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ABSTRACT

Probabilistic context-rree languages are derined by giving
predetermined probabilities (preprobabilities) ror the choices
that their grammars make when generating.

Chapter 1 shows how to carry out the above derinition, and
how to calculate some parameters or the language; ror instance:
average length or work, mean square length, digraph probabilities,
entropy.

Chapter 2 introduces generating runctions related to grammars.
It uses them to derive a condition ror which preprobabilities give
rise to well-rormed probability spaces. Two 'runctions, the length
and entropy generating runctions are studied in detail. They are
algebraic runctions, can in general only be derined implicitly,
but can be used to give uniried explicit methods or calculating
all the parameters or chapter I (and more).

Chapter 3 derines and shows how to calculate the inrormation
rate or a language. As a by-blow, Macmillan's theorem is extended
(ror a small class or processes) to an analogue or the Central
Limit Theorem.

Chapter 4 tries to compare the erriciencies or dirrerent
parsing algorithms. In a reasonable sense, all deterministic parsers
take equal averag~ time to parse, any backtracking parser is slower,
but there is no general algorithm ror calculating the speed or a
backtracking parser.
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Chapter 1

PROBABILITY SPACES AND GRAMMARS

This chapter shows firstly how to make the set of parses which
can be generated by a grammar into a probability space, and secondly
how to integrate various functions from the parses if it is assumed
that the measure of the set of infinite parses is zero. For instance
one such function gives the number of terminals in a parse, and so it
becomes possible to calculate the average length of string generated
by a grammar. Similarly the variance of the length, the probability
that one letter is followed by another, the entropy, and so on can be
calculated.

Throughout this chapter a fixed grammar G = (N,T,P,S) will be
dealt with where

and the length of the right hand side of Pij is nij •. G will be
reduced[ll,lS], that is every non-terminal can generate a terminal
string and can also be generated in a string generated by the root,
and E-free· that is no production has a right hand side of zero
length.

1.1 CONSTRUCTION OF A CT-FIELD OVER THItSET OF PARSES

Eventually a measure is desired which assigns a probability to
all individual finite parses, and so each sinQleton set containing
one finite parse should be measurable. The most obvious ~-field
with this property is the set of all sets of parses. Unfortunately,
because the~e are (in general) uncountably many infinite parses, the
only measure functions which can be defined on this U-field give
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zero measure to some set containing all but a countable number of
the infinite parses. This is not a desired property, and so some
other ~-field must be constructed. So properties of parses will
be investigated in order to help with the construction.

1.1.1 Definition

The depth of a node in a parse is defined by induction to be
o if that node is the root, otherwise one greater than the depth of
its immediate ancestor.

Remark: Every node, even of an infinite parse, has finite depth,
which is equal to the number of arrows which must be traversed
when tracing down to it from the root. Parses can be classified
by the depths of their nodes.

1.1.2 Definition
A partial parse is of exact depth d if:

1. Every node is of depth d or less.
2. Every tip whose value is a non-terminal is of depth d.

(Such a node will be called a non-terminal tip.)

1.1.3 Remark

Thus a partial parse of depth d may be thought of as obtained
from a full parse by deleting all nodes of depth greater than d. As
this can clearly only be done in exactly one way, every parse has
just one partial parse of exact depth d which is a part of it. It
should also be noted that if the maximum of the depths of the nodes
of a full parse is m' d, then that parse 'satisfies the definition
for a partial parse of depth d. Hence such a parse is of exact
depth d for all d ~ m.
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1.1.4 Lemma

For any d there are only finitely many partial parses of exact

depth d.
Proof: By induction on d.

1.1.5 Remark
The set of parses of exact depth d can now be used to generate

a partition Dd = ~Ddql of the set of all full parsesQ, and hence

a O""-fieldad consd stdm of all unions of elements of Dd.

1.1.6 Definition

Dd
q is the set of all parses which are extensions of the partial

parse q of exact depth d.

1.1.7 Lemma

i. u
q

D q
d =Q

ii. q q'If q # q' then Dd (l Dd = £I.

Proof: Every parse can be restricted to exactly one partial parse

of depth d"and so is in just one set Dd
q•

By the above two lemmas 1Ddq ~ .is a finite partition ox Q ,
and so the set ad of all unions of elements like Ddq is a finite

field and so a O--field.

1.1. 8 Lemma

For all d ,itdi12(id.

Proof: Let Dd:lbe an element of the partition Dd+1, and q' the

restriction of q to nodes of depth d or less. Any extension of q
q C q'is an extension of q t , hence Dd+L - Dd ,therefore Dd+l is a

refinement of Dd' and so ad+1 2 ad.
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1.1.9 Definition
It has now been proved that the sequence of a--fields Cld has

all the properties which allow a limit to be formed. Let this limit

field be a... Then (1 has the followiI'¥)properties.

1.1.10 Properties

1. If q is a finite parse then {q l€ Cl .
2. If I is the set o:f all infinite parses then IE (i_ •

3. (i) Any :function constant on I is measurable.

(ii) If fQ, (1.1 is completed to a measure space {Q., ri, f- J
and t< (I) = 0 then every function is integrable.

Proofs:

1. As q is :finite there is a finite maximum m of·depths of nodes of

q , and so (q JE CId for all d ~ m ,
2. The complement of I is the set of all :finite parses which is the

countable union o:f the singleton sets {q} , where q is a :finite

.parse.

3. Obvious consequences o:f 1.

1.2 CONSTRUCTION OF SOME PROBABILITY FUNCTIONS ON THE PARSES

In this paragraph a way of constructing a probability :function

on the parses will be described informally, in the next :formally.

A parse can be built step by step :from the root. Each step starts

with a partial parse and ends up with a new one obtained by expanding

just one non-terminal tip. When there are no non-terminal tips le:ft

then the procedure stops. Once it has been decided which non-

terminal tip to expand, there are in general several productions

which will fit. If the production to use is chosen by a random

choice and the probabilities that each will be chosen given that it
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will fit are specified, then it is possible to calculate the
probability that a particular parse will be chosen. It is the product

of the probabilities of all the productions which were used to generate
.,

it. In the formal definition which follows the preprobability
function gives the probability that a particular production will be
chosen.

To recall notation, the grammar is still

(N,T,P,S) = ( tXi:i=I, •••,nj , T, rp .. :i=l,•••n;j=l, •••n.~ ,X.)t 1J 1 k

where the length of P .. is ni .•
l.J J

1.2.1 Definition

A preprobability is a function f :P....{x::x;is real, o~x~ 1}
such that n. ,

. l., f(Pi.) = 1 for all i.
J=lL J

1.2.2 Remarks
Notice that except for grammars which produce only one parse,

all grammars have an uncountably infinite number of preprobability
functions.

The preprobability function f can be used to generate a

sequence of measures fd on the spaces (Q, ad) '. The £ollowing
notation will be used in the construction. If q is any partial parse,
in particular of exact depth d , then tij(q), or mor,e usually just
tij when q can be understood, is the number of occurrences of
production Pij used to generate q, and ~(q) is the probability
that q be generated, that is

Q)(q) = I7r n7\[ t .. (q)I \ f (P •. )] l.J
i=1 j=1 l.J
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1.2.3 Definition
~d is a measure to convert the measurable space (~,ctd) to

a measure space (.Q, (ld'fA.d) with the property that
'.

nl\
i=l =

1.2.4 Lemma

~d exists and is unique.
Proof: The domain of f4.dis the finite set ~d. If A c ctd then
either A = Dd

q for some parse q, in which case ftd(A) is given
directly by the property, or else A =q~Q Dd

q for some finite set Q
of partial parses, in which case

1.2.5 Theorem
The sequence of measures ltd is compatible.

Proof: It is only necessary to show that if A is a generator of

(Q,rLct'jtd)' that is A = Ddq for some q, thenj<d+1(A) =fd(A).
r\ 1 , q'In ('!."ad+1'fd+1)' A is the union A = q'V Dd+1 ' where q'

varies over all possible partial parses obtained by simultaneously

expanding each of the non-terminal tips of q by one production. So
it must be shown that p(q) = r11q'). This can easily be done by

ql
setting up appropriate notation to denote parses like q but with
only some tips ex~nded, and using an induction.

1.2.6 Corollaries

1. ftd is a probability measure for all d. Proof: A( Q) = 1.
2. The limit ~ exists and is a probability measure.
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1.3 DECOMPOSITION THEOREMS

Next two theorems will be proved which enable the probability

space (n,a. ,It ) to be decomposed. The f'irstwill show that it is
isomorphic to a weighted sum of'spaces, each"of'which corresponds
to one of'the productions which is a f'irstpossible choice in
generating a parse. Then the second will show how each of'the new
spaces can be decomposed as a product.

To help describe the decomposition as a weighted sum, some new
notation will be needed. This will allow a grammar G to be changed
to a grammar Ga which has almost the same set of'parses, the only
difference being that where a parse of'G has S at the root, the
corresponding parse of Ga has a new non-terminal Z. This will
enable an occurrence of'S at the root to be easily distinguished
from any other occurrence.

1.3.1 Def'inition
If'G is the grammar (N,T,P,S), then Ga is the grammar

(Nu{Zj , T, Pu Q, Z) where Z is a new non-terminal in neither Nmr
T, and Q is a set of new productions which correspond with those
of G with S on the.left hand side, so that (Z"'C()~ Q iff (S-+o<.)EP.

1.3.2 Def'inition
If'f is a preprobabi1ity on G then the corresponding pre-

probability r on G
a will be such that if q e P then fa(q) = f(q)

and fa(Z_~) = f. (5 "'1() otherwise.

1.3.3 Lemma

The space (~,CL,fl) generated by G, f is isomorphic to the
space. (na,a.a,Ji.a) generated by Ga, r.
Proof: Let H:Q ...Qa be the bijection which maps a parse of n to
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the parse of ~ which is similar in all ways except in having Z

instead of S at the root. Let (~,ctad'f.ad),(,Q,ad,j{d) be the

spaces generated by the partial parses of depth d. Then it is easy

to see that c.Qa,(J_ad,j1ad) is isomorphic to (Q,Qd,/fd) under H,

and hence that the limits (Qa,tla,ra) and(Q,a,jc) ,are also

isomorphic.

..

1.3.4 Definition

Let the new productions in Ga of the form (Z ....~) be numbered,

so that Q = {(Z "'~i): i=l, ••• ,ml. Then Gi a is the grammar

(NU(ZJ ,T,pu{(Z -+O<i)J ,Z) and fi
a is the preprobability fia(Z-+C< i) = 1

else fia(q) = f(q).

aClearly each of the grammars Gi has just one of the new

productions (Z ... O(~), and this production can 'and must be used just,

once at the root of every parse in Q i a •

1.3.5 Lemma.
(.Qa,~ a, ka) i iThe space ~ '" s somorphic to the weighted sum

( t:n_a t ma t: a .
i=l i' i=l \.(,. i; i=l Pi J1 i)

Proof: The isomorphism holds between the spaces generated by partial

parses of depth d, and so also between the limits.

1.3.6 Theorem

The space (~,er'J1) generated by a grammar G and preprobability

f is isomorphic to the weighted sum of . ( ~ A a ~ /'() a
spaces ~1~~ i' i=l~ i'

(=1 Pi Iiail t d b th a .a• I' genera eye grammars G i and preprobabilities ~ i.

Proof: Both isomorphic to (Qa, tea, faa).
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1.3.7 Notation

Next will be shown that each of the new spaces (~ai,C1ai'ftai)
can be further decomposed into a finite product. To reduce the
comp1ication of the notation, H will stand for Ga. and (0,~ ,'Y )

l.

for (Qai,a.ai,ttai)' So H is (Nu{Z},T,pu[(Z"'«i)} ,Z). o<.iwill
be X1X2"'X~' where each Xj may be non-terminal or not.

If Y is any non-terminal of NU{Z} then H(Y) = (Nu[zl ,T,PU{(Z~'i)J ,V)

will be the grammar which is the same as H except that the start
symbol is changed to Y. (Notice that as Z appears on the right side
of no productions, the set of parses genera~ed by H(Y) is exactly
the same as the set generated by G(Y) = (N,T,P,Y) whenever Z ~ Y.

In particular, H(Y) is not in general reduced.) If f is a pre-
probability for H then it is also one for H(Y) for both have the
same productions. (Q(Y), 'B(Y),V(Y) ) will be the space generated
by H(Y) and :f •

If Y is a terminal, then (Q(Y), 13(Y),V(Y») is the trivial
space; with Y the sole element of O(Y), aCYl the two element
power set of Q(Y) and).J(Y) the trivial measure.

1.3.8 Theorem

The space (0, n ,)J) is isomorphic to the product

(jll O(Xj). j~~Xj)' jk Y(Xj) .)

Proof: Firstly, the set Q is isomorphic to the set noi
T'i Q(X .)•

j=l J
the start symbol ofFor let e be a parse such that e t Q. As

H is Z, and the only production in H involving Z is (z-tX1•••X ),ni
e must have Z at its root and Xl~'."~'

l.
descendants of Z. ~ If e i th fj s e parse 0

in order as the direct

H(Xj) which is the same
as e restricted to Xj and its descendants, then it is clear that
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the f'unction
niI:0 -to 1\ O(X.)
j=l J

with the property 1(0) = (01,•••,0o.i)

has a well-defined inverse arid soisan isomorphism. It is also clear

that if'(0, ~d+1' Vd+l) is the space defined by partitions of depth
d+l, similarly ( O(X.), ~(X.) ,V(X.) ) that generated by partial

J J d J d '

parses of depth d, then (0, '\!> d+1' \> d+1) is isomorphic to

"

n. n. ni( rl O(X.), It r> (X .), 11 veX .) ).
j=l J j=l J d j=1 J d

Therefore the two limits of these sequences are isomorphic.

1.4 BACKUSNAUR FORMAND THE SPACE ISOM0RPHISM

1.4.1 Notation

To consolidate quickly what has been done, yet more notation
is needed. ,In the sums of products of spaces the z, and 7\ 's
can be taken outside the sequence brackets, thus for instance

n n n n
1: Pl.0(Q.,a..,"'i) means' ([Q., [(1., L Pift·) •
. 1 l. l. J" • 1 l. . 1 l. -i 1 1.l.= l.= 1.= ='"

G is still ({Xi,i=1, •••,nl,T'!:ij:i=1, •••,njj=1,•••,ni}'Xk)
where the length of Pij is nij, so Pij may be written (Xi~Xijl
Xi·2···X.. ) wher~ Xi stands for a non-terminal, but XiJ'k (whichJ 1.Jnij,
should perhaps more strictly be written ~(i,j,k) may also stand
for a terminal. G(Xi) stands for the grammar with Xi instead of
~ as start symbol (so that G (~) is in fact G). $ istands f'or
the space (~i,eti't<i) generated by the grammar G(Xi) and the
preprobability function f, Sijk stands for the space generated by
G(Xijk) and f if Xijk is a non-terminal, and the trivial space
where Q. ik contains just one element otherwise.1.J S ij stands for
the space generated by the grammar G(X.) with the restriction thatl.
the production Pij is always used first.
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1.4.2 Remark
A variant of Backus Naur Form (BNF) will be described which

allows the preprobabilities of the productions to be displayed.

1.4.3 Definition
Ix a grammar has the productions (X ...... 0<. •• ) and the preprobabilityl. l.J

function f(X ..... OC •• ) =p ..l. l.J l.J

Xi ::= tPi110( i1 \

then its BNF is the set of n formulas

fp.2
t 0<. '2 \ ••• l{p. 1cl .l l. ~ l. t l.ni} l.ni

1.4.4 Notation
For the sake of manipulation it should be noted that 0( •. isl.J

a sequence of signs X"1 X"2 ••• X. . and so may be writtenl.J l.J l.Jn,.l.J
Similarly the sequence of alternatives {p .. 1~ .. may bel l.J l.J

n..
:u. X. ik"kIf l.J

expressed

ni,
L p, ·O<i"
j=1 l.J J

by the xormulas

and so the BNF of a grammar may bewritten

The above notation is rather powerful and enables the above
two theorems to be summed up in the very striking xorm.

1.4.5 Theorem
Ix the BNF ox a grammar is

(i=1, •••• n)

then the spaces generated satisfy the recursive equations
ni n..

Si~ ?: Pij f\J 5 iJ'k
J=1 k=1

(i=1, ••• ,n)

(where ~ means is isomorphic to).
Proof: Theorem 1.3.6 showed
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that
n·

S.~t p.. S ..1. 0 1 1.J 1.J
J=

n•.e tv 1.J f
and theorem 1.3.8 that~. o=n ~. ok·1.J k=l 1.J

1.4.6 Example
A particular example is a simple version of the language of

assignment statements. G = (N,T,P,S) where

T = {{,),a,b,+,x, = 1
N = f S,L,R1

and P = t <S~L=R> ,(L"'a) ,<L"'b) ,<R"'{R+R»,<R-+{RxR»,

<R" a.> ,<R "b) 1
If the preprobabilities are in order PIl' P21' P22' P3l' P32' P33'
P34 where of course P11 = P21 + P22 = P3f'tP3J."fIP3)tP3q.=1,then the
grammar may be written in BNF as

S : : = [p111 L=R

L: := {P21~ a \fp 2} b
R::= fP3J (R+R)Ifp32~{RxR») {P33!a \b>34lb

and the isomorphism between spaces may be written-

S 1 ~ P11 S2 ~ 0 g3
S2= 1'21 So + P22 ~O

~ 3 s 1'31SO} 3 ~ 0 ~ 3 ~ 0 + P32 SO S3 ~ 0 S3 So + P33 ~ 0 + P34 ~ 0

where S l' S2' S3 are the spaces generated by G(S), G{L) and G{R)
respectively, and ~O is the simple space with just one element in
the underlying set.

1.5 RECURSIVE EQUATIONS OBTAINED BY INTEGRATION

Suppose that gi :Qi"'"3<, for i=1, ~••,n (where ~ is the _set of'
real numbers) is a family of random variables, and that each function
9i can be expressed in terms of the functions 9ijk defined on the
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component setsQ. ik of Q .. Then sometimes the integrals
l.J l.

f gidf<.i can be expressed in terms of the component integrals

_(gijk ~ijk to give some recursive equations satisfied by the

integral. And again sometimes the numerical value of the integral
..

can be obtained merely by studying the recursive equations. Some

examples of this technique follow.

Firstly an equation will be found for the measure of the set

of finite parses. v. will be the function v.:Q ....fO,12 which
l. l. l. 1 J

has the value 1 on finite parses and ° on infinite. Similarly

Vij:~ij~ to,1~ and Vijk:~ijk~ to,l} • Vi will be the real

number which is the integral of Vi that is

V.
l.

(Similarly V•. and V. 'k.)
l.J . l.J

1.5.1 Theorem

If the BNF of a grammar is
ni RX ••- L Pij Xijki·.-
j=1 k=l

(i=1,•••,n)

then the measures V. of the sets of finite parses satisfy the
l.

equations

(i=1, •••,n)

Proof: The Qij ~rtitionQi

hence Vi = t"'\ e ,JVi A~i = ni~ ('),/ vdU
~~ " j=t-~~j i lei

But if Ca) E: Qij' and fa) is finite, then vi (u» = vij (c..» = 1,

and if Ca) is infinite, then vi (Ca» = vi/ tu) = 0, so vi = vij on Qij •

Also by definition I<i = P ij f<ij on Qij
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I f vidfi

n. n.

r:Jv ..dJ1i'l. l.
so = [ Ivi·d P. ·/i1· = [ p

Q.. J l.J J ijj=l .Qij j=l j=l .. l.J J
l.J l.J

ni ..
= L p .. V ..

j=l l.J l.J

That is Vi = ~ Pij Vij·

Similarly if .Q.. ~ llQ. :k and if Cal f:O ..
l.J - ''k l.J ~4.J

and the sequence ((,)1' ••• ,tJn..)l.J

E lJ~jk is its corresponding nij-tupleof parses then CV is finite

only if all the Ca) k are finite. In which case vij (Ca» = 'Q. vijk (Wk)
= 1. Otherwise GU is infinite, and at least one U)k is infinite.

In which case Vi .(,» = TTvi 'k(CUk) = O.
J ik' J

Hence Vij = Q~ Vij dfij = 7\n. f l1Vijk
Ilfl-Jk

d/!JIrjk= TJ rv / v , ik d/i1 'k~C;ijk l.J J

Collecting the two results together gives the theorem.

1.5.2 Remark
Unfortunately, the recursive equations for the measure of the

finite parses are not in general easy to solve, nor do they always
have a unique solution. And it is easy to see by inspection that
they always have the solution V1:V2= ... = Vn = 1. However the
following obviously holds.

1.5.3 Corollary

If the only solution of the above equations with O~Vi'l is
Vi = 1, then the measure is concentrated on the finite parses.
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1.5.4 Example
The equations for the language of assignment statements are

simplifying by using Pl1 = P21 + P22 = P31 + P32 + P33 + P34 = Vo = 1
and writing q for P31 + P32

The last equation factors to

.!.=9.so V3 = 1 or V = •3 q

The second solution may be excluded if (1~9» 1, that is if q< ~,
in which case it is known that all the measure is concentrated on
the finite parses.

1.5.5 Notation
The number ox nodes in a parse (&) will be denoted by h(GV).

The integral ox h over a space ~i will be denoted by Hi. So

Hi = ~ihdri. ~imilarlY Hij and Hijk will be defined as the
integrals of hover Slij and Q ijk respectively.

1.5.6 Theorem
If the BNF of a grammar is

(i=1,•••,n)
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then the average number of nodes Ho obey the equations
1

Ho = 1 + 2:: .po0 L Hook1 . 1J k 1J.J
(i=l, •••,n)

".
Proof: The result is a simplification of

Ho = "po 0 (1 +L Hook)1 L. 1J 1J (i=I,••• ,n)

which can be proved in a similar way to the last theorem. The key
step is that if W is a parse whose direct subparses are «U 1"'"

(Jno 0) then h(W) = 1 + L h(Wk).1J k
Hence Ho 0 = 1 + rHo ik1J k 1J

1.5.7 Example
The equations for the language of assignment statements simplify

(using the previous notation including P31 +P32 = q) to

H3 = q(2H3 + 3) + 2 - q

Hence H = 2(1!g )3 1-2q and 1\ = H3 + 4.

Now H3 must be positive, hence if ~~q then the only possibility
is that H3 = +00. Combining this with the previous result it is
reasonable to suppose that there are three possibilities:

q<l in which case all the measure is on the finite parses and
H1 = 4 + 2(!!.9. )1-2q

q = 1 in which case all the measure is on the finite parses and"2

HI = +00

q >~ in which case the measure of the finite parses is !:.9. •
q

It should be noted that in the production Pij = (Xi-+Xij1 Xij2
Xo 0 ), each of the XiJok's is either a terminal or a non-terminal •1Jnij...
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If Xijk is a terminal then it is easy to see that Hijk = 1.

other hand, ir Xijk is a non-terminal then it must be some Xl say,

On the

and so H. ik is HI. Thus the equation1.J ..

H. = 1 +LP. 0 rHo ik1 j' 1J. k 1J

may be rewritten as a sum of terms in HI as

Ho = 1 + .r po 0 ( ti 0 + Lt. 01 HI)1 j 1J J 1 1.J

where t. 0 is the number of terminals amongst the X. ik" and t. 011J . 1J 1.J .
is the number or occurrences or Xl. This rearranges to the linear

equation in the H.'s,1.

H. = 1 + ~p. ° t .. + ~ ('P. oti 01) HI1.' . - 1...... 1J 1J Ll '-: 1J JJ J . .

This can be rewritten even more clearly by putting

a. = 1 +1. l:p. .t , °J 1J 1J
and

This equation, because it is linear, has in general only one finite
solution. However it may also have some infinite solutions. The

matrix AiJ· = E p t1 i1 ilj
letter A will be used for it throughout what follows.

constantly reappears, ..and so the same

1.5.8 Theorem
If the BNF or a grammar is

ni
~X •• - ~ Piji·.- J=l k=l

(i=l,•••,n)

then the average length Li(Lijk) or word generated by parses in

~i(~ijk) satisfies the equations
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L. =
1

ni
Lp ..
j=l 1.J

nij
L L··kk=l 1J

(i=I, ••• ,n)

which may be rewritten as
n

L. = E"
1 j=I

A .. L. + b.1J J 1 (i=l, ••• ,n)

where b. =1.
ni
L p and A .. and t.. are as before.
. 1 .. t.. 1.J 1JJ= 1J 1J

Proof: There are two points to be noticed in the proof of the
first formula. Firstly that if cu is a parse, then the length of
the string generated by (W is the same as the number of terminals
in c.u and so 1(U» may stand indiscriminately for both. And
secondly if W

I
, •.• ,(&) are the immediate subparses of ~ then, m

1(c.> ) = t1«(,)i), so that if L .. , L.. k stand respectively :for the1J 1J n· .i=1 1J
integrals

~j
dtt .. andJ dl"-ijk then L.. = E Lijk•1J 1.J k=lijk

The linear equation can be derived by algebraic manipulation in
a similar way to that :forthe average number o:fnodes.

1.5.9 Definition

The mean square of a measurable function g which maps a
probabili ty space Q to the reals is de:fined to be hg2 dfi •
The variance Var(g) of the same function is defined to beIn (g_E.<g»2d
of g. Vari(g)

where the real number £'g = in9d/,<

may be written for r .(g_ € 9 )2dH ,
JQi "i

is the expectation

similarly

1.5.10 Lemmas

1. Var(g)
n

and the gi are independent then Var(g) =L Var(gi).
i=1

2. I:f9 =
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Proofs:

1. Var(g) = /(g_[g)2d/,-= Jl- 2g£g +«('g)2dj{ = /ld

-2f,9!9df'\ + (£'g)2Jld/'l = Jg2dr _ 2tg(.g + (£"g)2

Hence given any two of the three real numbers, var(g), £ g or the

mean square of g, the third can easily be calculated.

2. Proved in Loeve, p.12 and there called the Bienayme equality

or Feller, p.230.

1.5.11 Notation

If I is the length function as above, then Li2) = J'S2.L2d~
is its mean square. Similarly L(.2,>and L~2.k)are the corr~SPOndingl.J l.J
integrals over S2..and ~iJ.k.: Care should be taken over the.. l.J
dist inction between L(2i) meaning I t2d/t. and L: meaning

IQi l. l.
(J'~ild~i)2. They are not in general the same real number.

1.5.12 Theorem

If the BNF of a grammar is

(i=1,•••,n)

then the mean squares Li2), Li~) and Li~~ of the length function
t satisfy the equations

L(2) =
i (i=1,•••,n)

Proof: This has the usual two parts, first a relation between the

integrals over Q i and Q ij ,,and second between those over Q ij

and nijk· Trivially if g is any function to the reals, then the
222function g where g (x) = g(x) is also such a function, and so
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(i=1, ••• ,n)

in particular for g = L , and using the above notation

n.1.
l:P. ~L

i
(2
J
_}

j=l 1.J
= (i=1, ••• ,n)

The above gives a relation between the mean squares of lover Q i

and Q ij , the Bienayme equality can now be used to obtain a'

rela tion between the variances of l overQij and Q ijk. For if

f4)EQ .. and c.:lkEQ.. k (k=L; ••• ,ni.) are i Lt s corresponding subparses,
1.J 1.J J .

then the functions tk(~) = ((Uk) are obviously well defined and

independen t on Q. .. Hence
. 1.J

vaI~L) = l~val~lk)

= Var .. k( l>, hence using lemma1.5.10.2
1.J

[L(2) 2
ijk - (Lijk) ] (i=1, ••• ,n;

j=l, •••,ni)
=

The result follows from the two halves by a simple algebraicre-

arrangement

1.5.13 Corollary

The mean squares satisfy the linear equations

=
n

~A L(2)L:.- ih h + ci
h=l

(i=1 , ••• ,n)

where

c.
l. =

and all the other signs are as before.



Proof: This is an algebraic manipulation, the only possible slight

1 h L(2}difficulty being that if Xijk is a termina t en ijk = 1

·f

1.5.14 Remark

It is often quite easy to find various parameters which give

some sort of average structure of the parses, all that is necessary

is to find the right function and integrate it; for instance to

find the probability that the left most terminal of a parse is x

the function s (Ca,» = 1 when the left most terminal of the parse
x

~ is x and 0 otherwise must be chosen.

1.5.15 Theorem

If the BNF of a grammar is

then

Si,x = (i=1, ••• ,n)

Proof: If (,)is a parse and CV l' ••• " (,)hits immediate subparses

then s {W) = s (Wl). Hence Si' = Si'l •x x J ,x J ,x

1.5.16 Corollary

The similar r~lations

T =i,x
nir:- Pi' Ti' (i ')j=l J In ,J ,x

hold between the probabilities T etc. that x is terminali,x
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1.5.17 Remark

The rrequencies of the various letter pairs can also be round.

Care must be taken in the definition of how many letter pairs occur

in a string because there are several slightly different possibilities.

Firstly there is a difficulty about whether long sequences of the

same letter should be broken into overlapping or non-overlapping pairs.

Here overlapping pairs are chosen. For instance 'abbbc' is considered

to have two overlapping pairs 'bb', not one non-overlapping pair.

Secondly it is preferable for the theory of LR(k) grammars ir the

last symbol of a sequence is built into a pair, for instance the

string 'abc' is considered to consist of pairs 'ab', 'bc' and 'c·,

rather than just two. However this will be left until the parsing

is dealt with, and the less preferable derinition chosen.

1.5.18 Notation

c is the runction which gives the numberxy
parse. C. , C. . and Ci a!rethe usual1,xy 1J,XY jk,xy

of pairs 'xy' in a

integrals I c dft1.,I~ xy

and tl f c d!<iJ'k respectively..Jtijk xy

1.5.19 Theorem

Ir the BNF or a grammar is

..-..- (i=l,••• ,n)

then the average numbers Ci~y
a parse satisfy the equations

Cijk,xy or terminal pairs 'xy' in

n·1
l:
j=l

p. ,1J Tij(k_l),x Sijk,y ]
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Proof: This is just a question of noting that if (.)1'•••'Wh are
the immediate subparses of Ca) , then every pair 'xy' which occurs
in CA) either occurs inside some Wi' or else 'x' is the last symbol
in some CVi and ,~' the first of its successor ~i+1
Thus

h

cxy(CV) = ~ cxy( Wi) +

h

L t «(a). 1) s (c..>.)i=2 x 1- Y 1

and the result follows by integration

1.5.20 Corollary

The average numbers of pairs C. obey the linear equations1,Xy

where

n
C. = r Aih C + d1,xy h=1 h,xy i,xy

ni n ..
1J

d = Z p .. [k T ..(k 1) S··k ]i,xy ° 1 1J 1J - ,x 1J ,yJ=

(i=1,__..,n)

and the other notation is as before.

Proof: If XiJokis a terminal then clearly C. Ok = 0 whatever x and
1J ,xy

y may be •

1.5.21 Remark

Finally an equation satisfied by the entropy will be worked
out, where the entropy is as defined in the '1otJI1Q~Ii~:-~ti(Ii' •

1.5.22 Notation

Ei, Eij and Eijk are the entropies of the sets Qi, Qij'
nijk· q will be a probability function, thus qi(00) = /1i({(&)~,

where it is assumed that any of the measures f\ is concentrated on
the finite parses (AJ •
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1.5.23 Theorem

If the BNF of a grammar is
n. n ..t p .. nJ

X"kj=l 1.J k=l 1.J (for i=l, •••,n)

then the entropies of the spaces ~i obey the relations

t Pij log PiJ. + oj: p .. tj

j=l j=l 1.J k=l
E. - _

1. Eo Ok1.J

Proof: By the fundamental theorem on entropies
n..

E .. = t: E. Ok •
1.J k=l 1.J

If fa)'.Q. j then q. (c,» = p. . q. .(Ci) )
1. 1. 1.J 1.J

so E. (~t i: - q. (W) log q. (Ca> )1.
(4)tQi

1. 1.

~
= L - p. oq..(w) log Pijqij(Ctt.)

<.)~j 1.J 1.J

~ q .. (W)
..-~ 1.J

log qij «a) )]
and then because

qij( (a» = j'-tij(Qij) = 1 and - ~ qij(W) log qij (<&) :: Eijw.~.
la>. ij:l.J

The result follows by collecting together the two halves.

1.5.24 Corollar~

The entropies obey the linear equation
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where e. - -
1.

nO
1.

L Pij log Pijj=l

Proof: If X. ik is a terminal then Eo ik = O.
1.J 1J

1.6 ALL THE PARAMETERS CALCULATED FOR AN EAAMPLE

The various parameters can be calculated for the language of

assignment statements as defined before with the BNF:

S::= lPl1! L=R

L::= {P2l ~ a'l fp221 b

R::= {P3l1 ,(R+R) 1 fp321 (RxR) \ {P331 a \ [P341 b

Now if S stands for Xl' L for X2 and R for X3 then the only non-
zero terms Aij'are

where tijk is the number of non-terminals Xk in production ij, and
q = P31+ P32•

Hence I-A = (g -1 -1 )1
1~2q0

and (I-Ar
1= (~ 1 1~1-2q). 1

. 0 0 1/1-2q

Now the ai as defined in section 1.5.7 turn out to be

I + lxl = 2

a3 = 1 + 3P31 + 3p~2 + P33 + P34 = 1 + 3q + (l-q) = 2(l+q)
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hence the vector H of the average number of nodes which satisfies
-1H = (I-A) a where a is the vector of a,'s is

J.

1 2(1+q) 2(...!!.9...)HI = 2 + 2 + (1-2q) = 4 + 1-2q

H2 = 2

H3 = 2{1+9)
l-2q

which is the same result as before.

Similarly the values b, to calculate the average lengths are
J.

b = l'
1 ' b3 = 1+2q

and so the vector L or average lengths which satisries L '= (I_A)-1b
is

L = 1 + 1 + 1+29
1 1-2q = 1+29

l-2q

To calculate the mean squares, it should just be noted that ir
Xijk is a terminal then Lijk = land if'not then Xijk is some non-
terminal X say and so L, ik is L • So for instance in the grammarn .. l.J n
considered here X321 is ' ( , a terminal and so L32l = 1 and X113 is
R=X3 so L113= L3• Si~larlY the Lij are the sums 'of the average

lengths generated by the component symbols of production ij. So for

instance Ll1= L2 + 1 + L3• For the assignment statement grammar L
1
,

L2 and L3 have just been calculated above, so:

= 1 + (L +1+L )2
2 3

= 1 + 2(1+29 + 1 + ~) =l-2q l-2q 3 + 4 (1+29)
1-2q •
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Similarly,

c2 = P21(1+1-1) + P22(1+1-1) = 1

and c3 = (P31+P32)[3 +(3+2L3)2_ 3 - 2(L3)2] + (P33+P34)

which simplifies to
3 2-8g - 20g + 18g + 1

(1_2q)2

Hence as the vector L(2) satisfies L(2) = (I_A)-lc

3 2= 3 + 4 -1+2g + 1 + - 8g - 20g + 18g + 1
1-2q (1_2q)3

3 2-89 - 209 + 189 + 1
3(1-2q)

T and S. can for this grammar be worked out directly to givei,x 1.,X

the·two tables

S a b (i~x
S P21 P23
L P21 P22
R P33 P34 q

T a b )i~x
S P33 P34 q
L P21 P22
R P33 P34 q

where the i,x entry of the first table means for instance that if
1=1 and so X1=S and ~=a then the probability that a string generated
by S starts with a is P21• The blank Spaces and omitted columns are
all zero.

Using the above tables the following table can be calculated with
a little effort whose xy entry gives the average number of pairs xy
to be found in a string generated by S. The similar tables for L
(which has all 0 entries) and R are not given.



a b = ( ) + x

a P21 O(qP33 0( P31 P33 KP32P33
b P22 0( QP34 0( P31P34 0(, P32P33
= P33 P34 q

2( 0(. qP33 C>. QP34 O(.Q

2) o<,Q cx.QP31 O(.QP32
+ cc. P31P33 oc.P31P34 ac.QP31
x ~P32P33 «'P32P34 O(.QP32

1where ~ stands ror i:2q .

Finally the entropy can be calculatedror
e1 = 0

e2 = - P2110g P21 - P2210g P22
and e3 = - P3110g P31 - P3210g P32 - P3310g P33 - P3410g P34

and so using the condition ror the vector E or entropies E = (I-A)-le
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Chapter 2

GENERATIN:i FUNCTIONS FOR CONTEXT FREE GRAMMARS

This chapter has three purposes. Firstly to justify some of
the previous calculations and prove that they work in all circum-
stances (or at least,specify in which circumstances they work).
Secondly to show how some of the calculations can be done in a more
unified way. Thirdly to show how some more parameters of context
free grammars can be defined and calculated, in particular an
expression for the information rate will be given.

The means used to achieve these ends will be to define some
generating functions associated with probabilistic context-free
grammars, and investigate their properties. Unfortunately a lot of

work is needad.rto prove properties of these generating functions
which are of no direct interest as far as the grammars are concerned,
and much of the chapter will be taken up with this work.

2.1 PRELIMINARIES

In this section are listed some standard properties and defi-
nitions which are used in this chapter. Firstly some properties of
generating functions in one variable, then some theorems to do with
algebraicity, and finally some properties of multivariate generating
functions.

2.1.1 Univariate Generating Functions _ Definitions
00

If i=O < ai > is an infinite sequence of complex numbers, and
00 < i) 00 )z is a complex number, then i=O aiz and n=o<An(z) are two

n .
more such sequences, where An(z) = i~ aizi• For any particular
z the sequence An(z) may either converge, oscillate, or diverge.
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A(z), called the generating function for the sequence (ai), is

that function which is defined only for those z t s for which (An(z»

conv~rges, and whose value is It turns out
that there is always a real number r CO, positive or + 00), called
the radius of convergence of <a.), such that if Izl<r then A{z)

l.

is defined, and if \2\) r then (An(z» diverges. There is no
general rule for what happens when [a]= r. The set {2: [z]< r1 is
called the circle of convergence of <ai) •

The above states that given any sequence there is a unique
function with various properties; the inverse also holds for cases
of practical interest. In particular, given any function A(z)
defined, differentiable and finite everywhere within some open
neighbourhood of the origin, then there is a unique sequence (ai)
such that the limit of An{z) is the same as A{z) inside the neigh-
bourhood. If A{z) and B(z) are two such functions (defined,
differentiable and finite in open neighbourhoods of the origin) then
C(z) = A(z) + B(z) and O(z) = A(z) x B(z) are two more such functions
defined at least in the intersection of the neighbourhoods of A and
B. It turns out that the sequence <ci> for the function C is the
sum of those for A and B, that is ci = ai + bi ; and that <di> the
sequence for 0 is the convolution of those for A and B, that is

i

di = j~O ajb(i_j)· d~ (A(z» is also of the above sort, and the
ith term of its s~quence is (i+1)a(i+1).

2.1.2 Analytic Continuation

Although the function defined by a sequence is only given
inside its circle of convergence, it is often possible to e~tend its
domain. For if Zo is a point inside the circle, then B(z) = A{z+zo)
is another function which is defined, differentiable and finite in
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a neighbourhood of the origin. Hence it has a sequence <bi> which
in turn defines a new function BI. Now BI=B when both are defined
and BI(Z) is defined inside a circle of radius r'. By defining
A(z) = Bt(z-zo) inside a circle of radius rl about zo' it often
happens that A is defined for new values of z such that [z] )r, and
the domain of A is extended. If this process of analytic continu-
ation is done again and again, it often happens in practice that the
function A can be defined for all z in the complex plane except for
a finite number of singular points.

2.1.3 Singular Points

Singular points can be classified according to their properties.
Only two sorts are of interest here. A pole at Zo of a function A

is a point where A(z) becomes infinite, that is ;::o<A[Z» = O.
A branch point is more complicated. If a function is extended by
analytic continuation by going round a loop (circle, jordan curve)
in small steps, and there are no branch points inside the loop,
then the value of the function at a point after going round the
circle is the same as at the beginning. On the other hand, on
going round a branchpoint this is not in general so. , A function
with branch points may be thought of as having a number of layers,
some of which are stuck together at a branch point. Some compli-
cations are that a point may be simultaneously a pole and a branch
point, also if a function has several layers, a point may be a pole
on just one layer, or a branch point connecting not all.

2.1.4 Expansion about a Pole

A theorem stated by Feller [ 7 ], p.285 allows the limiting
behaviour of the sequence <ai) to be obtained from the properties

of its generating function A(z) at the pole zo of A nearest to the
origin.
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Theorem

If A(z) = Lim
n .. oo

n

~ aizi and also A(z) = U(z)/V(z), and the
1.=0

following three conditions hold.

1. Zo is a root of V but not of U.

2. Zo is the root of V strictly smallest in absolute value (i.e.

the root of V strictly nearest the origin and hence also the pole

of A strictly nearest the origin).

Zo is a root of multiplicity r (i.e. V(zo) d3. = dz V(zo) =
dr-1 V(zo) = 0 but dr V(zo) ~ 0 ) .= dzr-1 ctTz

Then as n~OO

r! U(zo)
(n+r-l)r-l

Remark

The two particular cases used here have r=l and r=2. They

can be restated more simply as follows.

Corollary

When the three conditions hold and r=l then

Corollary

When the three conditions hold and r=2 then
2 U( z0)( n+1)

an~ n+2 V" ( )Zo . Zo

Remark

In practice the main difficulty in using this theorem is in

showing that condition 2 holds.
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2.1.5 Algebraic Functions

Definition

A function A(z) from complex numbers, to complex numbers is
algebraic if it satisfies a non-trivial equation of the form

for all z, where all the Pi(z) are polynomials in z. (The equation
is non-trivial so long as the multinomial Po(z) wID + ••• + Pm(z)
is not identically zero). Algebraic functions are important for
this thesis because of the following:-

Theorem

,If A is an algebraic function then its only singularities are
poles and branch points.

Corollary

The non-singular points of A form an open subset of the complex
plane.

One way to show that some particular functions are algebraic
is to use the following theorem, which gives a multi-dimensional

analogue of the defining equation. (Condition 2 gives a generali-
sation of the idea of non-triviality.)

Theorem

If"Al (z), A2 (z)'.•••,An(z) are complex funct ions of the complex
variable z, and

1) they obey n equations of the form

~j(z, AI(z), •••,An(z» ; 0 for all z, j=l, •••,n;

where is a multinomial of the form
~.(z,
J i'w n

n J
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where the a~j> . are complex numbers, and only finitely many10, • o1n
of them are non zero;

2) the jacob,~an ~~~) /.° at at least one point (zo ,A1(zo) ,• 0 • ,

An(zo» ;

then each of the functions Ai(z) is algebraic.

Comment on Proof

As far as I know, this theorem is not in the literature. I

therefore attempted to prove it myself. My method would have

constructed polynomials p~i)(z), •••,P~~)(Z),and so given a direct
1

proof that Ai was algebraic. Unfortunately it failed to invariably

find non-trivial polynomials in the rare cases when some of the Ai

had cusps or similar peculiarities at ZOo

Luckily I managed to interest Dr. Go.. Segal in the problem

and he succeeded in proving it. His proof uses mathematics which

is needed nowhere else in this thesis. I have made it appendix 1

2.1.6 Multivariate Distribution Generating Functions _ Definitions

Definition

Given a multiple series <a.. . :io,i1, •.. ,i = o, ... j
1011•• o1n n

of complex numbers, then the multiple sum
io inz ••• zo n

may be defined for some complex values <zo, ••• ,zn> by taking the

limits of subsums in various suitable ways. The convergence

conditions are more complicated than those for one dimensional

series, but the sum clearly converges for all values if only

finitely many of the ai "'i are non zero. This is the only case
p n

used here.
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Definition

A function V is a vector valued function from a measure space

(Q,a,J<) if it is measurable and mapsQ to n+1-tuples of non- ..
negative integers. If <i ,•••,i > is such an n+1-tuple, theno n
V-1(i ,•••,i ) is a ~easurable subset of ~ , so its measureo n
M (V-1(i ,•••,i » exists and is a non-negative real number. SoI . 0 n

the multiple series <u. (V-1(i ,•••,i ») may be used to define aI' 0 n

generating function F(z ,•••,z ), which is called the distributiono n
generating function (d.g.f.) of the vector valued function V.

2.1.7 Properties of Distribution Generating Functions

For the purpose of stating these properties, the m functions

Vi will map the spaces (Qi,ai,/< i) to n+1-tuples, and have

(d.g.f.)s Fi" Similarly V and F correspond to (~,Ct,)L<). The

equations are only asserted under the unnecessarily restrictive

~ondition that all (d.g.f.)s mentioned converge.

Theorem
m

If (Q, ct,j{) is the weighted disjoint sum koPi (Qi' Lti'f< i)

and V is the union of the Vi (i.e. if WEoQi then V(W) = Vi(W) ),

then
F( z , ••• ,z ) =o n

m

L.P. F.(z ,•••,z )i=1 1 1 0 n

Theorem
m

If (Q.,(1,}{) is the product l=~(Qi,Lli,l'<i)' and V is
defined to be the sum of its components (i.e. for Ca> = <W , •.. , Ca> ){Q,o mm

2: v. ( Wi) ), then
i=1 1

V(W) =

F(z , ••• ,z) =o n

m
7\i=1

F.(z , ••• ,z ).
1 0 n
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Theorem
thThe mean value of the i component of V on the space

(Q,ct,jt) is

z =z = •••=z =1o 1 n

The Proofs are obtained by rearranging the defining sequences.

In the theorems so far, it has been assumed whenever necessary
that all the measure is concentrated on the finite parses. Luckily
there is a simple test to show if this is in fact so. The derivation
of this test is complicated, and depends on seeing a grammar as a
particular example of a branching process. 'A derivation of a similar
test for branching processes is reported in Harris [ 13 ], pp.34-48,
but he requires an extra condition which only holds for a small and
not linguistically interesting class or grammars. An alternative
derivation using results from the theory of markov processes has
been obtained by Hutc,hins [16 ].

2.2.1 Notational Convention

The reader should recall that the grammar dealt with here hasni'
productions r(Xi~Tf X, 'k): i=l, •••,n; j=l, •••,n,? J where thet k=l l.J, l.j

Xi are the non-terminals of the grammar and Xijk is the kth symbol
in the jth production of the ith rule. Each X, 'k is either a non-

l.J

terminal, and so one of the Xi' or a terminal, and hence corresponding
to a dummy non-terminal Xo. Q.i' Qij and; Qijk are the sets of
parses stemming fromXiJ Xi through the production Pij and X

ijk
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respectively, where if Xijk is Xo then ~ijk is ~, or in other

words the set containing just the single degenerate parse consisting

of just a labelled root.

The pattern of subscripts i, ij, ijk occurs often. In general

only symbols with subscript i are explicitly defined (in terms of

Q .), symbols with subscripts ij and ijk must be assumed to have
1

analogous definitions (in terms of Q.. or
1J Q. 'k)'1J

When X. is
1.

X. 'k' the meaning of the symbol with subscript i is the same as,1J

or equal to, or isomorphic to that with subscript i as required.

Seldom does the symbol with subscript 0 need a special definition,

but it often adds clarity if it is given one.

2.2.2 Vector Valued Functions Associated with Grammars

Definition

An important set of vector valued functions associated with a

grammar is tVld)} , where vid) maps ~i to n+l-tuples of

integers, and if the parse P.~ ~., then the jth component of
1 1

v~d) (P) gives the number of occurrences of X, at depth d in P.
1 J

(Or if j=O the number of occurrences of terminals.)

F~d)(z ,•••,z ) is the (d.g.f.) corr,esponding to Vi(d).l. 0 n

Remark

Because the degenerate parse has a sole terminal at its root,

F(O)(z ' ) :: z, ••• ,zo 0 n 0 and F(d)(z ,•••,z ) - 1o 0 n for d >0.

Remark

As d becomes larger, the functions F~d)
l. may (but need not)

become more and more complicated multinomials in the variables

zo,···,Zn· Fortunately all these functions can be constructed in

sequence directly from the functions Fil) • Many of the properties
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of the F(~) can also be obtained directly from the corresponding
1

properties for F~l).
l.

The functions F~l)
l.

are thus particularly

important, and will be written F. for short.
l.

Theorem

(d+l)
F. (z , ••• ,z )
1. 0 n

- F. (F(d)(z , ••• ,z ), ••• ,F(d)(z , ••• ,z »)
1. 0 0 n non

Proof

and V~d+l) satisfy the conditions of theorem 2.1.7.1
1

so
n.

(d+l) _ ~ (d+l)F. (z, ••• ,z)= Lp F .. (z, ••• ,z)
l. 0 n . 1 .. 1) 0 n

J= 1J

Similarly, given a parse 'V. 0' let ~. ik be the subparse
1J 1J

immediately below the root of Pwhose root is the symbol X. ik
1.)

Clearly any symbol at depth d+l 'in't.o ° is at depth
l.J

ij·
d in one of

the .~. ok. Hence
l.J

So using theorem 2.1.7.2

(d+l)
F... (z , ••• ,z )
1.) 0 n

l\j (d)= F. ik (z , ••• , Z ).k=l 1) 0 n

But by inspection

F.(z , ••• ,z ) =1 0 n

ni

L
° 1 p•.
J= l.J

7t Z. Okk=l l.J

(where as usual Zijk is zL if Xijk is XL ' and Zijk is Zo if Xijk
is terminal).

The result follows by using that in this case Fi~! is F~d) •

Definition

Tid) is the probability that a parse in Qi has depth less than
d.
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Definition

. def fJ.l[ (d)]-l(. . )~p( i ,..., J.) = . V • J. ,..., J.o n J. J. 0 n

in words p(i ,•••,i ) is the probability that a parse starting fromo n
x. shall have i occurrences of terminals and i. occurrences of
J. 0 J

non-terminal X. at depth d.
J

Corollary

= F. (T (d)
J. 0 '

(d)••• , T Jn

Proof
Clearly the depth of a parse is less than d iff it has exactly

no symbols at depth d. Hence
(d) .

T. = p(O, ••• ,O).
J.

(d)But p(O, •••,O) is the only non-zero term in the sum for F i (0,...,0).
Hence T(~) = F(~) (0, ••• ,0) and the result is a special case of

J. J.

the previous theorem.·

Renark
T(~) = ° for all i, and each of the £unctions F.(z ,•••,z ) is

J. J. 0 n

known explicitly. So the above corollary allows the vectors
<T(?» of extinction probabilities to be worked out iteratively.

J.

Because each F. is a rational function of its arguments and the
J.

preprobabilities p .. , if all the p .. are rational or algebraic
• J.J J.J

then each T(d) has the same property.i

Lemma

For each i, the sequence T(~) is non-decreasing and bounded1.

above by one.

Proof

The bound exists because T(~) is a probability. The probability
1.
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that a parse in ~. is of depth less than d is of course less ora

equal to the probability that it is of depth less than d+1.

Corollary

The sequence T(~) tends to a finite limit T.~ 1.
~ ~

Proof: Straightforward.

Corollary

T. = F.(T ,•••,T )
J.. J.. 0 n

Proof: Consequence of corollary.

Remark

An alternative way to say that all the measure is concentrated
on the finite parses is to say that T. = 1.

~

Lemma

(d)F . (1, ••• ,1) = 1~

Proof: The left hand side is the sum of the probabilities of all
the elements in a probability space.

2.2.3 The Matrix of Means

Definition

M(~~ for
~J

at depth d in
i,j=l,n is the mean number of symbols X. occurring

J
a parse stemming from Xi' If j=O it is the mean number

of terminals, if i=O the mean number or symbols in the degenerate
parse (so M(d~ = 0 forOJ
M .. is short for M~~).
~J ~J

(M~~»(i,j=O, •••,n) and
~J I.

(

an important matrix and will thererore be given a name, 'the matrix

j=l, •••,n, M(o)
00

M(d) and M are
= 1 and :ford >0 M(d) = 0)

, 00 •

short for the matrices

(Mij) (i,j::::O,•••,n) respectively. M.is
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of means'. (The notation M .. comes from ordinary matrix theory,
~J

and not from the method of writing subscripts for grammatical
symbols. There is no meaning for the symbols Mi and Mijk.) ..
Remark

As can be easily seen by calculating both, the matrix A which
appeared in chapter 1 [1.5.7] is the same as the cofactor of the
leading term of M, that is, the matrix (Mij) (i,j=l, •••,n).

Theorem

= o . (d)[ -s-- F. ] (1, •• ,1)
OZ. a,, J .. .

Proof: Special case of theorem ~.1.7.3.

Theorem

M(d) = Md (where Md is M multiplied by itself d times).

Proof: By induction. M is M(l) by definition.
(d+1):hen M ik =

iJ (d+t )= [~F. ](1, ••• ,1)uZk a,

Suppose M(d) = Md

••• by above theorem

o (d) . (d) I= [~Fi (F (Z , ••• , Z ), ••• , F (Z , ••• , Z »]
CJ zk 0 0 n nOn

Z = ••• =z =1. 0 n

••• by theorem 2.2.2.4

by'the rule for the differentiation of a function of
o:fa function

n
i: (d). 0 M.. M·kJ= 1J J=

. (d+1) (d) dThat 1S M = MM, = MM = So the theorem holds for all
d by induction.
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2.2.4 Decomposition of Matrix of Means

Definition

Any square matrix is said to be reducible if it can be put into

the form

by using the same permutation on both rows and columns. In the

diagram both Ao and Al are square, and 0 is a block of all zero

entries.

A square matrix is irreducible if it is not reducible.

Remark

Either AO or Al or both may themselves be further reducible, in

any case every square matrix can eventually be written in the form

o

Am

where all the A. are irreducible.
l.

Definition

,:l' is a binary relation on the symbols or a context-rree

grammar. X.:::>X. ir X. can occur in a parse stemming rrom Xi.
l. J J '?'

is the complementary relation, that is X.~X. irr it is not the casevr J
that Xi,:)X .•

. J

Lemmas

, ::> I is transi tive and reflexive. For reduced grammars (the

only ones of interest here) ir Xn is the start symbol and Xo represents

the terminals then for all Xi' Xn':>Xi and Xi_:)X
o
•

Proors: ' Obvious.
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Remark

Once a permutation has been carried out to get M to the form

with irreducible blocks on its main diagonal, it is possible to

renumber the terminals so that each term occurs in its correct place,

X still represents the terminals and X the start symbol. This willo n
be assumed to have been done in the following theorem which links M
and the relation .:J •

Theorem

If X.::>X. and X.:>X. then M •• and M •• are both elements of
1 J J 1 11 JJ

the same irreducible diagonal component Ak of M, and conversely,
if the latter holds so does the former.

"

If X.=>X. but X.-I\X. then M •• and M •• are parts of different
1 J Ji' 1 11 JJ

matrices Ak(i) and Ak(j) respectively, k(i» k(j) and i> j.

Proof: The key step is that Xi~X. iff M~~) = 0 for all d. That is
T J 1J

ff no parse stemming from Xi contains any symbols X
j
, then the

average number of symbols X. at any depth d is also O.
J

Remark

The above theorem allows the matrix M to be split into its

irreducible components with comparatively little effort. In parti-

cular because X ~ Xi only if i=O, the matrix A is the single numbero. 0

M = 0 and M is therefore both singular and reducible. In practice00 .
MOO, the cofactor of Moo' is also usually reducible, for few grammars

have both Xi::>Xj and Xj::lXi for all pairs of non-terminals.

2.2.5 The Eigenvalues of the Matrix of Means

Lemma

All the entries M(d) of any of the matrices M(d)
ij are non-

negative.
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Proof: Each is an average of non-negative numbers.

Theorem

A non-negative matrix A always has a real non-negative eigen-

value r such that no eigenvalue of A has modulus 'exceeding r. To

this 'dominant' eigenvalue there corresponds a non-negative eigen-

vector. (Where a matrix or vector is non-negative if all its
entries are.)

If in addition A is irreducible then the dominant eigenvalue

r is a simple root of the characteristic equation (corresponds to
exactly one eigenvector).

Proof: This is very long and may be found in Gantmacher [ 10 ].

The case when A is irreducible is part of his theorem 2 (p.65) and
the general case of theorem 3 (p.aS).

Remark

The next two theorems are not used subsequently, but may help
to give a feel for the properties of the eigenvalues.

Lemma

Every eigenvalue of a reducible matrix is an eigenvalue of one
of its irreducible COmponents and vice versa.

Proof: The key step is that if A splits into two not necessarily
irreducible components Ao' A

l
, so that

if Vo and vl are left and right eigenvectors of Ao and Al respectively,
so that v A = A V

000 and

then (v ,O)A =o A (v ,0)o
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Ir A. is not reducible it can again be split, and the identity or~

eigenvalues carried down till an irreducible component is reached.

Theorem

The dominant eigenvalue or M (the matrix or means) is the

greatest of the dominant eigenvalues of its irreducible components.

Theorem

If G(i) is the reduced grammar obtained from G by removing

those Xj such that Xi~Xj and also their productions, then the

dominant eigenvalue or M(i) (the matrix of means of G(i)) is less
than or equal to that of M.

Proof: The set of irreducible components of M(i) is a subset or the
set of irreducible components or M.

2.2.6 Extinction Probability - Part 1

Remark

The next two theorems show that the measure of the set of

finite parses is related to r, the dominant eigenvalue of M. Ir

r< 1 then almost all parses are finite but if r> 1 then there is a

finite probability that a parse does not terminate. These two

statements are proved by entirely different methods, so they will

be given as two separate theorems, one in this paragraph and the
other in the next.

Theorem

If r is the dominant eigenvalue of the matrix of means or a

reduced probabilistic context free grammar and r,<1 then the measure
or the set of finite parses is one.
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Proof: M can be rewritten in Jordan normal form as M = TBT-l•
Here the only non-zero terms of B are in blocks B. on the main

1

diagonal, where each B. has some eigenvalue 0< ,all along its leadinga

diagonal, and l's on the diagonal beneath. In a diagram

and

Powers of the B.s are of the forma,

. .

O(N,

Nt)( N-l

N(N-l) O(N-2
2

N
C><

Hence \B~'' the matrix of absolute values of entries of B~,has
values

\1)(1 N

Nll)(l N-1

N2p<.1N-2
•

\0<1 N

N \0<.1 N-1
•• ..

o

.. ..
•

Hence if a and b are the largest absolute values of entries of T and
, 1
T- zespectdveLy, and n+1 is the order of M, then given any (small)
£ it is possible to find a N such that all terms of each 'B~(,and
hence of \BNt, are less than E/ab(n+l)3. Let (1) be the matrix
all of whose entries are 1 •

Then (1)•
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To recall the meaning of the entries in the matrix, the above

states that M~~), the average number of the symbol X. at depth N
1J J

in a parse startin;}from X., is less than e/n+1. In the worst
1

possible case each parse of depth N or greater will have exactly one

symbol at depth N, and thus the maximum number of parses will extend

beyond this depth. But in this case the measure of the set of parses

remaining is €. • t can be chosen arbitrarily small, so the measure
of the set of infinite parses is zero.

2.2.7 Extinction Probability - Part 2 and Conclusion

lh~~If r is the dominant eigenvalue of the matrix of means of a

reduced probabilistic context free grammar and r)1 then the measure

of the set of finite parses is '_jess", than one.

n
Proof: The sequence of vectors i=O( T(~»Of probabilities that a

) ,

parse starting from Xi has terminated by depth d tend to the

limit vector.no~T.) of probabilities that these parses terminate1= 1

Then <So >
1 This

at all.

Suppose is any point near (1) such that each s.< 1.
, 1

(hi) where all the hi are positive.
Ifact combined with that r;>1 gives that for some i, hi >h

i
,

< hi'>= M<hi~· See HARRIS [ 13 ],
where

but also take note of
the final paragraphs of this proof. For this proof 't>. ('<1 ') will

be used 'for'this 'relation between vectors (and its converse), that is
< ai> t>< bi) means that at least one ai) b

i
•

Hence,

<F.(l-h ,•••,1-h »- (F.(1, •••,1)'001\00-M<h)A _.Ih'
1 0 n 1 / - i'" i"

But by lemma2.2.2.l3, (Fi(1, •••,1»)=(1, •••,1), so the above
may be rearranged to give
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In other words, <F.(s , ••• ,5 » <l <5.> .
1 0 n 1

Another way of stating1hat the probability of termination is 1
is to say that <T.) = <1'>. As < T.) is the limit of the sequence

1 1

< T(~», <T(~» must eventually cluster close enough to (1) to allow
it to be used for <5.) to yield

1

or in other words, ~sing corollary 2.2.2.6

(d+1) (d) .That is, for some particular i, T. <T. ,or 1n words, a parse
l. 1

starting from X. is more likely to have terminated by depth d thanl.

by depth d+1. This is impossible, 50 <T .) I- <1") •
l.

There are two possible difficulties with the above proof.'
Firstly the proof that M (hi'> t>- < hi'> requires the matrix M to
have a singular dominant eigenvalue. As M is not necessarily
irreducible, it may be the!case that its dominant eigenvalue is
shared with two or more of its irreducible components, and so not

the dominant component, and any symbol Xi such that
of this component called a dominant symbol. Powers

Mii is a part
d(A(k» of the

singular. In this case one such component can be chosen and called

dominant component (A(k» give the average,nUmbe~s of dominant
symbols at depth d in parses stemming from dominant symbols.
Because r(k)> 1 ~nd r (k) is singular the theorem above holds, so the
limit of the probability that a parse starting rrom a dominant
symbol contains no dominant symbol is less than one., Hence the

probability that a parse starting from a dominant symbol terminates
is less than one, and 50, because the grammar is reduced and there
is a strict~Y positive probability or generating any symbol from

the start symbol Xn' there is also a finite probability that a parse



starting from X does not terminate.n

The second difficulty is easier to deal with. The sequence
T(~) may attain its limit T. after only a finite number of steps,~ ~

and so falsify the condition that all s.<1. However this can only
a,

happen when X. can only generate a finite language in which casea

the irreducible component corresponding to Xi reduces to the single
entry M.i, and M ..=O. This clearly cannot be the dominant block and~ ~~

so the above analysis can also be used.

This is as much of this proof as will be given here. The
remainder, that is the proof that M <h.} t> <h.> , can be found in

~ ~
HARRIS

Corollary

The probability that all parses terminate is one ,,'. if the
vector (I_M)-l<l) is strictly positive, where I is the unit matrix
and 1 the unit vector.

This is proved in HUTCHINS [16].

Remark

The last corollary is useful in practice because it is in general
easier to invert a matrix than find its eigenvalues. Because a
matrix can always be inverted by rational operations in finite time,
it also gives a finite test for the condition. If I-M is not
invertible, then,M has 1 as an eigenvalue, so M fails the test to
guarantee finite parses.

Proviso

Because of the above tests it is now reasonable to assume that
for any grammars to be dealt with in the sequel, that the parses

terminate with probability one, that r<l, that Fi(l, •••,l) = 1
and so on. Ce.ses ~'vt~11. r ~1 (.\;~1I\\0t be CIM$'cilZ.(<?d.
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2.3 THE l.E~TH GENERATING FUNCTION

The length generating function of a grammar is defined in this
section,and some useful properties of it demonstrated. In general
it is impossible to give an extrinsic expression for this function,
so its properties must be found by indirect proof or by manipulating

. .' .an intrinsic equation which it satisfies. However the function is
well behaved, and it is possible to roughly locate its singularities.
Various parameters of the original grammar can be deduced from those
of the function, and even calculated by simple arithmetic.

2.3.1 Definitions for the length generating function
\If necessary, the reader should refer back to section 2.2.1

to recall the notation.

Definition

:Q(~)'.i~ that subset of Qi which contains only those parses
with exactly n terminal symbols.

Definition

Ci>~ Q.(~) f'\ i (Cal)
00 < (n»_The sequence n=O Pi ~s called the length sequence for Xi.

p~n) =
~

Remark

Pen) is
i the p'robability that a parse will contain exactly n

terminal symbols (and when the infinite parses have zero probability,
also the probability that the generated string will have length n).
Hence pIn) is a non-negative real number and'so the sequence<pin»
can be used to define a generating function.
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Definition

f. (z)
1

fi(z) is called the length generating function (for Xi)'

2.3.2 The intrinsic equation for the length generating function

Theorem
If the BNF of a grammar is

X. = r p .. I\x. ik
1 j 1J k 1J

then the length generating functions obey the equations

f. (z) , p.. TT f. 'k{ z )
~ = ~ ~J 'k\ ~J

.J

where the second equation. means that if one side converges then so
does the other, and both then have equal values.

Proof: As usual this is in two parts:

1. fi (z) = L.p. .f. .(z). 1J 1J
J

If w~~ln) then it is a parse with start symbol Xi and n
terminal symbols. Some production, Pij say, must have been used

first to generate Wand so w~Qt;) also. Now f'i (Ca» = Pi .ri ,(W)
, J J

Hence summing over all CU in n(~)
lJ (n{n» = ~ h M (,-...(n»in other words pen) __~ p pen)
,-"1 ~C.i "J t'ij/'ij :'l"ij , i l..j ij ij •

n
=~Hence ' pen) n'- i z

the last step being permissible because 2: pl~) zn converges
n J

result follows from the facts thatabsolutely. So the
f.(z) = 2: p~n)zn
1 n 1

and similarly f ..(z) = 'p~~) zn.
1J· L. 1Jn
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2. f 00(z) = ,.,. f 0 0k(z)
l.J 'k' l.J

This is more difficult to prove,and some special definitions

and notations are needed which are used only in this proof. The

(k=l,•••,no.)
l.J

can easily be inductively defined. If the number L(O) of terminals
k

in a k-tuple 0 = <Ca> I'•••,c.> k> is defined to be n~ l (Ca) n)' that is

the sum of the numbers of terminals in the individual elements of

Thus,

. (n) (n)the tuple, thelOk ,q k and 9k(z)
~~n), p~n) and fo(z).

l. l. l.

O~n) = t9: 9 ~ Ok and L ( 9) =
q~n) = V k (O~n) }

can be defined analagously to

I
,

Ln=o
(n) n

qk Z

The proof that fi .(z) = l'\k f. 0k(z) now works by showing that'J l.J

and then using induction.

Any (k+1)-tuple e = <WI, •••,Wk,'Wk+l> E 0k+l may be written

as a product of the k-tuple 9 I = <"'>1'•••' le) k> ~ Ok and the parse

Wk+IE:Qij(k+I)· Clearly '(e) = t(9') + L( Wk+1). Hence if
I (n-h ) • f""\(h) (n)

e 'Ok . and 6Jk+1E ~'ij(k+l) then eE 0k+I' and clearly every

9' o~n) can be so obtained as h varies :from0 to n, Hence,

O(n) =
k+1

n
U (n-h) r"\ (h)
h=O Ok B~~ij(k+l)

Hence by definition of a product measure,

\) (o(n» =
k+1 k+1

n
~ \ 1 (o(n-h»/1 ' Q (h)
~ Yk k ij(k+l)( ij(k+l»'
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so using the definitions of p~n) and q(n)
k

(n) n (n-h)
qk+l = L q k Pij(k+l)h=o

.0

9k+1 (z) d~f L (n)Hence qk+ln=o
..0 nL ~o

(n-h) n-h Ch) h= q k z Pij(k+l) zn=o
00

L q(O zl.. (h) hr Pij(k+l) z= l+h=nn=o

f. q~L) zL
00L (h) h

Pi '(k+l) z= L=o h=o J

(by putting L=n-h)

(by rearranging the sum
which is permissable due
to absolute convergence)

= ;\j :fiJ.k( z ) •Clearly 91(z) = f1•J·1(z), hence by induction 9n ..(z)
~J k=1

But theoreml.5.4 shows that (9n."~ni.,Vno 0> is isomorphic
1J J 1J

to<Q ij'Ctij, r ij '> and hence

f 0 • (z)1J
= n~= gniJ'< z ) f 0 ik (z ) •=1 1J

(i=l,••• ,n)

Corollary

Remark

:f (z) ~ z and F (z , ••• ,z ) ~ 1, so the above corollary does noto 0 0 n

hold for i=O. This is because the left hand side of the above

equation is~e generating function for the number of terminals

appearing at depth 0 or greater in a parse starting from Xi' and the

right hand side gives the number appearing at depth 1 or greater.



54

These numbers are the same except when the start symbol is a terminal,
that is i=O.

Theorem

In a reduced grammar, f.(1) = T .•
J. J.

Proof: The probability that an infinite parse generates a t'inite
number at' terminals is zero in a reduced grammar, so both sides of
the above equation give the measure at' the set of finite parses.

Corollary

It'r<1 where r is the dominant eigenvalue of M, the matrix
of means, then t'.(1) = 1.

J.

2.3.3 The differentialcoefficients\of the length generating function
\Definition

An expression ~ will be said to
o SFmultinomial .Ln terms k' and

. 0 zil ••• zis

have property
dtfi
~,

is a

where 1~ s,t; O~j,k~n; O"iu~n for l~u~s ;
and N-1 is the maximum value 'of t for the terms
in £. •

that occur

Theorem
f'"< I o.l\d ~{tlCe,

Ifiall the measure is concentrated on the finite parses then
all the·; dift'erential coet'ficients (d~)Nfi are finite at z=l.

Proof: First it will be shown by induction that t'orN~l

N
=~. oFi~

j=l 0 z. dzN
J

i(where C N has property 1>N)

By dit't'erentiatingequation 2.3.2.2 there is obtained
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df.
l.

dz =
df.
---.!. +
dz

.
e 11{where C

Clearly has property ~ 1 so the statement holds for N=l.

By differentiating the statement for N is obtained

dN+1f. n o Fi dN+1f. i
l. 2: J + C N+1=dzN+1 ~ Zj N+lj=l dz

. a2Fi dNf. i
£ ~+l =

n n dt:Nwhere ~ L -----l + -j=l k=O dZj OZk dzN dz

The first part of the right hand side of this equation clearly has
property ~N+1. The second summand can be seen, by using the method
of differentiating a function of a function, to be a multinomial

h t h• h • e iin t ose erms w 1.C appear 1.n~ N and also the possibly new terms

x and
dt+lf.

J
dzt+l

Z., ••• , z·1. 1.s
and occur in t~.where

t ~has property ~ N by the inductive'hypothesis, soithe maximum
d'£ Nvalue of t is N-l and hence of t+l is N, that is ~ has property

. <PN+l• Hence € ~+l also has property 'PN+l and equation 2.3.3.2
holds by induction.

Another induction is needed to show that all
finite. Assume that all are up to N=N •

o
d sFk INow ~ 1 1s a multinomial in z ,••• ,z evaluated

(J zi1 ••• zis Z=. 0 n
at zo=z=l and Zi=fi{Z)=1, and so is finite for all s, k and sequences

i1,···,is• Similarly t ~o+l(Z=l is a.multinomial in the finite
C sFk dNf

numbers I and the numbers i~ zil ••• zis z=l dzN
which
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are assumed finite for N' N by the induction hypothesis. Hence
o

e i \ is also finite. Now equation 2.2.3.2C. No+l z=l for N=N +1o

can easily be transformed to
n o Fi dNo+1:f:
L (~ ) ] = ~!+1 (where ~ ..=1 i:fi=j,ij Oz. dzNo+1 " 1Jj=1 J 0 o otherwise)

And evaluating at z=l
n dNo+1f :\~ ( e .. - Mi .) N +1
~ 1J J dz 0 z=lj=l

=

where M•. = ~ Fi \ is an element of M the matrix o:fmeans.
1J u Zj z=1'

and so multiplying both sides o:fthe above equation by the inverse INow the dominant eigenvalue of M is less than 1, so I-M is invertible,

of I-M,

is :finite.

The baseo:f the second induction is trivial so the proof is complete.

Corollary

The numbers ( d~ )N:filz=1 can be calculated directly without

knowing the :functions f .•
1

Proof: fi(1) = 1 is known, so t i can be calculated,' th~n because
I-M is known ! ~i I can be calculated' and so on.

z=1

Corollary

None of the functions Ii have a pole or an algebraic branch
point at z=1.

Proo:f: fi(1) = 1 so there is no pole. If z=1 were a branch point
then Ii could be expressed in some neighbourhood of z=1 as
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f. (z) =~
f (_l)j/H'-- a. z
j=c<.J

where H is some positive integer, 0<. may be either posd tive or
negative, and there is some j such that H does not divide j and
a. # O. [AHLFORS, p.294]
J

is infinite.
Hence some differential coefficient

Remark

.This second corollary is the main reason~for proving the
previous theorem. Eventually it will be proved that f. has no

l.

singularities of any kind within some open disk of radius l+E
abour the origin, where (> O.

Theorem

The mean Nth power of the number of terminal symbols in a word
generated by symbol Xi is finiteand finitely calculable for all N
and i.

Proof: The sequence of functions h~ can be defined inductively by
l.

Using a proof just like that of the previous theorem it can be
N .. .,that all ~he hi(l) are finite and can be calculated without

Nthe functions hi directly. It is also easy to show

deduced
knowing
inductively that

N
h. (z)
l. .•. lzl< 1 ,N~ O,i=l, •••,n

Nso that h. (l) =
l. which is just the expression forj=l
th

the mean N power of the number of terminal letters in a word



58

generated by X .•
l.

2.3.4 The Radius of Convergence of the Length Generating Function

Theorem

Each function f. is algebraic.
l.

Proof: f.
l.

F.(z,f1, •••,f ) - 0
l. n for all z, i=l, •••,n.

By corollary 2.2.7.2 , M-I # 0, but this is the jacobl.anof the

above at 1,•••,1. Hence theorem 2.1.5.4,applies.

Corollary

The only singularities of f. are poles and branch points.
l.

Proof: Theorem 2.1.5.2.

Theorem

If R. is the radius of convergence of f., then R.) 1.
l. l. l.

Proof: First R. ~ 1. This is because :for Iz(~ 1, the sum00 l. _

L: pi(n)znis dominated by the sum of positive terms L p{n)n=O n=O l. ,

which converges to the probability that a parse generates finitely

many terminals, that is somenunber P such that 0" p ~ 1. Hence

f. (z) is defined and finite for all z 1S1 so R. ) 1.
l. l.

Second, Ri ~ 1. I:fR. = 1 then as all the terms p~n) are
l. l.

non-negative zo=l is a singular point o:f:fi [HILLE 5.7.1, p.133].

As :fiis algebraic Zo can only be a branch point or pole, by

corollary 2.3.3.4 it is neither. Hence Ri ~ 1.,

Thus the only possibility le:ftis that Ri> 1.

Corollary

The radius of convergence Ri == 1+~ , and :for IZ)<l+E: ,z is
not a singular point of :f.•

l.
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2.3.5 Example - The Length Generating Function for the Language
of Assignment Statements

The grammar of this language is

s::= tp11 L=R

L::= lp211 a\ tP221 b

R"= fp31\ (R+R)\ tp3} (RxR)l ~P331a\ }P34~b

The multinomials F1,F2,F3 may be fo~d by substituting

terminals, zl for S, z2 for Land z3 for R to give

F1(ZO,zl,z2,z3) - P1z2z0z3 = zOz2z3

Z for
o

F2(ZO,Zl,Z2,Z3):: P21z0+ PZ2zO: Zo

F3(ZO,zl,z2,z3) C q(zOz3z0z3z0) + (l-q)zO = qz~z32 + (l-q)zO

The matrix of means can be calculated to be

o
1

1

3q+(1-q)

o
o
o
o

o
1

o
o

o
1

o
2q

This has the eigenvalues 01Of-~I 2'f..." + -

c

. j J c I.)
, -, , -,

,,
u (

\ r I

Clearly 2q is the dominant eigenvalue amongst these, and so th

measure is concentrated on the finite parses and all the theor ms

work so long as q<~.

The equations for the length generating functions may b

written
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3 2f (z) = q z (f3(z» + (1-q)z.
3 ,

The second and third of these equations give directly that f2 and f3

are algebraic, the first gives f1 as a rational combination of

algebraic functions and hence also algebraic.

The third equation can be rearranged as a quadratic in f3,

that is
3where a = ,qz , b = -1 and c = (1-q)z. f3 can only have a pole

when a=O, that is when z=O. But the branch defined by the series

has f3(0)=0 and so no pole there. f3 has a branch point when the

quadratic has a double root, that is when the discriminant b2-4ac=0.

Evaluating, when

1 - 4.qz3(1_q)z = O.

So there can only be branch points when z = 4~(4q(l_q)rl.

These points are all outside the,unit disk so long as (4q(1_q»-1>1,
2in other words so long as 0< (2q-l) , that is so long as q F l.

If all the measure is concentrated on the finite parses, then

q< l, so q F !, so the radius of convergence R3>1.

Of the singularitie~ of f1 and f2, £2 has no singularities,

and fl can only have singularitie~ where f3 does.

2.4 THE ENTROPY GENERATIN3 FUNCTION

The entropy of a grammar was defined in the ~bot ~de vI1'?13,

and a method given for calculating it in chapter 1 (theorem

1.5.23). So if the only use of the entropy generating function

were to calculate the entropy, then this section would be super-

fluous. This is not the case, because some properties of the entropy

generating function are needed to calculate the information rate of

a grammar.
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2.4.1 Definitions for the Entropy Generating Function

Definition
(n)q.
a, = -r.r,(n)fti (c.» 10g fli (e.)

W£!:a'-i

00 < (n)n=o qi is called the entropy sequence for Xi'The sequence

Remark

q~n) is the contribution by words or length n to the totala,

entropy E .• That is
00

~
0000

I (n) L (n)r (n) Similarly E. ° = and E. ok =E. = qi qij q. ik~ n=l ~J n=l ~J n=l ~J

Definition
00

= L q~n)zn
n=l ~

:function:forX .•
l.

g. (z)~ and is called the entropy generating

Remark

f i(W) is positive and log ~i(W) negative (because!1i(W)< 1),
so every qIn)~ 0 and hence also Ei~ O. If'Ei is finite then the

series :forgi{l) converges absolutely, hence also that :forgi{z)
for z ~ 1.

In the case i=O, there is only one Ca> in Qi = Q(~),so·
L jt i (U) log ~i (W) = 0

Q(n)
Cc>~ i

vacuously for n>'l, and for n=l the sum is also zero but by calculation.

2.4.2 The Intrinsic Equation :forthe Entropy Generating Function

Theorem

If the BNF of a grammar is

X = [PiJ, T\X. ik
i J k l.J
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then the entropy generating functions g1·' g .. , g"k obey the1J 1~
equations

n. n. n. . n ..
1 ~ 1J ~g. (z) = - 2:' p .. (log p .. ) f .. (z) + L- p .. (L g. ·k(Z ) f. iL(z) )

1 j=l 1J 1J 1J j=l 1J k=l 1J =l,k 1J

where f .. (z), f. 'k( z) are length generating functions, and the. 1J 1Jn ..
symbol TT1~ means the product where l varies from 1 to n ..l\ ~ 1Jl=l,K
missing out k,

Proof: This has the usual two parts:

1)

ni " n.
g . (z) = - ~ p. .(log p. .) f. .(z) + .~ p. .gi .(z ) •1 j=l 1J . 1J 1J j=l 1J J

For by expanding the definition of g.,
1

nz ).

Now = p •. Ni .(W)1J/' J if WE. Qij

So = -
00

2:n=l

So using the :fact that log (Pij ~ij(W» = log Pij + log ft ij(CV)

there follows

. 00 n)" ·r:.I Pi;(109 Pij) I'<ij( co )zn£=1. J=l WEQr;J

00

L
n=l

Part 1 of the theorem now follows by rearranging the ~'s and using

the :facts that

fijI') = ~6t~/Col)::n and that 9ij(Z) = - 5;~j(W )logJ"lij(W ),n.
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The proof of this second part requires an induction rather
.,

like that in the second part of theorem 2.3.2.1 This induction

requires a lot of machinery, so to save the effort 'in setting it up,

the second part will only here be proved for the case n ..= 2. This
1J

case is more general than it appears at first sight because it is

also the central step in the proof of the general induction.
\ .In the case n ..= 2, the equata.onto be proved may be simply

1J .

written

g ..(z) = g. ·l(z)f.·2(z) + f. ·l(z) g ..2(z)1J 1J 1J 1J. • 1J

If <V t ~ •. and n .. = 2 then the parse W must stem from the1J 1J
production(X ....X. ·1'X. ·2> and the symbols X ..1 and X ..2 must give1 1J 1J 1J 1J
rise to subparses CU1f.Qijl and w2£Qij2 respectively. If
0.) E Q(~~ so that W has n terminals, then (,)1and CJ.)2have n. 1J

.f Q (m) Q(n-m)between them, so 1 CV1 E ij1 then Ca) 2 e ij2' Finally

The log in the RHS can be split in the usual way to give
n .

.:JJIf'lijl (W1 l)x (L )'.ij2(W2l log/l ij2«(i,2l )
Ca)l f.Qij1 W2( Qij2m)

(n)
q .. =1J

x (rrij1«(J1)logfijl(uJ1»)
Cio)1£ Q(m)

"ij1
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that is
(n)

q ij = n (m)L Pij1m=O

So multiplying
00L q~~) zn =
n=l l.J

nboth sides of the above by z and summing over n

~ ~ (m) m (n-m) rr-m >, ~ (n-m) n-m (n) n
L. L P··l z qiJ'2 z + L L P"2 z qij1 zn=l m=O l.J n=l m=O 1J

The right hand side of this equation is the sum of two convolutions,
when rewritten as functions the expressions become

that is the simplified form of equation 2.

The proof is terminated by substituting the value obtained for
g .. (z) from equation 2 into equation 1.1J

Corollary

The result of the previous theorem may be rewritten

, 9. (z)
1 = - n1• 'I. F

~.!:_iLp· . log p. . f ..(z) + L xj=l 1J 1J 1J k=l 0 Zk

Proof: This may be seen by inspecting the form of the multinomial
Fi (z , ••• ,z ).o . n

2.4.3 Properties of the Entropy Generating Function

Theorem

All the functions 9i are algebraic.

. . a Fi IProof: the dominant eigenvalue of ~ < )<1 by proviso.
. J 1,•••1

So the matrix (~ij - ~: i I ) is non-singular and invertible.
j (1, ••• ,1>

neJ0 .. - ~: i ) is a continuous function of z
\ 1J j <z,f1(z),•••,fn(z)}
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and so not zero in an open neighbourhood of z=l. An invertible
matrix can be inverted by rational operations alone, so

(
b Fi 1 )~ ij -F. )J <z,rl(z •••rn(Z»

can be inverted to give a proper inverse matrix R .. whose terms are
1J

all rational complexes or the ri. Rearranging the equation of
corollary 2.4.2.2 and multiplying both sides by Rik yields

g. (z)
1

n
= , R

1
•kk~

The above gives gi as a rational ,complex of the algebraic functions
f., so g. is algebraic.
1 1

Corollary
E., the entropy of the language stemming from X., is finite.
1 1

Proof: As gi is a rational complex of the fi' it can only have a
branch point where one at least of them has one. So it has none
inside or on the unit circle. It can only have a pole where some

~Pkjlog pkjfkj{z) has a pole, again only outside the unit circle,
or where

Now each element of

. d Fi

OZj (z, •••,fn{z»

is zero at z=O and steadily increasing as z increases to 1. They
o Fiare also positive. Hence the dominant eigenvalue of ---- is

steadily increasing also. Hence det (:> ij _ ~:~),1~Z j

for O~z~l, so gi has no poles inside or on the unit cLrcLa , so

the sum for gi converges for z=l, and its value is the finite number
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9iven by

g. (1)
1

2.4.4 Example of the Entropy Generating Function

Once again the language of assignment statements will be used

as an example (see section 2.3.5). f. will be written as short
1

for fi(Z), 9i for 9i(z) and so on, also ~j instead of Pijlo9 Pij.

The equations for the entropy generating functions are:

- - q31f31
+ 'p +

31 P32) (gOf3fOf3fO + f093fof3fo + fof390f3fO

+ fOf3fOg3fO + fOf3fOf390 )

The above can be simplified using the general facts true for

all grammars:- fij = Tt. fijk, £o(z) = z , go(z) = 0; and the
particular facts true for this grammar:-

to 9ive

92 = (q21+ q22)z

( .) 3 2 393 = q31+ q32 Z £3 - (q33+ q34)z + (P31+ P32) 2z f393

which can be solved to give
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Chapter 3

THE INFORMATION RATE OF A CON1EXT FREE GRAMMAR

Communication engineers talk about the rate of transfer of

information by languages, but can calculate this parameter only for

very simple languages, which they call stochastic and which are in

effect the Chomsky type 3 or linear languages. Linguists are

interested in more complicated languages. context-free languages

being among the simplest}. This section achieves one of the main

goals of this thesis by showing how to calculate the rate of context-

free languages.

There are two pieces of earlier work along these lines. Firstly

a paper by K. WALK [ 34 ] discussed the general problem of finding

the rate and showed how the results of information engineers allowed

it to be calculated for linear grammars. Secondly KUICH [ 22 1
found a single rate for a context-free language. In effect he

allowed one probability distribution, that in which all strings of

length N are equally likely.

This section shows how to define and calculate the rate for

any distribution generated by a preprobability. Kuich's distribution

is often one of the many which cannot be so generated.

:3.1FINITE AND INFINIlE CLOSURES OF A GRAMMAR

3.1.1 Definition
+If L is any language then L , the set of all finite concaten-

ation of one or more elements of L, is called the finite closure of

L.

3.1.2 Remark

The empty string c ~
is only in L if it is also in L. So the
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closures considered here will not contain the empty string.

3.1.3 Definition
cIf L is any language, then L , the set of all infinite strings

consisting of concatenations of elements of L, is called the infinite

closure of L.

3.1.4 Theorem

If L is context free then L+ is also context free. LC is not

context free.

Proof: If the grammar for L is G = <N,T,P,S) +and S is a new non- •
+terminal symbol not contained in N or T, then a grammar for L is

G+ = <Nufs+J,T,put<S+ ......s) ,<S't~SS+>J ,S+>. LC is not context

free because by definition context free languages contain only finite
strings ,

3.1.5 Remark

Although L
C is not.context free it may be thought of as having

the improper grammar GC = <NufsC] ,T,pul <sc~ssc>l,sc>. Clearly

this grammar can produce (amongst others) all non-terminal strings
+.-where each w. E L.

~

3.1.6 Definition
+A grammar G is said to have unambiguous closure if G is

unambd.quou s f cakere ~t « 0.& d-eJt.~e-J \~ 3.1.10)

3.1. 7 Remark

It is possible for a grammar to be itself unambiguous but have
I

ambiguous closure. A trivial example is the grammar with BNF S-talsa.

which unambiguously generates strings of the form ma • Its closure
ambiguously generates the same set because it can generate am as any

m! m2 mn ~product a a •••a where ~mi = m ..
-;( No~". '1 ;1 t.,)~!\It- ~t4t-v,) ~ o..~t C O'v\. tR-Vl'\I ~ (,j\ tv..
~ ~~""w\('I.X) o...~ 4-t~ as ~tv 'hP~~ih ~tn'~
W\1.sn\M.~Vl th el.ll lc1. vt ~
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3.l~8 Proviso
In what follows it will be assumed that all grammars as well

as being themselves unambiguous also have unambiguous closure.

3.1. 9 ReITB.rk

The above standard definitions can easily be extended to cover
probabilistic context-free grammars.

3.1.10 Definition

If G is a probabilistic context-free grammar with start symbol
Cr+

S, then a finite closure is any probabilistic grammar with a new
+start symbol S and the two

s+ -:+ f pJ of:'
SS

+ tP2lS_' S

additional probabilistic productions

3.1.11 Definition

If G is as above, then its infinite closure GC is the improper
cgrammar with start symbol S and the two extra productions

SC ... [l~ ss?

SC ~ [ol S _

No~ q+ o.MJ.q<!- ~~~. \\~ su.m~(~~\r•.2.·l~f~ tt ) sh1.~ bj W1,~ d~11"/\1,t~u.n'~ .
3.1.12 Notation

+If X is some notation referring to a grammar then X will stand
for the corresponding concept for its finite closure and XC for that
of the infinite closure. There is in fact an infinite spectrum of

: j

finite closures, and this will always be parametrised by Pl. Care
i + cmust be exerc sed because the concepts named by X and X may be

exceptional or non-existent. For instance the finite closure of a
finite closure is always an ambiguous grammar and the length

generating function of the infinite closure would have all zero terms.
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3.1.13 Remark '

The probability distribution generated by a proper probabilistic
context-rree grammar could have been derined in two ways. Either
bottom up, that is by rirst defining the probability or each terminal
string and then derining the measures or sets to be the sums of the
probabilities or their elements. Or as in this thesis, top down,
that is by starting by derining the probabilities of sets stemming
from partial parses. The bottom up method will not work for sets
containing inrinite strings because in general an individual infinite
string has probability zero. There is no difriculty about the top
down method.

Thus in contradistinction to non-probabilistic grammars,
probabilistic grammars have been allowed to generate both finite and
inrinite strings indiscriminately. In particular if G is any grammar

of- cthen both G and G have their measures derined on exactly the same
terminal set, they are only distinguished by their different
probability measures. (This is why the production(sc-t{ol S) was
added to the infinite closure.)

The inrinite closure language is the one of interest for infor-
mation theory, but it is orten dirricult to directly calculate its
properties. One way to find them is to take the limit as Pl-+l or
the corresponding property or the finite closure. But care is needed,
it is only sometimes the case that

(where X stands for the property in question).

Particular examples, both positive and negative, rol1ow.

3.1.14 Theorem
1\ r< 1 <1I1.J h-e,,{e
.,-::G generates rinite parses with probability one then so does

t-G •
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+Proof: The set of eigenvalues of the matrix of means of G is
the same as that of G with the addition of Pl' Pl< 1 so the

+
~l simultaneously withdominant eigenvalue of G is that of G.

'.
3.1.15 Corollary

Qf . +If 1S the set of finite strings generable by G , then

Lim r+(Qf)F r c(~).
PI...,l

Proof: rC(Qf) = o.

3.1.16 Theorem

If ~p is the set of words stemming from a single partial

parse p then

Proof: The measure is a finite product of elements of the pre-
probability function.

3.1.17 Corollary

If Q1 is a finite disjoint union of setaof words stemming
from partial parses then

3.1.18 Corollary
c.)If w is any sequence of terminals of G, ard Q is the set

• +of all terminal str1ngs generable by G which have c.> as initial

part, then

Proof:

Lim r: (_Qc.> >,= r: Q_CAl ).
Pl-t1

~~ can be broken down to a finite disjoint sum of sets

generable by partial parses.
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3.2 THE GENERATING FUNCTIONS OF mE FINITE CLOSURE GRAMMAR

3.2.1 Remark
At a later stage in this section the limiting behaviours of the

series used to define the generating functions of the finite closure
grammar are needed. The limiting behaviours can be found by using
theorem 2.1.4.1. This theorem can only be applied when its
three preliminary conditions hold. The aim of this subsection is to
show that for many closure functions the point Zo mentioned in the
condition is real and near the unit point (1,0> , and then to confirm
that the three conditions do hold.

3.2 .2 Notation

The length and entropy generating functions of the finite closure
+ +of a context-free grammar are written f and g respectively.

3.2.3 Theorem

If the length and entropy generating functions of a context-
free grammar are f and 9 respectively, then the finite closure
generating functions are given by

+f = P2f/(1-Pl f)

and g+ = ·P21og P2f/(1-P1f) - P2(P1log Pl~-g)/(1-Plf)2

Proof: The only productions involving S+ in the closure grammar are
<st ....fp~ s+S> and (S +....[pJS>. Theorems 2.3.2.1 and 2.4.2.1

+ +tell that f and g obey the intrinsic equations
+ +f = PIf f + P2f
+ + + +g = -P11og P1f f - P2log P2! + Pl!g + P19! + P2g•

The theorem can be obtained by a straightforward algebraic manipu-
lation of the above formula. The only step which might present
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+difficulty is that f is eliminated from the second equation by
using its value as given by the first.

3.2.4 Remark
+ +The above theorem gives £ and g as (sums of) £ractions with

+ +(l-Pl£(z» in the denominator, so both £ and g have poles at any
point z where (l-Pl£(z» = 0 unless the corresponding numerators are
zero there too. It will be shown in the sequel that neither
numerator is zero at a particular such point z •o

3.2.5 Lemma

There is some real number u< 1 and some (small) positive E ,

such that £or all PI such that u < PI< I
such that 0 ~ Zo~ 1 + E and I-PI£(zo) = O.

there is exactly one real zo

Proo£: This can be derived £rom the £acts that R > 1 (where R is the
radius or convergence or r), theorem 2.3.4.3, that r is given by a
real positive termed series and so increasing with z for real
positive z<R, that f(l) = 1, corollary2.3.2.~ and that Pl< 1.

3.2.6 Remark

Although Zo is the only number which obeys the above condition
such that O<z < 1+ €-, it is easy to see that in £act l<zo 0
always. From any given P1 which obeys the condition the above
theorem derines a unique zo' that is Zo is a function of Pl.
P1 and Zo are related by the equation 1-P1f(zo) = 0 or in other

So a converse holds: PI is a function of z .o

3.2.7 Lemma

The point Zo found above is a zero of I-P1f(z) nearest the
origin.
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Proof: If zl is another zero such that \z~<zo then because f is

given by a real positive termed series, f(zo) >If(zl)\ This

contradicts that f(zo) = l/Pl = f(zl).

3.2.8 Remark

There may be one (or more) other zeros zi of (l-Plf(z» such

that = z •o It can be shown that this can only happen when

all the words generated by the original grammar have lengths a

multiple of some positive factor n> 2. From G can be constructed a

new probabilistic grammarG' which is in Greibach normal form and

generates exactly the same language with the same probability measure

as G. From G can be constructed a new grammar G'lh which uses a

terminal alphabet of all the nh h-tuples of terminal symbols of G,

and generates with the same probabilities words corresponding in the

obvious way with those generated by G. The only common factor of

the lengths of the words generated by GI/his one, and the new

expression l-Plf(z) for G'/h has a single real root nearest the

origin. The various parameters for G can be calculated from those

for G'/h.

3.2.9 Proviso

Because of the above remark there is no loss in generality in

assuming that the real.point z found above is a single zero of, 0

l-P1f(Z), and the zero strictly nearest the origin.

3.2.10 Theorem

There is some (small) positive 6' (such that e'" E. ) and some

u<l, such that for all PI where u<Pl< 1, the exactly one real z (>1)
o

such that O~zo~1 + e' and I-P1f(zo) = 0 has the properties that z
o+ +is a single pole of f and a double pole of g. In both cases z

o
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is the pole strictly nearest the origin.

+ +Proof: The part about f is true because f = P2f/(l-P1f). The
numerator is bounded but positive with f inside the circle of conver- ~
gence of f, and the circle of convergence has radius R> I + € •

Similarly the first fraction -P2log P2f/(l-Plf) in the sum for
+g has a single pole at z , and no others closer to the origin.o

Only the second fraction remains.

The second fraction -P2(Pllog PI? +9)/(l-PIf)2 has no poles
at any points z ,[z]< Zoe .Firstly because f(z) and g(z) are finite

2for z=, hence the numerator -P2(Pllog plf (z) + g(z) ) is finite.
Secondly because· I-PIf (z)~ O. (Lemma 3.2.7)

Zo is a zero of l-Plf(z) by definition, so the second fraction
has a double pole at z so long as the numerator is non-zero.o

Pl is a function of Zo (remark 3.2.6) and PI = l/f(zo).
Therefore the denominator may be rewritten

Hence the denominator is non-zero so long as
g(z ) # f(z )log f(z )

000 (P2 is non-zero by definition).

There are now two possibilities:

1) There is an ~/< e: such that for 1 <z <.. 1+ E,'
o

g(zo) # f(zo) 109 f(zo).
In which case the lemma is proved.

,2) There is no such € •

In this case the points Zo such that g(zo) = f(zo)log f(zo) are dense
near 1. But as f, 9 and log f are all analytic functions, this inpliesthat
g(z) = f(z)log f(z) for !1! z.
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Rearranging gives

g(z)/r(z) = log f(z).
r is algebraic (theorem 2.3.4.~, g is algebraic (theorem 2.4.3.~, so
the 1ert hand side or the above is a1gebraic~ r{z) ~ 0 so the right
hand side is not algebraic. Contradiction. Hence possibility 2 does
not arise.

3.2.11 Theorem
r + is the nth term in the length generating series rorI Pn

...G , then

Proor: The above is just a speciric example or theorem 2.1.4.1
+ +with f for A, Pi for ai' P2f ror U and 1-P2r for V. Condition 1

holds (proor or theorem 3.2.10), condition 2 holds (lemma 3.2.7),
z is or multiplicity 1. The rormu1a is just an example or that oro
corollary 2.1.4.3.

3.2.12 Theorem
+ th +Ir qn is the n term in the entropy generating series ror G ,

then

> - g(z )]o
n-e ee

Proor: Ir A, Bare runctions with generating series ai' bi
respectively, both A and B have (multiple) poles at z such that zo 0
is the closest pole to the origin ror both, but A's pole has higher
multiplicity than B's; then the series ror A and B is ai+bi, Zo is
the pole or A + B closest to the origin and its multiplicity is the

same as that or Zo ror A, and Lim ai+bi = Lim ai• In particular
...the second fraction in the sum for g has a double pole at z , but

o
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the first a single, so the second fraction can be used to give the
+ 2

behaviour of qn' So putting U(z) = -P2(PI1og Pif (z) - g(z) ) and
2V(z) = (1-P1f(z» , the three conditions of theorem2.1.4.1 have

been shown to hold. So using corollary 2.1.4.4

qn n...J zn+2 2 P1[P1(f' (z »2 - (l-P1f(z »f"(z )]
o 0 0 0

This simplifies to the expression in the statement of the theorem

3.3 STANDARDDEFINITIONS OF THE RAm

The rate of a language was fir st defined by SHANNONin [ 33]

and gives a very useful categorisation of them. He gives two

different definitions for discrete languages.

3.3.1 Definition

If f~i : i~1, ••• ,nJ is a finite set of words, the probability

of Ca). is p., and all the words Cal. have the same length N, thenJ. J. l.

the rate is defined to be the value of

n

(-L: p. log p.) IN
i=1 l. J.

3.3.2 Definition

If [w:w.Q} is a set of infinite strings, for any N, (j)IN

is the finite word containing the first N letters of CA), Q IN

(assumed finite) the set of all such initial strings,cnd p(W.IN) the

probability that the initial string (a) IN is generated. Then in this

case the rate is defined to be:

Lim t. ( - 2" p(w IN)log p(w IN») IN J
N~CO (j!)'N~t::N
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3.3.3 Remark

These two definitions are connected because if R
t
' is the first

rate for a finite set Q, and R2 is the second set for QC, the
infinite closure of ~, then R

t
= R2•

3.4 FIVE RATES FOR A CONTEXT-FREE LANGUAGE

3.4.1 Remark

In general neither of Shannon's definitions apply directly to
a context-free language (although it is possible to construct a
language to fit the conditions of the first). It is necessary to
broaden the definitions. Five different generalizations will be
considered, and the values of the 'rate' as defined by each written
as a{1' ~ 2' 1R.3, ~ 4 and 1;.5 respectively.

3.4.2 Notation

In order to make formulas more readable by reducing the number
of brackets they contain, Jtw will sometimes be written instead of
j{ (w) (the probability that U) is generated). N~ ,(N(W» is the
length of (number of terminals in) CV

3.4.3 Definition

If ~is the set of words generated ~ya context-free grammar

1Z = (1

3.4.4 Definition
If ~ is as above

= ,- I. (j{wtOg Mc,) /Nw )
C'a)eQ '/-

3.4.5 Remark

Both these definitions reduce to Shannon's first definition if
Q is finite, and all Ni are the same and equal to N. The next
thre~ definitions are related to Shannon's second definition. Loosely
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speaking 0\3 is obtained by applying Shannon's definition to the
original language and ~4 by applying it to its infinite closure.
0(5 is slightly different but analo.gous to the definition that
Kuich uses.

3.4.6 Notation

Much of what follows is made confusing because of the many
slightly different sets and measures which are being used simul-
taneously. To help reduce this confusion the complete pattern of
super and subscripts needed is presented here.

The three basic underlying sets used are ~ , ambiguously the
set of all parses/set of all strings generated by a grammar (this
is alright because by the assumption of unambiguity,
strings and parses are in bijective correspondence), Q+ = Qc, (blJ..'rr1~J1).
the set containing all finite and infinite concatenations of elements
of Q , and Q,: , a set consisting of the (finite) strif¥]s of
padded out with an infinite number of a new 'null' symbol.

In addition to the superscripts '.', 'c', ',', there are the
subscripts '(N)', which when added to a sign X means that set which
contains just those strings of length N which belong to X, and
'(IN)' which means those strings which are an initial string of
length N of some string in X. In general x(IN) is not a subset of
X, but X(N) is always a subset of both X(lN) and X.

Subscripts may be added to the set symbols to give a variable
subset of the set denoted by the superscript.

Variables are based on the symbol CU and have the same pattern
of superscripts to show which sets they vary over. An exception is
that a variable with no superscript may if required be used to vary

over the set of all strings from the terminal alphabet, not just those
in~. Subscripts are used to distingUish one variable from another.
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The pattern of variables and sets is

,
...Q+ C f;5;t w' eQWf;Q WE: w

(N) Q(N) -t(N} Q+(N) c(N) f.Q(N) I(N) Q/(N)
CA) ~ CA.> ~ W w e

ON) Q(I.N) i-(IN) Qi"(IN) c(\N) QC(IN) UI/( IN)£Q/(IN)w ( Cal e CV E-

Examples o:f subscripts are g~IN) c Q..(IN), and cu;(N)E:0+{N)

Al though not and QC are the same set, the measure on .Q+

is concentrated on :finite strings and that on QC on in:fini t e , So

Ca)'" will always be assumed :finite, but (a,) C in:fini te , Both

Q't' (N) = QC{N) and Qot(IN) = QC{lN) are :finite sets, so this

convention is not relevant to (a)" (IN) or Cc) ... (N) •

The measures ~ have the same pattern o:f superscripts as the

sets and variables. Their de:finitions are derived in the obvious

way but they contain a couple of catches and so· are listed here.

,...,jt + : jl c are already known [3.1.12 ]

M' (U1') = jt (Cal) where CV' = W followed by an infinite string
I . o:f nulls.

fi' (~') = Lft.' (WI') •
CoJ ' t-Q '

I:f !((Q(N» #. 0 t~entf\(N)(Q.{N» = ),\(Q{N» / J1 (Q{N»

else ~(N) is empty and j{(N) is unde:fined.

A similar definition to that :for )4{N) holds for )4~{N) and

M'(~) tl'(N) M'{N)" (but note that ~~ is always empty so /' is undefined

:for all N). Because }1C(~C(N» = ~ the above definition will not

work so the more general j{C{N) (QC(N» = Lim It +(N) (QC(N» is used
\ . PI-t 1 1

instead. FinallY'j{{IN)(Q(~N» =/' (t~HQ :w=w
I
(,)2.and(&)1€Q{IN) ),

d Ht (IN) Hc ( tN) arid ItI ( IN)
an ,. '/' "can be defined similarly.
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3.4.7 Remark
It is now possible to make the last three definitions of rates.

3.4.8 Definition

tR.3= Lim (-) '(IN) ~'(IN) (Ci» log f\' (IN) (Ul)/N )
N-t()<) W~

3.4.9 Definition

~4 = Lim ( _E MC(I.N)(Ca) log k C(I.N)(U)/N )
N-t 00 Ca> , Q.c ( IN) I . J -

3.4.10 Definition

~5 = Lim sup ( -L (N)M (N)(W) log M (N)(Ca) )/N )
N"OO WE Q J. I -

3.4.11 Remark
OZ3 is that Shannon rate for a communication channel which

starting from time zero transmits a single terminal string from the
original context-free grammar and then remains silent for ever after.

OZ4 is the Shannon rate for a channel which starts from time zero
by transmitting a terminal string and immediately.it finishes one
string starts transmitting another.

0(5 has no such interpretation. It has the advantage that it
refers to a language itself, not some construction on it, but the
disadvantage that, in a loose sense, it only takes account of the
very long (and hence very seldom occurring) strings. It is defined
here because it plays an important intermediary role in the following
theorems. It also corresponds to the definition given in Kuich.
ls is defined here usinJ the 'Lim sup' because in languages

in which all words are of length a multiple of N, only every Nth
term in its series will be non-zero. In general these non-zero

terms have a non-zero limit. For ~ and ~ the 'Lim' and 'Lim sup'
give the same value.
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3.5 CALCUlATIffi THE RATES (Part 1)

In general none of the rates can be calculated directly because
they have definitions which involve infinite sums and limits. The
theorems in this and the next sUbsection give finite explicit
formulas for three of them.

3.5.1 Theorem
at1 = g(l)/f'(l) and can be calculated with finite effort.

Proof: g (1) = - L }{rv log f'< (j)

WiQ
The proof of theorem 2A.3.1 gives g (1)

and s:' (1) = L fio) NfA) •

~tQ.
as a rational compound of

f(l)'s and hence finitely calculable, and f'(l) is finitely
calculable by corollary 2.3.3.3.

\_

3.5.2 Theorem

Proof: g_W_ = 2: r 1 tt (N~-l)- cal og CO zZ
"'tQ

SO J~ dz = -2: ftw log J<w zNto.)INc.>
C&)~Q

and }~dz = - 2: -r- log ~(a) /Nw
c.>,_Q

The right hand side of this final equation is the definition of 0( ._ _ _. 2

3.5.3 Remark

The above integration can be solved if 9 can be displayed
explicitly. In general, however, g is only known in terms of the
fi which are in turn only known implicitly as the solutions of

polynomial equations Pi(z,fi)i o. Pi may have terms of degree five
or greater in fi' so in general fi cannot be found explicitly.
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3.5.4 Throrem

~3 = o.

Proof: Let E = - L j{w log tt Cl) be the entropy of thew~Q
original language (known finite by corollary 2.4.3.2 ). Let

EN = -2: (IN)j{(IN)(W )logjt(IN)(W) be the entropy of the set
C'.t)t~ 12of initial words of length N. (So that u~ = Lim (EN/N).) Let

N-+OO
be the entropy of the set of words starting with the string

It is well known that

L /\(IN) (CV IN) E
<irJ1 N Q(I.N) (Ct.> 11~)

~H(IN)( I ) •and that E, EN and L I ' Ca) 'N E (c.> I 'N) are all non-nega tLve ,
!

(Khinchin [ ] p.6, equation 3).

(for all N),

Hence E ~ EN for all N and so

~ = Lim E~N ~ Lim EIN = o.
N~o<) N"'CO

information contained in the 'occasional very long string is never

enough to compensate for the infinite time during which the channel

is in effect switched off.

3.5.6 Remark

Note that the next two theorems are done in reverse order, so

that azs is found before ~4.



3.5.7 Theorem

1<. = Lim sup (~N +
5 N-+OO PN

th .where PN and qN are the N terms of the length and entropy series
respectively.

Proof:
.-v1 ~ N(N) (N) /
(K = Limsup { -L- (N)/' {~)log f\ (<W ) N)
5 def N~()Q Ca> 'Q

SO using the definition r (N)(CV) = j{ (W)/PN

= Lim sup
N~OO

)

log PN
= Lim sup { N~N (-'E fiW1ogj<w) + NPN ('i.t<w) )N~OO

= qN by definition and 2: (N)f<W = PN
W f.,Q .

so .

~ =5 Ld.m sup
N-tOO

3.6 A STRENGTHENING OF MACMILLAN'S THEOREM

3.6.1'Motivation

At the last stage in the writing of this thesis it became
apparent that one of the proofs in it did not work because none of
the versions or Macmillan's theorem which it might use gave close
enough bounds for the convergence or a certain sequence. This
section remedies the lack by proving a new stronger version.
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Macmillan's theorem is about the convergence of the n-step

entropy of a stochastic process as n gets large. There are two

versions, one, the mean ergodic theorem, says that the entropy

converges in the Ll mean. The other, the individual ergodic

theorem, that it converges almost everywhere. (Different variants

of both these theorems give different restrictions on the class of

the stochastic processes to which the theorems apply.) The conver-

gence in the Ll mean is analogous to the weak law of large numbers

and the almost everywhere convergence to the strong law, the

difference and reason why they are not examples of the corresponding

large number laws is that in Macmillan's theorem the partial sums

are not (in general) independent variables.

This section has as its main result a new version of

Macmillan's theorem which is analogous to the central limit theorem.

The class of stochastic processes for which the result is proved is

very small, but just large enough to cover the processes which are

of interest here, that is those which are obtained from context

free grammars. The theorem surely holds more generally, but the

proof here cannot be extended much because it uses special methods

which can only be applied to these processes.

3.6.2 Plan of this section

There are two distinct kinds of structure involved in context

free grammar theory: the top-to-bottom branching tree structure

of the parses; and the left-to-right linear structure of the

generated language. The difficulty of the theory lies in that

although each of the above structures is reasonably simple and well

understood on its own, the two together do not interact in any

particularly regular way. Corresponding to the two structures there
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are two ways of handling the theory: either by basing the exposition

on the tree structure and treating the linear structure as a

complicating factor; or by basing it on the linear structure and

treating the tree structure as the complication. The bulk of this

thesis is designed according to the first approach, but unfortunately

this section seems to need the second.

So this section is designed as follows. First some background

is covered. In particular stochastic processes and a few of their

properties are mentioned, including ergodicity and the uniform

mixing property. Next it is shown how grammars may generate their

languages as stochastic processes, and in particular some special

grammars, those in Greibach normal form. A new normal form,

Greibach supernormal form, is defined, and this with some additional

lemmas allows a theorem of Ibragimov and Linnik [ 17 ] to be used

to obtain the central limit convergence.

The above theorem requires as an additional assumption that

its stochastic process be uniformly mixing, and the next part of

this section is devoted to showing that this assumption is

unnecessary. The uniform mixing property is non-constructive, so

firstly a finitely decidable property of a grammar is found which

holds if and only if its process is uniformly mixing. Then it is

shown how to map any grammar to another which has the same limit

properties but which is also uniformly mixing. So the central limit

convergence theorem extends to all context-free grammar processes

whether uniformly mixing or not.

Finally two lemmas are deduced from the central limit conver-

gence; these give the results which are actually required in the

next section.
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3.6.3 Acknowledgement
I could not have proved this theorem without the assistance

of Professor Bill Parry. He told me about [17] and suggested a
way to prove my theorem. The proof here up to the central limit
theorem with the uniform mixing assumption is similar to his, but
altered to allow the remainder of the proofs to be carried out. He
has not yet (at the time of writing) seen the new proof, which is
therefore entirely my responsibility.

3.6.4 Notation
There has not been time to completely unify the notation of

this section. Some of it is compatible with that of the rest of
the thesis and some has been taken from other books, in particular
[ 20 ] •

3.6.5 Definitions

If Q is a set of sequences x = < ... ,x-1,xo,xl,x2'••• >
then a subset of ~ is a cylinder if it can be defined by the
properties of the values of a finite number of indices.

M~ where t~ s is the class of all cylinders which may be
defined using only properties of the values of the indices from t
to s, (t and s may be integers, + 00 or - 00. )

A stochastic process is a probability measure space(Q, Cl , ~ >
where the underlyi~ set ~ is the set of all two-way infinite

sequences x = (".,x_1,XO,x1, •••) where each Xi is taken from some
set A called the alphabet, a nd the (j...field a is the minimal
Ci-field containing all the cylinders. (A more general definition
exists with a more complicated rt .)

In this thesis, stochastic processes are restricted in that
either A is finite, or A is countable.
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The operator T is the function which maps a sequence to the
same sequence shifted by one position, that is

Iwhere xi = xi+1

T extends to sets of sequences by the rule

T(S) = (IX : x, Sl .
A set S!:Q ...is invariant if T(S) = S.
A process is ergodic if every invariant set has measure either

o or 1.

A process is stationary if f(T(S» = j.A.{S) for any set 5

In a stationary process, the n-step dependent probability of a

symbol a ,A given a ,•••,a l' written ~(a \a ,•••,a 1) iso -n - J' 0 -n -

defined as:

K (a \ a , ••• ,a 1) =I . 0 -n -

J:. [x:x_n
J1[x:x_n =

= a , ••. ,x = a 1-n 0 oS
a , ••• ,x 1 = a 11
-n - - 5

A markov process is a stationary process where the n-step
dependent probability of a symbol is independent of all but the last
symbol, that is

whatever a ,•••,a 2 may be.-n -
Two states a1, a2 from the alphabet of a process are said to

communicate it' there are indices i, j such that ftx:xo = a1, xi = a2J ;> 0
and f\[x:x

O
=a2, xj=a1!>o.

3.6.6 Proposition

If all states in a countable or finite markov process communicate
with each other then that process is ergodic [25 , p.423].
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3.6.7 Definition
If <Q, a., tt> is a stationary process then its rth mixing

coefficient is

¢(r) = sup
At Mt B~ M.o

-00 t+r

\ r:(An B) - f-t(A) reB) I
f\ (A)

A stationary process is said to obey the uniform mixing

condition if

Lim ~(r) = O.
r....OO

3.6.8 Proposition

Let Al and A2 be any two alphabets and f any function such
onto Q r }that f:Al~A2' Then f induces unique maps from = ~( ...,xo,xl.·~

to the sequences f(Q) = - f< ... ,fxo,fx1J" .>} , and from the (j-field

et to the well-defined er-field f~ such that f-lA is measurable
M -1if and only if A is measurable Be I,(f A) = }{ (A).

3.6.9 Theorem

If .Q. is ergodic so is the process f(Q).

Proof: If A is an invariant set of f(~) then f-l(A) is an invariant

set of Q with the same measure.

3.6.10 Theorem

If (lobeys the uniform mixing condition then so does f(~).

Proof: .If A and Bare
' ..1 t

then f (A)E. M..OD and

in f(.Q.)and if Af.f(Mt ) and Bt f(MoO )-00 t+r
f-1 (8) e, M

t
OO+r• SQ 0 the set of values over

which the supremum is taken to obtain f¢(r) is a subset of the

set which is used to yield ~(r)J so !~(r)~~(r).
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3.6.11 Notation (after Macmillan, Khinchin)
If a is the sequence < ... ,a-1 ,aO,a1, ••• ') then

p (a)
n

or in other words,

pn(a ) = f.(aO \ a_n' •••,a-1)•

3.6.12 Remark
The next part shows how a grammar may be turned into a stochastic

process by using a stack.

3.6.13 Definition
The process related to a grammar G is the markov process

with the following properties.
The states of the process are finite strings of terminals and

non-terminals of the grammar G, the states are also called stacks.
The active symbol is the symbol at the left hand end of the

stack.
The transitions are:
The successor of the empty stack is the empty stack, the output

string is the empty string, the probability of the transition is one.
The successor of a stack where the active symbol is a terminal

t is the same string with that terminal t deleted, the output symbol
is t, the probability of the transition is one.

There are several possible successors of a stack Xu whose active
symbol is the non-terminal X, one possible successor corresponding
to each production <X-.v) with X as its left-hand side. The
successor corresponding to <X ...v} is the stack vu, the output
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string of this transition is the empty string, its probability is
the preprobability of (X-+v) •

3.6.14 Remark
In general the output string will be shorter than the sequence

of stacks. And worse still, the ratio of the lengths of the output
string and the sequence of stacks will be variable. However for a
special class of grammars, those in Greibach normal form, the ratio
is constant and so the rate of the generated language is simply
related to the information rate of the Markov process of its
generating stacks.

3.6.15 Definition
.A grammar is in Greibach normal form if the right hand of every

production is of the form tu, where t is a terminal symbol and u
is a possibly empty string containing only non-terminal symbols.

3.6.16 Lemma

A terminal is output on every second transition of the process
of a grammar in Greibach normal form. The stack alternates between
containing all non-terminal symbols and containing just one terminal
symbol, the active symbol.

Proof: By induction. If only the active symbol is terminal then
it is output and the next stack contains no terminals. If the
stack contains no terminals, then the empty string is output and
the active symbol is replaced by a right-hand side tu of one of its
productions, so only the new active symbol is terminal.

3.6.17 Remark

Because of the above lemma it is possible to alter the definition
of the stack process of a Greibach normal form grammar so that the

new process makes two at a time of the transitions of the old process.



92

3.6.18 Definition
The Greibach process related to a Greibach normal form grammar

G is the Markov process with the following properties.
The states are finite strings of non-terminals ox G, called

stacks.
The active symbol ox a state is the symbol at the left-hand

end of the stack.
There are several possible successors of a stack Xu whose

active symbol is X, oriefor each of the productions <X"tv>.
The successor corresponding to (X_'tv) is vu, the output is t,
the probability of the transition is the preprobabi1ity of <X~tv> •

The grammar can be adjusted to prevent the empty stack occurring,
in an infinite closure grammar it cannot anyway; in a finite
grammar the productions involving the start symbol S can easily be
adjusted to yield a new grammar which produces an infinite tail of
dummy symbols after the output string.

3.6.19 Proposition

For any grammar there is a grammar in Greibach normal form
which generates the saruelanguage.

Prooft A proof was originally presented by Greibach herself in [12 ].
A more constructive proof is given in Hopcroft and Ullman [15 ]•

3.6.20 Remark

The above theorem is only stated for nonprobabilistic grammars.
But Hopcroft and Ullman's proof depends on two key lemmas which can
easily be extended to the following prObabilistic form.

3.6.21 Lemma
Let G be a grammar,
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{P .. :P .. = (x .....n x.. \. ; j=l, •••,n.!l 1J 1J 1 'k\ 1J~ 1
the set of all its

Productions with X. on the1 .

of Pij, Plm =<XI .....DC.Xi~>

left-hand side, p .• the preprobabi1i ty
1.J

any production containing X. on its
1

right-hand side, where the preprobability of Plm is P1m'
be obtained fromG by deleting the production Plm and adding the

,LetG

ni productions P1j = <XI..,CIf...7JXijk ~ '> with the preprobabili ties
P1j = PlmPij" If all the above is so then G' and G generate the
same language with the same probability structure.

Proof: This is lemma 4.2 on p.S3 of [ 1S ], restated in the notation
of this thesis with the probability structure added. The basic idea
is that whenever the production P1m is used in the old grammar G
then the symbol Xi is produced, and Xi must later be used in one of
the productions P... G achieves the same terminal string by using

1.J

the single production p{j'

3.6.22 Definition
A production P •• = <X. --()(..) is called left recursive if Xi1.J 1. 1.J

is the first symbol of o(.ij.

3.6.23 Lemma

Let G be a grammar, tPij : Pij = (Xi ~ 0(ij> ; j=l, •••,ni~
the set of all the productions with Xi on the left. These productions
may be renumbered if necessary so that the left recursive productions
are the first h (0 ~h ~n. ),and the remainder are not left recursive.1.

[~'ij : j=l, •••,hJ is defined so that the first h productions
..IX. -+ oc. ••
" 1. 1.J

are also <Xi ""'Xi~ ij'). Let the preprobabi1i ty of Pij
be p. . and define

~J
h

Pl = !:" p..j=l 1J
and

n.
1

= ~
j=h+l
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that is Pl is the probability that a left recursive production be

chosen and Pz = l-Pl the remaining probability.
If G# is obtained fromG by deleting all the productions with

X. on the left and adding instead the new productions
1.

(P2
P
' 'JX. -# l.J a .. z

1. Pl t'l.J

j=l, •••,h
x. _'(P .. J a ..
1. ~ l.J t"l.J

z ...,.{'p .. "2 ~ ••l l.J 1 l.J

j=h+l, •••,no
l.

(where Z is a new non-terminal symbol), then Gil generates the

same language as G with the same probability structure.

Proof: This is lemma,4.3 of [15, p.53] (extended to include the
information about the probabilities). The idea is that a left
recursive sequence of productions of G

Xi:;'Xi ~ij(l)=> Xi ~ij(2)Pij(l)~ •••

'••::)Xi~ij(m) ~ij(m-l)'" ~ij(l)~

~O(ij(m+l) ~ij(m) ••• ~ ij(l)
m+l ,

which yields the probability ~ p1=1 ij(l), corresponds to the

right recursive sequence of productions of G'/

Xi ~ ~j (m+l) Z ~C)( ij(m+l) ~ij(m) Z ~ •••

"'::)~ij(m+l)taij(m) ••• Pij(2)Z

:t D<ij(m+l) ~ij(m} ••• ~ij(2) ~ij(l) Z
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which yields the probability

Clearly the two genera ted probabilities arethe same.

3.6.24 Theorem
For any grammar G there is another G' in Greibach normal form

which generates the same language with the same probability structure.

Proor: The proof in [ 15] or proposition 3.6.19 constructs a series
of grammars G = G1 ,G2,•••,Gk=G' , where each grammar is obtained from
the previous one by the transformation in one of the previous two
lemmas. The extension of the lemmas tells that the probability
structure remains the same along the sequence.

3.6.25 Remark
The next step is to show that every language can be generated

by an even more restricted type of grammar, one in what will here
be called Greibach supernormal form. The reason for constructing
such a grammar is purely technical: it is to allow proposition
3.6.8 and theorems 3.6.9 and 3.6.10 to be used.

3.6.26 Definition
A grammar is in Greibach semisupernormal form if it is in

Greibach normal form and has the additional property that if

<X-tt1 c< 1') ,<X ....t2"2'> are two productions with the same 1eft-
hand symbol X, (where t1,t2 are terminals, 0(1'~2 possibly empty
strings of non-terminals), then t1= t2•

3.6.27 Lemma

If G is a probabilistic grammar in Greibach normal form, then
there is another 01 in semisupernorma1 form which generates the same
language with the same probability structure.
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Proof: Call a non-terminal initial variable (i.v.) if it can
generate terminal strings starting with different initial symbols,
or equivalently (for Greibach normal form grammars) if it can appear
on left of two or more productions <x ....,ti~ i" with different
symbols t.• Clearly if a Greibach grammar can be changed to another

1.

with one less i.v. non-terminal, then by induction it can also be
converted to a Greibach grammar with no i.v. non-terminals; in
other words a grammar in semisimple form.

The induction step can be done by choosing an i.v. non-
terminal, and replacing it with several non-terminals X., one for

1.

each possible initial symbol tie Every production <X~ti~ is
replaced by (Xi'" ti> ,and then any production <y~l)(,X~> is
replaced by the several productions t<Y" "'-Xif) : where i is
such that ti eXists}. (And similarly <Y"MXPXi) is replaced
by all possible combinations <y ... c><. Xi ~ Xj ~) and so on for more
occurrences of X.in the right-hand side.} The preprobabilities
can also easily be adjusted.

Clearly none of the new symbols X. is i.v. The i.v. non-
1.

terminal X has been deleted,and the other non-terminals generate
the same terminal strings as before, so the induction step is proved.

3.6.28 Definition
A grammar G is in supernormal form if it is in semisupernormal

form and in addition the probability of a stack transition can be
determined from the active symbol after the transitiun has taken

place.

3.6.29 Lemma

For any semisupernormal form grammar there is a supernormal
form grammar which generates the same language with the same
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probability structure.

Proof: If any non-terminal X is the left-hand side of both
productions (x -t t> and productions (X-t09 (where 0' is non
empty), then it may be replaced by two non-terminals, Xl which only
appears in the production <Xl'" t> , and X2 which appears on the
left of the remainder. Every production with a single occurrence

of X on the right is split into one with Xl and one with X2'
every production with two X's is split into four, and so on as in
the last proof. The probabilities can also be adjusted, and <Xl ..t/
must have preprobability one.

The productions of the form <X~t09 = <X tY~/
empty) may be numbered from 1 to h say. If <X tV")

( ~ possibly
is the jth

production of the old grammar then the new grammar contains the

h new productions <Xi ~tVj~> and also <X ...tYjP> instead.
The preprobability of all these is the same'as the preprobability
of (X ...tY~>. A final version of the grammar may be obtained by
deleting redundant productions.

This grammar is in supernormal form. Clearly it is in semi-
supernormal form because each new symbol Xi is i.v. if and only if
the symbol X which gave size to it was i.v. The stack property
also holds because if the active symbol after a transition is V.

J
then transition must have been one of those corresponding to a
production of the form (Xi --tYj~> ,and all these have the same
preprobabil1ty. Alternatively if the symbol is Y then the transition
must have been one of the form <X "t) with preprobability one.

3.6.30 Theorem

Every probabilistic context-free language may be generated by
a grammar in supernormal for~.
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Proof: Consequence of lemmas 3.6.24, 3.6.27, and 3.6.29.

3.6.31 Remark
The next stage is to prove a limited central limit theorem.

3.6.32 Proposition
Let the uniform mixing sequence (of numbers) X. satisfy

J

c 1x
J
.12+ S< ,..."... c > 0 Ifc.. v- for some 0 •

2 C( -+ X )2 -+ """er-n = C Xl + ••• n v-

as n ....00, then X. satisfies the central limit theorem.
J

Proof: This is theorem 18.5.1 of Ibragimov and Linnik [ ].

( € means expectation.)

3.6.33 Remark
The above proposition can be applied to the random sequence

of real numbers (log p.) + H, where p. = p. (Ca» is the probability
J J J

of the jth transition, and H is the entropy of the process.

3.6.34 Lemma
The process consisting of the sequence of real numbers log p.

J

is ergodic.

Proof: The original Markov process is ergodic and by the construction
of the supernormal form grammar, log p. is a function of its states.

J

Hence the conclusion follows from lemma 3.6.9.

3.6.35 Lemma
The entropy H of the supernormal form process exists.

Proof: Consequence of above.
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3.6.36 Lemma
If the supernormal form process is uniform mixing then so

is the sequence (log Pj + H).

Proof: log p. + H is a function of the states of the supernormal
J

form process, so the conclusion is a special case of theorem 3.6.10.

3.6.37 Theorem
If 1) the supernormal form process is uniform mixing and

2) <: = E:{log P1{W) + ••• + log Pn(W) + nH)2.... 00 as n-"OO
then log p. + H satisfies the central limit theorem.

J

Proof: This is an instance of 3.6.32. All that is necessary is to
2+ , ./show that (log p. + H) .....00 for some o. This is easy because

J

the supernormal form process is Markov so the distribution of
(log p. + H) is independent of j. Its value may be found from the

J
finite sum

~ 2+bL... p. (log p. . + H)
• . ~ ~J~,J

where Pi is the probability that the non-terminal Xi is at the top
of the stack, a nd pij the preprobabili ty of the production Pij •
This value is clearly finite so long as each ,log Pij is finite;
in other words every transition has probability >0.
3.6.38 Remark

The second assumption of the above theorem will cause no trouble.
If it does not hold then the partial sums converge to their limit
even faster than,in the central" limit case.

3.6.39 Remark

The next step is to work on assumption one. It will be shown
that the definition of uniform mixing can be simplified.
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3.6.40 Theorem
For a 'countable Markov process, the supremum ~(r) in the

definition of uniform mixing is the same, even when A is restricted
to vary only over coordinate sets.

Proof: LetA Mt , M.(A»O.-00 /. Then A can be split into the union

of its cross-sections on coordinate t, that is

and in addition each A. completely determines the state at time t,
l.

and only Ai such that J1(Ai)> 0 are considered. (There must be at

least one because Ii(A)> 0 and the process is countable.)
Then given B ~ M~r

=

\to(A n B) - fl (A) ~ ( B )I
f'<A)

tr<2:'AiAiB) -t(,[AiAi) j{(B)\
rCf-AiAi)

I ~(r(AiAiB) - r(AiAi)r(B»)1
f r(AiAi)

(because LAiAi is a disjoint countable sum).

~,~ (AiAiB) - ~(AiAi)f1(B)l
~r(AiA'i>

(because moduli of sums are less than sums of moduli).
Now by the definition of conditional probability (3.6.5)

/" (AiAiB) = /"t(AiAi)r (B1AiAi)

so the above fraction may be expressed
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= ~r(AiAi) \)1(B AiAi) - r(B)\
r (AiAi)

The above expression is a weighted mean of terms\~(B\AiAi) - ~(B)\ •
So either all such terms have the same value or else there is at
least one index I for which the term If\(B\AIAI) - t'(B)lhas value
greater than the mean. In either case, for some I the value of the
above weighted mean

Finally by the assumption that the process is Markov

and so multiplying top and bottom by AI' the above term

=
\ f.(AIB) - J1(AI)/1(B)J

r (AI)

All in all the above reasoning easily yields

.¢(r)
\ r(AIB) - r(AI) /1(B)1

)1 (AI)

The converse inequality is obvious because Mt~Mt so the above
t -00

inequality is in fact an equality.

3.6.41 Proposition

For a homogeneous Markov chain Q , if (1) there is a
probability measure f on Q , an integer r and a positive real
such that for all measurable sets A in the coordinate space,

t: tx : xt = E ' xt+r' A I
r [x : Xt = ~ , ~ 1 - "

whenever l'(A)~ €



and (2) there is only one ergodic set, then the process is

uniformly mixing.

Proof: This is stated on pp.367 and 368 of [17 ] in a slightly
different notation.

3.6.42 Theorem
Either an ergodic process is uniform mixing or else for every

measure J1. ' for every integer r, for every real e there exists a
measurable coordinate set A such that

t: lX : xt =~ , Xt+r~ Al
fIx: Xt -~}

~l-~

Proof: This can be derived by predicate calculus from proposition
3.6.41.

3.6.43 Theorem
Either an ergodic Markov process is uniform mixing or else all

of the mixing coefficients ~(r) = 1.

Proof: If it isn't uniform mixing then the previous theorem shows
that .¢(r)~l - ~ for any E- •

3.6.44 Remark

So for the processes derived from grammars, either there are
for any given r, stacks which completely determine the next r'

transitions, or else the process is uniform mixing. The next stage
of this proof is to find which stacks determine their transitions.

3.6.45 Definition

A non-terminal is deterministic if it can generate exactly
one terminal string; otherwise it is non-deterministic.
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3.6.46 Lemma
If a deterministic symbol is the active symbol of a stack,

then only one sequence of transformations is possible until that

symbol has been removed. This sequence has probability one.

Proof: The only sequence is that which generates the sole terminal

string.

3.6.47 Lemma
If there are r deterministic symbols at the head of the stack

then at least the next'r transitions are determined.

Proof: Each symbol needs at least one transition to delete it.

3~6.48 Lemma

If a non-deterministic symbol is the active symbol, thenthe

probability of any sequence of transitions which removes it is less

than one.

Proof: It is the same as the probability of the string it generates.

3.6.49 Theorem

The process obtained from a grammar is uniform mixing if and

only if there is a finite maximum of the number of deterministic

symbols which can appear adjacent to each other.

Proof: This is an obvious consequence of 3.6.43, 3.6.47 and 3.6.48.

3.6.50 Lemma

The right-hand side of a production stemming from a deterministic

symbol contains only deterministic symbols.

Proof: Only one terminal sequence can be produced.
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3.6.51 Definition
A type 1 production is one whose right-hand side contains

only deterministic symbols.
A type 2 production is one where the ,right-hand side ends with

a non-deterministic symbol.
A type 3 production is one which contains a non-deterministic

symbol but whose final right-hand symbol is deterministic.

3.6.52 Remark
The three types are disjoint but include all productions

between them.

3.6.53 Definition
The score of a deterministic symbol is the length of the sole

terminal string it can generate.
The score of an adjacent string of deterministic symbols is the

sum of the scores of its components.
The score of a string containing one non-deterministic symbol

followed by adjacent deterministic symbols is the sum of the scores
of the deterministic symbols plus the number one greater than the
maximum of the scores of the deterministic symbols in the right-hand
side of any production of the grammar.

3.6.54 Theorem

Only a type 3 production can result in an increase in the score
of the string of symbols at the top of a stack.

Proof: Otherwise, if a type 1 production is used, either the active
symbol was deterministic, in which case the sum of the scores of the
new deterministic symbols on the top of the stack is one less than
before,as a terminal has been output, or the active symbol was non-

deterministic in which case the new string has a lower Score by the
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definition of the score.
If a type 2 production was used a non-deterministic symbol

gets replaced with another so the score stays the same.

3.6.55 Theorem
A sufficient condition ror a grammar to have a unirormly

mixing process is that it has no type 3 productions.

Proof: By the above theorem the set or scores or adjacent strings
of deterministic symbols is bounded. As the score or any deterministic
symbol is non-zero, the set of numbers or adjacent deterministic
symbols is also bounded. So the conclusion follows from 3.6.49.

3.6.56 Theorem
Every language is isomorphic to a language generated by a

uniform mixing grammar.

Proof: Given a supernormal form grammar G let G' be the grammar
with the same structure of non-terminals as G, but each terminal
in each production c~nged to a new symbol which uniquely
identifies that production •. There is clearly a bijective corres-
pondence between the sets of parses of the two languages and hence
also between their languages because both are unambiguous.

,be obtained rrom G by rearranging the order or the
non-terminals or the type 3 productions of Gt so that a non-
deterministic symbol comes last. thus G" has no type 3 productions.
There is a bijective correspondence between the parses of Of and
G· and both are unambiguous so there is also a bijective corres-
pondence between their languages.

l (G) is isomorphic to t(G' ), l{G') to !(O I, ) so l{G) is
isomo~phic to !(G- ) which is uniformly mixing.
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3.6.57 Theorem

If .Q. is a process derived from a Greibach grammar such that
2

(jN = €(log Pl (CU) + ••• + log ~(c.» + NH)2 ) 00
N-+ 00

then log p. + H satisfies the central limit theorem.
1.

Proof: This is theorem 3.6.37 with the uniform mixing condition
removed because of the previous theorem.

3.6.58 Corollary

If Q is any Greibach process then given E> 0 there is an
X( 1 such that the sequence of initial pieces QC (N) partitions

into two sequences of sets, a sequence of high probability sets EN
such that \log r C(N)«J) )/N + H 1 < E for every Ca) ~ EN
and the remainder EN = Q c(N) - EN' such that

and

Proof: Because the process is ~~rkov each Pi(~) has the same
probability distribution, so

so if 2erN is
If (j 2

N

2bounded, (jN = O.

= 0 then~c (N) (C&» = NH for all W

and so any positive Eo and X< 1 will do.
Otherwise 2

(TN -tOO , the central limit theorem 3.6.57

applies, so writing n(X) for the normal function and using that
Nr C(N)«(Q» = i~ Pi (W )
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Hence substituting ,fNe Ior a,

so long as ,/NE: > 1 which it eventually becomes as N~()Q. Hence

taking X. = e_t
2

the result r C(N)(EN)< 0 follows. Yet another

similar integration yields the other result.
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3.7 CALCULATING THE RAres (PART 2)

This subsection shows how to calculate 1t4, which is physically

the most important kind of rate. It does this by showing that

~4 = Lim at:, where t{-4- is the fifth kind of rate for the closure
Pl-+ 1

5

and then calculating it:. The finalgrammar,

result, that Ot4 is the entropy of the language divided by the

average of the lengths of its sentences, is neat and straightforward,

but its derivation here is extremely tortuous and requires some

powerful mathematics. Perhaps a simpler proof can be found?

3.7.1 Lemma

= Lim sup
N-tOO

- '\ . M C(N)(Ct.l) log N c(N)(W)/NL c(N) I - J •
WE .Q.

Proof:

~ = Lim' -) ~ c{ IN)«a) )log k c( IN) (<a) )IN
4 N~OO ~QC( IN)'" i:

U) 6~c{IN) is the first N letters of a concatenation

By definition

Now any word

of words from .Q, so it divides into two parts, W 1 ~c(N-a) which

consists of complete words, and ~2'~(la) which is the final

truncated word (of length a). Hence

awhere PN is the probability that the final truncated word is of
length a in a string of total length N.

This expansion for )ic{IN)(~) can be substituted into the

definition of 1t4 and the log of a product split in the usual way
to yield

+ +
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~ . k(la) ( )1 H ( l·a) (u> )/NL..Q.( Ia) I' <V2 og t : 2
<aJ2~

Now ~-I ft(U) )log j1.(W) = E
&)tQ.

because the partition defined by the second sum is a refinement of

that defined by the first.

Hence 52 ~ t p~ E/N = E/N
a=O

Limand so N~OO S2 = o.

The next step is to show that Lim
N..,OO

S = 0 also.3

a a aAs N gets large the probabilities PN tend to the limit p , where p

is the probability that a random cut cuts off an initial part of a

sentence of length a in an infinite concatenation of words from~.
00

~ pa aL- log pIN.
a=O

So

It is well known that (C7 ], p.333)
00

pa = 2: Pi/M
i=a

where Pi is a term of the length generating series of ~ and M is
the mean length of word inn.

If f(z) is the length generatin_) function for nand f(z).h<\s a

minimal simple pole at zo' then by (by corollary 2.1.43)

p.. ~ b/zi+1
a, ~-+OO 0 =

where B = b/zo' ~= l/zo, and b is som~ constant.
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Now by remark 3.2.6 z >1o so 0« 1. Hence

a BO'a
p a-.e>a M(l-O'..)

00

The sum -~ pa log pa may now be split into two parts, the
a=O

first few terms 54 = -~ pa log pa where the approximation
a=Oaa~ BO(

p - =M-( l;_--c(--=-) is not very close, and the rest 55 =
5 is a finite constant sum so Lim 54/N = o.
4 N~~

BO(.a
log M( 1- P<. )

00 (I<)

:: -(M(l~ 0<.) log M(l~ oc.) + ~ ~ a) - (M(~-~) loge.(~Aa~a).

As 0<.(1 both these component sums are finite, so 5S'is finite and
hence

Lim 5S/N O.=N~OO

As 53 = 5 + 55' Lim 53/N = o also.4 N~OO

the proofs that Lim 53/N III 0 for the otber cases when f(z)
N~w

has a multiple pole nearest the origin, or a branch point, or several
equidistant singularities are similar.

Because both 52 and 53 tend to 0 as N tends to infinity, the
expression for ~ reduces to

This can be rewritten by expanding 51 and using the fact that

c(N-a) - L MC{N-a)('_\l) log rC(N-a)('-\l)
q - - <U

l
' .Q_c(N-a) I. ~ \JV

as 1(4 = Lim
N..,OO

p~ qC(N-a)/N
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which can be algebraically rearranged to give
N N

"l4 = Lim (") pa qC(N-a}/(N_a) } - Lim (L ~(pa qC(N-a)/(N_a) ) )
N~OO a~ N N a=O N N

There are now two possibilities. Either the sequence q(N)/N tends to

a limit. Or (in the case or a language all or whose words have length

a multiple of some common factor) only some of the terms q(N)/N are

non-zero, but these non-zero terms tend to a limit, and furthermore,

if qC(N-a)/(N_a) is zero, then so is P~. aIn both cases PN (which

tends to the limit distribution pal is mainly concentrated on those

terms with small a, hence large (N-a), qC(N-a)/(N_a) close to the

limit and small a/N. Hence,

Lim
N"OO = Lim sup qC(N)/N

N-+ C>O

and
N
~ a/N (PN

aqC(N-a)/(N-a) ) = 0
LimOO&0
N-+

So expandin;JqC(N)

1t4 = Lim sup - ~(N) f\C(N)(W) log f\C(N){W)/N
N-tOO W4Q I .

which proves this lemma •.

3.7.2 Remark

The crux of the proof of the next main lemma [3.1.6] is the

change from a sum weighted by one measure r: to the same sum

but weighted by the measure ]tC(N). In fact this is intuitively

plausible because as N gets large, ~C(N) and tt~N) are like each

other except on sets of small measure.

3.7.3 Lemma

For all CV (of length N)
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where M+l is the number of complete words generated from the original

(non closure) grammar in U) , and P is a normalising factor.

Proof: r t(N) and rC(N) are the same set and their words are

generated in the same way except that when one of the closure

.Q.(N)productions is used the preprobability of is Pl and for
QC(N) is 1.

3.7.4 Lemma

1
p =

Proof: By summing both sides in the expression of lemma [3.7.3]

and algebraic manipulation. (Using the fact that f\ +(N) ( Q+(N» = 1.)

3.7.5 Lemma
1

P ,

Proof: As M is the numbez of complete subwords in ~ and as each
subword is of length ~ 1, M~N.

60 =

3.7.6 Lemma

Lim sup - ~() Jotc (N)(Ca) ) log k c(N)(Cd) / N
N....ee ~4Q..c N r : J
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Proof: By definition

1."
5 = Lim sup

N~OO

So using lemma [3.7.3] to substitute for the second occurrence of

H·(N) and splitting the resultant log of a product to a sum of logs,
I' (W)

there is obtained the equation:

Lim sup Tl +
N~ ()O

Lim sup T2
N...,OO

+ Lim sup T3
N-t 00

where Tl = - L (f\ 1'(N) (w) log rc (N) (W ) ) IN
r\ +(N)

ca>' ~'-

Each o£ the above expressions can be £urther reduced (T2 and T3
£irst because they are easiest).

Similarly,

Finally Tt will be reduced. By the extension [3.6.57, 3.6.58]

of Macmillan's theorem, given E)O there is an X<l such that for

all su£ficiently large N, the set jlC(N) partitions into two

sequences o£ sets, a sequence of high

the measure j\C(N» sets EN' such that
probability (with respect to

\log r c (N) (CA»/N + n I< t
for everyone of its sequences, and the sequence of low prok1bility
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remainders r"\c( N) _EN =~, EN' such that

and

In the above

H = Lim sup
N"'OO

_ ~ M.C(N) K c(N)L I ' log J ' ( tU )/N
nc(N)

(,A) f..,::,£.

is the entropy of the process.

By the ordinary version of Macmillan's theorem,

- log r.c (N ) (CV) = H + 0<. ~

where T4

(where 0< is a function of W but 1«.\ ~ 1 for all W ~ EN).

The expression for Tl can therefore be split into two parts

Tl = T4 + TS

= L r+(N)(W)
EN

(H + 0(.. ~ )

E E r-; +(N ) M...(N.) ( 1"\ • (N » -_ I,Now because N\J N =~" and t ' ~'-

The middle term in the above sum has the property that

II _:NLfC.c(N)(w) (expanding P by
PI EN lemma [3.7.4])

(by the extension
of Macmillan's
theorem)
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So the middle term may be written as

where

The final term in the sum for T4 is a product of E; and a sum of

terms less than one, so may be written k3 E: where \k3 \ ~ 1.

for f\ c to yieldFinally TS can be reduced by substituting ft+
T = -Lp M rC(N) (W) log It c(N) (CV )/N
5 - PI P2. E

so expanding P
M

T ~ -L Pi f\ c(N) (W) log rC(N) (Cl) )/N
5 N

PI
E

by the extension of Macmillan's theorem.

SO T4 = where

So gathering together all the terms,

~t
5 = Lim sup (H + k2 H x:

N -+00 PI

PP2
+ Lim sup (- log )

N_'O() N

+ Lim sup (ki log PI)
N~OO

So ~; = H + .~ (Lim sup k3) + 0 + log P (Lim sup k )
N~()o I N-.OO I

As Lim (log PI) = 0, and E may be chosen to be arbitrarily small,
PI~l



Or in other words using the definition of H

Lim ~; = Lim sup - L. r.C(N)«JJ) log tt c(N) (W )/N.
PI""1 N -+CO a> 6.Q.c(N)

3 .7.7 Theo rem

1Z4 =

Proof: By lemmas 3.7.1 and 3.7.6 both sides are equal to

Lim sup - L rC(N) (Cs!» log r c(N) (c..) )/N.
N..,00 we .Q.C(N)

3.7.8 Theorem

= illl
s' (I)

Proo:f: By the above theorem and the theorem 3.5.7

1{4 = Lim s; q;o log pt"
= Lim Lim sup ( N N )- +PI...,.l Pl~l N--'OO Np1' NN

By theorems 3.2.11 and 3.2.12,

=
ZNO+2P12(f/(zo»2 N ( f( »-P2 Zo

=
2(N+l) (g(zo) - P210g Plf (zo) )

N zo. P1f'(zo)

q1'
• NSo L1m sup --- =
N_'OO Ni>N

2g(zo) - P210g PIx (zo)
z PIf' (z )o 0
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log log (P2f'(zo) ) N log z log z P1f (z )PN 0 o 0=
N N N N

log P~
- logSo Lim sup = z .

0
N-t 00 N

Lim sup
N -.00

q't
(_E_

Np1'
N

+
log P~___ N) =

N

g(1)-0

f"(1)
- 0 = g(l)

f"(1)

Hence using the f'irst equation in this proof'

~4
g(l)

=
e' (1)

3.7.8 Remark

Much of' this chapter has been devoted to obtaining the previous

result, and its proof has involved a tortuous route and a good deal

of difficult mathematics. But now that the result has been justified

it is very simple to use, f'or theorems 2.3.3.2and 2.4.3.2 show

how g(l) and f'(l) can be calculated merely by solving linear equations

with real coefficients.



118

Chapter 4

PARSING

It is a simple matter to generate a terminal string from a

parse [chapter 1 ]. The more difficult parsing problem is the

inverse of this, that is, given a string, construct a parse which

will generate it. This problem is important because any computer

programme written in a high level language must first be translated

into a machine language before it can be run, and one of the steps

of the.translation process is to produce some representation of the

parse of the input programme. The parsing problem is also

intrinsically interesting theoretically.

For the above two reasons the parsing problem has been inten-

sively studied, and many different parsing algorithms have been

found [ 6,8,21,35 ]. As time has passed, the algorithms have

become more general and more powerful, and their descriptions more

simple, but most are clearly variants of one of the three basic

parsing algorithms which are studied here: top-downJ bottom-uPi

or precedence. Versions of these three basic parsing methods are

also used in compilers, although sometimes two are used at a time,

and they are often supplemented by special shortcuts which can be

used because the compiler only needs to work on one grammar, that of
the language being compiled.

Once the problem of finding one solution to the parsing problem

is solved, another problem can be tackled, that of measuring

(absolutely) the behaviour of an algorithm, or of comparing

(relatively) the effects of two or more parsing methods.

On the theoretical side the usual measurement is a worst case
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analysis which shows what is the maximum amount of time and/or

space which a parser needs to analyse any string. Most parsing

methods only work on some grammars, and simple tests may be

presented to decide whether a particular method will work on a

particular grammar. Different parsing methods may be compared in

respect of the size of the set of grammars they work on.

On the practical side the effects of a parser are difficult

to disentangle from those of the rest of the compiler in which it

is embedded. But there are three important ones. First, the

orders in which the input string is scanned and in which the parse

is generated. If these correspond with the order in which the

input string is read by the compiler, and the order in which the

parts of the parse are needed by the next stage of the compiler

after the parser, then only a small part of the input string and

of the parse need be stored by the parser at anyone time, and so

a lot of space is saved. However, whether or not such a one pass

compiler can be built is often more a :functionof the semantics of the

input and output languages than of the choice of parser.

The second effect of the choice of parser is relatively

independent of the rest of the compiler. That is, the average or

typical amount of space or time needed to analyse a string. The

third effect is that some parsing methods allow better error
detection than others.

This chapter is intended to help the designer of a compiler

to calculate the second of the above effects before writing bis

compiler. Unfortunately the results have turned out to be rather

negative. In a reasonable sense, all deterministic parsers require

the same amount of time and space. Any backtracking parser requires

more, but it is not possible to give a general algorithm Which
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calculates how much more. For restricted classes of grammars

and parsers it is possible to give an algorithm, but the restrictions

are of a theoretical kind and the calculations are very complicated.

4.1 PARSING METHODS: TI-IE DOMINO GArvE

The parsing methods will be described within a uniform framework

which allows them to be easily compared. They are described in

informal physical terms as a solitaire version of a type of game of

dominoes. This (hopefully) makes them easy to understand, but does

not result in a loss of rigour, because the description could, with

effort but not intellectual difficulty, be translated into graph
theory.

The general idea of the game is to start with the start symbol

at the top of the board and symbols representing the input string

at the bottom. An attempt is made to build a bridge of dominoes

from one to the other. If it succeeds the final bridge represents
the parse.

4.1.1 The Physical Apparatus for the Domino Game

The game is specified relative to a.part'l.·culargrammar (N T P S), " ,
so different grammars correspond to different versions of the game.

The board

The board is a two-dimensional flat area with a top, bottom,
left and right sides.

The pieces

There are three kinds of piece. They are all stretchable as

is necessary, but may not be rotated, folded nor reflected. When

placed on the board each occupies a definite area of space, none of
which can be shared with another piece.
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Domino

Corresponding t~ each production <X ..XlX2 •••Xn> there is an

as large as needed set of identical dominoes. Each domino has one

top edge marked with an X, and n bottom edges marked with Xl' X2,

•••,X in left to right order (see diagram below). For some
n

parsing strategies the dominoes may have a finite number of spaces

into which a finite amount of erasable information may be written.

A domino corresponding to the
production (X-+XlX2X3X 4)

Input piece

Corresponding to each terminal symbol X ~ T there is an as

large as needed set of identical input pieces. Each input is marked

'on the top edge with an X. The bottom edge is ignored. Again there

may be space for a finite amount of erasable information.

An input piece for the terminal X

Start piece

There is one start piece. It has the start symbol S on its

bottom edge. The top edge is ignored. There may be space for a

finite amount of erasable information.

The start piece



1
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4.1.2 The Aim of the Game

The aim of the game is to change a pattern of pieces on the

board which represent an input string to another pattern which

represents a parse of that string, using only allowable rules to
change from one pattern to the next.

The board is set up to represent a particular input string

which is to be parsed. If X1X2 ••.Xn is the string to be parsed

then the board is set up with the start piece at the top, and input

pieces corresponding to X1,X2' •.•Xn in left to right order across
the bottom.

Starting situation corresponding to the input X1X2
•••X

n
Finish of play

There are three different ways that play can finish.

1. Successful finish

Every top edge is matched against a bottom edge and every bottom

edge against a top edge. In particular the bottom edge of the start

piece and all the top edges of the input pieces are matched. The

parse of the input string may easily be obtained from the pattern of
dominoes (see diagram).
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Example of a successful finish for the game
corresponding to the language of assignment

statements and input string 'b=(a * b)'

2. Unsuccessful finish

The parser decides that it cannot find a parse and so stops.

This can happen for one of two reasons.

There is no parse, that is the input is not in the language
generated by the grammar G.

There is a parse, but the parser has failed to find it.

3. Non-termination

It is also possible that neither of the above situations is

reached. In this case play goes on for ever.

4.1.3 Rules of Play

There are three types of move.

Placing a domino

Put a new domino on the board, matching one or more of its

edges against edges of pieces already on the board. Top edges must

be abutted to bottom edges and bottom edges to top, and of course

matching symbols must be marked with the same symbol.



Joining two dominoes

12 ·1

This is a variant of the above. Stretch two dominoes already

on the board so that the top edge of one abuts a bottom edge of the

other, where both edges have the same marking symbol.

Backtracking

Take some dominoes off the board. There are often'restrictions

as to exactly which dominoes may be removed. These restrictions will

be explained in the course of the explanation of particular parsin9

methods. The general rule is that the pattern of dominoes and their

connections should be the same after a backtracking move as it was at

some earlier stage of the parsing.

Examples

Diagram 'a

.0
Diagram c

G8(D
Diagram b



125

The above four diagrams show situations which might arise

during parsing. b, c and d are alternative situations which might

follow situation a. b is obtained from a by the first type of move,

that is, the domino corresponding to (L.."a) is abutted to the

bottom L of the domino corresponding to <S ..L=R). c is obtained

from a by the second type of move, that is the domino corresponding

to (S.L=R) is stretched so that its top edge S abutts the start

piece. d is obtained from a by the third type of move, backtracking,

that is dominoes corresponding to <R"'(RttR» and (R"'a) are
deleted.

Remark: Other types of move

Other moves are conceivable. For instance, two are: place a

domino on the table but do not immediately abutt any of its edges

to any piece already on the table; adjust two adjoining dominoes

so that they no longer abutt each other, but leave both on the table.

Only the three named types of move are used in the three types of
parsing algorithm considered here.

4.l.4Definitions for Describing Situations

All parsing methods progress from situation to situation in a

discrete manner. So to analyse them it is necessary to consider

the situations in detail. The following definitions give names to

particular parts of situations and also help to illuminate their
structures.

Definition

A situation is a pattern of pieces and dominoes on the table.

A start situation is one where there are just the input pieces

and start piece on the board. The start piece is at the top, and the
input pieces in left to right order across the bottom.
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A final situation is one where no piece on the table has an

unmatched edge.

Definition

A domino or piece is directly connected to another domino or

piece if it abutts it.

A domino or piece Al is indirectly connected to another AZ if

either Al= A2 or Al is directly connected to AZ' or there is a

chain Al = XI'X2""'Xn = AZ
to Xi+1•

such that each X. is directly connected
1.

Remarks

Input pieces are never directly connected to each other. In

the start situation they are not indirectly connected either, but if

a final situation is reached every pair of pieces is indirectly
connected.

The relation of being indirectly connected to is an equivalence
relation.

Lemma

In any situation obtained while parsing by any algorithm using

just the three rules (placing, joining, and backtracking), every

domino is either indirectly connected to the start piece, or to an
input piece (or both).

Proof: By induction. The above statement is clearly true of a

starting situation. If it is true in a situation before a placing

or joining move, then it is true after. The situation after a back-

tracking move has the same pattern of connections as some earlier

situation, and so has the above property by complete induction.
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Definition

An edge is said to be free if it does not abutt another.

Otherwise it is matched.

Definitions

A piece or domino is said to be ceilinged if it is indirectly

connected to the start piece.

An edge is said to be ceilinged if its piece or domino is
ceilinged.

Definition

A ceilinged free bottom edge (cfbe) is a bottom edge which is
free and ceilinged.

Lemma

The left to right order of the (cfbe)s is a total order.

Proof: The set of all ceilinged dominoes forms a tree with the

domino abutting the start piece as root. Any pair of (cfbe)s can

be compared in left to right order by whether one's branch is to the

left of the other's or not. If two different (cfbe)s were equal in

the ordering, then they would share the same branch and so one could
not be free.

Definition

An input piece covers itself. A domino covers all those input

pieces which are covered by pieces or dominoes abutted to its bottom
edges.

A top edge covers those pieces which are covered by its domino.

Remark

Thus a domino (domino·'s top edge) covers all those input pieces
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which can be reached from itself through a descending chain of

dominoes.

Definition

A piece or domino is fully grounded if either it 'is an input

piece or else it is a domino, all its bottom edges abutt fully

grounded pieces or dominoes; and also the set of all the input

pieces which it covers is a gap-free subsequence of all the input
pieces in left to right order.

A top edge is fully grounded if its domino is fully grounded.

Definition

A fully grounded free top edge (fgfte) is a top edge which is
free and fully grounded.

Lemma

The left to right order of the (fgfte)s is a total order.

Proof: The set of dominoes from an (fgfte) form a tree. It is

impossible for an input piece to be covered by two different free top

edges because it is impossible for two trees from different roots to

share a descendant. Hence the gap-free subsequences covered by

(fgfte)s are disjoint. The (fgfte)s inherit the total order of the
subsequences.

Remark

The above two lemmas about left to right orders are not as

obvious as they may seem. The next diagram shows some of the

odd patterns which have been excluded by the definitions.

The (cfbe)s in order are a,b,c,d,e,f. Two ceilinged bottom

edges may only be on the same branch to the root if at least one is

matched. For example A,b and D,E are two such pairs. It is often



120

difficult to compare the position of non-ceilinged bottom edges,

for instance to decide whether F is to the left of f or not.

The (fgfte}s in left to right order are 1, C, 8. Not all input

pieces are covered by (fgfte)s. B is not an (fgfbe) because the

sequence of input pieces covered by it contains a gap. Luckily a

relationship like that between the dominoes containing Band C,

where C is a free top edge but has no bottom edge to abutt against,

can never occur during any of the three standard kinds of parsing

algorithm.

Diagram

piece

B

Definition

The above two lemmas show that it makes sense to talk about

the leftmost and rightmost cfbe and fgfte.



130

Definition

The effective input of a situation is the sequence of (fgfte)s
in left to right order.

Remark

The grammars dealt with here are unambiguous, so there is a
unique pattern of dominoes which represents the only parse of any
correct input string. In order for the next definition to make sense
it must be imagined that this unique finishing pattern of dominoes
is drawn on the table. The parsing strategies try to build this
final parse by following strict rules of what to do next. As the
rules do not take into account what is drawn on the table, the order
of the situation through which a strategy goes is unaffected by this
pattern. But an observer is able to take both the final pattern

and the pattern reached at some point in time into account together
and he can in particular compare them.

Definition

A domino is correct if when it is placed on the table, it and
all the dominoes and pieces to which it is directly or indirectly
connected Iorm a subpattern of the final pattern.

Otherwise a domino is incorrect •

.In particular, if a domino is incorrect,but when it was placed
all the dominoes it abutted were correct, then that domino is first
incorrect.

A domino remains correct, incorrect or Dxst incorrect according
to what it was at the instant it was placed on the table.

Remark

The above definitions may seem a little odd for it is not

possible to know whether or not a particular domino is correct without
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first constructing a complete parse of the input string. But once

this parse has been built, why use any parsing method at all?

They are less odd than they appear. Because the language of all

input strings is a recursive set and because the function from input

strings to their parses is constructive (using British Museum

Algorithm as a last resort [ 11 ]), it is alway~ decidable in a

finite time whether or not a particular domino is correct or not.

In practice, it·is easy to see with hindsight which dominoes were

correct after a parsing algorithm has terminated. Finally, in

general it is of no interest which particular dominoes are correct;

what is wanted is a way of distinguishing different situations which
arise during parsing.

But the definitions are odd. They only make sense for strings

which can be generated by the grammar to be parsed. It is possible

to consider what would happen if a parser is given as input a string

outside the language to be parsed. An analysis of a parsing

algorithm in terms of correctness will not extend to this case because
such a string has no correct final parse.

The intention behind the definitions is that if all the dominoes

on the board are correct then it is possible to build up to a complete

parse by using placing moves only; it is not necessary to use baCk-

tracking or adjoining. There are situations in which this situation

is not exemplified: for instance after two correct dominoes have

been abutted by incorrect edges. These nasty situations do not make

the analysis of parsing methods as difficult as they might because

once one arises during an attempt at parsing by any of the three

types of algorithm, the attempt is doomed to failure.
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4.2 PARSING STRATEGIES IN DETAIL

The domino game tightly restricts the manner in which parsing
may be done. The parsing strategies complete the specifications
by saying exactly what must be done to progress from one situation
to the next. The three strategies have in common that they decide
the next move by the answers to three questions:
(1) Which free edge(s) should be dealt with next?

(2) Which kind of move should be used on that edge (those edges)?
(3) Which of the examples 'of the type of move selected in question

2 should be used?

The three strategies differ firstly in the answers they give
to the three questions. Second. A reason for describing parsing
as a game of dominoes is to make the strategies as similar (and h~nce
as easily comparable) as possible. But most of the strategies require
extra information besides just the pattern of the dominoes on the
board. In general only two kinds of extra information are needed.
Firstly a table containing permanent information which can be worked
out once for all before any attempts to parse any input strings are
made. And secondly, small amounts of updatable information attached
to individual pieces and dominoes. The tables and updatable infor-
mation are different for different parsing methods.

Remark

A couple of definitions will now be made which refer to and
make sense for all parsing methods.

Definition

A parser is universally successful on a grammar if it succeeds

in parsing all strings of its language, otherwise it is partially
successful.
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Definition

A parser is deterministic on a grammar if it never uses a

type 3 (backtracking) move when parsing a string of its language.

Remark

A new deterministic parsing algorithm can be obtained from any

given algorithm simply by disallowing backtracking, but in general

the new algorithm will succeed in parsing relatively few strings.

4.2.1 Left to Right Top Down Parsing

There is an infinite sequence of variants of this basic parsing

strategy. They are called LR(k) top down parsing, where k is a

non-negative integer. LR(o) parsing is also called pure LR parsing.

This method of parsing is widely used in compilers, but often

with a stack. (The method of recursive descent is this method

using an implicit stack.) In general LR(o) and LR{l) parsing is

used. The key initial paper which originally analysed and laid

out these methods is C:~t]

The table for top-down parc,i3

A table is a function with finite domain. In top-down parsing

the table is a function

*...,p

where N is a non-terminal, 0( a strirk) of k terminals, and P*

the set of finite sequences of productions (including the empty

sequence). In practice only non-recurrent sequences of productions

are needed. In words, t maps a pair consisting of a non-terminal

and a string of k terminals to a finite (non-recurrent) sequence of

productions. t{N,o() is the string corresponding to ~N,~),and

t(N, ,,)i the i th production in the sequence so long as. t (N, oc.) has i



or more productions. If it does not then t(N.c<). is witho~r
. J.

denotation.

Defining property of the table

Let P be a production. Then p,"t(N,IMo.)if and only if there
is a generation of the form

either S ~ .xNz ~ xcc.pz

or * *S ~ xNyz ==> x (Q)yz where caly= ~

and in both cases N is expanded by p.

In words, p'-t(N,I>C.-)iff it can (in context) produce a terminal
string starting with 0<..

The property is sufficient to specify the set of the productions
in t(N,0(.) for any N and I<. ,and this set can be calculated with
finite effort (see [ 21 ]), but the order of the productions within
this set is not specified and can be freely chosen. Different orders
give algorithms with (sometimes) different properties. The algorithms
for the same grammar but with different values of k can be related
by the following theorem and definition.

Theorem'

If k1'k2 and ()(i is a terminal strin:]of length ki(i=1 ,2)
and 0( 1 is an initial subsequence of ~2' and N is any non-terminal,

then

(where t(N, 0(..) is considered as a set).~

Proof: Follows easily from the defining property of t(N,O(.).
~

Definition

If in addition to the above the order of the productions within

t(N'C(2) is a suborder of the productions within t(N'~l) for all
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possible pairs <N, ~2 > , then the two parsing algorithms are said
to be compatible.

Updatable information on the dominoes

Every bottom edge marked with a non-terminal, including that
of the start piece, is associated with a space which can hold a
non-negative integer.

The parsing strategy

In outline, an attempt is made to abutt something to the left-
most ceilinged free bottom edge. This edge will therefore be called

the active edge. If the attempt fails then the algorithm backtracks.
In detail. If the active edge is marked by a terminal and the

leftmost fully grounded free top edge (fgfte) is marked by the same

terminal then the two edges are abutted using rule 2. If the (fgfte)
is marked with a dirrerent symbol then backtracking occurs.

If the active edge is marked bY'a non-terminal N then its
associated integer is increased by 1 to yield i. The symbols marking
the leftmost k(fgfte)s in order yield the sequence ~ • If t(N'O(}i
exists then the domino corresponding to that production is abutted
to the active edge. All the integers associated with non-terminal
bottom edges or the new domino are initially set to zero. If
t(N,~) i does not exist then the algorithm backtracks.

When the algorithm has to backtrack the domino containing the
active edge is removed, and in addition any dominoes which directly
or indirectly hang beneath it.

(Technical problems are that there may be no (fgfte) in a
situation when rule 2 is attempted; in this case the match fails.

There may be too few (less than k) (fgfte)s when rule 1 is attempted;
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in this case the terminals on the (fgfte)s which do exist form the

initial substring of ~ and the rest is padded out with a dummy

symbol. The table function t(N,~) has to allow for these dummies.)

The strategy succeeds if there are no unmatched edges. It can

fail in two different ways. There are unmatched top edges but no

(cfbe) to be chosen as the next active edge. Alternatively back-

tracking fails. This happens when the active edge which ought to be

removed is the bottom edge of the start piece. A final possibility

is that a parsing strategy neither succeeds nor fails but goes on

for ever.

Properties of the LR top-down parsing strategy

(1) Backtracking does return the pattern of connections between

dominoes to that of an earlier situation, the only change is that

the integer associated with some non-terminal edge is increased.

(2) In any situation reached during parsing,all the top edges of

input pieces to the left of some position are matched, all those to

the right are not matched, and these unmatched edges of input pieces

are exactly the set of all the (fgfte)s.

(3) An LR(k) top-down parsing strategy is deterministic and universally

successful if and only if every sequence t(N,~ )contains at most one
element.

Proofs:.

The first property can be deduced because once a domino A is

placed on the board, all subsequent dominoes are placed directly or

indirectly beneath A until A is fully grounded.

The second can be proved by induction.

The third also by induction. If t(N,~) contains only one

production then there is only one domino which may be placed against
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the active edge in each situation. This domino must be correct

because a :final parse exists. I:f t (N, tI() contains two proch.lctions

then sometimes the wrong domino must be chosen first. I:fthis

incorrect domino is not removed the parsing strategy cannot succeed;

i:f it is removed the strategy must have backtracked.

Remark

Whether or not all the sequences t(N,O<.) contain exactly one

production is only a :function o:f the grammar and the length of ~

So the :following definition makes sense: a grammar is LR(k) i:f it

is deterministically parsable by a top-down LR(k) parser, but not

deterministically parsable by any LR(k') parser for k'(k.

4.2.2 Left to Right Bottom-Up Parsing

This is similar to top-down parsing. I do not know that it

has been used in practice. It was :first described in H-GERMAN [18 ]

but with a :few loose ends. The reason for both these facts should

be clear by the end of this description.

The table for bottom-up parsing

.This is similar to the function for top-down parsing and is a

function

where N, and P* are as before, but this time et varies over sequences

o:f length k, where the first symbol may now be a non-terminal.

t (N, DC. ). has its previous meaning.
J..

Defining property of the table

If P is a production then p' t (N, oc.) i:f and only if

either * *S ~ xNy ~ xrx~ y

or * *S => xNyz ~xwyz (where wy = 0(, )
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and the leftmost symbol of the right hand side of p is that which
gives rise to the first symbol of ~

Theorem

If k1E k2 and p(. i is a string of symbols of length ki (i=1,2)
whose first symbol may be terminal or non-terminal but the remainder
of which is terminal,and 0( 1 is an initial subsequence of 0(. 2' and
N is any non-terminal, then

Proof: From defining property of t(N, ~ ).

Definition

If in addition to the above the order of the productions within
p(N,QC...2)is a suborder of the productions within p{N, l)( 1) for all
possible pairs (N'0(2) then the two parsing algorithms are said to
be compatible.

Remark

The defining property of the bottom-up table seems similar to
that of the top-down table. An important difference is that in the
bottom-up definition ~ varies over a larger set and so the domain
of its function t is greater.

Updatable information on the dominoes

Every top edge marked with any symbol (including those of
input pieces) has associated with it a space into which a non-
negative integer may be written.

The Parsing Strateg~
Definition

The active edge is the leftmost fully grounded free top edge.
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The target edge is obtained from the active edge in the

following way. Let A be the leftmost input piece covered by the

active edge. If A is the leftmost of all the input pieces then

the target edge is the bottom of the start piece. Otherwise there

is another input piece B immediately to the left of A. The dominoes

which cover B form an ascending chain. Let C be the lowest of

these dominoes which is not fully grounded. The bottom edge of C

which is immediately to the right of the edge on the chain from B

is the target edge.

If all the dominoes which cover B are fully grounded or alternat-

ively C exists but the bottom edge which covers B is the rightmost

edge of C, then no target edge exists.

Diagram

o Start piece

active edge
Ir----- fully grounded freeto\ e~es

00
The letters A,B,C mark the pieces used as auxiliaries in the

definition of the target edge.



Remark

The definition of the target edge seems very complicated. But
once the dominoes are laid out the target edge is easy to find. The
rule is:, start from the active edge, go down (keeping to the left)
until an input piece is reached, go one piece left, finally up and
as soon as possible one step right (see diagram).

The algorithm

In outline. An attempt is made to abutt something against the
active edge. If the attempt fails the algorithm backtracks.

In detail. If the active edge and the target edge are marked
with the same symbol then they are abutted. (A type 2 move is made.)

Otherwise the integer associated with the active edge is increased
by 1 to yield i. The symbol marking the target edge is N. The

symbols marking the leftmost k (fgfte)s in order yield the string oc. •
If t(N,~). exists then a corresponding domino is laid on the table,l.

its leftmost bottom edge is abutted to the active edge,- and the
integer marking its top edge is set to zero. (A type 1 move is made.)
If t(N'C><)idoes not exist, backtracking takes place.

Backtracking is complicated. The domino containing the target
edge.is removed, plus any dominoes directly or indirectly below any
but its leftmost edge. If the active edge was on a domino (rather
than an input piece), then that domino and all dominoes beneath it
are removed. The integer associated with the new active edge (whether
or not on an input piece) is left as it was, but the integers

associated with all the (other) unmatched edges of input pieces are
reset to zero.

(Technical problems are that there may be no free top edges

but still unmatched bottom edges remaining; in this case a backtrack
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is tried. The input may have to be padded out with dummies as in
the top-down strategy.)

The strategy succeeds if there are no unmatched edges. It can

fail in two different ways. There is an active edge but no target

edge (this happens when all dominoes are fully grounded and

ceilinged, but some input pieces remain). Alternatively, backtracking

fails. This happens when the target edge which should be removed

is part of,the start piece. A final possibility is that the strategy

neither succeeds nor fails but goes on for ever.

Properties of the LR bottom-up parsing strategy

Backtracking does return the pattern of connections between

dominoes to that of an earlier situation, the only change is that

the integer associated with the active edge is increased.

In any situation reached during parsing all the fully grounded

free top edges except possibly the leftmost are the top edges of

input pieces. The top edges of input pieces fall into three groups.

Firstly to the left, matched edges which are not covered by the

active edge. Secondly in the middle, edges covered by the active

edge. Thirdly to the right, free edges. (Some of the groups may be
empty.)

An LR(k) bottom-up parsing strategy is both deterministic and

universally successful if and only if everY,sequence t(N,~) contains
at most one element.

Proofs:

The first property can be deduced by defining the position of

a domino to be the POsition of the rightmost input piece Covered by

its leftmost bottom edge. Dominoes are then never placed in a

position to the left (using this definition) of a domino already
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on the board. Backtracking removed the target domino A and all
those dominoes to the right of A, and so returns the pattern of
connections to that holding immediately before A was put on the
board.

The second property can be proved by induction.
The third in the same way as for top-down parsing.

Remark

It should be clear why top-down parsing is more popular in
compiler design than bottom-up.

4.2.3 Precedence Parsing

This is the second main kind of parsing method used in practice.
It was developed from operator precedence parsing initially described
in [ 8 ], was itself first described in [35] and has since been
generalised.

Precedence parsing is different from top-down and bottom-up

parsing because backtracking is not allowed. Because of this precedence
parsing is only applicable to some grammars, called precedence grammars.

4.2.3.1 The table for precedence parsing

This is a function t from ordered pairs of symbols of the grammar
to one of the four new symbols <i, ~, =,blank. In symbols,

t : (NuT) x (N"T ) ___. ( ~ ) :> ) ... j

4.2.3.2 Defining properties of the table
Some auxiliary definitions are needed.

Given a non-terminal X, its leftmost symbols l(X) are those symbols
which can start a string generated from X.

\



xf:J,.(X)i:f:fx~ ..,x~ :forsome string ()l. where x is a symbol.

The rightmost symbols ~(X) as similarly those which can terminate
such a string.

0+-
X ~ ~X) i:f:fX:::>,c.x:forsome string c;( where x is a symbol.
These prerequisite de:finitions are used to help de:fine the table

t. In the statement o:fits properties ~ and p are possibly
empty strings, x and y any two symbols (terminal or non-terminal),
u and v any two non-terminals.
1) is a production <X - o<.xy~> then t(x,y) .I:fthere = = .
2) If there is a production <X~ o(xv~> and y ~ t(v) then t(x,y) =<!
3) I:fthere is a production <X -. 0(.uy ~) and XE.R(u) then t(x,y) = ;:>
4) I:fthere is a production <X- ~uv~) and x E.~u) and y ~ tAv)

then t(x,y) = ;> .
5) If none of the above hold, then t(x,y) = blank.

4.2.3.3 De:finition

Depending on the grammar it is per:fect1y possible :for two or
more of the above properties to hold simultaneously and so contradict
each other. For instance there may be two productions

where yE;.to (v),
so that by properties 1 and 2 above, t(x,y) •= ::::;. but t (x ,y) = ~ •
The occurrence of this situation is said to be a precedence clash.

4.2.3.4 Definition

A grammar is a precedence grammar i:fit has the :following two
propertie s:

1) It has no precedence clashes so a precedence table exists.

2) No two right-hand sides of different productions are identical.

4 .2 .3 .5 Remark

The above two conditions :force there to be just one branch
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at any point where the parsing algorithm might diverge and so

prevent backtracking being necessary.

4.2.3.6 Updatable information on the dominoes

Every top edge (both of dominoes and of input pieces) has

associated with it a space which can be blank or hold one of the two

symbols ~ , =. This symbol gives the relation between the symbol

marking its top edge and the symbol immediately to the left of it in

the effective input string.

The Parsing Strategy

4.2.3.7 Definition

A substring of the effective input is a phrase iff a correct

domino may be abutted against its top edges, so that the bottom edges

of the domino and the top edges of the substring match each other
without gaps.

4.2.3.8 Definition

The handle of the effective string is the leftmost phrase.

4.2.3.9 Propositions

Any effective input (except that consisting of just the start
symbol) has at least one phrase.

No two phrases overlap.

Any effective input has a handle.

Proofs: Any effective input may be obtained by generating a partial

parse from the root. Then by induction, every node is either a tip,

gives rise to a phrase directly or gives rise to a phrase indirectly.

This proves the first statement, the other two are easy
consequences.



4.2.3.10 The algorithm

In outline. The handle of the effective input is located by
using the precedence relations between its adjacent symbols. {The
relation between the leftmost symbol of a phrase and the preceding
symbol is <: ,between adjacent symbols of a phrase :i.:a , and between
the last symbol and the succeeding symbol ~ • The only possible
domino is matched against the handle. The process is repeated with
the new effective input.

In detail. To start with, all the input pieces have their
updatable information set to blank. The active piece is the leftmost
input piece.

One step of the process. The relation between the active edge
and the preceding top edge is looked up in the precedence table.

If the relation is == or ~' then that symbol is written into
the updatable space of the active edge.; The next active edge is one
place to the right of the old.

If the relation is blank an error has occurred, the input string
is not in the language.

If the relation is ~ a reduction occurs. The parser leaves
the symbol marking the active edge blank. Tlu handle is now the
sequence of top edges to the left of (and not includiUO) the active
edge, consisting of edges marked with =. until the leftmost (included
in the handle) is marked with ~ There is only one domino which
will fit this handle and this is abutted. The next active edge is
the top edge of this new domino.

The procedure stops when the effective input consists solely of
the start symbol.

Technical points are. If the active piece is the first in the

input (there is no top edge to its left), then it is marked with a ~



and the procedure continues as usual. If the end of the input is

reached the parser behaves as if there were another dummy symbol to

the right of the input and the relation between this dummy and the

last symbol of the input was always ~ •

4.2.3.11 Remark

For proofs that precedence parsing does work see [35].

4.2.3.12 Property of the parsing process

A small point that might cause some worry is that when the

precedence relation is ~ the relevant updatable space is left blank.

The reason for this is that information only needs to be stored if it

is to be used again in the future. When the precedence relation is

~ this fact is used immediately to steer the algorithm but never

again, hence it need not be noted down~

If one of the ,nodes of a parse is the symbol Z, if it generates

its adjacent direct descendants Xl' Yl by the production

<z -to c><'lXlY2 ~2 "'>, if each Xi and Yi generates its direct descendants

by the productions (Xi -. eXi+IXi+l) <Yi -". Yi+1I3i+1">
final terminal symbols X , Yare reached, then the order in whichn m

until the

the symbols Xi and Yj are found and matched against each other in
the precedence table is

x ~ Y, X l~ Y , ••• , X2 ~ Y ,n m n- m m

Finally, both Xl and Y1 are part of a handle which gets reduced to
Z.



4.2.3.13 Diagram

z

X
n

..,,• ,4 •[:~rm-l
~Ym

First this group of
relations is found
from bottom to top.

Z

Xl

X2 •,
•,,
•,
•X ,

:-1
n

Then this group
from bottom to
top.

z

X2 •,
~•••,

•

'Y2,,,
•·•,

Finally this
relation.

Y-oof: This can be shown by induction by considering the details of

the parsing algorithm and the construction of the precedenc tabI

4.2.3.14 Remark
Notice that the above theorem does not state that the ord r is

gap free. In fact it is not, for the active nod bing used y th

parser zigzags back and forth across the branches of the pars tr

Between occasions when the parser comes across an adj c nt p ir o'

symbols X, Y from any particular pair of branch s it will in 9 n ra

work on pairs to the left or the right of th s pairs.

4.2.3.15 Corollary

If a parse P is produced by the :firstproduction (X ~ Xlx2 ••. Xn>

and then by expanding each of the x. to produc a compl t subp rs~

Pi' and the number of times a precedence parser finds occurr-n S 0

the relation ~ , ~ , =- in a pars is given by

r4(~), r~(1)), r~(f) respectively, th n



n
r<l(p) = 1 + Lr~(p.). 1 l.1=

n
r ~ (P) = 1 + z ri>(p.)

l.=1 l.

n
r = (P) = n-l + .L r~(p.)

i=l l.

Proof: Relations which hold when p. is free standing between left-l.
most symbols of p. and the starting dummy get changed to relationsl.
between leftmost symbols of p. and x. l' the start symbol of p. 1.l. l.- 1-

Relations between rightmost symbols and the rightmost dummy get
changed into relations between rightmost symbols and the leftmost

terminal of Pi+l. The extra relations hold between the xi and
xi+l and also between the left dummy and xl and xn and the right
dummy.

4.2.3.16 Remark

A similar theorem but more complicate? holds for the number of
occurrences between a particular pair of symbols.

4.2.3.17 Corollary

A relation t(X,y) =;> is never used unless Y is terminal.

Proof: Examination of form of sequence in.last property.

4.2.3.18 Remark

Precedence parsers stand up to errors in the input string better
than the other two types because in effect they restart their ~~rsing
from scratch every time they use some new input. Hence errors in the
input string yield more localised effectsin precedenoo parsing than

in the other two. A powerful generalisation would be a backtracking
precedence parser.



The difficulty in making precedence parsers backtrack seems

to be that whereas in the case of top-down and bottom-up parsing

the activity at any instant is centred on a single node, and it is

therefore possible to store information associated with a node so

that a parser can reorientate itself after backtracing, in the case

of precedence parsing the activity is centred on a pair of nodes.

Information for backtracking must not only be stored with pairs

which do occur together,but also with pairs which might occur

together. For instance in diagram 4.2.:l13X 1 and Y 1 form such
n- m-

a pair. In short, to allow for backtracking a very complicated data

structure seems necessary.

4.3 [ECIDABILITY AND ruST'S PROBLEM

A continuous concern of this thesis has been to calculate

various parameters. Ideally the solution is given in closed form

(e.g. results in chapter 1); as a second best a method for calculating

a solution is given (e.g. in 2.3.3). A third and worst possibility

is not to present an algorithm, but at least prove that none exists.

To prove that an algorithm does exist is in essence easy; all

that has to be done is to present the algorithm. To prove that

one does not exist is more difficult; there are an infinite number

of algorithms so it is impossible to present them all one by one as

non-algorithms. So algorithms must be excluded in blocks by their

properties. Luckily properties of algorithms have already been

extensively studied [ 3, 28 ], and particular problems shown

to have no solving algorithms. This gives rise to a relatively

simple method to show that a new problem has no algorithm to solve it.

The method is to present a way to convert any algorithm solving the

new problem into an algorithm solving an old problem. So if the
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new problem had an algorithm solving it then the algorithm could

be converted into one solving the old problem. As the old problem

has no solution neither has the new.

In this section some standard definitions will be given and the

old problem described.

4.3.1 Derinitions
A property is semi-decidable if there is an algorithm which

when given an object to which the property might apply returns the
answer 'yes' in a finite time if the property does in fact hold.

A property is decidable if both it and its converse are semi-
decidable, equivalently if there is an algorithm which when given an
object to which the property might apply returns with either the
answer 'yes' or else the answer 'no' in a finite amount of time,
depending on whether or not the property holds.

A set is recursively enumerable if it can be defined by a semi-
decidable property. Equivalently if there is an algorithm which
prints out all its elements.

A set is recursive if its property is decidable.

4.3.2 Proposition (Post's Theorem)
Consider the property which is true of a pair or ordered tuples

of words <C>(l'•••, -<j)' and < ~l '•••, ~j') if and only if there
exists a finite sequence of integers i1, •••,i (where for all k,

. n

1 , ik'-j) such that

and ~ i ~i ••• ~.1 2 1n

the corresponding concatenations K. ~~ ....,. 'i. ~i ••• ""i1 2 n
are the same word. This property is scmi-

decidable but not decidable.

Proof; That it is semi-decidable is easy to prove, the algorithm is
to try all sequences i1,.··,in in order and stop with the answer 'yes'
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When the corresponding concatenations turn out to be the same.

To prove that the property is not decidable is very difficult.

It was originally done by Post ,and is more accessible in [28 chs 12 & 13].

4.3.3 Remark

The previous result can be used in context-free grammar theory

via the intermediary of a Post grammar.

4.3.4 Definition

Given a Post problem on the vords <~1' ... ' C)( j> and <P 1' ..• ' ~j> ,
the corresponding pair of Post grammars G, H have the following forms.

The non-terminal alphabet of each'contains a single symbol,

A, B respectively.

The terminal alphabet is common to both. It consists of all the

symbols used in forming any of the words O(i or ~ i (i=l, •••,j) in

addition j other distinct new symbols n.:L (i=I, •••,j) and finally
a 'middle' symbol a.

The productions are j+l in number. j are of the form

<A..,niADCi> , or <B"'niB ~ i) respectively, the final production
is (A "a) or <B~ a)

The start symbols of G and H are determined to be A and B

because each grammar has that symbol as its sole non-terminal.

4.3.5 Theorem

The pair of ordered tuples <o<.t, ••• , Kj>, <PI t ••• , ~j) has

Post's property if and only i:fthe lan:]uages of the correspondl.nq

grammars G and H have non empty intersection.

Proof: I:f 0(. • •• 0(. is the same word as ~i ••• ~i then
:Ll l.k 1 k

n. n. ••• ni aD( .••• 0<. O(i is the same word as
l.k l.k_l l:Ll :Lk_l k
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n. n. ••• n. a~ .••• ~i ~i1k 1k_1 11 11 k-1 k
languages or G and H is non empty.

so the intersection or the

Conversely, ir G and H have non empty intersection then any word
in that intersection must have the rorm

and also ror some sequence or integers

il,···,ik• This sequence is that required to demonstrate that
Post's property holds.

4.3.6 Remark.

There is a single plan ror all the undecidability results

obtained rrom Post grammars. First the grammars G, Hare modiried

in some way to produc~ sometimes a new pair or grammars G', HI,
sometimes just a single grammar G'. It is then shown that the new

(pair or) granunar(s) has some property if and only if G and H have

non empty intersection. The new property is then only semi-decidable,

for i~ it were decidable then the intersection problem for G and II

would be also decidable.

As a simple example it can be shown that ambiguity is not a
decidable property [11 section 4.5].

4.3.7 Theorem

The set of ambiguous grammars is not recursive.

Proof r From any pair or Post grammarsG =({Al, T,P,A>

H = <{B} ,T,Q,B) it is possible to form a new grammar

G' = < lA,B,S} ,T ,Pu Q , S). Parses of G t have
their roots expanded by either the production <S"'A) or else

<S ~B > and the remainder of their productions taken rrom G or II

respectively. Hence G I is ambiguous if and only if G and IIhave
non empty intersection.
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4.3.8 Remark

The set or ambiguous grammars is however recursively enumerable.
This is best shown by presenting a semi-decision algorithm.

4.4 T~E NON-PROBABILISTIC EFFECTIVENESS OF PARSERS

One or the choices a sortware programmer has to make when
writing a compiler is which parsing method to use. Various ractors
inrluence his decision. P~obably the most important in practice is
his state or knowledge, i.e. he chooses the method he knows best.
Less accidental criteria are: how well a parsing strategy interraces
with the remainder or a compiler; how robust the parsing method is
under the inrluence or errors in the input; how large a piece Or
code and how much data structure is needed to implement the method;
and in particular the two ractors to be dealt with here, how large
a subset or the input language is successrully parsed and how quickly
(in how many steps) the parser does its job.

There are two methods to obtain values ror these ractors: the
rirst is by measurement, the second by calculation. Factors can only
be measured for a compiler already in existence, so direct measurement
is out of the question ror predicting the behaviour of a compiler at
design stage. Indirect measurement, that is measuring already
existing compilers and extrapolating the results to the new compiler,
is also difricult. This is because there are at least rour inter-
dependent ractors which efrect the measured behaviour Or a compiler;
they are the parsing strategy, the design of the rest of too compiler J

the grammar Or the language which is to be parsed, the machLne on whi.ch
the compiler programme is running. As yet these ractors have not been
completely disentangled and as compilers are very complicated they

are unlikely to be so. There remains what is attempted in the next

two sections, to obtain the behaviour of parsers by calculation.



In this section information about the probability distribution

is ignored. first some results about the absolute size of the set
{successfully parsable by particular methods is given, then some

comparative results; that is, does the subset parsable by one method

contain that parsable by another? Next some absolute and relative

results are given for the speed of a parser. If one parser takes

less moves than another whatever the input string, then it is faster

in a very strong sense.

In the next section the same four problems are again attacked,

but this time in terms of the absolute and relative measures of sets

and the absolute and relative average speeds of parsers. Unfortunately

the results are not of much practical.use. Firstly they are undecidabil-

ity results. Secondly, in real life there is certainly more than zero

probability that an incorrect input is met. So more realistic results

would not only use a different measure from any generated by a pre-

probability, but also contain some estimate of the time required to

reject an incorrect input.

4.4.1 Remark

The first question to be dealt with concerns the absolute size

of the parsable subset. There is only one absolute set-theoretic

measure of a subset, is it or is it not the complete set, so the

question becomes: give criteria on grammars and parsing methods

which distinguish those which succeed on all their inputs from the

others. This will be done by examining ways in which parsers can

fail.

4.4.2 Definition

A grammar is left recursive if it contains a non-terminal A
such that A ~ AD( where 0( is a possibly empty string containing

possibly both terminals and non-terminals.
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4.4.3 Theorem

There is a finite test for whether or not a grammar is left

recursive.

Proof: The relation L which holds between two non-terminals A, B

iff there is a production <A"'BO<.) (where 0( possibly empty) is a

finite relation. Hence its transitive closure L+ is finite and

obtainable with finite effort. It is a finite task to test all non-
+terminals A to discover whether or not AL A. But a grammar is left

recursive if and only if there is such an A.

4.4.4 Theorem

For any left recursive grammar G and any top-down LR(k) parser

of G there is a word from the language of G for which the parser
fails to find a parse.

+
Proof: Let Aq AO( be a generation which makes G left recursive

where without loss of generality ~ is a terminal string. Let I
Ibe such that the length of ex. is greater than k , Let

S ~ ~A( ~ ~AO( It ~ pE D(lt be the skeleton of the generation of

the terminal word (3 S()41lJ'. Then the parser will fail on this word.

If it does not succeed in parsing the initial string ~ then it fails.

If it does and reaches a state where only correct dominoes are on

the board, the active edge is marked with an A, and the input is

then it will also fail. For to succeed in parsing it must

next abutt some correct dominoes under A until the new active edge

is A again. But if the parser succeedsm doing this then 'the new A

is faced with exactly the same context as the original A and so the

procedure will loop indefinitely, growing a longer and longer chain

of dominoes on the board as it goes. If the new active edge A is not

placed on the board then a correct domino has not been placed so
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the procedure still fails.

4.4.5 Remark

The above theorem only states that the parser of a left recursive

grammar will fail, not that it will fail by looping. There is however

a converse.

4.4.6 Theorem

Top-down parsers for non left recursive grammars always terminate

in finite time (although not necessarily with a parse).

Proof: Let ~ be a finite string of length n on which the parser

continues indefinitely. Consider the dominoes which may be placed

under the start piece. One must have been used last, because there

are only a finite number of possibilities, and if all are removed the

parsing terminates. Consider·the bottom edges of th~ last domino,

one of these must be abutted against last for a similar reason. There

is similarly a last option for the domino against this edge, and

so continuing this procedure, a well-defined infinite chain of last

dominoes and last edges used is obtained. In order for top-down

parsing to go from abutting below the ~eftmost bottom edge of a domino

to the next bottom edge at least one input must be matched against,

so as there is only a finite number of input symbols, the final limit

chain of dominoes must, beyond a certain point, consist only of

dominoes abutted to the leftmost bottom edge of the domino above.

There is an infinite number of occurrences of non-terminals marking

these bottom edges; as there are only finitely many different non-

terminals, one must occur twice. But then this non-terminal is left

recursive.



157

4.4.7 Theorem

Any bottom-up parser of any non-ambiguous grammar always

terminates on all inputs.

Proof: An indefinitely long ascending chain of dominoes cannot be

formed by abutting to target edges marked with some symbol Y dominoes

corresponding to productions of the form <X "'Y'C) where D(. is non

empty, because before X can be used as the active edge at least one

input symbol must be used to ground ~ • On the other hand, if there

are indefinitely long chains containing dominoes corresponding to

productions of the form <x ...y) then the grammar is ambiguous.

4.4.8 Remark

Precedence parsers always terminate but the following result

seems similar to theorem 4.4.4.

4.4.9 Theorem

If a grammar G contains some left recursive symbol A which in

addition occurs in the second or later position of the right-hand

side of some production of G, then the precedence table of G suffers

from clashes.

Proof: Let <X-?O(BAp) be the production,where 0(. and pare

possibly empty strings. Then B= A by the precedence table defining

rule I and B<:'Aby rule 2 [4.2.3.2].

4.4.10 Remark

The previous theorems allow attention to be concentrated on

those parsers which terminate on all inputs. The exposition continues

by looking in detail into why terminating parsers succeed and fail.

4.4.11 Lemma

Any terminating parsing method will fail to find a parse if a
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correct domino is ever removed from the board.

Proof: The parsing methods have been designed never to repeat them-

selves. Hence if a correct domino is removed it cannot be replaced.

Every correct domino has to be in place for a parsing method to succeed.

4.4.12 Lemma

When a terminating parser stops there are no incorrect dominoes

on the table.

Proof: If it succeeds there are only correct ones; if it fails
none at all.

4.4.13 Theorem

A terminating top-down parser will find a correct parse for a

word if and only if no first incorrect dominoes ground.

Proof: Every incorrect domino is eventually removed including every

first incorrect domino. If a first incorrect domino does ground it

can only be removed along with some domino above it, but that domino

must be correct, and hence by the previous lemma the parser fails.

On the other hand, if a first incorrect domino fails to ground

it and all the incorrect dominoes beneath it will eventually be

removed leaving the pattern of dominoes on the table the same as just

before it was placed. So if there were only correct dominoes on the

table before the first incorrect domino was placed there are still

the same number of first incorrect dominoes after it is removed.

By induction the nwnber of correct dominoes can only increase so

when the parser terminates it must succeed.

4.4.14 Definition

A terminating top-down parser is prematurely successful on a

particular input if some first incorrect domino grounds on that input;
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it is in short just prematurely successful if such an input exists.

4.4.15 Theorem

If a top-down parser is neither left recursive nor prematurely

successful, then it succeeds on all words in the language.

Proof: This is theorem 4.4.13 restated using the definition of

premature success.

4.4.16 Definitions

Given a grammar G with start symbol S, if PI = <X"'D(I> and

P2 = <x~~) are two of its productions then Pl will be said to

and 1V2 A2 ~ v hto" t'" rr 0 such t at IJ4. I can

generate an initial substring of ~

X will be said to generate 0(1. in top-down context.

4.4.17 Theorem

A terminating top-down parser suffers from premature success

if and only if there is a pair of productions PI' P2, such that Pl
occurs before P2 in an entry of the parsing table and PI initialises

Proof: Pltthe first first-incorrect domino to ground can do so

only if it generates in top-down context an initial substring of the

string generated by P2, the correct domino at that point. That is,

a parser fails by premature success only if at least one pair of

productions as in the statement of the theorem exists.

If Pl initialises P2 then by definition there must be a string

t generab1e in top-down context by P2 such that Pl can generate

an initial substring 0 . If PI succeeds in grounding when presented

wi th b then it is prematurely successful when presented with i

if it does not then some error has occurred somewhere and by theorem
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4.4.15 it must be premature success.

4.4.18 Remark

The relation which holds between productions PI = <X~l)
P2 = <X~~2) when Pl initialises P2 is not intrinsically symmetric

(although it may be so for some grammars), and premature success can

only happen when a false production is chosen £irst. Thus it can

happen that an LR(k) parser suffers from premature success but

another with a different ordering of the productionsin its table

does not.

It can also happen that a long enough look ahead can resolve the

choice; an LR(k) parser may suffer from premature 'success although

none of the compatible LR(k+l) parsers do so. On the other hand,

an LR(K+l) parser is always at least as good as a compatible LR(k)

parser, its parsable set always contains at least as much of the

language to be parsed.

4.4.19 Theorem

The set of prematurely success£ul top-down terminating parsers

is recursively enumerable but not recursive.

Proof: To show that it is recursively enumerable is easy, all

parsers can be run on all their possible inputs. This can be done

as a sequential algorithm by the standard diagonalisation. If a

parser is prematurely successful the string on which it is so must

eventually be tried on it. If it is not the pLocess never stops.

The non-recursiveness can now be proved with the aid of Post

grammars. Every top-down parser £or a Post grammar always succeeds

on every input because the right-hand side of each production starts

with a different terminal. Similarly if a grammar G' contains a

Post grammar G with start symbol A as a subgran~r, and a parser for
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G' starts trying to parse a subword generated by G with A as the
active symbol then it will succeed in grounding A. Consider

the grammar

G' = < (s ,X,A,B} ,Tv (c,d ,e1 ,P V Q Il{<S ....xe>, <X ....Ad) ,<X~ Bde>I ,S>
where G = «Al,T,P,A) and H = <lB! ,T,Q,B) are a pair of Post
gramn~rs, and S,X,c,d,e are new distinct symbols. This grammar is
unambiguous. The parser which chooses the production (X ~Ad) before
the production <.x~Bde) succeeds prematurely if and only if a word
generated by Ad is an initial subword of a word generated by Bde.
Clearly this is the case iff A and B can generate the same word.
So if there was a procedure for deciding if an arbitrary grammar is
prematurely successful, it would yield a decision for a grammar of
the above kind, and hence decide whether or not A and B can generate
a common string. That is, it would solve Post's problem.

4.4.20 Corollary
The above theorem also holds for LR(k) parsers however large k.

Proof: A similar argument can be gone through using the grammar G'
constructed from two Post grammars and the additional productions
<S~xck> , <X~Ad> , <X"'Bdcke').

4.4.21 Remark

To sum up,.there is no general algorithm to answer even the
minimal possible question about the size of the subset parsable by
a top-down parser - is it the set of all string s in the language?

The theory for bottom-up parsers is almost the same and so
will only be sketched.

4.4.22 Theorem
A bottom-up parser will find a correct parse for a word if and

only if no first incorrect domino grounds.
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Proof: If a first incorrect domino grounds it can only be removed

along with some dominoes placed before it in time, which must

therefore be correct. Hence by lemma 4.4.12 the parser fails.
On the other hand if it fails to ground it will eventually be

removed with all the dominoes placed after it, leaving only correct

dominoes.

4.4.23 Remark
The definitions for premature success and initialising in bottom-,

up context can now be made in a similar way to those for top-down. But
in bottom-up context if Pl initialises P2 then Pl must have the form

<Xl'" xo<.l> and P2 <x2-.xO( 2> ,
4.4.24 Theorem

The set of prematurely successful bottom-up parsers is recursively
enumerable but not recursive.

Proof: The proof is similar to that of the corresponding result for
top-down parsing (theorem 4.4.19), and can even use exactly the same
grammars.

4.4.25 Remark
Finally to round off the question of what is the subset parsable

by a parser, a precedence parser always succeeds on all inputs and
there is a finite test for whether or not a grammar is precedence
[ 35].

Although there is no general testing algorithm to decide whether
or not all parsing strategies are universally successful, there are
tests for restricied classes of grammars. For instance, it is not
too difficult to see that there is a finite test for any top-down or

bottom-up strategy acting on an LR(k) grammar (where k is any specified
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value chosen in advance). This is so because every first incorrect

domino is removed after at most k input symbols are looked at.

4.4.26 Remark

The final problem to be dealt with in this section is the speed

of the parser. In practice this will depend on all kinds of hardware

and software details such as the relative amount of time needed to

execute different hardware instructions and the exact way in which

a strategy is programmed. To calculate the speed of a parser taking

these details into account would be complicated and tedious (although

a compiler designer would find the results of such a computation for

his language useful), so two simpler proxies for the time taken by

a parser will be examined here. First the total numt~r of dominoes

placed (at any time) on the board. Second the number of table look-ups

needed. These proxies are reasonable because a real compiler will

probably have a particular finite piece of code which has the same

effect as if a domino were placed on the board and another piece to

do the table look-up. Possibly the amount of time required may vary

from one domino to another, but this will just complicate the calcu-

lations, not rearrange their basic form.

4.4.27 Theorem

For any string ~ generated from a grammar G, all successful

deterministic parsers of G place the same number of dominoes on the

board when parsing 0<.. Any parser which backtracks on 0(. places

more dominoes.

Proof: The number of dominoes placed by a deterministic parser is

the same as the number on the board when it is finished. This number

is given by the structure of the parse and so independent of the
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parsing method.

A backtracking parser ends up with the same number of dominoes

but has removed some during its parsing. So in total it must have

placed more.

4.4.28 Remark

Despite the above result there are a few occasions when back-

tracking parsers are required in practice. The following two problems

are concerned with calculating their relative speeds.

4.4.29 Theorem

If PI is a successful LR(k) parser for a grammar and P2 is

the compatible LR(k+l) parser, then on no input does P2 place more

dominoes than Pl.

Proof: The order in which Pl and P2 lay down and pick up dominoes

is the same, except that PI may occasionally abutt an incorrect

domino and its dependents against a node and then pick them up again

before trying the next alternative, whereas P2 lays,the second (or

later) alternative as its first attempt.

4.4.30 Remark

In general if two parsers have different orders of their parses

in their parsing tables, then one will work faster on some inputs

and the second on others. Although the next and final theorem of this

section answers a question which is probably unlikely to be asked in

practice, it does show that there are undecidability results connected

with the speed of parsers, and is also used to prove a consequence in
the next section.

4.4.31 Theorem

Given two grammars and a bijective correspondence between their

languages, there is no finite algorithm which decides that two p~rsers
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for the languages take exactly the same number of moves on corres-

ponding inputs.

Proof: Consider two grammars each constructed from the same pair

of Post grammars with start symbol Al and A2• Both grammars have

the start symbol S and other additional non-terminals Cl' C2, 01' 02.

The first grammar has additional terminals cl' c2' d1, d2, and

addi tional productions <S .. Cl D1'), <S -*C202) ,<Cl ....c;>, <C2 ....c2) ,

The second grammar is the same except that

it has the single terminal c instead of the two cl and c2•

It is not too difficult to see that a parser for the first

grammar will make exactly the same moves as the corresponding parser

for the second except on words whose first part is in the intersection

of the languages generated by Al and A2• On these exceptions the

first parser needs to read one less input letter than the second

in order to resolve the ambiguity, and so if it backtracks it does

so after placing one less domino.

Thus if there were a finite algorithm as stated in the theorem,

Post's problem could be solved.

4.4.32 Remark

The above theorem does not state whether top-down or bottom-up

parsers are intended, it works equally well for both. The grammar

can be modified to show that there is no algorithm to decide that

an LR(k+l) parser is strictly faster than a compatible LR(k) parser,

the technical trick is to pad out most terminal symbols with k+l

preceding copies of a new dummy symbol to prevent the look ahead

getting any valuable information except when dealing with the final

ambiguity resolving c's and d's.

A final conjecture is that there is a way of defining compatibility
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between top-down and bottom-up parsers,and that a bottom-up parser

is never slower than its corresponding compatible top-down parser.

4.5 TIE PROBABILISTIC EFFECTIVENESS OF PARSERS

In this section it is assumed that a parser is dealing with an

input randomly selected from its language with probability distri-

bution generated by a preprobability function. Two problems are

tackled. What is the measure of the parsab1e subset? What is the

average number of moves needed to carry out the parsing? First the

questions are answered for the successful deterministic parsers,

then they are attempted for backtracking parsers, but it is shown

that here many versions of the questions have no solutions.

4.5.1 Theorem

The measure of the parsable set of a successful deterministic

parser is one.

Proof: All inputs are parsable.

4.5.2 Theorem

The average number of dominoes placed by a successful determin-

istic parser can be calculated.

Proof: By theorem 4.4.27 this is the same as the average number or

non-terminals in a parse which can be calculated in a similar way

to that given in theorem 1.5.6.

4.5.3 Theorem

The average number of table look-ups required by deterministic

successful bottom-up or top-down parsers can be calculated and in

addition the average number of timeseach table entry is used.



Proof: Each domino requires exactly one table access and theprobab-

ility that it is found in response to a particular input k-tuple can

be found in the same way as in theorem 1.5.19.

4.5.4 Theorem

The average number of table look-ups required for precedence

parsing can be calculated, and also the average number of times each

table entry is used.

Proof: Theorem 4.2.3.12 shows that if a parse P has X at its root,

first production (X-,lXl ••• Xk) , and the subparses Pl, ••• ,Pk hanging

below Xl",.,Xk respectively, then the precedence relations which

appear when parsing P are all those which appear when parsing the P.
1.

plus the additional one relation ~ between Xl and the initial

dummy, one relation ~ between ~ and the final dummy, and k-l

relations ~ between adjacent symbols X., X. 1: except that relations
1. 1.+

between the initial dummy and any leftmost node of p. are changed
1.

to the same relation between Xi_1 and that leftmost node (i=2, ••• ,k),

and relations between any rightmost node of P. and the final dummy
1.

are changed to the same relation between that rightmost node and

the leftmost terminal of Pi+1 (i=l, ••• ,k-l).

Hence a recursive set of linear equations for the averages

can be constructed and solved in the usual way.

4.5.5 Remark

The deterministic questions are answered; next the backtracking

parsers will be dealt with.

4.5.6 Definition

If A and B are sets of numerical expressions then A is B-comparab1e

if. given any expressions x (:A and y6 B, it is always the case that
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one of the three relations x <. y, x=y , x >y can be demonstrated to

hold with finite effort. (As usual, singleton sets will be written

x rather than (x! ' and in particular a set will be I-comparable

rather than t'1'l-comparable.)

4.5.7 Theorem

There is no finite algorithm which always yields a I-comparable

expression for the measure of the set of words on which a top-down

or bottom-up parser succeeds.

Proof: If there were such an algorithm then it could be run to

yield in finite time an expression E for the measure of the parsable

set, and then by the definition of I-comparability a further finite

calculation would show whether E=I or not. As every input word

has non-zero measure, if E=l then the parser is universally success-

ful; otherwise it fails on some input. So this is a finite

algorithm to solve the premature success problem. As no such

algorithm exists (theorems 4.4.21 top-down, and 4.4.24 bottom-up),

the theorem follows.

4.5.8 Corollary

There is no general way to obtain a linear equation of the

form

Ax = b

which is satisfied by the probability of success, where the elements

of A and b are rational :functionsof the preprobabilities.

Proof: Solutions of such equations are I-comparable.

4.5.9 Corollary

There is no general way to obtain an algebraic equation of the
form

f(x} = 0
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which is satis£ied by the probability o£ success, where the

coe££icien~o£, £ are rational functions o£ the preprobabilities.

Proo£: Solutions o£ such equations are I-comparable.

4.5.10 Remark

Because the above theorem only assumes that the measure o£ each

word is non-zero, it holds £or a £ar larger class o£ measurffithan

those generated by preprobabilities. It is reasonable to assume

that i£ a word is in a language it should occur occasionally, and

the theorem holds o£ all these reasonable measures.

The theorem does not absolutely exclude the possibility o£

finding a closed expression £or the probability o£ success (it does

not seem unlikely that some o£ the classes o£ expressi~ns in everyday

mathematical use are not I-comparable, £or instance expressions

involving complicated integrals seem likely candidates).

Finally it is easy to approximate as closely as desired to the

success probability, given any small ~ there is always a £inite

set of words whose measure is greater than l-~ •

4.5.11 Remark

It is just conceivable that despite the previous theorem, the

average o£ the number o£ moves made by any parser (or perhaps just

non prematurely successful parser) could be calculated. The next

theorem shows that here too it is impossible to get a reasonable

result.

4.5.12 Theorem

1£ E is the set o£ all expressions which can be the result of

an algorithm which calculates the average number o£ moves made by

any (non prematurely success£ul) parser, then E is not E-comparable.
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Proof: This depends on theorem 4.4.31 but is otherwise proved in

the same way as theorem 4.5.7 above. The pairs of grammars used

in 4.4.31 have parsers which succeed on all inputs.

4.5.13 Corollary

There is no general way to obtain either a linear or an

algebraic equation which is satisfied by the average number of moves

required by a parser, where the coefficients of the equation are

rational functions of the preprobabilities.

Proof: If F is the set of such solutions, F is F-comparable.

4.5.14 Remark

Although there is no algorithm which calculates the probability

of success, or the average number of moves for all parsers, there

are limited algorithms which work for some parsers. The next theorem

gives an example.

4.5.15 Theorem

It is possible to calculate the success probability and average

speed of an LR(k1) parser on an LR(k2) grammar.

Proof: If k1>k2 then the parser is deterministic (and successful).

If not, every first incorrect domino is removed before at most k1+l

symbols of the input have been scanned. It is possible to calculate

the probability of every type of node (domino) being generated, and

also the relative probabilities of every initial k2-tuple of symbols

generable by a node. It is a finite (but very large) amount of work

to calculate for each domino and each k2-tuple of symbols which can

be generated by another domino which shares an entry with the first

domino in the parsing table, how many moves are required when the first

domino is placed incorrectly, and whether the backtracking works
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correctly. From this information the measures and averages may be

obtained.
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APPENDIX

This is to prove the theorem given in section 2.1.5. The

proof is due to Dr. G. Segal.

A.I Notation

C is the set of all complex numbers, C[xl, ••.,xn] is the set

of all multinomials with complex coefficients and variables

A.2 Definition

An algebraic variety is a subset V5 «;nsuch that there is a

set tFcc. ) Cl.E.Sof multinomials in C[xl'•••,xn] such that

V = t(ZI"",Zn):Fo<_ (zl""'Zn) = 0 for all 0("6SJ •

A.3~

By Hilbert's basis theorem,S may be assumed finite.

A.4 Definition

An algebraic variety V is irreducible if whenever

F, G G C[xl, •••,xn] are such that F(Zl"",zn)G(zl""'Zn)::O

for all Z = (zl""'z ), then either F(z)= 0 or G(z)= O.. n

A.s Proposition

An algebraic variety V can be decomposed uniquely as a finite

union, V = V1u •••uVk, where Vi is irreducible for all i.

A.6 Remark

An irreducible algebraic variety has a dimension which can

be defined in various non-trivially equivalent ways.

A.7 Proposition

If V is an algebraic variety in Cn defined by k multinomials
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FI, •••,FkcC[XI" ..,xnl and if ze-v is such that the jacobean
(oF./ox.) evaluated at z has rank k then

l. J

(1) z is an element of exactly one of the irreducible
components of V, say VI;

(2) dimension (VI) = n-k.

A.8 Proposition (Elimination Theorem)
If V is an irreducible algebraic variety in Cn and V' is its

projection onto ~k (i.e. V' = [(zl",,;zk): 3(zk+l, •••,zn)C-
Cn-k s.t.(zl, •••,Zn)6 V ) then V' is an irreducible algebraic
variety, and dimension (V') ~ dimension (V).

A .9 Proposition

A one-dimensional variety in ~2 consi sts of the zeroes of a
single polynomial.

A.lO Remark

The next theorem is reason for this appendix.

A.II Theorem
If A. :C-tC

l. (i=l,•••,n)
and there are n multinomials Pj C[x,wl, •••,wn]
such that

(1)

(2 )

~.(z,Al(Z), •••,A (z) ) = 0 (j=l, ••.,n)J n
'a1"The jacobean (0 J ) ;. 0 at at least one pointwi

<z ,AI(z ),•••,A (z »o 0 n 0

then each function A. is algebraic.
l.

Proof: Let V be the algebraic variety defined by 1'1"'" ~ n'
By proposition A.7 <z ,Al(z },•••,A (z» is in just oneo 0 n 0

irreducible component VI of V, and dimension (VI) = 1. Let Vl,i
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2be the projection of V1 onto the C space corresponding to the

coordinates z and w..
1

Now <z ,A1 (z) , ••• ,An (z) > must be in Vl for all z close

enough to z because irreducible components are closed subsets
o

of Cn+1•

Hence (z,A.{z» E Vl. for all z near z. Hence V1 ..
1 ,1 0,1

contains 00 points so is not a-dimensional. So by proposition

A.8 dimension (V1,i) = 1. So by A.9 there is a polynomial

FE C[x,w.] such that Vl . = t{z,zt):F{z,zt) = 01. But then1 ,1
F(z,A.(z»=O, or in other words A. is algebraic.

1 1
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