ".. -- (' Si~~~- tt;-:~-'1 E-] - ,- (A 'i :BJJ -~

.. - .'- .----.-- .. - ._-:"--

[.\ ,'[ L , j~] = '0 -- -j :-

Thus (n , + [A 'i TI]) <l ]3L,i-, and the result is proved. II

m~',~ 7.1.1

Let L be an abelian Lie ring and ?~End(L). Suppose

there exists k>O such that

If' k(L) = \f' k+1(L) = ..... = I say

and kerk('f) = kerk+1 (tp) = ••••• = K say.

Then L "" IE9K .
• PROOF

This is just a special case of Fi tUnc's lemma (Scott (34] 'P79 ) •

•
L~.l',!A 7 • 1• 4

Suppose L is a Lie ring', L ~ ?,!e_"'{ - <J and all chief

factors of L are finite. Let A.:3 L, A € 'Vl If

x e L such that <x, A> t £, •
then there exists a positive intecer m such that

<m."'{ ,A> E n
PROOF

Suppose the result is false. Then <:( > tl A :: O.

Let £. t be the endomorphism of A given by

a , 7J' fa , tx'] t"> 0

Then a E ker( E. !) iff [a ,. txJ =: o . Now
~

-'x+A(; Z1(L / A) and A€Ul so [A , [L,JC]] = o .
Thus ker( £ ~)-a L for if a

[fa, txJ ,yJ = -cry
€ kcr( E ~) and y € L then

-t rrr, tx] ,P. ]:>] t:: ]

~ [[a, yJ ,tx ]

!Tow'ker( e t) ~ ker( c~) ~ ..... ~ A



e ~+1(A) = ••••• = Jt say ( (x') r) A = 0).

A = Jt tB Kt •

we can choose t· > 0 so th'at Kt is

and L E Ea;:;:- <l so .there exists an inteGer s such thn.t
.. I..

ker( ~~) = ker( ~ ~+1) = .•••• = Kt say.

Now eaai Iy <n.."{, A> <l <x, A> € ~ which

implies that <JTI.x, A> c ~ Hence by Lemma 7.1. 1

there exists an inte~er r such that

(tx )H,r = .....=
where H = <tx , A>

'By Lemma 7. 1 .2

<tx '}H,i = <tx> + [ A " tx]~

= <tx> + e.~(A)
So £ ~(A) =
'By lemma 7. 1•3

maximal.

If Kt = A then ~tx, A» E ~ , a contradiction.

Hence Kt < A. 'By ~,rax - <l we can choose an A1 <l L

maximal '\'lith respect to Kt « A1 < A. Then A / A1 is a

chief factor of L so A / A1 e ~
mtx centralises A /A1 so

Jtm ~ [A, tr.nc ] ~ A1

Uow Kt :; Ktm and by the naxi.mal.Ity of let' Kt = Ktm•

For some m '> 0 ,

Hence A = Jtme Ktm 1f A1 < A. This final

contradiction completes the proof.

LE!~~.A 7 • 1 • t)

Let L be a Lie ring, A <l L, A torsion .free with

If there exists m;> 0 such that

then Len

f6b

•
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PROOF
If < nx , A '> ~n then there exists r > 0 such

that [ A 'r < mx>] = 0

i.e. r [ A <x> ] 0In 'r =

But A is torsion free which implies

[ A 'r <x> ] = 0

Hence <x, A> b~ •
Let L be a Lie rine: with L €.

Then if L €;[" then L E 11
PROOF

If L € J.e 1\ ElJl then by Lemma 5.2.10 L has

a finite characteristic series with torsionfree abelian

factors. Let

o < L1 <: •.... <, L = Ln

be such a series. We will use induction on the len.:;th n.

Suppose the theore~ is proved for n - 1 • Then

L /L1 E. Cj- f\ ~V1 r'\ df.., f""\L
and so by the induction hypothesis L IL1 E: ~ ~1US

L E -t;r\ 1J1n .
Let !T be the Pitting ideal of L. Then n ~ L1 '

and H is r.ilpotent by Lenma 3.1.2. Let x + liE: Z1(L In)
Then <x, N) <l L and so <x, IT> € L
Apply LCTIL"':la7.1.4 to L IJ.t and. then for SQr1C m > 0

< nx "If> /i."t is nilpotent. ~TO\'l l! is nilpotent and so

<nx , l'T> is rrilpotent by Lemma 3.1.1. !'T is to:!:'sion free

and so b~lLemma7.1.5 <x, r> E '11 and hence b~r the

defini tion of· N, <x ,N> ~ Ii and x E H and



lo~

Thus L = N since L IN E"11 and the
- _" ....._,_

:- .. - -_

result is proved. ..
P30POSITION 7.1.7

If L e. {i t"'\ E LJlo "" ~ then L € .';}11 .
a

PROOF
Let L have derived Length d > 1 and let A

(d-I)= L •

By induction on d L/A€J-ll andsince L/A isf.g.
it is pol~rC'J"clic.

Thus L €. ~" V1 (~~L)
't: (t)e 15, but 'e(t) €

ani as in Theorem 2.2.6
ELJ10 and so 'L(t) E 'J-

Then L / 't:" (L) Eo ~." EVlo f"'\de r.;(, and so by Thcore:n
""7.1 .6 L I 'C (L) e 11. Hence L E '3n
( In fact what we have shown is that L is polycyclic ). •

Let L e.J(" ( i :;;.0) if H si L implies that the
subideal index of H in L is less than or equal to i
( The subideal index of H in L is the leneth of the ideal
closure series of H in L).

Define
= ~ JXi.~o

This is the class of all Lie rines havin~ an upper bound on
their subideal indices.

7.1.8
L £X iff civen II~ L there exists Do nonnegative

integer n ( independent of H) such that
= = ....



loq
PROOF . ,

p~ for le~na 7.1.1 • II

LEt'],';). 7 • 1 • 9

Let H<J L ani assume N has a aubideal. conposi tion

series of finite length. If L IN €X then L € X
PROOF

Let m be the subideal composition lenGth of N and let

If H si L then certainly II + N ~r L.

Let s be the subideal index of H in II + N and vrrite

H=H < <H =H+Ns 0

for the ideal closure series of H in II + N. If N., = H. (""\ N
J. J.

then H.
J. = H. '" (H + n)J.

= II + N, •
J.

Since H. 1< H.
J.+ J.

we have H. 1< }~
J.+ i and also 0: course lTi+1<l Hi • The

series

Hr'\N = 1T <}T <s 's-1 ..... < lr :: ITo
may be refined to a subidecl eomposition series of N" and the

Jordan - Holder Theoren (ef Hizcins enJ ) inplies s ~ m •

Thus II <J m H + N • Hence II __..m+r L and L c:: -v II
--.. '" """ re·

TIEO"S'E'.! 7.1.10

L E r;. r'\ E 'Ulo();( iff L E. ~ 1"\ (~('\ EVOn
PROOF

( =» Proposition 7.1.7 •

, (~) By 10::1'13. 7 •1 .8 .:J( ~£ ITo\v clea"t'l:,r n ~:J<., ,
so by Lemma 7.1.9 3-n ~J( ~L .' II

CO::OP"A1Y 7.1.11

. L E. ~ ('\ B tJ1~f\ ~ if~ L can be embeddedin the direct
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sum of a finite soluble Lie ril",J and a f.:s. torsionfrcc

nilpotent Lie rinG

PROO:?

Let L E. ~ " (2- f\ EV1 ) 11 Then

L / 't (L) € ~ 1\ X r'\Yl
How LEE 'C, so 'C' (L) € 3- and there exists

11<3 L such that N e dt and. L /N E. ;:r
1: (1) 1\ IT = 0 and so the mapp.i.ng

y ~ ( y + !; , y + 'C' (L) )

is a monomor-phf nm of L ~ (L In) e (L / C (L» and

the result follows.

Peter J ;.:cIne:rncy
,.j'

Universi t:r of Yl.:.rwic!:

1973 '
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