

warwick.ac.uk/lib-publications

Manuscript version: Published Version
The version presented in WRAP is the published version (Version of Record).

Persistent WRAP URL:
http://wrap.warwick.ac.uk/72104

How to cite:
The repository item page linked to above, will contain details on accessing citation guidance
from the publisher.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/42611262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/72104
mailto:wrap@warwick.ac.uk

Plagiarism across Europe and Beyond—Conference Proceedings, pp. 53–61

STYLE ANALYSIS FOR SOURCE CODE PLAGIARISM
DETECTION

Olfat Mirza, Mike Joy

Abstract:
Plagiarism has become an increasing problem in higher education in recent years. A number

of research papers have discussed the problem of plagiarism in terms of text and source code and
the techniques to detect it in various contexts. There is a variety of easy ways of copying others’
work because the source code can be obtained from online source code banks and textbooks,
which makes plagiarism easy for students. Source code plagiarism has a very specific definition,
and Parker and Hamblen define plagiarism on software as “A program that has been produced
from another program with a small number of routine transformations”. The transformations
can range from very simple changes to very difficult ones, which can be one of the six levels of
program modifications that are given by Faidhi and Robinson. Coding style is a way to detect
source code plagiarism because it relates to programmer personality without affecting the logic
of a program, and can be used to differentiate between different code authors.

This paper reviews a number of publications which report style comparison to detect source
code plagiarism in order to determine research gaps and explore areas where this approach can
be improved. A summary of the plagiarism techniques in which style analysis can help identify
plagiarism is presented.

Key words: Source Code Plagiarism Detection, Style Analysis, Coding Style

1 Introduction

Plagiarism has become an increasing problem in higher education in recent years and
researchers have shown that plagiarism is increasing (Hammond, 2004). One of the
reasons is that technological advances have changed our lifestyle and the way we seek
information, and we have become more reliant on computers, the Internet and web
search engines to find answers and seek more information about almost anything. This
in turn has made us more dependent on these facilities. In the context of education,
traditional education today is complemented with online resources, web classrooms
and easy online access to references, which provide various incentives for plagiarism.

Plagiarism is reusing, copying or paraphrasing somebody else’s work without making
proper reference to the original author, or by intentionally attempting to make the
plagiarized work appear to be original (as in the case of student plagiarism).Hannabuss
(2001) defined plagiarism as “the unauthorized use or close imitation of the ideas and
language/expression of someone else”. There are various forms of (text) plagiarism
and Martin (1994) clarifies plagiarism from an ethical point of view and identifies
six plagiarism forms: (i) word-by-word copying; (ii) paraphrasing; (iii) plagiarism of
a secondary source; (iv) plagiarism of the form of a source; (v) plagiarism of ideas; (vi)
authorship plagiarism.

Source code plagiarism has a very significant definition and Parker and Hamblen
(1989) defined software plagiarism as “A program that has been produced from another

Olfat Mirza, Mike Joy PAPERS—SECTION I

program with small number of routine transformations”. The transformation can take
place from very simple changes to very difficult ones, which can be one of the six levels
of program modifications that are given by Faidhi and Robinson (1987). The range
can be listed as follows, where each level includes the modifications included in the
previous levels: level 1 – changes in comments; level 2 – changes in identifiers; level 3 –
changes in declarations; level 4 – changes in or additions to adds redundant statement
or variables; level 5 – changes in the structure of selection statements; level 6 – changes
in decision logic.

There has been significant research on how to identify source code plagiarism. For
example, packages have been developed using both syntactic and structural language-
dependent plagiarism (Bowyer and Hall, 1999; Prechelt et al., 2000) and other tech-
niques such as latent semantic analysis (Cosma and Joy, 2012). The student perspective
on source code plagiarism is also an important factor when prevention strategies are
being considered. For example, Joy et al., (2010) studied source code plagiarism from a
student perspective by conducting a survey on a sample of computer science students
in 18 UK universities.

One way of source code plagiarism detection is to detect the authorship of the code
from the way the code is written, the “coding style”, which may be derived from coding
conventions (sets of guidelines for a particular programming language, perhaps defined
for use by a particular institution or company). These conventions usually cover such
aspects as file organization, indentation, comments, declarations, use of white space,
naming of variables, programming practices, programming principles, programming
rules of thumb, and architectural best practices.

According to Kernighan and Plauger (1978) the coding style of a computer programs
should not only satisfy the personal programmer style, but also promote readability by
humans. Different programming languages have different coding styles, for example
a C language style may not be appropriate for the BASIC programing language, but
generally the types of rules are common between programming languages.

According to MacDonell et al. (2002), source code style analysis can be used for
the purposes of: (i) author identification; (ii) author characterisation, to determine
some programmer characteristics for a piece of code; (iii) plagiarism detection, to find
similarities between sets of code without referring to the original source; (iv) author
discrimination, to determine whether code is written by one programmer or many;
and (v) author intent determination, whether characteristics of a fragment of code are
deliberate or accidental.

The paper is organized as follows. In section 2 we present a review of work on the
use of coding style as a technique to identify source code plagiarism. In section 3 we
compare the contributions to the field and suggest possible gaps in our understanding
of the effectiveness of the technique, and in section 4 we summarise our findings.

2 Literature Review

Seven main approaches to the use of coding style have been applied
(1) Oman and Cook (1989) used typographic or layout style – that is, the formatting

and commenting of source code which does not affect the execution of the program

PAPERS—SECTION I Style Analysis for Source Code Plagiarism Detection

(Oman and Cook, 1988). Pascal source code was used to test the approach on three
algorithms presented in each of six computer science textbooks, and a style checker has
been designed based on a protocol mechanism which identified, for example, whether
comments are lined, blocked or occur after keyword, and the use of upper case, lower
case and underscores in attribute names. On the other hand, style analysis checks, for
example, whether inline comment on the same line as source code, blocked comments
(two or more occurring together) and lower or upper case characters only (all source
code). For each condition they apply a Boolean value which is true to denote the
presence of that characteristic in the code, otherwise it is false.
(2) Spafford and Weeber (1993) explained source code features which might identify

the author of the code and refer to their work as software forensics. They divided
the analysis of the code into two different parts: analysis of the executable code
and analysis of source files. The executable code analysis targets: (i) data structures
and algorithms; (ii) compiler and system information; (iii) programming skills and
system knowledge; (iv) choice of system calls; and (v) error handling. The source files
analysis contains: (i) the programming languages used; (ii) the formatting style chosen;
(iii) special features, such as special environments required by some compilers; (iv)
comment style, which varies from writer to writer, (some coders tend to not write
anything); (v) variable naming style, including length and capitalization (etc.); (vi)
mistakes in spelling and grammar in variable names and comments. Use of language
features, scoping, execution paths, bugs and metrics are also highlighted as features to
be considered in source file analysis. However, no evaluation is reported in this paper.
(3) Krsul and Spafford (1997) reviewed the literature on identifying the author of a

program, and noted that there are three communities which benefit from authorship
identification techniques, namely the legal community, the academic community and
industry.

A taxonomy of sixty metrics was created, including metrics, style rules and best
practice, derived from several sources. These sources include: 236 style rules identified
by Oman and Cook (1991), the complexity metrics listed by Conte, Dunsmore and Shen
(1986), the 70 programming rules noted by Kernighan and Plauger (1978), van Tassel’s
(1978) book chapter on readability and programming style, Ranade and Nash’s (1993)
style rules for C, and Ledgard’s and Tauer’s (1987) list of C “programming proverbs” that
contribute to programming excellence.

The large number of rules was further distilled into three main categories: (i) layout
metrics, such as white space use and placement of brackets; (ii) style metrics, such
as comment lengths and average variable lengths; and (iii) structure metrics, such as
average function length and usage of common data structures.

The extracted features were used by a software analyser program, which was tested
on a total of 88 programs authored by 29 students. Using the discriminant analysis
statistical approach a subset of metrics was chosen to classify the programs by author,
with a reported accuracy of 73%.
(4) Kilgour et al., (1998) used a fuzzy logic approach to capture more elements of

authorship (fuzzy logic is a form of many valued logic). They identified two kinds of
metrics. The first is quantitative, which presents the numerical variables, and includes
proportion of blank lines, proportion of lines that are or include comments, and

Olfat Mirza, Mike Joy PAPERS—SECTION I

average length of identifiers. The second is qualitative, which measures the fuzzy logic
variables, and includes braces on separate lines, the degree of indentation used and
meaningfulness of identifiers. The fuzzy values are presented as never/almost never;
occasionally; sometimes; most of the time; always/almost always. An experiment was
performed using 8 C++ programs for the purpose of illustrating how fuzzy logic metrics
could be defined.
(5) MacDonell et al. (1999) focused on the area of developing models to discriminate

between authors. Feed-forward neural networks, multiple discriminant analysis and
case based reasoning are 3 techniques for authorship discrimination which the authors
apply to a collection of 26 metrics which has been captured by the IDENTIFIED tool
(Gray et al., 1998; Sallis et al., 1998) from a collection of 351 C++ programs by 7 authors.
The experiment results archived 88% classification accuracy in case based reasoning
and 81.1% accuracy with the other techniques.
(6) Ding and Samadzadeh (2004), used the Krsul and Spafford (1997) categorisation

of coding rule: layout, style and structure to organise candidate metrics. These
metrics are used from 3 different resources (Krsul and Spafford, 1997; MacDonell et
al., 1999; Gray et al., 1998). The authors tested 255 Java programs from 46 authors using
discriminant analysis for classification and achieved 62.7% accuracy
(7) Burrows and Tahaghoghi (2007) described a system that uses an information

retrieval approach for source code attribution, based on source code tokenization.
The source code is tokenized and instead of software metrics, n-grams (contiguous
sequences of n items) are indexed in a search engine. An experiment using 1640 student
programs written in C could identify the true author with 78.78% accuracy.
(8) Ohno and Murao (2008) used simple tokenised coding style rules for Java source

code categorised in three token groups: (i) basing point tokens, such as opening and
closing braces; (ii) identification tokens, such as single and double spaces; and (iii)
other tokens, such as reserved words and identifiers. The authors proposed a new
method called Coding Model (CM) which based on the Hidden Markov Model (HMM)
that quantifies the features based on student’s coding style (Ohno and Murao, 2009).
They conducted an experiment using Java code, which confirmed that the coding
models can distinguish between source code produced by different students. Also, they
proposed a combined method that measures the similarity among programs by SIM
(Similarity measurement), which is a structural method that measures the similarity
between two computer program by reducing the parse trees of the code to strings, then
applying a string matching algorithm to find common token sequences (Gitchell and
Tran, 1999). The authors expect the combined method to reduce the number of false
positives detected (Ohno and Murao, 2011).
(9) Shevertalov et al. (2009) described a novel method for author attribution based

on source code discretization, which is the process of transferring the continuous
metrics and equations into discrete counterparts. For example some developers tend
to use verbose language to write a comment in the source code, so instead of counting
how many characters, words or lines they have used, the lengths of comments are
categorised as short, medium and long. An optimum set of discretized metrics is
identified with the help of genetic algorithms, which are adaptive heuristic algorithms

PAPERS—SECTION I Style Analysis for Source Code Plagiarism Detection

informed by the process of natural selection (Shevertalov et al., 2007), and the system
has been evaluated with a dataset of 75 000 Java source code files from 20 authors.
(10) Arabyarmohamady et al. (2012) proposed a coding style plagiarism detection

framework, which performs the detection in two phases. In the first phase a compact
representation is produced of the code, and in the second phase the extracted attributes
are input into three different modules to detect the plagiarised code and to determine
the authorship. The system was evaluated on 120 student assignments in C/C++. There
are three main findings in this paper: first, the system is fast and can work on large
datasets since the two phase approach creates a feature file for each document to reduce
the time. Second, the framework provides a method to detect the original author and
the user of the code. Last, the framework is capable of detecting plagiarised documents
which have been copied from internet or implanted by third party.
(11) Bandara and Wijayarathna (2013) presented a new source code author identi-

fication system based on an unsupervised feature learning techniques. The system
uses nine source code metrics, each of which is then tokenised, and an unsupervised
neural network technique called Sparse Auto-encoder (Bengio, 2009) is used to extract
features which finally train the Logistic Regression supervised learning algorithm
(Bishop, 2007).

They used in their experiment 5 large datasets, with java programming language. The
result of their evaluation failed when there are more than one author, but succeeds to
identify the single authors.
(12) Caliskan-Islam et al, (2015) investigate a new method to classify author’s source

code, using machine learning. First they start with parsing the source code then
secondly, define some different features to represent syntax and structure program
code. Thirdly, a random forest classifier (Breiman, 2001) trained for classification.
Google Code Jam is an international programming competition and they used their
code for the evaluation which achieved the results of 95.33% using 2250 C++ programs.

3 Results and Discussion

The contributions discussed in this paper represent work which has taken place over a
period of 20 years. Although the approaches taken superficially appear similar (the act
of measuring coding style is closely related to attribute counting), the approaches taken
are distinct. Although (1) and (3) simply employ attribute counting, (1) focuses on the
existence of particular attributes whereas (3) counts instances of features. Approaches
involving the application of algorithmic techniques taken from elsewhere form a major
theme, such as the fuzzy logic approach in (4), discriminant analysis in (5) and (6), n-
grams in (7), Hidden Markov Model in (8), discretization in (9), neural networks in (11)
and random forest in (12). The analysis of executable code is possible in addition to
source code, as demonstrated in (2), and in (10) an optimisation approach allows the
analysis of large data sets.

However, with the exception of (9), the evaluations reported in these studies are
modest. Whilst all the authors who have implemented and tested their systems report
some degree of success, there are insufficient data to compare the different approaches
with any degree of precision.

Olfat Mirza, Mike Joy PAPERS—SECTION I

Table 1

Language Evaluation
dataset size Principle Method Year

Pascal Existence of style attributes
C Analysis of both source code and executable code
C Categories of style metrics

C++ Fuzzy Logic
C Discriminant analysis and case-based reasoning

Java Discriminant analysis
C N-grams

Java Tokenization and Hidden Markov Model –
Java Discretisation

C/C++ Two phases of analysis (and optimisation)
Java datasets Neural network and logical regression
C++ Random Forest

The literature review of coding style for the purposes of plagiarism detection has
revealed a wide variety of algorithms which have been used in conjunction with the raw
attribute counting normally used to measure coding style. Most of these approaches
have been evaluated with relatively small datasets, sufficient to evidence that they have
some degree of effectiveness.

However, with perhaps a single exception, no substantial evaluation of any individual
approach has been performed, and no detailed comparative study has been published.

4 Conclusion and Future Work

This paper reviews a number of publications which report style comparison to detect
source code plagiarism, and identifies research gaps and explore areas where this
approach can be improved.

Style analysis to detect source code plagiarism has been discussed through a litera-
ture review where language, evaluation dataset, methods and year of publication has
been the main points considered.

These results are not conclusive and further research needs to be done with more
evaluation datasets and different techniques. Further research will focus on how
big datasets can impact on the final results of using different methods to establish
authorship, and how Integrated Development Environment (IDE) code formats and
the use of automated code generators can affect authorship detection.

5 References

A , S., M , H. A , M., 2012. A Coding Style-based Plagiarism Detection.
In International Conference on Interactive Mobile and Computing Aided Learning (IMCL). Amman,
Jordan. IEEE, pp. 180–186.

PAPERS—SECTION I Style Analysis for Source Code Plagiarism Detection

B , U., W , G., 2013. Source code author identification with unsupervised feature
learning. Pattern Recognition Letters, 34(3), pp. 330–334.

B , Y., 2009. Learning Deep Architectures for AI. Foundations and trends in Machine Learning, 2(1),
pp. 1–127.

B , C. M., 2007. Pattern recognition and machine learning. New York: Springer.

B , K. W. H , L. O., 1999. Experience using “MOSS” to Detect Cheating on Programming
Assignments. In FIE’99 Frontiers in Education.29th Annual Frontiers in Education Conference.
Designing the Future of Science and Engineering Education. Conference Proceedings. San Juan, Puerto
Rico, pp. 18–22.

B , L., 2001. Random Forests. Machine Learning, 45(1).

B , S., T , S. M. M., 2007. Source code authorship attribution using n-grams.
Proceedings of the Twelth Australasian Document Computing Symposium, Melbourne, Australia, RMIT
University, pp. 32–39.

C -I , A., H , R., L , A., N , A., V , C., Y , F., G , R.,
2014. De-anonymizing Programmers via Code Stylometry. Available from:
https://www.cs.drexel.edu/ac993/. [Accessed: 30 January 2015].

C , S. D., D , H. E. S , V. Y., 1986. Software Engineering Metrics and Models.
Benjamin-Cummings.

C , G. J , M. S., 2012. An Approach to Source-Code Plagiarism Detection and Investigation using
Latent Semantic Analysis.IEEE Transactions on Computers, 61(3), pp. 379–394

D , H. S , M. H., 2004. Extraction of Java program fingerprints for software authorship
identification.Journal of Systems and Software, 72(1), pp. 49–57.

F , J. R , S., 1987. An Empirical Approach For Detecting Program Similarity and Plagiarism
within a Programming Environment. Computers and Education, 11(1), pp. 11–19.

G , D. T , N., 1999. SIM: a utility for detecting similarity in computer programs. ACM
SIGCSE Bulletin, 31(1), pp. 266–270.

G , A., S , P. M D , S., 1998. IDENTIFIED (Integrated Dictionary-based Extraction of
Non-language-dependent Token Information for Forensic Identification, Examination, and
Discrimination): A dictionary-based system for extracting source code metrics for software forensics.
Proceedings of the 1998 International Conference on Software Engineering: Education and Practice.
pp. 252–259.

H M., 2004. Cyber plagiarism: Are FE Students Getting Away with Words. Plagiarism: Prevention,
Practice and Policies Conference; St. James

H , S., 2001. Contested texts: issues of plagiarism. Library Management, 22, pp. 311–318.

J , M. S., C , G, Y , J. Y-K. S , J. E., 2010. Source Code Plagiarism – A Student Perspective.
IEEE Transactions on Education, 54(1), pp. 125–132.

K , B. P , P., 1978. The Elements of Programming Style. Second Edition, New York:
McGraw Hill.

K , R. I., G , A. R., S , P. J., M , S. G., 1998. A Fuzzy Logic Approach to Computer
Software Source Code Authorship Analysis. In Fourth International Conference on Natural Processing.
Dunedin, New Zealand: Springer-Verlag, pp. 865–868.

K , I. S , E. H., 1997. Authorship analysis: Identifying the author of a program. Computers
& Security, 16(3), pp. 233–257.

L , H. F. T , J. C., 1987. With Excellence: Programming Proverbs. Hayden Books.

Olfat Mirza, Mike Joy PAPERS—SECTION I

M D , S. G., G , A. R., M L , G. S , P. J., 1999. Software forensics for
discriminating between program authors using case-based reasoning, feedforward neural networks
and multiple discriminant analysis. Proceedings of 6th International Conference on Neural Information
Processing, (ICONIP’99), vol. 1. pp. 66–71.

M D , S. G., B , D., G , A. R., S , P. J., 2002. Software Forensics: Extending
Authorship AnalysisTechniques to Computer Programs. . Journal of Law and Information Science,
13(2), pp. 34–69.

M , B., 1994. Plagiarism: A Misplaced Emphasis. Journal of Information Ethics, 3(2), pp. 36–47.

O , A. M , H., 2009. A New Similarity Measure For In-Class Source Code plagiarism Detection.
Innovative Computing, Information and Control, 5(11), pp. 4237–4247.

O , A. M , H., 2008. A quantification of students’ coding style utilizing HMM-based coding
models for in-class source code plagiarism detection. 3rd International Conference on Innovative
Computing Information and Control, ICICIC’08, pp. 553.

O , A. M , H., 2011. A two-step in-class source code plagiarism detection method utilizing
improved CM algorithm and SIM. International Journal of Innovative Computing, Information and
Control, 7(8), pp. 4729–4739.

O , P. W. C , C. R., 1989. Programming Style Authorship Analysis. Proceedings of the 17th ACM
Computer Science Conference, pp. 320–326.

O , P. W. C , C. R., 1988. A paradigm for Programming Style Research. ACM SIGPLAN Notices,
23(12), pp. 69–78.

O , P. W. C , C. R., 1991. A Programming Style Taxonomy. International Journal of Computer
Mathematics, 4, pp. 309–325.

P , A. H , J. O., 1989. Computer Algorithms for Plagiarism Detection.IEEE Transactions on
Education, 32(2), pp. 94–99.

P , L., M , G. P , M., 2000. JPlag: Finding Plagiarisms among a Set of Programs.
Journal of Universal Computer Science, 8, pp. 1016–1038.

R , J. N , A. 1993. The Elements of C Programming Style. McGraw-Hill.

S , P. J., M D , S. G., M L , G., G , A. R., K , R. I., 1998. Identified: Software
Authorship Analysis with Case-Based Reasoning. Proceedings of the Addendum Session of the Fourth
International Conference on Neural Information Processing (ICONIP’97), Dunedin, New Zealand,
pp. 53–56

S , M., K , J., S , E. M , S., 2009. On the Use of Discretized Source
Code Metrics for Author Identification. 1st International Symposium on Search Based Software
Engineering, SSBSE 2009, pp. 69–78.

S , M., S , E. M , S., 2007. A Genetic Algorithm for Solving the Binning
Problem in Networked Applications Detection. IEEE Congress on Evolutionary Computation, CEC
2007, pp. 713–720.

S , E. H. W , S. A., 1993. Software forensics: Can we track code to its authors?. Computers
and Security. 12(6), pp. 585–595

V T , D., 1978. Program Style, Design, Efficiency, Debugging and Testing. Prentice-Hall.

Copyright statement

Copyright © 2015. Author(s) listed on the first page of article: The author(s) grants to the organizers of
the conference “Plagiarism across Europe and beyond 2015” and educational non-profit institutions a non-
exclusive licence to use this document for personal use and in courses of instruction provided that the article

PAPERS—SECTION I Style Analysis for Source Code Plagiarism Detection

is used in full and this copyright statement is reproduced. The authors also grant a non-exclusive licence to
Mendel University in Brno, Czech Republic, to publish this document in full on the World Wide Web (prime
sites and mirrors) on flash memory drive and in printed form within the conference proceedings. Any other
usage is prohibited without the express permission of the author(s).

Authors
Olfat Mirza (O.M.Mirza@warwick.ac.uk) Computer Science Department, University
of Warwick, Coventry, CV4 7AL, UK.

Mike Joy (M.S.Joy@warwick.ac.uk) Computer Science Department, University of
Warwick, Coventry, CV4 7AL, UK.

