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Abstract 9 

One of the important pre-processing stages in the analysis of jointed rock masses is the 10 

identification of rock blocks from discontinuities in the field.  In 3D, the identification of 11 

polyhedral blocks usually involve tedious housekeeping algorithms, because one needs to 12 

establish their vertices, edges and faces, together with a hierarchical data structure: edges by 13 

pairs of vertices, faces by bounding edges, polyhedron by bounding faces.   14 

In this paper, we present a novel rock slicing method, based on the subdivision 15 

approach and linear programming optimisation, which requires only a single level of data 16 

structure rather than the current 2 or 3 levels presented in the literature.  This method exploits 17 

the novel mathematical framework for contact detection introduced in Boon et al. (2012). In 18 

the proposed method, it is not necessary to calculate the intersections between a discontinuity 19 

and the block faces, because information on the block vertices and edges is not needed.  The 20 

use of a simpler data structure presents obvious advantages in terms of code development, 21 

robustness and ease of maintenance.  Non-persistent joints are also introduced in a novel way 22 

within the framework of linear programming.  Advantages and disadvantages of the proposed 23 

modelling of non-persistent joints are discussed in this paper.  Concave blocks are generated 24 
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using established methods in the sequential subdivision approach, i.e. through fictitious 25 

joints. 26 

 27 

Highlights 28 

• we present a novel rock slicing method based on linear programming optimisation 29 

• it requires only a single level of data structure rather than the current 2 or 3 30 

• calculation of intersections between a discontinuity and block faces is not needed 31 

• the method has obvious advantages for code development, robustness, maintenance 32 

• Non-persistent joints are introduced in a novel way via linear programming 33 

 34 

Keywords: Rock slicing; block generation; distinct element method; sequential subdivision; 35 

rock mechanics; linear programming 36 

 37 

  38 
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1.  Introduction 39 

Jointed rock masses are made up from numerous polyhedral rock blocks, whose faces are cut 40 

out by discontinuities in the rock field.  The spatial distribution, size and orientation of these 41 

discontinuities are rarely regular and usually follow probabilistic distributions.  As a result, 42 

the size and shape of each block in the jointed rock mass are different.  For the purpose of 43 

distinct element modelling (DEM) or discontinuous deformation analysis (DDA), one has to 44 

invest significant effort to identify polyhedral blocks from the discontinuities (see Fig. 1), 45 

whose orientations are typically defined using their dip directions and dip angles (see Fig. 2).   46 

 47 

Fig. 1 Illustration of a simple set of rock slices, resulting in polyhedral rock blocks 48 

 49 

 50 

Fig. 2 Definition of strike, dip and dip direction according to Hoek et al. (1995) 51 

 52 

Broadly, there exist two approaches in block generation algorithms.  The first approach is 53 

based on subdivision, in which discontinuities are introduced sequentially (Warburton, 1985; 54 
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Heliot, 1988, Yu et al. 2009; Zhang & Lei, 2012).  Each discontinuity is introduced one-at-a-55 

time (see Fig. 3 (a)).  If a discontinuity intersects a block, the parent block is subdivided into 56 

a pair of so-called child blocks.  This process is repeated until all the discontinuities are 57 

introduced.  The number of blocks increases as more “slices” are introduced, and a data 58 

structure of every block is maintained throughout the slicing process.  The blocks generated 59 

through sequential subdivision are convex because a discontinuity has to terminate at the face 60 

of a neighbouring block.  Concave blocks can, nonetheless, be generated through the use of 61 

clustering, which can be automated (Yu et al., 2009) or guided by specifying fictitious 62 

construction joints (Warburton, 1985; Fig. 4).  Blocks subdivided by a construction joint are 63 

clustered together by imposing a kinematic constraint which prevents any relative movement 64 

between the two sides of the joint.  Likewise, non-persistent joints, i.e. joints of finite sizes 65 

(Einstein et al., 1983; Zhang & Einstein, 2010), can be modelled through clustering, 66 

specifying fictitious construction joints, or subdomains (Heliot, 1988; see Fig. 5).  This is 67 

discussed again in further detail in a later paragraph.  On the other hand, in the second 68 

approach (‘face-tracing’ based on simplicial homology theory), discontinuities are introduced 69 

all-at-once (see Fig. 3 (b)).  All the vertices and edges in the domain are first calculated from 70 

the intersections between the discontinuities.  From these vertices and edges, there are ways 71 

by which the faces and polyhedra in the rock mass can be identified (Lin, Fairhurst & 72 

Starfield, 1987; Ikegawa & Hudson, 1992; Jing, 2000; Lu, 2002).  The necessary algorithms 73 

are, however, rather complex.  The advantage of this approach is that convex and concave 74 

blocks are identified in the same manner.  Non-persistent joints and dangling joints (see Fig. 75 

6), i.e. joints which terminate inside intact rock without contributing to block formation (Jing, 76 

2000), are also treated in the same manner as persistent joints, i.e. joints of infinite size.  77 

Depending on the type of mechanical analysis which is to be performed on the generated rock 78 

mass, these dangling joints may have to be removed; for instance, they have to be removed if 79 
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either the distinct element method (Cundall, 1988; Itasca, 2006; Itasca, 2007) or 80 

discontinuous deformation analysis (Shi & Goodman, 1985) is used later on for analysis; but 81 

they do not need to be removed if fracturing has to be modelled, for instance employing the 82 

discrete-finite element method (Pine et al., 2006).  A summary of the two approaches is 83 

shown in Table 1. 84 

 85 

(a)  86 

 87 

(b)  88 

Fig. 3 Block generation algorithm based on (a) sequential subdivision, and (b) 89 
all-at once (face-tracing) 90 

 91 

A

B C

D

E

F
1

2

A

B C

D

1

A

B C

D

E

F

G

1

2

3

discontinuity discontinuities

original	  
block

introduce
1st	  discontinuity

introduce
2nd	  

discontinuity

H

A

B C

D

E

F

G

1

2
3

discontinuities

H



6 
 

 92 

Fig. 4.  Illustration of fictitious joints, through which concave blocks are created 93 

 94 

 95 

Fig. 5.  Use of subdomains to create non-persistent joints 96 

 97 

 98 

Fig. 6  Illustration of dangling joints in 2-D, terminating inside intact rock 99 
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Table 1: Differences between all-at once (‘face-tracing’) and sequential subdivision 106 
algorithms for block generation 107 

Features in 
generated rock 
blocks 

All-at-once/ ‘face-
tracing’ 

Sequential subdivision 

Concave blocks Treated in the core tracing 
algorithm 

Requires ad-hoc algorithms for 
clustering, which can be automated.   
  

Non-persistent joints Treated in the core tracing 
algorithm 

Requires ad-hoc algorithms which can 
be automated.   
 

Dangling joints 
which terminate 
inside intact rock 
 

Treated in the core tracing 
algorithm 

Requires very prescriptive ad-hoc 
algorithms 

Bookkeeping and 
management of data 
structures 
 

Complex and requires very 
careful bookkeeping 
procedures 

Complexity decreases with the level of 
data structures 

Risk of error 
propagation due to 
incompatible data 
structures 

High.  Rounding errors are 
prone to occur during 
tracing of vertices, and 
special attention has to be 
invested to avoid 
incompatible data 
structures   

The simpler the data structure, the 
simpler the algorithms are. 

Suitable applications Can be used in 
discontinuum analysis, e.g. 
DEM or DDA.  Dangling 
joints are removed, before 
generating blocks. 
 
Can be used in coupled 
numerical codes to model 
problems involving 
fracture propagation and 
fluid-flow in the fracture 
network, where dangling 
joints has to be modelled 
explicitly and correctly 
 
 

Can be used in discontinuum analysis, 
e.g. DEM or DDA.  Widely used in 
3-DEC (Itasca, 2007). 
 
Less suitable to model applications 
where information of dangling joints are 
important. 

 108 

 109 

This paper is about the sequential subdivision approach.  In the case of a complex 3-D 110 

jointed rock mass, the generation of polyhedral blocks requires tedious and algorithmically 111 
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complex updates of the data structure which is used to encapsulate the significant geometrical 112 

features of the mass.  The number of faces, edges and vertices of the polyhedra in the jointed 113 

rock mass is unknown to the modeller, and they become known only at the end of the rock 114 

slicing procedure.  Therefore, during block generation, the management of this triple-level 115 

data structure (faces, edges and vertices) requires careful implementation in a numerical code.  116 

Since computing resources, e.g. computing time and memory, is rarely a major concern in 117 

rock slicing algorithms by comparison to the simulation runtime of the physical problem 118 

considered (e.g. underground excavations, stability analysis of rock slopes, etc.), the choice 119 

of code implementation is dictated by factors such as the time needed for code development, 120 

ease of code maintenance, and robustness.  Algorithms based on the subdivision approach are 121 

mainly concerned about the updating of the data structure every time a block is subdivided.  122 

A triple-level and a double-level hierarchical data structure have been proposed by 123 

Warburton (1985) and Heliot (1988) respectively for their rock slicing algorithms (see Fig. 124 

7).  In Warburton (1985), the flow of the algorithm proceeds as follows: (i) intersections (new 125 

vertices) are identified and old edges are subdivided, (ii) new edges are identified from the 126 

old faces which cross the joint plane and also from their edges which cross the joint plane 127 

(not every pair of new vertices can form a new edge), (iii) faces and other data structure for 128 

the child blocks are updated (see Fig. 7 (a)).  Most of the algorithms proposed recently (e.g. 129 

Yu et al. 2009) make use of the data structure proposed by Heliot (1988).  In Heliot (1988), 130 

every face of a polyhedron is indexed, and a vertex is assumed to result from the intersection 131 

of three planes (see Fig. 7 (b)).  Each vertex therefore consists of three indices.  An 132 

intersection check is performed for every pair of vertices which have two indices in common 133 

(e.g. between vertex-146 and vertex-346).  New vertices are created from the intersection, 134 

and their indices are identified.  Old vertices are allocated to the new child blocks depending 135 
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on whether they are on the positive or negative halfspace.  The lists of faces and vertices are 136 

rebuilt for each child blocks.  137 

The level of housekeeping (or bookkeeping) algorithms, which is required in a block 138 

generation computer code, depends on the choice of data structures.  Heliot (1988) has, for 139 

instance, made bookkeeping more manageable by reducing the original three-level data 140 

structure (Warburton, 1985) to a two-level data structure consisting of only vertices and faces 141 

(see Fig. 7). In the rock slicing method presented in this paper, only a single data structure 142 

consisting of the block faces is used. It will be shown that this novel procedure makes block 143 

generation algorithmically simpler and numerically more robust.  Whilst it is necessary to 144 

establish whether there is intersection between a block and a discontinuity, the exact 145 

intersections between the discontinuity and the block faces need not be calculated in our 146 

method.  In other words, information on block vertices and edges are not necessary, so there 147 

is no longer the need to maintain a complex hierarchical data structure, and problems arising 148 

from rounding errors in the case of high vertex density can be avoided (c.f. Elmouttie et al., 149 

2010).  According to the proposed novel mathematical treatment based on convex 150 

optimisation, the block faces of a polyhedron are defined by linear inequalities, the equation 151 

of a joint plane is defined by a linear equality constraint, and the geometrical boundary of a 152 

non-persistent joint by linear inequalities.  Given a non-persistent joint and a polyhedron 153 

which are potentially intersecting, we establish whether there is actual intersection by 154 

checking if the optimisation problem defined by the aforementioned linear equality constraint 155 

for the joint plane, the inequality constraints for the geometrical boundary of the non-156 

persistent joint, and the inequality constraints for the polyhedron is feasible (i.e. whether the 157 

convex set is not empty).  The problem is feasible if there is a point lying inside the interior 158 

region defined by the linear inequalities and at the same time satisfying the linear equality 159 

constraint (Boyd & Vandenberghe, 2004), and not feasible if otherwise.  To ascertain the 160 
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existence of such a point, i.e. whether the problem is feasible, a linear program is run 161 

(illustrated in section 2.3) to find the point with the largest negative distance from all the 162 

inequalities, i.e. maximum infeasibility, whilst satisfying the equality constraint.  The one-163 

level data structure, consisting of information on the block faces only, can be used in a DEM 164 

code employing the new contact detection algorithm recently proposed by Boon et al. (2012), 165 

which also is based on linear programming and the concept of analytic centre.  In that paper, 166 

it is shown that using well-established convex optimisation procedures (Boyd & 167 

Vandenberghe, 2004), intersection between a pair of polyhedra defined in terms of their faces 168 

only can be established and the contact point between them can be calculated (Boon et al., 169 

2012).  Information on polyhedral vertices and edges are unnecessary, because the contact 170 

detection algorithm requires only knowledge of the linear inequalities defining the block 171 

faces.  It is useful also to highlight that the rock slicing procedure proposed here can be 172 

employed in other applications too, which use more general non-spherical convex solids 173 

partially defined by linear inequalities but with neither vertices nor edges (Houlsby, 2009; 174 

Harkness, 2010; Boon et al., 2013).   175 

Depending on the type of discontinuous analysis conducted after block identification, 176 

the vertices and edges for each block may be required, for instance in the case of the contact 177 

detection algorithms employed in the earlier formulations of 3D DEM analyses for 178 

polyhedral particles (Ghaboussi & Barbosa, 1990; Cundall, 1988).  However, note that also in 179 

this case, the algorithmic operations required for rock mass slicing become simpler because 180 

once the subdivision of blocks is completed and the faces of each block have been identified, 181 

the remaining calculations consist solely of finding and assembling the vertices and edges of 182 

each individual block.   183 

 184 
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 185 

(a) 186 

 187 

(b) 188 

Fig. 7.  Rock slicing algorithm derived from (a) three-level (Warburton, 1985) and (b) two-189 
level (Heliot, 1989) data structures 190 
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Several numerical techniques have been proposed in the literature to model non-192 

persistent joints in the sequential subdivision approach.  Heliot (1988) divided the domain 193 

into finite subdomains so that non-persistent joints are made to terminate against the 194 

boundaries of the introduced subdomains (see Fig. 5).  This method is used, for instance, by 195 
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the commercial code 3DEC, and it can be inferred that at least one joint set has to be 196 

persistent (cf. Kim et al., 2007).   In another method (Zhang et al., 2012), the subdivision 197 

operations are carried out on a gridded mesh so that all the finite joints are made to terminate 198 

against the boundaries of the mesh elements.  In Yu et al (2009), the subdivided blocks at the 199 

end of block generation are checked against the actual extents of the joints: if a pair of blocks 200 

is not completely sliced, they are clustered together. In our algorithm proposed here, non-201 

persistent joints are introduced during the subdivision stage by introducing additional 202 

constraints into the linear programming optimisation to prevent the subdivision of blocks 203 

which are not intersected by finite joints (see Section 2.3).  This technique exploits the fact 204 

that a joint always terminates at some joints introduced earlier in the subdivision procedure.  205 

Hence, it is not necessary to have one or more of the joint sets to be persistent as required by 206 

3DEC (Itasca, 2007) (cf. Kim et al., 2007).  The proposed method is also simpler than the 207 

methods used in Yu et al. (2009) and Zhang et al. (2012), since we do not need to employ 208 

specific algorithms to combine element blocks.  This technique for introducing non-persistent 209 

joints gives rise to a rock mass geometry with the number of generated blocks falling 210 

between the first extreme case in which all the rock joints are persistent and the other extreme 211 

case in which all the dangling joints are removed.  This approach of treating non-persistent 212 

joints is comparable to the latest release of the commercial DEM code, 3DEC (Itasca, 2013), 213 

i.e. only blocks which touch the non-persistent joints are subdivided.  Although the 214 

mathematical treatment and the algorithmic implementation details of the latest 3DEC release 215 

are not in the public domain, however, on the basis of the information available on the current 216 

and previous releases, the algorithms employed are based on conventional data structures, i.e. 217 

vertices and edges.   218 

It is important to distinguish the types of algorithms or subroutines within the 219 

sequential subdivision framework.  The algorithms could be categorised into core algorithms, 220 
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which are associated with the management and updating of data structures, and ad-hoc 221 

subroutines, which aim to replicate the jointed rock mass structure.  The core algorithm that 222 

manages the update of the rock data structure during subdivision form the backbone of a 223 

block generation computer program.  Core algorithms are mutually exclusive to each other, 224 

i.e. only one type of core algorithm can be used during subdivision.  This implies that only 225 

one type of data structure has to be used during block generation, i.e. either 3 level or 2 level 226 

or 1 level.  However, at the end of the entire subdivision process, it is possible to switch to a 227 

different data structure (e.g. 3 level or 2 level) by determining the missing data for each 228 

block.  This task is easy at this stage, because the blocks have already been identified.  On the 229 

other hand, ad-hoc subroutines can be implemented in any of the core algorithms, and can be 230 

used together with other ad-hoc subroutines in the literature.  A summary of the core 231 

algorithms and ad-hoc subroutines is given in Table 2. The contribution of this paper is on the 232 

core algorithm.  The implementation of some of the ad-hoc subroutines is also illustrated in 233 

this paper, showing how they could be adopted for the novel data structure proposed here.  234 

The main mathematical function required in most of the ad-hoc subroutines is to identify 235 

whether a block is touching a plane, of which the method is established in the core algorithm. 236 

 In summary, the main advantages of the proposed algorithm is that it uses a simpler 237 

data structure based on one level only, making code implementation and maintenance 238 

significantly easier.  This algorithm is also more robust since the new data structure is less 239 

sensitive to rounding errors.  Note that after all the subdivisions from all the rock joints are 240 

completed, it is possible to convert the data structure to another one if this is required by the 241 

numerical code employed to carry out the calculations for the discontinuum analysis (DEM 242 

or DDA). 243 

Table 2: Core algorithms and ad-hoc subroutines in the sequential subdivision method  244 

Core algorithms related to 
bookkeeping and the 

Known ad-hoc subroutines which can be added to any of the 
core algorithms.   
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management of data 
structures.   
Triple data structure 
algorithm consisting of 
vertices, edges and faces 
(Warburton, 1985) 

Concave blocks – clustering/ clumping (Warburton, 1985)  

Double data structure 
algorithm consisting of 
vertices and faces (Heliot, 
1988) 

Non-persistent joints – Introducing subdomains, so that non-
persistent joints slice through the designated subdomains only 
(Heliot, 1988) 

Single data structure 
algorithm consisting of faces 
(currently proposed) 

Non-persistent joints (including dangling joints) – Specifying 
fictitious joints to demarcate the boundaries of non-persistent 
joints (Wang, 1992; Kulatilake et al., 1992).   
 

Conversion of data structures 
is possible after all the blocks 
are identified  

Non-persistent joints – Probability of slicing a rock block to 
model the persistence of a joint set (Itasca, 2007) 

 Non-persistent joints – Clustering, or assigning different contact 
properties, through checking the subdivided blocks against actual 
fracture extents (Yu et al., 2009; Fu et al., 2010; Zhang  & Lei, 
2013; Itasca, 2013). 
 

 Non-persistent joints – Slice only blocks which touch the 
boundaries of non-persistent joints (Zhang et al., 2012; Itasca, 
2013).  Joint extents can be better controlled by introducing a 
few fictitious joints or a gridded mesh at the beginning (Zhang et 
al., 2010; Zhang et al., 2012; Itasca 2013).   

 Bounding objects to increase efficiency – To establish 
intersection between non-persistent rock joints and rock blocks 
(Yu et al., 2009; Zhang & Lei, 2013). 

 Termination criterion for slicing – To achieve a prescribed 
fracture intensity in terms of the block edges (2-D view) 

 245 

2.  The method 246 

The proposed method generates convex blocks.  Concave blocks can nevertheless be 247 

generated through clustering two or more convex blocks.  This is discussed later in this 248 

section.  In rock mechanics, the orientation of a joint is described in terms of dip direction, 249 

dirθ  , and dip angle, dipθ  of the joint plane (see Fig. 2).  However, for ease of coding, in the 250 

implemented algorithm the normal vector of the joint plane is used.  The relationship of the 251 

normal vector to the aforementioned angles is as follows. Define planeN  as the plane normal 252 

vector and d the distance of the plane from the global origin.  Define two auxiliary angles, α: 253 
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    dip2α π θ= −  (1) 

and β :  254 

 
   πθβ += dir   for  πθ <≤ dir0  

πθβ −= dir   for  πθπ 2dir <≤  
 

⎪⎭

⎪
⎬
⎫

 (2) 

from which the unit vector planeN can be calculated as: 255 

    =planeN  ( αβ coscos , αβ cossin , αsin ) (3) 

The distance, d, of the plane from the global origin can be calculated if any point lying in the 256 

plane, 0x , is known: 257 

    0
T
planexN=d  (4) 

The derivation of this normal vector follows the sign convention proposed by Priest (1983) in 258 

which +x points North, +y points East and +z downwards. 259 

 260 

2.1  Defining the polyhedron 261 

Rather than defining a polyhedron using the conventional vertex-edge-face data structure 262 

(Warburton, 1985), we specify the space occupied by a convex polyhedron solely using a set 263 

of linear inequalities (also known as half-spaces) forming the faces.  For a block consisting of 264 

N planes, the space that it occupies can be defined using the following inequalities (see Fig. 265 

8): 266 

 ,iiii dzcybxa ≤++     ,,...,1 Ni =  
(5)	  

 

where (ai, bi, ci) is the normal vector of the ith plane, and di is the distance of the plane to the 267 

(local) origin.  For brevity, we use the vector notation: 268 

 ,T
ii d≤xa      ,,...,1 Ni =  (6) 
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where a and x are 3 × 1 vectors.   269 

 270 

 271 

Fig.	   8.	   	   The	   2-‐D	   polygon	   defined	   using	   a	   set	   of	   six	   inequalities	   as	   shown	   in	   Eq.	   (6).      The	  272 
arrows	  represent	  the	  directions	  of	  the	  normal	  vectors.	  	  The	  shaded	  region	  is	  the	  convex	  set	  273 
which	  satisfies	  all	  the	  inequalities.	  274 

 275 

2.2  Establishing intersection 276 

In the subdivision approach, one needs to establish whether the existing blocks are intersected 277 

by the new discontinuity.  To check whether there is intersection, we use a standard 278 

procedure for establishing feasibility in the field of convex mathematical optimization.  The 279 

problem is here recast in terms of establishing whether there is a feasible point which satisfies 280 

all the linear inequality and equality constraints.  This can be done by solving the following 281 

linear program: 282 

 minimize s 

,T sdii ≤−xa   Ni ,...,1=   

0new
T
new =− dxa    ⎪

⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

  (7) 

where N is the number of planes of the parent block, and the new discontinuity is introduced 283 

as an equality constraint in Eq.  (7).  If s < 0, there is intersection and the parent block is 284 

subdivided; the linear inequalities from the parent block are inherited by each child block and 285 

a linear inequality from the new discontinuity is appended to each child block (see Fig. 9) 286 

normal vectors defining the 
linear inequalities

interior region satisfying all 
the linear inequalities
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(with opposite sign for each child block).  For example, let us consider that a parent block 287 

with N planes is subdivided into blocks A and B.  Block A will inherit ,i
T
i d≤xa  Ni ,...,1=  288 

faces from its parent and have a new face, newnew dT ≤xa , from the new discontinuity; whilst 289 

block B will have the inequalities ,i
T
i d≤xa  Ni ,...,1= and newnew dT ≤− xa .  Physical 290 

properties such as, for instance, friction angle and cohesion of the discontinuity are also 291 

stored with the new block face, with the possibility that each block face possesses different 292 

physical properties.   293 

 294 

                 295 

Fig.	   9.	   	   The	   parent	   block	   in	   Fig.	   8	   is	   subdivided	   into	   a	   pair	   of	   children	   blocks	   (A	   and	   B).	  	  296 
Opposite	  signs	  of	  the	  linear	   inequality	  of	  the	  new	  discontinuity	   is	  appended.	   	  Dashed	  lines	  297 
are	  geometrically	  redundant	  for	  the	  shaded	  block.	  298 

 299 

Some of the linear inequalities inherited from the parent block could be geometrically 300 

redundant (dashed lines in Fig. 9).  Geometrically redundant inequalities can be removed 301 

without changing the interior region of the polyhedron.  To check whether a linear inequality 302 

Direction of 
normal vector

A

Discontinuity

B

Direction of 
normal vector

Discontinuity
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constraint d≤xcT  is redundant, we can solve the following linear program (Caron et al., 303 

1989): 304 

 
maximise xcT  

,T
ii d≤xa   Ni ,...,1=  

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

 (8) 

where c  is one of the normal vectors ia .  The linear inequality constraint is not redundant if 305 

T d ε− <c x , where ε is a numerical tolerance close to zero.  The linear program (Eq. (8)) 306 

must be performed in turn for each linear inequality defining the block.  It is not necessary to 307 

check whether the new discontinuity is redundant because we know beforehand that it forms 308 

a new face with the subdivided block.  To increase efficiency, instead of checking for 309 

geometrically redundant planes after every subdivision procedure, users can do this at the end 310 

of the rock slicing process after all the blocks have been subdivided by all the rock joints.   311 

By comparison to existing methods in the literature, the data structure proposed in this 312 

method is less sensitive to rounding errors.  For instance, Fig. 10 (a) shows that a joint plane 313 

just touching the vertex of a polyhedron may result in different outcomes due to rounding 314 

errors, i.e. whether or not the joint plane intersects the rock block. In the current numerical 315 

methods based on the subdivision approach, the number of new vertices and edges that are 316 

generated is sensitive to these rounding errors.  In severe cases, these rounding errors 317 

originating from the use of a multi-level data structure and poor tolerance management may 318 

cause pitfalls such as the edges defining a face not to form a single closed loop, as was 319 

highlighted in Elmouttie et al. (2010).  Instead, in the proposed method, the level of precision 320 

is related to the value assigned to the variable s in Eq. (7).  If the joint plane is found to 321 

intersect the block, it is appended to the list of faces defining the block shape, otherwise it is 322 

omitted.  Either outcome does not give rise to a significantly different data structure since in 323 
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our method it is no longer necessary to calculate edges and vertices, or to maintain a 324 

compatible hierarchical tree.  In fact, if the numerical tolerance for s in Eq. (7) is too tight and 325 

the optimisation problem is ill-conditioned such as shown in Fig. 10 (a), the user is alerted by 326 

the optimisation software with a non-convergence warning, indicating that the new data 327 

structure would be extremely close to the existing data structures.  In this case, the new data 328 

structure is not generated.  That is to say, a self-defence mechanism is in place.  Since the 329 

subdivision approach is sequential, the influence of rounding errors has a progressively larger 330 

impact on the subsequent data structures, and therefore the increase in robustness from using 331 

a simpler one level data structure presents an important advantage. 332 

 Also the proposed algorithm is more robust than conventional rock slicing algorithms 333 

because geometrically redundant faces, generated by rounding errors, do not cause harm to 334 

the calculations performed in subsequent subdivisions.  This is due to the way a polyhedron is 335 

defined in our method (see Eq. (5) and Fig. 10 (b)).  Conversely, in the conventional 336 

subdivision approach, redundant data structure could make the rock slicing code break down 337 

since these rock slicing algorithms require a compatible hierarchical data structure to do their 338 

job.    339 

 340 

(a) 341 

Actual discontinuity just 
touching the vertex

Existing rock 
block

1st possibility due to rounding error: 
Discontinuity not intersecting the 
polyhedron

2nd possibility due to rounding error: 
Discontinuity intersecting the 
polyhedron
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 342 

 343 

(b) 344 

Fig. 10.   Illustrations of increased robustness of data structures and algorithms: (a) the three 345 

possible outcomes due to numerical rounding errors are shown; (b) geometrically redundant 346 

planes. 347 

 348 

An example of a C++ data structure for the blocks and discontinuities is shown in Fig. 349 

11.  The data structure for the discontinuities can be discarded after the rock slicing process is 350 

complete since this information is no longer needed in subsequent computations which only 351 

require data from the block faces (see Fig. 11 (b)).  It is worth to point out that in the case of 352 

very densely jointed rock masses (i.e. thousands of joints), it may be more efficient to use 353 

pointers to link every block face to its original rock joint.  In this case, the physical properties 354 

of the joint data could be stored into the discontinuity data structure only rather than in the 355 

block data structure.   356 

In summary, the proposed algorithm employs a substantially simpler data structure 357 

than the hierarchical data structure used conventionally, e.g., edges by pair of vertices, faces 358 

by bounding edges, etc.  More importantly, tedious housekeeping algorithms for the updating 359 

of the vertex-edge-face data structure in conventional subdivision procedures are no longer 360 

needed.  The flow of the algorithmic implementation of our method is illustrated in Fig. 12. 361 

normal	  vector	  defining	  the	  
linear	  inequality

shape	  of	  polygon,	  i.e.	  interior	  
region,	  satisfying	  the	  linear	  
inequalities	  

geometrically	  redundant	  
linear	  inequality
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	  	  	  362 

(a)  363 

 364 

struct Discontinuity{ 
 /* Comment: (centre_x,centre_y,centre_z) is the position of the 
discontinuity */ 

double centre_x;   
double centre_y; 
double centre_z; 
/* double dip angle and dip direction */ 
double dip; 
double dipDir; 
/* Comment: (a,b,c) is the vector normal to the plane of the discontinuity 
*/ 
double a;   
double b; 
double c; 
/* Comment: d is the distance of the discontinuity from the local centre*/ 
double d;    
/* Comment: phi is the friction angle along the discontinuity */  
double phi; 
/* Comment: cohesion is the cohesion along the discontinuity */   
double cohesion;   
/* Comment: number of lines delimiting the joint extent */ 
int N_lines; 
/* Comment:  (shape_a[i], shape_b[i]) is the ith line representing the 
polygonal shape of the joint with respect to local coordinates orthogonal 
to the joint normal. Define the arrays with entry sizes larger than the 
largest expected number of lines delimiting the joint extent, N_lines. */ 
double shape_a[10]; 
double shape_b[10]; 
/* Comment:  shape_d[i] is the distance of the ith trace line with respect to 
the local coordinates orthogonal to the joint normal */ 
double shape_d[10]; 

}; 
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(b)  365 

Fig.	  11.	  	  Example	  of	  the	  C++	  data	  structure	  for	  (a)	  discontinuities	  and	  (b)	  blocks	  used	  in	  the	  366 
algorithm.	  	  Geometrical	  and	  physical	  properties	  of	  the	  block	  faces	  are	  stored	  in	  arrays.	  367 

	  368 

struct Block{ 
 /*Comment: (centre_x, centre_y, centre_z) is the position of the block */ 

double centre_x;   
double centre_y; 
double centre_z; 
/* Comment: number of planes defining the block */ 
int N_planes; 
/* Comment:  (a[i],b[i],c[i]) is the normal vector of the ith entry of the 
faces.  Define the arrays with entry sizes larger than the largest expected 
number of faces */ 
double a[40];   
double b[40]; 
double c[40]; 
/* Comment:  d[i] is the distance of the (a[i],b[i],c[i]) face from the local 
centre*/ 
double d[40];     
/* Comment: phi[i] is the friction angle of the (a[i],b[i],c[i]) face */ 
double phi[20];   
/* Comment: cohesion[i] is the cohesion of the (a[i],b[i],c[i]) face */ 
double cohesion[20];   

}; 
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	  369 

Fig.	  12.	  	  Flow	  chart	  of	  the	  algorithmic	  implementation	  of	  the	  proposed	  rock	  slicing	  method	  370 
(optimisation	  of	  efficiency	  is	  discussed	  later	  in	  Section	  2.5)	  	  371 

Introduce new 

discontinuity 

Establish intersection between discontinuity 
and parent block using bounding spheres and 
linear programming (Eq. (16)) 

No Yes 

Subdivide 

Parent block is replaced with two children blocks A 
and B consisting of the same plane 

New plane with normal  is added to child block A 

New plane with normal  is added to child block B 

Any more discontinuity? 

No Yes 

Loop over block and remove geometrically redundant 
planes 

Check whether each plane is geometrically redundant using Eq. (8).  
Remove geometrically redundant planes. 

Parent block = block  

Any more blocks?  

 

Yes No 
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2.3	  	  Taking	  into	  account	  the	  shape	  of	  the	  discontinuities	  372 

The previous analysis assumes that discontinuities are through-going in the domain of 373 

interest, i.e. persistent or infinite in extent.  However, in reality joints are non-persistent, i.e. 374 

finite in extent. Also recent studies in the literature emphasize the three-dimensional nature of 375 

rock discontinuities (see Fig. 13), the probabilistic nature of joint extents, and the 376 

probabilistic spatial distribution of joint centres (Zhang et al., 2002).  Furthermore recent 377 

field investigations found that most discontinuities are either polygonal or elliptical in shape 378 

(Zhang & Einstein, 2010). Considering now a polygonal discontinuity, its boundaries must lie 379 

in a plane.  Hence they can be specified using the following linear inequalities (see Fig. 14): 380 

 ,locallocallocal iii dybxa ≤+     Mi ,...,1=  (9)	  

Employing vector notation, this becomes: 381 

 ,locallocal ii d≤xa     Mi ,...,1=  (10)	  

Eq. (10) is defined in terms of local coordinates written with reference to an axis origin 382 

located at the discontinuity centre with the normal vector of the discontinuity taken to be the 383 

local z-direction.  Note that, in the special case of rectangular-shaped joints, the input 384 

required from the user can be specified in a simpler form consisting of only the length and 385 

width of the joint (see Fig. 14 (b)).  In the case of elliptical joints, the approach proposed here 386 

can still be employed by replacing the elliptical joint with a linear polygonal approximation 387 

(see Fig. 14).  The simplest technique would be to use polygons (see Fig. 14 (a) and (b)) 388 

circumscribing the ellipse.  In this case, the approximation of the joint is on the safe side 389 

since a larger joint area is considered.  Alternatively, polygons with areas equivalent to the 390 

elliptical joints could be used but their computation is more cumbersome. 391 

The inequalities in Eq. (10) have to be transformed into global coordinates.  The 392 

rotation matrix has to express the geometrical transformation needed to rotate the local y-axis 393 

in such a way to make it point along the dip vector (refer to Fig. 2).  Therefore, if the rock 394 
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joint is elongated, the polygon in Eq. (10) must be defined in such a way that the local y-axis 395 

is oriented along the dip vector (refer to Fig. 13).  To obtain such as rotation matrix, first let 396 

us define the vectors Nstrike and Ndip as: 397 

 =strikeN (cos θstrike, sin θstrike, 0) (11) 

 strikeplanedip NNN ×=  (12) 

after which Ndip is normalised.  Recalling that Nplane is the normal to the joint plane, and θstrike 398 

is the strike angle, the rotation matrix, Qplane, is obtained as: 399 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

plane_zdip_zstrike_z

plane_ydip_ystrike_y

plane_xdip_xstrike_x

plane

NNN
NNN
NNN

Q  (13) 

The coefficients of the linear inequalities with reference to the transformed axes for M 400 

polygonal boundaries are therefore: 401 

 ,localplanebound jj aQa =      ,,...,1 Mj =  (14) 

 ,local0
T
boundbound jjj dd += xa     ,,...,1 Mj =  (15) 

Our method is based on the assumption that non-persistent discontinuities inside any intact 402 

block develop fully so that the block is completely sliced, or in other words, no polygonal 403 

discontinuity can terminate inside an intact block but it always terminates at another 404 

discontinuity. In order to account for the shape of the discontinuities when establishing 405 

intersection, the linear program of Eq.  (7) becomes: 406 

 
minimize s 

,T sdii ≤−xa   Ni ,...,1=  

0new
T
new =− dxa    

,bound
T
bound sd jj ≤−xa    Mj ,...,1=  ⎪

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

 (16) 
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where bound
T
bound jj d−xa  defines the boundaries of the new discontinuity new

T
new d−xa .  If s < 0, 407 

there is intersection and the parent block is subdivided. With regard to the extent of the 408 

generated discontinuities, note that at the beginning of the slicing procedure, the extent of the 409 

first joint must be as large as slice through the first block, which is the entire domain.  As 410 

more blocks are subdivided, the extent of the new joints progressively reduces.  To avoid 411 

generating cuts deeper than necessary, discontinuities with larger extents have to be 412 

introduced before introducing discontinuities with smaller extents. This is discussed further in 413 

the next section.   414 

 415 

 416 

Fig.	  13.	  	  	  In	  3D,	  the	  discontinuity	  plane	  is	  bounded	  by	  lines	  forming	  a	  polygon.	  417 

 418 

 419 
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(a)  (b)  420 

Fig.	   14.	   	   	   Examples	   of	   how	   the	   extent	   of	   a	   rock	   joint	   can	   be	   delimited	   using	   linear	  421 
inequalities.	   	   An	   ellipse	   can	   be	   approximated	   as	   a	   polygon	   consisting	   of	   N-‐lines,	   for	  422 
instance	  as	  (a)	  a	  hexagon	  or	  (b)	  a	  rectangle	  	  423 

 424 

 425 

 426 
   (a)  427 

(a)       (b)  428 

Fig.	   15.	   	   	   2-‐D	   illustration	   of	   (a)	   actual	   rock	   joint	   extent	   (b)	   rock	   joint	   as	  modelled	   in	   the	  429 
proposed	  method	  (the	  fracture	  is	  fully	  extended)	  	  430 

 431 

 432 

 433 

a1x+b1y < d1
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2.4 Implementation of the method into a numerical code for discontinuum analysis  434 

At the end of the rock slicing procedure, each block is defined solely by its faces.  Thereafter, 435 

one may need to work out the vertices and edges defining the polyhedral blocks, depending 436 

on the type of numerical simulation to be performed, e.g. DEM, DDA or Finite Element 437 

Method (FEM) with interface elements.  Traditionally, the vertices have to be calculated in 438 

order to work out the volume of the blocks and their bounding boxes which are required by 439 

the algorithms sorting out the neighbouring pairs of blocks in DEM and DDA codes.  440 

Additionally, the contact detection algorithm of a discontinuum analysis may require 441 

information concerning the block vertices and edges, as well as their adjacency relations, i.e. 442 

edges by pairs of vertices, faces by bounding edges, polyhedra by bounding faces.  If this is 443 

the case, after the faces of the blocks have been identified using the method proposed here, 444 

vertices and edges can be determined using existing methods in the literature, e.g. the method 445 

by Ikegawa & Hudson, (1992).  446 

However, a contact detection algorithm between polyhedral blocks, which does not 447 

require information about their vertices and edges, has recently been proposed by Boon et al. 448 

(2012) for DEM analyses.  Between a pair of blocks potentially in contact, i.e. two blocks 449 

whose bounding boxes overlap, it has been shown that there are well-established convex 450 

optimisation procedures (Boyd & Vandenberghe, 2004) which one can use to check whether 451 

they intersect and to calculate the contact point between them.  The calculation only requires 452 

information on the linear equalities defining the block faces.  If this contact detection 453 

algorithm is employed in a discontinuum analysis, the same data structure, i.e. in terms of 454 

block faces, calculated using the rock slicing method proposed here can be used as input.     455 

A comprehensive literature review on contact detection algorithms for DEM analyses for 456 

polygonal and polyhedral objects can be found in Boon (2013). The contact detection algorithm 457 

proposed by Boon et al. (2012) is based on a centering algorithm that determines the contact point 458 
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between two polyhedral blocks in contact (i.e. with a small overlapping region) as the analytic 459 

centre of the linear inequalities defining the contacting blocks.  The analytic centre is found 460 

employing standard convex optimisation techniques. The advantage of this algorithm in 461 

comparison with traditional contact detection algorithms for polyhedral blocks in the literature 462 

(e.g. Cundall, 1988; Nezami et al., 2006) are three-fold: i) the algorithm does not need to identify 463 

the different types of interaction between contacting polyhedra, i.e. —face–face, face–edge, face–464 

vertex, edge–edge, edge– vertex, or vertex–vertex, so that a simpler data structure only containing 465 

information on block faces can be used; ii) a smooth transition between different contact types, 466 

for instance from edge–edge to vertex–edge, is ensured (on the contrary for traditional contact 467 

detection algorithms based on the distinction of contact types, physically unjustified ‘‘jumps’’ of 468 

the contact point may occur when the contact type changes); iii) ambiguity in the calculation of 469 

the contact point for complex contact types such as edge – edge in 3-D (Cundall, 1988) is 470 

eliminated.  Several validation examples have been reported in Boon et al. (2012), where the 471 

novel contact detection algorithm is used for problems involving various contact scenarios 472 

between polyhedral blocks.  Also the algorithm has been used to analyse the stability of 473 

tunneling excavations performed in jointed rock masses with 3 independent sets of non-474 

persistent joints (Boon et al., 2014a) and to model the 1963 Vajont rock slide (Boon et al., 475 

2014b). Finally, with regard to the position and direction of the resulting contact forces, in the 476 

case of a jointed Voussoir beam (Boon, 2013), this contact detection algorithm was also 477 

found to provide results in good agreement with finite difference method analyses of 478 

Tsesarsky & Talesnick (2007). 479 

 480 

2.5 Joint generation sequence 481 

For algorithms based on sequential subdivision, unless the joint extents are assumed 482 

to be infinite during the procedure of subdivision, the sequence employed to introduce non-483 
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persistent joints in general affects the generated pattern of joints and blocks.  The extents of 484 

most rock joint sets are characterised by either a log-normal or an exponential statistical 485 

distribution (Baecher, 1983; Zadhesh et al., 2012), therefore joint extents vary from small to 486 

very large.  To avoid creating ‘slices’ which are too large compared to the assigned joint 487 

extents, joints with larger extents should be introduced first. Because the first few slices 488 

inevitably have to span through the entire domain, they could be assigned as fictitious joints 489 

possessing the mechanical strength of the intact rock.  Similar approaches in controlling the 490 

joint extents have also been adopted in 3DEC (2013), i.e. a distribution of fictitious joints is 491 

generated before generating the actual joints with joints of larger extents being created first.  492 

In the subsequent paragraphs, we discuss further the influence of the sequence employed to 493 

generate the joints. The practice of introducing joints with larger extents first is to mimic the 494 

mechanical genesis of rock joints as close as possible from a geometrical standpoint, when 495 

limited knowledge on the past geological stress history of the rock mass is available.  496 

Reasons for which new joints tend to terminate at existing joints are explained in Mandl 497 

(2005).   498 

In order to generate random joint patterns, such as the ones found in homogeneous 499 

rock masses where the formation of discontinuities is not dominated by lithological or 500 

structural variability (Priest & Hudson, 1976), fractures should be introduced in a sequence 501 

mimicking random generation.  To this end, joints belonging to different sets could be 502 

introduced in alternating succession so that the formation of long parallel blocks, i.e. pancake 503 

shaped blocks, is avoided.  In this case, each slicing sequence can be viewed as reproducing a 504 

particular geometry extracted from the prescribed probability distribution characterising the 505 

joint pattern of the analysed rock mass.  It is worth to note that this approach of accounting 506 

for non-persistent joints will result in a block assembly with the number of generated blocks 507 

falling between two extreme cases: the first case where all the rock joints are persistent and 508 
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the other case in which all the dangling joints are removed.  If the user desires to check the 509 

generated blocks against the actual patchwork of discontinuities and perform clustering as 510 

illustrated by Yu et al. (2009), it will be necessary to work out the vertices at the end of the 511 

proposed procedure.  The vertices are normally calculated to estimate the volumes of the 512 

blocks, after which clustering can be carried out.   513 

If the joint pattern is fairly regular, such as the pattern found in bedded sedimentary 514 

rocks (Pollard & Aydin, 1988; Priest & Hudson, 1976), it is important that fractures are 515 

introduced according to a sequence which is consistent with their mechanical genesis.  For 516 

instance, large bedding planes are usually formed in the rock mass before cross-joints 517 

develop.  The fracture sequence in a limestone rock mass identified by Hudson (2012), based 518 

on the way the fractures terminate, is shown in Fig. 16.  In the figure, the numbers refer to the 519 

order of chronological formation of the joint sets.  In this regard, note that the philosophy of 520 

our method for block generation is consistent with the more recent development of 521 

hierarchical fracture system models which distinguish between primary and secondary 522 

fractures (e.g. Lee, 1990; Ivanova, 1995).  In section 3.1, it will be illustrated how the 523 

proposed rock slicing (or block generation) method is capable of reproducing joint patterns in 524 

a manner consistent with their mechanical genesis.    525 

 526 

Fig.	  16.	  	  Sequence	  of	  fracturing	  identified	  by	  Hudson	  in	  a	  limestone	  rock	  mass	  featured	  by	  4	  527 
joint	  sets	  (image	  after	  Hudson	  (2012)).	  528 
 529 
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2.6  Bounding spheres and conditioning of sizes 530 

In the previous sections, the discussion has been limited to the essential features of the novel 531 

mathematical treatment of rock slicing via linear programming.  Some non essential features 532 

of the method will now be discussed.  In the previous sections, every rock joint has to be 533 

checked against every other polyhedron for intersection, i.e., to establish whether a 534 

polyhedron should be subdivided.  When the number of rock joints is large and the joint 535 

extents are small relative to the size of the domain, this can be inefficient.  Due to the 536 

inherently sequential nature of the methods based on subdivision, as the number of 537 

subdivided polyhedra increases, there are progressively more polyhedra against which the 538 

rock joint has to be checked for intersection.  Adopting a procedure typical of contact 539 

detection algorithms in the DEM, it is convenient to associate each polyhedron or rock joint 540 

to a simpler shape (such as a sphere) completely enclosing the block or joint, so that a faster 541 

check can be executed to decide whether it is necessary to run more complex intersection 542 

tests.  Yu et al. (2009) introduced the use of prismatic bounding boxes in rock slicing.  Here, 543 

we employ bounding spheres instead.  544 

To work out the radius and centre of the sphere bounding a polyhedron, it is necessary 545 

to know the extents of the polyhedron.  The extents of a polyhedron can be calculated by 546 

running a linear program (Eq. (17)) along each principal axis ie in the positive and negative 547 

directions, i.e. x, -x, y, -y, z, -z in 3-D or x, -x, y, -y in 2-D.   548 

 
maximise xeTi  

,T
jj d≤xa   Nj ,...,1=  

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

 (17) 

where ie  is the unit vector directed along the principal axis of interest.  Having done this, we 549 

will get a pair of coordinates ( )pppp ,, zyx=x  and ( )nnnn ,, zyx=x  which are the most 550 
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positive and negative x, y, z coordinates respectively on the particle boundaries (see Fig. 17 551 

(a) for a 2-D illustration).  The radius of the bounding sphere can be calculated as 552 

np5.0 xx −=R .  The centre of the bounding sphere can be taken as the average of the 553 

extents, i.e. ( )npnpnp ,,5.0 zzyyxx +++× .  On the other hand, the bounding sphere for a 554 

rock joint can be approximated easily from its extents.  Before running the actual intersection 555 

test between a rock joint and a polyhedron, it is more efficient to first check whether their 556 

bounding spheres overlap (see Fig. 18 (a) for a 2-D illustration).  In fact, if their bounding 557 

spheres do not overlap, it is not necessary to run the more expensive linear program of Eq. 558 

(16).  For a joint of infinite extent, one can check whether the distance of the centroid of the 559 

bounding sphere to the joint plane is less than the radius of the bounding sphere, before 560 

running the actual intersection test (see Fig. 18 (b)).  561 

 Especially when rock joints are generated according to probabilistic distributions, it is 562 

desirable to control the size of the polyhedra.  For instance, the maximum extent of the time 563 

step in a DEM simulation is restricted by the size of the smallest polyhedron in the 564 

simulation.  Removing small polyhedra from the domain after they have been generated, will 565 

create voids in the model; so if this approach is adopted, the tolerance has to be very small to 566 

avoid creating excessively large voids.  An alternative approach is to ensure, throughout the 567 

slicing procedure, that the size of the subdivided child blocks is above an assigned tolerance.  568 

In this approach, when the size of one of the child block is found to be below the prescribed 569 

tolerance, the data structure of the parent block is restored so that the block is not subdivided.   570 

In principle, it is possible to estimate the size of the blocks from the radius of their 571 

bounding spheres (Fig. 17(a)). However, this would not be a robust method since slices 572 

which subdivide a parent block into either needle or pancake shaped child blocks can satisfy 573 

the tolerance more easily, which in turn would lead to a model consisting of numerous highly 574 

elongated blocks.  A better way to approximate the size of a block is by employing its largest 575 
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inscribable sphere.  There are several ways to work out the radius of a sphere inscribable in a 576 

convex polyhedron, one of which is to solve: 577 

 
minimize t 

,T tdii ≤−xa   Ni ,...,1=     
⎪
⎪
⎭

⎪⎪
⎬

⎫

 

 

(18) 

with ia  being  unit vectors, t the largest inscribed radius of a sphere in a polyhedron and x 578 

being the solution of the optimisation problem expressed by Eq. (18), i.e. being the 579 

Chebyshev centre of the polyhedron (Boyd & Vandenberghe, 2004). Geometrically, the 580 

Chebyshev centre represents the centre of the largest sphere inscribable in the polyhedron.   581 

In some cases, it is also of interest to control the maximum aspect ratio of the 582 

polyhedra in the simulations, e.g. in order to reduce the occurrence of “outliers” with 583 

elongated shapes near an excavation.  Therefore, to achieve a better “conditioned” blocky 584 

rock mass, it is worthwhile to examine the aspect ratio of a subdivided block during the 585 

slicing process.  The aspect ratio of a block can be approximated as the ratio of the radii of 586 

the bounding sphere to the inscribed one (see Fig. 17 (b)).  A large ratio suggests that the 587 

block is either pancake or needle shaped.  The sizes and aspect ratios of the child blocks after 588 

potential subdivision can be checked against their respective tolerances, before operating the 589 

subdivision.  If one of the tolerances is not satisfied, although the data structures for the child 590 

blocks have been calculated, the original data structure of the parent block is restored.  591 

 592 
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(a)  (b)  593 

Fig.	  17.	  	  	  Illustration	  of	  bounding	  and	  inscribed	  circles	  in	  2-‐D	  (a)	  Approximating	  the	  bounding	  594 
circle	  (b)	  Checking	  for	  pancake	  or	  needle-‐shaped	  blocks	  based	  on	  the	  ratio	  of	  bounding	  to	  595 
inscribed	  circle.	  596 

 597 

(a)  598 
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(b)  600 

Fig.	  18.	  	  	  Use	  of	  bounding	  spheres	  to	  check	  for	  potential	  intersection	  for	  (a)	  non-‐persistent	  601 
rock	  joints ( ( ) 2121 OO −−+= RROverlap )	  and	  (b)	  persistent	  rock	  joints. 602 

 603 

3.  Validation 604 

Some examples are provided here for validation purposes. The proposed rock slicing method 605 

was coded into a series of routines in C++, provided in the supplementary material.  For 606 

visualisation purposes, the open-source DEM code YADE (Kozicki & Donzé, 2008) was 607 

employed to plot the obtained rock joint patterns.  The linear programs were solved using the 608 

simplex algorithm of the linear programming software IBM ILOG CPLEX (CPLEX, 2003) 609 

accessed via a C++ interface.   CPLEX is freely available to academics through the IBM 610 

academic initiative program.  We chose the simplex algorithm over the log-barrier algorithm 611 

since it proved to be more robust.   612 

 613 

3.1 Slicing sequence based on the mechanical genesis of fractures 614 

The development of fracture system models based on fracture mechanical genesis is foreseen 615 

to be an important research topic in rock mechanics (Hudson (2012)).  Although the 616 

generation of the discrete fracture network (DFN) is beyond the scope of this paper, it is 617 
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worthwhile to show that, if the mechanical genesis of the fractures is known, fractures could 618 

be introduced in the proposed rock slicing (or block generation) algorithm based on the actual 619 

sequence of fracturing (section 2.5).  In a large number of cases, the fracture sequence can be 620 

inferred by visual inspection based on the way in which the fractures terminate, as illustrated 621 

in Hudson (2012) (see Fig. 16).    622 

The rock mass intersected by four joint sets of Fig. 16 is used here to demonstrate that 623 

the proposed method is capable of generating fractures according to a sequence consistent 624 

with their mechanical genesis.  In the algorithm, we introduced first all the fractures from 625 

joint set ‘1’ (Fig. 16).  Then, we introduced all the fractures from joint set ‘2’ (Fig. 16), so 626 

that they terminate against the fractures from joint set ‘1’.  In the same manner, we 627 

introduced all the fractures from joint set ‘3’ (Fig. 16), followed by the fractures from joint 628 

set ‘4’ (Fig. 16).  The blocks generated according to this slicing sequence are shown in Fig. 629 

19 (a) – (d).  The plan view of the generated block assembly is shown in Fig. 19(e).  630 

Comparing Fig. 14(e) with Fig. 16, it emerges that the final patchwork of the generated joints 631 

agrees very well with the observed rock patchwork.  Further, note that in this example non-632 

persistent fractures were generated via the sequential subdivision of blocks in an automated 633 

manner.   634 

 635 

(a) (b)  636 
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(c) (d)  637 

(e)  638 

Fig.	  19.	  	  Blocks	  generated	  based	  on	  the	  sequence	  of	  fracturing	  shown	  in	  Fig.	  16:	  (a)	  joint	  set	  639 
‘1’	  is	  first	  introduced,	  (b)	  then	  joint	  set	  ‘2’	  is	  introduced,	  followed	  by	  (c)	  joint	  set	  ‘3’	  and	  (d)	  640 
joint	  set	  ‘4’	  (the	  opacity	  of	  the	  illustrations	  is	  reduced	  for	  clarity),	  (e)	  generated	  blocks	  (fully	  641 
opaque	  illustration	  compare	  with	  Fig.	  16).	  The	  number	  of	  fractures	  in	  this	  example	  was	  kept	  642 
small	  for	  the	  sake	  of	  clarity	  of	  the	  illustrations.	  	  	  643 

 644 

3.2. Algorithm scaling 645 

The scaling of the implemented algorithm with the number of generated blocks was 646 

investigated for a 3D configuration.  The input is shown in Table 3.  The number of generated 647 

blocks increases with the volume density of the rock joint centres.  Non-persistent joints were 648 

generated based on a log-normal distribution.  The additional efficiency derived from using 649 

bounding spheres was also investigated for both persistent and non-persistent joints.  Fig. 20 650 
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(a) shows the times required for block generation for the case that all the three joint sets are 651 

persistent.  The calculation was carried out on a standard desktop PC using one core of a 652 

Core-2-Duo CPU (3.1 GHz).  It turned out that the computation time for block generation 653 

scales linearly with the number of generated blocks.  The efficiency derived from using 654 

bounding spheres is not very significant; however, the computational saving becomes more 655 

significant as the number of blocks increases.   656 

Fig. 20 (b) shows the times required for block generation for the case that all the three 657 

joint sets are non-persistent.   Without bounding spheres (crosses in Fig. 20 (b)), the 658 

computation time increases with the number of generated blocks in a non-linear manner.  659 

With bounding spheres (dots in Fig. 20 (b)), the computation time was found to increase 660 

approximately linearly with the number of blocks.  The efficiency derived from using 661 

bounding spheres is very significant; for more than 20000 blocks, the computation time for 662 

block generation is reduced more than 10 times.  One of the joint patterns generated (number 663 

of blocks = 2495) is shown in Fig. 21.  In this example, fractures from each joint set are 664 

introduced in an alternating manner, i.e. fracture from joint set A – fracture from joint set B –  665 

fracture from joint set C – fracture from joint set A and so on in a repeating sequence.  This 666 

procedure is more appropriate for generating rock masses with random fracture patterns (Fig. 667 

21), for instance fractures in granite rock masses.   668 

 669 
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(a)  670 

 671 

(b)   672 

Fig.	  20.	   	  Computation	  time	  versus	  number	  of	  generated	  blocks	  for	  (a)	  persistent	  joints,	  (b)	  673 
non-‐persistent	  joints	  	  674 
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 675 

Fig.	  21.	  	  Generated	  block	  assembly	  (2495	  blocks)	  with	  three	  near-‐orthogonal	  joint	  sets	  (non-‐676 
persistent	  joints).	  677 

 678 

Table 3: Input for algorithm scaling 679 

 680 

 681 

 682 

Parameter Input
Dimension	  of	  box	  sample 100	  m	  ×	  100	  m	  ×	  100	  m
Orientation	  of	  joint	  set	  A Dip	  direction	  =	  122°,	  dip	  angle	  =	  8°
Orientation	  of	  joint	  set	  B Dip	  direction	  =	  112°,	  dip	  angle	  =	  80°
Orientation	  of	  joint	  set	  C Dip	  direction	  =	  9°,	  dip	  angle	  =	  85°
Distribution	  of	  joint	  centres Poisson's	  process
Joint	  extents	  (persistent	  case	  ) 1000	  m	  ×	  1000	  m	  for	  all	  three	  joint	  sets

Joint	  extents	  (non-‐persistent	  case)
Square	  shape,	  lognormal	  distribution	  (mean	  =	  5	  m,	  
standard	  deviation	  =	  1	  m)	  for	  all	  three	  joint	  sets	  

Minimum	  size	  (diameter	  of	  inscribed	  sphere) 0.4	  m
Maximum	  aspect	  ratio	  (axes	  aligned	  box)	   8000
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3.3. Generated block assembly and discussion of suitable applications 683 

In this verification example, the 2D joint pattern assigned as input into UDEC by Kim et al. 684 

(2007) (see Fig. 22 (a)) was generated using our proposed rock slicing method for 685 

comparison purposes.  In Fig. 22(b), the blocks generated by the DEM software UDEC are 686 

plotted: it can be observed that dangling joints were removed since in UDEC rock joints have 687 

to either form a block face (so contributing to block formation) or be removed completely 688 

(Cundall, 1988).  The same block assembly was generated anew via the proposed rock slicing 689 

method. The position and orientation of every joint in Fig. 22 (a) was determined and given 690 

as a deterministic input for the proposed rock slicing algorithm.  Fig. 23 (a) shows the 691 

generated blocks having assumed joints of infinite extent; Fig. 23 (b) shows the generated 692 

blocks with non-persistent joints; Fig. 23 (c) shows the generated blocks having enforced a 693 

minimum block size of 0.4 m, estimated from visual observation of Fig. 22 (a), throughout 694 

the slicing procedure.  Note that suitably conditioning the size of the smallest blocks in the 695 

assembly may significantly reduce the simulation runtime of a DEM analysis since the 696 

critical timestep in the simulation is a function of the smallest block size.  This method is 697 

neater than scaling the mass of smaller blocks. In fact non-uniform mass scaling may result in 698 

generating heavy small masses in the system, that in turn may lead to unrealistic behaviour if they 699 

are subject to little confinement such as in the case of excavation openings. 700 

Regarding the modelling of excavations in jointed rock masses, to-date in the 701 

literature, block assemblies are generated based on discrete fracture networks (Dershowitz & 702 

Einstein, 1988) determined before the excavation is carried out.  The engineer should be 703 

cautious against the degree of fracture propagation which is expected to take place during the 704 

process of excavation.   The assumption of infinite joints as shown in Fig. 23 (a) is well-705 

known to be overly conservative for stability considerations since the number of generated 706 

blocks is significantly larger than the actual case (Fig. 22(a)).  So, if a block generation code 707 
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only able to generate persistent joints is employed, a different measure of joint intensity 708 

should be used (Dershowitz & Herda, 1992).  Conversely, the removal of dangling joints 709 

(Fig. 22 (b)) increases the rock mass strength since there are fewer fractures than the actual 710 

case (Fig. 22 (a)). This may lead to an unsafe estimate of the stability of the excavation walls.  711 

However, if the intact rock is hard and dangling joints are unlikely to propagate, this could be 712 

a realistic estimate (cf. Kim et al., 2007).  The number of blocks generated using the proposed 713 

rock slicing algorithm (Fig. 23 (c)) falls between the two extreme cases (Fig. 22 (b) and Fig. 714 

23 (a)).  Among the different options available for generating the rock mass, the engineer has 715 

to decide whether a generated block assembly is representative of the jointed rock mass for 716 

his stability analysis by in-situ monitoring as the excavation is carried out, and from his 717 

experience. 718 

 719 

(a)   (b)  720 

Fig.	  22.	  	  	  Two	  dimensional	  joint	  pattern	  (a)	  input	  (b)	  model	  generated	  by	  UDEC	  (after	  Figure	  721 
8	  in	  Kim	  et	  al.	  (2007))	  722 

10
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 723 

(a)   (b)  724 

(c)  725 

Fig.	   23.	   	   Joint	   patterns	   generated	   using	   the	   proposed	   rock	   slicing	   algorithm	   (a)	   fully-‐726 
persistent	   extents,	   (b)	   non-‐persistent	   extents	   (c)	   non-‐persistent	   extents	   enforcing	   a	  727 
minimum	  block	  size	  of	  0.4	  m	  (largest	  diameter	  of	  inscribed	  circle)	  728 

 729 

3.4. Illustration of construction joints, concave blocks and non-persistent joints 730 

The Vajont rock slope whose instability led to a famous catastrophic slide in 1963 (Alonso & 731 

Pinyol, 2010; Müller-Salzburg, 2010) was selected as example.  Fig. 24 shows the blocks 732 

generated using our proposed rock slicing method in a 2D section of the slope which 733 

underwent failure.  Some of the key elements when generating a jointed rock mass are 734 

highlighted in Fig. 24 (a)-(c).  First, two ‘boundary’ joints defining the slide surface were 735 

introduced (see Fig. 24 (a)).  During the slicing calculation, the resulting child block which 736 

was located in the lower halfspace of the ‘boundary’ joint was automatically identified as a 737 

boundary block, so that it would not be subdivided by subsequent slices.  Then, rock joints 738 

defining the rock mass were introduced.  After the rock joints had been introduced, 739 
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construction joints (dashed red lines in Fig. 24(a)) were introduced to outline the free surface 740 

of the slope (see Fig. 24(b)), so that the blocks lying outside the slope profile may be 741 

removed.  Blocks subdivided by construction joints were clustered (automatically) together 742 

by the imposition of a kinematic constraint preventing any relative movement between the 743 

two sides of the joints (see Fig. 24(c)) to avoid creating artificial planes of weakness which 744 

may unduly affect the mechanical response of the jointed rock mass.  The excavation area 745 

outside the slope profile was divided into three separate excavation zones (see Fig. 24 (a)).  746 

All blocks falling within the specified excavation zones were then removed, as shown in Fig. 747 

24 (b).  Blocks located close to convex-shaped excavation openings or slope profiles are 748 

likely to be concave, and can be modelled based on this approach (Fig. 24 (b)).	   	    In some 749 

circumstances, it is desirable to control the extents of non-persistent joints to capture certain 750 

geometrical characteristics of the jointed rock mass (compare between Fig. 24 (b) and Fig. 24 751 

(c)).  In this example, it is desired to model bedding planes which are chair shaped and 752 

change abruptly at the ‘seat’ of the chair 753 

It is worthy to note that in the proposed method the increase in complexity when 3-D 754 

problems are considered rather than 2-D ones is minimal.  In fact, the bookkeeping of data 755 

structures consists solely of the faces belonging to a polyhedron in 3-D, or the lines belonging 756 

to a polygon in 2-D.  This is in contrast with the existing methods in the literature where the 757 

upgrade from 2-D to 3-D requires additional thorough code development (Warburton, 1985; 758 

Heliot, 1988; Yu et al., 2009). 759 

 760 
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(a)   761 

(b)  762 

(c)  763 

Fig.	   24.	   	   Rock	   slope	   (2-‐D	   section)	   generated	   from	   the	   new	   rock	   slicing	   method:	   	   (a)	  764 
Construction	   joints	   were	   introduced	   to	   “outline”	   the	   free-‐surface	   of	   the	   rock	   slope.	   	   (b)	  765 
Blocks	  whose	  centres	  are	  outside	  this	  “outline”	  were	  removed.	  	  Discontinuities	  in	  the	  model	  766 
are	   persistent,	   i.e,	   through-‐going.	   Blocks	   subdivided	   by	   construction	   joints	   are	   clumped	  767 
together.	  	  (c)	  Example	  of	  use	  of	  non-‐persistent	  joints.	  	  	  768 
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4.  Conclusions 770 

In this paper, a novel rock slicing method which makes use of a single level data structure, 771 

consisting of only block faces, is introduced.  As a consequence, the managing and updating 772 

of the block data structure for sequential subdivision becomes significantly more tractable.  773 

The main steps of the proposed method can be summarised as follows: (i) check whether 774 

there is intersection between a non-persistent joint plane and a block; (ii) if there is 775 

intersection, append the joint plane to each of the subdivided child block; (iii) at the end of 776 

the rock slicing process, identify and remove the geometrically redundant planes which do 777 

not form a block face.  Unlike current methods in the literature, the updating of vertices and 778 

edges as a block is subdivided is no longer necessary.  The use of a simpler data structure 779 

presents obvious advantages in terms of code development, ease of maintenance, and 780 

robustness (the updating of data structure being far less sensitive to rounding errors, which 781 

are not amplified with the sequential progression of the slicing).  Another distinctive 782 

advantage of the proposed method is the fact that the increased complexity of a 3-D analysis 783 

by comparison to a 2-D one is minimal.   784 

The rock slicing methodology here presented based on a single level data structure 785 

makes use of the mathematical theory of linear programming.  The identification of blocks 786 

was cast as a set of linear programming optimization problems which can be solved 787 

efficiently using standard software for linear programming, such as CPLEX (2003).  Non-788 

persistency of joints was accounted via adding constraints into the linear program. 789 

Because the computation time for block identification is minimal compared to the 790 

simulation runtime of the physical problems using DEM or DDA (e.g. underground 791 

excavations or stability analysis of rock slopes), robustness in terms of code implementation 792 

is more important.  In the algorithm proposed in this paper, problems related to incompatible 793 

hierarchical data structures, i.e. vertices, edges or faces not joining correctly, are eliminated.  794 
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Nevertheless, we have shown that the rock slicing algorithm scales linearly with the number 795 

of generated blocks, when used together with bounding spheres. This feature is highly 796 

desirable for the algorithm to be computationally efficient also in the case of problems 797 

involving a large number of blocks. 798 

The new rock slicing method has been coded into a series of C++ routines (see the 799 

supplementary material) and was applied to generate block assemblies in both 2-D and 3-D 800 

domains. Also DEM analyses of complex jointed rock masses can be carried out without 801 

relying on vertices and edges of the polyhedral blocks in the rock masses for a variety of 802 

problems (Boon et al., 2014a; 2014b) when the contact detection algorithm proposed by 803 

Boon et al. (2012) is employed.    804 
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