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Abstract— In this paper, a team of n Unmanned Air-
Vehicles (UAVs) in cooperative path planning is given the
task of reaching the assigned target while i) avoiding
threat zones ii) synchronizing minimum time arrivals
on the target, and iii) ensuring arrivals coming from
different directions. We highlight three main contri-
butions. First we develop a novel hybrid model and
suit it to the problem at hand. Second, we design
consensus protocols for the management of information.
Third, we synthesize local predictive controllers through
a distributed, scalable and suboptimal neuro-dynamic
programming (NDP) algorithm.

I. INTRODUCTION

Cooperative path planning is usually a sub-
task of the broader class of cooperative search
problems also including cooperative target as-
signment, coordinated UAV intercept, feasible
trajectory generation and asymptotic trajectory
following [1]. Cooperative path planning is based
on the novel notion of coordination variables and
coordination functions [5], In [2] a number of
suboptimal approximate DP algorithms are devel-
oped, which reduce computational complexity to
polynomial on the number of air-vehicles. In [7]
the idea is to control the planar dynamics of a
group of UAVs by an artificial potential force, to
avoid collisions, plus an alignment force, to attain
a common heading for the vehicles. A real time
method to solve optimal path planning problems
under cooperative conflict avoidance is developed
in [6]. In [4] cooperative conflict avoidance is
possible through a twofold team-game theoretic
approach.In [8] uncertainty of the motions of
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other aircraft is modeled within the framework
of non-cooperative zero-sum dynamic games.

In this paper, a team of UAVs is given the task
of searching a region with potential hazards and
opportunities. The common objective is to maxi-
mize reward from visiting targets, while avoiding
threats. To enhance the element of surprise or
to provide different perspectives, each target is
prosecuted simultaneously in minimum time with
multiple UAV from different directions. Assume
that a task assignment problem is solved at high
level, such that subgroups of UAVs are assigned
to single targets as depicted in Fig. 1 (a subgroup
of three UAVs assigned to one target). UAVs
assigned to the same target communicate each
other their position and heading thus to coordinate
(align) their paths towards the target. To solve the
above problem we build an hybrid model, able to
connect the n decoupled motion dynamics with n
coupled dynamics describing the information flow
among the UAVs. Given this, we design consen-
sus protocols to extract an efficient coordination
variable and propose a suboptimal and scalable
NDP algorithm for the optimal synthesis of the
local controllers [3].

II. HYBRID MODEL

A. System Dynamics
UAVs solve the first subtask (threat avoidance)

by discretizing the xy-plane through a Voronoi
Map as discussed in the following subsection.

1) Voronoi Map: Starting from threats, vehi-
cles and target position, we construct the Voronoi
Graph G ′ = (V ′, E ′) as in Fig. 1. Each vehicle
is located in a node v′i′ ∈ V ′, where i′ ∈ Γ′ :=
{1, 2, ..., n′}, and each path segment is an edge
e = (v′i′ , v

′
j′) ∈ E ′; i′, j′ = 1, 2, ..., n′. The

Voronoi Graph is planar and partitions the plane
in regions called cells. It reduces the cooperative
path planning to a finite dimensional graph search.
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Fig. 1. Region explored by UAVs (green arrowheads), with
potential threats (blue circles) and one target (red diamond). Bi-
dimensional space discretization via Voronoi Map (blue solid
lines).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Information 

Protocol 

 

{Ii
k
= [yi

k
,  a

k
],

 
i∈Γ} 

{ui
k
=µi

k
( Ii

k
),

 
i∈Γ} 

 

 

 

System 

Dynamics 
 

 

 

 

Local Predictive 

Controllers 
 

{yi
k
,
 
i∈Γ} 

{zi
k 
(τ),

 
i∈Γ}

 

sample 

{zss
k
,
 
i∈Γ} 

{ωi
k
,
 
i∈Γ} 

ref 

T 

+ 

- 

Fig. 2. Block Diagram of the closed loop inventory system.

We indicate with ωki the position of the target
assigned to the group of vehicles. We assume that
the target is fixed and its position is perfectly
known by all vehicles. Thus indices i and k
may be dropped. We, also, define the set of
vertices D := {v′i} delimiting the Voronoi cell
that includes the target itself, i.e., ω ∈ cell(D).
We call the set D the final domain.

2) UAVs Motion Dynamics: Consider a net-
work G = (V , E); each UAV is a node vi ∈
V , where i ∈ Γ := {1, 2, ..., n}, and each
communication link is an edge e = (vi, vj) ∈
E ; i, j = 1, 2, ..., n. Let n = |V|, where |S|
indicates the cardinality of the set S.

Assume xki ∈ Γ′ be the index indicating the

vertex where the ith vehicle is located at instant
k. Decision uki ∈ Γ′ is the index of the next vertex
to reach. Thus, the formation flight dynamics can
be described as

xk+1
i = uki , for all i ∈ Γ. (1)

The UAVs may only move from one vertex to any
neighbor one without entering the final domain
except at the last two stages N − 1, N . In any
case all paths must end in a vertex of the final
domain D at stage N . Indicating with Hxki

the
set of neighbor nodes reachable in one-step by
the ith UAV at stage k, the above constraints are
described as follows

uki ∈ Uk
i (xki ) =


Hxki
\D k < N − 1

Hxki
k = N − 1

Hxki
∪D k = N

, for alli ∈ Γ.

The ith output yki , referred to as sensed infor-
mation, is

yki = xki , (2)

i.e., each UAV observes only its position.

B. Consensus Protocols
The information flow is managed through a

distributed protocol Π = {(fi, hi, φi) : for alli ∈
V}

żki (τ) = fi(z
k
j (τ), for all j ∈ Ni), 0 ≤ τ ≤ T,(3a)

zki (0) = hi(y
k
i ), (3b)

ak = φi(z
k
ss), (3c)

where:
• fi : <n → < describes the dynamics of the

transmitted information of the ith node as a
function of the information both available at
the node itself and transmitted by the other
nodes, as expressed in (3a);

• hi : Z → < generates a new transmitted
information vector given its state at the kth
stage, as described in (3b);

• φi : < → Z estimates, based on current
information, the aggregate info (3c).

Here Ni is the neighborhood of the ith UAV, Ni =
{j ∈ Γ : (vi, vj) ∈ E}∪{i}, i.e., the set of all the
UAVs j that are connected to i and i itself and

zkss = lim
τ→T−

zi(kT + τ), for all i ∈ Γ,



represents the steady state value assumed by
zki (τ) within the interval [kT, (k + 1)T ]. For
given scenario, defined by the full state vector,
xk = {xki , for all i ∈ Γ}, the converging value
of the transmitted information, aki (coordination
variable), plus the sensed information, yki consti-
tute the partial information vector, Iki = [yki , a

k
i ]

available to the ith UAV.

C. Local Predictive Controllers

During the approaching maneuver, the UAVs
seek to synchronize their arrival time on the
target, while at the same time minimizing it.
On this purpose, first, the UAVs cooperatively
select the minimum time over target N . For sake
of simplicity and without loss of generality, this
corresponds to the minimum number of steps to
reach the target by all UAVs. Actually, this last
assumption is realistic when UAVs implement
speed control. Note that N will depend on the
distance of the furthest UAV from the target.
Then, each vehicle chooses the path thus to let
the formation center move as fast as possible to
the target.

The local controllers compute the following
cost over a finite horizon with length N

Ji(I
k
i , u

k
i ) = gi(I

N
i ) +

N−1∑
k̂=k

(αk̂gi(I
k̂
i , u

k̂
i )) (4)

where αk is the discount factor at time t. The
stage cost gi(Iki , u

k
i , k) penalizes the distance of

the center mass from the target,

gi(I
k
i , u

k
i , k) = ‖aki − ω‖2

2, for all i ∈ Γ. (5)

Equation (4) represents the cost incurred by the
ith UAV over the finite horizon window.

To compute the cost, the controllers must pre-
dict the evolution of the information vector Iki
upon which the stage cost is defined. From (1)
and (2), prediction is possible through the fol-
lowing equation

Îk+1
i =

[
ŷk+1
i

âk+1
i

]
=

[
uki
ψi(a

k
i , u

k
i )

]
(6)

where ψi(a
k
i , u

k
i ) is a simulation-based tunable

predictor.

We report hereafter the formalization of the
problem under concern.

Given a team of UAVs reviewed as dynamic
agents of a communication network with topology
G = (V , E).

Problem (Local Controllers Synthesis) For
each ith UAV, determine the path planning policy
uki = µ(Iki ), that minimizes the N -stage individ-
ual payoff defined in (4).

Subproblem (Protocols Design) Determine a
distributed protocol Π in order to extract an
efficient coordination variable, ak .

III. PATH PLANNING WITH FULL
INFORMATION

As benchmark scenario, we study in this sec-
tion the Multiple UAV Cooperative Path Planning
Problem with full information on the state. This
corresponds to assume that the ith UAV knows the
current position of all other UAVs at each stage.

The Full Information Algorithm shown below
receives as input: the time over target, i.e., the
horizon length N , the number of UAVs n, all
starting positions x0, the target position ω, and the
Voronoi Graph, specified in the set of parameters
Θ = {G′}.

(Full Information Algorithm)

Input. N, Γ, x0, ω, Θ.
Step 1. FOR k from 1 to N,

FOR i ∈ Γ,
Compute Uk

i and Rk
i .

Step 2. FOR k from N to 1,
FOR each xk ∈ Rk = {Rk

i ; i ∈ Γ},
FOR each uk ∈ Uk = {Uk

i ; i ∈ Γ},
FOR each i ∈ Γ,
verify NE via backwards DP:
µki (x

k) = argminuki ∈Uk
i (xk)g

k
i (xk, uk)

+ αk+1Jk+1
i (xk+1).

Step 3. Simulate forwards for given x0.
Return. All NE strategies,

paths and costs.

Lemma 3.1: The Full Information Algorithm
applied to the Multiple UAV Cooperative Path
Planning Problem returns all Nash equilibrium
path planning strategies, paths and costs for



given initial positions x0. The computational
complexity is exponential on the number of
UAVs, O(nN∆n(N+1)), where ∆ is the maximum
Voronoi graph degree.

Proof: Let us compute the complexity of the
two steps of the algorithm. As regards Step 1, the
set of feasible decisions, Uk

i (xki ) has cardinality
at most |U |. Thus, one needs |U | computations
for each agent i ∈ Γ, for each stage k =
1, 2, ..., N , and for each state xki ∈ Rk

i . To get
the set of reachable states, Rk

i one needs other
|R| computations. Thus, complexity of Step 1 is
O(nN |R||U |).

As regards Step 2, for each stage k =
1, 2, ..., N , the whole space of reachable states
Rk requires at most |R|n computations. The set
of feasible decisions Uk implies at most |U |n
computations. To verify whether uk is a Nash
equilibrium one needs n iterations over the agents.
Thus, complexity of Step 2 is O(nN |R|n|U |n).

The computational complexity is
O(nN |R||U |) + O(nN |R|n|U |n) =
O(nN |R|n|U |n). To complete the proof it
is sufficient to note that |U | = ∆ and |R| = ∆N .

However, it must be said that the algorithm
presents an additional preprocessing subroutine
with respect to the above general algorithm. In
particular a feasibility checking is necessary in
order to avoid conflicts in the final state. Yet, the
preprocessing does not influence the complexity
of the algorithm.

Example 1: Let us consider a group of three
UAVs exploring the region shown in Fig. 3.
The UAVs start from three different nodes of
the Voronoi Graph x0 = [3, 11, 22]′. The final
domain is the set of five vertices of the Voronoi
cell (the polygon) that contains the target. The
Full Information Algorithm selects the minimum
time over target, N = 5. Indeed, this is the
minimum horizon length that allows all the UAVs
to reach the final domain. Then, Fig. 3 displays
Nash equilibrium paths as computed by the Full
Information Algorithm.

IV. PATH PLANNING WITH PARTIAL
INFORMATION

In this section, we study the Multiple UAV
Cooperative Path Planning Problem with partial
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Fig. 3. Nash equilibrium paths (green dotted lines), and trajectory
of the formation center (magenta circles) during the approaching
maneuver.

information on the state. This corresponds to as-
sume that the ith UAV knows its current position
and the position of the formation center, chosen
as coordination variable.

A. Formation Center Estimation via Consensus
Protocols

In this subsection, we discuss issues concerned
with the estimation of the position of the for-
mation center, ak through distributed consensus
protocols.

We assume that the transmitted information
is the current estimate of the position of the
formation center. The current estimate zi(·) is re-
initialized to xki at the beginning of each time
interval [kT, kT + 1].

Thus, we have for each agent i ∈ Γ

zki = xki .

The continuous-time average-consensus proto-
col takes on the form

żi(kT+τ) :=
∑
j∈Ji

(zj(kT+τ)−zi(kT+τ)), 0 ≤ τ ≤ T,

which we rewrite as

żi(kT + τ) = −Li•z(kT + τ), 0 ≤ τ ≤ T,



where L is the Laplacian matrix of the commu-
nication network topology. We can rewrite the
protocol in compact form

hi(x
k
i ) = xki

fi(z(kT + τ)) = −Li•z(kT + τ)
φ(zi(kT + τ)) = n(limt→T− zi(kT + τ)).

B. Nash Equilibrium Path Planning
The Partial Information Algorithm, as well as

the Full Information Algorithm, receives as input
the time over target (the length of the horizon)
N , the number n and the initial position of all
UAVs x0, the target position ω, and the Voronoi
Graph, specified in the set of parameters Θ =
{G′}. We discretize the planar position of the
formation center by assuming that its coordinates
assume only integer values within the set Z , i.e.,
x, y = 1, 2, ..., |Z|.

(Partial Information Algorithm)

Input. N, Γ, x0, ω, Θ.
Step 1.FOR k from 1 to N,

FOR i ∈ Γ,
compute Uk

i and Rk
i .

Step 2.WHILE not converging,
2a-i. FOR i ∈ Γ;get/update â1

i , â
2
i , ..., â

N
i ,

FOR k from N to 1,
FOR each Iki ∈ (Rk

i × Γ),
find NE strategies via DP:
µki (I

k
i ) = argminuki ∈Uk

i (xki )g(Iki , u
k
i )

+ αk+1J̃k+1
i (yk+1

i , ak+1).
2a-ii. Simulate forwards for given x0.
2a-iii. (Local Search)

Perturb the jth state trajectory:
pi = (xki , x

k+1
i , ..., xk+∆

i ).
2a-iv. Run the protocol over the

horizon.
Return. NE strategies, paths and costs.

Lemma 4.1: Each iteration of the Partial In-
formation Algorithm applied to the Multiple
UAV Cooperative Path Planning Problem, for
given initial state x0, has computational com-
plexity polynomial on the number of UAVs
O(nN |Z|∆(N+1)).

Proof: The only difference with the Full
Information Algorithm is Step 2. As computed in
the proof of Lemma 3.1, the complexity of Step
1 is O(nN |R||U |).

Now, it is left to compute complexity of Step
2. We have that the reduced ith state space Iki
is composed by the space of reachable states
Rk
i and the space Z of values assumed by the

aggregated information ak. For each agent i ∈ Γ,
for each stage k = 1, 2, ..., N and for each
reduced state Iki ∈ (Rk

i × Z) we must con-
sider the set of feasible decisions Uk

i to write
down the Bellman’s equation. With a slight abuse
of notation we indicate |Z| the cardinality of
the finite set of values of ak. Thus, complexity
of Step 2 is O(nN |R||Z||U |). The computa-
tional complexity of the Partial Information Algo-
rithm is then O(nN |R||U |)+O(nN |R||Z||U |) =
O(nN |R||Z||U |). To complete the proof it is
sufficient to consider that |U | = ∆ and |R| = ∆N .
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Fig. 4. NE paths (black dashed lines), and trajectory of the FC
(magenta circles).

Example 2: (Example 1 cont’d) Let us con-
sider again the case of three UAVs searching a
region as in Example 1. At a first iteration, each
UAV optimizes its path based only on its own
position. No communication occurs among the
UAVs. Single paths are shown in Fig. 4, top-
left. Note that UAVs approach the target head-
ing differently along the path. No alignment is



provided by the team of UAVs. At a second
iteration, UAVs communicate their planned single
paths through a consensus protocol that returns
the predicted position of the formation center.
Based on this new aggregated information, UAVs
update their planning thus to align their paths
as evident from Fig. 4, top-right. In this case
the algorithm converges as the third and fourth
iterations (bottom-left, bottom-right) return the
same path.

V. NDP SOLUTION ALGORITHM

In this section, we cast the hybrid model within
the framework of neuro-dynamic programming
(NDP).
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A. Consensus on Features aki
To review the features as a compact description

of the behavior of the other UAVs, we consider i)
the NDP architecture based on feature extraction
(see e.g. [3]) displayed in Fig. 5 and ii) the block
diagram of the Hybrid Model displayed in Fig. 6.

The full state vector of the hybrid model, xk

becomes, in the approximation architecture, the
input to the feature extractor. The information
flow management block can be reviewed as the

feature extractor. The full state vector reduces
to the partial information vector Iki = [yki , a

k
i ]

available to the ith UAV. Each local controller im-
plement a function approximator, which receives
the partial information vector and returns the
individual cost-to-go J̃ki (Iki , r) over the horizon.

B. Linear Architecture

We assume that the probability distribution over
all potential values assumed by ak propagates
according to the linear dynamics ak+1 = akΨk

where Ψk = {ψkij, i, j ∈ Γ}. In this case we
have i) a matrix of weights r that coincides with
the transition probability matrix of the predictor,
namely, r = Ψ = {Ψk, k = 1, 2, ..., N}, and
ii) basis functions J̃k+1

i (Ik+1
i , ak+1) representing

different future costs associated to different ak+1.
The approximation architecture linearly param-

eterizes the future costs associated to all possible
behaviors of the other UAVs over the horizon.
This can be described as
|Z|∑

ak+1=1

Ψk
ak, ak+1 J̃k+1

i (Ik+1
i , ak+1) = ψkak•Ĵi

k+1
(Ik+1
i , •)T ,

where ψkak• is the row of the transition prob-
abilities from ak to all possible ak+1, and
Ĵi
k+1

(Ik+1
i , •)T is the transposed row of the as-

sociated future costs.

C. The NDP Algorithm

The NDP Algorithm shown below is organized
in two steps. In the first step the UAVs compute
the set of admissible decisions Uk

i and reachable
states Rk

i over the horizon. The second step
presents three substeps.

1) Policy improvement. For given prediction Ψ,
we improve the policy via the stochastic
Bellman’s equation backwards in time.

2) Value iteration. The improved policy is val-
ued through repeated Quasi-Monte Carlo
simulations. Active exploration guarantees
that initial states are sufficiently spread over
the local minima. During the value iteration
we compute and store the number of times
a transition Ψij occurs during the repeated
finite length simulations. At the end of
each simulation, the protocol runs over the



horizon and returns the training set for the
next step.

3) Temporal Difference. We use the training set
to update the transition probabilities of the
predictor.

The tree substeps are iteratively repeated until
convergence of policies.

(NDP Algorithm)

Input.N, Γ, x0, ω, Θ, numbersim.
Step 1. FOR k from 1 to N,

FOR i ∈ Γ,
compute Uk

i and Rk
i .

Step 2. WHILE not converging,
2a-i. (policy improvement)

FOR i ∈ Γ; commit to Ψ,
FOR k from N to 1,
FOR each Iki ∈ (Rk

i × Γ),
Stochastic backwards DP:
µk
i (Iki ) = argminuk

i
∈Uk

i
(xk

i
)

[
gi(I

k
i , u

k
i , k)

+ αk+1ψak•J̃
k+1
i (Ik+1, •)

]
.

2a-ii. (value iteration)
FOR simtest from 1 to numbersim,

- simulate forwards for given x0

via active exploration
- run the protocol over the horizon.

2a-iii. (temporal difference)
Update transition probabilities Ψ

Return.NE strategies, paths and costs-to-go.

Lemma 5.1: Each iteration of the NDP algo-
rithm, for given initial state x0, has computational
complexity polynomial on the number of UAVs,
i.e., O(nN |Z|∆(N+1)).

Proof: Step 1 is O(nN |R||U |) as in the
Full and Partial Information Algorithm. The main
difference with the Partial Information Algorithm
is in Step 2. For each policy improvement step,
we perform now a number equal to numbersim
of stochastic simulations in order to extract the
statistics. The central point is to observe that,
even in the Partial Information Algorithm the
complexity of Step 2a-i is dominant. We extend
this consideration to the NDP Algorithm with the
only condition that the number of simulations,
numbersim, during the value iteration, Step 2a-
ii, must remain below a certain threshold. This
threshold depends on the ratio between the order
of complexity of Step 2a-i and Step 2a-ii.

Assuming that convergence is achieved in a
finite number of iterations, the NDP Algorithm
returns stochastic Nash equilibrium policies, paths
and costs-to-go. Further efforts are still to be
made, oriented to investigate the convergence
conditions of this algorithm.
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Fig. 7. Convergence in presence of noise.

Example 3: (Example 1 cont’d) Let us con-
sider again the case of three UAVs searching
a region as in Example 1. We assume that the
estimation of the position of the formation center
is affected by white gaussian noise with signal to
noise ratio, snr = 20. Though convergence is in
general not guaranteed, we see from Fig. 7 that for
particular initial positions path planning strategies
converge very fast even in presence of noise.

By assuming that each UAV may potentially
start in three different positions, we performed
repeated simulations for a total of 33 = 27 initial
states. Fig. 8 displays the individual and global
costs (black, red, blue, magenta and green stars)
vs the initial positions for iterations 1, 2, 3, 4 and
5 respectively. Note that the costs associated to
later iterations reduce progressively, in agreement
with what is to be expected from a reinforcement-
learning algorithm.
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