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Distributed n-player approachability and

consensus

in coalitional games

Dario Bauso and Giuseppe Notarstefano

Abstract

We study a distributed allocation process where, repeatedly in time, every player renegotiates past

allocations with neighbors and allocates new revenues. The average allocations evolve according to

a doubly (over time and space) averaging algorithm. We study conditions under which the average

allocations reach consensus to any point within a predefined target set even in the presence of

adversarial disturbances. Motivations arise in the context of coalitional games with transferable

utilities (TU) where the target set is any set of allocations that make the grand coalitions stable.

I. INTRODUCTION

We consider a two-step distributed allocation process where at every time players first

renegotiate their past allocations and second generate a new revenue and allocate it. The

time-averaged allocations evolve according to a doubly (over time and space) averaging
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dynamics. The goal is to let all allocations reach consensus to any value in a predefined set

even in the presence of an adversarial disturbance.

Motivations. The problem arises in the context of dynamic coalitional games with Transfer-

able Utilities (TU games) [8]. A coalitional TU game consists in a set of players, who can

form coalitions, and a characteristic function that provides a value for each coalition. The

predefined set introduced above can be thought of as (but it is not limited to) the core of

the game. This is the set of imputations under which no coalition has a value greater than

the sum of its members’ payoffs. Therefore, no coalition has incentive to leave the grand

coalition and receive a larger payoff.

Highlights of contributions. We analyze conditions under which the average allocations: (i)

approach the set X (Theorem 1), (ii) reach consensus, in which case we also compute the

consensus value (Theorem 2), and (iii) are robust against disturbances (Theorem 3).

Related literature. Coalitional games with transferable utilities (TU) were first introduced

by von Neumann and Morgenstern [14]. Here, a main issue is to study whether the core is

an “approachable” set, and which allocation processes can drive the “complaint vector” to

that set. Approachability theory was developed by Blackwell in the early ’56, [2], and is

captured in the well known Blackwell’s Theorem. The geometric (approachability) principle

that lies behind the Blackwell’s Theorem is among the fundamentals in allocation processes in

coalitional games [7]. The discrete-time dynamics analyzed in the paper follows the rules of

a typical consensus dynamics (see, e.g., [11] and references therein). among multiple agents,

where an underlying communication graph for the agents and balancing weights have been

used with some variations to reach an agreement on common decision variable in [10], [9],

[11], [13], [12], [4] for distributed multi-agent optimization.

The paper is organized as follows. In Section, II, we formulate the problem and discuss

motivations and main assumptions. In Section III, we illustrate the main results. In Section

IV we provide numerical illustrations. Finally, in Section V, we provide concluding remarks

and future directions.

Notation. We view vectors as columns. For a vector x, we use [x]j to denote its jth coordinate

component. We let x′ denote the transpose of a vector x, and ‖x‖ denote its Euclidean norm.

An n×n matrix A is row-stochastic if the matrix has nonnegative entries aij and
∑n

j=1 a
i
j = 1

for all i = 1, . . . , n. For a matrix A, we use aij or [A]ij to denote its ijth entry. A matrix A
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is doubly stochastic if both A and its transpose A′ are row-stochastic. Given two sets U and

S, we write U ⊂ S to denote that U is a proper subset of S. We use |S| for the cardinality

of a given finite set S. We write PX [x] to denote the projection of a vector x on a set X ,

and we write dist(x,X) for the distance from x to X , i.e., PX [x] = argminy∈X ‖x− y‖ and

dist(x,X) = ‖x − PX [x]‖, respectively. Given a function of time x(·) : N → R, we denote

by x̄(t) its average up to time t, i.e., x̄(t) := 1
t

∑t

τ=1 x(τ).

II. DISTRIBUTED REWARD ALLOCATION ALGORITHM

Every player in a set N = {1, . . . , n} is characterized by an average allocation vector

x̂i(t+1) ∈ R
n. At every time he renegotiates with neighbors all past allocations and generates

a new allocation vector xi(t+ 1). The time-averaged allocation x̂i(t) evolves as follows:

x̂i(t+ 1) =
t

t+ 1

[

n
∑

j=1

aij(t)x̂j(t)

]

+
1

t+ 1
xi(t+ 1), (1)

where ai = (ai1, . . . , a
i
n)

′ is a vector of nonnegative weights consistent with the sparsity of the

communication graph G(t) = (N, E(t)). A link (j, i) ∈ E(t) exists if player j is a neighbor

of player i at time t, i.e. if player i renegotiates allocations with player j at time t.

Problem. Our goal is to study under what conditions all allocation vectors converge to a

unique value and this value belongs to a predefined set X: for all i, j ∈ V ,

x̂i(t) = x̂j(t) ∈ X, for t → ∞. (2)

In the sequel, we rewrite equation (1) in the compact form:

x̂i(t+ 1) =
t

t+ 1
wi(t) +

1

t+ 1
xi(t+ 1), (3)

where wi(t) is the space average defined as

wi(t) =

[

n
∑

j=1

aij(t)x̂j(t)

]

. (4)

A. Motivations

The set X introduced above can be thought of as the core of a coalitional game with

Transferable Utilities (TU game).

A coalitional TU game is defined by a pair < N, η >, where N = {1, . . . , n} is a set of

players and η : 2N → R a function defined for each coalition S ⊆ N (S ∈ 2N ). The function

October 8, 2013 DRAFT
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η determines the value η(S) assigned to each coalition S ⊂ N , with η(∅) = 0. We let ηS be

the value η(S) of the characteristic function η associated with a nonempty coalition S ⊆ N .

Given a TU game < N, η >, let C(η) be the core of the game,

C(η) =

{

x ∈ R
n
∣

∣

∣

∑

j∈N

[x]j = ηN ,

∑

j∈S

[x]j ≥ ηS for all nonempty S ⊂ N

}

.

Essentially, the core of the game is the set of all allocations that make the grand coalition

stable with respect to all subcoalitions. Condition
∑

j∈N [x]j = ηN is also called efficiency

condition. Condition
∑

j∈S[x]j ≥ ηS for all nonempty S ⊂ N is referred to as “stability with

respect to subcoalitions”, since it guarantees that the total amount given to the members of a

coalition exceeds the value of the coalition itself.

B. Main assumptions

Following [11] (see also [8]) we can make the following assumptions on the information

structure. We let A(t) be the weight matrix with entries aij(t).

Assumption 1: Each matrix A(t) is doubly stochastic with positive diagonal. Furthermore,

there exists a scalar α > 0 such that aij(t) ≥ α whenever aij(t) > 0.

At any time, the instantaneous graph G(t) need not be connected. However, for the proper

behavior of the process, the union of the graphs G(t) over a period of time is assumed to be

connected.

Assumption 2: There exists an integer Q ≥ 1 such that the graph
(

N,
⋃(t+1)Q−1

τ=tQ E(τ)
)

is

strongly connected for every t ≥ 0.

It is worth noting that the above assumptions are fairly standard in the distributed computa-

tion literature. In particular, the joint strong connectivity is the weakest possible assumption to

guarantee persistent circulation of the information through the graph. The double stochasticity

of the matrix A(t) is a common assumption to guarantee average consensus.

Let X ⊂ R
n be the core set of the game. A common assumption in approachability theory

is that both the core set is convex and bounded, and the payoff (or loss) vectors generated at

each time are bounded. Thus, following [2], [5], we borrow and adapt such an assumption

to our framework.
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wi(t)

x̂i(t + 1)

xi(t + 1)

X

H−

H+

PX(wi(t))

Fig. 1. Approachability principle.

Assumption 3: The core set X is nonempty.

Notice that a nonempty core is a convex and compact set.

The next assumption indicates how the new reward vector has to be generated in order to

obtain approachability.

Assumption 4: For each i ∈ N the new reward vector xi(·) is bounded, i.e., there exists

L > 0 s.t. ∀t ≥ 0 ‖xi(t+1)‖ ≤ L, and satisfies the following inequality, for a scalar negative

number, φ < 0,

(wi(t)− PX(wi(t)))
′ (xi(t+ 1)− PX(wi(t)) ≤ φ < 0.

From a geometric standpoint, Assumption 4 requires that, given the two half-spaces identified

by the supporting hyperplane of X through PX(wi(t)), the new reward vector xi(t+ 1) lies

in the half-space not containing wi(t).

III. MAIN RESULTS

Next, we provide the main results of the paper. Namely, we prove that the average allo-

cations: (i) approach the set X (Theorem 1), (ii) reach consensus (Theorem 2), and (iii) are

robust against disturbances (Theorem 3).

A. Approachability and consensus

Before stating the first theorem, we need to introduce two lemmas. The next lemma

establishes that the space averaging step in (1) reduces the total distance (i.e. the sum of

distances) of the estimates from the set X .

October 8, 2013 DRAFT
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Lemma 1: Let Assumption 1 hold. Then the total distance from X decreases when replac-

ing the allocations x̂i(t) by their space averages wi(t), i.e.,

n
∑

i=1

dist(wi(t), X) ≤
n
∑

i=1

dist(x̂i(t), X).

As a preliminary step to the next result, observe that, from the definition of dist(·, X) and

from (1) and (4), it holds

dist(x̂i(t+ 1), X)2 = ‖x̂i(t+ 1)− PX [x̂i(t+ 1)]‖2

≤ ‖x̂i(t+ 1)− PX [wi(t)]‖
2

=

∥

∥

∥

∥

t

t+ 1
wi(t) +

1

t+ 1
xi(t+ 1)− PX [wi(t)]

∥

∥

∥

∥

2

=

∥

∥

∥

∥

t

t+ 1
(wi(t)− PX [wi(t)])

+
1

t+ 1
(xi(t+ 1)− PX [wi(t)])

∥

∥

∥

∥

2

=

(

t

t+ 1

)2

‖wi(t)− PX [wi(t)]‖
2

+

(

1

t+ 1

)2

‖xi(t+ 1)− PX [wi(t)]‖
2

+
2t

(t+ 1)2
(wi(t)− PX [wi(t)])

′(xi(t+ 1)− PX [wi(t)]).

(5)

The following lemma states that, under the approachability assumption, the distance of

each single estimate from X decreases with respect to the one of the spatial average when

applying the time averaging step.

Lemma 2: Let Assumptions 3-4 hold. Then, there exists a positive integer scalar, t̃ > 0,

such that for all t ≥ t̃ > 0 the distance of each single x̂i(t+1) decreases in comparison with

the distance of wi(t), i.e.,

dist(x̂i(t+ 1), X) < dist(wi(t), X), ∀i = 1, . . . , n

We are now ready to state the first main result.

Theorem 1: Let Assumptions 1-4 hold. Then all average allocations approach set X , i.e.,

lim
t→∞

n
∑

i=1

dist(x̂i(t), X) = 0.
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Next, let us introduce the barycenter of respectively the estimates and the reward vectors

x̂b(t) :=
1

n

n
∑

i=1

x̂i(t) and xb(t) :=
1

n

n
∑

i=1

xi(t).

Consistently, let us denote as x̄b(t) the time average of the barycenter, i.e.

x̄b(t) =
1

t+ 1

t
∑

τ=0

xb(τ).

The following lemma establishes that the barycenter of the estimates evolves as the time

average x̄b(t) of the barycenter of the reward vectors generated by the players.

Lemma 3: The barycenter of the local allocations x̂b(t) coincides at each time t with the

time-average of the barycenter of the generated reward vectors x̄b(t).

The following theorem establishes that all allocations converge to x̄b(t), which in the limit

must belong to X according to Theorem 1.

Theorem 2: (Consensus to the barycenter time-average) Let Assumptions 1-4 hold. Then,

all players reach consensus on the time-average of the barycenter of the reward vectors

generated by each player, x̄b(t), i.e.,

lim
t→∞

‖x̂i(t)− x̄b(t)‖ = 0 ∀i = 1, . . . , n.

Summarizing the two main results, we have proven that asymptotically all the players’

allocations converge to the time-average of the barycenter of the generated reward vectors

and that this vector lies in the core of the game.

B. Adversarial disturbance

Here we analyze the case where, for each player i ∈ N , the input xi(·) is the payoff of a

repeated two-player game between player i (Player i1) and an (external) adversary (Player i2).

With some slight abuse of notation we denote S1 and S2 the finite set of actions of players

i1 and i2 respectively.

The instantaneous payoff xi(t) at time t is given by a function φi : S1 × S2 → R
n as

follows:

xi(t) = φ(j(t), k(t)),

where j(t) ∈ S1 and k(t) ∈ S2. We extend xi to the set of mixed actions pairs, ∆(S1)×∆(S2),

in a bilinear fashion. In particular, for every pair of mixed strategies (p(t), q(t)) ∈ ∆(S1) ×

October 8, 2013 DRAFT
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∆(S2) for player i1 and i2 at time t, the expected payoff is

Exi(t) =
∑

j∈S1

∑

k∈S2

pj(t)qk(t)φ(j, k).

For simplicity the one-shot vector-payoff game (S1, S2, xi) is denoted by Gi.

Let λ ∈ R
n. Denote by 〈λ,Gi〉 the zero-sum one-shot game whose set of players and their

action sets are as in the game Gi, and the payoff that player 2 pays to player 1 is λ′φ(j, k)

for every (j, k) ∈ S1 × S2.

The resulting zero-sum game is described by the matrix

Φλ = [λ′φ(j, k)]j∈S1,k∈S2
.

As a zero-sum one-shot game, the game 〈λ,Gi〉 has a value, denoted

vλ := min
p∈∆S1

max
q∈∆S2

p′Φλq = max
q∈∆S2

min
p∈∆S1

p′Φλq.

For every mixed action p ∈ ∆(S1) denote D1(p) the set of all payoffs that might be realized

when player i1 plays the mixed action p:

D1(p) = {xi(p, q) : q ∈ ∆(S2)}.

If vλ ≥ 0 (resp. vλ > 0), then there is a mixed action p ∈ ∆(S1) such that D1(p) is a subset

of the closed half space {x ∈ R
n : λ′x ≥ 0} (resp. half space {x ∈ R

m : λ′x > 0}).

Let us introduce next the counterpart of Assumption 4 in this new worst-case setting.

Assumption 5: For any wi(t) ∈ R
n, there exists a mixed strategy p(t + 1) ∈ ∆(S1) for

Player i1 such that, for all mixed strategy q(t + 1) ∈ ∆(S2) of Player i2, the new reward

vector xi(·) is bounded, i.e. there exists L > 0 s.t. ∀t ≥ 0 ‖xi(t+ 1)‖ ≤ L, and satisfies

(wi(t)− PX(wi(t)))
′ (Exi(t+ 1)− PX(wi(t)) ≤ φ < 0,

where Exi(t+ 1) =
∑

j∈S1

∑

k∈S2
pj(t+ 1)qk(t+ 1)φ(j, k).

The above condition is among the foundations of approachability theory as it guarantees that

the average payoff 1
T

∑T−1
t=0 xi(t) converges almost surely to X (see, e.g., [2] and also [5],

chapter 7). Here we adapt the above condition to the multi-agent and distributed scenario

under study.

Corollary 3.1 (see [2], Corollary 2): Any convex set X ⊂ R
n is approachable if and only

if vλ < 0 for any λ ∈ R
n.
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Next we show that if the approachability condition expressed above holds true, then dist(x̂i, X)

tends to zero for any X . We write w.p.1 to mean “with probability 1”.

Theorem 3: Let Assumptions 1-3 and 5 hold. Then all average allocations approach set X ,

i.e.,

lim
t→∞

n
∑

i=1

dist(x̂i(t), X) = 0, w.p.1.

We conclude this section by observing that Theorem 2 still holds and therefore all play-

ers’ estimates reach consensus on the time-average of the barycenter of the reward vectors

generated by each player.

IV. SIMULATIONS

We illustrate the results in a game with four players, N = {1, . . . , 4}, communicating

according to a fixed undirected cycle graph. That is, G(t) = (N, E) where E = {(i, j) | j =

i+ 1, i ∈ {1, . . . n− 1} or (i, j) = (n, 1)}.

We set η{1} = . . . = η{4} = 2, η{1,2} = 5, η{3,4} = 5, η{1,2,3} = 7 and ηN = 10 (ηS is the

value of coalition S). That is, each player expects to receive at least a reward of 2 which

is its value as a singleton coalition. But, for example, players 1 and 2 expect to be more

valuable if they form a coalition as well as 3 and 4. Consistently, the core of the game is the

polyhedral set given by

C(η) =
{

x ∈ R
4
∣

∣

∣
x1 + x2 + x3 + x4 = 10,

x1 + x2 + x3 ≥ 7, x1 + x2 ≥ 5,

x3 + x4 ≥ 5, x1 ≥ 2, . . . , x4 ≥ 2
}

.

We initialize the assignments assuming each player assign itself the entire reward. That

is, denoting bi ∈ R
n the i-th canonical vector (so that, e.g., b1 = [1 0 . . . 0]′), we set

x̂i(0) = 10 bi for all i ∈ {1, . . . , n}. At every iteration t ∈ N, each player chooses the

new reward vector xi(t + 1) according to the approachability principle. In particular, we set

xi(t+ 1) = PX [wi(t)] + α (PX [wi(t)]−wi(t)) + v⊤, where α is a random number uniformly

distributed in [0, 1] and v⊤ a random vector belonging to the hyperplane tangent to the core

at PX [wi(t)] with coordinates uniformly chosen in [0, 1]. The temporal evolution of the local

estimates of the average reward vector is depicted in Figure 2. As expected the local estimates

converge to the same average assignment which is the point of the core [3.8 3 2.2 1]′.
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Fig. 2. Local average reward vectors

V. CONCLUSIONS

We have analyzed convergence conditions of a distributed allocation process arising in the

context of TU games. Future directions include the extension of our results to population

games with mean-field interactions, and averaging algorithms driven by Brownian motions.
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[8] A. Nedić and D. Bauso. Dynamic coalitional tu games: Distributed bargaining among players’ neighbors. IEEE Trans.

Autom. Control, 58(6):1363–1376, 2013.
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APPENDIX

Proof of Lemma 1

By convexity of the distance function dist(·, X) and from (4) we have

dist(wi(t), X) ≤
n
∑

j=1

aij(t)dist(x̂j(t), X).

Summing over i = 1, . . . , n both sides of the above inequality we obtain

n
∑

i=1

dist(wi(t), X) ≤
n
∑

i=1

n
∑

j=1

aij(t)dist(x̂j(t), X)

=
n
∑

j=1

(

n
∑

i=1

aij(t)

)

dist(x̂j(t), X) =
n
∑

j=1

dist(x̂j(t), X),

where the last equality follows from the stochasticity of A(t) in Assumption 1. This concludes

the proof.

October 8, 2013 DRAFT
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Proof of Lemma 2

Rearranging equation (5) we obtain

‖x̂i(t+ 1)− PX [x̂i(t+ 1)]‖2

−
t2

(t+ 1)2
‖wi(t)− PX [wi(t)]‖

2 ≤

1

(t+ 1)2
‖xi(t+ 1)− PX [wi(t)]‖

2

+
2t

(t+ 1)2
(wi(t)− PX [wi(t)])

′(xi(t+ 1)− PX [wi(t)]).

(6)

Note that the left hand side in (6) approximates dist(x̂i(t + 1), X)2 − dist(wi(t), X)2 for

increasing t and also that for all t the left hand side upper bounds such a difference, i.e.,

dist(x̂i(t+ 1), X)2 − dist(wi(t), X)2

≤ dist(x̂i(t+ 1), X)2 −
t2

(t+ 1)2
dist(wi(t), X)2 ∀t.

It remains to note that there exists a great enough scalar integer t̃ such that the left hand

side in (6) is negative for all t ≥ t̃. From the boundedness of set X and of vectors xi(t),

there exists M > 0 such that ‖xi(t+ 1)− PX [wi(t)]‖
2 < M . Thus, we have

dist(x̂i(t+ 1), X)2 − dist(wi(t), X)2

≤ dist(x̂i(t+ 1), X)2 −
t2

(t+ 1)2
dist(wi(t), X)2

≤
1

(t+ 1)2
(

‖xi(t+ 1)− PX [wi(t)]‖
2

+2t(wi(t)− PX [wi(t)])
′(xi(t+ 1)− PX [wi(t)])

)

≤
1

(t+ 1)2
(M + 2tφ) < 0

(7)

Taking t̃ > −M/2φ > 0 concludes the proof.
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Proof of Theorem 1

Recall from (5) that

‖x̂i(t+ 1)− PX [x̂i(t+ 1)]‖2 ≤
(

t

t+ 1

)2

‖wi(t)− PX [wi(t)]‖
2

+

(

1

t+ 1

)2

‖xi(t+ 1)− PX [wi(t)]‖
2

+2
t

(t+ 1)2
(wi(t)− PX [wi(t)])

′(xi(t+ 1)− PX [wi(t)]).

From Lemma 1 and rearranging the above inequality, we have

n
∑

i=1

[

(t+ 1)2‖x̂i(t+ 1)− PX [x̂i(t+ 1)]‖2

−t2‖x̂i(t)− PX [x̂i(t)]‖
2
]

≤
n
∑

i=1

[

‖xi(t+ 1)− PX [wi(t)]‖
2

+2t(wi(t)− PX [wi(t)])
′(xi(t+ 1)− PX [wi(t)])

]

≤
n
∑

i=1

[

‖xi(t+ 1)− PX [wi(t)]‖
2 ,

where the last inequality is due to Assumption 4. Summing over t = 0, . . . , τ − 1, and noting

that ‖xi(t+ 1)− PX [wi(t)]‖ is bounded (from Assumption 3), so that the right hand side is

upper bounded by some M > 0, we obtain

n
∑

i=1

τ 2‖x̂i(τ)− PX [x̂i(τ)]‖
2 ≤ Mτ

from which ‖x̂i(τ) − PX [x̂i(τ)]‖
2 ≤ M

τ
, and therefore limτ→∞ ‖x̂i(τ) − PX [x̂i(τ)]‖

2 = 0,

which concludes the proof.

Proof of Lemma 3

To prove the statement observe that x̄b(0) = x̂b(0) = xb(0). Thus, we prove that x̄b(t) and

x̂b(t) satisfy the same dynamics. By definition of time-average, x̄b(t) satisfies the dynamics

x̄b(t+ 1) =
t

t+ 1
x̄b(t) +

1

t+ 1
xb(t+ 1). (8)
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The dynamics of x̂b(t) is

1

n

n
∑

i=1

x̂i(t+ 1) =
1

n

[ t

t+ 1

n
∑

i=1

n
∑

j=1

aij(t)x̂j(t)

+
1

t+ 1

n
∑

i=1

xi(t+ 1)
]

.

Exchanging the sum signs

x̂b(t+ 1) =
1

n

t

t+ 1

n
∑

j=1

n
∑

i=1

aij(t)x̂j(t) +
1

t+ 1
xb(t+ 1),

and, by Assumption 1 (A(t) is doubly stochastic),

x̂b(t+ 1) =
1

n

t

t+ 1

n
∑

j=1

x̂j(t) +
1

t+ 1
xb(t+ 1)

=
t

t+ 1
x̂b(t) +

1

t+ 1
xb(t+ 1),

which is the same dynamics as (8), thus concluding the proof.

Proof of Theorem 2

Using the previous lemma we can show that x̂i(t) converges to x̂b(t). Let us introduce the

error of the estimate x̂i(t) from the barycenter, i.e. êi(t) = x̂i(t)− x̂b(t). The error dynamics

is given by

êi(t+ 1) =
t

t+ 1

[

n
∑

j=1

aij(t)êj(t) +
n
∑

j=1

aijx̂b(t)

]

+
1

t+ 1
ei(t+ 1) +

1

t+ 1
xb(t+ 1)

−
t

t+ 1
x̂b(t)−

1

t+ 1
xb(t+ 1),

where ei(t) = xi(t)− xb(t). Thus

êi(t+ 1) =
t

t+ 1

(

n
∑

j=1

aij(t)êj(t)
)

+
1

t+ 1
ei(t+ 1).

Multiplying both sides by (t+ 1) and taking t inside the sum,

(t+ 1)êi(t+ 1) =
n
∑

j=1

aij(t)têj(t) + ei(t+ 1).
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Defining ẑi(t) = t êi(t), we have

ẑi(t+ 1) =
n
∑

j=1

aij(t)ẑj(t) + ei(t+ 1).

In vector form the above equation turns to be

ẑ(t+ 1) =
(

A(t)⊗ In
)

ẑ(t) + e(t+ 1), (9)

with ẑ(t) = [z1(t) . . . zn(t)]
′, ê(t) = [e1(t) . . . en(t)]

′, In the identity matrix of dimension

n and ⊗ the Kronecker product. Notice that denoting [ẑ]ℓ =
[

[ẑ1]ℓ . . . [ẑn]ℓ
]

and [e]ℓ =
[

[e1]ℓ . . . [en]ℓ
]

, ℓ ∈ {1, . . . , n}, the dynamics of each [ẑ]ℓ is given by

[ẑ]ℓ(t+ 1) = A(t)[ẑ]ℓ(t) + [e]ℓ(t+ 1). (10)

Thus, we can simply work on each component separately. Slightly abusing notation we neglect

the subscript of [ẑ]ℓ and [e]ℓ, and write ẑ(t) and e(t).

It is worth noting that the driven system (10), and so (9), is not bounded-input-bounded-

state stable (when a general input signal is allowed). That is, for general initial condition and

input signal the state trajectory may diverge. We show that for the special initial condition

(ẑ(t) = 0 by construction) and class of input signals (1′e(t + 1) = 0 by definition) under

consideration, the state trajectories of (9) are bounded.

First, let us observe that, multiplying both sides of (9) by the vector 1′ = [1 . . . 1], we get

1
′ẑ(t+ 1) = 1

′A(t)ẑ(t) + 1
′e(t+ 1)

= 1
′ẑ(t).

(11)

Since ẑ(0) = 0 by construction, it holds 1
′ẑ(t) = 0 for all t ∈ N. That is, ẑ(t) is orthogonal

to the vector 1 for all t.

Next, we show that the trajectory ẑ(·) is bounded. Following [3], let P ∈ R
(n−1)×n be a

matrix defining an orthogonal projection onto the space orthogonal to span{1}. It holds that

P1 = 0 and ‖Px‖2 = ‖x‖2 if x′
1 = 0. Thus, from equation (11) we have that ‖P ẑ(t)‖2 =

‖ẑ(t)‖2 for all t. Therefore, proving boundedness of ẑ(·) is equivalent to showing that P ẑ(·)

is bounded. For a given P , associated to any A(t) satisfying Assumption 1, there exists Ā(t)

satisfying PA(t) = Ā(t)P . The spectrum of Ā(t) is the spectrum of A(t) after removing the

eigenvalue 1. Multiplying both sides of equation (9) by P , we get

P ẑ(t+ 1) = PA(t)ẑ(t) + Pe(t+ 1)

= Ā(t)P ẑ(t) + Pe(t+ 1).
(12)
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Under Assumptions 1 and 2, the undriven dynamics y(t + 1) = Ā(t)y(t) is uniformly

exponentially stable, i.e., ||y(t)|| < Cρt||y(0)|| with C and ρ < 1 independent of y(0) and

depending only on n, Q and α (see Theorem 9.2 and Corollary 9.1 in [6]). Thus, the state

trajectories of (12) are bounded for any bounded signal Pe(t + 1) with 1
′e(t) = 0. Since

1
′e(t) = 0 for all t, we have ‖Pe(t)‖2 = ‖e(t)‖2 for all t, which is bounded. The proof

follows by recalling that ‖P ẑ(t)‖2 = ‖ẑ(t)‖2 and that ẑ(t) = tê(t).

Proof of Theorem 3

From (5), invoking Lemma 1 and using Assumption 5 we have

n
∑

i=1

[

(t+ 1)2‖x̂i(t+ 1)− PX [x̂i(t+ 1)]‖2

−t2‖x̂i(t)− PX [x̂i(t)]‖
2
]

≤
n
∑

i=1

[

‖xi(t+ 1)− PX [wi(t)]‖
2

+2t(wi(t)− PX [wi(t)])
′(xi(t+ 1)− Exi(t+ 1))

]

,

Summing over t = 0, . . . , τ − 1, and noting that ‖xi(t + 1) − PX [wi(t)]‖ is upper bounded

(from Assumption 3) by some M > 0, we obtain

n
∑

i=1

‖x̂i(τ)− PX [x̂i(τ)]‖
2

≤
M

τ
+

1

τ

τ−1
∑

t=0

n
∑

i=1

Ki
t‖xi(t+ 1)− Exi(t+ 1)‖

where Ki
t =

1
τ
2t‖wi(t)− PX [wi(t)]‖. Now, using ‖xi(t + 1)‖ ≤ L ∀t ≥ 0 from Assumption

5 and from (3) and (4) we have that wi(t) is bounded which in turn implies that ‖wi(t) −

PX [wi(t)]‖ is bounded. Then, the second term in the right-hand side is an average of bounded

zero-mean martingale differences, and therefore the Hoeffding-Azuma inequality (together

with the Borel-Cantelli lemma) immediately implies that

lim
τ→∞

n
∑

i=0

‖x̂i(τ)− PX [x̂i(τ)]‖
2 = 0

which concludes the proof.
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