THE UNIVERSITY OF

WARWICK

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/72009

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/72009

THE INFORMATION RATE AND OTHER PARAMETERS

OF PROBABILISTIC CONTEXT FREE GRAMMARS

AND THEIR PARSERS

» by '>i‘ .
{ >"‘“ LW
Simon Kestner

N i

Thesils submitted for the Degree of Doctor of
Philosophy in Computer Science at the
University of Warwick, 1974

ABSTRACT

Probabilistic context-free languages are defined by giving
predetermined probabilities (preprobabilities) for the choices
that their grammars make when generating.

Chapter 1 shows how to carry out the above definition, and
how to calculate some parameters of the language; for instance:
average length of work, mean square length, digraph probabilities,
entropy.

Chapter 2 introduces generating functions related to grammars.
It uses them to derive a condition for which preprobabilities give
rise to well-formed probabi;ity.épaces. Two ‘functions, the length
and entropy generating funé%ion; are'studied in detail. They are
algebraic functions, can ir; gene.r.al .only be defined impl;’.citly,
but can be used to give unified explicit methods of calculating
all the parameters of chapter 1 (and more).

Chapter 3 defines and shows how to calculate the information
rate of a language. As a by-blow, Macmillan's theorem is extended
(for a small class of processes) to an analogue of the Central
Limit Theorem,

Chapter 4 tries to compare the efficiencies of different
parsing algorithms. 1In a reasonable sense, all deterministic parsers
take equal average time to parse, any backtracking parser is slower,

but there is no general algorithm for calculating the speed of a

backtracking parser,

Acknowledgements

My thanks go to my parents and friends for their
encouragement and toleration while I was writing this thesis.
To Professor W. Parry and Dr, G. Segal for assistance with a
couple of recalcitrant theorems. To Dr. David Park, my
supervisor, for his continuing patience and support. And
to Mrs. P. Broadbent for her calmness and speed in typing

and producing the final form.

He

He

Chapter 1:

1.1
1.2

1.3
1.4
1.5
1.6

Chapter 2:

Chapter 3:.

3.1
3.2

CONTENTS

PROBABILITY SPACES AND GRAMMARS

Construction of an ¢'-field over the Set
of Parses_

Construction of Some Probability Functions
on the Parses

Decomposition Theorems ‘
Backus Naur Form and the Space Isomorphism
Recursive Equations Obtained by Integration

All Parameters Calculated for an Example

GENERATING FUNCTIONS FOR CONTEXT FREE GRAMMARS

Preliminaries

Vector Valued Functions Associated with Grammars
and the Extinction Probability

The Length Generating Function
The Entropy Generating Function

THE INFORMATION RATE QF A CONTEXT FREE GRAMMAR

Finite and Infinite Closure of a Grammar

The Géherating Functions of the Finite Closure

- Grammar

3.3
3.4
3.5
3.6
3.7

Chapter 4:

Appendix

References

Standard Definitions of the Rate
Five Rates for a Context Free Language
Calculating the Rates (Part 1)

A Strengthening of Macmillan's Theorem
Calculating the Rates (Part 2)

PARSING

Parsing Methods: The Domino Game

Parsihg Strategies in Detail

Decidability and Post's Problem

The Non-probabilistic Effectiveness of Parsers

The Probabilistic Effectiveness of Parsers

page

10
12
25

29

29

36

0

60

67

67

72
77
78
82
84
108

120
132
149
153
166

172
175

iii

Chapter 1

PROBABILITY SPACES AND GRAMMARS

‘This chapter‘shows firstly how to make the‘set of parses which
can be generated by a grammar into a probability space, and secondly.
how to integrate various functions from the parses if it is assumed
that the measure of the set of infinite parses is zero. For_instance
one such function gives the number of terminals in a parse, and so it
becomes possible to calculate the average_length of string generated
by a grammar, - Similarly the varianee of the length, the probability
that one letter is followed by another, the entropy, and so on can be
calculated. |

Throughout this chapter a fixed grammar G = (N,T,P,S) will be
dealt:with wﬁere

.‘(N,f,P,S) = L({Xi=i=1,,ij,n} ,‘T,W{Pij:i=1,...n;j=1...,ni& ’Xk)
and the length of the right hand side of P is n |

15 13°

reduced[11,15], that is every non-terminal can generate a terminal

G will be

string and can also be generated in a string generated by the root,

and €&-free . that is no production has a right hand side of zero

length, I S Lo Sy

1.1 CONSTRUCTION OF A ‘o:FrELD‘oVER THE SET OF PARSES

Eventually a measure is desired which assigns a probability to
all individual finite parses, and so each singleton set containing

one finite parse should be measurable. The most obvious Gifield

with this property is the set of all sets of parses. Unfortunately,
because there are (in general) uncountably many infinite parses, the

only measure functions which can be defined on this o-field give

zero measure to some set containing all but a countable number of
the infinite parses. This is not a desired property, and so some
other O0-field must be constructed. So properties of parses will

be investigated in order to help with the construction.

1.1.1 Definition

The depth of a node in a parse is defined by induction to be
O if that node is the root, otherwise one greater than the depth of
its immediate ancestor.
Remark: Every node, even of an infinite parse, has finite depth,
which is équal to the number of arrows which must be traversed
when tracingidown fo it from the‘root. Parses can be ciassifiéa

by the depths of their nodes.

1.1.2 Definition
A partial parée'is of exact depth d if:
- 1. Every node is of depth d or less.,

2. Every tip whose value is a non-terminal is of depth d.

(Such a node will be called a non-termlnal tip)

1.1.3 Remark

Thus a ﬁartial parse of depth d may be thought of as obtained
from a full parse by deleting all nodes of depth greater than d. As
this can clearly only be done in exactly one way, every parse has
Just one partial parse of exact depth d which is a part of it. It
should also be'ndted‘thatgif the maximum of the depths of the nodes
of a full parse is m € d, then that parse satisfies the definition
for a partial parse of depth d. Hence such a parse is of exact

depth d for all d 2 m

1.1.4 Lemma
For any d there are only finitely many partial parses of exact

depth d.

Proof: By induction on d.

1.1.5 Remark
The set of parses of exact depth d can now be used to generate
a partition Dd = iqu} of the set of all full parses Q, and hence

a 0O-field ad,consisting of all unions of elements of Dg,.

1.1.6 Definition

q
Pa

parse q of exact depth d.

is the set of all parses which are extensions of the partial

1.1.7 Lemma

i';‘ U qu ‘?‘52.
q .

. q qQ' _
ii. If q 7! q' then l?d N Dg4 = B.
Proof: Every parse can be restricted to exactly one partial parse

of depth d, and so is in just one set D q,

, ‘ d
By the above two lemmas iqug 1s a finite partitlon of Q
and so the set a of all unions of elements like pdis a f1n1te

d
field and so a a‘-field.

'1.1.8 Lemma ‘
“&d.

S . q' EE x -
»Proof Let Dd+1be an element of the part:.tlon Dd+1’ and q' the

restrictlon of g to nodes of depth d or less. Any exfension of q

For all d, mdu

‘15 an extension of q' hence DdillCqu s ’therefore Dd+1 is a

reflnement of Dd’ and so a 2 &d'

1.1.9 Definition
It has now been proved that the sequence of O -fields Cﬁd has
all the properties which allow a limit to be formed. Let this limit

field be a. . Then GL has the following properties.

1.1.10 Properties
1. If q is a finite parse then iq ZG&

2, If I is the set of all infinite parses then:[écz.
. (i) Any function constant on I is measurable.
(ii) If {Q 0.; is completed to a measure space {Q, & /(}
and ,((I) = O then every function is integrable.
Proofs:
1. As q is finite there is a finite maximum m of.depths of nodes of
q, and so {q}é Qd for all d 2 m. .
2. The complement of I is the set of all.finite parses which is the
countable union of the singleton sets {q} , where q is a finite
- parse.

3. Obvious consequences of 1.

1.2 CONSTRUCTION OF SOME PROBABILITY FUNCTIONS ON THE PARSES

In this paragraph a way of constructing a probability function
on the parses will be described informally, in the next formally.
A parse can be built step by step from the root. Each step starts
with a partial parse and ends up with a new one obtained by expanding
Jjust one non-termin;1 tip. When there are no non-terminal tips left
then the procedure étops. Once it has been decided which non-
terminal tip to expand, there are in general several productions
which will fit. ‘If the production to use is chosen by a random

choice and the probabilities that each will be chosen given that it

will fit are specified, then it is possible to calculate the
probability that a particular parse will be chosen. It is the product
of the probabilities of all the productions which were used to generate
it. In the formal definition which follows the preprobability
function gives the probability that a particular production will be
cﬁosen.

To recall notation, the grammar is still

(N,T,P,S) = ({xi:i=1,...,n} , T, {Pij:i=1,...n;j=1,...ni} X,)

where the length of P, . is n, ..
ij ij

1.2.1 Definition A
A preprobability is a function f :P-v{x:x is real, O0$x% 1}

such that ni

j=1 f(Pij) =1 for all i.

1.2-.2 Remarké

Notice that except for grammars which produce only one parse,
all grammars have an uncountably infinite number of preprobability
functions. | |

‘The préprobability function f can be used.to generaté a
sequence of measures /‘d on the spaces (Q’ad)f The following |
notation will be used in the construction. If q is any partial parse,
in particular of exact depth d, then t j(q)’ or more usually just
tij when q can be understood is the number of occurrences of

production pij used to generate q, and 83(q) is the probability

that q be generated, that is

P - 7\ f\f(?]lJ @

1.2.3 Definition
/"'d is a measure to convert the measurable space (Q, d’d) to
a measure space (52, OLd, ﬂd) with the property that

t,

e Lt
Mah = N Teae ™ - P

1.2.4 Lemma

/Kd exists and is unique.
Proof: The domain of M, is the finite set@,. 1fAc¢ @, then
—_— d , -d d
either A = qu for some parse q, in which case ﬂd(A) is given
directly by the property, or else A = g D .9 for some finite set Q

qeQ d
of partial parses, in which case

Ma(A) = q?-D Ma 0).

1;2}5 Theorem

The sequence of measures /‘d is compatible.
21'99_1;5_: It is only necessary to show that if A is a generator of
(Q,ad,/(d), that is A = qu for some q, then/{d+1(A) =/(d(A).
In (Q’ad+1’/(d+1)’ A is the union A = q'L} Dd+1q', where q'
varies over all possible partial parses obtained by simultaneously
expanding each of the non-terminal tips of q by one production. So

it must be shown that P(q) = zﬂq'). This can easily be done by
) . q' .
setting up appropriate notation to denote parses like q but with

only some tips expanded, and using an induction.

l1.2.6 Corollaries

1. /(d is a probability measure for all d. Proof: /((0(Q)

2. The limit f‘ exists and is a probability measure.

]
[
. .

1.3 DECOMPOSITTON THEOREMS

Next two theorems will be proved which enable the probability
space (g},CL,}{) to be decomposed. The first will show that it is
isomorphic to a weighted sum of spaces, each.of which corresponds
to one of the productions which is a first possible choice in
generating a parse. Then the second will show how each of the new
spaces can be decomposed as a product.

To help describe the decomposition as a weighted sum, some new
notation will be needed. This will allow a grammar G to be changed
to a grammar G® which has almost the same sef of parses, the only
difference being that where a parse of G has S at the root, the -
corresponding parse of G? has a new non-terminal Z. This will
enable an ocqurrepce_of S at the root to be easily distinguished.

from any other occurrence.

lf3.1 Definition

. If G is the grammar (N,T,P,S), then G? is the grammar
(Nufz} , T, PuQ, 2) whefe Z is a new non-terminal in neither Nror
T, and Q is a set of new productions which correspond with those

of G with S on the‘left hand side, so that (Z9x)é Q iff (S—»x)€ P,

1.3.2 Definition

1f £ is a preprobability on G then the corresponding pre-
probability £f* on G* will be such.that if q€ P then fa(q) = £(q)

and fa(z-nc) = £(S-»«x) otherwise.

l1.3.3 Lemma

A The space ({Q,QL,M) generated by G, £ is isomorphic to the
space (Qa,a_a,/{a) generated by c?, 2,

a e
Proof: Let H:() = ()® be the bijection which maps a parse of () to

the parse of SZ which is similar in all ways except in having Z

instead of S at the root. Let (Q,qad,ﬂad),(gad,’(d) be the

spaces generated by the partial parses of depth d. Then it is easy
a a a .

to see that (S}_ ,& d’ﬂ d) is isomorphic to (Q,Ced,ﬂd) under H,

and hence that the limits (Qa’&a’pa) and_(Q,a,/‘) are also

isomorphic.

1.3.4 Definition

Let the new productions in G* of the form {Z-*®) be numbered,
so that Q = {(Z "’0(.): i=1,...,m} + Then G.a is the grammar
(Nu{Z} T Pu{(z e,)} »Z) and f is the preprobability fi (Zz-K ,)
else fi (q) = £(q). -

Clearly each of the grammars Gia has just one of the new :

productions (Z -'ij:), and this production can and must be ‘used'just ,

once at the root of every parse in Qia.

1..3.5 Lemma

The space (Qa,aa,/'(a) is isomorphic to the weighted sum

?fg_a Zm.Qi,f

o
10 i=1 =1 Ps M)

where pi = £2(z 2L,).

Proof: The isomorph:.sm holds between the spaces generated by partial
parses of depth 4, and so also between the limits.
1.3.6 Theorem

’rhe';space (S}_ a /1) generated by a érammar G and preprobability
f is isomorphlc to the weighted sum of spaces (ﬂ Qa %la ai"
= pi/“ i) generated by the grammars G 4 and preprobabilities fai.

Proof: Both isomorphic to (S?_a,aa,ﬂa).

1.3.7 Notation

Next will be shown that each of the new spaces (g}ai,Clai,)ﬂai)
can be further decomposed into a finite product. To reduce the
complication of the notation, H will stand for Gai and (0,B,V)
for (Qai’aai,“ai).‘ So H is (Nuf{z} ,T,Pui(z —Oa(i)} 2Z). K, will
be xlxz...xni, where each Xj may be non-terminal or not.

If Y is any non-terminal of Nu{Z} - then H(Y) = (Nu{Z} ,T,Pu{(z-ioi)} »Y)
will be the grammar which is the same as H except that the start
symbol is changed to Y. (‘Notice that as Z appears on the right side
of no productions, the set of parses generated by H(Y) is exactly
the same as the set geneiated by G(Y) = (N,T,P,Y) whenever Z # Y.

In particular, H(Y) is not in general reduced.) If f is a pre-
probability for H then it is also one for H(Y) for both have the |
same productions. (©(Y), B(Y), Y(Y)) will be the space genérated
by H(Y) and £ .

If Y is a terminal, then (O(Y), B(Y), Y(Y)) is the trivial
space; with Y the sole element of >O(Y), B(y) lthe two Ueiement

power set of O(Y) and P(Y) the trivial measure.

l .3.8 Theorem

The space (0,B,Y) is isomorphic to the product
’ n, : ‘

ic;x , X.), . X.)
AR jzxxs(5) J-:ZV.\)‘)

n.
Proof: Firstly, the set © is isomorphic to the set 7’1‘ o(Xx.).

. ; , j=1
For let e be a parse such that e €0. As the start symbol of

H is Z, and the only production in H involving Z is (z-yxl,”x),
nj

e must have Z at its root and Xl,'...,xn_ in order as the direct
i

descendants of Z, If eJ- is the parse of H(Xj) which is the same

as e restricted to Xj and its descendants, then it is clear that

10

n.

i
the function I:0- Y\ O(Xj) with the property I(0) = (01,...,0ni)
Jj=1 .

has a well-defined inverse andso is an isomorphism. It is also clear

d+1’ vd+1
d+1l, similarly (O(Xj) , ﬁ(xj) , \)(XJ.)) that generated by partial
d d '

that if (O, B) is the space defined by partitions of depth

parses of depth d, then (Q’%di'l’\)di-l) is isomorphic to

n, b n:i_v
o(X.), X.) , X, .
(X5) j:fi‘ (x5 5 JIVEH)

i
me

Therefore the two limits of these sequences are isomorphic.

1.4 BACKUS NAUR FORM AND THE SPACE ISOMORPHISM

1.4.1 Notation
To consolidate quickly what has been done, yet more notation
L} .
is needed. In the sums of products of spaces the Z s and n s

can be taken outside the sequence brackets, thus for instance

I . n n n
ig Pi(Qis ai’ /(i) means (i}__;lQi» iglce,i, 'igl ,_pi[{i)°

G iS Still ({xi’i=l,...’ns”r’ipijzj.:l’...,n;j=1’...’ni} ,xk)

where the 1 th of P
e e leng o 13 is nij’ so Pij may be written (xi—»x

ij1
vxijz".'x' .) where X; stands for a non-terminal, but Xi-_’k (which
should rhaps more strictly b itt

pe P y e wr en xh(i,J,k) may also stand
for a terminal. G(Xi) stands for the grammar with Xi instead of
X, as start symbol (so that G(X,) is in fact G). si stands for

the space (Qi,&i,;{i) generated by the grammar G(Xi) and the

preprobability functidn f, Sijk stands for the space generated by

G(x 14k) and f if xi . 1s a non-terminal, and the trivial space
where Q x contains just one element otherwise. Si stands for

the space generated by the grammar G(X) with the restriction that

the production Pij is always used first.

11

1.4.2 Remark
A variant of Backus Naur Form (BNF) will be described which

allows the preprobabilities of the productions to be displayed.

1.4.3 Definition
If a grammar has the productions (xi—?o(ij) and the preprobability

function £ (Xi—"o(ij) = pij then its BNF is the set of n formulas

Xy 3% {pn}"‘n\ it “iz\ hpiniiocino y

1

1.4.4 Notation

For the sake of manipulation it should be noted that D(ij is

a sequence of signs xijl xijZ xijn and so may be written
: 15
17{-)(. ... Similarly the sequence of alternatives iP. } X .. may be
4\ Tijk ‘ ij ij
k=1 - ng
written Z pijdij’ and so the BNF of a grammar may be
j=1

expressed by the formulas
| | ng Dyj
Xi::= _)Zi pij {S xijk .
The above notation is rather powerful and enables the above

two theorems to be summed up in the very striking form.

l.4.5 Theorem

If the BNF of a grammar is

A nj n 3
X, i:= p 7{ Xi i=1,...,n
1 ; 134) ik (1=1,...yn)

then the spaces generated satisfy the recursive equations

n; n.j
Sigjz:;. pij 7<1 Sijk ' (i=1,...,n)

k=
(where & means is isomoxphic to).

Proof: Theorem 1.3.6 showed

1<

iz

ni n. .
that Si jZ=1 pijsij and theorem 1.3.8 that Sijg 7‘13 S

k=1 ijk

1.4.6 Example

A particular example is a simple version of the language of

assignment statements. G = (N,T,P,S) where

T

{(’):a’b:+sx, =}
{s,L,R}
{ ¢<s*L=R) ,{L*a) ,{L=b) ,KR=(R+R)D,{R 2> (RR)),

<R a) ,{R=>b> }

N

and P

If the preprobabilities are in order p,y, Ppy»s Pyys P3p» 'p32,' P33»
Py, where of course pll = p21 + p22 = p31*931*’P33'P34:1, then‘the
grammar may be written in BNF as

S::= {pll L=R

L::= {p21{a\§32?}b |

R:t= {p,)} (RR)] {p,,} (RR)

{p,,a l{p34lb

and the isomorphism between spaces may be written -
512 Py S, §083
§2% P21 80 * Po2 S0

§.2 P 8085608280 * Pay S 55 50 5586 + Py §

32 0 3 0 370

S

.
0" P30
where Sl’ Sz, g3 are the spaces generated by G(S), G(L) and G(R)

respectively, and SO is the simple space with just one element in

the underlying set.

1,5 RECURSIVE EQUATIONS OBTAINED BY INTEGRATION

Suppose that 9139_14'&, for i=1,,..,n (where R is the set of '
real numbers) is a family of random variables, and that each function

g; can be expressed in terms of the functions 94 3k defined on the

13

component setsS:Zijk of'gzi. Then sometimes the integrals

</gid’(i can be expressed in terms of the component integrals

,/gijk qhijk to give some recursive equations satisfied by the

integral. And again sometimes the numerical value of the

integral

can be obtained merely by studying the recursive equations. Some

examples of this techhique follow,
Firstly an equation will be found for the measure of
of finite parses. v will be the function vizgzi-o{O,li

has the value 1 on finite parses and O on infinite., Simi

vijzgzijﬂ 19,11 and vijkzgzijk“ {O,ll . V; will be the

number which is the integral of vy that is
Vi = jvidpi | (Similarly Vij and Vl:J
oh .
1.5.1 Theorem
If the BNF of a grammar is
niZ ni.
X, 3= P, X, . (i=1 n)
i . goec ey
31 ij =1 ijk

the set
which
larly

real

.)

then the measures 'V, of the sets of finite parses satisfy the

eqﬁations n
L,
vV, = P, . V., .
iom Ql 13k (1=1,...,n)

Proof: The Qij partitionQi

hence V, = Qi/vi d’(i = ji;Q;{ vy d/(i

But if meQij, and‘m is finite, thgn vi(w) = vij(Q) = '1,4

and if @ is infinite, then vi(gy) = Vij(“)) =0, so v, =

i
Also by definition }(i = pijﬂij on Qij ’

ves on Qe

-1 4

n. n, n,
i / i i
so V.d/W. = Z /V .d P. [(., = Z P f
il ij- ijfti; . v, .dﬂi.
571 Sty =1 Qi 1 13 Qi
ng i}
= j=21: le ij

That is Vi = %pij vij'
. . . ~ : , :
Similarly if Qij'-: ﬂinjk and if @ ngij and the sequence (W ...,V ij)
€]lSQijk is its corresponding nij-tuple of parses then @ is finite
only if all the c.)k ére finite. 1In which case vij(co) = Tk\vijk((‘)k)
= 1, Otherwise (@ is infinite, and at least one &)k is infinite,
In which case vij((‘)) =]l;‘vijk(wk) = 0.

Hence V.'LJ =SIJ£ vij'dﬂij =]_Qif nVijk d](l(ijk=];‘Qjékvijk dﬁijk

k Jjk
= ll;‘vijk‘
Collecting the two results together gives the'theorem.

1.5.2>Remark

Unfortunately, the recursive equations for the measure of the
finite parses are not in general easy to solve, nor do they always
have a unique solution. And it is easy to see by inspection that
they always hawve the sblution V1=V2= eee T Vn = 1. However the

following obviously holds. .

1.5.3 Corollary
- If the only solution of the above equations with OSViél is
Vi = 1, then the measure is concentrated on the finite parses.

1.5.4 Example

The equations for the language of assignment statements are

v, V.V

Vi = P11Y2%"3

V, = PyyVo * PV
V, = Py VoVaVoVaVo + PaoVoVaVoVsVo * PasVp + PagYo

\'4 =

simplifying by using p;; = P,y *+ Py = P3y * P35 * Pgj * Py TV,

and writing q for p31 + p32

V1 = V2V8

<
n

1

<
il

2
3 qV3 + (l'q)

The last equation factors to [qV3 - (l-q)][V3—1] =0

= - _1l-q
so V3 1 or V3 a °
The second solution may be excluded if (l;ﬁ)> 1, that is if q< 3,

in which case it is known that all the measure is concentrated on

the finite parses.

1.5.5 Notation

The number of nodes in a parse & will be denoted by h(w).

The integral of h over a space Qi will be denoted by H So

i.
Hi = Aihd,(i- S.imilarily Hij and Hijk will be defined as the

integrals of h over Qij and Qijk respectively,

1.5.6 Theoren

If the BNF of a grammar is

5 Tog Mrg (s

15

1

then the average number of nodes Hi obey the equations

i =1+ 2: P ZE ijk

1J k (i=1,.0.,n)

Proof: The result is a simplification of

L Pyt + ZHg) (i=1,...,n)

which can be proved in a similar way to the last theorem. The key
step is that if W is a parse whose direct subparses are ((a)l,...,

inj) then h(w) =1 + éh(wk). Hence H,, = 1 + Z H,

1.5.7 Example

16

The equations for the language of assignment statements simplify

(using the previous notation including P3q +‘p32 = q) to

T
n

2+ H, + H

1 2 3
H2 =2
H3 = q(21.-l3 + 3) + 2 -q

- Lﬂ - —
Hence H, 2(1-2q) or else H, = +00, and H, = Hy + 4.

Now H, must be positive, hence if < q then the only possibility

is that H3 = +00. Combining this with the previous result it is

reasonable to suppose that there are three possibilities:
q<% in which case all the measure is on the finite parses and

1 (l 2q)

qQ = 3 in which case all the measure is on the finite parses and

q>% in which case the measure of the finite parses is 1:q .

It should be noted that in the production P, . (X -» X
, ij ijl 132

cee Xijnij), each

of the xijk's is either a terminal or a non-terminal.

If X.. is a terminal then it is easy to see that H,. = 1., On the
ijk ijk

other hand, if xijk is a non-terminal then it must be some X1 say,

and so Hijk is Hy. Thus the equation
=1 "Zj.p:‘gj % Hy 5k
may be rewritten as a sum of terms in Hy as
Hi =1 +'§ pij(tij + ;tijl Hl)

where t,. is the number of terminals amongst the X.. , and t,._.
- : , ijk , jl1
is the number of occurrences of xl. This rearranges to the linear

equation in the Hi's,

This can be rew:&itteh even more clearly by puttlng

a, =1+ P and A ==§E
1 Z 1Jtlj il J pijtijl

as H, = ZAil Hl + ai.

This equation, because it is linear, has in general only one finite

solution. However it may also have some infinite solutions. The

matrix Aij = :E: P t constahtly reappears,. and sqvthe same

1 il "11j
letter A will be used for it throughout what follows.-

1.5.8 Theoren

.

If the BNF of a grammar is

n

xi=:= xijk (izl,ooo’n)

M2
‘o

k=1

then the average length Li(Lijk) of word generated by parses in

S;Li(QQijk) satisfies the equations

17

18

nj nij
L, = L.. (i=1,...,n)
p 3)
i 531 Yij i\ K
which may be rewritten as
n
= + =
L, Z Ajjy * by (i=1,...,n)
j=1
nj
where b, = and A, . and t, ., are as before,
i “~ DP_.t.. ij ij
J=1 ij'ij

Proof: There are two points to be noticed in the proof of the
first formula. Firstly that if @ is a parse, then the length of
the string generated by 0 is the same as the number of terminals
in @ and so 1(®) may st‘andv indiscriminatgly for both. ;\nd,
secondly if ol"""(‘)m are the immediate subparsés of w theh .

l{w) = Ix;:l((.)i), so that if Lis» Ly stand respectively for the

ijk ..
i=1 Nij

integrals gl/ d/‘(ij anc}[d”ijk then Lij = Z Lijk'
i3 ijk k=1

The linear equation can be derived by algebraic manipulation in

a similar way to that for the average number of nodes.

1.5.9 Definition

The mean square of a measurable function g which maps a
probability space S2 to the reals is defined to be ézgz df(.
The variance Var(g) of the same function is defined to bé

4) ‘
/‘Q(g-f,(g)) d where the real number Tg =‘/.di)(is the expectation

of g. Var,(g) _. . 2
i may be written for A{g- ; .
. 01 (g-€g) dr(i, similarly

Varijg) and Varijk(g).

1.5.10 Lemmas
1. Va;(g)’==f92dp - (£9)?

n
n
.2, 1f g = Z g4 and the g; are independent then Var(g) = Z Var(g;).

i=1 . i=1

Proofs:

1. var(g) = /(g £g)%aM = / - 29€g +(£q)° afl = /
-2£g/gdf‘ + (£9)? /ldf‘ = /9 at - 28g€g + (€9)?
=/92d - (£9)?
Hence given any two c;f‘the three real numbers, var(g), £ g or the

mean square of g, the third can easily be calculated.

2. Proved in Loeve, p.12 and there called the Bienaymé equality

or Feller, p.230.

1.5.11 Notatlon
2
If | is the length functlon as above, then L = j/ l QN
Ji are the corresponding
integrals over szij and g}ijk.; Care should be taken over the

is its mean square. Slmllarly L('; and L(

o (2) 2 2
distlnctlop between L'’ meaning ~QHL d}{i and LY meaning

(/2? Ldr(i)z. They are not in general the same real number.
i

1.5.12 Theorem

If the BNF of a grammar is‘
ni l'li |
X, 1:= 2 p.. I\ X,. ‘ (4=1,...,n)
i j=1 ij k=1 ijk }

then the mean squares Liz), Lig) and Lizi of the length function

[satisfy the équations

ny - ' ny
L() . o rL 2) ey)
s [1907 g [Lijk (Lijk) 11 (i=1,...,n)

Proof: This has the usual two Parts, first a relation between the

integrals over Qi and Qi j».and second between those over Q

and.SZj_k Trivially if g is any function to the reals, then the

2 2 2
function g~ where g”(x) = g(x) “ is also such a function, and so

19

20

|
M.
i
LW}

n
iy = { § aM; . ,
Aig P j=1 Qijg NiJ (i=1,...,n)

in particular for g

L , and using the above notation

) zpu TN (1m1 e)

The above gives a relation between the mean sQuares of L over Qi
and Qij’ the Bienaymé equality can now be used to obtain a’
relation between the variances of. L over Qij and Qijk' For if
Q’eggij and (nkeg?ijk (k=1,.;.,nij) are'its corresponding éubparses?
thep the functions Lk(oo) = L(Gdk) are obviously well defined and

independent on S}ij. Hence

n

15 _
Vaigl) = IZ; Yal::él,k)

Bgt Variglk) = Varijk(l,), hence using lemma 1.5.10.2

(1=1,...,n;

(2) 2 (2)
L7377 - (L) Z (L
ij ij ijk .~ j=1,...,ni)

k=1 (bygpd]

The result follows from the two halves by‘ a 'simple"algebraic' re-

arrangement .

1.5.13 Corollary

The mean squares satisfy the linear equations

(2
L:(LZ) ZAip Lh) 7 (i=1,...,n)

where

i
c; = _-;;1. Pyj [tyy+ (Lij) }’_‘J (Ly) 2]

and all the other signs are as before.

Proof: This is an algebraic manipulation, the only possible slight

- - - . (2) —
difficulty being that if xijk is a terminal then Lijk = 1 ..

1.5.14 Remark

It is often quite easy to find various parameters which give
some sort of average structure of the parses, all that is necessary
is to find the right function and integrate it; for instance to
find the probability that the left most terminal of a parse is x
the function sx(oo) = 1 when the left most terminal of the parse

W .is x and O otherwise must be chosen.

1.5.15 Theorem

If the BNF of a grammar is‘
Xi $= Z_p, 'r\xijk

1 . .
and si,x means /gzisx df1i Aand similarly SlJp?nd S

ijk,x
then
ny
Six = le.pig Sij1,x (1=1,...,n)

Proof: If W is a parse and ®Wjysee0, @ its immediate subparses

then sx(w) = sx((.)1). Hence S, . < = S

ij, ijl,x :

1.5.16 Corollary

The similar relations

n

i
T = . T, . .
i,x le piJ ijn(i,j),x

hold between the probabilities T etc.

i,x that x is terminal .

21

1.5.17 Remark

The frequencies of the various letter pairs can also be found.
Care must be taken in the definition of how many letter pairs occur
in a string because there are several slightly different possibilities.
Firstly there is a difficulty about whether long sequences of the
same letter should be broken into overlapping or non-overlapping pairs.
Here overlappiné pairs are chosen. For instance 'abbbc! is considered
to have two overlapping pairs 'bb', not one non-overlapping pair.
Secondly it is preferable for the theory of LR(k) grammars if the
last symbol of a sequence is built into a pair, for instance the
string 'abc' is considered to consist of pairs 'éb', 'bet! and ‘c!
rather than just two. However this will be left until the parsing

is dealt with, and the less preferable definition chosen.

1.5.18 Notation

Cyy is the function which gives the number of pairs 'xy' in a

. C, C.. d . i
parse i,xy’ Cij,xy an CiJk,xy are the usual integrals élicxy d/‘(i,

521/_) Cxy bd,(j_j and 5?/ Cyy d,(ijk respectively.

1 jk

1.5.19 Theorem

If the BNF of a grammar is

ni nij

then the average numbers Cixy ’ cijk,xy of terminal pairs 'xy! in

a parse satisfy the equations

ng ni. - .n .
J ij
c = C,. +
i,xy ;é; le [EE; ijk,xy E;; Tij(k-l),x Sijk,y]

23

Proof: This is just a question of noting that if @,,..., W, are
the immediate subparses of @ , then every pair 'xy' which occurs
in @ either occurs inside some wi, or else 'x' is the last symbol
in some o)i and '¥' the first of its successor ‘Di+1
Thus

h

h
xyl@) = Z Cy(@3) * Z t (@5 1) s lw;)

i=1 i=2

and the result follows by integration .

1.5.20 Corollarz

The average numbers of pairs Ci Xy obey the linear equations
9

n
= i=1 -
c1,xy gg; Alh h xy i,xy (’ 1)
where n n
i ij
U,y 35;: Pij [k}; 15(k-1),x Sijk,y]

and the other notation is as before.

Proof: If xiJ is a terminal then clearly C, = 0 whatever x and

ijk,xy
y may be .

1.5.21 Remark

Finally an equation satisfied by the entropy will be worked

out, where the entropy is as defined in the .‘x‘ooina&duftim’.

1.5.22 Notation

Eyy Eij and Eijk are the entropies of the sets Q—i’ Qij’

S?ijk' q will be a probability function, thus q(®) = }11Q0&L

where it is assumed that any of the measures }{ is concentrated on

the finite parses @ ,

T.f]"‘ 15 o discreke Mmeasure ovpr a et &) than ks enFYc?g
EeQ ~M(w) \Gﬁf{(u))

24

1.5.23 Theorem

If the BNF of a grammar is

n, n.j
X,::= zpr‘ X, . (for i=1,...,n)
i 41 13 =1 ijk

then the entropies of the spaces S;l obey the relations

l
n, n.,
3 Sty S
By = - 2, Pyl * Pij &= Bijx

J=1 k=1

Proof: By the fundamental theorem on entropies

n, .
E,. K6 = E,. .
ij = ‘13k
If ueQij then qi(w) = pij i)
so g, ¥ - q: (W) log»é (w)
i 2: i i
.<Ut§11 I .o
= Jé; > - pl_.,qu(w) log Py 59 5(w)

©ef; 5

‘ng B n '
-[Z:p.logp- a(w)] - [Stp q; . (W)
e iJ‘ ij 0‘%:} ij) J; ij QZ it

“13

1og q; ()]

and then because

wﬁ?;'..qij((n)) =)‘ij(Qij) =1 and - % qij(w) log qij((.)) = Eij
i j @45

i Ny
- 1 + . E
j=21-pij °9 Py g ng__piJ 13

The result follows by collecting together the two halves,

1.5.24 Corollarz

The entropies obey the linear equation

n

Ei‘,g_;“‘ihEh*ei

25

n,
i
where ei = - jg; pij log pij

Proof: If X.. is a terminal then E,. = O.
—_— ijk ijk ,

1.6 ALL THE PARAMETERS CALCULATED FOR AN EXAMPLE

The various parameters can be calculated for the language of

assignment statements as defined before with the BNF:
{pll } L=R

{pzlz 2 \{pzzZ b

{r,} (R+R)l fp32} (RxR)\ {p33§ a\ ip34i b

S::

5
i

R::

then the only non-

2

Now if S stands for Xl, L for X 3

and R for X

Zero terms Aij are

A1z = Pyptygp = 1xl =15 A = Pi1t13 ©

and = Agy = Pyytyg * Paptg,s + P33%333 * Pyyty,, = 29

where tijk is the number of non-terminals xk in production ij, and

9 = P3;* P3ye

Hence I-A = 1 -1 -1
~ 0 1 0
o 1-2q
and (I-AT=f1 1 1/1.2q
o -1 0
o] 0 1/1.2q

Now the a; as defined in section 1,5,7 turn out to be

1+ 1x1l =2

Y
1}

Y
n

2% 1+ Pyl tpyl=2

Y
1

3 =1+ 3?31 * 3p,, + P33 * P3, =1+ 3q + (1-q) = 2(1+q)

hence the vector H of the average number of nodes which satisfies

= (I--A)-1 a where a is the vector of ai's is
Hy =242+ (32)2(1+q)=4+2<12q)
H2 =2
H o 2(1*q)

3 1-2q

which is the same result as before.

Similarly the values bi to calculate the average lengths are

bl = 1; b2 = 1; b3 = 1+2q

and so the vector L of average lengths which satisfies L = (I-A)"

is

To calculate the mean squares, it should just be noted that if
xijk is a terminal then Lijk = land if not then Xi'k is some non-
termina; xn say and so L'jk is L . So for 1nstance in the grammar

’h X (v = i
consiqered ere X,,, is "(' a terminal and so L321A 1 and X1 13 is
R=X3 SO L113 L3 Similarly the Lij are the sums of the average
lengths generated by the component symbols of productlon iJ. . So for
instance L 115 L2 + 1+ L3 For the assignment statement grammar L

L, and L, have just been calculated above, so:

0
1

o 2 2 2
1= Pygltyy + (1y)° - kgl(l‘llk))

LH gty - ()% L (1) - (12

1+ 2(L2L3 + L2+ L)

1+ 2(———9 + 1+ ___ﬂ) 4 (3229,
1~ 2q

27

Similarly,

c, = p21(1+1-1) + p22(1+1-1) =1

R 5 P YR
and ¢3 = (P31*P5,)[3 +(3+2L,)7 - 3 - 2(L,)°] + (P35*P,,)

which simplifies to

-8q3 - 2Oq2 + 189 + 1
2
(1-2q)

Hence as the vector L{(2) satisfies L{2) = (1-a)~1c

.) 5 5
L(2) _ 5, ,1*2q 1 + =897 =209+ 18q+1

' N (1-2q)°
L2) -
1(2) _ =802 -204%+18q+1
3 3
(1-2q)

Ti x and Si x Can for this grammar be worked out directly to give
’] B :

- the. two tables

Si,x a b (n Ti,x a b)
S Pyy | Pag S P33 | Pay | Q
L P21 | Po L Pa1 | Pap

R P33 | Py | 9 R P33 | P3yy [q

where the i,x entry of the first table means for instance that if

i=1 and so X,=S and X=a then the probability that a string generated
by s starts With a is pzlo The blank Spaces and omitted Columns are

all zero.

Using the above tables the following table can be calculated with

a little effort whose Xy entry gives the average number of pairs xy

to be found in a string generated by S. The similar tables for L

(which has all 0 entries) and R are not given.

28

a b = () + X
a Py QP33 | % P3yP33 [XP3,P4,
Pss ®qP34 |X P3Pz, [XP5, P,y
P35 P3y q
2
2
®q ®aP,;; | %aqp,,
® P31P33] *P5,P5, *QP3,
X °‘p32*_’33 *P32P34 %qp,,
where ¢ stands for 1-12q .
Finally the entropy can be calculated for
e1 =0
€ = = Pyyl09 py; - pyylog by,
and ej = - pP3;100 py; - Pyylog by, - P33109 P33 - Py log Py,

and so using the condition for the vector E of entropies E = (I—A)-1

o
i

1% * e3/(1-2q)

t
]

2~ %

o
1

= e3/(1-2q).,v

Chapter 2

GENERATING FUNCTIONS FOR CONTEXT FREE GRAMMARS

This chapter has three purpoees. Firstly to justify some of
the previous calculations and prove that they work in all circum-
stances (or at least specify in which circumstances they work).
Secondly to show how some of the calculations can be done in a more
unified way. Thirdly to show how some more parameters of context
free grammars can be defined and calculated, in particular an
expression for the information‘rate will be given.

The means used to’achieve theee ends will be to define some
generating functions associated with probabilisticvicontext-free
grammars, and investigate their properties. Unfortunately a lot of
work is needed.to prove properties of’these generating functions
which are of no direct interest as far as the grammars are concerned,

and much of the chapter will be taken up with this work,

2.1 PRELIMINARIES

In this section are listed some standard properties and defi-
nitions which are used in this chapter, Firstly some properties of
generating functions in one variable, then some theorems to do with
algebraicity, and finally some properties of multivariate generating

functions.

2.1.1 Univariate Generating Functions - Definitions

If i= <aa ? is an infinite sequence of complex numbers, and
z 1s a complex number, then <a z) and <An(z)> are two

more such sequences, where A (z) = 2: aiz For any part1cular

z the sequence A (z) may either converge oscillate, or dlverge.

30

A(z), called the generating function for the sequence (ai), is
that function which is defined only for those z's for which‘(An(z)>

converges, and whose value is éi_,mw A_(z) there. It turns out

n(
that there is always a real number r (O, positive 6: + 00), called
the radius of convergence of (ai), such that if [z|<r‘ theh A(z) h
is defined, and if {z| > «r then‘(An(z)> diverges. There is no

general rule for what happens when |z|] =r. The set iz:\zl<r} is

called the circle of convergence of <aj?

The above states that given any sequence there is a unique
function with various properties; the inverse also holds for cases
of practical interest. In particular, given any function A(z)
defined, differentiable and finite everywhere within some open
neighbourhood of the origin, then there is a unique sequence <ai)
such that the limit of A (z) is the same as A(z) inside the neigh-
bourhood. If A(z) and B(z) are two such functions (defined,
differentiableand finite in open neighbourhoods of the origin) then
C(z) = A(z) + B(z) and D(2) = A(z) x B(z) are two more such functions
defined at least in the intersection of the neighbourhoods of A and
B. It turns out that the sequence <cy;> for the function C is the
sum of those for A and B, that is cj = ai*'bi~$ and that <d;) the
sequenge for D is the convolution of those for A and B, that is
dj = jgg ajb(i-j)' é%(A(z)) is also of the above sort, and the

ith term of its sequence is (i+1)a(i+1)-

2.1.2 Analytic Continuation

Although the function defined by a sequence is only given
inside its circle of convergence, it is often possible to extend its
domain. For if 2z, is a point inside the circle, then B(z) = A(z+2,)

is another function which is defined, differentiable and finite in

31

a neighbourhood of the origin. Hence it has a sequence {bj)» which
in turn defines a new function B!'. Now B'=B when both are defined
and B'(z) is defined inside a circle of radius r', By defining

A(z) = B'(z-z,) inside a circle of radius r! about 25, it often
happens that A is defined for new values of z such that lzl > r, and
the domain of A is extended. If this process of analytic continu-
ation is done again and again, it often happens in practice that the
function A can be defined for all z in the complex plane except for

a finite number of singular points.

2.1.3 Singular Points

Singular points can be classified accordind to their properties.

Only two sorts are of interest here. A pole at 2z, of a function A

Lim 1
z-ozo(A(z)

A branch point is more complicated., If a function is extended by

is a point where A(z) becomes infinite, that is) = 0.
analytic continuation by going round a loop (circle, jordan curve)
i'n small steps, and there are no branch points inside the loop,
then fhe value of the function at a point after going round the
cifcle is fhe same as at the begihning. On the other hand, on
going round a branchpoint thi; i#‘npt in general so,. A function
with branch pqints may be thouéht 6f as having a number of layers,
some of which are stuck together at a branch point. Some compli-
cations are that a point may be simultaneously a pole and a branch
~point, also if a function hés‘séQeral layers,.a point may be a pole

on just one layer, or a branch”point}connecting not all.

2.1.4 Expansion about a Pole

A theorem stated by Feller.[7 1, p.285 allows the limitihg
behaviour of the sequencé <ai§' to be obtained from the Properties

of its generating function A(z) at the pole Zzo of A nearest to the

origin.

Theorem n

If A(z) = kiﬁ 2;0 aizi and also A(z) = U(z)/V(z), and the
following three conditions hold.

1. 2z, is a root of V but not of U.

2. 25 is the root of V strictly smallest in absolute value (i.e.

the root of V strictly nearest the origin and hence also the pole

of A strictly nearest the origin).

3. 25 is a root of multiplicity r (i.e. V(zg) = é% v(zo) = ...
r-1 r
= 9—;:1 V(zo) = O but agr V(zo) # 0).
d, 2 .

Then as n~»(C0

(-1)F rt U(z,) (n+r-1)

an >
n n+r r r-1
z, a- V(zg)
dzt

Remark

The two particular cases used here have r=1 and r=2,. They

can be restated more simply as follows.

Corollary
When the three conditions hold and r=1 then
-U(zo)
a, ~»
n +
2" 1 Vi(z,)
Corollary

When the three conditions hold and r=2 then
2 U(zo)(n+1)

zn+2 Vf'(zo)

an=—
o

Remark

In practice the main difficulty in using this theorem is in

showing that condition 2 holds.

33

2.1.5 Algebraic Functions

Definition
A function A(z) from complex numbers to complex numbers is.

algebraic if it satisfies a non-trivial equation of the form
m m-1
P (z) (A(z))" + pl(z)’(A(z)) "t e L+ Py(z) =0

for all z, where all the Pi(z) are polynomials in z, (The equation
is non-trivial so long as the multinomial Po(z) w4+ L.+ Pm(z)
is not identically zero). Algebraic functions are important for

this thesis because of the following:- .

Theorem

. If A is an algebraic function then its only singularities are

poles and branch points,

Coroiiarz
The non-singular points of A'form an opeﬁ subsétgbf the éomplex
plane. | |
One way to show that some particular functions are algebraic
is to use the‘followihg theorem, thch gives a ﬁﬁlti-dimensioﬂal‘
analogue of the defining equation. (Condition 2 gives a generali-
sation of the idea of non-triviality.)
Theorem
If Al(z), Az(z)?."f’An(zj are comp}ex functions of the complex
variable z, and | - | |

1) they obey n equations of the form

| ﬁG(z? Al(z)f°'7’An(z)) 0 for ail z, j#l

peeeynlj
where ‘Pj(z, Wy Woseesy wh) is a multinomial of the form

Pj(z’wl’...)’ wn):: iog..-iheﬂ-‘ aio...in z

(j) io'wil : Win
1 ® o0 n F]

34

(3)

ige..iy

where the a.; are complex numbers, and only finitely many

of them are non zero;

2) the jacob&an é?%l) # O at at least one point (zo,Al(zo),...,

AL(20))

then each of the functions Ai(z) is algebraic.

Comment on Proof

As far as I know, this theorem is not in the literatpte. I
therefere attempted to Pprove it myself My method would have
constructed POlynomlals P()(z),...,P(i)(Z) ,and so given a direct
p;oof that A; was algebraic. Unfortunately it failed to invariably
find non-triyial polynoﬁials in‘the rere cases when some of the Ai
had cusps or similar peculiarities at zo. | |

Leckily I managed to ieterest Drt G." . Segal in the problem
and he succeeded iﬁ proving it. His proof uses mathematlcs Wthh
is needed powhete eise in this thesis. I have made it appendlx 1

2,1.6 Multivariate Distribution Generating Functions - Definitions

Definition

Given a multiple series «(aioil...in:io,il,...,in = 0,...>

of complex numbers, then the multiple sum

z (o]
A(Zo,...,z)= ai oool Z ...Zn
R n ,000,1 "On °© n

o

may be defined for some complex values <2 R) by taking the

limits of subsums in various suitable ways, The convergence '

condltlons are more complicated than those for one dimensional
series, but the sum clearly converges for all wvalues if only

finitely many of the By eeey are non zero. This is the only case
[o] n
used here.

Definition

A function V is a vector valued function from a measure space
(Q,va,){) if it is measurable and maps Q to n+l-tuples of non-
negative integers. If <io,...,in> is such an n+l-tuple, then
V-l(io,...,in) is a measurable subset of,gp y SO its measure
,((V-l(io,...,in)) exists and is a non-negative real number. So
the multiple series(}l(v-l(io,...,in)))‘ may be ﬁsed to define a
generating function F(zo,...,zn), which is called the distribution

generating function (d.g.f.) of the vector valued function V.

2.1.7 Properties of Distribution Generating Functions

For the purpose of stating these properties; the m functions
Vi will map the spaces (g)i,C[i,/(i)'to ntl-tuples, and have
(d.g.f.)s Fi. Similarly V and F correspond to (§2,Cl,}().‘ The
eqﬁations are only asserted under the unnecessarily iestrictive’

condition that all (d.g.f.)s mentioned converge.

Theorem

If) iS the e i llt i joi s

then m
V F(zo,...,zn) = Egipi Fi(zo,...,zn)

Theorem

o - R m :
1£ (§, Qs M) is the product] ‘o (_Qi,ai,}(i) _and V is
i=

defined b i =
efine tom e the sum of its components (1.e.Afor(ﬂ-—(uﬂﬁ.,,,q)m)ggl,

V() = :z; Vi(@;)), then
i=

: | e . : ; N

F(zo,...fzn) = - jg; Fi(zo""fzn)‘

36

Theorem
—2solen

The mean value of the it} component of V on the space

(S, U,M) is

The Proofs are obtained by rearranging the defining sequences.:

2.2 VECTOR VALUED FUNCTIONS ASSOCIATED WITH GRAMMARS AND THE.
EXTINCTION PROBABILITY

In the theorems so far, it has been assumed whenever necessary
that all the measure is concentrated on the finite parses. Luckily
there is a simple teSt‘to show if this is in‘fact so: The derivation
of this test is complicated, and depends on seeing a grammar as a
particular example of a branching process. A derivation of a similar
test for branching processes is reported in Harris [13 '], pp.34-48,
but he requires an extra condition which only ﬁolds-for a small and

not linguistically interesting class of grammars. An alternative

derivation using results from the theory of markov processes has

been obtained by Hutchins [16],

2.2.1 Notational Convention

The reader should recall that the grammar dealt with here has
ni 5

productions {(Xi~9 A X, Jk): i= 1,...,n, J—l,...,nig » where the

- th
Xi are the non termlnals of the grammar and xijk is the k symbol

in the j production of the i rule, Each X. 15 either a non-

terminal, and so one of the Xi, or a terminal and hence corresponding

to a dummy non-terminal x . S;Li’~§213 and g)ijk are the sets of

parses stemming frbmfxi, xi through the production Pi. and X.
J

Jk

37

i i .., is X then oy 1 §;2 i her
respectively, whe?e if lek is X e Qlle is y Or in ot
words the set containing just'the single degenerate parse consisting

of just a labelled root.

The pattern of subscripts i, ij, ijk occurs often. In general
énly symbols Qith subscript i are explicitly defined (in terms of
gzj), symbols wifh’subscripts ij and ijk muSt be aSsuméd\fé ﬁéve

analpgous definitions (in terms of 4S2. or S?

15 ijk)' When X. is

xijk’ the meaning of the symbol with subscript i is the same as,
or equal to, or isomorphic to that with subscript i as required.

Seldom does the symbol with subscript O need a special definition,

but it often adds clarity if it is given one.

2.2.2 Vector Valued Functions Associated with Grammars

Definition

An important set of vector valued functions associated with a
grammar is {vid?} , where V§d) maps ‘gli to n+l-tuples of
integers, and if the parse P, ¢ g}i, then the 5P component of
Vid) (P) gives thé numﬁer of occurrepces of Xj at depth d in P,
(Or if j=0 the number of accurrences of ferminals.)

d .
‘ F§)(zo,...,zn) is the (d.g.f.) corresponding to Véd).

Remark

Because the degenerate parse has a sole terminal at its root,
(o) ' d =
Fo (zo,...,zn) = z_ -and F‘())(zo,...,zn) =1 for d)O0.

Remark

As d becomes larger, the functions F§d) ﬁay (but neéd not)

become more and more complicated multinomials in the variables

zo,...,Z‘. Fortunately all these functions can be constructed 1n

sequence directly from the functions F(l) + Many of the properties

38

of the Fg?) can also be obtained directly from the corresponding
properties for Fﬁl). The functions F() are thus particularly

important, and will be written Fi for short.

Theorem
(d*1) = ((d) (a))
Fi (20,-oo’zn)'—Fi Fo (Zo,o.o’zn),oio,Fn (zo’oco’zn)
Proof‘
V§?+1) nd V(d 1) satlsfy the condltlons of theorem 2.,1.7.1
0y
(d+1) = (d+1)
so Fi (zo,...,zn) = ;g; pijpij (zo,...,zn)

Similarly, given a parse ‘Pij, let ﬁ3 be the subparse
whose root is the symbol xijk immediately below the root of P 1§
Clearly any symbol at‘depth'd+1‘in*}#€j is at depth d in one of

the 1pijk' Hence - : a ‘ ‘ ' IR

(d+1) _ d) an
v (?13) 7‘13 J(-Jl)<(‘¥)ijk)

So using theoxem 2.,1,7.2

n,.
d+1) 7{ (d)
F(oo -
J (’ ’zn) k_l Fle (zo,..o,zn).
But by inspecfioh

-) ' n,.
» R
Filzgreenz) = 3 p T\ 254

§=1 "ij k=1

o

where as usual z, ., is z if X..‘ is X
(245k L ijk L » and zijk is z, if xijk

is terminal),

The result follows by using that in this case F(d) (a)

ijk is F| .
Definition
I(d) : h b *) .
i 1s the probability that a parse 1x1§2j_ has depth less than

39
Definition ‘
pli_,.eei) %85 MLV, .

in words p(io,...,in) is the probability that a parse starting from
Xi shall have io occurrences of terminals and ij occurrences of

non~terminal Xj at depth d.

Corollary
T(gﬂ‘) = Fi(’l‘éd), s Tr(ld))
Proof

Clearly the depth of a parse is less than d iff it has exactly

no symbols at depth d. Hence
3 .
T(i) = p(0,...,0).

But p(0O,...,0) is the only non-zero term in the sum for F(i)(o,.;.,o).
‘ (d) = R(d) ' . .
Hence T ;= F i (0y...,0) and the result is a special case of

the previous theorem.-

Remark

T(g) = 0 for all i, and each of the functions Fi(zo""’zn) is
known}explicitly. So the above corollary allows the vectors
<1r(g)> of extinction probabilities to be worked out iteratively.
iBecauSe'each Fi is a rational function of its arguments and the
preprobabilitie§ Pij’ if all the pij are rational or gigebraic

then each‘ng) has the same property.

Lemma

- g _ A 7
For egch i, the sequence T(i) is non-decreasing and bounded

.above by one.
Proof

The bound exists because T(g) is a‘probability. The probability

40

that a parse in .S}i is of depth less than d is of course less or

equal to the probability that it is of depth less than d+1.

Corollarz

The sequence T(g) tends to a finite limit Tiﬁil.

Proof: Straightforward.

Coiollarz

Ty = F(Tgs.e. 'Ty)

Proof: Consequence of corollary.

Remark

An alternative way to say that all the measure is concentrated

on the finite parses is to say that T = i.

Lemma

F(g)(l,...,l) =

Proof: The left hand side is the sum of the probabilities of all

the elements in a probability space.

2.2.3 The Matrix of Means

Definition

M(¢)
ij

for i,j=1,n is the mean number of symbols X. occurring
; L J

at depth d in a parse stemming from X;+ If j=0 it is the mean number

of termlnals, if i=0 the mean number of symbols in the degenerate
d
parse (so mt ; 0 for j=1,...,n, M(°) . 1 and for d:>O,M(d) = 0),
oo

. d
Mij is short for M(J) M() and M are short for the matrices

(d) ..
M)(1’3 0,...,!1) and (M) (1:J=o’~o-,n) respectively. M.is

{
an important matrix and will therefore be given a name, 'the matrix

41

of means', (The notation Mij comes from ordinary matrix theory,
and not from the method of writing subscripts for grammatical
symbols. There is no meaning for the symbols M, and Mijk')
Remark

As can be easily seen by calculating both, the matrix A which

appeared in chapter 1 [1.5.7] is the same as the cofactor of the

leading term of M, that is, the matrix (Mij) (i,3=1,...,n).

Theorem

(@) 0 R(q) _
Mij = [az.Fi‘ 1 (1,..,1)
: J
Proof: Special case of theorem 2,1.7.3,

Theorem

4 : _ -
M(d) = M~ (where Md is M multiplied by itself d times)

Proof: By induction. M is M(l) by definition. Suppose M(d) = M

then M(gkl)
= [oz, F(d+1)](1,---:1)) «.+ by above theorem
- [_a.._F F(d ‘ ' (d)
= 33 ((z ,...,z),..., (z ,...,zn))]
. z°=...=z =1

«+s by theorem 2.2,2.4

(d)(l,---,l))} {——-J (1,...,1)})

by‘the rule for the differentiation of a function of

- n
I
"7::?\ '

of a function
n

= EE: M, M(d)

j=0 ij jk

d 1 d d d+1
That is M() = mml),= MM™ = M 7, So the theorem holds for all

d by induction.

2.2.4 Decomposition of Matrix of Means

Definition

Any squaré matrix is said to be reducible if it can be put into

B ‘Al

by using the same permutation on both rows and columns. In the

the form

diagram both Ao and A1 are square, and O is a block of all zero

entries.

A square matrix is irreducible if it is not reducible.

Remark -

Either A, or A; or both may themselves be further reducible, in

any case every square matrix can eventﬁally be written in the form

where all the Ai are irreducible.

Defihition
'y! is a binary relation on the symbdls of a context-free

grammar. xi:axj if Xj can occur in a parse stemming from Xi. '?5'

is the complemen?ary relation, that is xi¢>xj iff it is not the case

that xig XJ. .
Lemmas

'D"' is transitive and reflexive. For reduced grammars (the

only ones of interest here) if X, is the start symbol and X, represents

the terminals then for all X,, X DX. and X.DX
: SN ; i’ “nT 74 iT %o

Proofs: . Obvious,

Remark

Once a permutation has been carried out to get M to the form

with irreducible blocks on its main diagonal, it is possible to

43

renumber the terminals so that each term occurs in its correct place,

xo st111 represents the termlnals and X the start symbol This will

be assumed to have been done in the following theorem whlch links M

and the relation :).

Theorem

If XiDXJ. and XjDXi then M;; and ij are both elements of

the same irreducible diagonal component Ak of M, and conversely,

if the latter holds so does the former.,
| If X.OX, but X, . s
X 3 u Jbel theq M11 and ij are parts of different

m;trices Ak(i) and Ak(j) respecfively, k(i)2 k(j) and id> 5.

Proof: The key step is that Xi? XJ. iff M}L?) = O for all d. That is
if no parse stemming from Xi contains any symbols xj, then the .

average number of symbols Xj at any depth d is also 0.

Remark

The above theorem allows the matrix M to be split into its

1rzeducib1e components with éomparatively little effort. 1In parti-

cular because X :>Xi only if i=0, the matrix A is the single number

Moo = O and M is therefore both singular and reducible.
Moo’ the cofactor of Moo’ is also usually reducible,

have both XiD Xj and ij xi for all pairs of non-

terminals.

2.2.5 The Eigenvalues of the Matrix of Means

Lemma

All the entries M(g; of any of the matrices M(d) are non-

negative,

In practice

for few grammars

44

Proof: Each is an average of non-negative numbers.

Theorem

A non-negative matrix A elways has a real non-negative eigen-
value r such that no eigenvalue of A has modulus\exceeding r. To
this 'dominant' eigenvalue there corresponds a non-negative eigen-
vector. (Where a matrix or vector is non-negative if all its
entries are.)

If in addltlon A is 1rreduc1b1e then the domlnant elgenvalue

r is a 51mp1e root of the characterlstlc equatlon (corresponds to

exactly one elgenvector)

Proof: This is very long and may be found in Gantmacher [10]

The case when A is irreduc1b1e is part of his theorem 2 (p 65) and

the general case of theorem 3 (p.85).

Remark

The next two theorems are not used subsequently, but may help

to give a feel for the properties of the eigenvalues.

Lemma -

' Every eigenvalue of a reducible matrix is an eigenvalue of one

of its irreducible components and vice versa.

Proof: The key step is that if A splits into two not necessarily

irreducible components A o’ Al’ so that

B Al
if v, and v, are left and right eigenvectors‘of Ao and Al respectively,
o

so that v A = | AV and A v, = My

then (vo,O)A = A (vo,O) and A(vl) =/'\(v1).
0 o)

45
If Ai is not reducible it can again be split, and the identity of

eigenvalues carried down till an irreducible component is reached.

Theoxrem |
The dominant eigenvalue of M (the matrix of means) is the

greatest of the dominant eigenvalues of its irreducible components.,

Theorem
If G(i) is the reduced grammar obtained from G by removing
those'Xj such that Xﬁ;ﬁxj‘and also their productions, then the

dominant eigenvalue of M(i) (the matrix of means of G(i)) is less

than or equal to that of M.

Proof: The set of irreducible components of M(i) is a subset of the

set of irreducible components of M,

2.2.6 Extinction Probability - Part 1

Remark:

The next two‘theorems show that the measure of the set of
finite parses is related to r, ¥he dominant eigenvalue of M. 1If
r<1 then almost all parses are finite but if r>1 then there is a
finite probability that a parse does not terminate. These two
stateménts are proved by entirely different methods, so they will

be given as two separate theorems, one in this Paragraph and the

other in the next.

Theorem

If r is the'dominant’eigenvalue of the matrix of means of a

reduced probabilistic context free grammar and r<1 then the measure

of the set of finite parses is one.

46

-1

Proof: M can be rewritten in Jordan normal form as M = TET
Here the only non-zero terms of B are in blocks Bi on the main
diagonal, where each Bi has some eigenvalue ¢ all along its leading

diagonal, and 1's on the diagonal beneath. 1In a diagram

B = Bo 0 and B, = °]<.

. o«
"')) ’ ‘ 1.*-
')

Powers of the Bis are of the form

(MN .
aw N1 wN
N!g-lAluN-"Zﬁ | VNNN—I °‘N.
. i . T . N
\ e . ¢

N
Hence \Bi| ; the matrix of absolute values of entries of B has

i’
values , ’
N | |

REE o \

NI N2 e N g

a -

Now ;g‘m\t’dN-q =0 1if lNl(1, and [%]< 1 because \x\< r <1,

'Hence if a and b are the largest absolute values of entries of T and
‘T'l respectively, and n+l is the order of M, then given any (smail)
€ 1t is possible to find a N such that all terms of each lB l, and
hence of ‘B ‘, are 1ess than e/'a.b(n+1) Let (1) be the matrix

‘all of whose entries are 1 .

€

b.(n+1)3 (1) (2)(1) = == (1).

Then lMNlé el 8™ e~y < a2

a7

'To recall the meaning of the en‘triesﬂ in the matrix, the above
states that MJS_I;), the average number of the symbol XJ. at depth N
in a parse starting from X;» i1s less than €/n+1. 1In the worst
possii)le case each parse of depth N or greater will have exactly one
symbol at depth N, and thus the maximum number of parses will extend
beyond this depth. But; in this case the meas{xre of the set of parses
remaining is € . € can be chosen arbltrarlly small, so the measure

of the set of infinite parses is zero.

2.2.7 Extinction Probability - Part 2 and Conclusion

Theere If r is the dominant elgenvalue of the matrix of means of a
reduced probablllst:l.c context free grammar and r)1 then the measure

of the set of finite parses is . ess:. than one,

n
Proof: The sequence of vectors i=’0< T(g)>of probabilities that a

parse starting from X:.L has terminated by depth d tend to the
limit vectori:()(‘l‘i) of probabilities that these parses terminate
at all.

Suppose (si> is any point near <1> such< that each Si< 1.
Then <si) = {1) - ‘<hi) where all the h, are positive, This
fact combined with that r2 1 gives that for some i, h:)hi, where
<hi') = M<hi$ - See HARRIS [13 1, but also take note of
the final paragraphs of this pProof. For this proofr 'b' 'Q ') will
be used 'for this relation between vectors (and its converse), that is

a >D<b) means that at least one as; > by

Hence,
<Fi(1-ho,...,1-hn)>- SFe(l, 00,1 o oM <nvdq - (hi>

But by 1emma2 2 2 13 <F (1)"',1)> <1,oco’1> so the above \

may be rearranged to give

<Fi(1-ho,..-.',l-hn)> | (1.-151) |

48

In other words, <Fi(so,...,sn)> < <Si> .

Another way of statingthat the probability of termination is 1
is to say that <Ti> = <1> . As <’1‘i> is the limit of the sequence
< T((ii)>,<’r(cil)) must eventually cluster close enough to 1) to allow

it to be used for <si> to yield

<ry @@, 1@))5 4 ¢rlD)y

or in other words, using corollary 2.2.2.6

d+1
<T(i+))Q <T(S)>

That is, for some particular i, T(cfl)(T((ii) , or in words, a pai'se
starting from Xi is more likely to have terminated by depth d than
by depth d+1. This is impossible, so (Ti) # <1H

There are two possible difficulties with the above proof.
Firstly the proof that M<hi> > <hi> .requires the matrix M to
nave a singular dominant ,eigenvalue. As M is not necessarily
irreducible, it may be the .case that its dominant eigenvalue is

shared with two or more of its irreducible components, and so not

singular._ In this case one such component can be chosen and called

the dominant component, and any symbol xi such that Mii is a part

of th:Ls component called a dominant symbol. Powers (A(k)) of ‘the
domlnant component (A(k)) give the average numbers of dominant
symbols at depth d in parses stemming froxn dominant symbols.

Because r(k))l and r(k) is s:.ngular the theorem above holds, so the

limit of the probability that a parse starting from a dominant

symbol contains no dominant symbol is lesgs than one, Hence the

probability that a parse starting from a dominant symbol terminates

is less than one, and so, because the grammar is reduced and there

is a strictly positive probability of generating any symbol from

the start symbol Xn, there is also a finite probability that a parse

49

starting from Xn does not terminate.

The second difficulty is easier to deal with. The sequence
T(g) may attain its limit Ti after only a finite number of steps,
and so falsify the condition that all si<:1. However this can only
happen when Xi can only generate a finite language in which case
the irreducible component corresponding to Xi reduces to the single
entry M,;» and M;;=0. This clearly cannot be the dominant block and
so the above analysis can also be used.

This is as much of this proof as will be given here. The
s c¢an be found in

remainder, that is the proof that M'<hi> b'<h£>

HARRIS

Corollarz:

~

The probability that all parses terminate is one -~ if the

vector (I- M) <1> is strlctly p051t1ve, where I 1s the unlt matrlx

and 1 the unlt vector.

This is proved in HUTCHINS [16].

Remark

The last eorollary is useful in’practice because it is in general
easier to invert a matrix than find its eigenvalues, Because a
matrix can always be inverted by rational operations in finlte time,
‘1t alsq gives a finite test for the condition. If I.M is not

invertible, then M has 1 as an eigenvalue, so M fails the test to

guarantee finite parses.

Proviso

Because of the above tests it is now reasonable to‘assuﬁe:that
for any grammars to be dealt with in the seéuel, that the parses
terminate with probability one, that r<1, tﬁat Fi(l,...,l) =1

and so on. Cases when r=1 will wot be cnsideced.

50

2.3 THE LENGTH GENERATING FUNCTION

The length generating function of a grammar is defined in this
section,ana some useful properties of it demonstrated. 1In general
it is impossible to give an extrinsic expression for this function,
so its properties must be found by indirect proof or by manipulating
an intrinsic equation which it satisfies, However the function is
well behaved, and it is possible to roughly locate its singularities.
Various parameters of the original grammar can be deduced from those

of the functioh,»and even calculated by simple arithmetic.

2.3.1 Definitions for the length generating function

If necessary, the reader should refer back to section 2.2.1

to recall the notatlon. ' .

Definition

; n ',‘,,» B L L
€;§1)~1s that subset of S?i which contains only those parses

with exactly n terminal symbols.

Definition

(n) _
Piv we Q.(ri’)ni(,é)

()

_is the probability that a parse will contain exactly n
terminal symbols (and when the infinite parses have zero probability,
also the probability that the generated string will have length n),
Hence p(n) e a non-negative real number and so the sequence'<p§n)>

can be used to define a generating function,

51

Definition
o
= (n) _n
fi(Z) - Zpi z
: n=0
fi(z) is called the length generating function (for xi).

2.3,2 The intrinsic equation for the length generating function

Theorem
If the BNF of a graﬁmar is
Zp. 7-\x .
3 1) 7y ijk o

then the length gerieratihg functions obey the equations

o (z) Zplj ﬂfljk(z)

~

where the second equation means that if one side converges then so

does the other, and both then have equal values.
Proof: As usual this is in two parts:

1. f(2) = z‘lpuf1J z)

n . ‘ .
If wng) then it is a parse with start symbol Xi and n

termlnal symbols. Some production, Pij say, must have been used

first to generate @ and so weQ) also. Now ’&i((.))i: pijﬁij(w)

Hence summing over all @ in 5}_("‘)

Mi(Slin)) Z plj }(iJ(Qin)), in other words p Zpijp:(Ll;) .

the last step being permissible because 2_ p:(Lg) N

absolutely. So the result follows from the facts that

£,(z) = 2_; pén‘)zn and similarly f,,(z) = Z p(n) 20

converges

52

2. fij(z) = injk(z

This is more difficult to prove,and some special definitions
and notations are needed which are used only in this proof. The

sequence of spaces

@BV O=THUQ B, M S e oteiny)

1)
can easily be 1nduct1ve1y defined. If the number L(8) of terminals
: k
in a k- tuple e —(wl,...,(.)k) is defined to be Z- W(w), that is
the sum of the numbers of terminals in the individual elements of

the tuple, thenOén), q(z) and gk(z) can be defined analagously to
(n) _(n)
52. » p; ' and fi(z).

i
Thus, Oin) = ie:eeVOKV and l(e) = n}
(™ = Vk(O(n)) |

g (z) = > qof™ 2"

n=o

The proof that fij(z) = Zg.fijk(g) now works by showing that

gk+1(z) = fij(k"‘l)(z) gk(z)
and then using induction,.

Any (k+1l)-tuple € = <Wyseen, qjk,‘wkﬂ)é O 41 May be written

as a product of the k-tuple eJ <®1,...,h) > € O and the parse

Q)k+iégzij(k+1). Clearly C(e) = l(e) + ‘((ﬂk+1)' Hence if
! ¢ o{n-h) h)
e € Ok | and °’k+le-g2ij(k+1) then ee€ 0ﬁ+i, and clearly every

et oén) can be so obtained as h varies from 0 to n,

o(n) N o(n-h (h)
Ut © hgo %)Egij(kﬂ)

-~ Hence,

Hence by definition of a product measure,

« () -h ‘
Y. = Z V™) ﬂla(kﬂ)(Qlj(kﬂ)

(n)

so using the definitions of Py

Hence ' gk+1(z) dg

i}
™M
Yo}
=
Z
N
™
g
=
A
N
=3

Clearly gl(z) = fljl(z), hence by induction g

But theoreml.5.4 shows that<:

, , nij’¥ngj
to(Q i3’ a’ij s }113) and hence o
, n,
f. . = = ’
1J(2) gnij(z) 1Z§i fijk(z)'

Corollary

fi(z) = Fi(Z,fll(“Z),...,fn(z))

Proof: Fi(z‘?""’zn), Zpij K iJk

Remark

fo(z) 2 z and Fo(zo,...,zn) 21

B, ,vni

S3

(by pﬁ%ting L=n-h)’

(by rearranging the sum
which is permissable due
to absolute comnvergence)

;20 = Y £5 5(2)

k—.

.> is isomorphic
J

(i=1,...,n)

» SO the above corollary does not

hold for i=0. This is because the left hand side-of the above

equation is the generating function for the number of terminals”

‘appearing at depth O or greater in a parse startiné from X

right hand side gives the number appearing at

i’ and the

depth 1 or greater,

1944
=N

These numbers are the same except when the start symbol is a terminal,

that 1is i=O0.

Theorem

‘In a reduced grammar, fi(l) = Ti .

Proof: The probability that an infinite Parse generates a finite

number of terminals is zero in a reduced grammar, so both sides of

the above equation give the measure of the set of finite parses.

Corollarz

If r<1 where r is the dominant eigenvalue of M, the matrix

of means, then f (1) = 1.

2.3.3 The differential coefficients of the length generating function

Definition

An expression € will be said to have property 33N if g is a

S t
d°Fy , - dif
multinomial in terms and i
. ' Zil... Zis dzt ?

where 1€ s,t ; 0€j,kSn ; Oéiuﬁn for 1€ usSs ;

]

and N-1 is the maximum value of t for the terms atsy

in 8 . - dzt

that occur

Theorem
r<| and hwce

IfLall the measure is concentrated on the finite parses then

all the: differ?ntial coefficients (é%)Nfi are finite at z=1.

Proof: First it will be shown by induction that for N2> 1

N. .. ' N
d'f, - rz OF, d £, i | |
i d i i ~.£ : : i . :
—_— = , \ + (where has pr t
A = Oz, a® N € property P)

By‘diffgreptiating equation 2,.3,2,2 there is obtained

8| &
i]
. o}
i1
o lov
5]
. fH
[o R
&5
+
anY

F,

Clearly

5935

>F;

0 2,

(where Ei =)‘

bbzl has property 'P p S© the statement holds for N=1,
o

By differentiating the statement for N is obtained

Mle. %= 3F, & i
%o :
dZN-i-l- j=1 d 25 dzN+1 N+1
. 2 i
where 81 = ZrL 2 a Fi - fj dEN
Ml 521 k70 075 0%k M dz

The first part of the right hand side of this equation clearly has

property ﬁ>N+1' The second summand can be seen, by using the method

of differentiating a function of a function, to be a multinomial

in those terms which appear in 8_; and also the possibly new terms

s+l

a Fk . dfis+1
"QZsseeenZ; , dz
i ls'l-l
3°F,
where - and
. zi’...’ zls

y dt+1f.
and —3
dz
ats,
bl |

3 occur in f ;.
dz

8; has property @N by the inductivé'hypdthesis, so {he maximum

value of t is N-1 and hence of t+l is N, that is o€ N

az has property

i
?N+1 . Hepce g N+1 also has prokperty’ 'YJN+1 ,and equation A2.3.3.2

holds by induction.

Another induction is needed to show that all

finite, Assume that all are up to NzNo

S
9 Tk
QZigeer 2ig

Now

at zé:é:l and zi=fi(z)=1, and so is finite for all s,

i150005ige Similarly E lj\i +1
s o
0 Fx

bZilnwo zis

numbers

z=1

\ _, is a multinomial in z
z=]1. (o]

"and the numbers 1

dei
are
dzN z=1
reeesZ evaluated

k and sequences

z=1 is a multinomial in the finite

de
which

dzN z=1

S5G

are assumed finite for NSN_ by the induction hypothesis. Hence

i . - .
. 202- . =
2 N0+1\ ,=1 1S also finite Now equation 3.2 for N No+1
can easily be transformed to
nz g Fl : dN°+1fJ; . L - .
— (045 - 3z,) No*l ~ O N1 (Whe.resifl if i=3,
J=1 J dz o .
O otherwise)
And evaluating at z=1
. .
n adiotle .
Y (655 -M3) — s = €;+1 .
. dz © z=1 ° z=1
j=1
0 F; ‘ :
where Mij = >z \ is an element of M the matrix of means.

Now the dominant eigenvalue of M is less than 1, so I-M is invertible,
and so multiplying both sides of the above equation by the inverse

of I-M,
N +1
do 3
-—FIJ is finite, .
dz o z=1

The base of the second induction is trivial so the proof is complete.

Corollary
d \N ‘
The numbers (Py) fi can be calculated directly without
. z=1

knowing the functions fi'

. . - . - . i . . .
Proof: f£,(1) =1 is known, so § i can be calculated, then because

can be calculated and SO on,

Corollary
None of the functions fi have a pole or an algebraic branch

point at z=1,

Proof: fi(l) = 1 so there is no pole. If z=l were a branch point

then fi could be expressed in some neighbourhood of z=1 as

57

oD

fi(z) = > aj(z-l)j/H

[SSRE

==

where H is some positive integer, o« may be either positive or

negative, and there is some j such that H does not divide j and

aj # 0. [AHLFORS, p.294] ' Hence some differential coefficient

is infinite.

Remark

.This second corollary is the main reason for proving the
previous theorem. Eventually it will be proved that f, has no
i
singularities of any kind within some open disk of radius 1+¢

about the origin, where € > o,

Theorem

th
The mean N™ power of the number of terminal symbols in a word
generated by symbol X; is finiteand finitely calculable for all N
and 1i.

i

Proof: The sequence of functions h? can be defined ihductively by

by (2) E £,(2)
. "N
dh,
o) = e

Using a proof just llke that of the prev1ous theorem it can be

deduced that all the h (1) are finlte and can be calculated without

N
knowing the functions hi directly. It is also easy to show

inductively that

o .
N _ N ,
hi (2) - j='i’ J pj(.j) ZJ ...‘Z‘<l ’NZ O,i‘-'l’ooo,n

so that h,N(1) = § Fpld)
i : i
: J=1 .
th
the mean N power of the number of terminal letters in a worg

» which is just the expfessioh féf

58
generated by Xi'

2.3.4 The Radius of Convergence of the Length Generating Function

Theorem

Each function fi is algebraic.

Proof: fi - Fi(z’fl""’fn) £ 0 for all z, i=1,...,n.
By corollary 2.2.7.2', M-I # O; but this is the'jaébbian of the

above at 1,...,1. Hence theorem 2.1.5.4 applies.

Corollary

The only singularitieé of fi are poles and branch points.
Proof: Theorem 2,1.5.2.

Theorem

If Ri is the radius of convergence of fi’ then Ri> 1.

Proof: First Ri>1. This is because for |z|< 1, the sum

(n)_ n . . " .
g;opi 2z 1s dominated by the sum of positive terms 3;0 pin),
which converges to the probability that a parse generates finitely
many terminals, that is somenumber P such that OSP<1. Hence

fi(z) is defined and finite for all z€1 so Ri>1.

Second, Ri 1., If Ri = 1 then as all the terms pin) are
non-negative z =1 is a singular point of £ [HILIE 5.7.1, p.133].
As £, is algebraic z_ can only be a branch point or pole, by
corollary 2.3.3.4 it is neither. Hence Ri 1,

Thus the only possibility left is that Ri> 1.

Corollary

The radius of convergence Ri = 1+€ , and for z)<1+€ , 2 is

not a singular point of fi'

59

2.3.5 Example - The Length Generating Function for the Language

of Assignment Statements

The grammar of this language is
ipli L=R
ol §p21} a‘ {p2275 b

R::= {py, ¢ (R+R)\ {p32.((RxR)| ip33la\ 1p, b0

St

where p, = Py + Pyy = Pgi* Pyp* Pag* Pyy = 1. Pg3*P3; = Q-

The multinomials Fl’Fz’F may be found by substituting z, for

3
terminals, 2, for S, z, for L and z_, for R to give

3
Fi(2gs2,52,525) & Py2,202,4 = 22,2,

Fo(zgs21525523) 2 Py 20% Pyy20E 2,

I~ e
F3(zo,zl,22,23)g q(zoz3zoz320) + (l-q)zo = qzpz, * (1-q)zO

The matrix of means can be calculated to be

o} (0] 0} o}

1 (0] s 1.

i 0 0 0
3gq+(1-q) 0 0 2q

This has the eigenvalues O 0;0, Zq/'.

0 \

Clearly 2q is the dominant eigenvalue amongst these, and so the
measure is concentrated on the finite parses and all the theorems
work so long as q< 3.

The equations for the length generating functions may be

written

fl(z) = zfz(z)f3(z)

60

|
N

fz(z) =

£,(2) = q 22(£5(2))% + (1-q)z.

The secondxand third pf,ﬁhese equations give directly that f2 and f3
are algebraic,»the first gives f1 as a rational combination of
algebraic functions and hence also algebraic.

The third equation can be rearranged as a quadratic in f3,
that is a(f3(z))2 + b f3(z) +¢c=0
where a =A‘qz3, b= -1and c = (1-q)z. f3 can only have a pole
when a=0, that is when z=0. But the branch defined by the series
has f3(0)=0 and so no pole there. f3-ﬁas a branch point when(the
quadratic has a double root, that is when the discriminant b2-4ac=0.

Evaluating, when

1 - 4.q23(1-q)z = 0.

So there can only be branch points when z = 4:/(4q(1_q))-I

These p01nts are all outside the unit dlsk so long as (4q(1 q)))1,
in other words so long as O<((2q-1) that is so long as q # S |
If all the measure 1s concentrated on the finite parses, then
q<:2, so q # 3, so the radius of convergence R Pl

- of the s1ngu1ar1t1es of f and f2, f has no singularities,

and f can only have 31ngu1ar1t1es where f does.

2.4 THE ENTROPY GENEﬁA'i‘IPG FUNCT ION

Thé‘ehthPQ sf a grammar ﬁag'defihedkih the §b0§ﬁdéod??3’
and a method given for calculating it in chapter 1 (theorem
1.5. 23). NE So 1f the only use of the entropy generating functlon
were to calculate the entropy, then this section would be super-
fluou;. Ihis is pot thg case, because some properties of the entropy

generating function are needed to calculate the information rate of

a grammar.

61

2.4.1 Definitions for the Entropy Generating Function

Definition | ,
(n) _ =
qi = wezg(z)ﬂl(m) log }(i((ﬂ))

The sec . 2 ™D is called th nce for :
e sequence | \q; 1s called the entropy sequence for Xi.

Remark

(n)

a is the contribution by words of length n to the total

entropy Ei. That 1; o

(n) (n) 'and E q()
n P n o=

E. = E qs « Similarly E, . = Z Q5 5 ik Z ijk *
1 n=1 1 1) n=1 1J ' 1Jk n=1 1J

Definition
_— o0

gi(z) = Z q§n)2n‘ and is called the entropy generating
n=1 : o : S

function for_ Xi .

Remark
/\(j(®) is positive and log /‘\i((‘)) negative (becauseﬂi((g))< 1),
so every qin)zo and hence also Ei> 0. If Ei is finite then the
series for g,(1) converges absolutely, hence also that for g;(2)
for z<1.
In the case i=0, there is only one ¢ in Qi = Q(;)’ so
Z/{i(w) log M.(w) =0
(n)
we '
vacuously for n>.1, and for n=

1 the sum is also zero but by calculation.

Hence go(z)'-;“-o.

2.4.2 The Intrinsic Equation for the Entropy Generating Function

Theorem

If the BNF of a grammar is

| X, ~ %—-pij Qxijk

then the entropy generating functions 94 g 3 95 i3k obey the

equations
n, n,
.(z) = - ..(1lo .:) £.5(2z) +
91() J.=le13(g Plj) l.J() J—Zl (Z gle(z)(-ﬁ 1JL(Z))
whe;e‘f (z), 1Jk(z) are length generating functions, and the-
n.
i
symbol 7X ?R3¢means the product where | varies from 1 to n. .
t=19 ' | ot

missing out k.

Proof: This has the usual two;parts:
1) . g.(z) = - £, +Z;L
) - g4(2) & P; j(1og Py 41, 45(2) P; 193 5(2)-

For by expanding the definition of 95

95 (2) -'-(- Z(Zg(n)[‘i(w) 109}11(@) ;n);
i - : '

n=1l" @we

Iiow .S}én) UQ(n) .andv/(i(w) =fpij)(’ij((n))‘ if we Qij
S0 9(2) = - Z, Z Zséj" (Pesftasle) toolpysfiy s(w))a")

So using the.fact that log (piiliij(u))) = log pij + log r(ij(“J)

there follows

8 :

n .
gi(Z) = ? PiJ(]-oQ pij),(ij((‘D)z

,‘ﬁMg

wée

n,
2;)2 S?_(Pijﬂij(cu) log /"ij(&))z .

Part 1 of the theorem now follows by rearranging the §:'s and osing

the facts that

15(2) = ZZ/‘*lj(w)z and that 915021 = }:E}«ij(wuogpi (@)2".

63

ni- ni- '
2) 9;4(2) = IZ_; 93 51(2) =.:3_}(‘fijk(_z)

The proof of this second part requires an induction rather
like that in the second part of theorem 2,3,2,1 . This induction
quuireé: a lot of,mwa.chinery,,so to save theAeff:o'rt‘irkl setting it up, .
the second part will only here be proved for the case n; .= 2., This
case is mbre general than it appears at first sight because it is
also the central step in the proof of the general induction.

In the case nij=w2’ the‘equation’ to be prove‘d’x’nay be simply
written ’

15(2) = gul(z)fl 2(2) * £,51(2) 9y 5,(2)

If we Q . and nlj = 2 then the parse w must stem from the

productionO(:L ..» and the symbols Xi ‘1 and X, ., must give

ijl ij2 ijz2

rise to subparses @ QQ and QQ respectively. If

ijl1
we Q(n). Yo that w has n termlnals, then 6)1 and (s) have n

between them, so if @ GQ(m) then w eQ(n -m) Finally

ij2 °
Nij(w) =/4ij1(co1) Nijz(w?_). So

o{") - Z Magteios iy (o)
meQ

= - Z Z f‘ijl(,“"l)/“ijz(wz)1og Pagn (@M 5500,

m=1 (m
€
w3 Qijl

“’2698?)

The log in the RHS can be split in the usual way to give

w (égi”(w) mﬁeér’f‘if‘%“”” o)

) (e
132 %‘91

64

That is

) (m) (n-m) . < (n-m) (m)
(:; = E: pl?l 1?2 + E;g ij2 qi?l

So multiplying both sides of the above by z™ and summing over n

o) n

S ool TS p) e (nem) aem g g E’_‘- (n-m) n-m_(n)
q o

= 13 =1 5o 131 ij2 =1 520 132 131

The right hand side of this equation is the sum of two convolutions,

when rewritten as functions the expressions become

15(2) =5, 51(2) 9132(2) 1J-2(2) 9341(2)5
that is the simplified form of equation 2, .

The proof is terminated by substituting the value obtained for

gij(z) from equation 2 into equation 1.

Corollary -
The result of the previous theorem may be rewritten

n. '
1 n
g:(z) = = 2_ p.. log Pyj £34(2) + 1
i e , & o

x g, (z)

Proof: This may be seen by inspecting the form of the multinomial

Fi(zo, ce ,zn)o

2.4.3 Properties of the Entropy Generating Function

Theorem .

All the functions g; are algebraic,

d Fy

Proof: The dominant eigenvalue of

, 5 Fi
§.. -
ij 0 zj

p <1 by proviso.
j &1 ,...1)

So the matrix

is non-singular Andvinvertible.
(1:00-:1>);’ i o

Det Syij ;>

) is a continuous function of z

“3|<est1(2) 5 nn, 5 (2))

65

and so not zero in an open neighbourhood of z=1. An invertible

matrix can be inverted by rational operations alone, so
5 dFi

ij = z.

Jvzy

can be inverted to give a proper inverse matrix Rij whose terms are

(z,fl(z) ...fn(z)>')

all rational complexeé of the fi. Rearranging the equation of
corollary 2.4.2.2 and multiplying both sides By Rik yields

n
: n k .
9;(2) = § Ry (jjgl Py 109 Py fi5(2)).

The above gives g; as a rational complex of the algebraic functions

fi,lso g5 is alggbraic.

Corollary

Ei, the entropy of the language stemming from xi, is finite.

Proof: As 94 is a rational complex of the fi’ it can only have a
branch point where‘one at least of them has one. So it has none
inside or on the unit circle. It can only have a pole where some

:Zpkjlog pkjfkj(z) has a pole, again only outs%de the unit circle,

F
‘det(é'ij ;-g;—i

or where

"
°

(z,fl(z)...fn(z)))
Now each element of
.b Fi

223| ¢ernntne)

is zero at z=0 and steadily increasing as z increases to 1.

They
are also positive. Hence the dominant eigenvalue of 071 is
F z
steadily increasing also. Hence det Gsi'.' g i 40 J
' J z
J

for 0§zK1, so g4 has no poles inside or on the unit circle, so

the sum for g, converges for 2=1, and its value is the finite number

66

given by
n

g, (1) = 2 Rik\z (- Zka 09 Pyesfies(z)).

=1

2.4.4 Example of the Entropy Generating Function

Once again the language of assignment statements will be used
as an example (see section 2.3.5). fi will be written as short
for fi(z), 94 for gi(z) and so on, also q:i.j instead of pijlog P.

ij*
The equations for the entropy generating functions are:

91 == 9 fyy * pyloyfyt, + £199%3 * £17495)
93 = 7 9172 - 92T * pzlgo P229%
93 = - d39%31 - 933735 - 933T55 - 95,15,

o+ (P31+ p:‘;2)(gof3f(.)f31-‘0 + f093f0f3f0 + £ f0 fE

* Tofato9sfy * fpTaTpTag,)

+ (pyyt Ps,) 99

The above can be simplified using the general facts true for

all grammars:- fij = T‘fijk’ fo(z) = z, g (z) = O; and the

particular facts true for this grammar:- P, =1, fl = z3f3, f2= z,md wo;

to give.
g, =g,zf_ + 23f g
1 1773 3
92 = (9% 9p5)2

= + g 2 3
g3 = (q31+ Q32)2 3 (q33+ q34)z + (P31* p32) 2z f393

which can be solved to give

o 2_2 ' 3
93 = ~llagy* a35)2786,7 + (ay5% a3)21/[1-2(p,,+ p,)2 f,]

g9, = 393/[1 -zf]

67

Chapter 3

THE INFORMATION RATE OF A CONTEXT FREE GRAMMAR

Communication engineérs talk ébdut thé rate of trénsfer of
ihfotmation by languages, but éah calculaté fhis parameter‘only for
véry simple languages, which they call stochastic and which are in
effect the Chomsk? type 3 or linear languages. Linguists are
interested in more complicated languages, context-free languages
being among the simplest. This section achieves one of the main
goals of this thesis by showing how to calculate the rate of context-
ftee languages.v | o

Thére are two pieces of earlier work along these lines. Firstly
aypaper by K. WALK { 344] dis;ussed the general problem of finding
the rate and showed how the results of information engineers allowed
it to be calculated for linear grammars. Secondly KUICH [22]
found a single rate for a context-free language. 1In effect he
allowed one probability distribution, that in which all strings of
length N are equally likely.

This section shows how to define and calculate the rate for

any distribution generated by a preprobability. Kuich's distribution

is often one of the many which cannot be so generated.

3.1 FINITE AND INFINITE CLOSURES OF A GRAMMAR

3.1.1 Definition

L . .

If L is any language then L , the set of all finite concaten-
ation of one or more elements of L, is called the finite closure of
L. ‘ o
3.1.2 Remark

. +
The empty string € is only in L if it is also in L. g0 the

68

closures considered here will not contain the empty string.

3.1.3 Definition
. c
If L is any language, then L™, the set of all infinite strings
consisting of concatenations of elements of L, is called the infinite

closure of L.

3.1.4 Theorem

4+
If L is context free then L is also context free. Lc is not

context free.

Proof: If the grammar for L is G ==<N,T,P,S> and s" is a new non- *
terminal symbol not contaihed ih‘N or T, then a grammar for L" is
6" = {vfs"],r,Puids sy ,{s"rss™ DY "D . LC is not context
free because by definition context free languages contain only finite

strings.

3.1.5 Remark

Although L® is not.context free it may be thought of as having
. c
the improper grammar G~ = <NuiSC} ,T,Pu{(Sc—?SSC>},Sc>. Clearly
this grammar can produce (amongst others) all non-terminal strings

.
of the form v, W2... Wnsc where each WiE L.

3.1.6 Definition

A grammar G is said to have unambiguous closure if G+ is

unambiguous(wkgyre q* « as d{J‘U:lECl \;\ 3.1 lO)

3.1.7 Remark

It is possible for a grammar to be itself unémbiguous but have

!

ambiguous closure. A trivial example is the grammar with BNF S-»alsa

which unambiguously generates strings of ihe form a™, Its closure

ambiguously generates the same set because it can generate am as any

m .
product a™ a"2,,.a™n where 2n&_= m.

Nele, T0 hF e g o ot 0% W Bl T il
™y Jraman o vl s ety e fnie S}F""‘T mjﬁm wcf %ao
tshlihn thewr lawguaga, §

69

3.1.8 Proviso
In what follows it will be assumed that all grammars as well

as being themselves unambiguous also have unambiguous closure.

3.1.9 Remark
‘Therabove standard definitions can easily be extended to cover

probabilistic context-free grammars.

3,1.10 Definition

If G is a probabilistic context-free grammar with start symbol
+

G ;
S, then a finite closure is any probabilistic grammar with a new

o+ .
start symbol S and the two additional probabilistic productions
-)
s = {p} ss’
-y . .
S {pz S where P+ P, =1, 0<p1<1.

3.1.11 Definition
- If G is as above, then its infinite closure G° is the improper

grammar with start symbol s€ and the two extra productions

s€— {1} ss®

s€ — {o§ s

+ a

N°h Gt omdq %}lmu}c* Wa same ({wd’cﬂ m w.h) Shwg) bk wlh Mlv b moasueps |
3.1.12 Notation

If X is some notation referring to a grammar then x+ will stand-
for the porresponding concept for its finite closure and X° for that
of the infinite closure. There is in fact an infinite spectrum of
finite closures, and this will always be parametriséd by él-~ Caré
must be exercised because the concepts named by X+ and Xx° may be
exceptional or non-existent. For instance the finite closure of a

finite closure is always an ambiguous grammar and the length

generating function of the infinite closure would have all zero terms

70

3.1.13 Remark

The probability distribution generated by a proper probabilistic
context-free grammar could have been defined in two ways. Either
bottom up, that is by first defining the probability of each terminal ‘
string and then defining the measures of sets to be the sums of the
probabilifies of their elements. Of as in this thesis, top down,
that is by starting by defining the probabilities of sets stemming
from partial parses. The bottom up method will not work for sets
containiﬁg iﬁfihite strings because in gene;al an individual infinite
string has probability zero. There is no éifficulty about the top
down method.

Thus in contradistinction to non-probabilistic grammars,
probabilistic grammars have been allowed to generate both finite and
infinite strings indiscriminately. 1In particular if G is any grammar
then both G+ and G€ have their measures defined on exactly the same
terﬁinal éet, they are only distinguished by their different
probability measures. (This is why the production(Sc-+{0} S) was
added to the infinite closure.)

The infinite closure language is the one of interest for infor-
mation theory, but it is often difficult to directly calculate its
properties. One way to findgthem is to take the 1limit as pl—vl of

the corresponding property of the finite closure. But care is needed,

it is only sometimes the case that

N c
Lim X = X~
p,—1 (where X stands for the property in question).

Particular examples, both positive and negative, follow.

3.1.14 Theorem
If r<1 gud hence : _ -
77 G generates finite parses with probability one then so does

Proof: The set of eigenvalues of the matrix of means of G is

the same as that of G with the addition of P, - p1< 1 so the

1.
dominant eigenvalue of G is él.simultaneously with that of G.

3.1.15 Corollary

f ' - .
If CD is the set of finite strings generable by G+, then

Lim M QF) # p°(§2f)‘.

k c f, :
Proof: M (§2) = O.

3.1.16 Theorem

1f QP is the set of words stemming from a single partial

parse P theh)
Lin M(QP) = ME(QP).
pl—?l ,4‘ . /W ‘g?)

Proof: The measure is a finite product of elements of the pre-

probability function.

3.1.17 Corollary
‘ §21 . . s s s .
If is a finite disjoint union of setsof words stemming

from partial parses then
+ 1
M (S27) = MORQ°)

3.1.18 Corollary -
If @ is any sequence of terminals of G, and S;f) is the set

of all terminal‘strings generable by G+ which have @ as initial

part, then
@
p(S?.)-/w(Q)
pl—)l :
Proof: QZ can be broken down to a finite disjoint sum of sets

generable by part1a1 parses.

71

72

3.2 THE GENERATING FUNCTIONS OF THE FINITE CLOSURE GRAMMAR

3.2.1 Remark

At a later stage in this section the limiting behaviours of the
series used to define the generating functions of the finite closure
grammar are needed. The 11m1ting behav1ours can be found by using
theeren 2.1.4.1, This theorem can only be applled when its
three preliminary conditions hold. The aim of thls subsection is to

show that for many closure functions the point Zo mentioned in the
condition is real and near the unit point {1,0) , and then to confirm

that the three conditions do hold.

3.2.2 Notatlon

The length and entropy generatlng functions of the finite closure

of a context-free grammar are written f and g respectively.

3.2.3 Theorem
If the length and entrepy generating functions of a context-\
free grammar are f and g respectively, then the finite closure

generating functions are given by

+
£

pzf/(l-plf)

and g ~p,log pzf/(l-plf) - P,(p;log plfz-g)/(l-plf)

Proof: The only productions involving S+ in the closure grammar are

+ + +
s —’{p;’s S S> and <s *&;s) « Theorems 2.3,2.1 and 2.4.2.1
+ + :
tell that £ and g obey the intrinsic equations

+

£

« . :
plf f + pzf

le}
H

+ + +
-Pylog pyf £ - pylog pyf + p,fg + pgf + P,g.

The theorem can be obtained by a straightforward algebraic manipu-

lation of the above formula. The only step which might present

73

+
difficulty is that £ is eliminated from the second equation by

using its value as given by the first.

3.2.4 Remark

The above theorem gives f+ and g+ as (sums of) fractions with
(l-plf(z)) in the denominator, so both f+ and g+ have poles at any
point z where (1-p1f(z)) = O unless the corresponding numerators are
zero there too. It will be shown in the sequel that neither

nunerator is zero at a particular such point Zye

3.2.5 Lemma

There is some real number u<1 and some (small) positive € ,
such that for all P, such that u<p1< 1 there is exactly one real z

such that O$z°$ 1 +€& and 1-p,£(z_) = O.

Proof: This can be derived from the facts that R>1 (where R is the
radius of convergence of f), theorem 2.3.4,3, that f is given by a
real positive termed series and so increasing with z for real

positive z<R, that f(1) = 1, corollary2,3,2.5 and that p,< 1.

3.2.6 Remark

Although z, is the only number which obeys the above condition
such that 0<zo< 1+ €, it is easy to see that in fact 1‘<z
always. From any given p1 which obeys the condition the above
theorem defines a unique z s that is z, is a function of Py
Py and z are related by the equation 1-p1f(zo) = O or in other

words p; = 1/f(z_). So a converse holds: P, is a function of z_.
o

3.2.7 Lemma

The point z, found above is a zero of 1-p,£(z) nearest the

origin.

74

Proof: If z, is another zero such that lzlh<zo then because f is
given by a real positive termed series, f(zo);>|f(zl)\ . This

contradicts that f(zo) = l/p1 = f(zl).

3.2.8 Remark

There may be one (or more) other zeros z, of (l-plf(z)) such
that \zi\ =2z . It can be shown that this can only happen when
all the words generated by the original grammar have lengths a
multiple of some positive factor h>2. From G can be constructed a
new probabilistic grammar G!' which is in Greibach normal form and
generates exactly the same language with the same probability measure
as G. From G can be constructed a new grammar G'/h which uses a
terminal alphabet of all the nh h-tuples of terminal symbols of G,
and generates with the same probabilities words corresponding in the
obvious way with those generated by G. The only common factor of
the lengths of the words generated by G!'/h is one, and the new
expression 1-p1f(z) for G'/h has a single real root nearest the

origin. The various parameters for G can be calculated from those

for G'/h.

3.2.9 Proviso

Because of the above remark there is no loss in generality in
assuming that the real.pc‘)int,zo found above is a single zero of

1-p1f(2), and the zero strictly nearest the origin.

3,2.10 Theorem

There is some (small) positive €' (such that €'<é€) and some

u<l, such that for all p, where u<p <1, the exactly one real z (>1)
1 1 o

. . . ! ’ - - . - ¥

such that 0€2z €1+€’ and 1-p;£(z_) = O has the properties that z

. ' N + :
is a single pole of £ and a double pole of g . In both cases z
Lo N : o

N
&

is the pole strictly nearest the origin.

o : + : +
Proof: The part about f is true because f = p2f/(1-plf). The
humerator is bounded but positive with f inside the circle of conver-

L2

gence of f, and the circle of convergence has radius R>1 + € .
Similarly the first fraction -pzlog p2f/(1-plf) in the sum for
g+ has a single pole at Z and no others closer to the origin.

;
H

Only the second fraction remains.

The second fraction -pz(pllog p1f2-+g)/(l-p1f)2 has no poles
at any points z,lz[<:zo.. Firstly because f(z) and g(z) are finite
foi z<:z° hence ' the numerator -pz(pllog plfz(z)+-g(z)) is finite.
Secondly because~1-p1f(z)#(3.(Lemma 3.2.7)

EN is a zero of l-plf(z) by definition, so the second fraction
has a double pole at z so long as the numerator is non-zero.

P, is a function of zoh(remark 3.2.6) and p, = 1/£(z,).

Therefore the denominator may be rewritten

P2 (o 199 Fagp £(%0) * 9(zo))
= -p, (--f(zo) log f(z,) + 9(20))

Hence the dénominator is non-zero so long as
g(zo) # f(zo)log f(zé) ".", ‘(pz is non-zero by definition).
There are‘now two possibilitie#: |
1) ‘;‘here is an €€ & such that for1<z°<1+€'a
9(z,) # £(z) log £(z).
In which case the lemma is proved.
,é) There is no such €’ ,

In this case the points z such. that g(z) = f(z)log f(z) are dense

near 1. But as f, g and log f are all analytic functions, this imilies that

g(z) = £(z)log £(z) for all .

76

Rearranging gives
g(z)/f(z) £ log £(z).
f is algebraic (theorem 2.3.4.), g is algebraic (theorem 2.4.3.), so
the left hand side of the above is algebraic. "f(z) Z O so the right

hand side is not algebraic. Contradiction. Hence possibility 2 does

not arise.

3.2.11 Theorem

+ .
If P, is the nth term in the length generating series for

+

G , then
+ 'pzf(zo)

N oo 2z n+1(;pl)f’(zo)

P
o
Proof: The above is just a specific example of theorem 2.1.4.1
+ +
with £ for A, p; for Aty p2f for U and 1-p2f for V. Condition 1
holds (proof of theorem 3.2.10), condition 2 holds (lemma 3.2.7),

z is of multiplicity 1. The formula is just an example of that of

corollary 2.1.4.3;

3.2.12 Theorem-

t . th
If q, is the n term in the entropy generating series for G*,

then ' 5
< N ~(n*1)p,[p,log p,£7(2,) - g(z)]
n n+2 2 2
n-co. 2z, P (£'(z))

Proof: If A, B are functions with generating series ass b,
- : i

respectively, both A and B have (multiple) poles at z such that z
, o hy
is the closest pole to the origin for both, but A's pole has higher

multiplicity than B's; then the series for A and B is ai+bi, z_ 1is
‘ o

the pole of A + B CloseSF to the origin and its multiplicity is the

same as that of 2, for A, and Linm ai+bi = Lim aj+ In particular

the second fraction in the sum for gt has a double pole at z , but
o

v

the first a single, so the second fraction can be used to give the
+ . 2
behaviour of q,- So putting U(z) = -pz(pllog plf (z) - g(z)) and
V(z) = (1-p1f(z))2, the three conditions of theorem2.1.4.1 have
been shown to hold, So using corollary 2.1.4.4
. -(n+1)2p,[p, log p £ (2,) - gl(z,)]

qQ, —>
nves 202 2 p[p (£ (2,))% - (1-p (2))£"(z)]

This simplifies to the expression in the statement of the theorem

by using that l-plf(zo) =

3.3 STANDARD DEFINITIONS OF THE RATE

The rate of a language was first defined by SHANNON in [33]
and gives a very useful categorlsatlon of them. He glves two

different definitions for discrete ianguéges.

3.3.1 Definition
If 33 : i=1,...,n} is a f1n1te set of words, the probability

of 6) is P;, and all the words Q have the same length N, then

‘the rate is deflned to be the value of
(- Z p,log p,)/N
i=1

3.3.2 Qggigigigg
If %0:’0)6§2} is a set of infinite stiings, for any N, ®|N
is the finite word containing the first Nvletters of W, §2|N
(assumed finite) the set of all such‘initial strings, and p(w |N) the
probabilify fhat the’initial string w|N is generated.

Then in this

case the rate is defined to be:

RER! £.&f§zw P(e 1M0109 o0 1) /1 §

78

3.3.3 Remark
These two definitions are connected because if Rl\ is the first

rate for a finite set Q, and R, is the second set for Qc’ the

infinite closure of Q, then R1= RZ'

3.4 FIVE RATES FOR A CONTEXT-FREE LANGUAGE

3.4.1 Remark

S |

In gene;al neither of Shannon's definitions\ apply directly to
a context-f:Fee language (although it is posrsible to construct a
hngg;ge to fit the conditions of the first). It is necessary to
broaden the dgfinitions. Five different generali‘zations will be

considered, and the values of the 'rate'! as defined by each written

as &i’ Rz, &3, R4 and RS respectively,

3.4.2 Notation

\ In order to make formulas more readable by reduk:ing the number
of brackets thiey contain, /(w will sometimes bé‘ :writted instead of
/((w) (the probability that @ is generated). Ny L (N(W)) is the

length of (number of terminals in) ¢

3.4.3 Definition

If Q is the set of words generated by a context-free grammar
Kl = (- Z /‘(wlogﬂw) / (é /{w Nm)

L QNQ , S We .

3.4.4 Definition | | |

If Q is as above
ﬁz = ~-Z (/(@109/10 /Nw)
weg? '
3.4.5 Remark

Both these definitions reduce to Shannon's first definitioh ;{f

Q is finite, and all Ni are the same and equal to N. The nexf

three definitions are related to Shannon!

N,

S§ second definition, Loosely

79

speaking 6{3 is obtained by applying Shannon's definition to the
original language and 6L4 by applying it to‘its infinite closure.
615 is slightly different but analpogous to the definition that

Kuich uses,

3.4.6 Notation

Much of what follows is made confusing because of the many
slightly different Sets and measures which are being used simul-
taneously. To nelp rednce this confusion the complete pattern of

super and subscripts needed is presented here,

The three basic underlying sets used are’§2 , ambiguously the
set of all parses/set of all strlngs generated by a grammar (this
is alright because by the assumptlon of unamblgulty,
strings and parses are in bijective correspondence), Q* = Qc, (bu‘f)ﬁ#/\{c).
the set containing all finite and infinite concatenations of elements
on_ , and Q' , a set consisting of the (finite) strings of
padded out with an infinite number of a new 'null! symbal.
In addition to the superscripts '+!, ict, 's', there are the
subscrlpts '(N)', whlch when added to a sign X means that set which
contalns just those strlngs of length N which belong to X, and

t(IN)? whlch means those strings ‘which are an initial string of

length N of some string in X. In general X(') is not a subset of

X, but X() is always a subset of both X(‘) and X,
Subscrlpts may be added to the set symbolsg to give a variable

subset of the set denoted by the superscript.

Variables are based on the symbol @ and have the same pattern

of superscrlpts to show wh1ch sets they vary over, An exceptlon is

that a varlable w1th no superscript may if required be used to vary

over the set of all strlngs from the terminal alphabet, not just those

in S}n Subscripts are used to distinguish one variable from another.

80

The pattern of variables and sets is

weQ w+eg2+ wc eg w'ega
N) N +(N) N N ‘
c‘)()EQ() © (G.Q+() (.JC()eszc(N) wl(N)e QI(N)

(IN) Q“N)‘ w+(IN) eg.yr(lN) Q‘)c(\N)ch(IN) Ul(lN)eQ/(lN)

Examples of subscripts are Q('N) c Q “N), and @ (N)eQ+(N)

Although Q and Qc are the same set, the measure on Q
is concentrated on finite strings and that on Qc on infinite. So

+

o' will always be assumed finite, but < infinite. Both

Qf(N) =QC(N) and’Q*('N) =.Qc('N)‘ are finite sets, so this
convention is not relevant to (n)"(,N) or w*(N).

The measures M have the same pattern of superscripts as the
sets and variables. Their definitions are derived in the obvious

way but ?they contain a couple of catches and so are listed here.

/‘1 /\ }l are alréady' known [3.1.12]

/‘1 (o') = /{ ((n)) where w = @ followed by an infinite string

of nulls,
HQh= Z /m').
(N) EQ

12 Q™) # 0 tmen” MU Q"”) Q™) /}1 (Q‘“’)
else Q() is empty and ;(() is undeflned.

A 51m11ar definltlon to that for }'\(N) holds for }*HN)
/)('(N) (but note that Q () is always empty so ﬂ '(N) is undefined
for all N). Because /1 (QC(N)) = O the above definition will not

work so ‘the more general /{C(N) QC(N)) = Lim N+(N)(QC(N)) is used
" py

N we rw=0, 0, andmeQ“N)),

+(IN c ‘.N - ul ’
and ﬂ (1), ﬂ (IN) and ,‘“) can be defined similarly,

instead. Finally- /{“N)(Q(\N)) =

81

3.4,7 Remark

It is now possible to make the last three definitions of rates.

3.4.8 Definition

= Li - '(lN) 0)) 1 '('N) &) /N
R, N-,lo"é(ze '('-N>f1_ (@) log (K (W)/N)

.]
3.4.9 Definition

R, = L (IN) IN)
4 Moo | ;,;'"“ch (W) 1ogf(°‘ (W)/N)

3.4.10 Definition

= - (N) (N)
Rs Iﬁi{:osup (m?Q(N)}A (W) log /‘4 (W)/N)

3.4.11 Remark |

6{3 is that Shannon rate for a communication channel which
séaftihg from time zero transmits a single terminal string from the
original context-free grammar and then remains silent for ever after.

'XZA is the Shannon rate for a channel which starts from time zero
5y transmitting a terminal string and immediately .it finishes one
string starts transmitting another.

| 6asjhas no such interpretation. It has the advantage that it

refers to’a language itself, not some construction on it, but the
disadvantége‘fhat, in a loose sensé, it only takes account of the
very 1ong (and hence very seldom occurring) strings. it is defined
here;bgcause it plays an important intermediary role in the following
theorems. It also corresponds to the definition given in Kuich.

3{5 is defined here using the 'Lim sup' because in languages
in which all words are of length a multiple of N, only every Nth

term in its series will be non-zero. In general these non-zero

terms have a non-zero limit. For & and X{zl the 'Lim' and 'Lim sup'

give the same value,

3.5 CALCULATING THE RATES (Part 1)

In general none of the rates can be calculated directly because

they have definitions which involve infinite sums and limits. The
theorems in this and the next subsection give f1n1te exp11c1t

formulas for three of them.

3.5.1 Theorem

3{1 = g(1)/£/(1) and can be calculated with finite effort.

Proof: g(1) = -Z Nq) logNuJ and f'(l) = Z MonNo .
The proof of theoren12x13 1 glves g(1) as a rational compound of
f(1)'s and hence finitely calculable, and f'(1) is finitely

calculable by corollary 2.3.3.3.

3.5.2 Theorem '
1
®,- |d2

2 0

.2 ’
e o as 2 purm oo
o V'foegz . ' .

i .
z
and /9_(2_)_ dz Z /4(.) log]‘(w /N
o
The right hand side of this final equation is the definition of 6(

3.5.3 Remark

The above integration can be solved if g can be displayed

explicitly. In general, however, g is only known
fi which are:ithurn only known implicitly as the solutions of
polynomial equations Pi(z’fi); 0.

or greater in fi’ so in general fi cannot be found explicitly,

in terms of the

Pi may have terms of degree five

83

3.5.4 Theorem

R =o.

3

Proof: Let E = - Z /(Q) 109}'(0) be the entropy of the
we

original language (known finite by corollary 2.4.3.2). Let

E., = -z
N IN
G QA
of initial words of length N. (So that & = Lim (E_/N).) Let
N
N-00
E(CnlN) be the entropy of the set of words starting with the string

/((IN)((‘))109/‘1(|N)((a)) be the entropy of the set

@ JN. It is well known that

S~

E=E+ yan (‘_N)/’l(IN)(Q)IN) E((o 18) (for all N),

wiN &

S (IN) R
and 1:!hat E, By and 2_,’\ (] N) E((Ol N) are all non-negative,
(Khinchin [] p.6, equation 3).

Hence E?EN for all N and so

& = Lim E/N<Lim E/N = O.
N=-0Q N-200

3.5.5 Remark

The above theorem shows that ,&3 does not discriminate between
grammars. So although its definition might have originally appeared
promising, it turns out to be useless. RB will therefore not be
mentioned again. In physical terms the theorem shows that even the
J':ﬁformation contained in the occasional very long string is never
enough to compensate for the infinite time during which the channel

is in effect switched off.

3.5.6 Remark

Note that the next two theorems are done in reverse order, so

that 615 is found before '&4.

3.5.7 Theorem

q log p
'R=Limsup(—y—-+ N)

5 Naoo NPy N

wheré pN and Ay are the Nth terms of the length'and entropy series

respéétively.

Proof:

R, = Limsup (- (N,/(‘N’(wnog/\‘ Y@M

def N w €

So using the definition /4(N)(uo) = /{(cﬂ))ﬁﬁ

s T

N=0 we() Npy

pN
L;m_, P (e NPN (-2 /(wlogﬂw) + g}: M)

b}.\t -weZgz(N) /(colog[(w = qN by deflnitéon ané Z-Q(N)'(Q, = p

SO

- q log :
XQ. = Lim sup (N_ + P) .

> N = 00 NpN - N

3.6 A STRENGTHENING OF MACMILLAN'S THEOREM

3.6.1§Mofivatioh

At the last stage in the Writing of this thesis it became
apparent that one of the proofs in it did not work because none of
the versions of Macmillan's theorem which it might use gave close
enough bounds for the convergence of a certain sequénce. 'This

section remedies the lack by proving a new strongej: versibn

85

Macmillan's theorem is about the convergence of the n-step
entropy of a stochastic process as n gets large. There are two
versions, one, the mean ergodic theorem, says that the entropy
converges in the L, mean. The other, the individual ergodic
theorem, that it converges almost everywhere. (Different variants
of both these theorems give different restrictions on the class of
the stochastic processes to which the theorems apply.) The conver-
gence in the L1 mean is analagous to the weak law of large numbers
and the almost everywhere convergence to the strong law, the
difference and reason why they are not examples of the corresponding
large number laws is that in Macmillan's theorem the partial sums
are not (in general) independent variables.

This section has as its main result a new version of
Macmillan's theorem which is analogous to the central limit theorem.
The class of stqchastic processes for which the result is proved is
very small, butAjuetvlarge enough to cover the processes which are
of interest here, that is those which are obtained from context
free grammars. The theorem surely holds more generally, but the
proof here cannot be extended much because it uses special methods

which can only be applied to these processes.,

3.6.2 Plan of this section

There are rwo distinct kinds of strncfure involved in context
free grammar theory? the top-to- bottom branching tree structure
of the parses' and the left to- right linear structure of the
generated language. The difficulty of the theory lies in that
although each of the above structures is reasonably simple and well
understood on its own, the two together do not interact in any

particularly regular way. Corresponding to the two structures there

86

are two ways of handling the theory: either by basing the exposition
on the tree structure and treating the linear structure as a
complicating factor; or by basing it on the linear structure and
treating the tree structure as the complication. The bulk of this
thesis is designed according to the first approach, but unfortunately
this section seems to need the second.

So this section is designed as follows. First some background
is covered. 1In particular stochastic processes and a few of their
properties are mentioned, including ergodicity and the uniform
mixinghpfépérty. Next it is shown how grammars may generate theirx
languages as stochastic processes, and in particular some‘special
grammars, those in Greibach normal form. A new normal form,
Greibach supernormal form, is defined, and this with some additional
iemmas allows a theorem of Ibragimov and Linnik [17] to be used
to obtain the central limit convergence.

Thelébove theorem requires as an additional assumption that
its stochastic process be uniformly mixing, and the next part of
this section is devoted to showing that this assumption is
unneceésary. The uniform mixing property is non-constructive, so
firstly a finitely decidable property of a grammar is found which
holds if and only if its process is“uniformly mixing. Then it is
shown how to mdp any grammér to another which has the samé limif“/
properties but which is‘als§ uniformly mixing. So the central limit
convergence‘thebrem extends to ail context-free grammar processes
whether uniformly mixing or not.

' Finally two lemmas are deduced from the central 1limit conver-

gence; these give the results which are actually required in the

next section,

87

3.6.3 Acknowledgement

I could not have proved this theorem without the assistance
of Professor Bill Parry. He told me about [17] and suggested a
way to prove m& theofem; The proof here up>to' the central limit
theorem with the uniform mixing assumption is similar to his, but
altered to allow the remainder of the proofs to be carried out. He
has not yet (at the time of writing) seen the new proof, which is

therefore entirely my responsibility.

3.6.4 Notation
There has not been time to completely unify the notation of
this section. Some of it is compatible with that of the rest of

the thesis and some has been taken from other books, in particular

[20].

3.6.,5 Definitions

IfQ is a set of sequences x =(...,x 211X 1 X9 Xy >

then a subset of Q is a cylinder if it can be defined by the

properties of the values of a finite number of indices.

S

M. where t<s is the class of all cylinders which may be

defined using only properties of the values of the indices from t

to s. (t and s may be integers, + 0OQor - 00.)

A stochastic process is a probability measure space(S?_ CQ M>

where the underlying set Q is the set of all two-way infinite

sequences X = (...,x_l,xo,xl,...> where each xi is taken from some

set A called the alphabet, and the O-field (] is the minimal

0--field containing all the cylinders. (A more general definition

exists with a more complicated a .)

In this thesis, stochastic processes are restricted in that

either A is finite, or A is countable,

88

The operator T is the function which maps a sequence to the

same sequence shifted by one position, that is
- 4 / /
T<...,X_1,XO,X1,.-.> - <-.-,X-2,X_1,X0,...>

h ex"'x
wher i T X4

T extends to sets of sequences by the rule
T(S) = {Ix : xes} .
~
A set SEQ is invariant if T(S) = S.

A process is ergodic if every invariant set has measure either

Oor 1.

A process is stationary if /((T(S)) = }4(8) for any set S

In a stationary process, the n-step dependent probability of a

symbol aoe ’A given a_reeed 1o written /‘((ao\ a_prees ,a_l) is

defined as:

ﬁ{x‘x n

/{ (ao‘a-n""’a-l) = ﬂ{xx:

a ev e gX =a§
_n’ ’o o

" A markov process is a stationary process where the n-step

dependent probability of a symbol is independent of all but the last

symbol, that is

/“ (aol & nrcee ’a-l) = /((ao‘a-l)
whatever a_n,'. «+sd_, may be.

Two states a3, 2, from the alphabet of a process are said to

communicate if there are indices i, j such that f(ix:xc):al, xi=a2} > 0

and /ﬂ{x:xo = a2', x ;= alg 0.

3.6.6 Proposition

If all states in a countable or finite markov process communicate

with each other then that process is ergodic [25 , p.423].

89

3,6.,7 Definition

If <Q,a_, f‘() is a stationary process then its rth mixing

/

coefficient is

o o e LDea® - Moo
xr) = '

Mt - (a) -
3
AeM BEM Ja

A stationary process is said to obey the uniform mixing

condition if

Lim A(x) =
r-+00

3,6.8 Proposition

Let A and A2 be any two alphabets and f any function such
that £: AlontoAz. Then f induces unique maps from Q {(...,x %y)}
to the sequences f(Q) = '{(...,fxo,fxl,...)} , and from the ¢ -field
@l to the well-defined ¢"-field f(f such that £71A 1s measurable

if and only if A is measurable & [l(£7'A) = M (A).
3,6.9 Theorem
If G2 is ergodic so is the process f(Q).

Proof: If A is an invariant set of f(Q) then f'l(A) is an invariant

set of ﬂ with the same measure.
3.6.10 Theorenm
1f Q obeys the uniform mixing condition then so does f(Q.)

Proof- If A and B are in f(_Q_) and if Aef(M) and Beé f(M:f)
-_— r

then £~ ;(A)GM-MV and £~ (B)& Mt+ So the set of values over

‘which the supremum is taken to obtain f@(r) is a subset of the

set which is used to yﬂie_ld ﬂ(r), S0 fﬁ‘(r)ﬂﬂ(r).

90

3.6.11 Notation (after Macmillan, Khinchin)

If a is the sequence < N L Y then

-n

ﬂix 1XT A0, X_ 1T A _jseeesX S 2
p,(a) =

N frexg= ayse X S 2 n}

or in other words,

pn(a) = }4(ao\ a_n,...,a_l).
3.6.12 Remark

The next part shows how a grammar may be turned into a stochastic

process by using a stack.

3.6.13 Definition
The p;bcess relatedtto a grammar G is the markov process
with the foilowing propértieé.
The states of the process are finite strings of terminals and
non-terminals of the grammar G, the states are also called stacks.
The active symbol is the symbol at the left hand end of the
stack.
The transitions are:

‘The successor of the empty stack is the empty stack, the output

string is the empty string, the probability of the transition is one.
- The successor of a stack where the active symbol is a terminal
t is the same string with that terminal t deleted, the output symbol

is t, the probability‘of the transition is one.

There are several possible successors of a stack Xu whose active

symbol is the non-terminal X, one possible successor corresponding

to each production {X-~s»v» with X as its left-hand side. The

successor corresponding to <X-ov) is the stack vu, the output -

91

string of this transition is the empty string, its probability is

the preprobability of (X=v) .

3.6.14 Remark

in general the output sfring will be shorter than the sequence
of stacks. And worse still, the ratio of the lengths of the output
striﬁg and the sequence of stacks will be variable. However for a
speciel clase of grammars, those in Greibach normal form, the ratio
is constant and so the rate of the generated language is simply
related to the information rate of the Markov process of ité

generating stacks.

3.6.15 Definition
‘A grammar is in Greibach normal form if the right hand of every
production is of the form tu, where t is a terminal symbol and u

is a possibly empty string containing only non-terminal symbols.

3.6.16’Lemmar
- A terminal is output on every second transition of the process
of a grammar in Greibach normal form., The stack alternates between

containing all non-terminal symbols and containing just one terminal

symbol, the active symbol,

Proof: By induction. If only the active symbol is terminal then
it is outppt and the next stack contains no terminals. If the
stack contains no te;minals,‘then the empty string is output and
the active symbol is replaced by a right-hand side tu of one of its

produqtions, so only the new active symbol is terminal.

3.6.17 Remark

Because of the above lemma it is possible to alter the definition

of the stack process of a Greibach normal form grammar so that the

new process makes two at a time of the transitions of the old process.

3.6.18 Definition‘

The Greibach process related to a Greibach normal form grammar
G is the Markov;process with the following properties,

The sfates are finite strings of non-terminals of G, called
- stacks.

The active symbol of a state is the symbol at the left-hand
end of the stack.

There are several possible successors ofra stack Xu whose
active symbol is X, one for each of the productions (X'*tV)
The successor correspondlng to <X~*tv> is wvu, the output is t,
the pfobability of the transition is the preprobability of (X'*tV)

| The grammar can be adJusted to prevent the empty stack occurring,

'1n an infinite closure grammar it cannot anyway, in a f1nite
grammar the productions involving the start symbol S can easily be

adjusted to yield a new grammar which produces an infinite tail of

dummy symbols after the output string.

3.6.19 Proposition :

Fotkany grammar there is a grammar in Greibach normal form

which generates the same language.

Proof: ‘A proof was originally presented by Greibach herselffin [12].

A more constructive proof is given in Hopcroft and Ullman [15].

3.6.20 Remark

The above theorem is only stated for nonprobabilistic grammars.
But Hopcroft and Ullman's proof depends on two key lemmas which can

easily be extended to the following Probabilistic form.

3.6,21 Lemma

let G be a gfammar,

93

. = X, . s j=1,... n..g "the set of all its
{Pij.Pij <Xi—-’71:\ 150 3 F=Lreeony o
productions with Xi~or; the left-hand side, pij the preprobability

-) “) ’ . : - » » -
of P, ., P, = <X1 uxi§> any production containing X, on its
right-hand side, where the preprobability of le is Pin° Let G'
be obtained from G by deleting the production P 1m and adding the

n, productions Py <X1—70K ﬂxljk@> with the preprobabilities

P14 = P1nPj - If all the above is so then G’ and G generate the

J mij’

same language with the same probability structure.

Proof: This is lemma 4.2 on p.53 of [15], restated in the notation
of this thesis with the probability structure added. The basic idea
is that whénevér the produétion le is used in the old grammar G

then the symbol Xi is_produced, and Xi must later be used in one of

the productions Pij' G achieves the same terminal string by using

the singlev pioduction PJ{j'
3.6.22 Definition

is called left recursive if Xi

A productlon P, = <X >,)
ijs the first symbol of o(ij.
3.6.23 Lemma

Let G be a grammar, £Pij : Pij = <Xi-’ o(ij> : j=1,...,n13
the set of all the productions with X; on the left., These productions

may be renumbered if necessary so that the left recursive productions

are the first h (OSh Sn.),and the remainder are not left recursive,

{(‘313 : Jj=1 ,...,h3 is defined so that the first h productions
<Xi"‘°‘ij are also <xiﬁxi@ij> . Let thg preprobability of Pij
be p.. and define ‘
1]
> 5t
P, = P,; and p,= > p
=1 *J 2 j=h+1 I

94

that is 12 is the probability that a left recursive.production be
chosen and p, = 1-p, the remaining probability.
If G” is obtained from G by deleting all the productions with

X. on the left and adding instead the new productions
i

X‘i»—’ipij} Bij

j=1,...,h

P P :
X, ~» —-—12 ,,Z
i pl i)

- {pij} %i;

P.P: -
z »{-23)ix z
pz i)

(where Z 1is a new non-terminal symbol), then c” . generates the

same language as G with the same probability structure.

Proof: This is lemma 4.3 of'[15 s P.53] (extended to include the
jnformation about the probabilities). The idea is that a left

recursive sequence of productions of G
X2 % Biyy P X Buy) Bayy= -
X ﬁia(m)pij(m1)°“3ij<1)=>
D%i3(m1) Paym) o0 Pas)
‘whicﬁ-yieldsMtéeipréPébi;iﬁyj ’pij(l). bcorresponds to‘the
right recursive sequence of productions of G/

% sy 23%gymen) Pagm) 2300
o D‘ij(ml)Pij(m) Pij(2)z

Z Rijme1) Pagem) oo Piscz) Bigay 2

which yields the probability B, 7\ Pi51)) B,
1=1

Clearly the two generated probabilitiés arethe same,

3.6.24 Theoren

For any grammar G there is another G! in Greibach normal form

which generates the same language with the same probability structure.

Proof: The proof in [15] of proposition 3.6.19 constructs a series
of grammars G = Gl,Gz,;..,des', where each grammar is obtained from
the previous one by the transformation in‘one of the previous two
lemmas. The extension of the lemmas tells that the probability

structure remains the same along the sequence.

3.6.25 Remark

)fhe next step is to‘show that,evefy language can be generated
by an even more restricted type of grammar, one in what will here
be called Greibach supernormal form. The reason for constructing

such a grammar is purely technical: it is to allow proposition

3.6.,8 and theorems 3.6.9 and 3.6.10 to be used.

3,6.26 Definition

A grammar is in Greibach semisupernormal form if it is in
Greibach normal form and has the additional propexty that if
(X-ttlul) , (X-’tzx2) are two productions with the same left-

hand symbol X, (where t;,t, are terminals,cucl,o(2 possibly empty

strings of non-terminals), then t= t,.

3.6,27 Lemma

If G is a probabilistic grammar in Greibach normal form, then
there is another G/ in semisupernormal form which generates the same

language with the same probability structure.

96

Zgggi:' Call a non-terminal initial variable (i.v.) if it can
generate terminal strings starting with different initial symbols,
or eéuivalently (for Greibach normal form grammars) if it can appear
on left of two or more productions (X —'tixi‘) with different
symbols ti.‘ Clearly if a Greibach grammar can be changed to another
with one less i.v. non-terminal, then by induction it can also be
converted to a Greibach grammar with no i.v. non-terminals; in
other words a grammar in semisimple form.

The induction step can be done by choosing an i.v. non-
terminal, and replacing it with several non-terminals Xi, one for
each possible initial symbol t;. Every production <X -otj) is
replaced by <Xi-' ti> , and then any production {Y=2&X@) is
replaced by the several productions i(Y-’“XiF) ¢ where i is
such that t, exists} . (And similarly <Y-0otXPX() is replaced
by all possible combinations (Y-’NXinjl’) and so on for more
occurrences of X.in the right-hand side.) The preprobabilities
can also easily be adjusted.

Clearly none of ;he new symbols Xi is i.v. The i.v. non-
terminal X has been deleted,and the other non-terminals generate

the same terminal strings as before, so the induction step is proved.

3.6.,28 Deflnltion

A grammar G is in supernormal form if it is in semisupernormal
form and in addition the probabllity of a stack transition can be

determlned from the actlve symbol after the transitlun has takcn

place.

3.6.,29 Lemma

For any semisupernormal form grammar there is a supernormal

form grammar which generates the same language with the same

97

probability structure.

Proof: If any non-terminal X is the left-hand side of both
productions <X=-t) and productions " {X -+t (where % is non
empty), then it may be replaced by two non-térninals, X, which only
appears in the production <X14 t> , and X2 which appears on the
left of the remainder. Every production with a single occurrence

of X on the right is split into one with X, and one with Xz,

1
every production with two X's is split into four, and so on as in
the last proof. The probabilities can also be adjusted, and <X1—'t>
must h;ai}e preprobability one.

The productions of the form <X-’to<> = (X-'tY@? B | @ possibly
empty) may be numbered from 1 to h say. If <X~0tYf) is the jth
production of the old grammar then the new grammar contains the
h new productlons <x, "th@> and also <X-*tY 87 instead.

The preprobability of all these is the same-as the preprobabillty
of (X -otY@) A final ver51on of the grammar may be obtained by
deleting redundant productlons. | |

- This grammar is in supernormal form, Clearly it is in semi-

supernormal form because each new symbol xi is i.v, if and only if

the symbol X which gave size to it was i.v. "rhe stack property

also hnlds because if the active symbol after a transition is Y.
then transition must have been one of those corresponding to a

production of the form (Xi*th@? » and all these have the same

preprobability. Alternatively if the symbol is Y then the transition

must have been one of the form {X=t) with preprobability one.
3.6.,30 Theorem

Every probabilistic context-free language may be generated by

4
a grammar in supernormal form.

98

Proof: Consequence of lemmas 3.6.24, 3.6.27, and 3.6.29.

3.6.31 Remark

The next stage is to prove a limited central limit theorem.

3.6.32 Proposition

Let the uniform mixing sequence (of numbers) xJ; satisfy

€lxj12+s<00 for some & >0. If

2 2 _
= + e
o 6(}(1 ‘+ Xn) —_ OQ
as n =00, then Xj' satisfies the central limit theorem.

Proof: This is theorem 18.5.1 of Ibragimov and Linnik [1.

(€ means expectation.)

3.6.33 Remark
| _ lekme abbve- proposition can bé applied to the rando‘m seql;ence
of real numbers (log pj) + H, where p:j f";Pj((lJ) is the probability
of the jth transition:, and H is the entropy of the process.
3.6.34 Lemma

| 'Iﬁe prq;:ess ;onéisj:irig of the sequence Qf real numbers log pj

is ergodic.

Proof: The original Markov process is ergodic and by the construction

of the supernormal form grammar, log pj is a function of its states.

Hence the conclusion follows from lemma 3.6.9.

3.6.35 Lemma

The entropy H of the subernormal form process exists,

Proof: Consequence of above.

99

3,6.,36 Lemma
If the supernormal form process is uniform mixing then so

is the sequence (log’pj + H).

Proof: 1log pj 4+ H is a function of the states of the supernormal

form process, so the conclusion is a special case of theorem 3.6.10,

3.6.37 Theorem

If 1) the supernormal form process is uniform mixing and
2
2) o‘n = E(log pl(co) + ... + log pn((n)) + nH)?’—"OO as n—00

then log pj + H satisfies the central limit theorem.

Proof: This is an instance of 3,6.,32. All that is necessary is to

2+ §

show that M(log pj + H) < 09 for some § . This is easy because

the supernormal form process is Markov so the distribution of
(log pj + H) is independent of j. Its value may be found from the

finite sum

,. v’:EZ pi(log pij . H)2+g
1,]

where pi is the probability that the non-terminal xi is at the top

of the stack, and pij the preprobability of the production Pij'
This value is clearly finife‘so long as each log pij is finite;

in other words every transition has probability >0.

3.6.38 Remark

The second assump;ion of the above theorem will cause no trouble.

1f it does not hold then the partial sums converge to their limit
even faster than in the cenfral'limitlcase.
3.6.39 Remark

The next step is to work on assumption one. It will be shown

that the definition of uniform mixing can be simplified.

100

3,6.40 Theorem
For a countable Markov process, the supremum $(r) in the
definition of uniform mixing is the same, even when A is restricted

to vary only over cooxdinate sets.

Proof: Let A Mfoo ’ /“\(A))O. Then A can be split into the union

of its cross-sections on coordinate t, that is

_ i i, t-1 t
A = ZiA A, where AT&€M_ . and A& M,

and in addition each Ai completely determines the state at time t,
and only A* such that ﬁ(Al)>O are considered. (There must be at

least one because ﬂ(A))O and the process is countable.)

oo
t+r

“\«_(AQB) - M) M)
ALY
|JZatap) - MEaa) Mis)|
' _/M(ZAiAi)
|§;_(/~1(A1Ais) - f*(AiAQ)‘(B))[
% pwtay)

Then given B&€ M

(because ZAlAi is a disjoint countable sum).

< ‘2; ﬂ(A‘AiB) - f\(AiAi)f\(B)l
= Matag)

(because moduli of sums are less than sums of moduli).

Now by the definition of conditional probability (3.6.5)

M (AiAiB) = /‘{(AiAi)/“ (BlAiAi)

so the above fraction may be expressed

i01

Zlﬁ<AiAi)\}1<B afay) - ;MB)\
Jatay)

The above expression is a weighted mean of terms\/&(B\AJ‘Ai) -)((B)\ .
So either all such terms have the same value or else there is at
least one index I for which the term ‘lﬂ(BlAIAI) - r‘(B)‘ has value

greater than the mean. 1In either case, for some I the value of the

above weighted mean

I
<| pslatan - A
Finally by the assumption that the process is Markov

7/« (8]ata;) = A(BlA)

and so multiplying top and bottom by AI’ the above term

| MaB) - fan) he)|
P

All in all the above reasoning easily yields

sup (A.B) - (A.) B
b & T Lpew - peppe))
| ALEM ,BEM M(ap)

The converse inequality is obvious because M:C Mt so the above

inequality is in fact an equality.

3,6.41 Proposition

For a homogeneous Markov chain Q y if (1) there is a
probability measureﬂ on Q , an integer r and a positive real

such that for all measurable sets A in the coordinate space,

M= =B, xi06 4 >1 . ¢
INERE SR

whenever ﬂ(A) <€

102

and (2) there is only one ergodic set, then the process is

uniformly mixing.

Proof: This is stated on pp.367 and 368 of [17]’in a sliéhtly

different notation.

3.6.42 Theorenm
Either an ergodic process is uniform mixing or else for every

measure)t , for every integer r, for every real € there exists a

measurable coordinate set A such that

K oL
/\{x X, -g}

Proof: This can be derived by predicate calculus from proposition

AY
L5

3.6.41.

3.6.43 Theorem |
Either an ergodic Markov process is uniform mixing or else all

of the mixing coefficients #(r) = 1,

Proof: If it isn't uniform mixing then the previous theorem shows

that #(r)21 - € for any € , .

3.6.44 Remark

So for the prbcésses derived from grammars, either there are
for any given r, stacks which completely determine the next r°
transitlons, or else the process is uniform mixing. The next stage

of this proof is to find which stacks determine their transitions,

A non-terminal is deterministic if it can generate exactly

one terminal string; otherwise it is non-deterministic.

103
3.6.46 Lemma
If a deterministic symbol is the active . symbol 6f a stack,
then only one sequence of transformations is possible until that

symbol has been removed. This sequence has probability one.

Proof: The only sequence is that which generates the sole terminal

string.

3,6.47 Lemma
If there are r deterministic symbols at the head of the stack

then at least the next'r transitions are determined.

Proof: Each symbol needs at least one transition to delete it.

3.6.48 Lemma

If a non-deterministic symbol is the active symbol, thenthe

probability of any sequence of transitions which removes it is less

than one.'
Proof: It is the same as the probability of the string it generates.

3.6.49 Theorem

The process obtained from a grammar is uniform mixing if and
only if there is a finite maximum of the number of deterministic

symbols which can appear adjacent to each other.

Proof: This is an obvious consequence of 3.6;43, 3.6.47 and 3.6.48,

3.6.50 Lemma

The right-hand side of a production stemming from a deterministic

symbol contains only deterministic symbols.

Proof: Only one terminal sequence can be produced.

104

3.6.51 Definition

A type 1 production is one whose right-hand side contains
only deterministic symbols,

A type 2 production is one where the right-hand side ends with
a non-deterministic symbol.

A type 3 production is one which contains a non-deterministic

symbol but whose final right-hand symbol is deterministic.

3.6.,52 Remark

The three types are disjoint but include all productions

between them,

3,6,53 Definition

The score of a deterministic symbol is the length of the sole

terminal string it can generate.

The score of an adjacent string of deterministic symbols is the
sum of the scores of its components.

The score of a string containing one non-deterministic symbol
followed by adjacent deterministic symbols is the sum of the scores
of theydeterministic symbols plus the number one,greater than the

maximum of the scores of the deterministic symbols in the right hand

51de of any production of the grammar.

3.6.,54 Theorem

Only a type 3 production can result in an increase in the score

of the string of symbols at the top of a stack,

Proof: Otherwise, if a type 1 production is used, either the active

symbol was deterministic, in which case the sum of the scores of the
new deterministic symbols on the top of the stack is one less than

before,as a terminal has been output, or the active symbol was non-

deterministic in which case the new string has a lower score by the

definition of the scorxe.

If a type 2 production was used a non-deterministic symbol

gets replaced with another so the score stays the same.,

3.6.55 Theorem
A sufficient condition for a grammar to have a uniformly

mixing process is that it has no type 3 productions.

"Proof: By the above theorem the set of scores of adjacent strings
of deterministlc symbols is bounded. As the score of any deterministic
symbol is non-zero, the set of numbers of adjacent'deferministic

symbols is also bounded. So the conclusion followérfrom 3.6.49.

3.6.56 Theorem

Every language is isomorphic to a 1anguage generated by a
uniform mixing grammar.
Proof: Given a supernormal form grammar G let G! be the grammar
with the same:structure‘of non-terminals as G, but each terminal
in each producfion éhangéd to a new symbol which uniquely
identifies that production. 'There is clearly a bijective corres-
bondence between”the'sets of parses of the two languages and hence
also between their languages because both are unambiguous.

Let G"‘ be obtained f:om G' by rearranging the order of the
non-tgrminals 6f the type 3 proéuctions of 6! so that a non-
determiniétic syﬁbol comes last, Thus G has no type 3 productions.
There is a bijective correspondence between the parses of G! and
G' and both are unambiguous so there is also a bijective corres-
ponéence between their languages, , .

L(G) is 1somorph1c to z(G) [(G) to ((G" so [(G) is

isomorphic to Z(G) which is uniformly mixing.

106

3.6.57 Theorem

If S}_ is a process derived from a Greibach grammar such that

o2 = €(log py(@) + ..o + log py(e2) + M) —— oo
N—

then log p; + H satisfies the central limit theorem.

Proof: This is theorem 3.6.37 with the uniform mixing condition

removed because of the previous theoxem.

3.6.58‘Corollarz

If Q is any Greibach process then given € > O there is an
X¢1 such that the sequence of initial pieces SEC(N) partitions
into two sequences of sets, a sequence of high probability sets E
such that \log /l C(N)(w)/N + H‘ < € for every w € Ey

and the remainder EN = QC(N) - EN’ such that

N

) c(N) o(N) N
w;EN 109 p° M (@) M @< x

and

){C(N)(EN) < XN.

Proof: Because the process is Markov each pi((,)) has the same

probability distribution, so

€(log P (W) *+ ... + log py(@) + NH)? = N%(log p (@)+ H)?

2
If O'N =0 then%c(N)(w) Z-ﬁpi(w) = NH for all @

so if (J"N2 is bounded, O'N2 =0

and so any positive € and X<1 will do,.
. 2 ‘
Otherwise 0" 00 , the central limit theorem 3.,6.57

applies, so wntlng n(x) for the normal function and using that
c(N
dw) = Z' P (@)

107

c(N)
)‘{w doa A = {w) + N a}'N::a*J?m

Hence substituting AN€ for a,

’ /1{(0: 1ogl$c(N)(u>)/N+H >€}-N_,—°°>7l(,ﬁ\?e)
oo o

Now) = fﬁe/ ey < e e s

so long as JAN€ ? 1 which it eventually becomes as N=» 09 . Hence

-€2 a -
taking X. = e ¢ the result ﬂC(N)(EN)< XN follows. Yet another

similar integration yieldé the other result.

108

3.7 CALCULATING THE RATES (PART 2)

This subsection shows how to calculate 1(4, which is physically

the most important kind of rate. It does this by showing that
+ &'\' . . .

‘&u = Lim %{5, where 5 is the fifth kind of rate for the closure

p,~>1 Qt
grammar, and then calculating 5 The final
result, that 8l4 is the entropy of the language divided by the
average of the lengths of its sentences, is neat and straightforward,

but its derivation here is extremely tortuous and requires some

power ful mathematics. Perhaps a simpler proof can be found?

3.7.1 Lemma

R4 = Lim sup = Z C(N)FC(N)(Q_)) logi(C(N)((l))/N

N~ 00 “>5£;L
Proof:
By definition ﬁq = Lim' - I‘Q(IN)(GD)logI‘C(|N)(Q))/N
4 Noo weCQe(IN)

c(IN) . .
Now any word () &§) (IN) is the first N letters of a concatenation
of words from 5;2, so it divides into two parts,(p].gSIF(N-a) which

consists of camplete words, and @,€ Q“a) which is the final

truncated word (of length a). Hence

H UM () = /‘{C(N'a)(wl) ﬁ('a)(wz) Py

a ., . '
whe re Py is the probability that the final truncated word is of

length a in a string of total length N.

. c(IN
This expansion for /1 ()(g)) can be substituted into the

definition of 124 and the log of a product split in the usual way

to yield

ﬁ =Lim S, + Lim S, + Li
4 im S
N-»00 N0 ° Neoo 2

were s, = - S Bf 2 (N_a,;‘c““‘a%wl)log/(‘:‘”‘a’(col)m
1

109

‘2z
i

a : (1a) (la)
2 "gPN g (|a)/‘ ((1)2)109/‘ (@2)/N

a A
3 -ai p-N log pN/N

Now - Z-Q“a) ;é“""(w) 1ogj‘“a’(m) < g[i(w)mg}t(w)
e

because the partition defined by the second sum is a refinement of

wn
"

o

that defined by the first.
Hence S, & i P> E/N = EN
2 =5 N . ,

Lim -
and so N-»00 82 = 0

The next step is to show that Lim 83 = O also.
N->00

As N gets large the probabilities p; tend to the limit pa, where pa
is the probability that a random cut cuts off an initial part of a

sentence of 1ength a in an infinite concatenation of words from Q

So 3N‘9N ZPIOQP/N

It is well known that ([' 7 1, p.333)
o0

‘pa = Z p;/M

i=a

where P; is a term of the length generating series of Q and M is

the mean length of word in R .

If f(z) is the length generating function for Qand f(z) has a

minimal simple pole at 2., then by (by corollary 2.,1.43)

P. 77/

i+1
i ISw b‘/zo

= B&*

where B = b/zo, X = l/zo, and b is some constant.

110

Now by remark 3.2.6 z°'>1 so X< 1. Hence

.,
a R B oA
P 335308 M(1-x)

" The sum —_S_ pa log pa may now be split into two parts, the -
a=0

first few terms S, = i p log p where the approximatlon
a=0 , ;
: a : :
paﬁ -3%1—_—&7 is not very close, and the rest S5 = - Z p log pa.
S is a finite constant sum so Lim 54/N .
4 N—O0
BD(
Sg& - ZM(I <) 199 NI-x3
o0 09
._B..__ ___E___ a _B_ Z a
= (M(l-oc) log M(1- &%) v+ ; %) M(l M(1-ox) loget a_Aa“)-

As <1 both these component sums are finite, so S_'is finite and

5
hence
Lim -
N-0Q SS/N = 0.
As S, = 5, + Se» Lim S,/N = 0 also.

00 3

The proofs that Lim S_/N = O for the
N4 3

has a multiple pole nearest the origin, or a branch point, or several

other cases when f(z)

equidistant singularities are similar.
Because both 'S, and 83 tend to O as N tends to infinity, the

expre551on for R reduces to

& = Lim S
4 Naoo !
This can be‘ rewritpen by expanding S1 and using the fact that

c(N-a) _ c(N-a} c(N-a)
q 1
T et U@ e U @)

as R4 = Lim p; qc(N-a)/N

111

which can be algebraically rearranged to give

= Linm (Zo Py g ¢MN-2)/(n.a)) - Lim (% a2 o(N-2),nCa)))
N0 a= ' N azo N*"N

There are now two possibilities. Either the sequence q(N)/N tends to
a limit. Or (in the case of a language all of whose words have length
a multiple of some common factor) only some of the terms q(N)/N are
non-zero, but these non-zero terms tend to a limit, and furthermore,
if qc(N—a)/(N-a) is zero, then so is p;. In both cases p; (which
tends to the limit distribution pa) is mainly concentrated on those

terms with small a, hence large (N-a), qC(N-a)/(N-a) close to the

limit and small a/N. Hence,
> o2 o(N-a) -,
Lim }E; N 9 2 /(N-a) = Lim sup qC(N)/N
N=00 a= N=+ 0O
| o Y a C(N a)
and Lim 2: a/N (Py q , /(N-a)) =
N-»00 3=0

So expanding qc(N)

zl = Lim sup - 7 c(N) c(N)
Ty = om e w(‘%m)/\ (W) log /t (w)/N

which proves this lemma, .

3.7.2 Remark

The crux of the proof of the next main lemma [3.7.6] is the

change from a sum welghted by one measure /&() to the same sum

c(N
but weighted by the measure f\ (N), 1q fact this is intuitively

plausible because as N gets large,‘/KC(N) and «N) are like each

other except on sets of small measure.

3.7.3 Lemma

For all ® (of length N)

112

/1'(N)(w) = ppp, /(C(N)(w)

where M+l is the number of complete words generated from the original

(non closure) grammar in & , and P is a normalising factor.

+(N c(N
Proof: }'\ (N) and () are the same set and their words are

generated in the same way except that when one of the closure

productions is used the preprobability of Q'(N) is Py and for

QC(N) is 1,

3.7.4 Lemma

1

P =
. M-
N ng " p, M°M ()

Proof: By summing both sides in the expression of lemma [3.7.3]

and algebraic manipulation. (Using the fact that I‘*(N)(Q*‘N)) =1,)

3.7.5 Lemma :
1

<
P $; N
P2 Py

Proof: As M is the number of complete subwofds in W and as each
subword is of length 2 1,: Ms N. Hence as p1<1, p1 le

1 1

1
0 P = -_f- M (N) $. — = -——N
‘QETN)pZI’ pc (@) ;??('Mpzplu (N (©) P,P;

3.7.6 Lemma

<
Lin ®. = Li - C(N)
et T N‘:‘,:*Pmsw wog/“"“’ww

113
Proof: By definition

+ . Z t(N N

ﬂs = Lim sup - +(N) [1 +)(w) log ;1 *()(w)/N
N= we(?

So using lemma [3.7.3] to substitute for the second occurrence of

+(N) e e s
’((@) and splitting the resultant log of a product to a sum of logs,

there is obtained the equation:

’ . .
ﬂs = L;n;s:op Tl + L;m_,solzp T2 + Lﬁmﬁsgf,y’l‘s}
where T, = - Z (}‘"(N)(w) log }“C(N)(w))/N
.ﬂ"’(N)
T,=- f(N)(/\'(N)(w),log (Pp,) I/
we

3 o +N)
and T, wez +(N)(/‘ (w) log (pl) M)/N

Each of the above expressions can be further reduced (T, and T
3

first because they are easiest).

For T, = - 109 sz/N Z /‘“N)((ﬂ)) = - log PPZ/N-
Similarly,
£
T, < -log p E "N (w) (wN) = -
’ "™ Jo) (VR = - dea

So 1~3 = kl log pl‘ where k1 is some parameter \k1l< 1.

Finally '1‘1 will be reduced. By the extension [3 6.57, 3.6.58)

of Macmlllan's theorem, glven €0 there is an X< 1 such that for
all sufficiently large N, the set _Q_ (N) partitions into two

sequences of sets, a sequence of high probability (with respect to
the measure /‘\C(N)) sets Ey, such that. ‘log /\C(N)(w)/N + H‘ L€

for every one of its sequences, and the sequence of low probabilit
: y

114

= N
remainders EN = QC() - EN’ such that

_ c(N) c(N)
we};—; log M7 (w) A (w)/N <N

and

,‘C(N)(EN) < XN.

In the above

H = Lim sup Z) (N) log [\C(N)(w)/N
c(N

N ~» 00

is the entropy of the pr‘ocess.

By the ordinary version of Macmillant's theoren,

- log ﬁc(N)(w) = H + X€ on Eg

(where &K is a function of ¢ but l«\ €1 for all we E).

The expression for T, can therefore be split into two parts

’_[‘1 = T4+T5

where T, é:_ /\"(N)(cn)) (H + &€)

T, = -é (ﬁ*(N)(w) 1og}t°(N)(w))/N
N :

Now because E UE Q*(N) and [‘f(N)(Q*(N))

T, = H H%N Ny ‘ZN ﬁ*‘“’(w)x

The middle term in the above sum has the Property that

N
" p, M)(w)] = Zr\“ () (expanding P by
lemma [3.7.4])

< H X_N.. b N
N N (by the extension
Pl of Macmillan's

theoren)

So the middle term may be written as

&
k2 H _— where lkz‘ < 1.
Pl ,

The final term in the sum for T4 is a product of € and a sum of

terms less than one, so may be written k3e where ‘kB\ <1,

Finally 1‘5 can be reduced by substituting I‘(‘ for }‘c to yield

T = -Z.P le P, ﬁC(N)(w) log f*c(N)(w)/N
2 E

so expanding P

P
T < -Z 2 MM () 109 MEMNM) (@)/x

E
B3 % by the extension of Macmillan's theorem,
Py
) X <
So 1‘4 k4 pN where \k4\ X 1.
1

So gathering togethet all the terms,

nr ='L)injxsup(H+k H—"— +k.,€ +k ——x—N-)
5 2 N 3 4 N
N> Py - P
Pp2
+ Lim sup (- log Y)
N—0Q
+ Lim sup (k; log pl)
N =» 03
so R H+ €&(LL k,) +0 + 1 (L1
o} = m sup og m sup k
5 N —> 00 3 pl P 1)

N~ 0Q

so long as p1> X.

As Lim (log p

Lin, l) = 0, and € may be chosen to be arbitrarily small,
1

’
Lim ﬁ 5 = H,
pl-’l

116

Or in other words using the definition of H

‘ N :
Lim «5 = Lim sup - E
pl-PI N—»CR ”‘QC(N)

/\C(N)((a)) log ﬂC(N)(w)/N.

3,.7.7 Theorem
.'
3(= Lim - IK
4 5
p1-91

Proof: By lemmas 3.7.1 and 3.7.6 both sides are equal to

Lim sup - E)QC(N)(w) 10;;)‘C(N)(w)/N.v
N2 e Qc(N)

3.7.8 Theorem
R, - o

£ (1)

Proof: By the above theorem and the theorem 3.5.7

o+ QY v 169 pr
R4 = Lim ﬁs = Lim Lim sup (N + N)
pl-?l | vpl—’l N =»00 Npﬁ N
By theorems 3.2.11 and 3.2.12,
’ 2 L N+l ‘-
ay) -(N+1)p,(p,log p £ (2) - a(z)))z " (-py)f (2)
N+2 2 2 .
NP}, 2o " Py (£1(20))° N (-pyf(z))

(N+1) (a(z,) - P,log p,f (2))

!
N . z . plf (zo)

2
’ -
ay 9(z,) - Pylog p;7(z)

So Lim sup
N-»00 Npt zoplf'(zo)

117

t [
log py log (Pyf(z,)) o N Zog 2z,) log z_p,f'(z)
N N N N
log py
So Lim sup ——— = - log z .
o
N=» 00 N

Now, as pl—ol, then zo-el and pz-,o so

1 . -
Lim Lim sup N . log Py - ‘9(1)-0 o g(1)

Hence using the first equation in this proof

g(1)
R, = ——
i)

3.7.8 Remark

Much of this chapter‘has been devoted to Obtaining‘the pPrevious
result, and its proof has involved a tortuous rdute and a good deal

of difficult mathematics. But now that the résult has been justified

it is very simple to use, for theoremsb2.3.3.2and 2;4.3.2 show

how g(1) and £’(1) can be calculated merely by solving linear equations

with real coefficients{

118

Chapter 4

PARSING

It is a 51mple matter to generate a termlnal string from a
parse [chapter 1] The more difficult parsing problem is the
inverse of this, that is, given a string, construct a parse which
will generate it, This problem is important‘because any computer
programme written in a hlgh level language must first be translated
1nto a machine language before it can be run, and one of the steps
of the translation process is to produce some representation of the
parse of the input programme. The parsing problem is also
intrinsically interesting theoretically.

For the above two reasons the parsing problem has been 1nten-

sively studied, and many different pars1ng algorlthms have been

found [6,8,21,35].‘ As time has passed, the algorithms have

become more general and more powerful, and their descriptions more
51mp1e, but most are clearly variants of one of the three basic

parsing algorithms which are studied here: top down; bottom-up,
or precedence. Ver51ons of these three basic parsing methods are
also used in compilers, although sometimes two are used at a time,

and they are often supplemented by special shortcuts which can be

used because the compiler only needs to work on one grammar, that of

the language being compiled.

Once the problem of finding one solution to the parsing problem
is solved, another problem can be tackled, that of measuring

(absolutely) the behaviour of an algorithm, or of comparing

(relatively) the effects of two or more parsing methods,

On the theoretical side the usual measurement is a worst case |

119
analysis which shows what is the maximum amount of time and/or
space which a parser needs to analyse any string. Most parsing
methods only work on some grammars, and simple tests may be
presented to decide whether a particular method will work on a
particular grammar. Different parsing methods may be compared in
respect of the size of the set of grammars they work on.

On the practical side the effects of a parser are difficult
to disentangle from those of the rest of the compiler in which it
is embedded. But there are three important ones. First, the
orders in which the input string is scanned and in which the parse
is generated. If these correspond with tﬁe order in which the
input string is read by the compiler, and the order in which the
parts of the parse are needed by the next stage of the compiler
after the parser, then ohly a small part of the input string and
of the parse need be stored by the parser at any one time, and so
a lot of space is saved. However, whether or not such a one pass
compiler can be built is often more a finction of the semantics of the
input and output languages than of the choice of parser.

The second effect of the choice of parser is relatively

independent of the rest of the compiler. That is, the average or

typical amount of space or time needed to analyse a string. The
third effect is that some parsing methods allow better error
detection than otheis.

Ihié chapter is intended to help the designer of a compiler
to calculate the second of the above effects before writing his
compiler. Unfortunately the results have turned out to be rather

negative. In a reasonable sense, all deterministic parsers require

the same amount of time and space. Any backtracking parser requires

more, but it is not possible to give a general algorithm which

120

calculates how much more. For restricted classes of grammars
and parsers it is possible to give an algorithm, but the restrictions

are of a theoretical kind and the calculations are very complicated.

4.1 PARSING METHODS: THE DOMINO GAME

The parsing methods will be described within a uniform framework
which allows them to be easily compared. They are described in
informal physical terms as a solitaire version of a type of game of
dominoes. This (hopefully) makes them easy to understand, but does
not result in a loss of rigour, because the description could, with
effort but not intellectual difficulty, be translated into graph
theory.

The general idea of the game is to start with the start symbol
at the top of the board and symbols representing the input string
at the bottom. An attempt is made to build a bridge of dominoces

from one to the other. If it succeeds the final bridge represents

the parse,

4.1.1 The Physical Apparatus for the Domino Game

The game is specified relative to a particular grammar (N,T,P,S),

so different grammars correspond to different versions of the game,
The board

The board is a two-dimensional flat area with‘a top, bottom,

left and right sides.

The pieces

There are three kinds of piece. They are all stretchable as

is necessary, but may not be rotated, folded nor reflected. When

placed on the board each occupies a definite area of space, none of

which can be shared with another piece.

Domino

Corresponding tb each production <{x 4X1X2...Xn> there is an

as large as needed set of identical dominoes. Each domino has one
top edge marked with an X, and n bottom edges marked with Xl’ X2,
...,Xn in left to right order (see diagram below). For some

parsing strategies the dominoes may have a finite number of spaces

into which a finite amount of erasable information may be written.

A domino corresponding to the

production (X-’X1X2X3X4)

Input piece

Cdrresponding to each terminal symbol X€& T there is an as
large as needed set of identical input pieces. Each input is marked
‘on the top edge with an X. The bottom edge is ignored. Again there

may be space for a finite amount of erasable information.

An_input piece for the terminal X

Start piece

There is one start piece. It has the start symbol S on its

bottom edge. The top edge is ignored. There may be space for a

finite amount of erasable information.

The start piece

4.1.2 The Aim of the Game

The aim of the game is to change a pattern of Pieces on the
board which represent an input string to another pattern which
represents a parse of that string, using only allowable rules to

change from one pattern to the next.

The board is set up to represent a particular input string

which is to be parsed. If X)X,...X is the string to be parsed

then the board is set up with the start Piece at the top, and input

pieces corresponding to Xl,Xz,...Xn in left to right order across

a
CEleleRe

Starting situation corresponding to the input X

the botton.

1x2"'xn

Finish of play

There are three different ways that Play can finish,

1. Successful finish

Every top edge is matched against a bottom edge and every bottom

edge against a top edge. 1In pParticular the bottom edge of the start

piece and all the top edges of the input pieces are matched. The

parse of the input string may easily be obtained from the pattern of

dominoes (see diagram),

Example of a successful finish for the game
corresponding to the language of assignment
statements and input string 'b=(a# b)!

2. Unsuccessful finish

The parser decides that it cannot find a parse and so stops.

This can happen for one of two reasons.

There is no parse, that is the input is not in the language

generated by the grammar G.

There is a parse, but the parser has failed to find it.

3, Non-termination-

It 1s also poss1b1e that neither of the above situations is

re;ched.: In thls case play goes on for ever.

4.1,3 Rules of Play

There are three types of move.

Placing a domino

Put a new domino on the board, matching one or more of its

edges against edges of pieces already on the board; Top edges must

be abutted to bottom edges and bottom edges to top, and of course

mat ching symbqls'musttxamarked with the same symbol,

Joining two dominoes

This is a variant of the above. Stretch two dominoes already
on the board so that the top edge of one abuts a bottom edge of the

other, where both edges have the same marking symbol.

Backtracking

Take some dominoes off the board. There are often restrictions
as to exactly which dominoes may be iemoved. These restrictions will
be explained in the course of the explanation of particular parsing
methods. The general rule is that the pattern of dominoes and their

connections should be the same after a backtracking move as it was at

some earlier stage of the parsing.

Examples

oJofoloYelole

Diagram c Diagram d

The above four_diagrams show situations which might arise
during’parsing. b, ¢ and d are alternative situations which might
follow situation a. b is obtained from a by the first type of move,
that is, the domino corresponding to {L=a? is abutted to the
bottom L of the domino correspdhding to {S-=L=R) . c is obtained
from a by the second type of move, that is the domino corfesponding
to S #L=R) is stretched so that its top edge S abutts the staft
piece. 'd is obtained from a by the third type of move, backtracking,
that is dominoes corresponding to <R *(R*R)) and {R=*aY are

deleted.

Remark: Other types of move

Other moves are conceivable. For instance, two are: place a
domino on the table but do not immediately abutt any of its edges
to any piece 31ready on the table; \adjust two adjoining’dominoes
so that they no longer abutt each other, but leave both on the table,

Only the three named types of move are used in the th£ee types of

parsing algorithm considered here.

4,1.4'Definitions for Describing Situations

All parsing methods progress from situation to situation in a

discrete manner. So to analyse them it is necessary to cohsider

the situations in detail. The following definitions give nameé to

particular parts of situations and also help to illuminate their

structures.

Definition

A situation is a pattern of pieces and dominoes on the table

A start situation is one where there are Just the input piéces

and start piece on the board. The start piece is ét the iop and the
L

input pieces in left to right order across the bottom

A final situation is one where no piece on the table has an

unmatched edge.

Definition
A domino or piece is directly connected to another domino or

piece if it abutts it.

A domino or piece A1 is indirectly connected to another Az if
either A1= A2 or A1 is directly connected to A2, or there is a

chain A1 = Xl’xz""’xn = A2 such that each Xi is directly connected

to Xi+1.

Remarks

Input pieces are never directly connected to each other. 1In
the start situation they are not indirectly connected either, but if
a final situation is reached every pair of pieces is indirectly

connected.

The relation of being indirectly connected to is an equivalence

relation.

Lemma

In any situation obtained while parsing by any algorithm using
just the three rules (placing, joining, and backtracking), every
domino is either indirectly connected to the start piece, or to an

input piece (or both).

Proof: By induction. The above statement is clearly true of a

starting situation. If it is true in a situation before a placing

or joining move, then it is true after. The situation after a back

tracking move has the same pattern of connections as some earli f
¢

situation, and so has the above property by complete induction

Definition
An edge is said to be free if it does not abutt another.

Otherwise it is matched.

Definitions

A piece or domino is said to be ceilinged if it is indirectly

connected to the start piece.

An edge is said to be ceilinged if its piece or domino is

ceilinged.

Definition

A ceilinged free bottom edge (cfbe) is a bottom edge which is

free and ceilinged,

Lemma

The left to right order of the (cfbe)s is a total order.

Proof: The set of all ceilinged dominoes forms a tree with the

domino abutting the start piece as root. Any pair of (cfbe)s can

be compared in left to right order by whethei one's branch is to the

left of the other's or not. If two different (cfbe)s were equal in

the ordering, then they would share the same branch and so one could

noi be free.

Definition
An input piece covers itself. A domino covers all those input

pieces which are covered by pieces or dominoes abutted to its bottom

edges.

A top edge covers those pieces which are covered by its domino

Remark

i i no
Thus a domino (domino's top edge) covers all those input pieces

~1

which can be reached from itself through a descending chain of

dominoes.

Definition

A piece or domino is fuil& grounded if either it 'is an input
piece or else it is a domino, all its bottom edges abutt fully
grounded pieces or dominoes; and also the set of all the input
pieces which it covers is a gép-free subsequence of all the input
pieces in left to right order.‘

A top edge is fully grounded if its domino is fully grounded.

Definition

A fully grounded free top edge (fgfte) is a top edge which is

free and fully grounded.

Lemma

The left to right order of the (fgfte)s is a total order

Proof: The set of dominoes from an (fgfte) form a tree. It is

impossible for an input piece to be covered by two different free top

edges because it is impossible for two trees from different roots to

share a descendant. -Hence the gap-free subsequences covered by

(fgfte)s are disjoint. The (fgfte)s inherit the total order of the

subsequences.

Remark

The above two lemmas about left to right orders are not as

obvious as they may seem. The next diagram shows some of the

odd patterns which have been excluded by the definitions
The (c¢fbe)s in order are'a,b,c,d,e,f. Two ceilinged bottom
edges may only be on the same branch to the root if at least one {
e is

matched. For example A,b and D,E are two such pairs It is oft
. en

difficult to compare the position of non-ceilinged bottom edges,
for instance to decide whether F is to the left of f or not.

The (fgfte)s in left to right order are 1, C, 8. Not all input
pieces are covered by (fgfte)s} B is not an (fgfbe) because the
sequence of input pieces covered by it contains a gap. Luckily a
relationship like that between the dominoces containing B and cC,
where C is a free top edge but has no bottom edge to abutt against,

can never occur during any of the three standard kinds of parsing

algorithm.

Diagram

Input pieces

Definition

The above two lemmas show that it makes sense to talk about

the leftmost and rightmost cfbe and fgfte,

130

Definition .

The effective input of a situation is the sequence of (fgfte)s

in left to right order.

Remark
The grammars dealt with here are unambiguous, so there is a

unlque pattern of dominoes whlch represents the only parse of any

correct 1nput strlng. In order for the next def1n1t10n 1o make sense
it must be 1maglned that thls unlque flnlshlng pattern of dominoes
is drawn on the table. The par51ng strategles try to build this
f1na1 parse by follow1ng strict rules of what to do next. As the
rules do not take 1nto account what is drawn on the table; the order
of the situation through which a strategy goes is unaffected by this
pattern. -But an‘observer is able to take both tne final pattern

and the pattern reached at some point in time 1nto account together

and he can in partlcular compare them.

Definition

A domino is correct if when it is placed on the table, it and
all the dominoes andvpieces to which it is directly or indirectly
connected form a subpattern of the final pattern..

Otherwise a domino is incorrect.

'In particular, if a domino is incorrect, but when it was placed

all the dominoes it abutted were correct, then that domino is first

incorrect,
A domino remains correct, incorrect or first incorrect according

to what it was at the instant it was Placed on the table.

Remark

The above definitions may seem a little odd for it is not

possible to know whether or not a particular domino is correct without

131

firstyconstructing'a completé parse of the input string. But once
this parse has been built, why use any parsing method at all?

They are less odd than they appear. Becausé' the language of all
input strings is a recursive set and because the function from input
étrings'to'theirvparses is constructive (using British Museum
Algorithm as a last resort [11]), it is always decidable in a
finite time whether or not a particuiar'domino ié correct or not.

In practice, it is easy to see with hindsight which dominoes were
correct aftér a paréing algbrithm has term;nated; Finally, in
general it is of no interest thch particular dominoes are correct;
what is wanted is a way of distinguishing different situations which
arise during parsing,

But the definitions are odd. They only make sense for strings
which can be generated by the grammar to be parsed. It is possible
to consider what would happen if a parser is given as input a string
outside the language to be parsed. An analysis of a parsing
algorithm in terms of correctness will not extend to this case because
such a string has no correct final parse. . -

‘The intention behind the definitions is that if all the dominoes

on the board are correct then it is possible to build up to a complete

parse by using placing moves only; it is not necessary to use back-

tracking or adjoining. There are situations in which this situation

is not exemplified: for instance after two correct dominoes have

been abutted by incorrect edges. These nasty situations do not make

the analysis of paréing methods as difficult as they might because

once one arises during an attempt at parsing by any of the three

types of algorithm, the attempt is doomed to failure.

132

4.2 PARSING STRATEGIES IN DETAIL

The domino game tightly restricts the manner in which parsing
may be done. The parsing strategies complete the specifications
by saying exactly what must be done to progress from one situation
to the next. The‘threg strategies have in common that they decide
the next move by fhe answers to’th;ee questidns:

(1) Which frée edge(s) should be dealt withanexf?
(2) Which.kind of move should be used on tﬁat edge (those edges)?

(3) Which of the examples of the type of move selected in question

2 should be used?

The three strategies differ firstly in the answers they give
to the three questions. Second. A reason for describing parsing
as a game of dominoes is to make the strategies as similar (and hence
as easily comparable) as possible. But most of the strategies require
extra informatiqn besides just the pattern of the dominoes on the
board. ‘In general 6n1y two kiﬁds of extra information are needed,
Firstly a table containing permanent information which can be worked
out once for all before any attempts to parse any input strings are

made. And secondly, small amounts of updatable information attached
to individual pieces and dominoces. The tables and updatable infor-

mation are different for different parsing methods.

Remark

A couple of definitions will now be made‘which refer to And

make sense for all parsing methods.
Definition

A parser is universally successful on a grammar if it succeeds

in parsing all strings of its language, otherwise it is partially

successful.

133

Definition

A parser is deterministic on a grammar if it never uses a

type 3 (backtracking) move when parsing a string of its language.

Remark

A new deterministic parsing algorithm can be obtained from any
given algorithm simply by disallowing backtracking, but in general

the new algorithm will succeed in parsing relatively few strings.

4.2,1 Left to Right Top Down Parsing

There is an infinite sequence of variants of this basic parsing
strategy. They are called LR(k) top down parsing, where k is a
non-negative integer. LR(o) parsing is also called pure‘LR parsing.

This method of parsing is widely used in compilers, but often
with a stack. (The method of recursive descent is this method -
using an implicit stack.) In general LR(o) and LR(1) parsing is
used. The key initial paper which originally analysed and laid -

out these methods is [21]

The table for top-down par:ing

A table is a function with finite domain. 1In top-down parsing

the table is a function

: . *
where N is a non-terminal, & a string of k terminals, and P*
the set of finite sequences of productions (including the empty

sequence). In practice only non-recurrent sequences of productions

are needed. In words, t maps a pair consisting of a non-terminal

and a string of k terminals to a finite (non-recurrent) sequence of

productions. t(N,s{) is the string cerresponding to <N ,u) , and

.th
t(N,®.); the i production in the sequence so long as t(N,%) has i

134

or more productions. If it does not thenlt(N.‘X)i is withoul

denotation.

Defining property of the table
Let p be a production, Then pé& t(N,®) if and only if there

is a generation of the form
*
‘either S = xNz = xRPz
* *
or S xNyz = x@yz where oy = ®

and in both cases N is expanded by p.

In words, p €t(N,o%) iff it can (in context) produce¢ a terminal
string starting with « .

The property is sufficient to specify the set of the productions
in t(N,®) for any N and & ,and this set can be calculated with
finite effort (see'[21]), but the order of the productions within
this set is not specified and can be freely chosen. Different orders
give algorithms with (sometimes) different properties. The algorithms

for the same grammar but with different values of k can be related

by the following theorem and definition.

Theorem

If Kk, Skz and o(i is a terminal string of length ki(i=1’2)
a}md 0§1 is an initial ;ubsequence of 0(2, and N is any non-terminal,

then - t(N, ul)at(N,uz)

(whexre t(N, o(i) is considered as a set).

Proof: Follows easily from the defining pProperty of t(N, ¢,).
: - i

Definition
If in addition to the above the order of the productions within

t(N,%,) is a suborder of the productions within t(N., & all
2 (N, 1) for

135

possible pairs'<N,°<2> » then the two parsing algorithms are said

to be compatible.

Updatable information on the dominoes

Every bottom edge marked with a non-terminal, including that
of the start piece, is associated with a space which can hold a

non-negative integer,

The parsing strateqgy

In outline, an attempt is made to abutt something to the left-
most ceilinged free bottom edge. This edge will therefore be called
the active edge. If the attempt fails then the algorithm backtracks.

In detail. 1If the active edge is marked by a terminal and the
leftmost fully grounded free top edge (fgfte) is marked by the same
terminal then the two edges are abutted using rule 2. If the (fgfte)
is marked with a different symbol then backtracking occurs.

If the active edge is marked by a non-ferminal N then its

associated integer is increased by 1 to yield 1. The symbols marking

the leftmost k(fgfte)s in order yield the sequence & . If t(N,b()i

exists then the domino corresponding to that production is abutted

to the active edge. All the 1ntegers assoc1ated with non-terminal

bottom edges of the new domino are initially set to zero, If
t(N,vl)i does not exist then the algorithm backtracks.,

When the algorithm has to backtrack the domino containing the

active edge is removed, and in addition any dominoes which directly

or indirectly hang beneath it.
(Technical problems are that there may be no (fgfte) in a

situation when rule 2 is attempted; in this case the match fails,

There may be too few (less than k) (fgfte)s when rule 1 is attempted;

136

in this case the terminals on the (fgfte)s which do exist form the
initial substring of X and the rest is padded out with a dummy
symbol. The table function t(ﬁ,uc) has to allow for these dummies.)
The strategy succeeds if there are no unmatched edges. It can

fail in two different ways. There are unmatched top edges but no
(cfbe) to be chosen as the next active edge. Alternatively back-
tracking fails., This happens when the active edge which ought to be
removed is the\bottom edge of the start piéce. A final possibility

is that a parsing strategy neither su¢¢eeds nor fails but goes on

for ever,

Properties of the LR top-down parsing strateqgy

(1) Backtracking does return the pattern of connections between
dominoes to that of an earlier situation, the only change is that
the integer associated with some non-terminal edge is increased.
(2) In any situation reached during parsing, all the top edges of
input pieces to the left of some position are matched, all fhbse'to
the right are not matched,and these unmatched edges of input pieces
are exactly the set of all the (fgfte)s,

(3) An LR(k) top-down parsing strategy is deterministic and universally

successful if and only if every sequence t(N,®)contains at most one

element.

Proofs:.

The first property can be deduced because once a domino A is
placed on the board, all subsequent dominoes are placed directly or
indirectly beneath A until A is fully grounded,

| ihe second can be proved by induction.

The third also by induction. 1If t(N,®) contains only one

production then there is only one domino which may be placed against

137

the active edge in each situation. This domino must be correct
because a final parse exists. If t(N, ®) contains two productions
then sometimes the wrong domino must be chosen first., If this
incorrect domino is not removed the parsing strategy cannot succeed;

if it is removed the strategy must have backtracked.

Remark

Whether or not all the sequences t(N,X) contain exactly one
production is only a function of the grammar and the length of K .

So the following definition makes sense: a grammar is LR(k) if it

is deterministically parsable by a top-down LR(k) parser, but not

deterministically parsable by any IR(k') parsef for k'< k.,

4.2.2 Left to Right Bottom-Up Parsing’

This is similar to top-down parsing, I do not know that it

has been used in practice. It was first déscribed in INGERMAN [18]

but with a few loose ends. The reason for both these facts should

be clear by the end of this description.

The table for bbttom-up parsing

" This is similar to the function for top-down parsing and is a

function
T {(N,ﬁ)i —> p»

where N, and P* are as before, but this time & varies over sequences

of length k, where the first symbol may now be a non-terminal.

t(N, %)i has its previous meaning.

Defining property of the table

If p is a production then Pe€t(N,®) if and only if

: *
either S = Ny = xXBy

*

: , .
or S = xNyz Pxwyz (where wy = o)

138

and the leftmost symbol of the right hand side of p is that which

gives rise to the first symbol of &

Theoxem | |

If kie k, and *i is a string of'symbols of length ki(i=;,2)
whose first symbol may be terminal or ﬁon-terminal but the remainder
df which is teiminal,and Nj.ié an initial subsequence of X 5 aﬁd

N is any non-terminal, then

t(N,) 2 t(N,O(z).

Proof: From defining property of t(N,%®).

Definition
If in addition to the above the order of the productions within
p(N,o&z) is a suborder of the productions within p(N,O(l) for all

possible pairs (N,ocz) then the two parsing algorithms are said to
be compatible.,

Remark

The defining property of the bottom-up table seems similar to
that of the top-down table. An important difference is that in the
bottom-up definition K varies over a larger set and so the domain

of its function t is greater.

Updatable information on the dominoes

Every top edée marked with any symbol (including those of
input pieces) has associated with it a space into which a non-

negative integef méy be‘written. , ’

The Parsing Strateqy

Definition

The active edge is the leftmost fully grounded free top edge.

139

Definition

The target edge is obtained from the active edge in the
following way. Let A be the leftmost input pPiece covered by the
active edge. If A is the leftmost of all the input pieces then
the target edge is the bottom of the start piece. Otherwise there
is another input piece B immediately to the left of A. The dominoes
which cover B form an ascending chain. Let C be the lowest of
theée dominoes which is not fully grounded. The bottom edge of C
which is immediately to the right’of the edge on the chain from B
is the target edge.

If all the dominoes which cover B are fully grounded or alternat-

ively C exists but the bottom edge which covers B is the rightmost

edge of C, then no target edge exists.

Diagram

(:) Start piece

target edge

active edge
— fully grounded free

' top edges

00000

The letters A,B,C mark the pieces used as auxiliaries in the

definition of the target edge.

140

Remark
The definition of the target edge seems very complicated. But
once the dominoes are laid out the target edge is easy to find. The

rule is:. start from the active edge, go down (keeping to the left)
until an input piece is reached, go one piece left, finally up and

as soon as possible one step right (see diagram).

The algorithm

In outline. An attempt is made to abutt something against the
acfive‘edge. If the attempt fails the algorithm backtracks.

In detail. If the active edge and the_target edge are marked

with the same symbol then they are abutted. (A type 2 move is made.)

Otherwise the integer associated with the active edge is increased
by 1 to yield i. ~The symbol marking the target edge is N. The
symbols marking the leftmost k (fgfte)s in order yield the string o .
If t(N,bﬁ)i exists then a corresponding domino is laid on the table,
its lgftmostwbottom edge is abutted to the active edge, and the

integer marking its top edge is set to zero. (A type 1 move is made.)

If t(N,X), does not exist, backtracking takes place.
Backtracking is compliqated. The domino containing the target

edgeﬁis removed, plus any dominoes directly or indirectly below any

but its leftmost edge. If the active edge was on a domino (rather

than an input piece), then that domino and all dominoes benecath it
are removed. The integer associated with the new active edge (whether
or not on an input piece) is left as it was, but the integers
associated with all the (other) unmatched edges of input pieces are
reset to zero.

(Technical problems are that there may be no free top edges

but still unmatched bottom edges remaining; in this case a backtrack

141

is tried. The input may have to be padded out with dummieslds in
the top-~down strategy.) | |

The strategy succeeds if tﬁete are no unmatched edges.‘ it can
fail in two different ways. There is an active edge but no target
edge (thie happens when allvdominoes are fully grounded and
ceilinged; but some input pieces remain)., Alternatively, backtracking
fails. This happens when the target edge which should be removed

is part of the start piece. A final possibility is that the strategy

neither succeeds nor fails but goes on for ever,

Properties of the LR bottom-up parsing strateqy

Backtracking does return the pattern of connections between

‘dominoes to that of an earlier situation, the only change is that

the 1nteger assoc1ated with the active edge is increased.

In any situation reached durlng parsing all the fully grounded

free top edges except p0551b1y the leftmost are the top edges of
1nput pleces. The top edges of input pieces fall into three groups.
Flrstly to the left, matched edges whlch are not covered by the

actlve edge. Secondly in the m1dd1e, edges covered by the active

edge. Thirdly to the right, free edges. (Some of the groups may be

empty.)

An LR(k) bottom-up Parsing strategy is both deterministic and

universally successful if and only if every sequence t(N,oL) contains
at most one element.

Proofs:

The first property can be deduced by defining the position of

a domlno to be the pos1t10n of the rightmost input piece covcred by

its leftmost bottom edge. Dominoes are then never placed in a

position to the left (using this definition) of a domino already

on the board. Backtracking removed the target domino A and all
those dominoes to the right of A, ard $O returns the pattern of

connections to that holding immediately before A was put on the

board.

The second property can be proved by induction.

The thirxd in the same way as for top-down parsing.

Remark

" It should be clear why tbp-down parsing is more popular in

compiler design fhan-bottbm-up;

4.2.3 Precedence Parsing

This is the‘second main kind of parsing method used in practice,
It'Was‘deve}oped from operator precedence parsing initially described
in [8], was itself first described in [35] and has since been
generalised. . -
-Precedence parsing is different from top-down and bottom-up

parsing because backtracking is not allowed. Because of this precedence

parsing is qnly applicable to some grammars, called precedence grammars.

4.2.3.1 The table for precedence parsing

This is a function t from ordered pPairs of symbols of the grammar

to one of the four new symbols <,'>, Z,blank. In symbols,

t :‘(NuT) X (N\)T)"“{<'»>;"'0 3

4.2.3,2 Defining properties of the table

Some auxiliary definitions are needed,

Given a non-terminal X, its leftmost symbols A(X) are those symbols

which can start a string generated from X
‘ \

x.\

143

xef(X) iff Xg-?f‘-:xv(for some string o4 where x is a symbol.

The rightmost symbols

such a string.

®(X) as similarly those which can terminate

S+
x € R(X) iff XD ax for some string ®K where x is a symbol.

These prerequisite definitions are used to help define the table

t. In the statement of its properties o and f are possibly

empty strings, x and y any two symbols (terminal or non-terminal),

ﬁ and v ény
1) If there
2) If there
3) If there

4) 1If there

two non-terminals,

is a production <X - xxy@)

is a production
is a Production

is a production

X xxvp>
X—* xuyg)

<X =~ wuv)

then t(x,y) = > .

then t(x,y) = = .
and ye L(v) then t(x,y) =< .
and x€R(u) then t(x,y) = > .

and xeﬁ(u) and y ¢{(v)

5) If none of the above hold, then t(x,y) ='b1ank.

4.2.3.3 Defi

nition

Depending on the grammar it is perfectly possible for two or

more of the above properties to hold simultaneously and so contradict

each other,

<X, = &

so that by properties 1 and 2 above, t(x,y) =

For instance there may be two Productions

Xy pl> and

(x2 - o<2

xv (32) where ye L(v),

= but t(x,y) =< ,

The occurrence of this situation is said to be a Precedence clash.,

4.2.3.4 Defi

nition

A grammar is a precedence grammar if it has the folléwing two

properties:

1) It has no precedence clashes so a precedence table exists,

2)

4’.2.3.5 Rema

rk

No two right-hand sides of different productions are identiéal.

The above two conditions force there to be just one branch

144

at any point where the parsing algorithm might diverge and so

prevent backtracking being necessary.

4.2,3,6 Updatable information on the dominoes

Every top edge (both of dominoes and of input pieces) has
associated with it a space which can be blank or hold one of the two
symbols < , & . This symbol gives the relation between the symbol

marking its top edge and the symbol immediately to the left of it in

the effective input string.

The Parsing Strategy

4.,2.3.7 Definition

A substring of the effective input is a Phrase iff a correct
domino may be abutted against its top edges, so that the bottom edges

of the domino and the top edges of the substfing match each other

without gaps.

4,2.3.8 Definition

The handle of the effective string is the leftmost phrase.

4.2.3.9 Propositions

Any effective input (except that consisting of just the start

symbol) has at least one phrase.
No two phrases overlap.

Any effective input has a handle.

Proofs: Any effective input may be obtained by generating a partial

parse from the root. Then by induction, every node is either a tip,

gives rise to a phrase directly or gives rise to a phrase indirectly.
This proves the first statement, the other two are easy

consequences,

4.2.3.10 The algorithm

In outline. The handle of the effective input is located by
using the precedence relations between its adjacent symbols. (The
relation between the leftmost symbol of a phrase and the preceding
symbol is <& , between adjacent symbols of a phrase = , and between
the last symbol and the succeeding symbol o . The only possible
domino is matéhed against the handle. The proéeés is repeated with
the new effective’input.

In detail. To start with, all the input pieces have their
updatable information set to blank. The active piece is the leftmost
input piece.

One step of the process., The relation between the active edge
and the preceding top edge is looked up in the Precedence table.

If the relation is 2= or < then that symbol is written into
the updatable space of the active edge.. The next active edge is one
place to the right of the old.

If the relation is blank an error has occurred, the input string
is not in the language.

If the relation is P a reduction occurs. The parser leaves
the symbol marking the active edge blank. Th® handle is now the
sequence of top edges to the left of (and not including) the active
edge, consisting of edges marked with = until the leftmost (included
in the handle) is marked with €& , There

‘is only one domino which

will fit this handle and this is abutted. The next active edge is

the top edge of this new domino.

The procedure stops when the effective input consists solely of

the start symbol.

Technical points are. If the active Plece is the first in the

input (there is no top edge to its left), then it ig marked with a &

146

and the procedure continues as usual, If the end of the input is
reached the parser behaves as if there were another dummy symbol to

the right of the input and the relation between this dummy and the

last symbol of the input was always > .

4.2,3.11 Remark

" For proofs that precedence parsing does work see [35].

4.2.3.12 Property of the parsing process
| A small point that might cause some worry is that when the

precedence relation is $ the relevant updatable space is left blank.
The reason for this is that information only needs to be stored if it
is to be used again in the future. When the precedence relation is

> this fact is ﬁsed immediafely to steer the algorithm but never
again, hence it need not be noted down.

If one of the nodes of a parse is the symbol Z, if it generates

its adjacent direct descendants Xl, Y1 by the production

{z —» <, X, Y, p25 , 1f each Xi and Yi generates its direct descendants
by the productions <X, —» %y e1X541” <Yi—’ Yi+1pi+1> until the
final terminal symbols X Ym are reached, then the order in which
the symbols Xi and Yj are found and matched against each other in

the precedence table is

Xn > Ym’ xn-l> Ym’ ceey X2> Ym,

X RV X< Y, e X <Y, X, =Y,

Finally, both Xl and Y1 are part of a handle which gets reduced to
z,

147

4.2.3.13 Diagram

First this group of Then this group Finally this
relations is found from bottom to relation.
from bottom to top. top.

Froof:

This can be shown by induction by considering the details of

the parsing algorithm and the construction of the precedence table.

4.2.3.14 Remark

Notice that the above theorem does not state that the ordexr is

gap free. 1In fact it is not, for the active node being used by the

parser zigzags back and forth across the branches of the parse tree.

Between occasions when the parser comes across an adjacent pair of

symbols X, Y from any particular pair of branches it will in general

work on pairs to the left or the right of these pairs.

4,2.3.15 Corollary

If a parse P is produced by the first production (x~ X X, eee x)
n

and then by expanding each of the Xg to produce a complete subparse

Py > and the number of times a precedence parser finds occurrences of
the relation < , 2 , #= in a parse ¥ given by

r<(1¢), r)('p), r"h"(f) respectively, then

148

n

) =1+ 2 < (p,)
i=1
n

rp(P) =1 + Z r>(p)
i=1

. n .
= (P) = n-1+ 2 x7(p,)
i=1

Proof: Relations which hold when P; is free standing between left-
most symbols of Pi and the starting dummy get changed to relations
between 1eftmost symbols of P; and X;.1» the start symbol of P;_
Relations between rightmost symbols and the rightmost dummy get
changea into relations between rightmost symbols and the leftmost
terminal of pi;l. The extra relations hold between the x, and

i
X441 and also between the left dummy and 3 and X, and the right

dummy .

4,2.3.16 Remark

A similar theorem but more complicateg holds for the number of

occurrences between a particular pair of symbols,

4.2.3,.17 Corollarx

A relation t(X,Y) =7;> is never used unless Y is terminal.
Proof: Examination of form of sequence in last Property,

4.2,3.18 Remark

Precedence parsers stand up to errors in the input string better
than the other twotypes because in effect they restart their parsing

from scratch every time they use some new input. Hence errors in the

input string yield more localised effects in Precedence parsing than

in the Other two. A powerful generalisation would be a backtracking

pPrecedence parser.

149

The difficulty in making precedence parsers backtrack seems
to be that whereas in the case of top-down and bottom-up parsing
the activity at any instant is centred on a single node, and it is
therefore possible to store information associated with a node SO
that a parser can reorientate itself after backtracing, in the case
of precedence parsing the activity is centred on a pair of nodes.
Informatibn-for backtracking must not only be stored with pairs
which db'occuf'together,but aléo with pairs’which might occur
fogether. For insténce in diag;ram 4.,2313 Xn

and Y form such
-1 m-1

a pAir. In short, to allow for backtracking a very complicated data

structure seems necessary.

4.3 DECIDABILITY AND POST'S PROBLEM

A éontinuous concern of this thesis has been to calculate
varioué parémeters. Ideélly the solution is given in closed form
(e.g.'resulfé in chapiéx 1); as a second best a method for calculatimg
a solution is gi&eh (e.g; in 2.3.3). A third and worst possibility
is‘not to pre#ent‘an algérithm, but at least prove that none exists,
To p;ove thai an algorithm does exist is in essence easy; all
that has to be done is to present the algorithm.

To prove that

one does not exist is more difficult; there are an infinite number

of algorithms so it is impossible to present them all one by one as
non-algorithms, So algorithms must be excluded in blocks by their
properties, Luckily properties of algorithms have already been

extensively studied [3, 28], and particular problems shown

to have no solving algorithms. This gives rise to a relatively
simple method to show that a new problem has no algorithm to solve it,
The method is to present a way to convert any algorithm solving the

new problem into an algorithm solving an old problem., So if the

»

150

new problem had an algorithm solving it then the algorithm could
be converted into one solving the old problem. As the old problem
has no solution neither has the new.

In this section some standard definitions will be given and the

old problem described.

4,3.1 Definitions

A property is semi-decidable if there is an algorithm which
wﬁehvgiven an object to which the property might apply returns the
answer.'yes; in a frnite time if the property does in fact hold.

A property is decidable if both it and its converse are semi-
decideble, eduivalently if there is an elgorithm which when given an
obJect to whlch the property might apply returns with either the
answer 'yes' or else the answer 'no' in a flnite amount of time,
depending on whether or not the property holds.

A set is recu151ve1y enumerable if it can be defined by a semi-
decidable property. Equlvalently if there is an algorithm which

prlnts out all its elements.

A set is recursive if its property is decidable.

4,3.2 Proposition (Post's Theorem)

Consider the property which is true of a pair of ordered tuples

of words (o(l,..., a(j} and <81”"’ Pj) if and only if there

exists a finjte seduence‘of integers il""’in (where for all k,
1¢€i j) such that the corresponding concatenat
4< k<) po ions oy o(iz...Ni

and Pj1 61 cece ﬁin are the same word. This Property is scmi-

decidable but not decidable.

n

Proof: That it is semi-decidable is easy to prove, the algorithm is

all Se ; .
to txy sequences i,, ’in in.order and stop with the answer tyes!

when the corresponding concatenations turn out to be the same.
To prove that the property is not decidable is very difficult.

It was originally done by Post,and is more accessible in [28 chs 12 & 13].

4.3.3 Remark

The previous result can be used in context-free grammar theory

via the intermediary of a Post grammar.

4.3.4 Definition

Given a Post problem on thewrds <b<1,..., NJ.) and <? RARAE. @J> ’
the correspohding pair of Post grammars G, H have the following forms.

"I‘he non-terminal alphabet of each'contains a single symbol,

A, B respeétively.

The terminal alphabet is common to both. It consists of all the
symbols used in forming any of the words o(i or @i (i=1,...,3) in
addition j other distinct new symbols n, (i=1,...,3j) and finally
a 'middle! s§mbol a.

The productions are j+1 in number. j are of the form
{A—rniA o(i> , O <B-0niB Pl> respectively, the final production
is (A=*a» or <B»ay .

‘The start symbols of G and H are determined to be A and B

because each grammar has that symbol as its sole non-terminal,

4,3.5 Theorem -

‘ Thevpalr of ordered tuples <“1,.co’ Kj) > <P1'o-., pJ.) has
Post's property if and only if the languages of the corresponding

grammars G and H have non empty intersection.

Proof:‘ If uil‘.,, ®; is the same word as @il.., @i then

. n. eeoe I a K. PR . S
Mk Mg iq i Klk-luik is the same word as

n, n, oo n., aPb. ...f08; . so the intersection of the
lk lk-l 11 pll plk-l plk
languages of G and H is non empty.

Conversely, if G and H have non empty intersection then any word

in that intersection must have the form ni

esen, atl, ... &.
R 1 O(l

k 1 1 k

and also nik...nil a pil... @i for some sgquenpe of integers

k :)
il""’ik' This sequence is that required to demonstrate that

Post's property holds.

4.3.6 Remark .

There is a single plan for all the undecidability results .
obtained from Post grammars. First the grammars G, H are modified
in some way to produce sometimes a new pair of grammars G','H',
sometimes just a single grammar G'. It is then shown that the new
(pair of) grammar(s) has some property if and only if G and H have
non empty intersection. The new property is then only semi-decidable,
for if it were decidable then the intersection problem for G and H

would be also decidable.

As a simple example it can be shown that ambiguity is not a

decidable property [11 section 4.5].

4,3.7 Theorem

The set of ambiguous grammars is not recursive,

Proof: Fro;n any pair of Post grammérs G =¢({A}, T,P,A> ,
H = {{B},T,Q,B) it is possible to form a new grammar

G' = <{A,B,S} yT,Pu Q ‘S"A » S®B , S). Parses of G' have
their roots expgnded by either the production (s"A> or elsc

{S-*B? and the remainder of their productions taken from G or NI

respectively. Hence G' is ambiguous if and only if G and H have

non empty intersection.

153

4.3.8 Remark
The set of ambiguous grammars is however recursively enumerable.

This is best shown by presenting a semi-decision algorithm.

4.4 THE NON-PROBABILISTIC EFFECTIVENESS OF PARSERS

One of the choices a software programmer has to make when
writing_a compiler is which parsing method to use. Various factors
influence his decision. Probably the most important in practice is
his state of knowledge, i.e. he chooses the method he knows best.
Less accidental criteria are: how well a parsing strategy interfaces
with the remainder of a compiler; how robust the parsing method is
under the ipfluence of errors in the input; how large a piece of
code and how much data structure is needed to implement the me thod;
and in particplar the two factors to be dealt with here, how large
a subset pf the input language is successfully parsed and how quickly
(in how many.steps)‘the parser does its job.

There are two methods to obtain values for these factors: the

first is by measurement, the second by calculation. Factors can only

be measured for a compiler already in existence, so direct measurement

is out of the question for predicting the behaviour of a compiler at
design stage. iIndirect measurement, that is measuring already
existing compilers and extrapolating the results to the new compiler,
is also difficult. This is because there are at least four inter-

dependent factors which effect the measured behaviour of a compiler:
: 1

they are the parsing strategy, the design of the rest of the compiler,

the grammar of the language which is to be Parsed, the machine on which

the compiler programme is running. As yet these factors have not been

completely disentangled and as compilers are very complicated they

are unlikely to be so. There remains what is attempted in the next

two sections, to obtain the behaviour of parsers by calculation.

in this section information about the probability distribution
is ignored, First §ome results about the absolute size of the set
éuccesgfully parsable by particular methods is given, then some
comparative results; that is, does the subset parsable by one method
contain that parsable by another? Next some absolute and relative
results are given for the speed of a parser. If one parser takes
less moves than another whatever the input string, then it is fasterx
in a very strong sense.

In the next section the same four problems are again attacked,
but this time in terms of the-absolute and relative measures of sets
and the absolutenand relative average speeds of parsers. Unfortunately
the rgsults are not’of much practical,usé. Firstly they are undecidabil-
ity results., Secondly, in real life there is certainly more than zero
probability that an incorrect input is met. So more realistic results
wouldinot 6nly uéé a different measure from any generated by a pre-
probability, but also contain some estimate of the time required to

reject an incorrect input.

4.4.1 Remark

The first question to be dealt with concerns the absolute size
of the parsable subset. There is only one absolute set-theoretic
neasure of a subset, is it or is it not the complete set, so the
quegtion becomes! give criteria on grammars and parsing methods
' which distinguish those which succeed on all their inputs from’the
others. This will be done by examining ways in which parsers can

fail.

4,4.2 Definition

A grammar is left recursive if it contains a non-terminal A

&
such that A=) AX where ® is a possibly empty string containing

possibly both terminals and non-terminals.

4.4.3 Theorem

There is a finite test for whether or not a grammar is left

recursive,

Proof: The relation L which holds between two non-terminals A, B
iff there is a production <A"B°(> (where & possibly empty) is a
finite relation. Hence its transitive closure L' is finite and
obtainable with finite effort. It is a finite task to test all non-
terminals A to discover whether or not ALfA. ‘But a grammar is lefth

recursive if and only if there is such an A,

4.4.4 Theorem

For any left recursive grammar G and any top-down LR(k) parsex

of G there is a word from the language of G for which the parser

fails to find a parse.

&

Proof: Let AP AX be a generation which makes G left recursive
where without loss of generality & is a terminal string. Let 1
be such that the length of 0(1 is greater than k. Let

sDHpar D paxly Hpefuly

be the skeleton of the generation of

the terminal word F38“;(« Then the parser will fail on this word,
If it does not succeed in parsing the initial string 13 then it fails.
If it does and reaches a state where only correct dominoes are on

the board, the active edge is marked with an A, and the input is

chlz s then it will also fail. For to succeed in Parsing it must

next abutt some correct dominoes under A until the hew active edge
is A again. But if the parser succeeds in doing this then ‘the new A

is faced with exactly the same context as the original A and so the

procedure will loop indefinitely, growing a longer and longer chain

of dominoes on the board as it goes., If the new active edge A is not

placed on the board then a correct domino has not been placed so

the procedure still fails,

4.,4.5 Remark
The above theorem only states that the parser of a left recursive

grammar will fail, not that it will fail by looping. There is however

a converse,

4,4.6 Theorem

Top-down parsers for non left recursive grammars always terminate

in finite time (although not necessarily with a parse).

Proof: Let w ‘be a finite.string of length n on which the parser
continues indefinitely. Consider the dominoes which may be placed
undér the start piece. One must have been used last, because there
are only a finite number of possibilities, and if all are removed the
parsing terminates. Consider the bottom edges of this 1last domino,

one of these must be abutted against last for a similar reason. There

is similarly a last option for the domino against this edge, and
so continuing this procedure, a well-defined infinite chain of last

dominoes and last edges used is obtained. 1In order for top-down

:
parsing tq go from abutting below the leftmost bottom edge of a domino

to the next bottom edge at least one input must be matched against,

so as there is only a finite number of input symbols, the final limit

chain of dominoes must, beyond a certain point, consist only of

dominoes abutted to the leftmost bottom edge of the domino above.

There is an infinite number of occurrences of non-terminals marking

these bottom edges; as there are only finitely many different non-

terminals, one must occur twice. But then this non-terminal is left

recursive,

157

4.4.7 Theorem
Any bottom-up parser of any non-ambiguous grammar always

terminates on all inputs.

Proof: An indefinitely long ascending chain of dominoes cannot be
formed by abutting to target edges marked with some symbol Y dominoes
cérrésponding to productions of the form <X"Y'<) where ® is non
empty; becauée’befdie X can be used as the active edge at least one
input symbdl must be used to ground & . On the other hand, if there
are indefinitely long chains containing dominoes corresponding to

productions of the form <X"Y) then the grammar is ambiguous.

4.4.8 Remark

Precedence parsers always terminate but the following result

seems similar to theorem 4.4.4.

4.4.,9 Theorem
If a grammar G contains some left recursive symbol A which in
addition occurs in the second or later position of the right-hand

side of some ptoduation of G, then the precedence table of G suffers

4

from‘clashes.

Proof: Let (x —)xBAp) be the production,where & and @ ’are
possibly empty strings. Then BZ=A by the precedence table defining

rule 1 and B<A by rule 2 [4.2.3,2].
4.4,10 Remark
The previous theorems allow attention to be concentrated on

those parsers which terminate on all inputs. The exposition continues

by looking in detail into why terminating parsers succeed and fail.

4.4,11 Lemma

~ Any terminating parsing method will fail to find a parse if a

158

correct domino is ever removed from the board.

Proof: The parsing methods have been designed never to repeat them-
selves. Hence if a correct domino is removed it cannot be replaced.

Every correct domino has to be in place for a parsing method to succeed

4,4,12 Lemma

When a terminating parser stops there are no incorrect dominoes

on the table.

Proof: If it succeeds there are only correct ones; if it fails

none at all.

4,4,13 Theorem

A terminating top-down parser will find a correct parse for a

word if and only if no first incorrect dominoes ground.

2299£= Every incorrect domino is eventually removed 1nc1ud1ng every
first incorrect domlno. If a flISt incorrect domino does ground it
§ah only be removed along with some domlno above 1t, but that domlno
must be correct, and hence by the prev1ous lemma the parser fails.

" On the other hand, if a first incorrect domino fails to ground
it and all the incorrect dominoes beneath it will eventually be
removed leaving the pattern of dominoes on the table the same as just
before it was placed. So if there were only correct dominoes on the
table before the first incorrect domino was Placed there are still
the same number of first incorrect dominoes after it is removed,

By induction the number of correct dominoes can only increase so

when the parser terminates it must succeed.

4.4.14 Definition
A terminating top-down parser is prematurely successful on a

particular input if some first incorrect domino grounds on that input;

3

it is in short just prematurely successful if such an input exists.

4,4,15 Theorem
If a top-down parser is neither left recursive nor prematurely

successful, then it succeeds on all words in the language.

Proof: This is theorem 4.4,13 restated using the definition of

premature success.,

4.4.16 Definitions
Given a grammar G with start symbol S, if P = <x—’a(1> and

P, = <X"ué> are two of its productions then P, will be said to

2 1

st v . » * ’
initialise P, if S f X e, gnd x, P, Y such that o, can
generate an initial substring of & .

X will be said to generate OﬂL in top-down context.

4.4.17 Theorem

A terminating top-down parser suffers from premature success
if and only if there is a pair of productions Pl, P2, such that P1
6ccufs befo;é P2 in an entry of’the parsing table and P1 initialises

PZ.

Proof: Pl,the first first-incorrect domino to ground can do so
only if it generates in top-down confext an initial substring of the
string generated by P,, the correct domino at that point. That ié,
a parsexr fails b& premature success only if at least one pair of
ﬁrddﬁctions as inﬂthé stafement of the theorem exists.

If Pi initialises P2 then by definition there must be a string
X generable in top-down context by P such that P

2 1 can generate

an initial substring 5.. If P succeeds in grounding when presented

with g then it is prematurely successful when pPresented with ¥

if it does not then some error has occurred somewhere and by theorem

160

4.4.15 it must be premature success.
4.4.18 Remark |
The relation which holds betweep‘produgtions P, = (X-40€>“

P2 = <X-’&27 when‘Pl‘initiéliseé Pé is not'intrinsically symmetric
(although it may be so for some grammars), and premature success can
only happen when a false production is chosen first. Thus it can °

happen that an‘LR(k) parser suffers from premature success but

another with a differenf ordering of the productionsin its table
does not.,

It can also happen that a long enough look ahead can resolve the
choice; an LR(k) parser may suffer from piemature'success although
none of the compatible LR(k+1) paréers do so. On the other hand,
an LR(K+1) parser is always at least as good as a compatible LR(k)
parser, its parsable set always contains at least as much of the

language to be parsed.

4.4.19 Theorem

The set of prematurely successful top-down terminating parsers

is recursively enumerable but not recursive.

Proof: To show that it is recursively enumerable is easy, all
parsers can be run on all their possible inputs. This can be done
as a sequential algorithm by the standard diagonalisation.r If a
parser is prgmaturely successful the string on which it is

SO must

eventually be»tried on it. If it is not the piocess never stops.

The non-recursiveness can now be proved with the aid of Post
grammars. Every top-down parser for a Post grammar always succeeds
on every input because the right-hand side of each production starts

with a different terminal. Similarly if a grammar G! contains a

Post grammar G with start symbol A as a subgrammar, and a parser for

5 e

161

G' starts trying to parse a subword generated by G with A as the
active symbol then it will succeed in grounding A. Consider

the grammar N
= <{s,x,5,8} ,Tufc,a,e} PuQ0{<s-’xC> (x—'Ad>,<x-»Bde>} s>

where G = <{A},T,P,A) and H = (iB} ,T,Q,B> ‘are a pair of Post -
grammars, and $,X,c,d,e are new distinct symbols. This grammar is
unambiguous. The parser which chooses the production «(x~'Ad7 before
the.production <X-*Bde) succeeds prematurely if and only if a word
generated by Ad is an 1n1t1a1 subword of a word generated by Bde.
Clearly thls 1s the case iff A and B can generate the same word.

So if there was a procedure for dec1d1ng if an arbitrary grammar is
prematurely successful, it wodid yield a decision for a grammar of

the above kind, and hence decide whether or not A and B can generate

a common string. That is, it would solve Post's problem. :

4.4.20 Corollary

The‘above theorem also holds for LR(k) parsers however largedk.

Proof: A similar argument can be gone through using the grammar G'
constructed from two Post grammars and the additional productions

<59xck> , <x-sagd? , <x-Bdcke Y.

4.4. 21 Remark

| To sum up, there is no deneral algorithm to‘answerleveh the
minimal p0531b1e question about the size of the subset parsable by
a top -down parser - is it the set of all strings in the language?

The theory for bottom-up parsers is almost the same and sO
w111 only be sketched.
'4.4.22 Theorem -

A bottom-up parser will find a correct parse for a word if and

only if no first incorrect domino grounds.

Proof: If a first incorrect domino grounds it can only be removed
along with some dominoes placed before it in time, which must
therefore be correct. Hence by lemma 4.4.12 the parser fails.

' On the other hand if it fails to ground it will eventually be
remove& with ali the dominoes placed after if, leaving oniy corréct

dominoes.

4.,4.,23 Remark
- The definitions for premature success and initialising in bottom-
up context can now be made in a similar way to those for top-down. But
in bottomQup context if P1 initialises P2 then P1 must have the form
(xl-—vxo(1> and P, <X2-—ox«2) .
4.4.24 Theorem
The set of prematureiy successful bottom-up parsers is recursively

enumerable but not recursive.

Proof: The proof is similar to that of the corresponding result for

top-down parsing (theorem 4.4.19), and can even use exactly the same

grammars.,

4.4.25 Remark

| Finally to round off the question of what is the subset parsable
by a parse:; a precedence parser always succeeds on all inputs and
there is a finite test for whether or not a grammar is precedence
[35]. | :
| Although there ié no general testihg algorithm to decide whether
or not all parsing strategies are universally successful, there are
fésts for restricied classes of grammars, For instance, it is nof

too difficult to see that there is a finite test for any top-down or

bottom-up strategy acting on an LR(k) grammar (where k is any specified

163

value chosen in advance). This is so because every first incorrect

domino is removed after at most k input symbols are looked at.

4.4,26 Remark

The final problem to be dealt with in this section is the speed
of the parser. In practice this will depend on all kinds of hardware
and software detailsrsuch as the relative amount of time needed to
éxecute different hardware instructions and the exact way in whichr
[. L . .
a strategy is -programmed. fo calculate the speed of a parser taking
these details into account would be complicated and tedious (although
a compiler designer would find the results of such a computation for
his laﬁguage useful), so two simpler proxies for the time taken by
a parser will be examined here. First the total number of dominoes
placed (at any time) on the board. Second the number of table look-ups
needed. These proxies are reasonable because a real compiler will
probably have a particular finite piece of code which has the same
effect as if a domino were placed on the board and another piece to
do the table look-up. Possibly the amount of time required may vary
from one domino to another, but this will just complicate the calcu-

lations, not rearrange their basic form.

4,4.27 Theorem

For any string 04 generated from a grammar G, all successful
deterministic parsers of G place the same number of dominoes on the

board when parsing & . Any parser which backtracks on % places

more dominoes,

Proof: The number of dominoes placed by a deterministic pParser is

the same as the number on the board when it is finished. This number

is given by the structure of the parse and so independent of the

164

parsing method.
A backtracking parser ends up with the same number of dominoes
but has removed some during its parsing. So in total it must have

placed more.

4.4.28 Remark
_Despite the above result there are a few occasions when back-

tracking parsers are required in practice. The following two problems

are concerned with calculating their relative speeds.

4.,4.,29 Theorem
If P, is a successful LR(k) parser for a grammar and P2 is
the compatible LR(k+1) parser, then on noyinput does P2 place more

dominoes than Pl'

Proof: The order in which P1 and P2 1&y down and pick up dominoes
is the same, except that P1 may occasional;y abutt an incorrect
domino and its dependents against a node and then pick them up again
before tryingvthe next alternative, whereas P2 lays the second (or

later) alternative as its first attempt.

4.4,.30 Remark

In genéial if two parsers have different orders of their parses
in their parsing‘tables, then one will work fa;ter on some inputs‘
and the second on others, Although the next and final theorem of this
section'answe;s a question which is probably unlikely to be asked in
practice, it does show that there are undecidability results connec£ed

with the speed of parsers, and is also used to Prove a consequence in

the next section.
4.4.31 Theorem
Given two grammars and a bijective correspondence between their

languages, there is no finite algorithm which decides that two parsers

1695

for the languages take exactly the same number of moves on corres-

ponding . inputs.

Proof: Consider two grammars each constructed from the same pair
of Post grammars with start symbol Al'ahd A2. Both grammars have
D

the start symbolys and other additional non-terminals Cl; C D

_ T2 T1r T2t
The first grammar has additional terminals 1 ¢2, d;, d,, and N
additional productions (S-'ClDl) , <s "C2152> , <Cl-b c1>, <C‘2"\> c27 ,
<Iﬁf’d1>’ <D2-’d2> . The secbnd grammar is the same except that
it has the sihgle’terminal c instead of the two clrand X

It is not too'difficuit to see that a parser for the first
grammar will make exactly the same moves as the corresponding parser
for the second except on words whose first part is in the intersection
of the languages generated by A1 and Az‘ On these exceptions the
first parser:needs to read one less input letter than the second
in order to resolve the ambiguity, and so if it backtracks it does
so after placing one less domino,

Thus if there were a finite algorithm as stated in the theorenmn,

Post'!s problem could be solved.
4.4.32 Remark
The above theorem does not state whether top-down or bottom-up

parsefs are intended;’it works equally well for both. The grammar
can be modified to shéw that there is no algorithm to decide that
an LR(k#l) parser is sffictly faster than a compatible LR(k) parser,
the‘technical trick is to pad out most terminal symbols with k+1
preceding copies of a new dummy symbol to prevent the look ahead
getting any valuable information except when dealing with the final

ambiguity resolving c's and d's.

A final conjecture is that there is a way of defining compatibility

166

between top-down and bottom-up parsers,and that a bottom-up parser

is never slower than its corresponding compatible top-down parser.

4.5 THE PROBABILISTIC EFFECTIVENESS OF PARSERS

In this section it is assumed that a parser is dealing with an
input randomly selected from its language with prbbability distri-
bution generated by a preprobability’function. Two problems are
tackled. ’What is the measure of the parsable subset? What is the
average number of moves needed to carry out the parsing? First the
questions are answered for the successful deterministic parsers,
then they are attempted for backtracking parsers, but it is shown

that here many versions ofvthe questions have no solutions.

4.,5.1 Theoxem
The measure of the parsable set of a successful deterministic

parser is one.

Proof: All inputs are parsable,

4.5.2 Theorem

The average number of dominoes plabed by‘a successful determin-

istic parser can be calculated.

Proof: By theorem 4.4.27 this is the same as the average number of
non-terminals in a parse which can be calculated in a similar way

to that given in theorem 1.5.6.

4.5.3 Theorem

The average number of table look-ups required by deterministic
successful bottom-up or top-down parsers can be calculated and in

addition the average number of timeseach table entry is used.

167

Proof: Each domino requires exactly one table access and the probab-
ility that it is found in response to a particular input k-tuple can

be fdﬁnd in the same way as in theorem 1.5.19,

4,5.4 Theorem

' The average number of table look-ups required for precedence

parsing can be calculated, and also the average number of times each

table entry is used.

Ezggi; Theoremw4.2.3.12 shows that if a parse P has X at its root,
first production ‘<X-,X1...Xk) , and the subparses P,,...,P,_ hanging
below Xl,.ﬁ.,xk respectiveiy, then the precedence relations which
appear when parsing P are all those which appear when parsing the Pi
plus the additional one relation < between X, and the initial
dummy, one relation DYVbétween Xk and the final dummy, and k-1
relations = between adjacent symbols Xi, Xi+i: except that relations
bétweén the initial dummy and any leftmost node of Pi are changed

to the same relation between Xi_i and that leftmost node (i=2,...,k),
and relations between any rightmost node of Pi and the final dummy
g;e'changed to the same relation between that rightmost node and

the leftmost términal of P, (i=1,...,k-1).

Hence a recursive set of linear equations for the averages

can be constructed and solved in the usual way.

4.5.5 Remark

The deterministic questions are answered; next the backtracking

parsers will be dealt with,

4.5.6 Definition

If A and B are sets of numerical expressions then A is B-comparable

ifygiven any expressions x€ A and yé¢ B, it is always the case that

168

one of the three relations x<y, x=y, x>y can be demonstrated to
hold with finite effort. (As usual, singleton sets will be written
x rather than {x} , and in particular a set will be l-comparable

rather than {'1‘} -comparable.)

4.5.7 Iheorem
There is no finite algorithm which always yields a l-comparable
expression for the measure of the set of words on which a top-down

or bottom-up parser succeeds.

Proof: If there were such an algorithm then it could be run to
yield in finite time an expression E for the measure of the parsable
set, and then by the definition of l-comparability a further finite
calculation would show whether E=1 or not. As every input word

has non-zero measure, if E=1 then the parser is universally success-
ful; otherwise it fails on some input. So this is a finite
algorithm to solve the premature success problem. As no such

algorithm exists (theorems 4.4.21 top-down, and 4.4.,24 bottom-up),

the theorem follows.

4.5.8 Corollary
There is no general way to obtain a linear equation of the

form
Ax = b
which is satisfied by the probability of success, where the elements

of A and b are rational functions of the preprobabilities.

Proof: Solutions of such equations are l-comparable,

4.5.9 Corollary

There is no general way to obtain an algebraic equation of the

form

f(x) =0

169

which is satisfied by the probability of success, where the

coefficientsof f are rational functions of the preprobabilities.

Proof: Solutions of such equations are l-comparable.

4.5.10 Remark

Because the above theorem only assumes that the measure of each
word is non-zero, it holds for a far larger class of measures than
those generated by preprobabilities. It is reasonable to assume
that if a word is in a language it should occur occasionally, and
the theorem holds of all these reasonable measures.

The theorem does not absolutely exclude the possibility of
findlng a closed expression for the probability of success (1t does
not seem unlikely that some of the classes of expre551ons in everyday
mathematical use are not 1- comparable, for instance expressions
involving complicated integrals seem likely'candidates).

Finally it is easy to approximate as closely as desired to the

success probability, given any small € there is always a finite

set of words whose measure is greater than 1-¢

4.5.11 Remark

It is just conceivable that despite the previous theoren, the -
average of the number of moves made by any parser (or perhaps jnst
non prematurely successful parser) could be calculated. The next

theorem shows that here too it is impossible to get a reasonable

result.

4.5.12 Theorem

If E is the set of all expressions which can be the result of
an algorithm which calculates the average number of moves made by

any (non prematurely successful) parser, then E is not E-comparable,

170

Proof: This depends on theorem 4.4,31 but is otherwise proved in
the same way as theorem 4.5.7 above. The pairs of grammars used

in 4.4.31 have parsers which succeed on all inputs.

4.5.13 Corollary

There is no general way to obtain either a linear or an
algebraic equation which is satisfied by the average number of moves

required by a parser, where the coefficients of the equation are

rational functions of the preprobabilities.

Proof: If F is the set of such solutions, F is F-comparable.

4.5.14 Remark
Although there is no algorithm which calculates the probability
of success, or the average number of moves for all parsers, there

are limited algorithms which work for some parsers. The next theorem

gives an example.

4.5.15 Theorem

It is possible to calculate the success probability and average

speed of an LR(kl) parser on an LR(k2) grammar.

Proof: 1If k1?~k2 then the parser is deterministic (and successful).

if not, every first incorrect domino is removed before at most k1+1
symbols of the input have been scanned. It is possible to calculate
the probability of every type of node (domino) being generated, and
also the relative probabilities of every initial k2-tup1e of symbols
generable by a node. It is a finite (but very large) amount of work

to calculate fo; each domino and each kz-tuple of symbols which can

be generated by another domino which shares an entry with the first
domino in the parsing table, how many moves are required when the first

domino is placed incorrectly, and whether the backtracking works

171

correctly. From this information the measures and averages may be

obtained,

APPENDIX

This is to prove the theorem given in section 2.1.5. The

proof is due to Dr. G. Segal.
A.1 Notation
€ is the set of all complex numbers, C[xl,...,xn] is the set

of all multinomials with complex coefficients and variables

xl’cco,xn.

A.2 Definition

An algebraic variety is a subset vech such that there is a

set iFu:§ weg ©f multinomials in C[xl,...,xn] such that

V= {(zl,...,zn):l«;* (245.2452,) = 0 for all xest .
A.3 Note

By Hilbert's basis theorem, S may be assumed finite.

A.4 Definition

An algebraic variety V is irreducible if whenever

F,G & C[xl,...,xn] are such that F(zl,...,zn)G(zl,...,zn)sso

for all z = (zl,..;,zn), then either F(z)Z 0 or G(z)= o,

A,5 Proposition

An algebraic vafiety V can be decomposed uniquely as a finite

union, V = Vlu...uV s where Vi is irreducible for all i.

A.6 Remark

An irreducible algebraic variety has a dimension which can

be defined in various non-trivially equivalent ways,

A.7 Proposition

If V is an algebraic variety in €™ defined by k multinomials

173

Fl,...,er C[xl,...,xn] and if z eV is such that the jacobean

(BFi/ ij) evaluated at z has rank k then
(1) z is an element of exactly one of the irreducible
components of V, say Vl;
(2) dimension (Vl) = n-k.

A.8 Proposition (Elimination Theorem)

If V is an irreducible algebraic variety in c” and V' is its
. . ‘ k ,. -
projection onto € (i.e, V' = {(zl, ceerzy)e 3(2k+1’ ceerz)E
¢k s.t.(2;,...,2_)éV) then V' is an irreducible algebraic
1 n

variety, and dimension (V') =¥ dimension (V).

A,9 Proposition

A one-dimensional variety in C2 consi sts of the zeroes of a

single polynomial.

A.10 Remark

The next theorem is reason for this appendix.

A.l1l1l Theorem
If Ai:c—w (i=1,...,n)
and there are n multinomials ?j Clxywyyene,w]
such that
(1) 'X)j(z,Al(z),...,An(z)) g0 (3=1,...,n)

. P
(2) The jacobean (%_WJ_) # 0 at at least one point
i

<ZO’A1(20)"°"An(ZO)>

then each function Ai is algebraic.

Proof: Let V be the algebraic variety defined by 101"" ,3) .
n

By proposition A.7 (zo,Al(zo),...,An(zo)> is in just one

irreducible component V1 of V, and dimension (Vl) =1, Let V1 i
)

174

be the projection of V1 onto the c® space corresponding to the

coordinates z and w, .

Now <2,A1(z),...,An(z)> must be in vy for all z close

enough to z because irreducible components are closed subsets

+
of Cn 1.

Hence <z,A.(z)>¢ V, . for all z near z_, Hence V, |
i 1,i o 1,i

contains 09 points so is not O-dimensional. So by proposition

A.8 dimension (Vl,i) 1. So by A.9 there is a polynomial
Fe C[x,wi] such that Vl,i = {(z,z'):F(z,z') = O} . But then

F(z,Ai(z)).‘-'_-.‘O, or in other words Ai is algebraic.

175

REFERENCES

Note

There are three main continuing sources for papers related

to this thesis. JACM (Journal of the Association for Computing

Machinery) contains mathematical and algebraic papers about the
theory of formal languages, their grammars and their parsers.

CACM (Communications of the Association for Computing Machinery)

contains more practical descriptions of languages in terms of how
they have been'(might be) implemented on a computer. Inf. Contr.

(Information and Control) contains papers more concerned with

information theory.

(1) AHLFORS, L.V. Complex Analysis. McGraw-Hill, New York (1966).

(2) CHOMSKY, N. & SCHUTZENBERGER, M.P. The Algebraic Theory of
Context-Free Languages. In: Computer Programming and
Formal Systems, pp.118-161. Braffort, P. & Hirschbexg,
D. (eds). North-Holland, Amsterdam (1967).

(3) DAVIS, M. Computability and Unsolvability. McGraw-Hill, New
York (1958).

(4) ELLIS, C.A. Probabilistic Tree Automata. Inf.Contr. 19 (1971)
‘ 401-416,

9

(5) ==--cu-- The Halting Problem for Probabilistic Context-Free
Generators. JACM 19, 3 (July 1972), 396-399.

(6) FELDMAN, J. & GRIES, D. Translator Writing Systems.

CACM 11, 2
(Feb.1968), 77-113.

(7) FELLER, W. An Introduction to Probability Theory and Its
Applications, vol,I. Wiley, New York (1968).

(8) FLOYD, R.W. Syntactic Analysis and Operator Precedence,
JACM 10, 3 (July 1963), 316-333,

(9) FULTON, W. Algebraic Curves, Benjamin, New York (1969),

(10) GANTMACHER, F.R. Applications of the Theor
~ Interscience, New York (1959),

y of Matrices,

(11) GINSBURG, S. The Mathematical Theory of Context.F

= ree Languaqges,
McGraw-Hill, New York (1966).

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

176

GREIBACH, S.A. A New Normal-Form Theorem for Context-Free
Phrase Structure Grammars. JACM 12, 1 (Jan.1965), 42-52,

HARRIS, T.E. The Theory of Branching Processes. Springer-
Verlag, Berlin (1963).

HILLE, E. Analytic Function Theory, vol.I. Ginn & Co., Boston
(1959).

HOPCROFT, J.E. & ULLMAN, J.D. Formal Languages and Their
Relation to Automata. Addison-Wesley, Reading,
Massachusetts (1969).

HUTCHINS, S.E. Stochastic Sources for Context-Free Languages.

Publication of Dept. Appl. Physics & Information Sci.,
Univ. Calif. (1968/69).

IBRAGIMOV, I.A. & LINNIK, Yu. V. Independent and Stationary
Sequences of Random Variables., Wolter s-Noordhoff,
Groningen (1971).

INGERMAN, P.Z. A Syntax-Oriented Translator. Academic Press
(1967/68).

KAMINGER, F.P. The Non-Computability of the Channel Capacity

of Context Sensitive Languages. Inf. Contr. 17 (1970),
175-.182,

KHINCHIN, A.I. Mathematical Foundations of Information Theozxy.
Dover, New York (1957).

KNUTH, D.E. On the Translation of Languages from Left to Right.
Inf.Contr. 8 (Oct.1965), 607-639.

KUICH, W. On the Entropy of Context-Free Languages. Inf.Contr.
16, 2 (April 1970), 173-200.

------ The Structure Generating Function and Entropy of Tuple
Languages. Inf.Contr. 19 (1971), 195-203.

------ The Complexity of Skewlinear Tuple Languages and O-
regular Languages. Inf.Contr. 19 (1971), 353.367.

LOEVE, M. Probability Theory. Van Nostrand, Princeton, New
Jersey (1963),

McAFEE, J. & PRESSER, L. An Algorithm for the Design of Simple
Precedence Grammars. JACM 19, 3 (July 1972), 385-395,

McMILLAN, B. The Basic Theorems of Information Theory.

Annals
 of Maths & Statistics 24 (1953), 196-219.

MINSKY , M.L. Computation: Finite and Infinite Machines.
Prentice-Hall, New Jersey (1967).

PARRY, W. Entropy and Generators in Ergodic Theory.
New York (1969).

Benjamin,

177

(30) RUDIN, W. Principles of Mathematical Analysis. McGraw-Hill,
New York (1953).

(31) SANTOS, E.S. Probabilistic Grammars and Automata. Inf.Contr.
21 (1972), 27-47.

(32) SHAMIR, E. Algebraic, Rational, and Context-Free Power Series
in Non-commuting Variables. 1In: Algebraic Theory of
Machines, Languages and Semigroups, pp.329-341.
Arbib, M.A. (ed.) Academic Press, New York (1968).

(33) SHANNON, C.E. & WEAVER, W. The Mathematical Theory of
Communication. Univ. of Illinois Press, Urbana (1972) .

(34) WALK, K. Entropy and Testability of Context-Free Languages,
In: Formal Language Description Lanquages for Computer
Programming, pp.105-123. Steel, T.B. (ed.) North-
Holland, Amsterdam (1966).

(35) WIRTH, N, & WEBER, H. EULER - a Generalization of ALGOL, and

its Formal Definition, Part I, Part II. CACM 9, 1 & 2
(Jan. Feb. 1966), 13-25, 89-99.

