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This paper presents a numerical investigation of the behaviour of dry granular flows generated by the collapse of
prismatic columns via 3D Distinct Element Method (DEM) simulations in plane strain conditions. Firstly, by
means of dimensional analysis, the governing parameters of the problem are identified, and variables are
clustered into dimensionless independent and dependent groups.
Secondly, the results of the DEM simulations are illustrated. Different regimes of granular motion were observed
depending on the initial column aspect ratio. The profiles observed at different times for columns of various
aspect ratios show to be in good agreement with available experimental results.
Thirdly, a detailed analysis of the way energy is dissipated by the granular flows was performed. It emerges that
most of the energy of the columns is dissipated by inter-particle friction, with frictional dissipation increasing
with the column aspect ratio. Also, the translational and rotational components of the kinetic energy of the
flows, associated to particle rotational and translational motions respectively, were monitored during the
run-out process. It is found that the rotational component is negligible in comparison with the translational
one; hence in order to calculate the destructive power of a granular flow slide, only the translational contribution
of the kinetic energy is relevant.
Finally, a methodology is presented to calculate the flux of kinetic energy over time carried by the granular flow
through any vertical section of interest. This can be related to the energy released by landslide induced granular
flows impacting against engineering structures under the simplifying assumption of neglecting all structure-flow
interactions. This represents the first step towards achieving a computational tool quantitatively predicting the
destructive power of a given flow at any location of interest along its path. This can be useful for the design of en-
gineering works for natural hazard mitigation. To this end, also the distribution of the linear momentum of the
flow over depth was calculated. It emerges that the distribution is initially bilinear, due to the presence of an up-
permost layer of particles in an agitated loose state, but after some time becomes linear.
This type of analysis showcases the potential of the Distinct Element Method to investigate the phenomenology
of dry granular flows and to gather unique information currently unachievable by experimentation.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Long run-out granular flows (e.g. rock and debris avalanches) can
travel distances several times larger than the initial size of their source
topography, sweeping away populated areas located far away from
the landslide source (Crosta et al., 2005; Carrara et al., 2008). Many
theories and assumptions have been proposed in the attempt to explain
the apparent high mobility of granular material, including the air cush-
ion trapped at the base of movingmass (Shreve, 1968), basal rockmelt-
ing (Goren and Aharonov, 2007; De Blasio and Elverhøi, 2008), sand
fluidization (Hungr and Evans, 2004), destabilization of loose granular
material at the failure plane (Iverson et al., 2011), acoustic fluidization
(Melosh, 1979; Collins and Melosh, 2003) or grain segregation-induced
frictiondecrease (Phillips et al., 2006; Linares-Guerrero et al., 2007).How-
ever, no experimental evidence has been found to validate these theories
and assumptions so far.

It has been recognised that debris flows and dry granular flows may
behave similarly: for instance, they can sustain shear stresses with very
slow deformation due to lasting, frictional grain contacts, and they can
flow rapidly, sustaining inelastic grain collisions (Iverson, 1997). Thus,
research has mainly focused on small scale laboratory experiments
and numerical simulations of dry granular materials (Kerswell, 2005;
Saucedo et al., 2005; Mangeney et al., 2007, 2010; Roche et al., 2011).
Although these studies make important simplifications of the problem,
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Fig. 1. Particle contact model in DEM (after Belheine et al. (2009)).

Fig. 2. Particle size distribution of landslides occurred in Northern Apennines (Italy) (after
Casagli et al. (2003)) and rock avalanches in the Alps (Italy) (after Crosta et al. (2007)).
The particle size distribution adopted in the numerical simulations is plotted as the red
curve.
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they are useful in elucidating the mechanical behaviour of granular
flows under simple, well controlled conditions (Crosta et al., 2009).

With regard to the numerical simulations, the Distinct Element
Method (DEM) (Cundall and Strack, 1979) has beenwidely used to sim-
ulate dry granular avalanches (Cleary and Campbell, 1993; Staron and
Hinch, 2005; Lacaze et al., 2008; Utili and Nova, 2008; Utili and Crosta,
2011a,b). The application of DEM to the simulation of granular flows,
asfirst proposed byCleary and Campbell (1993) in 2D, proved to beuse-
ful to enhance our understanding of the behaviour of dry granularflows.
In the last two decades, it has become increasingly popular to shed light
on fundamental mechanical characteristics of landslides (Staron and
Hinch, 2007; Tang et al., 2009). As stated by Zenit (2005), the use of
DEM to simulate landslides is very powerful, since all the numerical
data are accessible at any stage of the simulation, including quantities
which are difficult, or impossible, to be obtained directly from laborato-
ry experiments, such as the distribution of energy and momentum in-
side the granular flow and their variation over time and space.

In this paper, we illustrate the results of 3D DEM analyses in plane
strain conditions of granular flows originated by the quick release
Table 1
Parameters of the granular flow simulations.

DEM parameters Value

Particle diameter, D (mm) See Figure 2
Initial porosity, n 0.43
Density, ρ (kg/m3) 2650
Normal stiffness, Kn (N/m) 3 × 107

Shear stiffness, Ks (N/m) 2.7 × 107

Particle friction angle, ϕμ (°) 30
of prismatic granular steps. The paper is organised as follows: in
Section 2 the DEM contact model is illustrated; in Section 3 a dimen-
sional analysis of the problem is carried out; then in Section 4 the nu-
merical results obtained are presented. The evolution of the granular
column profile over time for various column aspect ratios and inter-
granular friction is presented together with the illustration of the flux
of the kinetic energy and of the linear momentum of the granular sys-
tem through vertical planes located at various distances from the initial
position of the column and the distribution of linearmomentumwithin
the granular flow. Finally, in Section 5, conclusions on the capability of
the DEM to model granular flows are illustrated.

2. DEM model and input parameters

The DEM open source code ESyS-Particle (Weatherley et al., 2011)
was employed to run the simulations here presented. Preliminary
runs of granular column collapse tests were run employing non-linear
elasticity according to the Mindlin no-slip solution (Johnson, 1985)
and linear-elastic contacts. No significant differencewas found between
these analyses. Hence, since linear elastic contacts require less computa-
tional time, linear elasticity was adopted. Accordingly, the normal
contact force at the contact plane is linearly proportional to the relative
normal displacement between two particles (see Fig. 1(a)), expressed
as:

Fn ¼ Kn � Un ð1Þ

in which Kn is the normal contact stiffness and Un is the normal relative
displacement between two spheres in contact. The response along the
tangential direction (see Fig. 1(b)) is calculated incrementally, as:

Fnt ¼ Fn−1
t þ Ks � dUs ð2Þ

in which Ft
n and Ft

n − 1 are the tangential forces calculated at the current
and previous simulation time steps; Ks is the shear stiffness, and dUs is
the incremental tangential displacement. The maximum tangential
force is limited by the Mohr–Coulomb criterion (see Figure 1(b)).

Amoment–relative rotation law is also present. Here, the rolling law
was employed with the only aim of accounting for the shape effect of
non-spherical particles. The law accounts for moments arising from
the fact that the line of action of the normal contact force in the case
of non-spherical particles no longer passes through the centre of mass
of the particles and hence generates rotational moments (Belheine
DEM parameters Value

Damping coefficient, α 0.0/0.3
Coefficient of rolling stiffness, β 1.0
Coefficient of plastic moment, η 0.1
Simulation parameters Value
Gravitational acceleration, g (m/s2) −9.81/−981
DEM time step size, Δt (s) 10−7



Fig. 3.Model configuration: (a) initial sample; (b) final deposit (A: fixed smooth backwall; B:movable front gate; C: periodic boundary; D: fixed coarse floor; Li: initial column length; Hi:
initial column height; Lf: runout length; Hf: deposit height).
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et al. (2009)). Without this law, unrealistically low angles of repose
would be obtained for the granular assembly. In the model adopted,
the magnitude of the elastic rolling moment (Me) is proportional to
the relative rotational angle (see Figure 1(c)), and is calculated in-
crementally as:

Mn
e ¼ Mn−1

e þ kr � Δθr ð3Þ

where Me
n and Me

n − 1 are rolling moment values calculated at the cur-
rent and previous simulation time steps; kr = βKsr

2 is the rolling stiff-
ness, with β being the coefficient of rolling stiffness, r being the
average particle radius; Δθr is the relative rotational angle between
two particles in one iteration step. The maximum rolling moment that
can be exchanged is defined as:

Mplastic ¼ η � r � Fnj j ð4Þ

in which η is the so-called coefficient of plastic moment.
The particle size distribution (PSD) is one of themost important fac-

tors controlling landslide initiation and soil permeability. The PSD of
granular flows varies hugely at different locations (see for instance
Casagli et al. (2003)). In addition, the grain size distribution may vary
significantly within the same landslide mass at different depths
(Crosta et al., 2007). Fig. 2 shows examples of particle size distributions
from 7 cases of landslides in the Northern Apennines (Casagli et al.,
2003) and 6 cases of rock avalanches in Val Pola in the Alps (Crosta
et al., 2007). It can be observed that the grain size ranges from
Table 2
Parameters of the granular flow problem.

Parameter Symbol Unit of
measure

Independent parameters Initial column length Li [L]
Initial column height Hi [L]
Particle diameter D [L]
Particle density ρs [ML−3]
Gravitational acceleration g [LT−2]
porosity n [–]
Normal stiffness Kn [MT−2]
Shear stiffness Ks [MT−2]
Particle friction angle ϕμ [–]
Coefficient of rolling stiffness β [–]
Coefficient of plastic moment η [–]

Dependent parameters Final deposit length Lf [L]
Final deposit height Hf [L]
Flow velocity Vf [LT−1]
Granular sliding time t [T]
0.001 mm to 1000 mm, with a large percentage of fine and medium
sized grains and a small amount of coarse grains. Large discrepancies
can be observed between the various site investigations.

According to Fig. 2, grainswith diameters ranging from 0.1 to 10mm
were widely observed in different locations. However, in DEM simula-
tions, due to computational limitations, we used a much narrower par-
ticle size distribution with the ratio of maximum to minimum particle
sizes equal to 2, as shown in the red curve in Fig. 2. The input parameters
are listed in Table 1.

In this study, we carried out numerical experiments of granular
columns analogous to the columns of the experimental investigation
of Lube et al. (2005). Initially particles were generated within a pris-
matic space bounded by two rigid and frictionless walls (A and B in
Figure 3(a)), a rough base (D in Figure 3(a)), and a periodic boundary
in the out-of-plane direction (C in Figure 3(a)) to impose plane strain
conditions. The horizontal base (D) of the domain (see Figure 3(a)), is
made of particles of the same PSD as the granular column that were
kept fixed at all times to simulate a non-erodible base of the same
roughness as the flowing material. To generate the granular column,
first particles were randomly created in space (with the grain position
allocated according to standard algorithms of random number genera-
tion), then they were left to settle under gravity until a dense column
was obtained. In all the simulations, the granular flow was initiated by
the instantaneous removal of wall B.

Once the flow has stopped, the final run-out length (Lf) and deposit
height (Hf) can be measured (see Figure 3(b)). The presence of single
Fig. 4. The angle of repose of a granular deposit for different rolling resistances.



6 S. Utili et al. / Engineering Geology 186 (2015) 3–16
particles detached from the front of the granular mass sometimes
makes the calculation of Lf a non-straightforward exercise. Zenit
(2005) calculates Lf considering only particles remaining in contact
with each other, disregarding individual loose particles detached from
the deposit mass centre. In this study, in order to track the position of
the front in a way consistent amongst the various simulations (the
number of loose single particles moving ahead of the front depends on
the aspect ratio), we implemented an algorithm which identifies the
front as the boundary between 99% and 1% of the flow mass, i.e. 1% of
the mass is travelling ahead of the boundary. This guarantees that the
front is not confused with the position of loose single particles jumping
ahead the flow.
3. Dimensional analysis

The physical parameters ruling the motion and the depositional
morphology of the granular column include (Zhao et al., 2012):
grain properties, geometrical properties of the domain, flow velocity
and duration time. In Table 2, all the parameters are listed together
with their units expressed in terms of fundamental dimensions,
i.e. mass (M), length (L) and time (T). Depending on their role in
the simulation, parameters can be categorised as either independent
or dependent. We considered the grain properties and the domain
Fig. 5. The evolution of sample profiles for different granular columns
geometry as independent input parameters and final runout dis-
tance (Lf), deposit height (Hf), flow velocity (vf) and flow duration
time (t) as the dependent ones.

The governing parameters of themechanical laws ruling particle in-
teractions are the normal and shear particle contact stiffness (Kn, Ks),
particle friction (ϕμ) and the coefficients of rolling resistance (β, η).
Also porosity has a significant influence on the mechanical behaviour
of granular flows (Craig, 1997). However, since the primary purpose
of this study is to explore the capability of DEM in modelling granular
flows, the influence of porosity has not been considered here. The rela-
tionship between the independent and dependent quantities can be
expressed by a general functional relationship of the form:

L f ; Hf ; v f ; t
� �

¼ f Li; Hi; D; ρs; g; Kn; Ks; n; ϕμ

� �
ð5Þ

Performing dimensional analysis (Palmer, 2008), and taking out
porosity which is the same in all the tests carried out (all columns
were generated with the same initial porosity), Eq. (5) can be rewritten
as:

L½ �; H½ �; V½ �; T½ �ð Þ ¼ f a; ε; S½ �; ϕμ

� �
ð6Þ

where [L] = (Lf − Li)/Li is the normalised run-out distance; [H] = Hf/
(profiles are traced at successive time steps (Δt=
ffiffiffiffiffiffiffiffiffiffi
Hi=g

p ¼ 0:5)).



Fig. 6. Final normalised profiles of the granular column deposit: (a) 3D DEM results;
(b) experimental results after Lube et al. (2005).
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Li is the normalised maximum final deposit height; V½ � ¼ v f =
ffiffiffiffiffiffiffiffi
gHi

p
is

the normalised flow velocity (vf can be chosen in a variety of ways,
one of which is the velocity of propagation of the flow front, i.e.
vf = dL/dt); ½T� ¼ t=

ffiffiffiffiffiffiffiffiffiffi
Hi=g

p
is the normalised flow duration time;

a = Hi/Li is the initial column aspect ratio; ε = ρsgHi/(Kn/D) is
a characteristic compressive strain of the granular column and
[S] = Hi/D is the model-to-particle size ratio. Note that [–] indicates
a dimensionless variable.

4. Numerical results

4.1. Calibration of the angle of repose

In studies on non-cohesive granular flows, thematerial internal fric-
tion angle (ϕ) is often approximated by the angle of repose. In simple
terms, it can be said that a slopewith an angle over the horizontal larger
than the angle of repose is unstable, whereas it is stable if the opposite
holds true. Typical values for the angle of repose range from 25° for
flowsmade of smooth spherical particles to 40° for rough angular parti-
cles (Carrigy, 1970; Pohlman et al., 2006). Here, we assumed as baseline
reference value, an angle of repose of 31° which is representative of
coarse quartz sand (Lube et al. (2005)).

With regard to the calibration of the DEM parameters, concerning
the rolling stiffness, β, in Modenese (2013) it is shown that its influence
on the angle of repose is negligible, so itwas not investigated here. Then,
two contact parameters remain to be determined: the intergranular
friction angle, ϕμ, and the coefficient of rolling resistance, η. In Zhao
(2014), it is shown that some arbitrariness exists since the same angle
of repose can be obtained from several combinations of them. Here,
we opted to choose an intergranular friction angle of ϕμ = 30°, which
is a typical value for quartz sand grains, and to calibrate η against the
angle of repose observed when the flow comes to a stop. In Fig. 4, the
angles of repose obtained for various values of η are shown. For η N 0,
a linear relationship between η and the angle of repose exists. For
η = 0, an unrealistically low angle of repose is obtained. This is a well-
known result reported in Calvetti and Nova (2004), Pöschel and
Buchholtz (1993) and Rothenburg and Bathurst (1992)). In all the sub-
sequent analyses, a value of η=0.1, corresponding to an angle of repose
for the flow of 31°, was adopted.

4.2. Kinematics of motion

Depending on the initial aspect ratio of the granular column, differ-
ent depositional morphologies are obtained (see Figure 5). As it can be
expected, the upper surface of the granular flow gradually lowers until
the angle of repose is reached. Our results confirm that the flow profiles
at various times and the final deposit depend strongly on the initial as-
pect ratio (Lube et al., 2005). This highlights the need for presenting
profiles in dimensionless form. To this end, the final profiles of the gran-
ular assembly, normalised by the final runout distance and the deposit
height, were plotted in Fig. 6 together with the experimental profiles
obtained by Lube et al. (2005). The profiles from our 3D DEM analyses
exhibit a good agreement with the experimental results for all the as-
pect ratios analysed.

A key feature of the DEM is the possibility of obtaining data on the
motion of single particles (e.g. trajectories, velocities, etc.) inside the
granular flow, allowing performing a detailed analysis of the potential
heterogeneities in the flow. For instance, from our analyses, it emerges
that in granular columns with small aspect ratios (e.g. a = 0.93), only
a small portion of material is involved in the motion. To compare the
kinematic fields obtained from columns of different aspect ratios, it is
convenient to plot the measured velocities in dimensionless form. To
this end, we define

ffiffiffiffiffiffiffiffi
gHi

p
as the characteristic velocity of the system.

This represents the maximum velocity that a single particle in free-fall
from a height corresponding to the centre of the column (Hi/2) reaches
at the end of the fall. In Fig. 7(a), particleswith velocities smaller than1%
of the characteristic velocity are plotted in grey, whilst particlesmoving
at higher velocities are plotted in red. From the figure, it can be noted
that failure of the granular assembly occurs approximately along a
plane, identified by a dashed line in the figure. According to the
Rankine's theory of earth pressure (Rankine (1857), assuming that the
failure of the granular column occurs when conditions of active thrust
are in place, the inclination of the failure plane to the horizontal (θf)
can be estimated as:

θ f ¼ 45∘ þ ϕ=2 ð7Þ

where ϕ is the internal friction angle of the granular material. From
Fig. 7(b), it emerges that the inclination angle of the active failure
plane is approximately 61° for all the aspect ratios tested. This
value is very close to the theoretical value predicted by Eq. (7),
which is 60.7°.

4.3. Influence of the column aspect ratio

For rock avalanches and granular flows, the assessment of the final
run-out distance is of primary importance, as it determines the extent



Fig. 7. Active failure state of the granular sample. (a) Motion of solid grains. (b) Inclination angle of the slope failure plane.
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of the regions affected by the avalanche or landslide. In Fig. 8(a), our
simulations have been compared with previous numerical simulations
(Staron and Hinch, 2005; Zenit, 2005; Crosta et al., 2009) and experi-
mental observations (Balmforth and Kerswell, 2005; Lajeunesse et al.,
2005; Lube et al., 2005) from the literature. We performed three sets of
simulations: T1 and T2 refer to simulations run for the same values of ε
(ranging from 6.5 × 10−7 to 6.5 × 10−6), but with η = 0.1 and η = 0
respectively, whilst T3 refers to simulations run for ε ranging from 6.5 ×
10−5 to 6.5 × 10−4 and η = 0.1. Some of the T1 and T2 simulations
were run with gravitational acceleration scaled up 100 times and Kn =
3 × 107 N/m, whereas some others with unscaled gravity but particles
100 times softer, i.e. Kn = 3 × 105 N/m. In fact, in light of dimensional
analysis, scaling can be introduced by scaling either the value of gravita-
tional acceleration or particle stiffness. The fact that the obtained results
are aligned in consistent trends in Fig. 8 can be seen as a verification of
the correctness of the performed dimensional analysis. Comparison be-
tween T1 and T2 simulations allows examining the influence of particle
shape on run-out, whereas comparison between T1 and T3 allows exam-
ining the influence of ε. The values of the independent variables employed
in our simulations are reported in Table 3 in terms of the dimensionless
groups identified in Eq. (6). In the table, the values of the parameters
employed in other tests reported from the literature in Figs. 8 and 9 for
comparison purposes are listed as well. In Fig. 8(a), it can be observed
that the final normalised run-out distance obtained from our simulations
matches well from a qualitative viewpoint both the experimental obser-
vations of Lube et al. (2005) from tests run in plane strain conditions,
and the 2D FEMnumerical analyses of Crosta et al. (2009). Also it emerges
that if rolling resistance is not employed (simulations T2), unrealistically
large run-out distances are obtained since particle angularity tends to re-
duce run-out. In otherwords, aflowof spherical particles ismore prone to
sliding than a flow of particles of any non-spherical shape. Equally, if 2D
DEM simulations are employed (Staron and Hinch, 2005; Zenit, 2005),
unrealistically long run outs are obtained. Presumably, this is due to the
fact that the 2D kinematics of particle interaction is too different from
the real 3D kinematics. Comparison between the simulation series T1
and T3 shows that the characteristic strain of a granular column, ε, has
no influence on the observed flow behaviour, at least for the range of
values here employed. In conclusion, simulations T1 and T3 show that if
particle shape is accounted for, albeit by means of a very crude approxi-
mation (i.e. employing a moment–relative rotation law with spherical
particles which avoids simulating the real non-spherical geometry of
the particles), the obtained run-out and final heights of the simulated
flows are in good agreement with the available experimental data.

Now let us look at how the front of the flow propagates over time. In
Fig. 9, the position of the front is plotted against time for various column
aspect ratios. According to previous literature (Lube et al., 2005; Crosta



Fig. 8.Relationship between aspect ratio and (a) normalised run-out distance and (b)final
deposit height. The red symbols are experimental results; blue symbols are numerical re-
sults, while the numerical results of this study are coloured black.
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et al., 2009), time has been normalised by
ffiffiffiffiffiffiffiffiffiffi
Hi=g

p
, which can be thought

of as the time taken by a single particle in free fall to travel from the
centre of the column to the base. Looking at the figure, four typical
distinct regimes can be identified: an initial transient acceleration (A),
a constant velocity flow (B), a gradual deceleration (C) and a final static
deposition (D). It emerges that in terms of DEM simulations, only 3D
Table 3
Properties for experimental and numerical tests.

– Test type

Lube et al. (2005) Experiments in plane strain
Lajeunesse et al. (2005) Experiments in plane strain
Balmforth and Kerswell (2005) Experiments in plane strain
Crosta et al. (2009) 2D FEM simulations
Zenit (2005) 2D DEM simulations
Staron (2005) 2D DEM simulations
This study (T1)a 3D DEM simulations in plane strain
This study (T2)b 3D DEM simulations in plane strain
This study (T3)a 3D DEM simulations in plane strain

a Numerical simulation using rolling resistance model (β = 1.0, η = 0.1).
b Numerical simulation without using rolling resistance model (β = 0.0, η = 0.0).
analyses accounting for the effect of particle shape provide results that
are in agreement with experiments.

4.4. Analysis of the energy contributions in the flow

The potential energy of the column at any time is:

Ep ¼
XN

i¼1

mighi ð8Þ

wheremi and hi are themass and height of a single particle i, respectively,
andN is the total number of particles of the column. The kinetic energy of
the system at any time is calculated as:

Ek ¼
1
2

XN

i¼1

mivi
2 þ Iiωi

2
� �

ð9Þ

where vi andωi are the translational and angular velocities respectively of
a generic particle i, and I is its moment of inertia (for a spherical particle
I= 2mR2/5).

A part of potential energy gets dissipated rather than being
transformed into kinetic energy, due to unelastic particle collisions
(e.g. unelastic particle rebounds and frictional sliding). In light of the
principle of energy conservation, the energy dissipated in the flow at
any given time can be calculated as:

Ediss ¼ E0−Ep−Ek ð10Þ

where E0 is the total energy of the system,which can be calculated from
the initial potential energy of the column before particles start to move,
as:

E0 ¼ MgHi=2 ð11Þ

where M ¼ ∑
N

i¼1
mi.

At the particle level, energy is mainly dissipated via frictional sliding
at particle contacts and viscous damping alongboth thenormal and tan-
gential directions of contacts when damping is present, but also by the
relative rotation between particles once the plastic limit of the rolling
moment is reached (see Figure 1(c)). In Fig. 10, the entire temporal
evolution of the energy components of the flows, from start of column
collapse until end of motion, is plotted. After the instantaneous removal
of the confining gate at T=0, particles start to fall downwards,with po-
tential energy being progressively transformed into kinetic energy. The
kinetic energy exhibits a peak at around T=1.0 (see the dashed line in
the figure), when both the rate of potential energy loss and the rate of
cumulative energy dissipation (see the slopes of the curves in the
figure) reach their maximum values. After this time, both potential
and kinetic energy decrease. The flow comes to a stop at about T =
4.0. Considering now columns of different aspect ratios, the dissipated
a ε [S] ϕ (°)

[0.5, 20] [4.7, 140] × 10−9 [9, 1000] [29.5, 32]
[0.2, 12] [1.2, 8.7] × 10−8 [100, 300] [21.5, 22.5]
[0.5, 40] [5.2, 420] × 10−9 [12, 1000] [22.5, 26.5]
[0.6, 20] – – [20, 40]
[0.1, 10] [2.1, 13.1] × 10−5 [28, 173] 30
[0.2, 17] – [14, 369] 20
[1, 10] [6.5, 65] × 10−7 [25, 250] 31.7
[1, 10] [6.5, 65] × 10−7 [25, 250] 26.1
[1, 10] [6.5, 65] × 10−5 [25, 250] 31.7



Fig. 9. Normalized granular spreading length versus normalized time from experimental and numerical tests.
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energy in termsof percentage of the initial total energy of the columnshas
been plotted against their aspect ratio in Fig. 11. From our simulations, it
emerges that the higher the aspect ratio, the larger the proportion of en-
ergy dissipated during the flow.

Then, we investigated howmuch of the kinetic energy of the flow is
due to the translation of particles and how much is due to their rota-
tions. In Fig. 12, the two sources of kinetic energy are plotted separately
against time. Unfortunately, viscous damping coefficients strongly de-
pend on the type of material making the granular flow. Furthermore, a
reliable experimental determination of damping coefficients for granu-
lar flows is currently not yet available. Therefore, we decided to run two
cases only of simulations: one without viscous damping and the other
one with a viscous damping coefficient of 0.3, in order to obtain a
rough indication of the potential influence of viscous damping on the
variables of interest but without trying to model any specific natural
granular flow. In the simulations with viscous damping, the damping
coefficient of 0.3was employed in both the normal and tangential direc-
tions of particle contacts. This value corresponds to a coefficient of res-
titution of around 0.5 (Tsuji et al., 1992). In Fig. 12, it can be noted
that the kinetic energy stemming from particle rotations remains
Fig. 10. Variation of energy during granular flow (a = 3.26) (E0: initial total energy; Ep:
normalized potential energy; Ek: normalized kinetic energy; Ediss: normalized cumulative
energy dissipation).
negligible at all times (i.e. less than 0.5% of the total kinetic energy) in
both cases, with and without the presence of viscous damping. In light
of this finding, in the next section, where we investigate the spatial dis-
tribution of the momentum inside the flow, we have concentrated our
attention on the linearmomentum since we know the angular momen-
tum to be negligible. Also, from Fig. 12, it emerges that the curves ob-
tained for flows with and without damping, are similar. This implies
that the presence of damping decreases the magnitude of the kinetic
energy of the system, of the same proportion, throughout the duration
of the flow.
4.5. Linear momentum

The evolution over time of the linear momentum of the flow, p!¼

∑
N

i¼1
mi v

!
i, is plotted in Fig. 13, in the case of the presence of viscous dissi-

pation and in its absence. Given the imposition of periodic boundary
conditions in the y direction, we expect py to be negligible at all times,
as it is shown in Fig. 13(a). This confirms the effective presence of
plane strain conditions in the x–z plane for the simulated flows.
Fig. 11. Total energy dissipated during the flow normalized by the initial potential energy
versus column aspect ratio.



Fig. 12. Evolution of kinetic energy over time (a = 3.26) (Ek_trans and Ek_rot are the
translational and rotational sources respectively of the kinetic energy of the system).

Fig. 13. Evolution of linear momentum over normalised time for flow with and without
damping: a) components of momentum normalised by p0; b) components of momentum
as a percentage of the total momentum against normalised time; c) components of momen-
tum as a percentage of the total momentum against normalised run-out; x is the direction of
flow propagation, y is the out of plane direction, and z is the vertical direction.
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Analogously to the energy analysis of the flow, it is convenient to nor-
malise p!, for the sake of generality in presenting our results. To this
end, we introduce a scalar quantity, p0, with:

p0 ≡M
ffiffiffiffiffiffiffiffi
gHi

p
ð12Þ

This quantity can be thought of as an approximate average of the
momentum of the flow: p0 ≡M

ffiffiffiffiffiffiffiffi
gHi

p ¼ M � Hi=
ffiffiffiffiffiffiffiffiffiffi
Hi=g

p
with Hi=

ffiffiffiffiffiffiffiffiffiffi
Hi=g

p
being the characteristic velocity of the flow. In Fig. 13(a), the compo-
nents of the linear momentum along the x, y and z axes, normalised
by p0, are plotted against dimensionless time. A small difference be-
tween the curves for the case with and without damping is noted
with damping having the effect of reducing the amount of momentum
as it is expected. From the figure, it emerges that the momentum in
the vertical direction, pz, exhibits a higher peak than the momentum
in the direction of flow propagation, px. The two peaks occur at different
times. To better investigate which one is dominant and when, it is con-
venient tomake a relative comparison between the two components. To
this end, the square of each component over the square of the magni-
tude of the vector ( p!) is plotted in Fig. 13(b) and (c). The use of the
squares allows for plotting the components as percent, since px

2

p2 þ py
2

p2 þ
pz

2

p2 ¼ 100%. From the figure, it can be noted that at the beginning of
the flow, the vertical component, pz, dominates due to the fact that
themotion of the particles ismainly gravity driven free fall. Then, during
the propagation phase, the horizontal component, px, becomes domi-
nant, stabilising itself at around 90%. Finally, when the flow is coming
to rest, a surge of vertical component appears. This is due to the
presence of decelerating particles exhibiting bouncing in the verti-
cal direction, especially near the flow forefront. In comparison
with Fig. 13(b), the start point of the chart in Fig. 13(c) looks shifted
ahead in time, since it takes some time for the flow front to start
moving ahead after gate removal.

Let us now examine the influence of the column aspect ratio on lin-
ear momentum. This is an important aspect in order to ascertain how
general the observed trends on the linear momentum of the flow are.
In Fig. 14, the evolution of the vertical and horizontal components of
the linear momentum is plotted (as percentage over the magnitude of
the vector p!) against dimensionless time for columns of various aspect
ratios. Similar trends amongst the curves can be noted. However, in the
initial phase of the flow (for T b 1.1), the vertical component ofmomen-
tum increases with the aspect ratio and obviously the opposite is true
for the horizontal one. Instead, after T = 1.1, the vertical component



Fig. 14. Evolution of linear momentum over time for various aspect ratios (with viscous
damping): a) components of momentum as a percentage of the total momentum against
normalised time; b) components of momentum as a percentage of the total momentum
against normalised run-out. x is the direction of flow propagation, y is the out of plane
direction, and z is the vertical direction.
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of momentum decreases with the aspect ratio. A possible explanation
for the observed aspect ratio dependent trend could be that the gravity
driven free fall of particles, which gives rise to the particle vertical mo-
tion, increases with the height of the column whereas the friction
between particles, which opposes the horizontal motion of the par-
ticles, is independent of the column aspect ratio. In Fig. 14(b) the
components of the momentum are plotted against run-out distance.

4.6. Flux of kinetic energy

To assess the vulnerability of existing structures hit by a granular
flow/avalanche and to design engineering works for the protection of
existing structures, two quantities are of interest: energy and momen-
tum. The kinetic energy of the particle flow can be seen as an upper
bound on the destructive energy that could be unleashed on the struc-
ture impacted by the flow. The amount of kinetic energy transferred
from theflow to the structure depends on howflow and structure inter-
act during the time the structure is impacted by the flow. Hence, the
amount of energy released by the flow on the structure is a function of
the characteristics of both flow and structure (for instance the relative
stiffness between the two). Also the flow–structure interaction is likely
to change over time, for instance due to the development of irrecover-
able (plastic) deformations in the structure. So, it is not possible to pre-
dict the transfer of energy (and equally ofmomentum), unless a specific
flow and a structure of interest are modelled. Here, however, we pro-
vide an analysis of the linear momentum and kinetic energy of the
flow, measured at various distances from the initial position of the col-
umns, in order to identify an upper bound on themaximum energy that
may be imparted to structures knocked by granular flows, under the
simplifying assumption of disregarding the effects of any structure–
flow interactions.

Considering an imaginary vertical section perpendicular to the di-
rection of horizontal propagation of the flow (see the vertical plane
depicted in Figure 15) the flow mass transiting through such a section
is a function of time. This is nil until the flow front reaches the position,
then it gradually increases, then decreases and eventually becomes nil
again once the flow has come to a stop (see Figure 15). In the following
analysis, five locations along the flow path, shown in Fig. 16, are consid-
ered. Each location is identified by a letter (see Figure 16). A convenient
measure of the maximum energy that can be transferred from the flow
to the impacted structure is what we here call the flux of kinetic energy.
This is evaluated as follows: for a given location of interest, the kinetic
energy of the particles passing through the vertical plane oriented in
the direction perpendicular to the flow is recorded during a specified
time interval Δt and their total kinetic energy, ΔE, is evaluated. The
flux of kinetic energy through the plane is given by the ratio, ΔE/Δt, a
quantity with the dimensions of power. It is convenient to normalise
this quantity, so that a comparison of fluxes between columns of various
sizes can be carried out. A simple way of doing so is by normalising both
numerator, ΔE, and denominator, Δt. Thus, we define the normalised
flux, P, as:

P ≡ ΔE
E0

=
Δtffiffiffiffiffiffiffiffiffiffi
Hi=g

p ð13Þ

Substituting E0 from Eq. (11) into Eq. (13) and rearranging, Eq. (13)
can be written as:

P ¼ ΔE
Δt

� 2

M
ffiffiffiffiffiffiffiffiffiffi
g3Hi

q ð14Þ

Eq. (14) makes clear that 2
M

ffiffiffiffiffiffiffi
g3Hi

p is the multiplying factor to normalise

the measured flux ΔE/Δt. The flux, P, represents the maximum energy
that can be transferred from the flow to the impacted structure. In
fact, if all the energy were to be transferred away from the flow, the
flow would be suddenly deprived of all its kinetic energy and therefore
it would come to a stop,which is evidently an unrealistic scenario. In re-
ality, only a portion of the energy of the flow is lost in the interaction
with the structure that will cause the flow to slow down but not to
stop. So, P can be thought of, as an upper bound on the maximum de-
structive power that the flow may impart on the impacted structure.
In Fig. 17(a), theflux of kinetic energy at the selected locations is plotted
versus dimensionless time. It can be noted that the section with highest
flux is B. Obviously the fluxes in the case damping is present are smaller
than the case of undamped flow. An interesting finding is the fact that
the peak takes place at a different time, with the time of peak for the
damped system shifting progressively ahead of the peak time for the
undamped one. Also, the difference of value between the peaks for the
damped and undamped systems increases with the distance of the sec-
tion investigated from the column initial position reaching up to 50% of
the peak value for the undamped system. Fig. 17(b) illustrates the evo-
lution of the height of the granular mass at different locations. From the
figure, it can be concluded that the further the location is away from the
slope source region, the lower the height of the final granular mass is.



Fig. 15. Schematic view of granular flows past a structure.
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Fig. 18 illustrates the evolution of theflux of kinetic energy for differ-
ent column aspect ratios. From thefigure, it can be observed that the po-
sition of the section where the flux is highest depends on the aspect
ratio. For instance, in the case of small aspect ratios (e.g. a = 0.93),
the flux of destructive energy at location A is largest, with only a small
amount of particles travelling to locations further down section B. For
intermediate aspect ratios (e.g. a = 3.26, 5.91), the largest flux takes
place at location B. For large aspect ratios (e.g. a = 9.27), the largest
flux occurs again at section A.
4.7. Distribution of flux of kinetic energy and linear momentum over depth

To be able to design protective structures as effectively as possible,
the spatial distributions of kinetic energy and momentum over the
depth of the considered sections are also needed. Considering section
B, we have split the depth of the flow, h(t), into 5 parts and calculated
the flux of kinetic energy through the section for each part so as to
obtain a vertical profile of the flux of kinetic energy (see Figure 19(a)).
Looking at the figure, it emerges that the profile of the flux is initially
Fig. 16. Location of the sections where the granular flow is measured along the granular
flow path.

Fig. 17. Evolutionof thefluxof destructive energy andheight of debrismass. (a) Flux of kinet-
ic energy at different locations (a= 3.26). (b)Height offlowat different locations (a= 3.26).



Fig. 18. Evolution of the flux of destructive energy for different granular columns.
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bilinear, with the maximum flux at middle height of the column, then
the flux evolves into a linear profile whose amplitude progressively
reduces over time until becoming nil. The bilinear distribution points
out to the presence of an uppermost layer of particles in an agitated
loose state, which, after some time, consolidates so that a linear distri-
bution is obtained. The presence of this layer of loose material is
confirmed by the calculation of the profile of mass rate normalised by
the total flow mass in the section (see Figure 19(c)).

A convenient measure of the maximum momentum that could be
transferred by the flow to the impacted structure is the flux of linear
momentum over time. Analogously to the flux of kinetic energy, we
can evaluate the linear momentum of the particles passing through
the vertical section of interest, Δp, during a specified time interval Δt.
The flux of linear momentum through the whole section or parts of it,
is given by Δp/Δt, a quantity with the dimensions of force (so we call
it F). It is convenient to normalise this quantity so that comparison of
fluxes between columns of various sizes can be carried out. A simple
way of doing this is by normalising both numerator and denominator.
So, we define the normalised linear momentum of the flow in the unit
of time as:

Fx;y;z ≡
Δpx;y;z
p0

=
Δtffiffiffiffiffiffiffiffiffiffi
Hi=g

p ð15Þ
with p0 being an average linearmomentum for the flow here defined in
Eq. (12). Substituting p0 from Eq. (12) and rearranging, Eq. (15) can also
be written as:

Fx;y;z ¼
Δpx;y;z
Δt

� 1
Mg

ð16Þ

Eq. (16)makes clear that 1/Mg is themultiplying factor to normalise the
momentum going through the plane in the unit of time. In terms of the
value of the flux of the momentum at various sections in time, similar
figures as those obtained for the flux of kinetic energy (Figures 17 and
18) are obtained which are not reported here for sake of brevity. To lo-
cate critical sections and times of interest one of the two fluxes, either
the flux of kinetic energy or of momentum, is enough. However, it is
of interest to practitioners appointed with designing engineering
works for the mitigation of the flow hazard, to know the value of the
flux of momentum over depth in order to have an idea of the distribu-
tion of the pressure that can act on the structure. In Fig. 19(b), the dis-
tribution of the horizontal component of the linear momentum along
the direction of flow propagation, Fx, over depth is plotted against
time. As it can be expected, the same shape of the profile as the profile
of the flux of kinetic energy is found.



Fig. 19. Profile of kinetic energy, momentum and mass trough plane B at different times
(a = 3.26). (a) Profile of kinetic energy flux (b) Profile of normalised momentum. (Δpx
is the rate of momentum through the portion of section considered; (c) Profile of granular
mass moving (Δm is the mass flowing through the portion of section considered.
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5. Conclusions

This paper presents a numerical investigation of the behaviour of
dry granular flows generated by the collapse of prismatic columns via
3D Distinct Element Method (DEM) simulations under plane strain
conditions. This type of analysis showcases the potential of the Distinct
Element Method to investigate the phenomenology of dry granular
flows and to gather unique information currently unachievable by exper-
imentation. Bymeans of dimensional analysis, the governing parameters
of the problemwere identified. Then, the influence of key variables of the
problem was analysed. The main results are summarised as below:

(1) Different regimes of granular motion have been observed, de-
pending on the initial aspect ratios. The DEM results qualitatively
match the FEM analyses by Crosta et al. (2009) and the experi-
mental results by Lube et al. (2005). The granular material slides
along a plane which approximately corresponds to the active
failure plane of the column in agreement with Rankine's theory.

(2) Quantitative relationships between the column aspect ratio and
normalised runout distance and deposit height were established.
Using the rolling resistance model, i.e. assigning a moment–
relative rotation contact law, the DEM simulations give rise to
runout distances and deposit height whichmatch well the avail-
able numerical and experimental results.

(3) A detailed analysis of how energy is dissipated by granular flows
was performed from which emerges that most of the energy of
the columns is dissipated by inter-particle friction,with frictional
dissipation increasing with the column aspect ratio. Also, the
translational and rotational components of the kinetic energy of
the flows, associated to particle rotational and translational mo-
tions respectively, were monitored during the simulations. It is
found that the rotational component is negligible in comparison
with the translational one; hence in order to calculate the de-
structive power of a granular flow slide, only the translational
contribution of the kinetic energy is relevant.

(4) Amethodology is presented to calculate theflux of kinetic energy
over time carried by the granular flow through any vertical sec-
tion of interest. This can be related to the energy released by
landslide induced granular flows impacting against engineering
structures under the simplifying assumption of neglecting all
structure–flow interactions. This represents the first step to-
wards achieving a computational tool quantitatively predicting
the destructive power of a given flow at any location of interest
along its path. This could be useful for the design of engineering
works for natural hazard mitigation. To this end, also the distri-
bution of the linearmomentumof theflowover depthwas calcu-
lated. It emerges that the distribution is initially bilinear, due to
the presence of an uppermost layer of particles in an agitated
loose state, but after some time becomes linear.
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