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Abstract—We report an evaluation of an epitaxially
grown uncooled InAs photodiode for the use in radiation
thermometry. Radiation thermometry measurements was taken
using the photodiode covered blackbody temperatures of
50 °C-300 °C. By determining the photocurrent and
signal-to-noise ratio, the temperature error of the measurements
was deduced. It was found that an uncooled InAs photodiode,
with the peak and cutoff wavelengths of 3.35 and 3.55 um,
respectively, measured a temperature of 50 °C, with an error
of 0.17 °C. Many plastics have C—H molecular bond absorptions
at 3.43 pum and hence radiate thermally at this wavelength.
Our results suggest that InAs photodiodes are well suited to
measure the temperature of plastics above 50 °C. When tested
with a narrow bandpass filter at 3.43 um and blackbody
temperatures from 50 °C-300 °C, the InAs photodiode was also
found to produce a higher output photocurrent, compared with
a commercial PbSe detectors.

Index Terms— Radiation
measurement, InAs photodiodes.

thermometry, temperature

I. INTRODUCTION

ADIATION thermometers are used to monitor the tem-

perature of an object without physical contact. The
object’s temperature is deduced from the measurement of
the emitted energy from the object over a specific wave-
length range [1]. These non-contact instruments are widely
used in temperature measurements of plastics [2], glass [3]
and metals [4]. Depending on their principles of operation,
detectors used in radiation thermometers can be classed into
one of two categories, thermal detectors and photon detectors.
Thermal detectors include thermopiles, pyroelectric detectors
and bolometers, all of which can respond to radiation over
a broad wavelength spectrum and hence can detect down to
ambient temperature or lower [5]. These thermal detectors
produce changes in physical parameters that are proportional
to the temperature of the object. Appropriate absorbent coat-
ings on these detectors enable them to work as either a broad
band or a narrow band thermometer. However, when operated
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without cooling, they suffer from long response time and
low sensitivity, in comparison to photon detectors. A given
photon detector is typically sensitive to photons within a
narrower wavelength range [4]. Therefore semiconductors
with different band gaps are normally employed to produce
different photon detectors and these can be optimized to cover
different applications and different temperature ranges.

A blackbody is a theoretical object that emits radiation with
100% efficiency. In practical temperature measurements, the
emissivity factor, which is the ratio of spectral radiance
from an object to that of a blackbody at the same
temperature, must be known, in order for an accurate
temperature measurement to be made. Uncertainty in the emis-
sivity factor can lead to significant measurement error in radia-
tion thermometry. Fortunately, at shorter wavelengths, such as
1-3 um, the spectral radiance changes with temperature
more rapidly, compared to that at longer wavelengths, thus
a smaller temperature error can be achieved by detecting
the photons at shorter wavelengths [6]. In addition to the
smaller error, short wavelength photon detectors have lower
leakage current and hence lower shot noise, compared to long
wavelength photon detectors. However, at temperatures below
1000 °C, significantly more power is radiated from a body
at long wavelengths than short wavelengths. These define the
design trade-offs between photo-generated signal and dark
current in semiconductor photon detector.

Si and Ing47Gags3As (hereafter referred to as standard
InGaAs) photodiodes are currently widely used in radia-
tion thermometry [5], [7]. Due to the non-linear spectral
power of Planck’s law, these detectors’ cut-off wavelengths
of 1.0 and 1.6 um limit the minimum temperature that
can be measured to 400 [5] and 150 °C [7] respectively.
As the object temperature decreases, the peak in spectral
radiance shifts to longer wavelengths, necessitating the use
of narrower bandgap semiconductors to achieve longer cut-
off wavelengths. For example by increasing the Indium (In)
composition, extended InGaAs photodiodes detecting up to
2.6 um are commercially available. This enables commercial
thermometers to detect temperatures down to 50 °C [8]. Lead
salt detectors, such as PbS and PbSe photoconductors, with
cut-off wavelengths at 3 and 5 ym respectively, are also widely
used in commercial thermometers to detect objects close
to ambient temperature [9]. The uncooled photon detectors
discussed above are summarized in table I.

The wavelength range of 3.0 - 3.65 um is of particular inter-
est to narrow band radiation thermometry used for measuring
temperatures of gases and certain plastics [10]. For instance,
narrow band thermometers operating at 3.43 um are widely
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TABLE I
COMMON UNCOOLED PHOTON DETECTORS
IN RADIATION THERMOMETERS

Detectors Cut-off Typical measurement
wavelength range
Si 1.0 pm 400 - 2000 °C [5]
Standard InGaAs 1.6 um 150 - 1000 °C [7]
Extended InGaAs 2.3 um 50 - 400 °C [8]
PbS 3.0 um 80 -250°C[9]
PbSe 5 um 30-300°C[9]

used in the processing of thin film plastics [11], [12],
which have C-H bonds that resonate at this wavelength.
As shown in table I, PbSe photoconductor is the only
candidate for this operation wavelength range. The commercial
thermometer using PbSe shows an accuracy rating of + 2 °C
under 200 °C (£1% of measured value at higher
temperature) [9]. With a bandgap of 0.36 eV, InAs exhibits a
cut-off wavelength of 3.55 um at room temperature, providing
high sensitivity at the wavelengths range of 3.0 - 3.65 um.
InAs photodiodes are, however, absent in the current portfolio
of commercial uncooled radiation thermometers. Since an
InAs photodiode can easily detect radiation at 3.43 um,
in this work we performed detailed characterization of an
epitaxially grown InAs photodiode and evaluated its potential
for radiation thermometry.

II. DEVICE STRUCTURE AND EXPERIMENTAL DETAILS

For a photodiode to achieve high responsivity, a wide
depletion region in the structure is desirable. This in turn
requires low unintentional doping in the photodiode’s photon
absorption layer. Using an epitaxially grown structure, an InAs
photodiode with unintentional doping as low as 7 x 104 cm ™3
was achieved in our laboratory [13]. The InAs wafer studied
in this work was grown by metalorganic vapour phase epitaxy
on a 2” p-type InAs substrate. The wafer structure consisted
of a2 um p™ layer (doped with Zn at nominal concentration
of 1 x 10" cm™3) followed by an 8 um intrinsic layer,
and finally a 2 um n* layer (doped with Si at nominal
concentration of 1 x 10! c¢m™3), as shown in Fig. 1(a).
Mesa diodes with diameters of 420, 220, 120 and 70 um, also
shown in Fig. 1(a), were fabricated from the wafer using wet
chemical etchants [14] of phosphoric acid: hydrogen peroxide:
deionized water (ratio of 1:1:1), followed by a finishing etch
using sulphuric acid: hydrogen peroxide: de-ionized
water (1:8:80). Ti/Au metal (20/200 nm thick) was deposited
to form top and bottom ohmic contacts. No anti-reflection
coating and passivation were added to these devices.

Current-Voltage (I-V) measurements of the photodiodes
were performed using a Keithley 236 source-measurement
unit. Spectral response measurements were performed using
a Varian Fourier Transform infrared (FTIR) spectrometer.
The responsivity was deduced using the normalized spectral
response obtained from the FTIR and the peak responsivity
measured using a blackbody temperature of 800 °C. Respon-
sivity values at wavelengths of 0.633, 1.52 and 2.004 ym were
cross-checked with separate measurements using lasers at the
respective wavelengths, as the photon source. For radiation
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Fig. 1. (a) Cross sectional and top view of InAs diode. (b) Radiation
thermometry measurement setup.

thermometry measurement the setup [15] shown schematically
in Fig. 1(b) was used. A blackbody source, IR-563/301, with
an aperture diameter of 7.5 mm was used. The radiated signal
from the blackbody was modulated by a mechanical chopper
at a frequency of 420 Hz, before being focused by a ZnSe
lens (25.4 mm diameter plano-convex lenses, 50 mm focal
length) onto the device under test (DUT). The DUT was placed
at 300 mm from the blackbody source. The photocurrent
from the DUT was amplified by in-house trans-impedance
amplifier (TIA) circuit with an overall gain of 10° and noise of
125 nV/Hz'/? (obtained through separate measurements using
an FFT spectrum analyzer). The output signal from the TIA,
measured using the phase sensitive detection method by a
SR830 lock-in amplifier, was used to deduce the photocurrent
from the DUT. The largest device with 420 um diameter
had a 60% fill factor, defined by the metal contact shown
in Fig. 1(a). This was used for thermometry measurement in
this work.

In order to deduce the temperature error, AT, for a given
set of conditions, we used 6 sets of data, with each set taken
over a duration of 120 s using a sampling time of 0.05 s,
giving a total duration of 720 s. Mean and standard deviation
values, < I,;, > and o (Ip;), were then calculated for these
data to yield the signal to noise ratio (SNR), defined as the
ratio of < I, > to o (Ipy). The percentage error of the output,
Pooutputerror, 1 Telated to SNR and is expressed as

O-(Iph)

%outputerror =100 x .
< Ipp >
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Fig. 2. Comparison of room temperature dark current density from InAs

photodiodes with diameters ranging from 70 to 420 um.

The theoretical sensitivity of the system can be char-
acterized by Percent-per-Degree, which is given by [16]
%/°C = 100 x %, where ¢, is Planck’s second constant
(1.4388 cm - K), 4 is the effective operational wavelength of
the thermometer, and T is the object temperature in Kelvin.
The effective wavelength is derived from the gradient of the
natural logarithm of output photocurrent plotted as a function
of 1/T [17], [18]. This method is based on the Wien’s law
approximation to Planck’s Law and is useful to model broad
band radiations as a single monochromatic wavelength [19].
Finally the temperature error, AT, is given by the ratio of
Pooutputerror 10 %/° C, and is expressed as

oUpn)/ < Ipn >

AT =
cy/AT?

III. RESULTS AND DISCUSSION

Dark current densities measured from the InAs diodes with
different diameters are in agreement, as shown in Fig. 2. Since
the dark current due to bulk mechanisms scales with the diode
area, an agreement of dark current densities indicates that
bulk dark current dominates at room temperature, despite the
absence of surface passivation in these diodes.

Fig. 3(a) compares the room temperature responsivity versus
wavelength characteristics of our InAs photodiode at
0 and 0.1 V. With zero external bias, our InAs diode shows
a peak responsivity of 1.28 A/W at 3.35 um and a cut-off
wavelength (at 50 % of peak response) of 3.55 um, giving
48 % external quantum efficiency across the whole spectrum
down to 0.633 um. With a small bias of 0.1 V, the external
quantum efficiency (EQE) at 2.004 ym improves to 54 %, as
shown in Fig. 3(b).

The EQE is proportional to the photocurrent. With the
2.004 um wavelength light and our InAs diode, the pho-
tocurrent was made up of (1) minority holes in the n™
InAs layer that diffused to the depletion region, Igirr n(V),
(2) drift and diffusion currents in the i-InAs layer, and
(3) minority electrons in the p* InAs layer that diffused to the
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Fig. 3. (a) Room temperature responsivity as a function of wavelength.

(b) External quantum efficiency (EQE) at a wavelength of 2.004 xm.

depletion region. Contribution from (3) is negligible compared
to (1) and (2) in this case since significant light absorption
occurred in the top two layers. The bias dependence of
Lairr_n (V) is described by [20]

q9Go
cosh(L(V)/Ly)’

where Gy is the generation rate of photocarriers in the illu-
minated surface, L(V) is the distance between the illuminated
surface and depletion region edge (i.e the distance over which
the holes must diffuse in order to contribute to Iy;rr 5), and
Ly is the minority carrier diffusion length. As reverse bias
increases, the top depletion edge moves towards the device
surface, reducing L and increases Iyirr n [20]. This effect
applies also to the diffusion component in (2). Therefore
we can expect increasing EQE with reverse bias, if the
device indeed exhibits decreasing capacitance with reverse
bias. This was confirmed for this work through capacitance-
voltage measurements performed on devices at 77 K (cooling
was used to reduce dark current, enabling accurate measure-
ment). Using the capacitance value at 0 V we extracted an
unintentional background doping of 6 x 10 ¢m™3 in the
i-InAs layer of the p™-i-n* diode, similar to the value achieved

Laigr, (V) =
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in reference [13]. Although the i-region was not fully depleted
at 0 V, the unintentional background doping was significantly
lower than the level of 1-3 x 10! cm™3 in the undoped InAs
substrates [21]. This suggests that epitaxially grown InAs is
required to maximize the depletion width and they could have
advantages over InAs diodes fabricated via implantation on
InAs substrates.

Using the measured responsivity and dark current,
detectivity values were calculated for our InAs diodes and
compared to those from commercial InAs diodes in Fig. 4.
Our InAs photodiode has a higher peak detectivity at 3.43 um,
than the InAs diodes from Judson [22] and Hamamatsu [23],
suggesting the potential of epitaxially grown InAs.
Our InAs diode also shows higher detectivity at the
wavelength range defined by a 3.43 um filter.

It is tempting to increase the bias to achieve wider depletion
width and hence higher responsivity. However increasing the
bias also increases the dark current, as shown in Fig. 2.
As the bias increased from 0 to 0.1 V, the device dark
current increased by 10 times whereas the peak responsivity
only improved by 13%. Therefore, radiation thermometry
measurements were performed at 0 V, on our InAs photodiode,
to minimize the detrimental effects of the device dark
current.

To evaluate the performance of our InAs photodiode as
a detector for radiation thermometry, we performed mea-
surements using our InAs photodiode at room temperature.
Fig. 5(a) and (b) shows the mean output photocurrent and SNR
versus blackbody temperature, respectively. In this work, the
blackbody source used had a lower temperature limit of 50 °C.
As expected, the output photocurrent and SNR increased
with blackbody temperature. To investigate the potential of
InAs for a 3.43 um radiation thermometer, we have also
evaluated the performance of InAs when a 3.43 um narrow
band filter was inserted into the setup in Fig. 1(b). The data
obtained with the filter is also shown in Fig. 5. The output
photocurrent increased with the blackbody temperature as in
the previous set of measurements taken without the filter.
Due to incomplete transmittance (76 %) and 62 nm FWHM
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bandwidth of the filter, the output photocurrent was reduced.
However, the signal is still sufficiently strong for sensing
object temperatures above 50 °C.

As another candidate for a 3.43 um thermometer,
the performance from a commercial P9696-03 PbSe
photoconductor [24], which was reverse biased at 15 V
and had a much larger active region area of 9 mm?, was
compared with our InAs. Our InAs diode produced higher
output photocurrent than the commercial PbSe over the
blackbody temperature range measured, as expected from
the higher detectivity of InAs photodiodes than that of
PbSe in Fig. 4. Due to its lower responsivity at 3.43 um
wavelength, the PbSe photodiode achieved a lower SNR than
that of our InAs diode, as shown in Fig. 5(b).

It is worth noting that the PbSe detector used in the radiation
thermometry experiments was larger than InAs photodiode.
The energy throughput in optical system is determined by the
solid angle formed between the detector and the lens, which
is given by A| x A»/D? [25], where A; and A» are the lens
and detector surface areas and D is the distance between two
surfaces. The radiance flux incident upon A, should equal to
the flux leaving A;. With a large active area, the PbSe has
an illuminated area of 1.5 mm in diameter and can collect
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all the energy from the optical system, corresponding to an
optical power throughput factor of 0.35 mm?sr. Our InAs only
collected a small amount of the signal with an optical power
throughput factor of 0.016 mm?sr. Therefore, PbSe received
21.3 times of more energy than our InAs. Despite receiving
less energy than PbSe, InAs still produced higher output
photocurrent and SNR. This suggests that further improvement
in the optical set up could increase the performance of
InAs diode.

Fig. 6 shows the temperature errors of our InAs photodiode
and the commercial PbSe photoconductor, as functions of
blackbody source temperature. As the blackbody temperature
increases, the temperature error reduces, due to increased SNR.
Without the filter, the temperature error of InAs diode reduced
from 0.17 °C at 50 °C to 0.007 °C at 300 °C. These measure-
ment uncertainties are well within acceptable errors in radi-
ation thermometry [26]. Clearly uncooled InAs photodiodes
can accurately detect object temperatures of 50 °C and higher.
When the 3.43 um filter is included, InAs still shows lower
temperature error than PbSe, in spite of the reduced detected
energy, across the entire temperature range. The reduced
signal, however, increases the temperature error of the InAs
thermometer to 1.88 °C at 50 °C and 0.018 °C at 300 °C.
Assuming an acceptable temperature error of £2 °C [26],
InAs can be used for measuring temperature of 50 °C or
higher. These results confirm that InAs can outperform PbSe
in applications requiring a 3.43 um operating wavelength.
For example, bi-axially oriented film extrusion and extrusion
coating in plastics industry often works at high temperatures
above 200 °C [12]. In such applications, our InAs photodiodes
will produce a temperature error of less than 0.05 °C at 200 °C.

IV. CONCLUSION

We have studied the performance of InAs photodiodes
for use in radiation thermometry. The lowest temperature
measured using our uncooled InAs photodiode is 50 °C
(limited by the blackbody source) with a temperature error of
0.17 °C. Compared with commercial InAs and PbSe detectors,
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our InAs showed higher detectivity at 3.43 um. Using a
narrow band filter we also demonstrated that the signal at
the wavelength of 3.43 um is sufficiently strong to achieve
accurate temperature measurements using an InAs diode.
Despite unoptimised signal coupling to our InAs diode, the
temperature error of our InAs based 3.43 um narrow band
radiation thermometer is lower than that of a commercial
PbSe detector.
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