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A. C. Fowler1,2 and T. Déirdre Hollingsworth3,4,5

1MACSI, University of Limerick, Limerick, Ireland
2OCIAM, University of Oxford, Oxford, UK

3Warwick Mathematics Institute, University of Warwick, Coventry,
U. K.

4School of Life Sciences, University of Warwick, Coventry, U. K.
5Department of Clinical Medicine, Liverpool School of Tropical

Medicine, Liverpool, U. K.

April 28, 2015

Abstract

Analytical approximations have generated many insights into the dynam-
ics of epidemics, but there is only one well-known approximation which de-
scribes the dynamics of the whole epidemic. In addition, most of the well-
known approximations for different aspects of the dynamics are for the classic
susceptible-infected-recovered (SIR) model, in which the infectious period is
exponentially distributed. Whilst this assumption is useful, it is somewhat
unrealistic. Equally reasonable assumptions are that the infectious period is
finite and fixed or that there is a distribution of infectious periods centred
round a non-zero mean. We investigate the effect of these different assump-
tions on the dynamics of the epidemic by deriving approximations to the whole
epidemic curve. We show how the well-known sech-squared approximation for
the infective population in ‘weak’ epidemics (where the basic reproduction rate
R0 ≈ 1) can be extended to the case of an arbitrary distribution of infectious
periods having finite second moment, including as examples fixed and gamma
distributed infectious periods. Further, we show how to approximate the time
course of a ‘strong’ epidemic, where R0 � 1, demonstrating the importance of
estimating the infectious period distribution early in an epidemic.

Keywords: Epidemics, SIR model, delay equation, Kermack–McKendrick model,
Soper model, asymptotic methods.
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1 Introduction

The dynamics of the classic SIR (Susceptible-Infected-Recovered) infectious disease
transmission model framework, as first outlined by Kermack and McKendrick (1927),
underlies much of our understanding of infectious disease epidemiology (Anderson and
May, 1991; Diekmann and Heesterbeek, 2000; Keeling and Rohani, 2007). Important
insights from this model framework include the threshold properties of the basic
reproductive number, R0 (Kermack and McKendrick, 1927), the critical vaccination
proportion (Smith, 1964) and the relationship between the epidemic growth rate, rg,
the generation time, Tg, and R0. Within their classic paper Kermack and McKendrick
(1927) not only derived R0 but also derived an approximation to the epidemic curve
for R0 close to 1 (a ‘weak’ epidemic). Understanding of these various quantities,
although they apply only to relatively simple homogeneous models, has proved very
useful in developing our understanding of the characteristics of an epidemic.

The classic SIR model was derived as a special case of a more general formula-
tion with infectiousness varying over the course of the time since infection, or across
the population (Kermack and McKendrick, 1927; Diekmann and Heesterbeek, 2000).
This form of epidemic model in slightly different forms is also known as the ‘Lotka-
Euler’ formulation (Wallinga and Lipsitch, 2007) or ‘renewal equation’ (Fraser, 2007).
Within this framework the classic SIR model emerges under the assumption that in-
fectious periods are exponentially distributed across the population. This is, of course,
unlikely to be the case in reality. Arguably, the most parsimonious representation of
a more realistic infectious period is to assume that the infectious period is limited and
is the same across all individuals (the Soper model, Soper (1929)). The assumption
of either different distributions of infectious periods is known to affect the relation-
ship between the exponential growth rate and the generation time distribution, and
estimates of the reproductive number from the epidemic growth rate (Fraser, 2007;
Wallinga and Lipsitch, 2007; Wearing et al., 2005; Lloyd, 2001a; Hethcote and Tudor,
1980), a crucial estimate in the early stages of a new outbreak.

Despite the impact of different infectious period distributions on the dynamics
of the early stages of an epidemic, the “final epidemic size” or the total number
of infectives over the course of an epidemic has been shown to be invariant under
different assumptions on the distribution of infectious period distributions and disease
course within individuals (Kermack and McKendrick, 1927; Bailey, 1975; Anderson
and Watson, 1980; Anderson and May, 1991; Andersson and Britton, 2000; Diekmann
and Heesterbeek, 2000), provided there is homogeneous mixing (Ma and Earn, 2006;
Anderson and May, 1991; Diekmann and Heesterbeek, 2000; Andreasen, 2011).

In the declining stages of an epidemic, or during the decline of a seasonally forced
epidemic, the distribution of infectious periods has been shown to destabilise the
dynamics (Lloyd, 2001a) and to change dependence of persistence on the population
size (Lloyd, 2001b), results which were first derived for a model in which the infectious
period was exponentially distributed (Keeling and Grenfell, 1997).

Given these insights, it is surprising that there has not been more investigation
of the impact of the infectious period distribution on the peak and decline of the
SIR-type models. Here we formulate a general approximation to the epidemic curve
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for any infectious period distribution within a unified framework. We derive approx-
imations to the time-course for R0 close to 1 (‘weak’ epidemics) and, innovatively,
for larger R0 (‘strong’ epidemics). Using these novel approximations we are able to
characterise the impact of infectious period distribution on the time course of the
epidemic, including the time to and magnitude of peak prevalence. Despite the sim-
plicity of obtaining numerical solutions of these models, analytic approximations such
as those highlighted above are a useful way of characterising the impact of different
assumptions on epidemic dynamics, as we demonstrate below.

2 The generalised infectious period model

We first formulate the general transmission model in which individuals are either
susceptible, S, infectious, I or recovered, R for a general infectious period distribution;
the epidemic is assumed to occur on a fast timescale, so that births and deaths are not
modelled. This type of model formulation has been described and analysed several
times, most notably by Kermack and McKendrick (1927).

To proceed, we denote by i(a, t) the number density of the infected cohort having
had the disease for a period a. Then

I =

∫ ∞
0

i da (2.1)

is the total number of infectives, assuming that recovery or removal is inevitable (i. e.,
i→ 0 as a→∞). As with age-dependent population models, or time since infection
models, i satisfies the partial differential equation

∂i

∂t
+
∂i

∂a
= −r(a)i, (2.2)

where r(a) is the recovery rate, and is taken to be a function of the time since infection.
Suitable initial conditions are

i = 0 at t = 0,

i = i0(t) at a = 0, (2.3)

where the “recruitment” or incidence rate is

i0(t) = −Ṡ = kSI, (2.4)

just as in the classic SIR model (Kermack and McKendrick, 1927). Integration of
(2.2) leads to

İ = i0(t)−
∫ ∞

0

r(a)i da. (2.5)

We solve (2.2) using the method of characteristics. In t < a, we have i = 0, while
for t > a, we find

i = i0(t− a) exp

[
−
∫ a

0

r(a′) da′
]
. (2.6)
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Putting i0 = −Ṡ in this, we find, after integrating by parts, that I is given by

I = S0F (t)− S +

∫ t

0

K(a)S(t− a) da, (2.7)

where we can define S0 to be the total (pre-infection) population of susceptibles.
We use the following notation with respect to the recovery, or infectious, period
distribution:

F (a) = exp

[
−
∫ a

0

r(a′) da′
]
, K(a) = −F ′(a) = r(a) exp

[
−
∫ a

0

r(a′) da′
]
. (2.8)

Note that K(a) is the infection time probability density, and that (from (2.8))∫ ∞
0

K(a) da = 1. (2.9)

Using (2.4), we thus have the generalised Soper model, following the early work
by Soper (1929), and its exposition by Wilson and Burke (1942) and Wilson and
Worcester (1944),

Ṡ = −kSI, I = S0F (t)− S +

∫ t

0

K(a)S(t− a) da. (2.10)

The pre-infection state S = S0, I = 0 for t < 0 is also described by (2.10),
providing we take K(a) = 0 and thus F (a) = 1 for a < 0. The onset of the epidemic
is enabled by initial conditions

I = I0, S = S0 − I0 at t = 0+, (2.11)

and typically we suppose I0 � S0.

2.1 Infectious period distributions

Different assumptions regarding the infectious period distributions can be represented
by different functional forms of K(a). In these formulations we set the functions to
have the same mean infectious period,

T =

∫ ∞
0

aK(a) da. (2.12)

We additionally define the second moment,

K2 =

∫ ∞
0

a2K(a) da, (2.13)

for future use.
In this formulation the classic SIR model, with its exponential decay in infec-

tiousness, corresponds to a recovery rate r = 1/T which is independent of age, and a
consequent delay kernel

K =
1

T
exp

(
− a
T

)
(2.14)
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with mean T and second moment 2T 2.
Another plausible assumption is that the infectious period is a fixed constant T .

Since F (a) is the fraction of an initial inoculate who still have the disease after period
a, we can take F = 1−H(a− T ), where H is the Heaviside step function, and thus
K is a delta function,

K = δ(a− T ). (2.15)

with mean T and second moment T 2.
More general kernels can be analysed in the same way, including, for example, the

gamma distribution

K =
1

T

γγ

Γ(γ)

( a
T

)γ−1

exp
(
−γa
T

)
, (2.16)

which has mean T and second moment T 2(γ+ 1)/γ and which takes the limits (2.14)
and (2.15) when γ = 1 and γ →∞, respectively.

2.2 Nondimensionalisation

We analyse (2.6), (2.7) and (2.10) by first rescaling the variables, thus

i =
w

kT 2
, I =

v

kT
, S =

u

kT
, K2 = T 2κ2,

t ∼ T, a ∼ T, K ∼ 1

T
, r ∼ 1

T
. (2.17)

Then we have the dimensionless integrals∫ ∞
0

K(a) da = 1,

∫ ∞
0

aK(a) da = 1,

∫ ∞
0

a2K(a) da = κ2, (2.18)

and the dimensionless equations for u, v and w can thus be written in the form
(bearing in mind (2.18))

u̇ = −uv,

v = R0 − u−
∫ t

0

K(a)[R0 − u(t− a)] da,

w = −u̇(t− a)F (a), v =

∫ ∞
0

w(t, a) da, (2.19)

where
R0 = kTS0. (2.20)

The initial values for u and v are, from (2.11),

u = R0 − v0, v = v0 = kTI0 =
R0I0
S0

. (2.21)

Note also that the initial value of v is assumed small and non-zero. The dimensionless
kernels for exponentially distributed, gamma distributed and fixed infectious periods
are

K(a) = e−a, K(a) =
γγ

Γ(γ)
aγ−1e−γa, K(a) = δ(a− 1), (2.22)
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respectively. Note that the mean of each dimensionless kernel is one and the dimen-
sionless second moments are κ2 = 2, (γ + 1)/γ and 1 respectively.

2.3 Initial growth

We can find the initial growth rate of the epidemic for general infectious period
distributions. We first put u = R0 − v0e

λt, and expanding (2.19) for small v0 and
large t, we find

λ = R0

[
1−

∫ ∞
0

K(a)e−λa da

]
, (2.23)

which has a unique positive root if R0 > 1; we thus identify R0 as the basic repro-
duction rate of the epidemic for the general infectious period distribution.

For the gamma distributed infectious period kernel in (2.22), the dimensionless
epidemic growth rate satisfies

λ = R0

[
1−

(
γ

γ + λ

)γ]
, (2.24)

and for the particular cases γ = 1 (SIR model) and γ =∞ (Soper model), we find

λSIR = R0 − 1, γ = 1,

λSoper = R0

(
1− e−λ

)
, γ =∞. (2.25)

Whilst these approximations to the early epidemic growth rate are useful, they do
not tell us about the dynamics of the whole epidemic. We now present approximations
to the whole epidemic curve firstly for epidemics for which R0 is close to one (“weak”
epidemics), and then for large R0 (“strong” epidemics).

3 Weak epidemics

For the case where R0 ≈ 1, Kermack and McKendrick derived a classic approximation
to the epidemic curve for the model with exponentially distributed infectious periods.
Soper derived a similar expression for the model with fixed infectious periods. We
rederive these expressions by showing that this approximation can be generalised for
any infectious period distribution with finite second moment.

We first define
R0 = 1 + ε, (3.1)

and take ε� 1. We then rescale the variables by writing

t =
τ

ε
, u = 1− εU(τ), v = ε2V. (3.2)

Substituting these changes into (2.19), using (2.18), we obtain

U̇ = (1− εU)V,

V =
1

ε

[
U −

∫ ∞
0

K(a)U(τ − εa) da

]
, (3.3)
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where the overdot denotes differentiation with respect to τ , and we have replaced the
upper limit on the integral by ∞ on the basis that we have

u(t) ≡ R0, v(t) ≡ 0 for t < 0 (3.4)

in (2.19) (the epidemic is initiated at t = 0). The initial conditions are, from (2.21),

U ≈ −1, V =
v0

ε2
at t = 0, (3.5)

and we assume that v0 � ε2.
We now expand U(τ −εa) in the integral in a Taylor series, and, using (2.18), this

leads to
V = U̇ − 1

2
εκ2Ü + . . . ; (3.6)

substituting this into (3.3)1, using the boundary conditions

U ≈ −1, U̇ ≈ 0 at τ = 0 (3.7)

(the latter from (3.6)) then leads to the leading order equation

U̇ ≈ (1− U2)

κ2

, (3.8)

providing the second moment κ2 exists, essentially equivalent to requiring thatK(a)�
1

a3
for large a. For a heavy-tailed distribution with unbounded second moment, a more

elaborate procedure would be necessary. We do not pursue this here, but note that
the breakdown of the method is associated with the non-uniform convergence of the
Taylor expansion of U(τ − εa) for large a, because of (3.4). The correct procedure
can be obtained by replacing the upper limit in the integral in (3.3)2 by τ/ε.

The solution to the equation (3.8) is

U = tanh

(
τ − τp
κ2

)
. (3.9)

Therefore

u = 1− ε tanh

(
τ − τp
κ2

)
(3.10)

and

v =
ε2

κ2

sech 2

(
τ − τp
κ2

)
. (3.11)

This shows that the approximation to the epidemic curve for low R0 by Kermack and
McKendrick (1927) for the exponential distribution and Wilson and Worcester (1944)
for fixed infectious periods is generalisable to any infectious period distribution with
a finite second moment.
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If we first compare the result of this approximation for the SIR model and the
constant infectious period (Soper) model the approximations are

vSIR ≈ (R0 − 1)2

2
sech 2

{
1
2

(R0 − 1) (t− tp)
}
,

vSoper ≈ (R0 − 1)2 sech 2 {(R0 − 1) (t− tp)} . (3.12)

Of note here is the factor of two, which means that the epidemic with a constant
infectious period will grow (and therefore decay) more rapidly than that with an
exponentially distributed infectious period. It also means that the approximate max-
imum prevalence for the constant infectious period model, (R0 − 1)2, is twice as big as
for the SIR model. This effect of a constant infectious period on shortening the ‘gen-
eration time’ (time from infection to onward transmission) has been previously noted
by, amongst others, Diekmann and Heesterbeek (2000) and Wallinga and Lipsitch
(2007), but its effect on peak prevalence has not been previously approximated.

For gamma distributed infectious periods, the epidemic curve is approximated by

v ≈ γ (R0 − 1)2

γ + 1
sech 2

{
γ (R0 − 1) (t− tp)

(γ + 1)

}
, (3.13)

and the bigger the shape parameter, γ (resulting in smaller variance in infectious pe-
riods) the higher the peak prevalence and the shorter is the duration of the outbreak.

3.1 Peak prevalence and time to peak

From (3.11), (2.17), (2.20) and (3.1), the peak prevalence P , defined as the ratio of
the maximum infected number Imax to the total population S0 is, for a weak epidemic,

P =
Imax

S0

=
(R0 − 1)2

R0κ2

. (3.14)

If the initial infected population consists of I0 individuals, then the initial value
of v is given by (2.21), and since by assumption this is very small, we can suppose
v reaches its maximum when τ is large, in which case we can use the approximation
sech (−θ) ≈ 2e−θ, and the dimensionless time to peak prevalence (scaled with T ), is
then found from (3.11) to be

tp =
κ2

2(R0 − 1)
ln

[
4(R0 − 1)2S0

κ2R0I0

]
. (3.15)

4 Strong epidemics

Now we consider the case R0 � 1, for which we devise an asymptotic method similar
to that used by Fowler (1982). First we rescale the variables as follows:

u = R0U, v = R0V, (4.1)
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so that

δU̇ = −UV,

V = 1− U −
∫ t

0

K(a) [1− U (t− a)] da, (4.2)

where

δ =
1

R0

� 1. (4.3)

There is an initial phase where U ≈ 1, and we have

U ≈ 1− I0
S0

eλt, (4.4)

where λ is given by (2.23), using also the fact that u + v = R0 at t = 0, and v0 is
given by (2.21). Since R0 � 1, the application of Laplace’s method to (2.23) shows
that

λ ≈ R0. (4.5)

Note that (4.4) can thus be written in the form

U = 1− exp

(
t− t0
δ

)
, (4.6)

where

t0 =
1

R0

ln

(
S0

I0

)
. (4.7)

The approximation becomes invalid when t ≈ t0, and the appropriate rescaling of
(4.2) is done by choosing

t = t0 + δτ. (4.8)

The equations (4.2) become

U ′ = −UV,

V = 1− U −
∫ t0+δτ

0

K(a) [1− U (t0 + δτ − a)] da, (4.9)

where the prime denotes differentiation with respect to τ .
For small δ, (4.6) implies that U(t) ≈ 1 for t < t0, and this implies that the

integral in (4.9) is small, so that V can be approximated by

V ≈ 1− U, (4.10)

and therefore
U ′ ≈ −U (1− U) . (4.11)

Note that (4.6) implies
U = 1− eτ (4.12)
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for τ < 0, and the solution of (4.11) which matches to this as τ → −∞ is

U ≈ 1

1 + eτ
, V ≈ eτ

1 + eτ
. (4.13)

The solution in (4.13) is a monotonic solution in which the number of infectives
rapidly increases to a peak at V ≈ 1, i. e., v ≈ R0, while U decreases towards zero:
everybody gets infected! However, the approximation (4.10) and therefore (4.11)
clearly break down when τ ∼ 1/δ, and a further rescaling is then necessary.

As τ becomes large, we rescale back to the original time scale t = t0 + δτ . Note
that then U ∼ e−τ = e−(t−t0)/δ, and this suggests we write

U = exp

(
−φ
δ

)
, t > t0, (4.14)

with
φ ∼ t− t0 as t→ t0; (4.15)

then (4.2) becomes

φ̇ = V,

V = 1− exp

[
−φ
δ

]
−
∫ t

0

K(a) [1− U(t− a)] da,

(4.16)

together with the matching condition (4.15).
In the integral, we may take U(t − a) ≈ 1 for t − a < t0, while U(t − a) =

exp

[
−φ(t− a)

δ

]
for t−a > t0 The exponential terms are small and can be neglected,

and therefore

φ̇ = V ≈ 1−
∫ t−t0

0

K(a) da =

∫ ∞
t−t0

K(a) da, (4.17)

with φ ∼ t − t0 as t → t0, and thus, interchanging the order of integration in the
quadrature for φ,

φ =

∫ ∞
0

min(a, t− t0)K(a) da, t > t0, (4.18)

and φ→ 1 as t→∞. Thus U reaches equilibrium and V declines to zero; no further
approximations are necessary.

Because the approximation has two distinct phases, it is less easy to extract such
quantities as peak prevalence and time to peak. To do this, we can write a uniformly
asymptotic approximation. We write the small and large time approximations in
terms of t, thus

u =
R0

1 + eR0(t−t0)
, v =

R0

1 + e−R0(t−t0)
, t <∼ t0,
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u = R0 exp

[
−R0

∫ ∞
0

min(a, t− t0)K(a) da

]
, v = R0

∫ ∞
t−t0

K(a) da, t > t0.

(4.19)
A uniform approximation is essentially obtained by adding the two approximations
and subtracting the common part; for details see Van Dyke (1975). In the present
case we can write a uniform approximation by inspection. This is

u ≈ R0

1 + exp
[
R0

∫∞
0

min(a, t− t0)K(a) da
] , v =

R0

1 + e−R0(t−t0)

∫ ∞
t−t0

K(a) da,

(4.20)
providing we extend the definition of K so that K(a) = 0 for a < 0; it is clear that
these expressions reduce to both approximations in (4.19) in the appropriate time
scale.

4.1 Peak prevalence and time to peak

The peak time is approximately t0 given by (4.7), but the peak value is not well
constrained. To find this, we use the uniform approximation for v to find the time
where it is maximum; this is the peak time tp. It is given implicitly by

tp = t0 + t′, t′ =
1

R0

ln

[
R0F (t′)−K(t′)

K(t′)

]
, (4.21)

thus

tp ≈
1

R0

ln

[
S0(R0F −K)

I0K

]
. (4.22)

Evidently t′ is small, so that F ≈ 1, but the precise expression for t′ depends criti-
cally on the behaviour of the distribution kernel K(a) near a = 0. For the gamma
distribution (2.22), we have

K(a) ≈ γγcγ−1

Γ(γ)Rγ−1
0

for a =
c

R0

� 1, (4.23)

and in that case

t′ ≈ c

R0

, c = ln

[
Rγ

0Γ(γ)

γγcγ−1

]
, (4.24)

so that

t′ ≈ γ lnR0

R0

, tp ≈ 1− 1

R0

ln

[
S0R

γ
0

I0

]
. (4.25)

From (4.20), the maximum of v is approximately R0F − K, so that the peak in-
fected population is to leading order the whole population. More accurately, the
peak prevalence

P =
Imax

S0

=
vmax

R0

= F − K

R0

≈ 1− (γc)γ−1(c+ γ)

Γ(γ)Rγ
0

, (4.26)
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this last expression being for the gamma distribution. For the SIR problem for which
γ = 1, and F (a) = K(a) = e−a, we have more directly from (4.22) that

tp ≈
1

R0

ln

[
(R0 − 1)S0

I0

]
, (4.27)

and using this directly in (4.20) yields the peak prevalence as

P ≈ (R0 − 1)(R0−1)/R0

R0

. (4.28)

The limit in which γ → ∞ corresponds to the Soper problem where K(a) =
δ(a − 1), and (4.21) is irrelevant. Direct inspection of (4.20) shows that in this
case v rapidly rises, reaches a maximum ≈ R0(1 − e−R0) at t = t0 + 1, and is then
instantly extinguished. This last result (from (4.20)) is not quite right, as it ignores
the corrective terms in (4.16). More precisely, we have from (4.2), withK(a) = δ(a−1)
and taking t > 1,

V = U(t− 1)− U(t), (4.29)

and we can use (4.13) throughout, since although it is inaccurate for t > t0, U is in
any case very small then. Thus the uniform approximate solution for the Soper case
is

v =
R0

1 + e−R0(t−t0)

[
1− e−R0

1 + eR0(t−t0−1)

]
, (4.30)

and the term in square brackets provides the correction to the step function in (4.20).
From this we find the time to peak is

tp = t0 + 1
2
, (4.31)

and the peak prevalence is given by

P =
vmax

R0

=
1− e−R0(

1 + e−
1
2
R0

)2 . (4.32)

4.2 Accuracy of the approximations

Figure 1 compares numerical simulations of the model with the weak approximation
we have given for the case R0 = 1.5. The shapes of the curves and the time to peak
are surprisingly well represented, despite the fact that ε = 0.5 is not that small,
though the peak values are over-estimated.

For large R0 � 1 the difference between the dynamics for the two extremes of
the infectious period distribution is striking (figure 2). The assumption of a constant
infectious period results in a much faster decline of the epidemic following peak preva-
lence than for an exponentially distributed infectious period. The approximation to
the epidemic curve is almost exact for large R0 and constant infectious period. In
particular, it captures both peak prevalence and the time at which it occurs very well
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Figure 1: Comparison between numerical simulations of the model (solid (red) lines)
and approximations to the epidemic curve for P = I/S0 for the weak approximation
(dashed (blue) lines), using a value of R0 = 1.5 and a mean recovery time of two days.
The left hand figure is for the SIR model, and the right hand one is for the Soper
model. The initial fraction of infectives I0/S0 = 10−3. Notice the different scales on
the axes.
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Figure 2: Comparison between numerical simulations of the model (solid (red) lines)
and approximations to the epidemic curve for P = I/S0 for the strong approximation
(dashed (blue or green) lines), using a value of R0 = 10 for the SIR model (left) and
R0 = 5 for the Soper model (right); the mean recovery time is two days. The initial
fraction of infectives I0/S0 = 10−3. Note that the Soper approximation is almost
exact.

once R0 is larger than about 3. This is shown in figure 3, where we plot the time to
peak and peak prevalence for both numerical and asymptotic results as a function of
R0.

These figures provide a gloss on the examples shown in figure 1 and 2. It can be
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Figure 3: Comparison of time to peak tp approximations given by (3.15) (with κ2 = 2)
and (4.27) with direct numerical simulations for the SIR model (left figure), and the
equivalent approximations to the peak prevalence P = vmax/R0 given by (3.14) (with
κ2 = 2) and (4.28) together with the direct numerical simulation. The solid (red)
curves are the numerical solution, dashed (blue) curves are the weak approximations,
and the dotted (mauve) curves are the strong approximation. Note that the times to
peak here are dimensionless.
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Figure 4: Comparison of time to peak tp approximations given by (3.15) (with κ2 = 1)
and (4.31) with direct numerical simulations for the Soper model (left figure), and the
equivalent approximations to the peak prevalence P = vmax/R0 given by (3.14) (with
κ2 = 1) and (4.32) together with the direct numerical simulation. The solid (red)
curves are the numerical solution, dashed (blue) curves are the weak approximations,
and the dotted (mauve) curves are the strong approximation. Note that the times to
peak here are dimensionless.

seen in figure 3 that the weak approximation gives a uniformly excellent approxima-
tion to tp for the SIR model. In fact it deviates at smaller R0 (!), due to the fact
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that for fixed I0, the initial value of V in (3.5) increases as ε is reduced. This is more
clearly visible in figure 4 for the Soper model. The strong approximation (for the
SIR model), on the other hand, is only reasonably accurate for R0 >∼ 5. The peak
prevalence is not well approximated in either limit: the weak approximation is useful
for R0 <∼ 0.4, and the strong approximation only becomes useful for R0 >∼ 10, as also
evidenced by figure 2.

For the Soper model, and more generally when there is a peaked infection time
distribution, the weak and strong approximations cope better between them. The
peak time tp is well served by one or other approximation either side of R0 = 2; the
peak prevalence is less well captured, but still fares much better than the exponential
distribution of the SIR model.

5 Conclusions

We have derived analytical approximations to the epidemic curve for small and large
R0 for general infectious period distributions. The weak epidemic limit is well known,
but not in its application to such distributions, and particularly, its inadmissibility
for heavy-tailed distributions provides a new insight. The extreme version of such
a distribution corresponds to an immune carrier which can thus act as a reservoir
for the infection. The strong epidemic limit has not, to our knowledge, been studied
before.

Approximations to the epidemic curve are not only useful for developing our under-
standing of the dynamics, but may also be used in situations where large numbers of
simulations are required, e. g., for parameter estimation or identifying optimal control
strategies for a given set of parameters. The approximations presented here capture
the general shape of the epidemic, as characterised by the peak prevalence, the time
at which the peak occurs, and the rate of increase and decline of the epidemic. In
the case of the constant infectious period and large R0, the approximation is almost
exact.

These analytical expressions extend previous observations on the effect of assump-
tions regarding the infectious period on the dynamics of the epidemic. For an infection
with a given R0 and mean infectious period, the distribution of this infectious period
has an impact on all aspects of the epidemic curve. The differences in the shape of
the epidemic curves due to different infectious period distributions is most notable
for large R0, where the epidemic curve for the SIR model is asymmetric. For R0 ≈ 1,
the epidemic shape is symmetric due to the slow epidemic growth smoothing out the
effect of different infectious period distributions. However, different distributions do
affect the height and width of this symmetric curve.

The assumption of an exponentially distributed infectious period results in a broad
distribution in times from one infection to another (the generation time) meaning that
some individuals infect others much later than others. This serves to smooth out the
profile, resulting in a less intense epidemic than one in which the infectious period
is fixed. For low R0, the shapes are qualitatively similar, but both peak prevalence
and the time to peak are approximately half that of an epidemic with a constant
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infectious period. An exponential distribution of infectious periods results not only
in a slower epidemic with a lower peak prevalence but it lengthens the tail of the
epidemic, giving a more gradual decline in prevalence following saturation than a
fixed infectious period. This effect of different infectious periods on the generation
time and exponential growth rate has been discussed before (Fraser, 2007; Wallinga
and Lipsitch, 2007; Wearing et al., 2005; Lloyd, 2001a; Hethcote and Tudor, 1980),
but the impact on the second half of the epidemic has not. These extreme differences
in the tail of an epidemic demonstrate the importance of quantifying this distribution
during a novel outbreak in order to estimate peak prevalence and the timescale of the
decline of the epidemic.

There are, of course, limitations to the application of an SIR type approach,
whether with constant or exponentially distributed periods, since more detailed bio-
logical effects, such as a period prior to infectivity represented in SEIR models, will
affect the dynamics (Wearing et al., 2005). Further, homogeneous models of epidemic
spread necessarily make a number of unrealistic assumptions about contact patterns,
which have been previously been shown to affect the final size of the epidemic (Ma
and Earn, 2006; Anderson and May, 1991; Diekmann and Heesterbeek, 2000; An-
dreasen, 2011), and will therefore affect the dynamics during the epidemic. However,
the insights about the timing and magnitudes of peak prevalence and the rate of
decline of the epidemic are useful for understanding and validating the dynamics of
more complex models.
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