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Abstract 

It has been proposed already some time ago that Wigner crystallization in the tails of the Landau 
levels may play an important role in the quantum Hall regime. Here we use numerical simulations for 
modelling condensed quantum states and propose real space imaging of such highly correlated 
electron states by scanning gate microscopy (SGM). The ingredients for our modelling are a many 
particle model that combines a self-consistent Hartree-Fock calculation for the steady state with a non-
equilibrium network model for the electron transport. 

If there exist condensed many particle quantum states in our electronic model system, our 
simulations demonstrate that the response pattern of the total sample current as a function of the SGM 
tip position delivers detailed information about the geometry of the underlying quantum state. For the 
case of a ring shaped dot potential in the few electron limit it is possible to find regimes with a rigid 
(condensed) charge distribution in the ring, where the SGM pattern corresponds to the probability 
density of the quantum states. The existence of the SGM image can be interpreted as the manifestation 
of an electron solid, since the pattern generation of the charge distribution requires certain stability 
against the moving tip potential. 
 
Keywords: Wigner crystallization, Hartree-Fock calculation, quantum Hall regime, network model, scanning gate 
microscopy 

1 Introduction 
During the last decade scanning gate microscopy (SGM) has gained attention because of its 

assumed non-invasive character for investigating quantum coherent phenomena 
[1,2,3,4,5,6,7,8]. The most common output from SGM experiments are conductance maps. These are 
maps of the total device conductance as a function of the gate tip position. In these experiments, the 
gate tip provides a local distortion of the electron system and the response of the device as a whole, 
e.g. the total device current, is recorded. This local distortion does not destroy the quantum phase of 
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the system and allows monitoring phase coherent quantum states in transport. SGM is therefore an 
indirect measurement method, which nevertheless allows constructing amazingly detailed real space 
maps of wave functions and interference patterns [9,10,11,12,13]. Since this method always creates 
2D images, the term ‘imaging’ has been used quite generously in context with this experimental 
method.  However, in most cases these images are indications of a number of different effects, but 
they only rarely have to do with real space images of the involved quantum states. So far most SGM 
experiments have been performed on almost macroscopic length scales with scan regions of the order 
of several microns.  An early kind of SGM experiments has been performed by Baumgartner et al 
[14]. In these experiments the tip potential acts more or less as a local classical gate control of the 
modulation of the saddle potentials in the landscape of random potential fluctuations in the quantum 
Hall regime. If potential saddles are close to becoming insulating, like in the case of the quantum Hall 
plateau transition regimes, the tip causes a strong response if it hits such a saddle. In this way 
Baumgartner et al demonstrated, that close to the transition regime of the integer quantum Hall effect 
(IQHE) only very few or even single saddles are involved, that act as so called hot spots in the 
quantum Hall plateau transition regime. However, this kind of experiments is more likely a method for 
localizing critical potential saddles (hot spots) but it cannot yet be classified as direct imaging of 
current flow or imaging of quantum states. More recent experiments of similar type have been done by 
Paradiso et al [15]. The authors investigated back scattering by impurity-induced anti-dots in quantum 
Hall restrictions. The main observation is an arc structure in the SGM image that is centered at the 
anti-dots. Either Aharanov-Bohm (AB) oscillations and/or charging effects that are driven by the tail 
of the moving tip potential, acting on the anti-dot, have been identified as the origin of this fine 
structure. The arc geometry of the oscillations in the SGM image consists of all tip positions that 
create the same potential distortion at the anti-dot. Another experiment by the same authors aims at 
imaging of fractional incompressible stripes in integer quantum Hall systems [16]. The main role of 
the tip potential in this case is to create alternating compressible and incompressible stripes by 
variation of the tip potential at the QPC, which happens by moving the tip towards or away from the 
QPC saddle. As a consequence the image results mainly from the dependence of the tip potential at the 
QPC as a function of tip position. In this way the authors have obtained the important result that also 
fractional stripes can be found in the QPC even in the integer regime of the host electronic system. 
That means that the tip drives the electron systems locally into the fractional regime while the system 
as a whole remains in the integer regime. However, the obtained images are not real space images of 
those stripes. A small selection of some more experiments of this kind by other authors can be found 
in Refs. 5, 8, 17, 18, 19 and 20. 

A different class of SGM experiments that has become dominating by now is directed towards 
probing of current flow in the ballistic regime. The main effect of the tip potential by now is that it 
becomes a scatterer for the electron waves. One major result is the observation of fringes in the SGM 
images that can be attributed to interference effects between different electron paths that include 
elastic scattering at the moving tip. Depending on the interplay of the tip with the confinement of the 
electronic device this can change the mode structure for transport of e.g. an open quantum stadium as 
a whole. This is demonstrated in a recent SGM experiment in the ballistic regime of a quantum 
stadium with constrictions at both sides [21]. The fine structure of the patterns is consequently 
interference driven and also not yet a direct real space image of the involved quantum states, although 
this delivers already substantial information about the geometry of the involved quantum channels. A 
lot of work of this type can be found in the literature by many different authors and a limited selection 
can be found in Refs 7, 11, 12, 22, 23, 24, 25, 26 that spread over several years.  

On this background the direct real space imaging of quantum states seems to remain the ultimate 
goal of the SGM method. At this point we arrive at the same time at the very fundamental question if 
it is possible at all to use (non-equilibrium) transport in order to probe (equilibrium) Eigenstates. 
There already can be found a few approaches to real space imaging in the past. A proposal of that kind 
was made by Boyd et al, which suggests probing the localized quantum states of a quantum dot, by 
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mapping the coulomb blockade potential as a function of tip position within the dot [27]. That 
proposal is based on theoretical investigations that demonstrate that the modification of the coulomb 
blockade potential by the SGM tip depends on the probability density of the electronic state at the 
actual tip position. However, this proposal has been made for very special considerations like an 
almost linear dot which is created from a quantum wire by pinch-off and a modeling based on non-
interacting single electron states. Another already much earlier approach deals with quantum rings, 
where the authors claim direct imaging of quantum states. The modelling is based again on the single 
electron picture at the Fermi level at vanishing magnetic field [3]. An overview on SGM on 
semiconductor nanostructures by 2010 is given also in Refs.28 and 29. 

Concerning modelling there are a number of theoretical approaches to the SGM method, but most 
of them are developed for zero or weak magnetic fields and are addressing directly the current flow.  
Besides those papers that are included already in the references above, recent and quite sophisticated 
theoretical work in this context has been done by Gorini et al [30] and Chwiej et al [31] that assume 
hard wall confinement and zero magnetic field, while screening of the tip potential has been 
considered based on a previous study [22]. However, despite different methods of incorporating 
confinement and screening, the major focus is always directed at scattering of Fermi edge electrons, 
that means that the substantial many particle character of the electron system is neglected, while that 
plays an important role if aiming at condensed electron states, like we do in this paper. 

For achieving our goal of direct real space imaging of quantum states, we have to look for an 
electronic system with strongly reduced scattering. In order to preserve the many body character of the 
Eigenstates the object for imaging should additionally be somehow separated from the still 
experimentally required non-equilibrium current transport. We need also a system that is able to 
provide rigid (condensed) quantum states that have certain stability against probing. In this context the 
quantum Hall effect (QHE) regime appears as a suitable candidate because back scattering is strongly 
suppressed and there also co-exist localized and de-localized states. It has been already proposed 
earlier, that Wigner crystallization might be present in the tails of the LLs (see e.g. Ref.32).  Picking 
up the idea of magnetic field induced Wigner crystallization, we can expect that the QHE regime 
provides such condensed quantum states in the vicinity of magnetic field driven metal-insulator 
transition at low Fermi wave vectors that should be possible to be imaged in real space by SGM. For 
this purpose we need a mechanism that transfers the information from localized states to the states that 
maintain non-equilibrium current transport. Since in this case we are not interested in observing 
quantum coherence in ballistic non-equilibrium transport itself, quantum coherence in the transport 
model is not explicitly needed. However, screening depends sensitively on the charge distribution that 
in turn depends on all aspects of the involved quantum states. Therefore we expect that any impact 
even on condensed quantum states by e.g. the moving SGM tip will affect the screened potential. A 
nearby potential saddle of a QPC that is tuned to the tunneling regime then will produce a response not 
only when hitting this saddle directly by the moving tip (like in the experiments of Baumgartner et al 
in Ref.14), but also if the tip hits a condensed nearby quantum state. Therefore the response pattern 
may provide information also about the lateral distribution of the probability density of involved 
condensed quantum states, even if they are not directly carrying current.  

In this paper we will demonstrate by numerical simulations, that such real space imaging of 
condensed quantum states by the SGM method is indeed possible. Our ingredients are a many particle 
model for the steady state, that is achieved by a self-consistent Hartree-Fock calculation and for the 
transport we use the non-equilibrium network model as outlined in the next paragraph. 

2 Model 
The equilibrium steady state for the disordered many particle electronic system is calculated by the 

Hartree-Fock approximation using directly the method of Sohrmann and Roemer [33,34]. A detailed 
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description of the non-equilibrium network model (NNM) for current transport can be found in [35, 
36], while in Ref. 37 among others, there is a summary of both, the HF-approach and the NNM. Since 
the NNM is a more recent development and thus not so well known like the Hartree-Fock approach, a 
very short summary of the NNM will also be given below. 

The main physical basis of the QHE regime is the existence of long range potential fluctuations. 
Magnetic bound states (internal edge channel loops) are created, which follow the contours of the 
random potential and their position on the energy scale is determined by the Fermi energy. Transport 
across the bulk in the transition regime between QH plateaus is possible, if such loops meet at the 
saddle energy or if tunneling across the saddle is sufficient to allow current flow across the bulk. The 
main ingredient of the NNM is that the excitation potential (electro chemical potential ), which has a 
non-uniform lateral distribution for the non-equilibrium case, is transmitted by the nodes (see Fig.1a) 
of the network as: 

 
                                                                                    
                                                            
 

The transmission and reflection probabilities T and R are related to a function P as follows: 
 
                                          
  with  
 
 
EF is the Fermi energy relative to the local saddle energy at grid position (x,y), L and V can be 

roughly understood as the representative period and amplitude of the potential fluctuations. In 
particular L is the period and V the amplitude of a two-dimensional cosine function, which has the 
same second order Taylor expansion like the actual native saddle potentials. Therefore parameter pair 
L and V serves finally as a parameterization of the typical saddle curvature [38]. Fig.1a-c shows 
schematically, how the grid of the network is built from interconnecting a number of nodes. Four 
adjacent nodes represent a loop (Fig.1b), while these loops are connected to further loops by tunneling 
junctions that are represented again by the nodes (Fig.1c). Therefore parameter pair L and V serves 
finally as a parameterization of the typical saddle curvature [42]. 

 
                                                              
 
 
 
 
 
 
Figure 1: a) Network symbol for a single potential saddle, which becomes a node of the network model, b) 

network for a single magnetic bound state created by 4 nodes, c) a complete network is created by a periodic 
continuation of such loop elements.  

 
Including an additional long range disorder potential, the saddle energies get non-uniformly 

distributed and a partly transmission and reflection at the nodes appears only at those locations where 
the saddle energy gets close to the Fermi energy. This usually happens only for a small fraction of the 
nodes in the network, like indicated schematically in Fig.2. All nodes (saddles) with energy far from 
the Fermi energy have either full transmission (T=1, R=0) or full reflection (T=0, R=1), depending on 
whether the Fermi energy is above or below the saddle energy. In this way the network guides the 
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channels around potential fluctuations and only those nodes at which the saddle energy gets close to 
the Fermi energy become physically active (red arrows in Fig.2). In this way the NNM approximates 
arbitrarily shaped magnetic bound states and also finds the “hot spots” (active saddles of the 
disordered potential). Also without using the HF calculations this network model had been 
successfully used to obtain e.g. average microscopic details of a disordered QH system [38]. The 
application of this network model is substantially extended by combining it with the self-consistent 
many body Hartree-Fock calculation for obtaining the screened potential landscape, which determines 
the details of the loops and the tunneling junctions that are handled by the NNM. 

 

 
 

Figure 2: Schematic network representation of magnetic bound states that are created by a smooth long range 
disorder potential. The bold lines follow the transmission of the nodes and in this way resemble the random 
magnetic bound states. The active saddles for transport become those nodes of the network where such magnetic 
bound states get close to each other and allowing current flow by tunneling (indicated by red arrows). 

 
Our non-equilibrium network model (NNM) [35, 37] addresses continuous dissipative current flow 

in a network of disordered saddle potentials [39]. One of the main points in this paper is to include 
screening into the NNM, i.e. the main effect of the many-body interactions [40]. This problem has 
been already addressed by Römer et al [34, 33, 41,42], using a Hartree-Fock calculation to get the self-
consistent solution for the screened potential and the percolating wave functions. However, this is a 
steady state solution, which does not carry any injected current, unlike in the NMM and, of course, in 
experiments. One frequently used approach is to calculate the Kubo conductivity or mapping the 
probability flow to a conductance by applying the Landauer formula [3, 11, 22, 26, 30]. However, this 
still is not a direct modelling of dissipative excess current flow. Our NNM is a fundamentally different 
approach that provides a solution for the lateral non-equilibrium distribution of the introduced 
electrochemical potentials, and which does not make use of the Landauer formula at all. Results of this 
new approach are presented in the next paragraph that deals with modeling of scanning gate 
microscopy experiments. One major requirement for the Hartree-Fock model is to account for a soft 
Fermi edge for the occupation of the quantum states. Another requirement is introducing a predefined 
fixed Fermi energy instead of using a fixed number of electrons. The latter results from the fact, that in 
reality the electronic systems are embedded in a 2DEG reservoir that pins the Fermi level according to 
the filling of the Landau levels in the bulk region. This causes electrons to move in and out of the dot 
structure depending on the magnetic field dependent Fermi level in the bulk. However, a back gate in 
real structures will care for keeping the charge neutrality in the dot region and therefore charge 
neutrality is also assumed in our model even while the electron number changes in the dot region at 
different magnetic fields. Details will be published elsewhere and we now turn to the results of our 
model.  
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3 Results and Discussion 
For demonstration we use here an idealized model system and Fig. 3 shows a contour plot of the 

bare potential that defines a ring shaped confinement. The model potential is created by the 
superposition of 4 repulsive Gaussian peaks that are arranged in a square with the maxima 
recognizable as red colored. The overlap of these Gaussian peaks forms the saddles of the quantum 
point contacts (QPC), while in the middle a pronounced potential minimum is created. In order to 
compose the ring shape, another narrow repulsive Gaussian peak is placed in the middle, leaving a 
ring shaped potential minimum that can be recognized in blue color.  

 
Figure 3: Contour plot of the bare ring shaped confinement potential with a diameter of about 100nm and a 

depth of about 15 meV as compared to the saddle energies of the QPCs.  

For the calculation a constant magnetic field of B=2.5 Tesla was used and the Fermi energy was 
chosen in a way that a total of 8 electrons appear in the potential ring, while at the same time in the 
NNM these saddles appear in the tunneling regime. For the ongoing calculation the Fermi energy was 
kept constant in order to account for the situation of a real electronic structure where the Fermi level 
gets pinned outside in the reservoir of the surrounding two-dimensional electron gas of the bulk.  

The current has been supplied to contacts at the left and right boundary and the total device current 
has been calculated by the NNM. This current passes the saddles on the left and right of the opening as 
a tunneling current. The charge distribution inside the ring affects the tunneling barriers and thus the 
total sample current sensitively responds to any modifications of the charge distribution in the ring by 
the scanning gate tip. Fig. 4 shows the charge distribution while the SGM tip is outside the ring where 
it is not affecting the electronic state. It is clearly seen, that the charge distribution appears along the 
ring shaped minimum, with a tendency of charge accumulation in front of the QPCs at left and right. 
We see only 6 charge maxima while there are 8 electrons in the system, which is a result of the many 
particle character of the wave function, where the electrons lose their individuality and therefore must 
not be attributed to individual charge maxima.  
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Figure 4: Contour plot of the charge distribution obtained from the Hartree-Fock calculation in arbitrary units 

for a magnetic field of B=2.5 Tesla. In this regime the electron system appears fully spin polarized. 

Fig.5 shows a contour plot of the two-point sample conductance as a function of the SGM tip 
position in multiples of the universal conductance. The scan range was chosen in the longitudinal 
direction between x = 50 and 250nm and in transverse direction between y = 0 and 200nm in steps of 
5nm. From the color scale one can see, that the total conductance is reduced by up to 10% if the SGM 
tip hits the positions of the maxima of the undisturbed charge density and that the complete pattern 
nicely resembles the original charge distribution.  

 
Figure 5:  SGM response pattern as a contour plot of the two-point conductance (in multiples of e2/h) as a 

function of SGM tip position. Tip parameters: circular Gaussian shape of repulsive height 1mV and half width 
diameter of 20nm.  
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The fact, that the contrast of the image does not depend whether the SGM tip hits a charge 
maximum close to or far from the active saddles indicates that we are indeed dealing with a non-local 
quantum state, where there are no individual electrons arranged along the ring. Classical coulomb 
interaction based on the single electron picture can therefore clearly be ruled out as the driving 
mechanism in this system. The dark circular spots on the left and right are caused by classical pinch-
off where the SGM tip directly hits the active saddles (like in the Baumgartner experiments of Ref.14), 
which also proofs that the main features of the response pattern do not result from classical coulomb 
effects. In order to clarify the mechanism that leads to the above images, the following series of 
figures will show the charge distribution for situations, where the SGM tip hits the quantum state at 
different locations. The first of this series is Fig. 6, which shows the charge distribution if the SGM tip 
hits exactly the lower left maximum of the undisturbed charge distribution at x=120nm and y=60nm. 

 
Figure 6: Contour plot of the charge distribution for a position of the SGM tip at x=120nm and y=60nm. 

From Fig.6 one can see, that the charge distribution gets changed now by the action of the tip that 
leads mainly to the disappearance of one charge maximum, while the system still seems to try to keep 
some kind symmetry. This leads on one hand to the disappearance of charge at the actual tip position; 
on the other hand the changed overall arrangement also removes some of the charge that had been 
accumulated in front of the left and right QPC. From this fact we can understand, that the screening of 
the saddle potential gets reduced, which consequently also reduces the tunneling current, as it appears 
in the SGM pattern.  

It is important to note that the total number of 8 electrons in the dot remains unchanged in this 
situation. Fig.7 shows the charge distribution for the case that the SGM tip hits the undisturbed charge 
maximum in front of the left QPC. In this position the tip suppresses the charge maximum in front of 
the QPC and consequently reduces screening of that saddle, which reduces also the tunneling current. 
It is important to note, that the tunneling current first increases again if the tip moves further towards 
the QPC, although the tip itself is repulsive. This again demonstrates that the mechanism is not a 
trivial classical coulomb effect. However, if the tip finally reaches the saddle of the QPC, it leads to a 
pure classical pinch-off as indicated by the black circular spots in Fig. 5. The opposite QPC on the 
right might even open up because of the further charge accumulation, but since it is connected in series 
with current path this does not show up in the response and only the decrease of the current due to the 
left QPC dominates the pattern.  
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Figure 7: Contour plot of the charge distribution for the SGM tip is at the position of the undisturbed charge 

maximum that is right in front of the left QPC at x=100nm and y=100nm. 

 

Figure 8: Contour plot of the charge distribution for the SGM tip is at the position of the upper right 
undisturbed charge maximum at x=180nm and y=140nm. 

Fig.8 shows a situation equivalent to Fig.6, but this time the SGM tip is hitting the upper right 
undisturbed charge maximum. The effect is the same and the charge is pushed away from the tip by 
reducing to 5 charge maxima (while leaving the number of 8 electrons constant) which again removes 
some charge from the QPCs. Considering the overall behavior, it is interesting to note that although 
the SGM tip significantly modifies the charge configuration, the response pattern reflects the 
undisturbed charge distribution. On this background it is an interesting question, if this strong impact 
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of the tip on the charge distribution is really needed in order to get a SGM response at all. For this 
purpose the same simulation but with an extremely weak tip potential of only 0.1mV was used. We 
checked that this weak tip potential does not cause significant charge redistribution even if placed at 
the positions of Figs. 6-8 (not shown). However, investigating the response pattern, we still find a well 
pronounced, of course much weaker SGM response still reflecting the geometry of the undisturbed 
charge distribution (see Fig. 9). Experimentally such a weak response could be investigated using 
Lock-in technique for the tip potential modulation. While the overall SGM pattern nicely reflects the 
charge distribution, the physical background of further details of the images is the goal of ongoing and 
future investigations.  

 
Figure 9:  SGM response pattern as a contour plot of the two-point conductance (in multiples of e2/h) as a 

function of SGM tip position. Tip parameters: circular Gaussian shape of repulsive height 0.1mV and half width 
diameter of 20nm.  

4 Summary 
 We have introduced a numerical method to study magneto transport in the quantum Hall regime. The 
screening effects of the electron system are treated on the basis of a many particle Hartree-Fock 
approximation. The in real experiments present non-equilibrium current transport is addressed within a 
non-equilibrium network model (NNM), that uses the screened potential of the Hartree-Fock model 
for calculating the lateral distribution of the experimentally injected current. In this way the injected 
current monitors effects that are going on in the underlying electron system, like e.g. the impact of a 
moving gate tip.  In this paper we have applied this model to scanning gate microscopy and have 
demonstrated that this experimental method provides the potential to image condensed many particle 
quantum states, like e.g. Wigner crystals.  

We used a model system that represents a ring shaped confinement potential of about 100nm 
diameter and 15mV depth, that is filled with 8 fully spin polarized electrons. The undisturbed many 
particle quantum state exhibits 6 maxima in the charge distribution that are regularly arranged in the 
potential ring. The maxima of the charge distribution appear pinned in front of the potential saddles of 
quantum point contacts that open the ring to the environment. That charge distribution has some 
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stability against the action of a tip potential and thus can be interpreted as Wigner crystallization in 
this very special model system. If the tip potential is strong enough (repulsive Gaussian of about 1mV 
height and 20nm half width diameter), it is able to suppress one of the charge maxima if located right 
at the position of one of the undisturbed maxima. While this happens the remaining maxima are 
slightly dragged out of their original position and moved away from the QPCs, which modifies the 
screening of the saddle potentials and that modulated the total current that passes through the QPCs. 
On this basis the response pattern of the total current reflects the geometry of the whole undisturbed 
charge distribution. But also by using a very weak tip potential which is not able to cause such 
substantial changes in the charge distribution we still get a response according to the original charge 
distribution. In this way we have demonstrated, that the SGM method has the potential for real space 
imaging of condensed many particle quantum states. 
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325


