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Abstract—It is common nowadays that multiple cores reside
on the same chip and share the on-chip cache. Resource sharing
may cause performance degradation of the co-running jobs.
Job co-scheduling is a technique that can effectively alleviate
the contention. Many co-schedulers have been developed in the
literature. But most of them do not aim to find the optimal co-
scheduling solution. Being able to determine the optimal solution
is critical for evaluating co-scheduling systems. Moreover, most
co-schedulers only consider serial jobs. However, there often
exist both parallel and serial jobs in systems. This paper aims
to tackle these issues. In this paper, a graph-based method is
developed to find the optimal co-scheduling solution for serial
jobs, and then the method is extended to incorporate parallel
jobs, including multi-process, and multi-thread parallel jobs.
A number of optimization measures are also developed to
accelerate the solving process. Moreover, a flexible approximation
technique is proposed to strike the balance between the solving
speed and the solution quality. The extensive experiments have
been conducted to evaluate the effectiveness of the proposed
co-scheduling algorithms. The results show that the proposed
algorithms can find the optimal co-scheduling solution for both
serial and parallel jobs and that the proposed approximation
technique is flexible in the sense that we can control the solving
speed by setting the requirement for the solution quality.

I. INTRODUCTION

Multicore processors have become a mainstream product
in the CPU industry. In a multicore processor, multiple cores
reside and share the resources on the same chip. There may be
one or multiple multi-core processors in a multicore machine,
which is called a single processor machine or a multi-processor
machine, respectively. Running multiple jobs on different cores
on the same chip could cause resource contention, which
leads to performance degradation [18]. Compared with the
architecture-level solution [22] [27] and the system-level solu-
tion [20] [31], the software-level solution such as developing
the contention-aware co-schedulers is a fairly lightweight
approach to addressing the contention problem.

A number of contention-aware co-schedulers have been
developed [14], [26], [34]. These studies demonstrated that
the contention-aware schedulers can deliver better performance
than the conventional schedulers. However, they do not aim to
find the optimal co-scheduling performance. It is very useful
to determine the optimal co-scheduling performance, even if
it has to be obtained offline. With the optimal performance,
the system and co-scheduler designers can know how much
room there is for further improvement. In addition, knowing
the gap between current and optimal performance can help the
scheduler designers to make the tradeoff between scheduling

efficiency (i.e., the time that the algorithm takes to compute
the scheduling solution) and scheduling quality (i.e., how good
the obtained scheduling solution is).

The optimal co-schedulers in the literature only consider
serial jobs (each of which runs on a single core) [16]. For
example, the work in [16] modelled the optimal co-scheduling
problem for serial jobs as an integer programming problem.
However, in modern multi-core systems, especially in the
cluster and cloud platforms, both parallel and serial jobs exist
[10], [15], [30]. In order to address this problem, this paper
proposes a new method to find the optimal co-scheduling
solution for a mix of serial and parallel jobs. Two types
of parallel jobs are considered in this paper: Multi-Process
Parallel (MPP) jobs, such as MPI jobs, and Multi-Thread
Parallel (MTP) jobs, such as OpenMP jobs. In this paper, we
first propose the method to co-schedule MPP and serial jobs,
and then extend the method to handle MTP jobs.

Resource contention presents different features in single
processor and multi-processor machines. In this paper, a
layered graph first is constructed to model the co-scheduling
problem on single processor machines. The problem of finding
the optimal co-scheduling solutions is then modelled as finding
the shortest VALID path in the graph. Further, this paper devel-
ops a set of algorithms to find the shortest valid path for both
serial and parallel jobs. A number of optimization measures
are also developed to increase the scheduling efficiency of
these proposed algorithms (i.e., accelerate the solving process
of finding the optimal co-scheduling solution). After these,
the graph model and proposed algorithms are extended to co-
scheduling parallel jobs on multi-processor machines.

Moreover, it has been shown that the A*-search algorithm
is able to effectively avoid the unnecessary searches when
finding the optimal solution. In this paper, an A*-search-based
algorithm is also developed to combine the ability of the A*-
search algorithm and the proposed optimization measures in
terms of accelerating the solving process. Finally, a flexible
approximation technique is proposed so that we can control
the scheduling efficiency by setting the requirement for the
solution quality.

We conducted the experiments with real jobs to evaluate the
effectiveness of the proposed co-scheduling algorithms. The
results show that i) the proposed algorithms can find the opti-
mal co-scheduling solution for both serial and parallel jobs, ii)
the proposed optimization measures can significantly increase
the scheduling efficiency, and iii) the proposed approximation



technique is effective in the sense that it is able to balance the
scheduling efficiency and the solution quality.

The rest of the paper is organized as follows. Section
2 discusses the related work. Section 3 formalizes the co-
scheduling problem for both serial and MPP jobs, and presents
a graph-based model for the problem. Section 4 presents the
methods and the optimization measures to find the optimal
co-scheduling solution for serial jobs. Section 5 extends the
methods proposed in Section 4 to incorporate MPP jobs and
presents the optimization technique for the extended algorithm.
Section 6 extends the graph-based model and proposed al-
gorithms in previous sections to multi-processor machines.
Section 7 then adjusts the graph model and the algorithms
to handle MTP jobs. Section 8 presents the A*-search-based
algorithm. A clustering approximation technique is proposed
in Section 9 to control the scheduling efficiency according
to the required solution quality. The experimental results are
presented in Section 10. Finally, Section 11 concludes the
paper and presents the future work.

II. RELATED WORK

This section first discusses the co-scheduling strategies
proposed in the literature. Similarly to the work in [16], our
method needs to know the performance degradation of the
jobs when they co-run on a multi-core machine. Therefore,
this section also presents the methods that can acquire the
information of performance degradation.

A. Co-scheduling strategies

Many co-scheduling schemes have been proposed to reduce
the shared cache contention in a multi-core processor. Differ-
ent metrics can be used to indicate the resource contention,
such as Cache Miss Rate (CMR), overuse of memory band-
width, and performance degradation of co-running jobs. These
schemes fall into the following two classes.

The first class of co-scheduling schemes aims at improving
the runtime schedulers and providing online scheduling solu-
tions. The work in [7], [12], [33] developed the co-schedulers
that reduce the cache miss rate of co-running jobs, in which
the fundamental idea is to uniformly distribute the jobs with
high cache requirements across the processors. Wang et al.
[29] demonstrated that the cache contention can be reduced
by rearranging the scheduling order of the tasks.

The work discussed above only considers the co-scheduling
of serial jobs. In some cluster systems managed by conven-
tional cluster management software such as PBS, the systems
are configured in the way that parallel and serial jobs cannot
share different cores on the same chip. This happens too in
some data centers, where when a user submits a job, s/he can
specify in the job’s configuration file the rule of disallowing
the co-scheduling of this job with other jobs on different cores
of the same chip [21]. The main purpose of doing these is to
avoid the performance interference between different types of
jobs. However, disallowing the co-scheduling of parallel and
serial jobs causes very poor resource utilization, especially as
the number of cores in multicore machines increases.

Therefore, a lot of recent research work [10] [14] has
been dedicated to developing accurate and reliable prediction
methodologies for performance interference. Coupling with
the support of accurate interference predictions, some popular
cluster management systems [10], [15], [21] have been devel-
oped to co-schedule different types of jobs, including parallel
jobs and serial jobs, to improve resource utilization. For exam-
ple, The work in [21] presents a characterization methodology
called Bubble-Up to enable the accurate prediction of perfor-
mance degradation (accuracy of 98%-99%) due to interference
in data centers. The work in [10] applies the classification
techniques to accurately determine the impact of interference
on performance for each job. A cluster management system
called Quasar is then developed to increase resource utilization
in data centers through co-scheduling. Quasar co-schedules
parallel jobs and single-server jobs and uses the single-server
jobs to fill any cluster capacity unused by parallel jobs. Mesos
[15] is a platform for sharing commodity clusters between
multiple diverse cluster management frameworks, such as
Hadoop, Torque, Spark and etc, aiming to improve cluster uti-
lization. In Mesos, the tasks from different cluster management
frameworks (e.g., MPI jobs or serial jobs submitted to Torque
and MapReduce jobs submitted to Hadoop) can be co-located
in the same multicore server.

The second class of co-scheduling schemes focuses on
providing the basis for conducting performance analysis. It
mainly aims to find the optimal co-scheduling performance
offline, in order to providing a performance target for other
co-scheduling systems. The extensive research is conducted
in [16] to find the co-scheduling solutions. The work models
the co-scheduling problem for serial jobs as an Integer Pro-
gramming (IP) problem, and then uses the existing IP solver to
find the optimal co-scheduling solution. It also proposes a set
of heuristic algorithms to find the near optimal co-scheduling.

The co-scheduling studies in the above literature only con-
siders the serial jobs and mainly apply the heuristic approach
to find the solutions. Although the work in [16] can obtain the
optimal co-scheduling solution, it is only for serial jobs.

The work presented in this paper falls into the second class.
In this paper, a new method is developed to find the optimal
co-scheduling solution offline for both serial and parallel jobs.

B. Acquiring the information of performance degradation

When a job co-runs with a set of other jobs, its performance
degradation can be obtained either through prediction [8], [13],
[17], [32] or offline profiling [28].

Predicting performance degradation has been well studied in
the literature [8], [11], [24], [32]. One of the best-known meth-
ods is Stack Distance Competition (SDC) [8]. This method
uses the Stack Distance Profile (SDP) to record the hits and
misses of each cache line when each process is running alone.
The SDC model tries to construct a new SDP that merges the
separate SDPs of individual processes that are to be co-run
together. This model relies on the intuition that a process that
reuses its cache lines more frequently will occupy more cache
space than other processes. Based on this, the SDC model



examines the cache hit count of each process’s stack distance
position. For each position, the process with the highest cache
hit count is selected and copied into the merged profile. After
the last position, the effective cache space for each process is
computed based on the number of stack distance counters in
the merged profile.

The offline profiling can obtain more accurate degradation
information, although it is more time consuming. Since the
goal of this paper is to find the optimal co-scheduling solutions
offline, this method is also applicable in our work.

III. FORMALIZING THE JOB CO-SCHEDULING PROBLEM

In this section, Subsection 3.1 first briefly summarizes the
approach in [16] to formalizing the co-scheduling of serial
jobs. Subsection 3.2 then formalizes the objective function
for co-scheduling a mix of serial and MPP jobs. Subsection
3.3 presents the graph model for the co-scheduling problem.
The multicore machines considered in this section are single
processor machines, i.e., all CPU cores in the machine reside
on the same chip.

A. Formalizing the co-scheduling of serial jobs

The work in [16] shows that due to resource contention, the
co-running jobs generally run slower on a multi-core processor
than they run alone. This performance degradation is called the
co-run degradation. When a job i co-runs with the jobs in a job
set S, the co-run degradation of job i can be formally defined
as Eq. 1, where CTi is the computation time when job i runs
alone, S is a set of jobs and CTi,S is the computation time
when job i co-runs with the set of jobs in S. Typically, the
value of di,S is a non-negative value.

di,S =
CTi,S − CTi

CTi
(1)

In the co-scheduling problem considered in [16], n serial
jobs are allocated to multiple u-core processors so that each
core is allocated with one job. m denotes the number of u-core
processors needed, which can be calculated as n

u (if n cannot
be divided by u, we can simply add (u−n mod u) imaginary
jobs which have no performance degradation with any other
jobs). The objective of the co-scheduling problem is to find
the optimal way to partition n jobs into m u-cardinality sets,
so that the sum of di,S in Eq.1 over all n jobs is minimized,
which can be expressed as in Eq. 2.

min

n∑
i=1

di,S (2)

B. Formalizing the co-scheduling of serial and parallel jobs

In this section, we first model the co-scheduling of the
Embarrassingly Parallel (PE) jobs (i.e., there are no com-
munications among parallel processes), and then extend the
model to co-schedule the parallel jobs with inter-process
communications (denoted by PC). An example of an PE job is
parallel Monte Carlo simulation [25]. In such an application,
multiple slave processes are running simultaneously to perform
the Monte Carlo simulations. After a slave process completes

its part of work, it sends the result back to the master
process. After the master process receives the results from all
slaves, it reduces the final result (i.e., calculating the average).
An example of a PC job is an MPI application for matrix
multiplication. In both types of parallel job, the finish time of
a job is determined by their slowest process in the job.

Eq.2 cannot be used as the objective for finding the optimal
co-scheduling of parallel jobs. This is because Eq.2 will sum
up the degradation experienced by each process of a parallel
job. However, as explained above, the finish time of a parallel
job is determined by its slowest process. In the case of the
PE jobs, a bigger degradation of a process indicates a longer
execution time for that process. Therefore, no matter how
small degradation other processes have, the execution flow in
the parallel job has to wait until the process with the biggest
degradation finishes. Thus, the finish time of a parallel job
is determined by the biggest degradation experienced by all
its processes, which is denoted by Eq.3, where dij,S is the
degradation (measured by time) of the j-th process, pij , in
parallel job pi when pij co-runs with the jobs in the job set
S. Therefore, if the set of jobs to be co-scheduled includes
both serial jobs and PE jobs, the total degradation should be
calculated using Eq. 4, where n is the number of all serial
jobs and parallel processes, P is the number of parallel jobs,
Si and Sij are the set of co-running jobs that includes job pi
and parallel process pij , respectively, Si−{pi} and Sij−{pij}
are then the set of jobs excluding pi and pij , respectively. Now
the objective is to find such a partition of n jobs/processes into
m u-cardinality sets that Eq. 4 is minimized.

maxpij∈pi(dij,S) (3)

P∑
i=1

(maxpij∈pi(dij,Sij−{pij})) +

n−P∑
i=1

di,Si−{pi} (4)

In the case of the PC jobs, the slowest process in a par-
allel job is determined by both performance degradation and
communication time. Therefore, we define the communication-
combined degradation, which is expressed using Eq. 5, where
cij,S is the communication time taken by parallel process pij
when pij co-runs with the processes in S. As with dij,S ,
cij,S also varies with the co-scheduling solutions. We can
see from Eq. 5 that for all process in a parallel job, the one
with the biggest sum of performance degradation (in terms of
the computation time) and the communication has the greatest
value of dij,S , since the computation time of all processes (i.e.,
CTij) in a parallel job is the same when a parallel job is evenly
balanced. Therefore, the greatest dij,S of all processes in a
parallel job should be used as the communication-combined
degradation for that parallel job.

When the set of jobs to be co-scheduled includes both serial
jobs and PC jobs, we use Eq.5 to calculate dij,S for each
parallel process pij , and then we replace dij,S in Eq.4 with that
calculated by Eq.5 to formulate the objective of co-scheduling
a mix of serial and PC jobs.



dij,S =
CTij,S − CTij + cij,S

CTij
(5)

C. The graph model for co-scheduling

This paper proposes a graph-based approach to find the
optimal co-scheduling solution for both serial and parallel jobs.
In this section, the graph model is first presented, and the
intuitive strategies to solve the graph model are then discussed.

1) The graph model: As formalized in Section 3.1, the
objective of solving the co-scheduling problem for serial jobs
is to find a way to partition n jobs, j1, j2, ..., jn, into m
u-cardinality sets, so that the total degradation of all jobs
is minimized. The number of all possible u-cardinality sets
is
(
n
u

)
. In this paper, a graph is constructed, called the co-

scheduling graph, to model the co-scheduling problem for
serial jobs (we will discuss in Section 5 how to use this graph
model to handle parallel jobs). There are

(
n
u

)
nodes in the

graph and a node corresponds to a u-cardinality set. Each
node represents a u-core processor with u jobs assigned to it.
The ID of a node consists of a list of the IDs of the jobs in the
node. In the list, the job IDs are always placed in an ascending
order. The weight of a node is defined as the total performance
degradation of the u jobs in the node. The nodes are organized
into multiple levels in the graph. The i-th level contains all
nodes in which the ID of the first job is i. In each level, the
nodes are placed in the ascending order of their ID’s. A start
node and an end node are added as the first (level 0) and the
last level of the graph, respectively. The weights of the start
and the end nodes are both 0. The edges between the nodes
are dynamically established as the algorithm of finding the
optimal solution progresses. Such organization of the graph
nodes will be used to help reduce the time complexity of
the co-scheduling algorithms proposed in this paper. Figure
1 illustrates the case where 6 jobs are co-scheduled to 2-core
processors. The figure also shows how to code the node IDs in
the graph and how to organize the nodes into different levels.
Note that for the clarity we did not draw all edges.
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Fig. 1: The exemplar co-scheduling graph for co-scheduling 6
jobs on Dual-core machines; the list of numbers in each node
is the node ID; A number in a node ID is a job ID; The edges
of the same color form the possible co-scheduling solutions;
The number next to the node is the node weight, i.e., total
degradation of the jobs in the node.

In the constructed co-scheduling graph, a path from the start
to the end node forms a co-scheduling solution if the path does
not contain duplicated jobs, which is called a valid path. The
distance of a path is defined as the sum of the weights of all
nodes on the path. Finding the optimal co-scheduling solution
is equivalent to finding the shortest valid path from the start
to the end node. It is straightforward to know that a valid path
contains at most one node from each level in the graph.

2) The intuitive strategies to solve the graph model:
Intuitively, we first tried to solve the graph model using
Dijkstra’s shortest path algorithm [9]. However, we found that
Dijkstra’s algorithm can not be directly applied to find the
correct solution. This can be illustrated using the example in
Figure 1. In order to quickly reveal the problem, let us consider
only five nodes in Figure 1, 〈1, 5〉, 〈1, 6〉, 〈2, 3〉, 〈4, 5〉, 〈4, 6〉.
Assume the weights of these nodes are 11, 9, 9, 7 and 4, re-
spectively. Out of all these five nodes, there are two valid paths
reaching node 〈2, 3〉: 〈〈1, 5〉, 〈2, 3〉〉 and 〈〈1, 6〉, 〈2, 3〉〉. Since
the distance of 〈〈1, 6〉, 〈2, 3〉〉, which is 18, is shorter than that
of 〈〈1, 5〉, 〈2, 3〉〉, which is 20, the path 〈〈1, 6〉, 〈2, 3〉〉 will
not been examined again according to Dijkstra’s algorithm.
In order to form a valid schedule, the path 〈〈1, 6〉, 〈2, 3〉〉
has to connect to node 〈4, 5〉 to form a final valid path
〈〈1, 6〉, 〈2, 3〉, 〈4, 5〉〉 with the distance of 25. However, we
can see that 〈〈1, 5〉, 〈2, 3〉, 〈4, 6〉〉 is also a valid schedule and
its distance is less than that of 〈〈1, 6〉, 〈2, 3〉, 〈4, 5〉〉. But the
schedule of 〈〈1, 5〉, 〈2, 3〉, 〈4, 6〉〉 is dismissed by Dijkstra’s
algorithm during the search for the shortest path.

The main reason for this is because Dijkstra’s algorithm
only records the shortest subpaths reaching up to a certain
node and dismisses other optional subpaths. This is fine for
searching for the shortest path. But in our problem, we have to
search for the shortest VALID path. After Dijkstra’s algorithm
searches up to a certain node in the graph and only records
the shortest subpath up to that node, not all nodes among the
unsearched nodes can form a valid schedule with the current
shortest subpath, which may cause the shortest subpath to
connect to the nodes with bigger weights. On the other hand,
some subpath that has been dismissed by Dijkstra’s algorithm
may be able to connect to the unsearched nodes with smaller
weights and therefore generates a shorter final valid path.

In order to address the above problem, an intuitive strategy
is to revise Dijkstra’s algorithm so that it will not dismiss any
subpath, i.e., to record every visited subpath. Then, the path
with the smallest distance among all examined and complete
paths is the optimal co-scheduling result. This strategy is
equivalent to enumerating all possible subpaths in the graph.
The time complexity of such an enumerative strategy is very
high, which will be discussed when we compare it with the
SVP algorithm presented in Subsection 4.1. This high time
complexity motivates us to design more efficient algorithms
to find the shortest valid path. In next section, we propose a
more efficient algorithm to find the shortest valid path, which
is called the SVP (Shortest Valid Path) algorithm.



IV. SHORTEST VALID PATH FOR SERIAL JOBS

A. The SVP algorithm

In order to tackle the problem that Dijkstra’s algorithm may
not find the shortest valid path, the following dismiss strategy
is adopted by the SVP algorithm:

SVP records all jobs that an examined sub-path contains.
Assume a set of sub-paths, S, each of which contains the same
set of jobs (the set of graph nodes that these paths traverse are
different). SVP only keeps the path with the smallest distance
and other paths are dismissed and will not be considered any
more in further searching for the shortest path.

It is straightforward to know that the strategy can improve
the efficiency comparing with the intuitive, enumerative strat-
egy, i.e., the SVP algorithm examines much less number of
subpaths than the enumerative strategy. This is because for
all different subpaths that contain the same set of jobs, only
one subpath (the shortest one) will spawn further subpaths and
other subpaths will be discarded.

The SVP algorithm is outlined in Algorithm 1. The main
differences between SVP and Dijkstra’s algorithm lie in three
aspects. 1) The invalid paths, which contain the duplicated
jobs, are disregarded by SVP during the searching. 2) The
dismiss strategy is implemented. 3) No edges are generated
between nodes before SVP starts and the node connections
are established as SVP progresses. This way, only the node
connections spawned by the recorded subpaths will be gener-
ated and therefore further improve the performance.

The time complexity of Algorithm 1 is O
( m∑
i=1

(
n−i

i·(u−1)
)
·

((n− u+1)+
(nu)

n−u+1 + log
(
n
u

)
)
)
, where m is the number of

u-core machines required to run n jobs. The detailed analysis
of the time complexity is presented in the supplementary file.

B. Further optimization of SVP

One of the most time-consuming steps in Algorithm 1 is to
scan every node in a valid level to find a valid node for a given
subpath v.path (Line 11 and 28). Theorem 1 is introduced
to reduce the time spent in finding a valid node in a valid
level. The rational behind Theorem 1 is that once the algorithm
locates a node that contains a job appearing in v.path, the
number of the nodes that follow that node and also contains
that job can be calculated since the nodes are arranged in the
ascending order of node ID. These nodes are all invalid and
can therefore be skipped by the algorithm.

Theorem 1. Given a subpath v.path, assume that level l is
a valid level and node k (assume node k contains the jobs,
j1, ..., ji, ..., ju) is the first node that is found to contain a job
(assume the job is ji) appearing in v.path. Then, job ji must
also appear in the next

(
n−ji
u−i
)

nodes in the level.

Proof: Since the graph nodes in a level is arranged in the
ascending order of node ID, the number of nodes whose i-th
job is ji equals to the number of possibilities of mapping the
jobs whose IDs are bigger than ji to (u− i) positions, which
can be calculated by

(
n−ji
u−i
)
.

Algorithm 1: The SVP Algorithm
1:SVP(Graph)
2: v.jobset = {Graph.start}; v.path = Graph.start;

v.distance = 0; v.level = 0;
3: add v into Q;
4: Obtain v from Q;
5: while Graph.end is not in v.jobset
6: for every level l from v.level+ 1 to

Graph.end.level do
7: if job l is not in v.jobset
8: valid_l = l;
9: break;
10: k = 1;

11: while k ≤
(n−valid_l

u−1

)
12: if nodek.jobset ∩ v.jobset = φ
13: distance = v.distance+ nodek.weight;
14: J = v.jobset ∪ nodek.jobset;
15: if J is not in Q
16: Create an object u for J;
17: u.jobset = J;
18: u.distance = distance;
19: u.path = v.path+ nodek;
20: u.level = nodek.level
21: Add u into Q;
22: else
23: Obtain u′ whose u′.jobset is J;
24: if distance < u′.distance
25: u′.distance = distance;
26: u′.path = v.path+ nodek;
27: u′.level = nodek.level
28: k+ = 1;
29: Remove v from Q;
30: Obtain the v with smallest v.distance from Q;
31: return v.path as the shortest valid path;

Based on Theorem 1, the O-SVP (Optimal SVP) algorithm
is proposed to further optimize SVP. The only difference
between O-SVP and SVP is that in the O-SVP algorithm,
when the algorithm gets to an invalid node, instead of moving
to the next node, it calculates the number of nodes that can
be skipped and jumps to a valid node. Effectively, O-SVP can
find a valid node in the time of O(1). Therefore, the time com-

plexity of O-SVP is O
( m∑
i=1

(
n−i

i·(u−1)
)
· ((n−u+1)+ log

(
n
u

)
)
)
.

The algorithm outline for O-SVP is omitted in this paper.
In summary, SVP accelerates the solving process over the

enumerative method by reducing the length of Q in the algo-
rithm, while O-SVP further accelerates over SVP by reducing
the time spent in finding a valid node in a level.

V. SHORTEST VALID PATH FOR PARALLEL JOBS

The SVP algorithm presented in last section considers
only serial jobs. This section addresses the co-scheduling of
both serial and Parallel jobs. Subsection 5.1 presents how to
handle Embarrassingly Parallel (PE) jobs, while Subsection
5.2 further extends the work in Subsection 5.1 to handle the
parallel jobs with inter-process Communications (PC) jobs.

A. Co-scheduling PE jobs

In Subsection 5.1.1, the SVPPE (SVP for PE) algorithm is
proposed to extend SVP to incorporate PE jobs. Subsection



Algorithm 2: The SVPPE algorithm
1: SVPPE(Graph, start, end):
2-12: ... //same as Line 2-12 in Algorithm 1;
13: total_dg_serial = v.dg_serial+ nodek.dg_serial
14: for every parallel job, pi, in nodek:
15: if pi in v.jobset:
16: dg_pi=max(v.dg_pi, nodek.dg_pi);
17: else
18: dg_pi = nodek.dg_pi;
19: distance =

∑
dg_pi + total_dg_serial;

20-26: ... //same as Line14-20 in Algorithm 1
27: u.dg_serial = total_dg_serial;
28: for every parallel job, pi, in nodek do
29: u.dg_pi = dg_pi;
30-36: ... //same as Line21-27 in Algorithm 1
37: u′.dg_serial = total_dg_serial;
38: for every parallel job, pi, in nodek do
39: u′.dg_pi = dg_pi;
40-43: ... //same as Line28-31 in Algorithm 1

5.1.2 presents the optimization techniques to accelerate the
solving process of SVPPE.

1) The SVPPE algorithm: When Algorithm 1 finds a valid
node, it calculates the new distance after the current path
extends to that node (Line 13). The calculation is fine for serial
jobs, but cannot be applied to parallel jobs. As discussed in
Subsection 3.2, the finish time of a parallel job is determined
by Eq. 5. In order to incorporate parallel jobs, we can treat
each process of a parallel job as a serial job (therefore the
graph model remains the same) and extend the SVP algorithm
simply by changing the way of calculating the path distance.

In order to calculate the performance degradation for PE
jobs, a few new attributes are introduced. First, two new
attributes are added to an object v in Q. One attribute stores
the total degradation of all serial jobs on v.path (denoted
by v.dg serial). The other attribute is an array, in which
each entry stores the biggest degradation of all processes of a
parallel job pi on v.path (denoted by v.dg pi). Second, two
similar new attributes are also added to a graph node nodek.
One stores the total degradation of all serials jobs in nodek
(denoted by nodek.dg serial). The other is also an array, in
which each entry stores the degradation of a parallel job pi in
nodek (denoted by nodek.dg pi).

SVPPE is outlined in Algorithm 2. The only differences
between SVPPE and SVP are: 1) changing the way of calcu-
lating the subpath distance (Line 13-19 in Algorithm 2), and 2)
updating the newly introduced attributes for the case where J
is not in Q (Line 28-30) and the case otherwise (Line 38-40).

The maximum number of the iterations of all for-loops
(Line 14, 28 and 38) is u, because there are most u jobs
in a node. Each iteration takes the constant time. Therefore,
the worst-case complexity of computing the degradation (the
first for-loop) and updating the attributes (two other for-loops)
are O

(
u
)
. Therefore, combining with the time complexity of

Algorithm 1, the worst-case complexity of Algorithm 2 is

O
( m∑
i=1

(
n−i

i·(u−1)
)
· ((n− u+ 1) + u · (nu)

n−u+1 + log
(
n
u

)
)
)
.

2) Process condensation for optimizing SVPPE: An obvi-
ous optimization measure for SVPPE is to skip the invalid
nodes in the similar way as that given in Theorem 1, which
is not repeated in this Subsection. This subsection focuses
on proposing another important optimization technique that
is only applicable to PE jobs. The optimization technique is
based on this observation: different processes of a parallel job
should have the same mutual effect with other jobs. So it is
unnecessary to differentiate different processes of a parallel
job, treating them as individual serial jobs.

Therefore, the optimization technique, which is called the
process condensation technique in this paper, labels a process
of a parallel job using its job ID, that is, treats different
processes of a parallel job as the same serial job. We illustrate
this below using Figure 1. Now assume the jobs labelled 1, 2,
3 and 4 are four processes of a parallel job, whose ID is set
to be 1. Figure 1 can be transformed to Figure 2 after deleting
the same graph nodes in each level (the edges are omitted).
Comparing with Figure 1, it can be seen that the number of
graph nodes in Figure 2 is reduced. Therefore, the number of
subpaths that need to be examined and consequently the time
spent in finding the optimal solution is significantly reduced.
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Fig. 2: The graph model for a mix of serial and parallel jobs

We now present the O-SVPPE (Optimal SVPPE) algorithm,
which adjusts SVPPE so that it can find the shortest valid
path in the optimized co-scheduling graph. The only difference
between O-SVPPE and SVPPE is that a different way is used
to find 1) the next valid level and 2) a valid node in a valid
level for parallel jobs.

Line 6-9 in Algorithm 1 is the way used by SVPPE to find
the next valid level. In O-SVPPE, for a given level l, if job
l is a serial job, the condition of determining whether level
l is valid is the same as that in SVPPE. However, since the
same job ID is now used to label all processes of a parallel
job, the condition of whether a job ID appears on the given
subpath cannot be used any more to determine a valid level
for parallel jobs. The correct method is discussed next.

Several new attributes are added for the optimized graph
model. proci denotes the number of processes that parallel job
pi has. For a given subpath v.path, v.proci is the number of
times a process of parallel job pi appears on v.path. v.jobset
is now a bag (not set) of job IDs that appear on v.path, that
is, there are v.proci instances of that parallel job in v.jobset.
Same as the case of serial jobs, the adjusted v.jobset is used
to determine whether two subpaths consists of the same set of
jobs (and parallel processes). A new attribute, nodek.jobset,
is also added to a graph node nodek, where nodek.jobset
is also a bag of job IDs that are in nodek. nodek.proci is
the number of processes of parallel job pi that are in nodek.



Algorithm 3: The O-SVPPE algorithm
1: O-SVPPE(Graph)
2-6: ... //same as Line 2-6 in Algorithm 1;
7: if job l is a serial job
8-10: ...// same as Line 7-9 in Algorithm 1;
11: else if v.procl < procl
12: validl = l;
13: break;
14-15: ... //same as Line 10-11 in Algorithm 1
16: if nodek.serialjobset ∩ v.jobset = φ & ∀pi,

v.proci + nodek.proci ≤ proci
17-48: ... //same as Line13-44 in Algorithm 2

nodek.serialjobset is a set of all serial jobs in nodek.
Theorem 2 gives the condition of determining whether a

level is a valid level for a given path.

Theorem 2. Assume job l is a parallel job. For a given subpath
v.path, level l (l starts from v.level + 1) is a valid level if
v.procl < procl. Otherwise, level l is not a valid level.

Proof: Assume the jobs are co-scheduled on u-core
machines. Let U be the bag of jobs that includes all serial
jobs and parallel jobs (the number of instances of a parallel
job in U equals to the number of processes that that job has).
Let D = U−v.jobset. X denotes all possible combinations of
selecting u−1 jobs from D. Because of the way that the nodes
are organized in the graph, the last u − 1 jobs of the nodes
in level l must include all possible combinations of selecting
u−1 jobs from a set of jobs whose ID are the range of l to n
(n is the number of jobs to be co-scheduled), which is denoted
by Y . Then we must have X∩Y 6= φ. This means that as long
as the ID of the first job in the nodes in level l is not making
the nodes invalid, which can be determined by the condition
v.procl < procl, we must be able to find a node in level l that
can append to v.path and form a new valid subpath.

After a valid level is found, O-SVPPE needs to find a valid
node in that level. When there are both parallel and serial jobs,
O-SVPPE uses two conditions to determine a valid node: 1)
the serial jobs in the node do not appear in v.jobset, and 2)
∀ parallel job pi in the node, v.proci+nodek.proci ≤ proci.

O-SVPPE is outlined in Algorithm 3, in which Line 7-13
implements the way of finding a valid level and Line 16 checks
whether a node is valid, as discussed above.

B. Co-scheduling PC jobs

This subsection extends the SVPPE algorithm to handle PC
jobs, which is called SVPPC (SVP for PC jobs). We first model
the communication time, cij,S , in Eq. 5 and then adjust SVPPE
to handle PC jobs. Moreover, since the further optimization
technique developed for PE jobs, i.e., the O-SVPPE algorithm,
presented in Subsection 5.1.2 cannot be directly applied to PC
jobs, the O-SVPPE algorithm is extended to handle PC jobs
in Subsection 5.2.2, called O-SVPPC.

1) Modelling the communications in PC jobs: cij,S can
be modelled using Eq. 6, where γij is the number of the
neighbouring processes that process pij has corresponding to

the decomposition performed on the data set to be calculated
by the parallel job, αij(k) is the amount of data that pij needs
to communicate with its k-th neighbouring process, B is the
bandwidth for inter-processor communications (typically, the
communication bandwidth between the machines in a cluster is
same), bij(k) is pij’s k-th neighbouring process, and βij(k, S)
is 0 or 1 as defined in Eq. 6b. βij(k, S) is 0 if bij(k) is in
the job set S co-running with pij . Otherwise, βij(k, S) is 1.
Essentially, Eq. 6 calculates the total amount of data that pij
needs to communicate, which is then divided by the bandwidth
B to obtain the communication time. Note that pij’s commu-
nication time can be determined by only examining which
neighbouring processes are not in the job set S co-running
with pij , no matter which machines that these neighbouring
processes are scheduled to. In the supplementary file of this
paper, an example is given to illustrate the calculation of cij,S .

cij,S =
1

B

γij∑
k=1

(αij(k) · βij(k, S)) (6a)

βij(k, S) =

{
0 if bij(k) ∈ S
1 if bij(k) /∈ S

(6b)

We now adjust SVPPE to incorporate the PC jobs. In the
graph model for serial and PE jobs, the weight of a graph
node is calculate by summing up the weights of the individual
jobs/processes, which is the performance degradation. When
there are PC jobs, a process belongs to a PC job, the weight
of a process pij in a PC job should be calculated by Eq. 5
instead of Eq. 1. The rest of the SVPPC algorithm is exactly
the same as SVPPE.

2) Communication-aware process condensation for opti-
mizing SVPPC: The reason why the process condensation
technique developed for PE jobs cannot be directly applied
to PC jobs is because different processes in a PC job may
have different communication patterns and therefore cannot
be treated as identical processes. After carefully examining
the characteristics of the typical inter-process communication
patterns, a communication-aware process condensation tech-
nique is developed to accelerate the solving process of SVPPC,
which is called O-SVPPC (Optimized SVPPC) in this paper.

We can construct the co-scheduling graph model as we did
in Fig. 1 for finding the optimal solution of co-scheduling PC
and serial jobs. We then define the communication property of
a parallel job in a graph node as the number of communica-
tions that the processes of the parallel job in the graph node has
to perform in each decomposition direction with other nodes.
In the communication-aware process condensation, multiple
graph nodes in the same level of the graph model can be
condensed as one node if the following two conditions are
met: 1) these nodes contain the same set of serial jobs and
parallel jobs, and 2) the communication properties of all PCs
in these nodes are the same. A concrete example is presented
in the supplementary file to illustrate the condensation process.



VI. CO-SCHEDULING JOBS ON MULTI-PROCESSOR
COMPUTERS

In order to add more cores in a multicore computer, there
are two general approaches: 1) increasing the number of
cores on a processor chip and 2) installing in a computer
more processors with the number of cores in each processor
remaining unchanged. The first approach becomes increasingly
difficult as the number of cores on a processor chip increases.
For example, as shown in the latest Top500 supercomputer
list published in November 2014 [6], there are only 8 “cores
per socket” in 46.4% supercomputers (i.e., 232). In order to
produce a multicore computer with even more cores (e.g.,
more than 12 cores), the second approach is often adopted.

The co-scheduling graph presented in previous sections is
for multicore machines each of which contains a single multi-
core processor, which we now call single processor multicore
machines (single processor for short). If there are multiple
multi-core processors in a machine, which is called a multi-
processor machine, the resource contention, such as cache
contention, is different. For example, only the cores on the
same processor share the Last-Level Cache (LLC) on the chip,
while the cores on different processors do not compete for
cache. In a single processor machine, the job-to-core mapping
does not affect the tasks’ performance degradation. But it is
not the case in a multi-processor machine, which is illustrated
in the following example.

Consider a machine with two dual-core processors (proces-
sors p1 and p2) and a co-run group with 4 jobs (j1, ..., j4).
Now consider two job-to-core mappings. In the first mapping,
jobs j1 and j2 are scheduled on processor p1 while j3 and j4
on p2. In the second mapping, jobs j1 and j3 are scheduled
on processor p1 while j2 and j4 on p2. The two mappings
may generate different total performance degradations for
this co-run group. In the co-scheduling graph in previous
sections, a graph node corresponds to a possible co-run group
in a machine, which is associated with a single performance
degradation value. This holds for single processor machine.
As shown in the above discussions, however, a co-run group
may generate different performance degradations in a multi-
processor machine, depending on the job-to-core mapping
within the machine. This subsection presents how to adjust
the methods presented in previous sections to find the optimal
co-scheduling solution in multi-processor machines.

A straightforward method is to generate multiple nodes in
the co-scheduling graph for a possible co-run group, with
each node having a different weight that equals to a different
performance degradation value (which is determined by the
specific job-to-core mappings). We all this method MNG
(Multi-Node for a co-run Group) method. For a machine with p
processors and each processor having u cores, it can be calcu-

lated that there are

p−1∏
i=0

((p−i)·u
u )

p! different job-to-core mappings
that may produce different performance degradations. Then the
algorithms presented in previous sections can be used to find
the shortest path in this co-scheduling graph and the shortest

path must correspond to the optimal co-scheduling solution
on the multi-processor machines. In this straightforward solu-
tion, however, the scale of the co-scheduling graph (i.e., the

number of graph nodes) increases by

p−1∏
i=0

((p−i)·u
u )

p! folds, and
consequently the solving time increases significantly compared
with that for the case of single processor machines.

We now propose a method, called the Least Performance
Degradation (LPD) method, to construct the co-scheduling
graph. Using this method, the optimal co-scheduling solu-
tion for multi-processor machines can be computed without
increasing the scale of the co-scheduling graph. The LPD
method is explained below.

As discussed above, in the case of multi-processor ma-
chines, a co-run group may produce different performance
degradation in a multi-processor machine. Instead of gener-
ating multiple nodes (each being associated with a different
weight, i.e., a different performance degradation value) in the
co-scheduling graph for a co-run group, The LPD method con-
structs the co-scheduling graph for multi-processor machines
in the following way: A node is generated for a co-run group
and the weight of the node is set to be the least performance
degradation among all possible performance degradations
generated by the co-run group. The rest of the construction
process is exactly the same as that for the case of single
processor machines.

Theorem 3 proves that from the co-scheduling graph con-
structed by the LPD method, the algorithms proposed in
previous sections for the case of single processor machines
can still obtain the optimal co-scheduling solution on multi-
processor machines.

Theorem 3. Assume the jobs are to be co-scheduled on multi-
processor machines. Using the LPD method defined above to
construct the co-scheduling graph, the algorithms that have
been proposed to find the optimal co-scheduling solutions
on single processor machines can still find the optimal co-
scheduling solutions on the multi-processor machines.

Proof: We can use the MNG method or the LPD method
to construct the co-scheduling graph for the case of multi-
processor machines. It has been discussed above that when
using the MNG method to construct the graph, the algorithms
proposed for single processor machines can still find the
optimal co-scheduling solution on multi-processor machines.
In the co-scheduling graph constructed by the MNG method,
multiple nodes are created for a possible co-run group, each
with a different weight. If a co-run group appears in the
final shortest path obtained by the algorithms, the path must
only contain the node with the least weight for the co-run
group. Other nodes with higher weights would have been
dismissed in the process of searching for the shortest path.
Therefore, the shortest path obtained from the co-scheduling
graph constructed by the LPD method must be the same as
that from the graph by the LPD method. Consequently, the
theorem holds.



VII. CO-SCHEDULING MULTI-THREAD JOBS

A parallel job considered so far in this paper is one
consisting of multiple processes, such as an MPI job. In this
subsection, we adapt the proposed graph model and algorithms
so that it can handle parallel jobs consisting of multiple
threads, such as OpenMP jobs. We now call the former parallel
jobs as Multi-Process Parallel (MPP) jobs and the latter Multi-
Thread Parallel (MTP) jobs.

In the co-scheduling graph, a thread in an MTP job is
treated in the same way as a parallel process in an MPP
job. Comparing with MPP jobs, however, MTP jobs have
the following different characteristics: 1) multiple threads
of a MTP job must reside in the same machine, and 2)
the communication time between threads can be neglected.
According to these features, the co-scheduling graph model is
adjusted as follows to handle the MTP jobs. For each node
(i.e., every possible co-run group) in the co-scheduling graph,
we check whether all threads belonging to the MTP are in
the node. If not, the node is deleted from the graph since it
does not satisfy the condition that all threads of a MTP job
must reside in the same machine. We call the above process
the validity check for MTP jobs.

Since the communication time between the threads in MTP
jobs can be neglected, the performance degradation of a MTP
job can be calculated using Eq. 3 that is used to compute
the performance degradation of a PE job. Also, since the
communication of a MTP job is not considered, an intuitive
method to find the optimal co-scheduling solution in the
existence of MTP jobs is to use the algorithm for handling
PE jobs, i.e., Algorithm 3. However, after a closer look into
the features of MTP jobs, we realize that Algorithm 3 can be
adjusted to improve the performance for handling MTP jobs,
which is explained next.

First, after the validity check for MTP jobs, all threads
belonging to a MTP job must only appear in the same graph
node. Therefore, there is no need to perform the process con-
densation as we do in the existence of PE jobs. Consequently,
the SVPPE algorithm (i.e., Algorithm 2) can be used to handle
the MTP jobs. Second, when the current path expands to a new
node in the SVPPE Algorithm, for each parallel job pi in the
new node SVPPE needs to check whether pi appears in the
current path. However, all threads in a MTP job only reside
in the same node. Therefore, if a new node that the current
path tries to expand to contain a MTP job, it is unnecessary
to check whether some threads of the MTP job appear in the
current path.

In order to differentiate it from SVPPE, the algorithm for
finding the optimal co-scheduling solution for the mix of serial
and MTP jobs is denoted as SVPPT (T stands for thread). The
only difference between SVPPT and SVPPE is that Lines 15-
17 in SVPPE (i.e., Algorithm 2) are removed from SVPPT.

From the above discussions, we can know that it would be
much more efficient to find the optimal co-scheduling solution
for MTP jobs than for PE jobs. This is because 1) the number
of nodes in the co-scheduling graph for SVPPT is much less

than that for PE jobs because of the validity check for MTP
jobs and 2) SVPPT does not run Lines 15-17 in SVPPE.

Note that the method discussed above for handling MTP
jobs is applicable to both single processor machines and multi-
processor machines.

VIII. THE A*-SEARCH-BASED ALGORITHM

The dismiss strategy designed for the SVP algorithm in
Subsection 4.1 and the optimization strategies developed in
O-SVPPE and O-SVPPC can avoid unnecessary searches in
the co-scheduling graph. It has been shown that the A*-search
algorithm is also able to find the optimal solution and during
the searching, effectively prune the graph branches that will
not lead to the optimal solution. In order to further accelerate
the solving process, an A*-search-based algorithm is devel-
oped in this section to combine the ability of avoiding the
unnecessary searches in the traditional A*-search algorithm
and the algorithms presented in this paper so far (SVP, O-
SVP, O-SVPPE and O-SVPPC).

This section presents how to design the A*-search-based
algorithm to find the optimal co-scheduling solution in the
co-scheduling graph. In this section, we only consider the co-
scheduling of serial and PC jobs for the sake of generality.
The presented A*-search-based algorithm is called SVPPC-
A*. SVP-A* (i.e., co-scheduling serial jobs), SVPPE-A* (i.e.,
co-scheduling both serial and PE jobs) and SVPPT-A* can be
developed in similar ways.

The traditional A*-search algorithm, which is briefly
overviewed in the supplementary file, cannot be directly
applied to find the optimal co-scheduling solution in the
constructed co-scheduling graph due to the same reasons
discussed when we present the SVP and the SVPPE algo-
rithm, namely, i) the optimal co-scheduling solution in the
constructed co-scheduling graph corresponds to the shortest
VALID path, not the shortest path, and ii) since the jobs to be
scheduled contain parallel jobs, the distance of a path is not
the total weights of the nodes on the path, as calculated by
the traditional A*-search algorithm.

Three functions are defined in the traditional A*-search
algorithm. Function g(v) is the actual distance from the start
node to node v and h(v) is the estimated length from v to the
end node, while f(v) is the sum of g(v) and h(v). In SVPPC-
A*, we use the exactly same methods proposed for the SVP
algorithm (i.e., the dismiss strategy) to handle and expand the
valid subpaths and avoid the unnecessary searches. Also, we
use the method proposed for the SVPPC algorithm to calculate
the distance of the subpaths (i.e., Eq. 3 and Eq. 5) that contain
the PC jobs. This can used to obtain the value of g(v). Note
that the communication-aware process condensation technique
proposed in Subsection 5.2.2 can also be used to accelerate
SVPPC-A*.

The estimation of h(v) is one of the most critical parts
in designing an A*-search algorithm. The following two
properties reflect the importance of h(v) [16]: i) The result
of A* search is optimal if the estimation of h(v) is not higher
than the real lowest cost to reach the end node, and ii) the



closer the result of h(v) is from the real lowest cost, the more
effective A* search is in pruning the search space.

Therefore, in order to find the optimal solution, the h(v)
function must satisfy the first property. In our problem, if there
are q jobs on the path corresponding to g(v), then the aim of
setting the h(v) function is to find a function of the remaining
n − q jobs such as the value of the function is less than the
shortest distance from node v to the end node. The following
two strategies are proposed to set the h(v) function.

Strategy 1 for setting h(v): Assume node v is in level l,
we construct a set R that contains all the nodes from l + 1
to the last level in the co-scheduling graph, and sort these
nodes in ascending order of their weights. Then, regardless
of the validity, the first (n− q)/u (u is the number of cores)
nodes are selected from R to form a new subpath, and use its
distance as h(v).

Strategy 2 for setting h(v): Assume node v is in level l. We
find all valid levels from level l+1 to the last level in the co-
scheduling graph. The total number of valid levels obtained
must be (n − q)/u. We then obtain the node with the least
weight from each valid level. (n−q)/u nodes will be obtained.
We use these (n− q)/u nodes to form a new subpath and use
its distance as h(v).

It is easy to prove that h(v) set in the above strategies must
be less than the actual shortest distance from v to the end
node, because it uses the nodes with the smallest weights from
all remaining nodes in Strategy 1 or from all valid levels in
Strategy 2. We will show in the experiments that Strategy 2
is much more effective than Strategy 1 in terms of pruning
unnecessary searches.

IX. CLUSTERING APPROXIMATION FOR FINDING THE
SHORTEST VALID PATH

In the previous sections, the methods and optimization
strategies are presented to solve the graph model for the
shortest valid path. In order to further shorten the solving time
and strike the balance between solving efficiency and solution
quality, this section proposes a flexible technique, called the
clustering technique, to find the approximate solution. The
clustering technique is flexible because the solving efficiency
can be adjusted by setting the desired solution quality. It can
be applied to both O-SVP, O-SVPPE and O-SVPPC.

As discussed in introduction and related work, the reason
why co-scheduling causes performance degradation is because
the co-run jobs compete for the shared cache. SDC (Stack
Distance Competition) is a popular technique to calculate
the impact when multiple jobs are co-running, which takes
the SDPs (Stack Distance Profile) of the multiple jobs as
input. Therefore, if two jobs have similar SDPs, they will
have similar mutual effect with other co-running jobs. The
fundamental idea of the proposed clustering technique is to
class the jobs with similar SDPs together and treat them as the
same job. Reflected in the graph model, the jobs in the same
class can be given the same job ID. In doing so, the number
of different nodes in the graph model will be significantly
reduced. The resulting effect is the same as the case where

different parallel processes are given the same job ID when
we present O-SVPPE in Subsection 5.1.2.

Now we introduce the method of measuring the similarity
level of SDP between two jobs. Given a job ji, its SDP
is essentially an array, in which the k-th element records
the number of cache hits on the k-th cache line (which is
denoted by hi[k]). The following formula is used to calculate
the Similarity Level (SL) in terms of SDP when comparing
another job jj against ji.

SL =

√∑cl
k=1(hi[k]− hj [k])2∑cl

k=1 hi[k]
(7)

When SL is set bigger, more jobs will be classed together.
Consequently, there will be less nodes in the graph model and
hence less scheduling time is needed at the expenses of less
accurate solution.

The clustering O-SVP algorithm is the same as the O-SVP
algorithm, except that the way of finding a valid level as well
as finding a valid node in a valid level is the same as that for
O-SVPPE (Algorithm 3). The clustering technique can also
be applied to O-SVPPE and O-SVPPC in a similar way. The
detailed discussions are not repeated.

X. EVALUATION

This section evaluates the effectiveness and the efficiency
of the proposed methods: O-SVP, O-SVPPE, O-SVPPC, A*-
search-based algorithms (i.e., SVPPC-A* and SVP-A*) and
the Clustering approximation technique. In order to evaluate
the effectiveness, we compare the algorithms proposed in this
paper with the existing co-scheduling algorithms proposed in
[16]: Integer Programming (IP), Hierarchical Perfect Matching
(HPM), Greedy (GR).

We conducted the experiments with real jobs. The serial jobs
are taken from the NASA benchmark suit NPB3.3-SER [4] and
SPEC CPU 2000 [5]. NPB3.3-SER has 10 serial programs and
each program has 5 different problem sizes. The problem size
used in the experiments is size C. The PC jobs are selected
from the ten MPI applications in the NPB3.3-MPI benchmark
suite. As for PE jobs, 5 embarrassingly parallel programs are
used: PI [3], Mandelbrot Set(MMS) [2], RandomAccess(RA)
from HPCC benchmark [1], EP from NPB-MPI [4] and
Markov Chain Monte Carlo for Bayesian inference (MCM)
[19]. In all these 5 embarrassingly parallel programs, multiple
slave processes are used to perform calculations in parallel
and a master process reduces the final result after it gathers
the results from all slaves. These set of parallel programs
are selected because they contains both computation-intensive
(e.g, MMS and PI) and memory-intensive programs (e.g, RA).

Four types of machines, Dual core, Quad core, 8 core and
16 core machines, are used to run the benchmarking programs.
A dual-core machine has an Intel Core 2 Dual processor and
each core has a dedicated 32KB L1 data cache and a 4MB 16-
way L2 cache shared by the two cores. A Quad-core machine
has an Intel Core i7 2600 processor and each core has a
dedicated 32KB L1 cache and a dedicated 256KB L2 cache.



A further 8MB 16-way L3 cache is shared by the four cores.
The 8 core machine has two Intel Xeon L5520 processors
with each processor having 4 cores. Each core has a dedicated
32KB L1 cache and a dedicated 256KB L2 cache, and 8MB
16-way L3 cache shared by 4 cores. The 16 core machine
has two Intel Xeon E5-2450L processors with each processor
having 8 cores. Each core has a dedicated 32KB L1 cache and
a dedicated 256KB L2 cache, and 16-way 20MB L3 cache
shared by 8 cores. The network interconnecting the dual-core
and quad-core machines is the 10 Gigabit Ethernet, while the
network interconnecting 8-core and 16-core Xeon machines
is QLogic TrueScale 4X QDR InfiniBand. In the rest of this
section, we label 8 core and 16 core machines as 2*4 core
and 2*8 core machines to show that they are dual-processor
machines.

The single-run computation times of the benchmarking
programs are measured. Then the method presented in [23] is
used to estimate the co-run computation times of the programs,
the details of which are presented in the supplementary file.
With the single-run and co-run computation times, Eq. 1 is
then used to compute the performance degradation.

In order to obtain the communication time of a parallel
process when it is scheduled to co-run with a set of job-
s/processes, i.e., cij,S in Eq. 6, we examined the source codes
of the benchmarking MPI programs used for the experiments
and obtained the amount of data that the process needs to
communicate with each of its neighbouring processes (i.e.,
αij(k) in Eq. 6). Then Eq. 6 is used to calculate cij,S .

A. Evaluating the O-SVP algorithm

In this subsection, we compare the O-SVP algorithm with
the existing co-scheduling algorithms in [16].

These experiments use all 10 serial benchmark programs
from the NPB-SER suite. The results are presented in 3a and
3b, which show the performance degradation of each of the
10 programs plus their average degradation under different co-
scheduling strategies on Dual-core and Quad-core machines.

The work in [16] shows that IP generates the optimal co-
scheduling solutions for serial jobs. As can be seen from
Figure 3a, O-SVP achieves the same average degradation
as that under IP. This suggests that O-SVP can find the
optimal co-scheduling solution for serial jobs. The average
degradation produced by GR is 15.2% worse than that of the
optimal solution. It can also been seen from Figure 3a that
the degradation of FT is the biggest among all 10 benchmark
programs. This may be because FT is the most memory-
intensive program among all, and therefore endures the biggest
degradation when it has to share the cache with others.

Figure 3b shows the results on Quad-core machines. In this
experiment, in addition to the 10 programs from NPB-SER, 6
serial programs (applu, art, ammp, equake, galgel and vpr) are
selected from SPEC CPU 2000. In Figure 3b, O-SVP produces
the same solution as IP, which shows the optimality of O-SVP.
Also, O-SVP finds the better co-scheduling solution than HPM
and GR. The degradation under HPM is 7.7% worse than that
under O-SVP, while that of GR is 25.5% worse. It is worth

noting that O-SVP does not produce the least degradation for
all programs. The aim of O-SVP is to produce minimal total
degradation. This is why O-SVP produced bigger degradation
than GR and HPM in some cases.

B. The O-SVPPE algorithm

The reasons why we propose O-SVPPE are because 1) none
of the existing co-scheduling methods is designed for parallel
jobs; 2) we argue that if applying the existing co-scheduling
methods designed for serial jobs to schedule parallel jobs, it
will not produce the optimal solution. In order to investigate
the performance discrepancy between the method for serial
jobs and that for PE jobs, we apply O-SVP to solve the co-
scheduling for a mix of serial and parallel jobs and compare
the results with those obtained by O-SVPPE. In the mix
of serial and parallel jobs, the parallel jobs are those 5
embarrassively parallel programs (each with 12 processes) and
the serial jobs are from NPB-SER plus art from SPEC CPU
2000. The experimental results are shown in Figure 4a and 4b

As can be seen from the figures, SVPPE produces smaller
average degradation than O-SVP in both Dual-core and Quad-
core cases. In the Dual-core case, the degradation under O-
SVP is worse than that under SVPPE by 9.4%, while in the
Quad-core case, O-SVP is worse by 35.6%. These results
suggest it is necessary to design the co-scheduling method
for parallel jobs.

C. The O-SVPPC algorithm

Figure 5a and 5b show the Communication-Combined
Degradation (CCD) (i.e., the value of Eq. 5) of the co-
scheduling solution obtained by the SVPPC algorithm when
the applications are run on Dual-core and Quad-core, respec-
tively. In this set of experiments, 5 MPI applications (i.e., BT-
Par, LU-Par, MG-Par, SP-Par and CG-Par) are selected from
the NPB3.3-MPI suite and each parallel application is run
using 10 processes, while the serial jobs remain the same as
those used in Fig. 4b. In order to demonstrate the effectiveness
of the SVPPC, SVPPE is also used find the co-scheduling
solution for the mix of MPI jobs and serial jobs, by ignoring
the inter-process communications in the MPI jobs. We then use
Eq. 5 to calculate CCD of the co-scheduling solution obtained
by SVPPE. The resulting CCD is also plotted in Figure 5a and
5b. As can be seen from these figures, the CCD under SVPPE
is worse than that under SVPPC by 18.7% in Dual-core
machines, while in Quad-core machines, the CCD obtained
by SVPPE is worse than that by SVPPC by 50.4%. These
results justifies the need to specially develop the algorithm to
find the co-scheduling solution for PC jobs.

We further investigate the impact on CCD as the number of
parallel jobs or the number of parallel processes increases.
The experimental results are shown in Figure 6a and 6b
(on Quad-core machines). In Figure 6a, the number of total
jobs/processes is 64. The number of parallel jobs is 4 (i.e., LU-
Par, MG-Par, SP-Par and CG-Par) and the number of processes
per job increases from 12 to 16. Other jobs are serial jobs.
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Fig. 4: Comparing the degradation under SVPPE and O-SVP
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Fig. 5: Comparing the Communication-Combined Degradation
(CCD) obtained by SVPPC and SVPPE

For example, 8+4*12 represents a job mix with 8 serial and
4 parallel jobs, each with 12 processes.
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Fig. 6: Impact of the number of parallel jobs and parallel
processes

In Figure 6a, the difference in CCD between SVPPC and
SVPPE becomes bigger as the number of parallel processes
increases. This result suggests that SVPPE performs increas-

ingly worse than SVPPC (increasing from 11.8% to 21.5%)
as the proportion of PC jobs increases in the job mix. Another
observation from this figure is that the CCD decreases as the
proportion of parallel jobs increases. This is simply because
the degradation experienced by multiple processes of a parallel
job is only counted once. If those processes are the serial jobs,
their degradations will be summed and is therefore bigger. In
Figure 6b, the number of processes per parallel job remains
unchanged and the number of parallel jobs increases. For
example, 12+2*4 represents a job mix with 12 serial jobs and 2
parallel jobs, each with 4 processes. The detailed combinations
of serial and parallel jobs are: i) In the case of 16+1*4, MG-
Par is used as the parallel job and all 16 serial programs are
used as the serial jobs; ii) In the case of 12+2*4, LU-Par and
MG-Par are the parallel jobs and the serial jobs are SP, BT, FT,
CG, IS, UA, applu, art, ammp, equake, galgel and vpr; iii) In
the case of 8+3*4, BT-Par, LU-Par, MG-Par are parallel jobs
and the serial jobs are SP, BT, FT, DC, IS, UA, equake, galgel;
iv) In the case of 4+4*4, BT-Par, LU-Par, SP-Par, MG-Par are
parallel jobs and the serial jobs are IS, UA, equake, galgel.
The results in Figure 6b show the similar pattern as those in
Figure 6a. The reasons for these results are also the same.

D. Scheduling in Multi-processor Computers

In this section, we investigate the effectiveness of the
LPD method proposed to handle the co-scheduling in multi-
processor machines. In the experiments, we first use the MNG
method discussed in Section 6 (i.e., generating multiple graph
nodes for a co-run group with each node having a different
weight) to construct the co-scheduling graph. As we have
discussed, from the co-scheduling graph constructed by the
MNG method, the algorithm must be able to find the optimal
co-scheduling solution for multi-processor machines. Then
we use the LPD method to construct the graph and find
the shortest path of the graph. The experimental results are
presented in Figure 7a and 7b, in which a mix of 4 PE jobs
(PI, MMS, RA and MCM, each with 31 processes) and 4 serial
jobs (DC, UA, BT and IS) are used. It can be seen that the
performance degradations obtained by two methods are the
same. This result verifies that the algorithms can produce the
optimal co-scheduling solutions using the LPD method.

Following the same logic as in Figure 4, we conducted
the experiments to investigate the performance discrepancy
between the method for serial jobs and that for PE jobs
on multi-processor machines. The LPD method is used to



generate the co-scheduling graphs (therefore, the ”LPD” prefix
is added to the algorithms in the legends in the figures). In
these experiments, we use the same experimental settings as
in Figure 7a and 7b. The results are shown in Figure 8a and
8b. As can be seen from the figures, LPD-SVPPE produces
smaller average degradation than LPD-SVP in both 8-core and
16-core cases. In the 8-core case, the degradation under LPD-
SVP is worse than that under LPD-SVPPE by 31.9%, while in
the 16-core case, LPD-SVP is worse by 34.8%. These results
verify the effectiveness of the LPD method for co-scheduling
PE jobs.

Similarly, following the same logic as in Figure 5, we
conducted the experiments to run PC jobs using SVPPC
and SVPPE on multi-processor machines and compare the
performance discrepancy in terms of CCD. The same exper-
imental settings as in Figure 5 are used and the results are
presented in Figure 9a and 9b. In this set of experiments, 4
MPI applications (i.e., BT-Par, LU-Par, MG-Par, and CG-Par)
are selected from the NPB3.3-MPI suite and each parallel
application is run using 31 processes, while the same serial
jobs as in Fig. 7a are used. As can be seen from these
figures, the CCD under LPD-SVPPE is worse than that under
LPD-SVPPC by 36.1% and 39.5% in 2*4-core and 2*8-core
machines, respectively. These results justify the necessity of
using SVPPC to handle PC jobs and show that the LPD
method works well with the SVPPC algorithm.

As discussed in Section 6, the reason why we propose
the LPD method is because using the MNG method, the
scale of the co-scheduling graph increased significantly in
multi-processor systems. The LPD method can reduce the
scale of the co-scheduling graph and consequently reduce the
solving time. Therefore, we also conducted the experiments
to compare the solving time obtained by LPD and the MNG
method. The experimental results are presented in Figure 10, in
which Figure 10a and 10b are for PE and PC jobs, respectively.
It can be seen from the figure that the solving time of LPD
is significantly less than that of the straightforward method
and the discrepancy increases dramatically as the number of
jobs increases. These results suggest that LPD is effective in
reducing solving time compared with the MNG method.
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Fig. 7: Comparing the degradation caused by the straightfor-
ward method and the LPD method
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Fig. 8: Comparing the degradation under LPD-SVP and LPD-
SVPPE for a mix of PE and serial benchmark programs
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Fig. 9: Comparing the Communication-Combined Degradation
(CCD) obtained by LPD-SVPPC and LPD-SVPPE

E. Scheduling Multi-threading Jobs

In Section 7, in order to schedule the MTP jobs correctly,
we need to guarantee that the threads from the same MTP
job are scheduled in the same machine. In order to handle
this, the SVPPT algorithm is proposed to construct the co-
scheduling graph and find the shortest path. In this subsection,
we first conduct the experiments to examine the co-scheduling
solution obtained by SVPPT. In the experiments, we chose 4
MTP programs (each with 2 threads on 4 Core and 3 threads
on 8 Core) from NPB3.3-OMP (BT, MG, EP and FT) and
4 serial jobs from NPB-SER (DC, UA, LU and SP). The
experiments are conducted on two type of processors, Xeon
L5520 (4 cores) and Xeon E5-2450L (8 cores). The results are
presented in Table 1. It can be seen that all threads from the
same MTP program are mapped to the same machine, which
verifies SVPPT can find correct co-scheduling solutions for
MTP jobs.

As discussed in Section 7, SVPPT is supposed to be more
efficient than SVPPE in finding the shortest path. Therefore,
we also conducted the experiments to compare the solving
time of SVPPT and SVPPE. The results are presented in
Table 2. The experiments are conducted on 4-core and 8-
core machines. It can be seen that SVPPT spends much less
time than SVPPE and the gap increases as the number of
jobs/threads increases. These results verify the efficiency of
SVPPT.
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TABLE I: Schedule result for Multi-threading program

Processor Jobs on each chip
4 Core bt,bt, ep,ep mg,mg, lu, sp ft,ft,dc, ua
8 Core bt,bt,bt, ep,ep,ep, dc, sp mg, mg,mg, ft,ft,ft,ua, lu

F. The A*-search-based algorithms

This section reports the results for validating the optimality
of the proposed A*-search-based algorithms. We first compare
the SVP-A* algorithm with the O-SVP algorithm in terms of
the optimality in co-scheduling serial jobs. The experiments
use all 10 serial benchmark programs from the NPB-SER suite
and 6 serial programs (applu, art, ammp, equake, galgel and
vpr) selected from SPEC CPU 2000. The experimental results
are presented in Table 3. We also compare the SVPPC-A*
algorithm with the O-SVPPC algorithm in terms of optimality
in co-scheduling a mix of serial and parallel programs. The ex-
periments are conducted on Quad-core machines. The results
are listed in Table 4. In these experiments, 2 MPI applications
(i.e., MG-Par and LU-Par) are selected from the NPB3.3-MPI
and mixed with serial programs chosen from NPE-SER and
SPEC CPU 2000. The processes of each parallel application
varies from 2 to 4. The detailed combinations of serial and
parallel programs are: i) In the case of 8 processes, MG-Par
and LU-Par are combined with applu, art, equake and vpr; ii)
In the case of 12 processes, MG-Par and LU-Par are combined
with applu, art, ammp, equake, galgel and vpr; iii) In the case
of 16 processes, MG-Par and LU-Par are combined with BT,
IS, applu, art, ammp, equake, galgel and vpr.

As can be seen from Table 3 and 4, SVP-A* and SVPPC-
A* achieve the same performance degradations as those by
O-SVP and O-SVPPC, respectively. These results verify the
optimality of the A*-search-based algorithms. Indeed, SVPPC-
A* combines the functionalities of SVPPC and the A*-search
algorithm and is expected to generate the optimal solution.

Table 5 and 6 show the scheduling efficiency of our A*-
search-based algorithms under the two different strategies of
setting the h(v) function proposed in Section 8. SVP-A*-1
(or SVPPC-A*-1) and SVP-A*-2 (or SVPPC-A*-2) are the
SVP-A* (or SVPPC-A*) algorithm that uses Strategy 1 and 2,
respectively, to set h(v). Table 5 shows the results for synthetic
serial jobs, while Table 6 shows the results for parallel jobs. In
Table 6, 4 synthetic parallel jobs are used and the number of

TABLE II: Comparing the solving time between MTP and
SVPPE

Number Solving Time
of Jobs 4 Core

MTP SVPPE
24 0.0011 0.0025
36 0.013 0.034
48 0.13 0.38
64 1.11 3.89

Number Solving Time
of Jobs 8 Core

MTP SVPPE
24 0.0013 0.0022
32 0.004 0.011
48 0.078 0.15
64 0.26 1.35

TABLE III: The optimality of SVP-A*

Number of Jobs Average Degradation
Dual Core Quad Core
O-SVP SVP-A* O-SVP SVP-A*

8 0.12 0.12 0.34 0.34
12 0.22 0.22 0.36 0.36
16 0.13 0.13 0.27 0.27

TABLE IV: The optimality of SVPPC-A*

Number of Average Degradation
Processes Dual Core Quad Core

O-SVPPC SVPPC-A* O-SVPPC SVPPC-A*
8 0.07 0.07 0.098 0.098
12 0.05 0.05 0.074 0.74
16 0.12 0.12 0.15 0.15

processes of each parallel job increases from 10 to 50. Recall
that the O-SVP algorithm is equivalent to SVP-A* with the
h(v) function being set to 0, while O-SVPPC is equivalent
to SVPPC-A* with h(v) being set to 0. Therefore, we also
conducted the experiments to show the scheduling efficiency of
O-SVP and O-SVPPC, which can be used to demonstrate the
effectiveness of the strategies of setting h(v). The underlying
reason why SVPPC-A* and SVP-A* could be effective is
because they can further avoid the unnecessary searches in the
constructed co-scheduling graph. Therefore, we also recorded
the number of paths visited by each algorithm and present
them in Table 5 and 6.

It can be seen from both tables that the strategies used to
set h(v) play a critical role in our A*-search-based algorithms.
Both Strategy 1 and 2 proposed in Section 8 can reduce the
number of visited paths dramatically and therefore reduce the
solving time compared with the corresponding O-SVP and O-
SVPPC. These results suggest that the strategies proposed in
this paper can greatly avoid the unnecessary searches.

Further, as observed from Table 5 and 6, the algorithms
under Strategy 2 visited the less number of paths by orders of
magnitude than their counterparts under Strategy 1. Therefore,
SVP-A*-2 and SVPPC-A*-2 are more efficient by orders of
magnitude than SVP-A*-1 and SVPPC-A*-1, respectively, in
finding the optimal co-scheduling solution. This is because the
estimation of h(v) provided by Strategy 2 is much closer to the
actual shortest path of the remaining nodes than that Strategy
1, and consequently Strategy 2 is much more effective than
Strategy 1 in avoiding unnecessary searches.

The scalability of the proposed algorithms can also be
observed from Table 5 and 6. It can be seen that SVPPC-A*-
2 (or SVP-A*-2) show the best scalability against SVPPC-
A*-1 and O-SVPPC (or SVP-A*-1 and O-SVP). This can be



TABLE V: Comparison of the strategies for setting h(v) with
serial jobs

Number Solving time (seconds)
of Jobs SVP-A*-1 SVP-A*-2 O-SVP
16 0.72 0.014 1.01
20 12.88 0.047 17.52
24 190.79 0.14 234.5
Number The number of visited paths
of Jobs SVP-A*-1 SVP-A*-1 O-SVP
16 31868 122 49559
20 546603 436 830853
24 6726131 1300 9601465

TABLE VI: Comparison of the strategies for setting h(v) with
parallel jobs

Number of Solving time (seconds)
Processes SVPPC-A*-1 SVPPC-A*-2 O-SVPPC
40 0.43 0.037 0.61
80 2.44 0.17 3.38
120 10.93 0.33 17.93
160 40.05 0.64 66.85
200 99.13 0.88 212.79
Number of The number of visited paths
Processes SVPPC-A*-1 SVPPC-A*-2 O-SVPPC
40 18481 414 27349
80 261329 1952 422025
120 1275799 4452 2105706
160 3990996 7050 6585938
200 8663580 16290 15991561

explained as follows. Although the scale of the constructed
co-scheduling graph and the possible searching paths increase
rapidly as the number of jobs/processes increases, SVPPC-A*-
2 can effectively prune the graph branches that will not lead
to the optimal solution. Therefore, the increase in the graph
scale will not increase the solving time of SVPPC-A*-2 as
much as for other two algorithms.

G. The optimization techniques

This section tests the efficiency of the communication-
aware process condensation techniques and the clustering
approximation proposed in this paper. The experiments are
conducted on the Quad-core machines.

We first test the effectiveness of the communication-aware
process condensation technique. The experiments are con-
ducted on the Quad-core machines with synthetic jobs. In this
set of experiments, the number of total jobs/processes is 72,
in which the number of parallel jobs is 6 with the number of
processes per job increasing from 1 to 12 and the remaining
jobs are serial jobs. These jobs are scheduled using SVPPC-
A* with and without applying the process condensation. The
solving times are plotted in Figure 11.

It can be seen from the Figure 11 that after applying the
process condensation technique, the solving time decreases
dramatically as the number of processes increase. This is
because the number of nodes with the same communication
pattern in the graph increases as the number of processes
increases. Therefore, the condensation technique can eliminate
more nodes from the co-scheduling graph and consequently
reduce the solving time.
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Fig. 11: Solving time with and without process condensation
as the number of processes per parallel job increases. The total
number of parallel processes and serial jobs is 72.

The clustering approximation algorithm are tested with 32
synthetic serial jobs. These jobs are first scheduled using O-
SVP. Then these jobs are grouped into 8, 4 and 2 classes
by setting the Similarity Level (SL). The experimental results
are presented in Table 7. It can be observed from Table 7
that when the jobs are grouped into 8 classes, the degradation
increases slightly, compared with that achieved by O-SVP. But
the scheduling time under the clustering technique is reduced
significantly. Moreover, as the number of classes decreases, the
degradation increases further and the scheduling time continue
to decrease. These results show that our clustering technique
is effective. This table also lists the number of the subpaths
visited by the co-scheduling algorithms, which decreases by
orders of magnitude as the number of classes decreases. This
is the underlying reason why the scheduling time decreases
after applying the clustering approximation technique.

TABLE VII: Comparing the clustering method with O-SVP

Algorithm visited path Degradation time (seconds)
O-SVP 181267889 19.97 708
8 class 2115716 21.23 14.25
4 class 141508 23.75 1.18
2 class 17691 25.96 0.31

XI. CONCLUSION AND FUTURE WORK

This paper proposes a graph-based method to co-schedule
jobs in multi-core computers. In this paper, a graph is con-
structed for the co-scheduling problem. Then finding the
optimal co-scheduling solution is modelled as finding the
shortest valid path in the graph. An algorithm for finding the
shortest valid path for serial jobs is first developed and then the
optimization strategy is proposed to reduce the solving time.
Further, the algorithm for serial jobs is extended to incorporate
parallel jobs. The optimization strategies are also developed to
accelerate the solving process for finding the optimal solution
for parallel jobs. Moreover, a flexible approximation technique
is proposed to strike the balance between solving efficiency
and solution quality. The experiments have been conducted
to verify the effectiveness of the proposed algorithms. Future
work has been planned in the following two folds. 1) It is
possible to parallelize the proposed co-scheduling algorithms
to further speedup the process of finding the optimal solution.
We plan to investigate the parallel paradigm suitable for



this problem and design the suitable parallelization strategies.
2) We plan to extend our co-scheduling methods to solve
the optimal mapping of virtual machines (VM) on physical
machines. The main extension is to allow the VM migrations
between physical machines.
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