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Abstract

A transition state for a Hamiltonian system is a closed, invariant, oriented, codimension-

2 submanifold of an energy-level that can be spanned by two compact codimension-1

surfaces of unidirectional flux whose union, called a dividing surface, locally separates

the energy-level into two components and has no local recrossings. For this to happen

robustly to all smooth perturbations, the transition state must be normally hyperbolic.

The dividing surface then has locally minimal geometric flux through it, giving a useful

upper bound on the rate of transport in either direction.

Transition states diffeomorphic to S2m−3 are known to exist for energies just above

any index-1 critical point of a Hamiltonian of m degrees of freedom, with dividing

surfaces S2m−2. The question addressed here is what qualitative changes in the tran-

sition state, and consequently the dividing surface, may occur as the energy or other

parameters are varied? We find that there is a class of systems for which the tran-

sition state becomes singular and then regains normal hyperbolicity with a change in

diffeomorphism class. These are Morse bifurcations.

Continuing the dividing surfaces and transition states through Morse bifurcations

allows us to compute the flux for a larger range of energies. The effect of Morse

bifurcations on the flux, as a function of energy, is considered and we find a loss of

differentiability in the neighbourhood of the bifurcations.

Various examples are considered. Firstly, some simple examples in which transition

states connect or disconnect, and the dividing surface may become a torus or other.

Then, we show that sequences of Morse bifurcations producing various interesting tran-

sition state and dividing surface are present in reacting systems, specifically bimolec-

ular capture processes. We consider first planar reactions, for which the reduction of

symmetries is easiest, and then also spatial reactions, where we find interesting Morse

bifurcations involving both the attitude degrees of freedom and the angular momentum

ones.

In order to consider these examples, we present a method of constructing dividing

surfaces spanning general transition states, and also a method to approximate normally

hyperbolic submanifolds due to MacKay.
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Chapter 1

Introduction

Many physical problems can be reduced to considering the rate of transport of vol-

ume between different regions of the state space*1 of a (low-dimensional) Hamilto-

nian system. Such problems arise, for example, when studying chemical reaction

rates [Kec67], capture and escape processes in celestial mechanics [JR+02], particle es-

cape from charged particle storage rings [PM08], and displacement of defects in solids

[TJ+85]. The state space volume of interest in these problems is that occupied by

a classical ensemble derived from a “kinetic approximation”, i.e. a great number of

different, independent realisations of the same Hamiltonian system. The study of the

evolution of ensembles, as opposed to single trajectories, involves Liouville’s equation,

which is reviewed Section 1.1. Since energy is conserved by the systems, it is natural to

consider the rate at which energy-surface volume, or ergode*2, crosses between regions

as a function of the energy. The rate of transport question is stated more formally in

Section 1.2, where we also recall and compare a few of the methods available to study

these problems.

Both Marcelin [Mar15, Chapter 2]*3 and later Wigner [Wig37] realised that a nat-

ural way to study the rate of transport is to place a dividing surface*4 between the

regions of interest and consider the flux of ergode through this surface. It must divide

the whole energy level into two distinct regions, such that no trajectory can pass from

one region to the other without crossing it. In this case the flux of ergode through the

dividing surface in one direction gives an upper bound on the rate of transport in this

direction. In order to obtain a useful upper bound, Wigner [Wig37] proposed varying

the dividing surface to obtain one with (locally) minimal flux. This variational defini-

tion does not determine a unique dividing surface, because one can flow any dividing

*1 The state space of Hamiltonian systems is often referred to as phase space. We prefer the dynamical
systems terminology, and reserve phases for the “macroscopic states” of statistical mechanics,
e.g. the gas phase of the reactions considered in Chapter 3.

*2 Ergode is Boltzmann’s name for a microcanonical ensemble, see [Bru76, pages 242,367]. We shall
use it interchangeably with energy-surface volume.

*3 This is a posthumous article possibly compiled by Jean Baptiste Perrin, René Marcelin’s Ph.D. su-
pervisor, seeing as he died in 1914 in WWI. The work in this article was from (one of) his 1914
theses and also from previously published articles, as explained in the brief biography by Laidler
[Lai85]. This makes 2014 the centenary of the dividing surface (or surface critique as Marcelin
called it) approach to Hamiltonian transport.

*4 Note that ‘surface’ (or hypersurface) means an (embedded) submanifold of codimension-1.
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surface along the vector field and obtain another, but the minimum flux is well defined.

The dividing surface approach to transport is the topic of this thesis. It is introduced in

Section 1.2, and surfaces of locally minimal flux are considered in Section 1.3. This aims

to be a (fairly) complete review of the fragmented literature found partly in chemistry

and partly in dynamical systems.

A lot of the initial and subsequent work was done with reaction rates in mind and

led to (variational) transition state theory*5 (nicely reviewed by Keck [Kec67] and put

into context by Pollak and Talkner [PT05]). In chemical reactions, one finds the basic

transport scenario, which we refer to as “flux over a saddle”. Here, the two regions

of interest represent reactants and products and have an index-1 critical point of the

Hamiltonian function between them, hence the name. For small energies above that

at the critical point, the energy level is diffeomorphic to a spherical cylinder and has a

bottleneck about the critical point. The dividing surface is therefore placed in the bot-

tleneck region, thus allowing for a local analysis. It can be decomposed into two parts

with oppositely directed flows, each of which spans*6 a normally hyperbolic*7, closed*8,

codimension-2 submanifold, the transition state. The basic scenario is reviewed in

Section 1.4.

The general picture was given by Wigner [Wig38], though this was not the first

time it appeared in print. For two degree of freedom systems, the transition states

are unstable periodic orbits. This was pointed out by Pechukas [Pec76] and then used

by Pollak and Pechukas [PP78], and simultaneously by Sverdlik and Koeppl [SK78]*9,

to find explicit dividing surfaces spanning the family of unstable periodic orbits for

systems representing collinear bimolecular reactions. These very examples had actually

already been considered by De Vogelaere and Boudart [DVB55], following Wigner’s

suggestion to introduce a transmission coefficient, defined as the ratio of the number

of crossings through the dividing surface leading to reaction to the total number of

crossings, for systems with complex potential energies using the approach of Lemaitre

and co-workers for the “allowed cone of cosmic radiation” (see references in [Wig38,

DVB55]). Thus, in pioneering work that pre-dated both Pechukas et al. and the work

of De Leon and co-workers on “reactive cylinders” (see e.g. [dA+90]), De Vogelaere

and Boudart considered periodic orbit transition states, their bifurcations, and their

stable and unstable codimension-1 manifolds that divide reactive trajectories from un-

reactive ones. Their use of a dividing surface spanning the unstable periodic orbit is

however only implicit, which might explain why their work is relatively unknown. One

can actually trace unstable periodic orbits and their invariant manifolds all the way

back to the early work of Langevin on the capture, or collision, of two bodies with a

*5 Also often referred to as activated complex theory, or RRKM theory for unimolecular reactions.
*6 We say that a manifold S spans N if the latter is its boundary, N = ∂S.
*7 An invariant submanifold whose linearised normal dynamics are hyperbolic and dominate those

tangent to it, see Appendix A.1.
*8 We call a manifold N closed if it has no boundary ∂N = ∅. Unfortunately, this is not the only use

of “boundary” and “closed” in topology, i.e. they are also used in the sense of subsets of topological
spaces.

*9 This paper has an interesting discussion on the discovery of unstable periodic orbits as solutions
to the variational problem. Koeppl supposedly found this independently and at the same time as
Pechukas, but only wrote up his results as a progress report for the Alfred P. Sloan Foundation.
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central field [Lan05, page 279]. Here, the unstable periodic orbit of the two degree of

freedom system in the invariable plane is used to find the maximum impact parameter,

as the problem is considered using scattering theory. This is again an example of the

basic transport scenario, and the relation to the work of Pechukas and co-workers was

commented upon at the time by Chesnavich and Bowers [CB82]. The generalisation of

the basic scenario to arbitrary degrees of freedom was mentioned by Pechukas [Pec76],

and then considered explicitly by Toller et al. [TJ+85], without however restricting to

energy-levels. They instead appealed to the Boltzmann distribution to restrict their

attention to low energy sub-level sets of the state space. The restriction to the energy-

levels was then considered by MacKay [Mac90], though for more than 2 degrees of

freedom it left too much to the imagination of the reader, as the construction was then

rediscovered by Wiggins et al. [WW+01]. In parallel, the celestial mechanics literature

had also been considering the basic transport scenario about the Lagrange (index-1

critical) points in the circular restricted three-body problem. The planar case has two

degrees of freedom and one finds (Lyapunov) periodic orbits, see e.g. Szebehely’s note

on the very long history of these orbits [Sze67, Section 5.7]. Whereas, for the spatial

case it was known that these are replaced by 3-spheres since the work of Conley and

his students, see [Eas67, Con68, Sac69] and references therein. These works generally

focused on the stable and unstable submanifolds and their role as transport barriers,

as opposed to dividing surfaces. Actually, the transition states are the energy levels of

the local centre manifold about the index-1 critical point of the Hamiltonian function,

as we shall recall in Section 1.4, and the fact that for general degrees of freedom these

are spheres was already known since at least 1965 [Kel65].

Recently, there has been a lot of interest in the chemistry literature in understanding

what happens when the energy is increased in the basic scenario and the bottleneck

opens up, which may lead to more general transport problems, see e.g. [BS11, Osb08].

This leads to interesting mathematical questions and is the focus of this thesis. These

scenarios will not allow for a local analysis about some critical point any more, but

will instead involve global dividing surfaces and transition states that may bifurcate

leading to other scenarios. Section 2.2 gives a method to construct dividing surfaces

about general transition states, which uses the normal hyperbolicity of the latter. This

is a necessary step in order to consider the more general transport problems.

For two degree of freedom systems, the transition states are hyperbolic periodic or-

bits. The bifurcations of such objects are well known and can be found in the literature,

e.g. Abraham and Marsden [AM78, Section 8.6], Meyer et al. [MHO09, Chapter 11]

and Hanßmann [Han07, Chapter 3]. Thus, there have been various studies of the bifur-

cations of periodic orbit transition states in the transition state theory literature, see

e.g. [DVB55, PP78, Dav87]. Periodic orbit transition states will be briefly considered

in Subsection 2.3.1 in order to set the scene for higher dimensional ones. Here we will

note that even when the periodic orbits are hyperbolic, there may still be topological

obstructions that stop them from being transition states. This section raises a number

of questions that will not be answered in this thesis, but instead will be the subject of

a future publication.
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For higher degrees of freedom, the transition states are normally hyperbolic sub-

manifolds of higher dimensions, e.g. in the basic scenario we have a (2m− 3)-sphere.

The bifurcation of such submanifolds is not much explored or understood, even though

there have been a few recent studies [LTK09, TTK11, AB12]. It has been considered

a hard problem because bifurcation necessitates loss of normal hyperbolicity and for

submanifolds of dimension 3 or greater there are many possible consequences. However,

what has been overlooked and will be considered here, is that there is a large class of

systems for which normal hyperbolicity is regained immediately: the transition state

develops singularities at a critical energy, i.e. points at which the manifold structure

fails, but regains smoothness and normal hyperbolicity with a change in diffeomor-

phism type*10. These are Morse bifurcations. One could say that they occur because

the energy levels undergo a Morse bifurcation themselves so the dividing surfaces, and

therefore the transition states, must also undergo a change of diffoemorphism class in

order to still separate these in two.

Our approach is in the spirit of Smale’s “topological program” for mechanical sys-

tems*11 with symmetries [Sma70], in which he suggested studying the diffeomorphism

classes of the reduced state space, and their bifurcations, in order to understand the

dynamics. We apply this to transport problems and extend it to the diffeomorphism

class of the transition states and dividing surfaces. This had not been done until our

recent article [MS14].

For periodic orbits, Morse bifurcations can be thought of as a number of simulta-

neous homoclinic bifurcations. This is mentioned in Subsection 2.3.1. However, Morse

theory, which is briefly reviewed in Appendix A.3, applies to manifolds of all dimen-

sions, so there is no limitation to the number of degrees of freedom one can consider.

Some examples of Morse bifurcations will be considered in Section 2.4. The ex-

amples will initially have 2 degrees of freedom, such that the systems are as simple

as possible and the Morse bifurcations stand out. The central role played by Morse

bifurcations in transport problems is then seen in the application of our results to

bimolecular reactions in Chapter 3. Here, we find interesting sequences of Morse bifur-

cations and therefore transition states and dividing surfaces, first in planar bimolecular

reactions and then spatial reactions between non-collinear molecules.

1.1 Liouvillian dynamics

We are usually interested in transport in (low dimensional) Hamiltonian systems be-

cause we want to find the rate of change of some property of a physical process that

can be thought of as a macroscopic observable of a microscopic system. That is, we

are interested in a physical process that can be modelled as a very high dimensional

*10 This possibility was pointed out by Robert MacKay in the course of a workshop in Bristol in 2009.
Some examples have also been reported in Mauguière et al. [MC+13], a paper that appeared in
preprint form at about the same time as ours, [MS14].

*11 Simple mechanical system are Hamiltonian system whose state space is the cotangent bundle of
a Riemannian manifold (configuration space) with canonical symplectic form ω0, and the Hamil-
tonian is the sum of the positive definite kinetic energy, given by the metric, and a potential

energy.
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Hamiltonian system, of the order of Avogadro’s constant when dealing with molecules,

which however consists a large number of weakly interacting copies of a lower dimen-

sional systems that “represents” the change of interest. Thus, assuming that the lower

dimensional systems are independent of each other, a point in the high dimensional sys-

tem can be replaced by an ensemble for this low dimensional Hamiltonian system*12.

Then the rate of change question translates to one of the rate of transport of state

space volume between regions of interest, which represent the different states.

In the literature, the choice of volume or ensemble for systems representing chemical

reactions generally involves a statistical assumption. The reactant molecules are as-

sumed to be in equilibrium with a Boltzmann distribution. Establishing the equilibrium

can itself be thought of as an elementary reaction. In fact, the statistical assumption

is equivalent to the dynamical assumption that the distribution of vibrational energy

amongst the reactants occurs on time scales that are much smaller than those for re-

action. This essentially requires the whole of the region representing the reactants to

be accessible and the dynamics to be chaotic in this region, see e.g. [Dav85].

The statistical assumption was put in doubt from the very beginnings of transition

state theory, see e.g. Wigner’s comments in [Wig38]. In fact deviations from equilibrium

are not uncommon. Davis studied the transport problem associated with the distri-

bution of vibrational energy, which he referred to as intramolecular transition state

or RRKM theory, from a dynamical systems perspective [Dav85], using the results of

MacKay, Meiss and Percival [MMP84] and Bensimon and Kadanoff [BK84]. These

articles considered transport in two dimensional area preserving maps and were the

starting point of what is now generally referred to as lobe dynamics, see e.g. [Mei92].

Let us now consider the evolution of distributions representing ensembles for Hamil-

tonian systems, and introduce some notation.

We are given an m degree of freedom Hamiltonian systems, which we denoted
(

M2m, ω,H
)

. Here M is a 2m-dimensional differentiable manifold, ω a symplectic

form*13 on it andH a smooth function fromM to R. We shall only consider autonomous

systems.

The Hamiltonian vector field XH is defined*14 by

iXH
ω = dH,

where the interior product i contracts a vector field X and a k-form α to give a (k − 1)-

form, by

iXα (ν1, · · · , νk−1) = α (X, ν1, · · · , νk−1) ,

for any (k − 1) vectors νi.

*12 Some physical processes, such as chemical reactions, have to be modelled as quantum mechani-
cal systems. Then, provided the Born-Oppenheimer approximation holds, we obtain a classical
Hamiltonian systems.

*13 A closed (dω = 0), non-degenerate (∀z ∈ M if ∃ν ∈ TzM such that ω(ν, υ) = 0 ∀υ ∈ TzM , then
ν = 0) 2-form.

*14 There are actually (essentially) two conventions for Hamiltonian systems, as we can choose where
to put the “inescapable minus” of Hamiltonian mechanics. The convention that we use is the one
found in [AM78], which is not the same as the one in [Arn89].
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The vector field generates a Hamiltonian flow ht, which is given by

ḣt(z) = XH(ht(z)), h0(z) = z0.

Alternatively, using Poisson brackets, defined as {F,G} = ω (XF ,XG) for two functions

F,G on M , we can write the equations of motion as

ḣt(z)− {ht,H}(z) = 0, h0(z) = z0.

This equation actually holds for any smooth function on M . The flow is symplectic,

i.e. it preserves the symplectic form

h∗tω = ω.

This can be seen by checking that

d

dt
h∗tω = h∗tLXH

ω = h∗t (iXH
dω + diXH

ω) = h∗t (0 + dH) = 0,

where we have used Cartan’s formula, LXα = iXdα+ diXα, and the properties of the

Hamiltonian system. Thus h∗tω is constant in time, and since h0 is the identity, we

obtain h∗tω = ω, as desired [AM78, page 188].

We can define a state-space (or Liouville) volume as

Ω =
1

m!
ωm,

which is also preserved by the flow, since

h∗tΩ =
1

m!
h∗tω

m =
1

m!
h∗tω ∧ · · · ∧ h∗tω = Ω.

This is known as Liouville’s theorem. In local Darboux coordinates z = (q, p), ω =
∑m

j=1 dqj ∧ dpj and Ω = dq1 ∧ dp1 ∧ · · · ∧ dqm ∧ dpm.

We are not interested in single trajectories, but in the evolution of ensembles, i.e. sets

of initial conditions B1 ⊂ M with non-zero volume, Ω(B1) =
∫

B1 Ω 6= 0. Define

B1
t = ht(B

1), then

Ω(B1
t ) =

∫

B1
t

Ω =

∫

B1

h∗tΩ =

∫

B1

Ω = Ω(B1),

so
d

dt
Ω(B1

t ) = 0.

That is, the ensemble evolves as if it were an incompressible fluid. Given this anal-

ogy, the above equation presents the Lagrangian perspective of the flow of state-space

volume, which focuses on the trajectories.

we can consider the Eulerian perspective, i.e. focus on a specific location of state

space, say the region B ⊂M , and consider the flow through this region. W

Alternatively, we can introduce a distribution function representing the initial B1-

6



ensemble, e.g. ρ1(z, 0) = χB1(z) where χB1 is the characteristic function of B1

χB1(z) =







1 if z ∈ B1,

0 otherwise.

Later, we shall normalise this to a probability distribution, for which
∫

M ρ10Ω = 1.

Then, the distribution ρ1(z, t) at time t of a state z ∈ M originally in B1 at time 0 is

uniquely determined by following the trajectory through z back to z0 ∈ B1, so

ρ1(z, t) = ρ1(z0, 0),

where z = ht(z0). Differentiating with respect to time gives

d

dt
ρ1(z, t) = 0,

and we obtain

(∂tρ
1 + {ρ1,H})(z, t) = 0.

This is known as Liouville’s equation. The study of the evolution of ensembles is in fact

often referred to as Liouvillian dynamics [Gas05, MS+81] and is the starting point of

statistical mechanics, cf. the equations and derivations in [Pet07, Section 2.1] or [Bal97,

Section 3.2]. Most derivations make use of a Riemannian metric. Also, in the literature

we often find the equation written as

(∂tρ+ div(ρXH))(z, t) = 0,

since dρ ∧ iXH
Ω = LρXH

Ω, and for a vector field X and a volume Ω, div(X) is the

scalar defined by div(X)Ω := LXΩ, see e.g. [Fra04, Section 4.2c]. Liouville’s equation

is a linear partial differential equation for the distribution function. Also, it has the

opposite sign to the one appearing in the equations of motion, in the Poisson formalism.

Actually, the product assumption used to obtain the low dimensional Hamiltonian

systems is only a first order kinetic approximation, since the high dimensional system

will usually not be an exact product, due to interactions. When considering interacting

particles in gas phase, for example, this product approximation is valid for sufficiently

dilute gases, i.e. gases for which the effective range of interaction is much smaller

than the inter-particle spacing, or equivalently the range of interaction is much smaller

than the mean free path [Kec67]. In order to find higher order kinetic equations for

the evolution of distribution functions for the low dimensional system, one usually

starts with a distribution for the high dimensional system, due to the uncertainty

in the microscopic initial conditions, and then uses either a BBGKY*15 hierarchy, or

some other perturbative approach to obtain a kinetic equation for the evolution of the

ensembles, see e.g. [Bal97, Dor99].

Apart from Hamiltonian transport problems obtained from macroscopic rate of

*15 Born, Bogoliubov, Green, Kirkwood, and Yvon.
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change questions, as above, others appear when we want to obtain a “statistical under-

standing” of a (low) dimensional Hamiltonian system, that is chaotic say [Gas05]. For

example, we may be interested in asteroids reaching Earth (or generally the planetary

realm) in a reduced three-body system, see Figure 1.2, and want to study the rate

of transport of some representative ensemble as opposed to single trajectories, due to

uncertainties in the initial conditions.

1.2 Rates of transport

The transport question that we are interested in can be stated as follows. Given two

subsets B1, B2 of state-space M , what is the fraction of ensemble originally in B1

(at time 0) that is in B2 after some time t. The ensemble is given by a probability

distribution ρ1 that is initially in B1, i.e. ρ1(z, 0) = χB1(z)/Ω(B1), where χB1 is the

characteristic function of B1 and ρ1 has been normalised so
∫

M ρ1Ω = 1. The ensemble

evolves under the Hamiltonian flow and is represented by ρ1(z, t). We want to compute

∫

B2

ρ1Ω,

or equivalently

Ω(B1
t ∩B

2).

Actually, we want to find their rate of change.

Usually, the subsets Bi will be clear from the application. Generally, we shall

assume that Bi are 2m-dimensional, connected, disjoint subsets of M . Thus avoiding

trivial transport questions, for which Ω(B1
0 ∩B

2) 6= 0. Also, we are implicitly assuming

thatM is connected, or if not that B1 and B2 are in the same component, otherwise the

transport is clearly null. The compactness of the subsets depends on bothM andH, for

example, M might not be compact, as is often the case for simple mechanical systems,

e.g. those with configuration space Rm, and H might not be proper, or bounded from

below.

Often, when the Hamiltonian system models some physical process and is therefore

a simple mechanical system, the subsets of interest are naturally defined using the

potential energy, or an effective potential. For example, chemical systems usually have

a molecular (Born-Oppenheimer) potential U that is bounded from below, and chemical

species (i.e. stable nuclear configuration) are associated with a given “basin” of the

potential [Mez87, Section V.2]. That is, catchment regions*16 Ci are defined for each

critical point z̄i of U . These are the basin of attraction of the critical point under the

gradient flow gt with respect to the Riemannian metric of configuration space

Ci = {z ∈ Q| lim
t→∞

gt(z) = z̄i}.

*16 Basins of minima, or immits (cf. summit) as Cayley called them, of a potential function show strong
analogies with geographical catchment regions, i.e. geographical areas from where rainwater drains
into a lake. The origins of the mathematical concept of a catchment region may be found in the
early Morse theoretic works on topography of Cayley [Cay59] and Maxwell [Max70], who called
them dales, or simply basins.
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C1

C2

Figure 1.1: Contours over configuration space for a double-well potential energy with
two index-1 critical points. Catchment regions of the two minima, restricted to energies
below some given value, enclosed by thick black lines.

Catchment regions are defined for any index critical point and the dimension depends

on the index, namely catchment regions of minima have dimension m, those of index-1

critical points have dimension m−1, etc. Catchment regions for a double well potential

with two index-1 critical points, as found in narcisistic isomerisation reactions and which

we shall study in Section 2.4.2, are depicted in Figure 1.1. We are only interested here in

catchment regions of minima of the potential, which are then used to define the subsets

in state-space for the transport problem. Thus, both configuration Q and state space

M can be partitioned and B1 and B2 are elements of this partition. Our transport

problem can then be seen as one element of a larger question, namely given such a

partition what is the rate of transport of state space volume between regions. There

may also be situations in which we are interested in transport from a number of regions

(or one disconnected region) into another, but transport between multiple regions is

probably best always divided into multiple transport problems.

Note, that the Hamiltonian or potential need not be bounded from below, as is the

case for example with the effective potential of the planar circular restricted three-body

problem, see e.g. [MHO09, Sections 2.3, 6.3.2]. Here, we may be interested in transport

between regions in the neighbourhood of the principal masses, usually referred to as

the interior realm (about the sun) and the planetary realm, or the one that is far from

either, the exterior realm, see Figure 1.2. These transport problems arise when studying

the capture of asteroids, or the transport of rockets for space missions [Con68, JR+02].

For general mechanical systems, the relation between the geometry of state space,

the Hamiltonian function, and so the dynamics and the regions of interest can be much

more complicated. Some of the literature makes simplifying assumptions such as having

a compact state space that is then partitioned into compact regions of interest, which

are connected subsets whose boundaries consist of parts of the boundary of M and of

codimension-1 invariant manifolds, see e.g. [DJ+05].

Computing rates of transport is a non-trivial task, even numerically, which requires
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L1L2L3

L4

L5

forbidden region Hill’s region

exterior realm

interior realm

pleanetary realm

Figure 1.2: Configuration space Q for the planar restricted three-body problem with
Hill’s region Q≤E and the forbidden region Q≥E (shaded) separated by a zero-velocity
curve, for some value of E above the critical energy at L1 and below that at L3, where
Li are the Euler-Lagrange points. The regions of interest are usually the exterior realm,
the planetary realm and the interior realm, about the sun.

solving the Hamiltonian equations with the whole of B1 as initial conditions.

Recently, Mosovksy, Speetjens and Meiss pointed out that for volume preserv-

ing, and therefore Hamiltonian, systems one only has to consider the evolution of

codimension-2 subsets [MSM13]. The first dimensional reduction is obtained by noting

that Ω = −dΘ where Θ = 1
m!θ ∧ω

m−1 is a “generalised” action form with θ the action

form, used to write ω = −dθ, modulo global topological obstructions. In local Darboux

coordinates one usually takes θ =
∑m

k=1 pkdqk. Thus, using Stoke’s theorem,

Ω(B1
t ∩B

2) = −

∫

∂(B1
t ∩B

2)
Θ = −

∫

b1t

Θ−

∫

b2t

Θ,

where we have divided ∂(B1
t ∩B

2) = b1t ∪ b
2
t into components from B1

t and B2, namely

b2t is a segment of ∂B2 which is known, whereas b1t is a segment of ∂B1
t . Next, in order

to simplify the integral over b1t , we write

∫

b1t

Θ =

∫

b1
0

h∗tΘ =

∫

b1
0

Θ+

∫

b1
0

(h∗tΘ−Θ),

and
∫

b1
0

(h∗tΘ−Θ) =

∫ t

0

d

dt

∫

b1
0

(h∗tΘ−Θ)ds =

∫ t

0

∫

b1t

LXH
Θds.

Then, for regular values of H,

LXH
Θ = diXH

Θ− iXH
Ω = diXH

Θ− dH ∧ iXH
ΩE = d(iXH

Θ−H ∧ φE) =: dΛ,

where we have used Cartan’s formula and that φE := iXH
ΩE (which we shall identify

later as a flux form) is closed, since φE = ωm−1/ (m− 1)! [TJ+85]. Mosovsky et al. call

Λ the “generalised” (state-space) Lagrangian form because for 1 degree of freedom,
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ht

B1

B2

B1
t ∩B

2
B1
t

b1t
b2t

M2

Figure 1.3: Depiction of an example transport scenario for a 1 degree of freedom system.
We are interested in the rate of transport of state space volume from region B1 to
B2 ⊂ M . The boundary of B1

t ∩ B
2 is split into the curves b1t and b2t , which meet at

the points ∂b1t = ∂b2t . Cf. [MSM13].

Ω = ω, ω = −dθ and in canonical coordinates LXH
θ = d(iXH

θ−H) = d(pq̇−H) := λ.

Finally

Ω(B1
t ∩B

2) = −

∫

b2t

Θ−

∫

b1
0

Θ−

∫ t

0

∫

∂b1t

Λds.

Thus, in order to compute the transported volume, we require the trajectories of sets

that are two dimensions smaller than the whole region B1 [MSM13]. An example of

transport in a 1 degree of freedom system is depicted in Figure 1.3.

We instead return to the transport problem and notice that another simplification

is available for Hamiltonian system. Since H is conserved by the flow, we can restrict

our attention to the energy levels ME = H−1 (E) and consider the microcanonical

transport problem parametrised by energy.

For regular ME (i.e. dH is nowhere zero on ME; E ∈ R is said to be a regular value

of H), we can define energy-surface volume or ergode, ΩE, a (2m− 1)-form given by

the relation

dH ∧ ΩE = Ω.

This is preserved by the Hamiltonian flow, and the transport problem becomes that of

finding

ΩE(ht(B
1
E) ∩B

2
E).

This will generally be simpler than the general transport problem in state space

because ME is dimension 2m − 1 and might be simpler to consider than the whole of

M , e.g. when H is proper and bounded from below and ME is closed. The regions Bi
E

might also be simpler.

As the energy is varied, the diffeomorphism class of ME may change, as we shall

see in Section 2.4, leading to qualitatively different microcanonical transport prob-

lems. As for the full transport problem, the regions of interest are often defined in

configuration space for mechanical systems. These are the subsets of Hill’s region

Q≤E = U−1((−∞, E]), where U is the potential energy function, as for the planar

circular restricted three-body problem depicted in Figure 1.2.

Similarly, if the system has other symmetries and therefore conserved momenta,
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these too can be reduced in order to obtain a yet lower dimensional transport problem.

This shall be done for the bimolecular reactions of Chapter 3.

Actually, even when considering transport in state-space, it is generally better to

restrict one’s attention to sub-level sets M≤E. This is done by Toller et al. and justified

by appealing to the properties of the Boltzmann distribution, for which higher energy-

levels are less densely populated [TJ+85].

Various approaches were introduced over the years to study transport problems.

Classically, capture or scattering transport problems, in which two bodies approach

each other and interact, were considered using scattering theory. An introduction can

be found in most classical mechanics text books, e.g. [GPS02, Section 3.10]. The rate

is then found by determining the reactive cross section. For two rotationally symmetric

bodies, or equivalently for two distant bodies whose joint potential is very weakly de-

pendent on the attitudes, the transport problem is simplified by considering a central

field between the two bodies. This is known as the Langevin’s central field capture

model after Langevin very early contribution [Lan05], see e.g. review by Chesnavich

and Bowers [CB82]. These examples are usually partially reduced to the invariable

plane, perpendicular to the angular momentum. Here one finds an unstable periodic

orbit whose codimension-1 stable and unstable manifolds act as transport barriers sep-

arating capture from non-capture trajectories. This will be clearer after Section 1.4,

where we shall review the basic scenario. The codimension-1 invariant submanifolds of

the unstable periodic orbits, or in higher degrees of freedom the stable and unstable

submanifolds of more general codimension-2 normally hyperbolic submanifolds, act as

barriers to transport. The idea of focusing on these has been proposed a number of

times, see e.g. [DVB55, Dav87, dA+90, DJ+05] and led to “reactive cylinder theory”

in the chemistry literature and “tube dynamics” in the celestial mechanics literature.

A simpler approach, and the topic of this thesis, is the dividing surface method.

Imagine a dividing surface SE somewhere between B1
E and B2

E , which is crossed by all

trajectories from the former region to the latter. The positive flux of ergode through

this surface gives an upper bound on the rate of transport, which can be written as

the flux of B1
E-ensemble through the boundary of B2

E (cf. the derivation of Liouville’s

equation). The flux of ergode through a codimension-1, oriented submanifold SE of an

energy level is the integral

φE (SE) =

∫

SE

φE ,

where φE is the (ergode) flux form

φE = iXH
ΩE.

Thus, we replace integration over ∂B2
E of the distribution, which requires knowing its

evolution, with the integral of an equilibrium distribution over an arbitrary dividing

surface S+
E . The rate may be over estimated due to the different domain, namely

S+
E and possible recrossings of trajectories through it, as well as for systems out of

equilibrium because we are replacing the integrand ρ1E(z, t)φE with φE.

12



Remark 1.2.1. We have chosen to use differential forms, but the equation is the same

as the usual flux equation φE (SE) =
∫

SE
(XH · n) volSE

, where n is the unit normal to

the surface (with respect to a Riemannian structure) and volSE
an infinitesimal volume

element, cf. Keck [Kec67]. This is seen by rewriting the flux form as φE = iXH
ΩE =

(XH · n) inΩE and defining volSE
:= inΩE. See Frankel [Fra04, Section 2.9b] for more

details. Use of a Riemannian structure however is an artificial crutch.

In order to obtain a useful bound on the transport, we vary the arbitrary dividing

surface and replace it with a dividing surface with (close to) locally minimal flux in

the chosen direction. Ideally, we would like to find a dividing surface that is crossed

once and only once by each trajectory crossing from B1
E to B2

E, which would have

minimal flux through it and would give the actual rate of transport. Hence, we have a

variational definition of the (ideal) dividing surface. However, this condition does not

necessarily define a unique dividing surface because one can flow any dividing surface

along the vector field and obtain another. Furthermore the minimal dividing surfaces

might be hard to find in practice.

There is also a flow in the opposite direction, from B2
E to B1

E, for which we could

choose to consider the previous dividing surface, extended to cut all trajectories from

B2
E to B1

E. In order to divide the energy-level and therefore separate the two regions,

we expect the surface to be closed (i.e. without boundary), otherwise trajectories could

avoid it but still cross between regions. Thus, the net flux through the dividing surface

will be zero, and the flux in the two separate directions equal.

Evaluating the flux integral can be simplified by noting that for regular energy levels

ME , the flux form reduces to φE = ωm−1/ (m− 1)! [TJ+85], which allows us to write

φE = −dΘE,

with the “generalised” action form ΘE = 1
(m−1)!θ ∧ ω

m−2. Then, we can use Stokes’

theorem to obtain

φE (SE) =

∫

SE

φE = −

∫

∂SE

ΘE.

We state this as

Theorem 1.2.2 ([Mac90]). The flux of ergode through an oriented codimension-1 sub-

manifold of an energy-level is minus the generalised action integral over its boundary.

In general the flux form φE evaluated on the tangent space to an oriented surface

is not single-signed. The flow may cross in the positive direction in some parts of SE

and the other way on other parts. Where we want to emphasise this we refer to the

flux integral as “net flux”.

Another theory that can be used to find bounds on the rate of transport is ergodic

theory. However, it considers transport in the limit as t → ∞. Smooth ergodic theory

for Hamiltonian systems is briefly reviewed in [Mac94a], which focuses on its use in

transport problems, and compares it with the dividing surface approach.
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1.3 (Dividing) Surfaces of locally minimal flux

We will now consider which surfaces have locally minimal flux, in either direction, and

the properties of such surfaces. We follow the approach of MacKay [Mac94b], which

lends itself well to the general scenarios that we want to consider.

Invariant surfaces have zero flux in both directions. This is clearly a minimum

value, so these surfaces are useful for transport problems because they locally separate

different regions. We are interested however in surfaces that have locally minimal but

not necessarily zero flux in each direction.

For a general closed, oriented surface SE , one can decompose it into the union

S+
E ∪ S−

E of the parts of positive and negative flux*17, with common boundary. Then

we can apply the following consequence of the variational principle for odd dimensional

invariant submanifolds of an energy level, in this case the boundaries of S±
E .

Corollary 1.3.1 ([Mac91]). A codimension-1 submanifold SiE of an energy level ME

has stationary (net) flux of ergode with respect to variations within ME, including of

its boundary ∂SiE, if and only if ∂SiE is invariant under the Hamiltonian flow.

The proof can be found in [Mac91], which can be supplemented with the details on

differentiation of integrals given e.g. in [Fra04, Section 4.3].

These stationary values of the flux are however not minima, since there exist de-

formations that both increase and decrease the flux. A nice way of seeing this is to

consider deforming ∂SiE to a helix of small pitch around a part of ∂SiE with XH 6= 0.

Remembering that XH must be tangent to ∂SiE for stationary values, we find that the

flux increases if the pitch has one sign and decreases if it has the other [Mac94b].

We therefore consider (unsigned) geometric flux of ergode though SE , denoted

ΦE (SE). For this, we define the (ergode) flux density |φE | by

|φE | (ν1, ..., ν2m−2) = |φE (ν1, ..., ν2m−2) |, ∀νi ∈ TzME ,

and integrate it over SE. For a brief introduction to densities and density bundles see

e.g. Lee [Lee03, Chapter 14].

For an arbitrary dividing surface, ΦE (SE) ≥ |φE (SE)|, with equality if and only if

the flux is unidirectional through the surface. By unidirectional, we mean single-signed,

as this occurs when the Hamiltonian vector field XH is unidirectional across SE . To

see this, write ΩE = dG∧ΩSE, where G(z) = 0 is the regular equation defining SE, then

φE = iXH
ΩE = iXH

dG ∧ ΩSE + dG ∧ iXH
ΩSE,

but dG(νi) = 0 for all νi tangent to SE so iXH
dG gives the sign. Thus, decomposing

our closed dividing surface as SE = S+
E ∪ S−

E , where S
±
E are not necessarily connected,

gives

ΦE(SE) = φE(S
+
E )− φE(S

−
E ) = 2φE(S

+
E ) = −2φE(S

−
E ),

*17 By “positive” we mean “non-negative”, and by “negative” we mean “non-positive” but the termi-
nology is too cumbersome.
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ΓE
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E S−

E

ΓE

Figure 1.4: Proof of Theorem 1.3.2. Left: Φ (SE) can be decreased if ΓE is not invariant
under XH , shown here by trajectories β and γ touching and crossing SE, generated by
a vector field XH not tangent to ΓE, together with a deformation about ΓE along γ
that decreases Φ (SE). Right: Φ (SE) can be decreased if a nearby orbit intersects SE
twice in opposite directions.

since the flux is equal and opposite through S+
E and S−

E . Asking for minimal flux in

either direction is therefore the same as asking for minimal geometric flux. Furthermore,

closed surfaces either have both stationary net and geometric flux or neither.

The idea is therefore to consider dividing surfaces SE that are the union of two, not

necessarily connected, surfaces S±
E of unidirectional flux that span a closed, invariant,

codimension-2 orientable submanifold NE in the energy level, ME. Then S±
E have

stationary flux, by Corollary 1.3.1, and the geometric flux is

ΦE (SE) = −2φE
(

S−
E

)

= −2

∫

S−
E

φE = 2

∫

NE

ΘE,

where we have chosen the orientation of NE so that it is ∂S−
E . To show that this

situation leads to locally minimal geometric flux, we first need the following

Definition. An oriented surface S has local recrossings if for all ε > 0 there exists an

orbit segment z(t), t0 ≤ t ≤ t1, that intersects S in opposite directions at times t0 and

t1, and for which

0 < d(z(t), S) < ε for all t ∈ (t0, t1) ,

where d denotes distance.

Then, we are ready for

Theorem 1.3.2 ([Mac94b]). A codimension-1 orientable submanifold SE of an energy-

level has locally minimal geometric flux if and only if it can be decomposed into surfaces

SiE of unidirectional stationary flux and SE has no local recrossings.

The proof can be found together with the theorem in [Mac94b], we re-propose it

here for the Hamiltonian case.

Proof. Without loss of generality, we represent SE as the zero-set of some smooth

function G :ME → R with dG 6= 0 on SE , so SE = {z ∈ME |G (z) = 0}. To divide SE

into unidirectional parts SE = ∪iS
i
E, we consider

ΓE = {z ∈ SE|dG (XH) = 0},
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which gives SE\ΓE composed of parts ŜiE . These are enlarged to SiE including the

invariant parts such that their union is the whole of SE .

Assume that SE has locally minimal geometric flux. Then SE has stationary flux,

so its boundary ∂SE is invariant under the Hamiltonian flow, by Corollary 1.3.1, i.e.

XH is tangent to ∂SE. Now, the vector field XH is tangent to ∂SiE\∂SE , otherwise

we could deform SE and decrease ΦE (SE), as seen in Figure 1.4, contradicting our

assumption that the geometric flux is minimal. Therefore XH is everywhere tangent

to ∂SiE, meaning that they are invariant and that SiE have stationary flux, again by

Corollary 1.3.1. Finally, if SiE has local recrossings, which must be near ΓE since the sign

of the flux changes, we can decrease ΦE (SE) by lifting SE locally, again contradicting

the assumption, see Figure 1.4.

Conversely, assume that SE is the union of surfaces SiE of unidirectional, stationary

flux. Then the flux through SE is the sum of those through SiE and so stationary. Thus,

the geometric flux is also stationary, but we want (locally) minimal geometric flux. The

only places where a small deformation would make a difference to ΦE (SE) are near ΓE.

However, if there are no local recrossings, lifting SE near ΓE cannot decrease ΦE (SE).

This can be shown by contradiction: if ΦE (SE) can be decreased by a small change,

then there are points on SE whose orbit sneaks back to SE .

1.4 Basic transport scenario: flux over a saddle

This is the case of an autonomous Hamiltonian system
(

M2m, ω,H
)

with a non-

degenerate index-1 critical point z̄1 of H. It provides an example of a closed, invariant,

codimension-2 submanifold of the energy levels spanned by two codimension-1 subman-

ifolds of unidirectional flux with no local recrossings.

About z̄1, we have the Williamson normal form [Wil36]

H (z) = E1 +
a

2

(

y2 − x2
)

+

m−1
∑

j=1

bj
2

(

v2j + u2j
)

+Hn (z) , Hn (z) = O (3) ,

where we ask that a, bj > 0, and z = (q, p) = (u, x, v, y) are canonical coordinates

with (x, y) the hyperbolic degree of freedom and (u, v) = (u1, ..., um−1, v1, ..., vm−1)

the elliptic ones [Arn89, Appendix 6]. In the chemistry literature these are called the

reaction and bath coordinates, respectively. Note that we do not need the higher-order

normal forms found in some of the transition state theory literature, see e.g. [WW+01,

UJ+02].

We now consider the topology of the energy levels about z̄1. First we consider them

to second order, where they are given by

ME = H−1
2 (E) =







z ∈M

∣

∣

∣

∣

a

2

(

y2 − x2
)

+
m−1
∑

j=1

bj
2

(

v2j + u2j
)

= ∆E







,

with ∆E = E−E1. Therefore, in a neighbourhood of z̄1, we can write the energy level
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as the union of the graphs of two functions

x± = ±

√

√

√

√

√

2

a





a

2
y2 +

m−1
∑

j=1

bj
2

(

v2j + u2j

)

−∆E



,

over R2m−1. For ∆E < 0, ME is diffeomorphic to two copies of R2m−1 , whereas

for ∆E > 0, the two disjoint regions connect and ME is diffeomorphic to S2m−2 × R.

This is a standard Morse surgery, see Theorem A.3.4 in Appendix A.3. An important

feature of the energy levels is the presence of a “bottleneck” about z̄1, which opens

up as the energy is increased from ∆E = 0. The two regions on either side of the

critical point are the ones between which we want to study transport. For the topology

of the energy-levels of the full system, we appeal to the Morse lemma, see Appendix

A.3. This tells us that there are coordinates about the critical point, z̄1, for which

the Hamiltonian function is quadratic. Thus, the previous study of the quadratic case

is sufficient. However, the transformation giving the Morse lemma coordinates is not

necessarily symplectic. Therefore, whilst these coordinates can be used to study the

diffeomorphism class of ME , they cannot be used to study the dynamics without losing

the simple expression of the Hamiltonian nature of the system.

Remark 1.4.1. Note that considering a system with a saddle×centre× · · · ×centre equi-

librium, as is often stated, is not actually the same as considering an index-1 critical

point of the Hamiltonian function for general Hamiltonian systems. We could have for

example one unstable dimension and an arbitrary odd index, e.g. three with b1 < 0

in the Williamson normal form. Then ME does not separate for ∆E < 0, i.e. the

topology is different. However, for simple mechanical systems with positive-definite

quadratic kinetic energy, these cases cannot arise which is why the two situations are

often confused.

We now find an invariant codimension-2 submanifold of the energy levels. The

centre subspace N̂ = {z ∈ M |x = y = 0} of the linearised dynamics about z̄1 extends

to a centre manifold N , which can locally be expressed in the form

N = {z ∈M |x = X (u, v) , y = Y (u, v)},

with the 1-jets of X and Y vanishing at z̄1. Then NE = N ∩ ME is an invariant

submanifold of the energy level. NE is diffeomorphic to S2m−3. This is proved by using

the Morse lemma as was done for the energy levels. The restriction of the Hamiltonian

function to N is

HN (u, v) = E1 +
a

2

(

Y 2 −X2
)

(u, v) +
m−1
∑

j=1

bj
2

(

v2j + u2j
)

+Hn (X (u, v) , u, Y (u, v) , v)

= E1 +

m−1
∑

j=1

bj
2

(

v2j + u2j
)

+O (3) .

Thus the origin, z̃1, is a critical point of HN with index-0. Then by the Morse lemma,
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in a neighbourhood of z̃1, we have HN (z̃) = E1 + 1
2

(

y21 + · · ·+ y22m−2

)

, so NE =

H−1
N (E) ∼= S2m−3. Finally, by Theorem A.3.3, the diffeomorphism type is valid until

the next critical value of HN (if one exists), and not just for small ∆E, a proof of which

can be found in Sacker [Sac69], and was already known to Conley and his students, see

[Eas67, Con68, Sac69] and references therein.

Thus, we have found our closed, invariant codimension-2 submanifold NE of ME

and now want to show that it can be spanned by two surfaces S±
E of unidirectional flux

with no local recrossings. In a neighbourhood of z̄1, we can simply choose

S = {z ∈M |G (z) = x−X (u, v) = 0},

which spans N , and intersect it withME to obtain SE, as done by Toller et al. [TJ+85].

We can decompose it into the parts S± with y > Y (u, v) and y < Y (u, v) and show that

the flux is unidirectional across S± by checking that dG (XH) ≥ 0 for y > Y (u, v) and

vice-versa. This will ensure that the halves of the dividing surface S±
E are unidirectional,

since the energy levels are invariant. Firstly, we rewrite

dG (XH) = {G,H} = Ġ (z) ,

then we find that

Ġ(z) = ẋ−DX(u, v) · (u̇, v̇)◦

= ay + ∂yHn(X(u, v), u, y, v) −DX(u, v) · (u̇, v̇)◦ ,

where the ◦ denotes that the term is evaluated on S. Now, the invariance of N , on

which x = X(u, v), y = Y (u, v), gives us that

aY (u, v) + ∂yHn(X(u, v), u, Y (u, v), v) −DX(u, v) · (u̇, v̇)∗ = 0,

where the ∗ denotes that the term is evaluated on N . Subtracting the (first) invariance

equation from the flux equation gives

Ġ(z) = a (y − Y ) + ∂yHn(X,u, y, v) − ∂yHn(X,u, Y, v) −DX · ((u̇, v̇)◦ − (u̇, v̇)∗)

= a (y − Y ) + (∂yHn(X,u, y, v) − ∂yHn(X,u, Y, v))

−DX · (∂vHn(X,u, y, v) − ∂vHn(X,u, Y, v),−∂uHn(X,u, y, v) + ∂uHn(X,u, Y, v)),

where X = X(u, v), Y = Y (u, v). In a small neighbourhood of the critical point z̄1, the

first term dominates the others and gives the sign, since Hn denotes the higher order

terms in the Hamiltonian function. Specifically, for the second term we find

∂yHn(X,u, y, v)−∂yHn(X,u, Y, v) =

∫ y

Y
∂2yyHn(X,u, ỹ, v)dỹ = O ((y − Y )max(|y|, |Y |)) ,

as ∂2yyH(X,u, ỹ, v) = O (ỹ). Similarly for the last terms, which also include a DX(u, v)

factor. This construction is local about z̄1. A neater construction, semi-local about N ,
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Figure 1.5: Conley representation of the quadratic approximation of the basic scenario,
for some E > E1, showing the energy-level ME , the transition state NE , its stable and
unstable manifolds W±

E and the dividing surface SE = S+
E ∪ S−

E . Left: full representa-
tion, right: cross-section with z1 = 0.

will be presented in Section 2.2.

Remark 1.4.2. Note that the dividing surface SE constructed above is closed, and the

two halves S±
E are compact surfaces with boundary NE. On the other hand, the choice

S = {z ∈M |y = Y (u, v)} would not have given compact intersections with ME .

Now, in order to apply Theorem 1.3.2 and show that our dividing surfaces have

locally minimal geometric flux, we require that the dividing surfaces have no local re-

crossings. However, the centre manifold N is normally hyperbolic*18 and it has stable

and unstable manifolds W± of codimension-1 in M . Then NE is also normally hy-

perbolic, as a submanifold of ME , and W
±
E are codimension-1 in ME , thus dividing a

neighbourhood of NE into four sectors. Finally, since S±
E lie between W±

E , unidirec-

tionality implies that there are no local recrossings.

There is a simple asymptotic law for the flux when ∆E is small [Mac90]. In this

case, NE is given to leading order by x = 0, y = 0, and
∑m−1

j=1
bj
2

(

v2j + u2j

)

= ∆E. The

generalised action is

ΘE =
1

(m− 1)!
θ ∧ ωm−2

=
1

(m− 1)!
(p1dq1 ∧ dq2 ∧ dp2 ∧ · · · ∧ dqm−1 ∧ dpm−1 + similar terms) ,

where we recall that z = (q, p) = (u, x, v, y). Thus, the flux is (cf. Vineyard [Vin57])

φE
(

S+
E

)

=
∆Em−1

(m− 1)!

m−1
∏

j=1

2π

bj
.

A nice way of visualising the energy level and the various submanifolds is to use

the Conley representation*19. This method is implicit in a paper by Conley [Con68],

was used by McGehee [McG69] and MacKay [Mac90], and is illustrated in [WW10].

Considering a 2 degree of freedom system and forgetting the higher order terms, the

*18 Actually N is not (necessarily) compact, but the level sets NE are invariant, so the sub-level sets
N≤E are compact submanifolds with (invariant) boundary NE and normally hyperbolic.

*19 The literature nowadays often also refers to it as the McGehee representation.
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energy level ME is given by the equation

a

2
y2 +

b

2

(

v2 + u2
)

= ∆E +
a

2
x2, ∆E = E − E1.

We have seen that for ∆E > 0, ME is diffeomorphic to S2 × R. The idea is therefore

to represent ME as a spherical shell in R3 by considering it to be a 1-parameter (x)

family of 2-spheres, which we denote Mx
E . For a given x, we project the sphere Mx

E to

another sphere in R3 by

πx :Mx
E → R3 : (u, v, y) 7→

r (x)

rE (x)
(u, v, y) =: (z1, z2, z3) ,

where rE (x) =
(

2∆E + ax2
)1/2

and the new radius r (x) is a monotone function map-

ping the real line to a bounded positive interval, e.g. r (x) = 2 + tanh (x), for which

r (x) ∈ [1, 3]. Under this projection, the parameterised 2-spheres Mx
E are placed con-

centrically in R3. Then we define a map taking points on ME to R3 by

π : (x, u, v, y) 7→ πx (u, v, y) = (z1, z2, z3) ,

which gives the desired spherical shell. The Conley representation of the quadratic

approximation can be seen in Figure 1.5. This figure is only for 2 degree of freedom

systems, but for m degrees of freedom, the same procedure can be applied and we can

imagine projecting ME to R2m−1.

1.5 General transport scenarios and transition states

We just saw how closed, invariant, codimension-2 submanifolds of the energy levels

are the key to constructing surfaces with locally minimal geometric flux in the basic

scenario. As we are interested in what happens in the basic scenario when the energy is

increased further, and in other more general transport scenarios that are not governed

by a local analysis, we give the following

Definition. A transition state for a Hamiltonian system is a closed, invariant, oriented,

codimension-2 submanifold of an energy-level that can be spanned by two surfaces of

unidirectional flux, whose union divides the energy-level into two components and has

no local recrossings.

“Transition state”*20 is not an ideal name because it is a set of states, not a single

one. Furthermore, it is not a set of intermediate states on paths from reagents to

products like the dividing surface, because it is invariant. The chemistry literature

often also uses the term for dividing surfaces. This confusion might be due to the fact

that in the basic scenario, the projection of both the transition state and the standard

choice of dividing surface onto configuration space are the same. In fact, Pechukas

*20 M. King attributes the term to Johannes N. Brønsted, from circa 1922, but does not give a reference
[Kin82]. Another common term in the chemistry literature is “activated” complex, state or surface,
see e.g. Henriksen and Hansen [HH08, page 140].

20



and co-workers coined the term “periodic orbit dividing surface” (PODS), whereas the

periodic orbits are transition states. For all of these reasons, MacKay [Mac90] avoided

using the term. However, it is by now established terminology and we choose to stick

with tradition.

In the basic scenario, the transition states are level sets of the Hamiltonian function

restricted to the centre manifold. For more general transport scenarios, we expect in-

variant, codimension-2 submanifolds of state space, composed of the union of transition

states over an interval of energy. These, and the centre manifolds of the basic scenario,

we will refer to as transition manifolds.

We have been using dividing surface to refer to codimension-1 submanifolds of an

energy level that divide it into two parts. The union of the dividing surfaces with

different energies will be referred to as a dividing manifold. This is a codimension-1

submanifold, locally dividing state space.

In Section 2.1, we will comment on the properties of transition manifolds. Then, in

Section 2.2 we show how to span an invariant, orientable codimension-2 submanifold of

state space that is normally hyperbolic and has orientable stable and unstable manifolds

by a local dividing manifold.

In the recent literature, both transition states and transition manifolds are often

referred to simply as NHIMs, for normally hyperbolic invariant manifold. This termi-

nology inevitably becomes confusing when passing to general transport scenarios that

may posses multiple normally hyperbolic submanifolds, not all necessarily transition

manifolds. Also, examples of transition manifolds that are not normally hyperbolic

can be found, such as the symmetric disconnecting example of Subsection 2.4.2 with

a1 ≤ a2.

Examples of more general transport scenarios, than the basic one, will be seen in the

examples of Subsections 2.4.1 and 2.4.2, and in the bimolecular reactions of Chapter

3.
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Chapter 2

Transition states and dividing

surfaces

Many transport scenarios, including the basic one for energies significantly above the

saddle, cannot be considered locally about a critical point. The picture is therefore

more complicated than the simple one for flux over a saddle.

In the easiest case, that is systems with 2 degrees of freedom, the transition states,

being closed and 1-dimensional, are periodic orbits. Thus, their possible bifurcations

are well known, and can be found in the literature, e.g. Abraham and Marsden [AM78,

Section 8.6] and Hanßmann [Han07, Chapter 3]. A crucial feature of the transition state

in the basic scenario is its normal hyperbolicity, which ensures that dividing surfaces

constructed about it have locally minimal geometric flux. This may be lost at higher

energies. However, for periodic orbits, we know what to expect when normal hyperbol-

icity is lost because normally elliptic periodic orbits also persist, see e.g. Meyer et al.

[MHO09, Chapter 9] on the continuation of periodic orbits. These bifurcations however

affect the underlying transport problem, see e.g. [DVB55, PP78, Dav87]. Unlike hyper-

bolic periodic orbits elliptic periodic orbits cannot be spanned by surfaces with no local

recrossing. Other topological obstructions, such as the knot type or the twisting of the

stable and unstable manifolds may also prevent hyperbolic periodic orbits from being

a transition state. These may appear when the periodic orbit undergoes a bifurcation.

The bifurcations of periodic orbit transition states are considered briefly in Subsection

2.3.1 in order to introduce these issues. This Subsection will raise more questions that

it answers. A thorough theoretical and numerical study of periodic orbit transition

states, which should answer all of these questions and more, is currently under way.

This will hopefully provide some insight into higher dimensional transition states as

well.

For more degrees of freedom, the transition states in the basic scenario are normally

hyperbolic (2m − 3)-spheres. The bifurcations of higher dimensional normally hyper-

bolic submanifolds is not much explored. Recently, there have been studies proposing

different approaches and partial normal form methods, see [LTK09, TTK11, AB12] and

references therein. Nonetheless, bifurcations involving the loss of normal hyperbolicity

are still not well understood.
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What has been overlooked though is that there is a large class of systems for which

the transition state develops singularities, i.e. points at which the manifold structure

fails, at some energy Eb and then reforms as a non-diffeomorphic normally hyperbolic

submanifold for energies above Eb. The dividing surfaces also undergo a similar bifurca-

tion. In this case, we can say exactly what happens. The context for these bifurcations

is that there is a normally hyperbolic submanifold in the full state space, the transition

manifold, denoted N . For example, starting from the basic scenario the transition man-

ifold is an extension of the centre manifold beyond a local neighbourhood of the index-1

critical point. The transition states are then the level-sets of the Hamiltonian function

restricted to the transition manifold, NE = H−1
N (E), and they undergo a Morse bi-

furcation. This occurs when HN has a critical point and can be studied using Morse

theory, see Appendix A.3. These bifurcations and their effect on transport problems,

such as the bimolecular reactions of Chapter 3, are the main topic of this thesis.

The critical points of the restricted Hamiltonian function HN are also critical points

of the Hamiltonian function. For the Morse bifurcations, these will be of index one or

higher relative to HN , and hence of index two or higher relative to H. There have

been studies regarding the role of higher index (than one) critical points in transport

problems, see e.g. [EW09, CEW11, HU+11]. These have however focused on the higher

index critical points and a neighbourhood about these, and thus not searched for the

global submanifolds beyond this neighbourhood. By considering Morse bifurcations,

we therefore answer some of the questions raised in these papers.

The effect that the Morse bifurcations have on the flux of ergode through the di-

viding surface is considered in Section 2.5.

2.1 Properties of transition manifolds

Some properties of centre manifolds (in Hamiltonian systems) are recalled in Appendix

A.2. Namely, they are normally hyperbolic and also symplectic, meaning that the

restriction ωN of the symplectic form to N is non-degenerate.

The centre manifold about an index-1 critical point is furthermore unique, by The-

orem A.2.1.

Corollary 2.1.1. For autonomous Hamiltonian systems, the centre manifold about a

non-degenerate index-1 critical point of the Hamiltonian is unique.

Proof. Consider an autonomous Hamiltonian system
(

M2m, ω,H
)

with a non-degenerate

index-1 critical point z̄1 of H, as for the basic scenario. The local centre manifold N

about z̄1 can be written as the union of its invariant energy level sets, the transition

states NE , that are diffeomorphic to S2m−3, as we saw in Section 1.4. Thus motion in

the centre manifold is bounded and by Theorem A.2.1, N is unique.

One could similarly check the centre manifolds of critical points of other index by

considering their Williamson normal form [Arn89, Appendix 6].

The normal hyperbolicity of the centre manifold as a submanifold of state space

ensures that of the transition states within an energy level, provided that they are
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smooth manifolds. This in turn prevents local recrossings of the dividing surfaces.

Thus, for the basic scenario with higher energies, we must consider normally hyperbolic

extension of the centre manifold beyond a local neighbourhood of the index-1 critical

point. These too will be symplectic, as seen in the examples, since symmetrically

normally hyperbolic submanifolds of Hamiltonian systems that satisfy a spectral gap

condition (implicit in our definition, in Appendix A.1) are symplectic, as pointed out

by Marco [Mar] and Gelfreich and Turaev [GT14]. See Proposition A.1.2 and its proof

for details.

Thus, when invariant submanifolds that are normally hyperbolic in some neighbour-

hood become degenerate, they lose normal hyperbolicity, as seen in the axi-symmetric

case of the disconnecting example, Section 2.4.1. This could be used to check the sta-

bility of potential transition manifolds. The converse is not true, that is loss of normal

hyperbolicity does not imply loss of symplectic nature. This can be seen in the sym-

metric connecting example of Subsection 2.4.2 with a1 ≤ a2. This case also provides

an example of a transition manifold that is not normally hyperbolic.

2.2 Constructing dividing manifolds

In the basic scenario, we have seen how to construct a local dividing manifold spanning

the local codimension-2 centre manifold about the critical point z̄1. For more general

transport scenarios, we may have an invariant, codimension-2 submanifold N of state

space M on which the restriction of the Hamiltonian HN is bounded from below and

proper, such that the level sets are closed, invariant, codimension-2 submanifolds NE

of the energy levels ME. In this section, we will show how to construct a codimension-

1 submanifold S with no local recrossings, composed of two halves that span N and

across which the flow is unidirectional, provided N is normally hyperbolic and its stable

and unstable manifolds are orientable*21. Note that normally hyperbolic submanifolds

that satisfy a spectral gap condition (implicit in our definition, in Appendix A.1) are

symplectic (Proposition A.1.2) and that symplectic submanifolds are automatically

orientable. In order for S to locally divide M , N must be embedded “nicely”, as one

can imagine transport scenarios with a submanifold N embedded in a non-trivial state

space that is not divided by a codimension-1 spanning surface (see also discussion in

Subsection 2.3.1). Provided S does locally separate M , restricting S to an energy level

will give a dividing surface SE with locally minimal geometric flux, demonstrating that

S is a dividing manifold, N a transition manifold and NE a transition state.

The construction requires a fibration of a neighbourhood U ⊂ M of N . This is a

manifold U (called the total space) together with a projection π : U → N : z 7→ z̃ to a

manifold N (the base space) such that the fibres Fz̃ = π−1 (z̃) are submanifolds, and a

*21 Even for orientable normally hyperbolic submanifolds, this is not necessarily the case. An example
of an orientable, codimension-2 normally hyperbolic submanifold with non-orientable stable and
unstable manifolds is the orbit cylinder formed by a family of inversion hyperbolic periodic orbits
(with negative characteristic multipliers) parametrised by the energy in a 2 degree of freedom
system. This has local stable and unstable manifolds diffeomorphic to a Möbius strip cross an
interval, and emerges for example, out of a period doubling bifurcation of an elliptic periodic orbit
[AM78, page 599].
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Figure 2.1: Schematic representation of a condimension-2 normally hyperbolic sub-
manifold N and a fibration of a neighbourhood U used to find a dividing manifold S
spanning N .

local trivialisation ψi : π
−1 (Vi) → Vi × F , where Vi is a set in an open covering of N ,

and F is a fixed manifold (the standard fibre). It is usually denoted (U,N, π, F ). The

tangent spaces to the fibres give a vertical subbundle, Vert, of the tangent bundle TM

Vertz = ker dzπ = TzFz̃ ,

for all points z ∈ U . Then, a choice of horizontal subbundle, Hor, gives a splitting*22

of the tangent bundle

TM = Vert⊕Hor.

Furthermore, we shall consider a symplectic fibration, for which the fibres are sym-

plectic submanifolds of the total space, see e.g. Guillemin, Lerman and Sternberg

[GLS96, Chapter 1]. With our symplectic total space, we can choose the symplectic

form of the fibre Fz̃ to be ωFz̃
, the restriction of ω. We then say that ω is fibre-

compatible. Asking that the fibration is symplectic adds a constraint, but in exchange

we can associate to ω a symplectic splitting, by defining the horizontal subbundle to

be symplectically orthogonal to the vertical subbundle, i.e.

Horz = Vertωz := {ξ ∈ TzM |ω (ξ, η) = 0 ∀η ∈ Vertz}.

We choose a specific symplectic fibration π, by introducing coordinates. The fibres

are 2-dimensional (the codimension of N in M), symplectically orthogonal to the sym-

plectic base space N and HFz̃
has only one non-degenerate, index-1 critical point z̃,

recalling that we are considering a small neighbourhood U of N . Other choices of fibra-

tion are possible. However, these conditions alone are not sufficient to define fibrations

that can be used in our construction of dividing manifolds. For any symplectic fibration

for which the fibres are symplectically orthogonal to the base space N , z̃ is a critical

point of HFz̃
since N is normally hyperbolic and we are considering a symplectic split-

ting TMN = TN ⊕ω VertN , so XH(z̃) = XHN
(z̃) +XHFz̃

(z̃), where iXHFz̃

ωFz̃
= dHFz̃

,

and XHFz̃
(z̃) = 0 by invariance. Given z̃ ∈ N , the symplectic neighbourhood theorem

*22 This defines a connection on the fibration. However, to avoid confusion with the affine connection
on the tangent (fibre) bundle τ : TM → M , we avoid this terminology.
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[MS98, Theorem 3.30] provides Darboux coordinates z = (u, x, v, y) such that

ω = du ∧ dv + dx ∧ dy,

and

N = {x = y = 0}.

We shall often write z = (h, n) with h = (u, v), and n = (x, y). Temporarily, we choose

the following fibres

Fz̃ = {h = h̃},

where z̃ = (h̃, 0). Linearising (vertically) about N , we find

H(h, n) = H(h, 0) +
1

2
nTD2

nnH(h, 0)n + · · · ,

=: HN (h) +
1

2
nTH2

N (h, 0)n + · · · ,

using the invariance of N , so

ḣ = JNDhHN(h) + · · · ,

ṅ = JFDnH
2
N (h)n + · · · .

Note that the stable and unstable manifolds of z̃, W±(z̃), are tangent to Fz̃ at z̃, since

Tz̃W
±(z̃) ⊥ω Tz̃N (see p.82), but that they are not subsets of the fibres. We now

change coordinates and choose our actual fibres. These will contain W±(z̃), i.e. we

shall make the strong stable and unstable manifolds W±(z̃) ⊂W±(N) vertical and use

the new coordinates to choose a specific fibration. Merely asking that W±(z̃) ⊂ Fz̃

does not give a fibration for which z̃ is a non-degenerate, index-1 critical point of HFz̃

(and might also not be necessary). We change coordinates to z = (u2, x, v2, y) such

that

W±(z̃) = {h2 = h̃2, g
±
z̃ (x, y) = 0},

where z̃ = (h̃2, n). This change of coordinates is achieved in two steps, and is part

of the transformation to Fenichel normal form coordinates, see e.g. [Jon95, Chapter 3]

and [JT09, Section 2]. First, we define

(u1, v1) = π−(u, x, v, y),

where π− is the projection taking points in the strong stable manifolds to their base

points in N , i.e. π−z̃ (h, n) = h̃ for (h, n) ∈W−(z̃), then we define

(u2, v2) = π+(u1, x, v1, y),

where π+ is equivalent to π− but for W+(z̃). Noting that π±(h, 0) = h, we can write

π±(h, n) = h + Π±(z)n. This change of coordinates is symplectic since W±(z̃) are

trajectories, so π±z̃ are given by the Hamiltonian flow. Dropping the subscripts, we
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choose the fibres to be

Fz̃ = {h = h̃}.

A schematic representation of the fibration is given in Figure 2.1. For this choice of

fibres DnH
2
N (h), or equivalently D2HFz̃

(0) since XH |Fz̃
= XHFz̃

, is a non-degenerate

matrix with one negative and one positive eigenvalue. This can be seen by completing

the change of coordinates to Fenichel normal form z = (u, q, v, p) in which the strong

stable and unstable manifolds are straight, and by normal hyperbolicity the vertical

dynamics is given by

q̇ = a+(z)q,

ṗ = −a−(z)p,

with a±(z) > 0, see e.g. [Jon95, Chapter 3]. The symplectic form is canonical with

ωFz̃
= dq∧dp, as can be seen by considering the straightening transformation since the

strong stable and unstable manifolds are 1-dimensional, so we know the first derivative

of the HFz and can differentiate it to find the second, which is non-degenerate at N

since a±(z) > 0.

Given this fibration, we can choose vector fields X± tangent to the fibres such that

ω (X−,X+) > 0, LX−LX−H < 0 and LX+
LX+

H > 0.

Note that the Lie derivative LXA of a 0-form (i.e. a function) A is just LXA = X (A) =

dA (X), but this last notation does not lend itself to being applied twice. Locally, in

Fenichel normal form coordinates, a possible choice of of vector fields is X+ = ∂q + ∂p

and X− = ∂q − ∂p, cf. Figure 2.1.

We then define

Sz̃ = {z ∈ Fz̃|LX−H (z) = 0} and S = ∪z̃Sz̃.

Again, LX−H = dH(X−) and we are asking that the derivative of H in the direction

of X− is zero. This dividing manifold S spans N and is an orientable, codimension-

1 submanifold of M . Orientability following from that of the stable and unstable

manifolds. However, we must check the flux of state space volume across S. Note

that if the state space flux is unidirectional, then so is the flux of ergode, since the

energy-levels are invariant. The transverse component of XH across Sz̃ is

d
(

LX−H
)

(XH) = LXH
LX−H.

To find its sign, firstly we note that L[XH ,X−]H = LXH
LX−H−LX−LXH

H = LXH
LX−H,

since LXH
H = dH (XH) = 0. Here [X,Y ] = XY − Y X is the Lie bracket of vector

fields (thought of as differential operators, as in X (A) = dA (X)). Next, LX+
H is

single signed across each half of Sz̃ because z̃ ∈ N is a critical point of LX+
H, but
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LX+
LX+

H < 0 on the whole of Fz̃, thus z̃ is a minimum. Therefore, we ask that

L[XH ,X−]H = −cz̃ LX+
H, cz̃ ∈ R+,

which is compatible with the initial assumptions.

In practice, it is easier to check the conditions if the vector fields X± are Hamilto-

nian, so we choose functions A±
z̃ : Fz̃ → R and define X± = XA±

z̃
, where iX

A
±
z̃

ω = dA±
z̃ .

Then using Poisson brackets, defined as {A,B} = ω (XA,XB) for two functions on

M , and considering A±
z̃ as functions on the whole of M , we can rewrite the conditions

satisfied by the vector fields as

{A−
z̃ , A

+
z̃ } > 0, {{H,A−

z̃ }, A
−
z̃ } < 0 and {{H,A+

z̃ }, A
+
z̃ } > 0,

and the new conditions, ensuring that the flux is unidirectional, as

{A−
z̃ , A

+
z̃ } > 0, {H,A−

z̃ } = cz̃ A
+
z̃ and {{H,A+

z̃ }, A
+
z̃ } > 0,

where we have used the two relations LXA
B = {B,A} and [XA,XB ] = X{B,A}, see

e.g. [AM78, Section 3.3]. Thus, we have actually found that

Sz̃ = {z ∈M |A+
z̃ (z) = 0}.

Now, seeing as z̃ ∈ N is an index-1 critical point of the Hamiltonian function

restricted to Fz̃, it has Williamson normal form

HFz̃
(x, y) =

az̃
2

(

y2 − x2
)

+O (3) , az̃ ∈ R+,

about z̃. We can then choose A−
z̃ (z) = y, A+

z̃ (z) = −x, for example.

The dividing surfaces SE are then simply given by intersecting the dividing man-

ifold with the energy levels. We must check that these are closed and have no lo-

cal recrossings. In order to check that SE is closed, we show that the sub-level set

S≤E = {z ∈ S|HS (z) ≤ E} is compact. To check that S≤E is compact, we restrict

the fibration to π|S≤E
: S≤E → N≤E , which has a compact base space N≤E by choice,

and compact fibres S≤E,z̃ as we can see from HFz̃
in normal form, and thus a compact

total space S≤E, as desired. The dividing surface SE does not have local recrossings

by the same argument as for the local dividing surfaces in the basic scenario. NE is

a normally hyperbolic submanifold of ME, and W
±
E are codimension-1. Then for each

z̃ ∈ N , W±
E (z̃) = {z ∈ M |y ∓ x = 0, H (z) = E}, so S±

E lie in-between W±
E and

unidirectionality implies no local recrossings.

This construction generalises, and reduces to, Toller et al.’s local construction

[TJ+85] for the basic scenario

S = {z ∈M |G (z) = x−X (u, v) = 0},
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see Section 1.4. In this case, the fibres symplectically orthogonal to N are given by

Fz̃ =
{

u− ũ = X̃v

[

y − Ỹ
]

− Ỹv

[

x− X̃
]

, v − ṽ = X̃u

[

y − Ỹ
]

− Ỹu

[

x− X̃
]}

,

where z̃ =
(

X̃, ũ, Ỹ , ṽ
)

is a point in N , X̃ = X (ũ, ṽ), X̃i = ∂iX (ũ, ṽ) and similarly for

Y . The rest follows.

2.3 Bifurcations and obstructions for transition states

Periodic orbit transition states for two degree of freedom Hamiltonian systems are the

simplest example of transition states. Their bifurcations and breakdown are therefore

archetypes of those for general transition states. The properties and bifurcations of

periodic orbits of Hamiltonian systems are briefly reviewed paying particular attention

to (changes in) the topology of the periodic orbits (cf. Ghrist et al. [GHS97, Chapter

4]), and the geometry of the global orbit manifold, i.e. the global two-dimensional (pos-

sibly branched and disjoint) submanifold N of state space containing all the periodic

orbits of the system and obtained by continuing the individual orbit cylinders through

bifurcations. This will raise a number of questions regarding the role of periodic orbits

in transport problems, most of which will not be answered here.

The same questions are then asked for higher dimensional transition states in sub-

section 2.3.2.

2.3.1 Periodic orbit transition states

Parametrised families of periodic orbits are generic for Hamiltonian systems. This is

the contents of the regular orbit cylinder theorem.

Theorem 2.3.1 (Regular orbit cylinder theorem). If NE is a closed orbit of (M4, ω,H),

and one is not a characteristic multiplier, then it is contained in a regular orbit cylinder

N , i.e. a submanifold diffeomorphic to S1 × B1 that is transversal*23 to every energy-

level and has NE = N ∩ME. Furthermore, the orbit cylinder N is symplectic (with ωN

non-degenerate).

Remark 2.3.2. The proof of Theorem 2.3.1 can be found in any textbook on Hamiltonian

systems, e.g. [AM78, Section 8.2]. Most of the literature however does not mention the

symplectic nature of N . This follows from the Hamiltonian flow box, or rectification,

theorem which states that given a regular point z ∈ M , i.e. one for which dH(z) 6= 0,

there exist Darboux coordinates (q, p) in a neighbourhood of z such that q1 = t, p1 =

H, q̇1 = 1, ṗ1 = 0, q̇2 = 0, ṗ2 = 0 [MHO09, Section 8.3]. Thus N = {z ∈ M |q2 =

Q2(p1), p2 = P2(p1)} and ωN = dq1 ∧ dp1.

In general, the regular orbit cylinder cannot be extended for all energies without

encountering either a critical point of H or a closed orbit for which the hypothesis of

Theorem 2.3.1 fails. These lead to bifurcations.

*23 Recall, we say that two submanifolds X,Y ⊂ M are transversal, and write X ⋔ Y , if TzX+TzY =
TzM for all z ∈ X ∩ Y .
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Before considering bifurcations, we shall ask whether there are topological obstruc-

tions that can prevent a hyperbolic periodic orbit from being a transition state for a

two degree of freedom system. There are two different points to consider, the first is the

topology of the energy levels ME and the embedding of the periodic orbits NE in these.

That is, the topology ofME can obstruct the existence of dividing surfaces. Similar ob-

structions are found when trying to construct transverse and complete Poincaré surfaces

of section. Their existence for two degree of freedom systems is a very studied topic,

starting with the works of Poincaré and Birkhoff, see [BDW96] and references therein.

Other topological obstructions may come from the topology of the periodic orbit it-

self. One generally keeps track of these properties, which may change when periodic

orbits bifurcate, by considering (numerical) invariants. Two (topological) properties of

periodic orbits are encoded in the Maslov index, which counts the number of times the

stable and unstable manifolds wind around the orbit in one period*24 [Rob92], and the

link or knot type.

We shall first consider the Maslov index. The local stable and unstable manifolds

W±(NE) of a hyperbolic periodic orbit NE are two dimensional ribbons. These may

wind around the periodic orbit, as they do for inversion hyperbolic*25 periodic orbits,

with negative real characteristic multipliers, that emerge from a period doubling bifur-

cation. In this case, the local invariant manifolds form Möbius bands. An inversion-

hyperbolic periodic orbit has Maslov index-1. In general, a periodic orbit with Maslov

index-2k has stable and unstable manifolds with k twists.

Clearly, an inversion hyperbolic periodic orbitNE with Maslov index-1 cannot act as

a transition state because we cannot place an orientable dividing surface SE spanning

NE between the non-orientable invariant manifolds. Locally SE would have to be a

Möbius strip, which if closed by gluing a disk B2 would be diffeomorphic to a Klein

bottle. The same is true for all periodic orbits with odd Maslov index, whereas for

periodic orbits with even index and therefore orientable but twisted local invariant

manifolds it might still be possible to form orientable spanning surfaces by gluing two

non-trivial surfaces with boundary the circle.

The Maslov index is usually defined for closed curves in Lagrangian submanifolds

[MS98, Section 2.3]. Recall that a submanifold W of a symplectic manifold (M,ω) is

said to be Lagrangian if for all z ∈ W the tangent space TzW is Lagrangian, i.e. the

symplectic complement to the tangent space

TzW
ω = {ν ∈ TzM |ω(ν, ξ) = 0 ∀ξ ∈ TzW}

satisfies TzW
ω = TzW . This implies that W has half the dimension of M and that

ω vanishes on W . The definitions of the Maslov index coincide because the invariant

manifolds of hyperbolic periodic orbits are Lagrangian, as we shall now recall.

*24 Ghrist et al. [GHS97] instead refer to the self-linking number of the periodic orbit, that is the
linking number of the link composed of the periodic orbit and a boundary of one of the local
invariant manifold ribbons.

*25 These are also referred to as flip (hyperbolic), or Möbius periodic orbits.
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Proposition 2.3.3. For a 2 degree of freedom Hamiltonian system, the stable and un-

stable manifolds W±(NE) of an (inversion) hyperbolic periodic orbit NE are submani-

folds of the energy level ME containing NE, and both have dimension 2. Furthermore,

they are Lagrangian submanifolds of state space (M4, ω).

Proof. The stable and unstable manifolds are submanifolds of the energy level ME

by definition, seeing as they consist of trajectories asymptotic to NE and energy is

conserved. Their dimension can be deduced from the constraints on the characteristic

multipliers of Hamiltonian periodic orbits. To see why W±(NE) are Lagrangian, we

first note that for points z ∈ NE, the tangent manifolds TzW
± are Lagrangian by

considering the splitting of TzM as by the Williamson theorem. Thus ω(η1, η2) = 0

for ηi ∈ TzW
±, and the symplectic form must vanish throughout W± because the

Hamiltonian flow preserves ω. Finally, since dim(W±) = 2 and ω vanishes, W± are

Lagrangian.

Actually, we can also define a Maslov index for elliptic periodic orbits [Sug00]. This

allows us to follow the index through bifurcations in which the stability of the periodic

orbit changes.

Another topological property of periodic orbits is their knot or link type. Periodic

orbits are diffeomorphic to S1, but for 2 degree of freedom systems they can be em-

bedded in their energy level in non-trivial ways, i.e. they may be knotted or linked*26.

Two good references are the classic book of Roflsen [Rol03], and Ghrist et al. [GHS97],

which considers knots arising in dynamical systems.

Periodic orbits that are local, i.e. contained in a subset of ME diffeomorphic to R3,

avoid the global topological obstructions mentioned previously. In the literature, links

are usually embedded in S3, which can be thought of as R3 plus a point at infinity (by

considering the stereographic projection). This is boundaryless and easier to work with

than R3, e.g. when dealing with link-complements.

Given some collection of periodic orbits forming a link NE, we ask whether this can

be spanned by orientable surfaces of unidirectional flux. We recall that all links have a

Seifert surface.

Proposition 2.3.4. Any link NE in S3 has at least one Seifert surface, that is a

connected, oriented surface spanning*27 NE.

The proof is constructive and known as Seifert’s algorithm [Rol03, Section 5.4].

However, the Seifert surface it produces depends on the chosen link-diagram (or pre-

sentation), i.e. the projection of the link NE onto the plane with a convention for the

crossings.

We can thus span any link with an orientable (Seifert) surface. Spanning a given

link on either side with one (or two) of its Seifert surfaces and then taking the union of

these will thus give a closed oriented surface, which separates the ambient energy-level.

*26 Note that all knots “untangle”, i.e. are equivalent to the unknot (a closed curve whose embedding
in S3 is the boundary of an embedded disk) in dimensions 4 or higher.

*27 In the literature, the terminology often inverts the roles, saying that NE bounds the surface SE.
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However, we want Seifert surfaces that admit flows that are unidirectional across them.

We recall that a knot or link NE in S3 is said to be fibred if there is a family of Seifert

surfaces St parametrised by points t in the circle S1, such that for two distinct points

t and τ the intersection of St and Sτ is exactly NE. That is, the link complement of

fibred knots, N c

E = S3 \ NE, can be written as a (surface) fibre bundle over the circle

[Rol03, Section 10.H]. In S3, these knots are the ones for which we can find a spanning

(Seifert) surfaces through which the flux of ergode is unidirectional. They are in fact

used to construct global Poincaré surfaces of section, see e.g. [BDW96].

Fibred links are a subset of all links, which satisfy certain conditions, see e.g. [Rol03,

Section 10.H]. One of these is that the Alexander polynomial A(t) of fibred links NE

in S3 is monic, i.e. its first and last non-zero coefficients are ±1. Thus the only twisted

knots that can be fibred are the trefoil, the figure of eight, and the unknot. Also, all

torus knots and links are fibred, and all closed positive braids are fibred links [BW83].

However, in general ME is not diffeomorphic to S3, so this does not provide a complete

answer regarding which hyperbolic periodic orbits may be transition states.

We now turn to bifurcations, at which periodic orbits may change stability or topo-

logical properties. We shall only consider the energy, which parametrises the orbit

cylinders, as a bifurcation parameter. This is a natural parameter for Hamiltonian

systems.

The bifurcations of periodic orbits can be divided into those that produce a branch-

ing (or termination) of the orbit manifold, such as (Lyapunov) creations and homoclinic

bifurcations*28, those that result in a change of stability of the periodic orbits, such

as centre-saddle bifurcations, and those that combine both cases above, such as period

doubling bifurcations.

We would like to classify the different transport scenarios for 2 degree of freedom

systems, and understand which periodic orbits can act as transition states. Seeing as

the orbit manifold, or parts of it, will act as a transition manifold, we are also interested

in their geometry, especially their smoothness, branching and symplectic nature, which

was answered with Theorem 2.3.1. These are not generally the focus of the bifurcation

theory literature.

Clearly, bifurcations that result in the loss of normal hyperbolicity of the periodic

orbit break the transition state condition, as elliptic periodic orbits cannot be spanned

by dividing surfaces with no local recrossings.

On the other hand, bifurcations that lead to branchings of the orbit cylinder without

a change of stability can lead to a change in diffeomorphism class of the transition state,

leading to a union, or link, of periodic orbits. The simplest branching bifurcation is

the (Lyapunov) creation at an index-1 critical point of the Hamiltonian in the basic

scenario, at which a periodic orbit transition state is born [AM78, Section 8.6]. Another

class of bifurcations that involve the branching of the orbit manifold are homoclinic

bifurcations. In the simplest case, a regular orbit cylinder terminates at a critical energy

Ec with a homoclinic orbit asymptotic to a hyperbolic equilibrium point, or index-2

critical point of the Hamiltonian function. The period of the orbits in the cylinder tends

*28 Homoclinic bifurcations are also known as homoclinic, or infinite period, blow-up.
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to infinity and the orbits tend to the homoclinic orbit as E tends to Ec [VF92]. Recall

that the stable and unstable manifolds of an equilibrium point lie in the energy level

containing the equilibrium. This follows from their definition and the conservation of

energy. Thus W+ and W− may intersect transversely along homoclinic orbits, which

are then said to be non-degenerate. More generally, Hamiltonian systems often have a

number of homoclinic orbits asymptotic to the same hyperbolic equilibrium, or multiple

hyperbolic equilibria at a given Ec and heteroclinic orbits. This leads to multiple

homoclinic bifurcations, involving multiple periodic orbits, which may also tend to a

number of heteroclinic orbits. There are essentially two possible bifurcations for the

orbit manifold. In the first, the manifold consists of orbit cylinders for E both above

and below Ec, all terminating at the homoclinic orbits and joining smoothly to form

a global, symplectic orbit manifold. These are Morse bifurcations*29. The simplest

example is that of two homoclinics to a single index-2 critical point of H and an

orbit manifold that is locally a “pair of pants”, as seen in the connecting example in

Section 2.4.2. The other class of bifurcations occurs when the orbit cylinders are only

present for E either above or below Ec and the global, possibly branched, orbit manifold

disappears as E passes through Ec. In this situation, the orbit manifold terminates.

These bifurcations are found in chaotic scattering and known as “abrupt bifurcations”

[BGO90].

For simple mechanical two degree of freedom systems, one can tell which homoclinic

bifurcation occurs at a critical energy Ec by using the heteroclinic shadowing theorem

of Turaev and Shilnikov [TS89] and Baesens et al. [BCM13]. This gives the existence of

periodic orbits shadowing sequences of admissible non-degenerate heteroclinic orbits.

For general Hamiltonian systems, those with more degrees of freedom than two, and

for higher index critical points there is no theorem that can be used to decide which

bifurcation occurs at a given critical value of the energy. One must therefore try to

construct a smooth normally hyperbolic codimension-2 submanifold through Ec and

then consider its level sets.

2.3.2 Higher dimensional transition states

Similarly, we are interested in higher dimensional transition states and their bifurcations

and obstructions. However, it is not straight forward to study the bifurcations of

these high dimensional submanifolds, let alone define and enumerate all their possible

topological properties. In two degrees of freedom, links cover all periodic orbit transition

states, whereas in general degrees of freedom, transition states can undergo Morse

bifurcations and change diffeomorphism class altogether.

Knot theory does generalise to spheres, and possibly other high dimensional sub-

manifolds, namely a knot is an embedding of a submanifoldNn inMm, and if non-trivial

(that is not isotopic to the trivial embedding) it is said to be knotted, see e.g. [Rol03,

Chapter 11]. Transition states will always be codimension-2 in their energy-level, and

so maybe be knotted. If N is disconnected then it may be called a link.

*29 Morse bifurcations of periodic orbits are also called gluing bifurcations [GHS97, Section 4.4], con-
nections [GH90], and also play a role in “massive bifurcations” to chaotic scattering [DG+90].
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One would then like to ask which of the previous obstructions for periodic orbit

transition states carry over to higher dimensions. This would also require understanding

how to generalise the Maslov index to higher dimensional submanifolds. For general

degrees of freedom, we must also check for other topological invariants that are not

present for periodic orbits.

Bifurcations of high dimensional transition states that lead to a loss of normal

hyperbolicity have not been explored much. It has been considered a hard problem

because there are many possible consequences. Recently, there have been a few stud-

ies, e.g. in the context of transport problems see [LTK09, TTK11, AB12], but these

bifurcations are still poorly understood.

What had been overlooked until now are the Morse bifurcations in which the transi-

tion manifold branches, just as for the homoclinic Morse bifurcations of periodic orbits.

These shall be considered in the next Section and then again in Chapter 3.

2.4 Morse bifurcations of transition states

In a Morse bifurcation, the transition state develops singularities at a critical energy Eb,

i.e. the manifold structure fails, but then regains smoothness and normal hyperbolicity

with a change in diffeomorphism type. These bifurcations occur when there is a tran-

sition manifold N for some range of energies, and the Hamiltonian function restricted

to the transition manifold HN has a critical energy value Eb in this range. As the

energy is varied through the critical value, the transition states, which are the energy

levels of the transition manifold NE = H−1
N (E), undergo a Morse bifurcation. Morse

theory, which is briefly reviewed in Appendix A.3, gives the transition state after the

bifurcation as a handlebody (Theorem A.3.4) from which we can tell its diffeomorphism

class.

The Morse bifurcations of the transition states come with associated bifurcations

of the dividing surfaces SE, and of the energy-levels ME. That is, the critical points

of the restricted Hamiltonian HN are also critical point, with an index that is greater

by 1, of the Hamiltonian function H itself. One could say that the bifurcations of

the energy levels are the reason for the bifurcations of the dividing surfaces and the

transition states, in the sense that given a bifurcation of the energy levels the dividing

surfaces must also bifurcate in order to still separate the two regions of interest.

Of course, knowledge of the diffeomorphism class of the transition states does not

help us to compute the desired flux of ergode through the dividing surface, which

requires an explicit formula for the transition state in order to perform the integration.

However, it is crucial in order to understand the qualitative nature of the transport

problem in question. The changes in flux as a function of energy, when the transition

states undergo Morse bifurcations is considered in Section 2.5.

Degenerate critical points can also be considered, however if we are only interested

in the diffeomorphism class of the transition states we may find this by perturbing the

function slightly in order to obtain a Morse function with only non-degenerate critical

point. Morse theory also provides bounds on the number of critical points given the
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Figure 2.2: Graph of volcano potential with contour lines for the disconnecting transi-
tion states example.

topology of the transition manifold, via the Morse inequalities.

Morse bifurcations of the energy-levels were one of the key points of Smale’s “topo-

logical program” for mechanical systems [Sma70], however those of transition states

and dividing surfaces had been overlooked until now. For 2 degree of freedom sys-

tems, another way of looking at these bifurcations is as a combination of homoclinic

bifurcations, as reviewed in Subsection 2.3.1. In the literature, these bifurcations have

been found in a number of scenarios, the closest to our transport problems being the

“massive bifurcations” to chaotic scattering considered by Ding et al. [DG+90]. Re-

cently, some examples of homoclinic bifurcations of periodic orbit transition states were

reported by Mauguière et al. [MC+13], in a paper that appeared in preprint form at

about the same time as ours [MS14]. Unlike two degree of freedom systems, for which

the transition states are always periodic orbits and the Morse bifurcations can only

lead to connections and disconnections, for higher dimensional transition states, these

can lead to a qualitatively different transition states and dividing surfaces.

We shall now consider two examples of Morse bifurcations of transition states. These

are originally two degree of freedom systems, which are easier to present, but then more

degrees of freedom are added to point out that Morse bifurcations are not restricted to

any dimension. Further examples of Morse bifurcations will be seen in the bimolecular

reactions of Chapter 3.

2.4.1 Example. Disconnecting transition states

We now turn to our first example of a Morse bifurcation. This shows one way in which

the basic scenario transition state can change topology as the energy increases.

Consider a “volcano potential” given in polar coordinates as

U (x, β) =
1

2
x2
(

2− x2
)

(1− εx cos β) ,

where ε is a small positive parameter, see Figure 2.2.

The mechanical Hamiltonian function with this potential energy is then

H (x, β, px, pβ) =
1

2

(

p2x +
1

x2
p2β

)

+
1

2
x2
(

2− x2
)

(1− εx cos β) ,
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and we consider the Hamiltonian system with the canonical symplectic form. The

Hamiltonian function has three critical points, one of which z̄1 = (x̄c, 0, 0, 0) with

index-1, and another z̄2 = (x̄c, π, 0, 0) with index-2. We are interested in transport in

and out of the crater and have an index-1 critical point in between, as expected for

the basic scenario. Choosing x as the coordinate joining the two regions, we want to

construct a transition and dividing manifold about the index-1 critical point and study

the transition states and dividing surfaces over a range of energies.

In Subsection 3.2.1, we shall consider the transport problem associated with capture

of a diatom by an atom restricted to the plane. We shall then note that the present

disconnecting example can be viewed as the planar capture transport problem between

a frozen diatom and an atom with zero total angular momentum. A similar volcano

potential is seen in the ionization of hydrogen in a circularly polarized microwave field

[FU95, BUF97]. The transport problem in this example is however different, as escaping

from the volcano’s crater does not necessarily imply ionization.

Considering the axi-symmetric case, ε = 0, for which a transition manifold can be

found explicitly, allows us to find an approximate transition manifold for the full sys-

tem and due to its normal hyperbolicity deduce that there is a true transition manifold

nearby. The set of critical points of the Hamiltonian function restricted to the fibres,

symplectically orthogonal to the axi-symmetric transition manifold, gives an approxi-

mate transition manifold as explained in Appendix A.1. Then the Morse bifurcations

of the approximate transition states will be qualitatively the same as those of the actual

transition states.

In the axi-symmetric case, the Hamiltonian function becomes

H0 (z) =
1

2

(

p2x +
1

x2
p2β

)

+
1

2
x2
(

2− x2
)

,

where β is a cyclic coordinate, so the angular momentum is conserved, pβ = λβ . The

critical points are z̄0 = (0, β, 0, 0) and z̄1 = (1, β, 0, 0), which are now both degenerate.

Linearising about z̄1, we find that (x, px) are the hyperbolic directions, and (β, pβ) the

elliptic ones. Thus, the centre subspace about z̄1 is N̂ = {z ∈ M |x = 1, px = 0},

and we find the centre manifold, N0 = {z ∈ M |x = X0 (β, pβ) , px = P0 (β, pβ)} by

satisfying the invariance equations

P0 −
pβ
X2

0

∂X0

∂β
= 0,

p2β
X3

0

− 2X0

(

1−X2
0

)

−
pβ
X2

0

∂P0

∂β
= 0.

This is done by choosing P0 = 0 and X0 satisfying p2β − 2X4
0

(

1−X2
0

)

= 0.

We have actually found a generalised centre manifold that extends beyond a small

neighbourhood of z̄1. To check the stability of N0, i.e. that it remains normally hy-

perbolic, we need to find appropriate tangent and normal coordinates and consider the

linearised equations about N0. At a point z̃ = (X̃0, β̃, 0, p̃β) on the transition manifold,

the tangent vectors are taken to be ξ1 = ∂β , ξ2 = p̃β∂x + 2X̃3
0

(

2− 3X̃2
0

)

∂pβ . We then
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Figure 2.3: Axi-symmetric case: energy of the transition states as a function of r
continued (dashed) to the elliptic periodic orbit, and flow in the (x, px) plane for an
energy in (E1, Ec) showing the transition state, the dividing surface and the flux through
it, and for the bifurcational energy Ec.

choose a Riemannian structure, for which the length is given by

ds2 =
c2

x2
(

dx2 + x2dβ2
)

+ dp2x +
1

x2
dp2β,

i.e. proportional to the length in configuration space plus the kinetic energy, where

the constant c balances the dimensions by having those of velocity, and is set to

1. This allows us to define vectors orthogonal to the transition manifold as η1 =

2X̃3
0

(

3X̃2
0 − 2

)

∂r + p̃β∂pβ and η2 = ∂px. Finally, the first variation equations for

ν = v1ξ1 + v2ξ2 + v3η1 + v4η2 are

v̇ =















0 1
X̃0f(X̃0)

0 1+8X̃0
2
−12X̃0

4

2X̃0
6
f(X̃0)

0 0 p̃β 0

0 0 0 2
X̃3

0

0 0 2X̃3
0 (3X̃

2
0 − 2) 0















v,

where f(X̃0) = 1 + 7X̃2
0 − 24X̃4

0 + 18X̃6
0 and is negative in the region of interest. This

choice of splitting is not invariant, but we can see that N0 is normally hyperbolic for

X0 ∈ (
√

2/3, 1]. The point X0 =
√

2/3 is the steepest point of the potential, at which

the normally hyperbolic periodic orbit emanating from the critical point z̄1, that is the

transition state, collides with the elliptic periodic orbit from the crater of the volcano

in a centre-saddle bifurcation [Han07, Section 3.1]. Interestingly, at X0 =
√

2/3 when

normal hyperbolicity is lost, the symplectic form restricted to the transition manifold

ωN also becomes degenerate.

In the axi-symmetric case, we can use the dividing manifold construction method

of Section 2.2. The fibres, symplectically orthogonal to N0 are

F 0
z̃ = {z ∈ U |β = β̃ +

2X̃3
0

(

2− 3X̃2
0

)

p̃β
px, pβ = p̃β}.
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Thus the restricted Hamiltonian function, linearised about z̃ ∈ N0 is

H0|F 0
z̃
(z) = E0 +

1

2
p2 − 2

(

3X̃2
0 − 2

)

q2 +O
(

q3
)

.

The functions A−
z̃ (z) = p, A+

z̃ (z) = −q satisfy the necessary conditions of Section 2.2,

and

Sz̃ = {z ∈ U |A+
z̃ (z) = X̃0 − x = 0}.

Flow in the (x, px) plane showing the dividing surfaces and the flux through them, for

an energy in (E1, Ec) and for the bifurcational energy Ec, are shown in Figure 2.3.

There are clearly recrossings even for small energies above z̄1 due to the geometry of

the system, but these are not local (see definition in Section 1.3). The local recrossings

only appear when the transition state loses normal hyperbolicity at X0 =
√

2/3.

Returning to the full system, we can now find an approximate transition manifold,

N1, by constructing a fibration of a local neighbourhood of N0, with symplectically

orthogonal fibres F 0
z̃ , for z̃ = (β̃, p̃β) ∈ N0, and then definingN1 = {z ∈M |dzHF 0

z̃
= 0}.

The symplectically orthogonal fibres are the ones used previously to find a dividing

manifold for the axi-symmetric case. The Hamiltonian function restricted to the fibre

F 0
z̃ is

HF 0
z̃
(x, px) =

1

2

(

p2x +
1

x2
p̃2β

)

+
1

2
x2
(

2− x2
)



1− εx cos



β̃ +
2X̃3

0

(

2− 3X̃2
0

)

p̃β
px







 ,

so linearising about N0 (by letting x = X̃0 + εX1, px = εP1) and taking the exterior

derivative gives

dzHF 0
z̃
=
ε2

2

[

8
(

2− 3X̃2
0

)

X1 − X̃2
0

(

6− 5X̃2
0

)

cos β̃
]

dX1

+ ε2



P1 −
X̃6

0

(

4− 8X̃2
0 + 3X̃4

0

)

p̃β
sin β̃



 dP1 +O
(

ε3
)

.

Asking that dzHF 0
z̃
= 0, we obtain

X1 =
X̃2

0

(

6− 5X̃2
0

)

8
(

2− 3X̃2
0

) cos β̃ +O (ε)

P1 =
X̃6

0

(

4− 8X̃2
0 + 3X̃4

0

)

p̃β
sin β̃ +O (ε) .

and so

N1 = {z ∈M |x = X0 (pβ) + εX1 (β, pβ) +O
(

ε2
)

, px = 0 + εP1 (β, pβ) +O
(

ε2
)

}.
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Figure 2.4: Graph of the Hamiltonian function restricted to the transition manifoldHN ,
over an annulus in (β, pβ), for the disconnecting example and its projections showing
the transition states.

Then the restricted Hamiltonian is

HN (β, pβ) =
1

2

(

ε2P 2
1 +

1

X2
p2β

)

+
1

2
X2
(

2−X2
)

(1− εX cos β)

=
1

2

(

p2β
X2

0

+X2
0

(

2−X2
0

)

(1− εX0 cosβ)

)

− εX1

(

p2β
X3

0

− 2X0

(

1−X2
0

)

)

+O
(

ε2
)

=
1

2

1

X2
0

p2β +
1

2
X2

0

(

2−X2
0

)

(1− εX0 cos β) +O
(

ε2
)

,

and is actually independent of X1 and P1 to first order in ε. Note that we have dropped

the subscript 1. Finally, the transition states are given to order ε as the level sets of

the restricted Hamiltonian function, NE = H−1
N (E).

The approximate dividing surfaces are then the level sets of an approximate dividing

manifold chosen to be

S = {z ∈M |x = X0 (pβ) + εX1 (β, pβ) +O
(

ε2
)

}.

This spans the approximate transition manifold, which is not invariant, so it does not

have minimal geometric flux and the two halves will not be unidirectional, in general.

However, there are true transition manifold and dividing manifold nearby. The true

transition manifold due to normal hyperbolicity and the true dividing manifold by our

construction of Section 2.2.

We now consider the topology of the transition states and the dividing surfaces.

Starting with the transition state, we find that within the normally hyperbolic region,

the restricted Hamiltonian function HN has critical points z̃1 = (0, 0) and z̃2 = (π, 0)

with X0 = 1. These have index λ̃1 = 0 and λ̃2 = 1, and energies 1
2 (1− ε) and

1
2 (1 + ε), respectively. Starting from the critical point with least energy, z̃1, by the

Morse lemma and Theorem A.3.3, for energies below that at z̃2 the transition state

is diffeomorphic to a circle, S1. Increasing the energy and passing the critical point

z̃2 results in a bifurcation and the topology of NE changes, according to Theorem

A.3.4, to 2S1, see Figure 2.4. Thus, we have found our first example of a transition
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Figure 2.5: Graph of the potential energy in the connecting transition states example.

state Morse bifurcation, and therefore of a transition state not diffeomorphic to S2m−3,

namely 2S1 ≇ S1. Similarly, we see that the dividing surface bifurcates and changes

from a sphere S2 to a torus T2. It can be useful for extrapolation to higher degrees of

freedom to write the transition state as S0 × S1 (S0 being the two-point set {±1}) and

the dividing surface as S1 × S1.

Care must be taken in studying the Morse bifurcations, as the critical points of

the restricted Hamiltonian functions are also critical points of the original Hamiltonian

and therefore cause a change in the topology of the energy levels. In this example, the

bottleneck opens up and the energy levels change topology, but we can still distinguish

two regions and consider transport between them.

Morse theory applies to manifolds of all dimensions. This example can therefore be

coupled to another (or more) oscillating degree of freedom to give a 3 degree of freedom

system with Hamiltonian function

H (z) =
1

2

(

p2x +
p2β
x2

)

+
x2

2

(

2− x2
)

(1− εx cos β) +
b

2

(

v2 + u2
)

+ δV (x, β, u) .

In the uncoupled case, with δ = 0, there is no energy transfer with the new degree of

freedom, so we can effectively consider the original volcano system and the oscillator

separately. For energy above the maximum on the volcano rim in the volcano degree

of freedom, the transition state bifurcates from S3 to S2 × S1 and the dividing surface

from S4 to S3 × S1. A small perturbation, δ 6= 0, couples the degrees of freedom, but

the normally hyperbolic transition manifold persists, along with the Morse bifurcation,

so the same scenario occurs. Specific examples of higher degree of freedom systems ex-

hibiting this Morse bifurcation will be seen in Section 3, where we consider bimolecular

reactions.

2.4.2 Example. Connecting transition states

This example is found in applications such as narcissistic isomerisation reactions, that

is chemical reactions in which a given molecule changes from one of its stereoisomers

to the mirror image. References to this and other chemical reactions in which this

bifurcation appears can be found in Ezra and Wiggins [EW09], where this example is

also considered. They however focus on a neighbourhood of the index-2 critical point
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of the Hamiltonian function and the influence of this critical point on the transport,

whereas we consider the complete picture.

The Hamiltonian system in question has T ∗R2 as its state space, with its canonical

symplectic form and the Hamiltonian function

H (z) =
a2
4

+
a1
2

(

y2 − x2
)

+
a2
2

(

v2 − u2
)

+
a2
4
u4,

where z = (x, u, y, v) and a1, a2 ∈ R+. The critical points of the Hamiltonian function

are the origin, z̄0, and z̄± = (0,±1, 0, 0), with index 2 and 1, respectively.

We are interested in transport between the two regions on either side of the two

index-1 critical points and therefore the x-axis, see Figure 2.5. We therefore expand

the Hamiltonian function about these critical points by shifting the u-axis, namely

u = ±1 + ũ to get

H (z) =
a1
2

(

y2 − x2
)

+
a2
2

(

v2 + 2u2
)

+Hn (z) ,

with the higher order terms Hn (z) = ±a2u
3 + a2u

4/4, where the tildes have been

dropped. Thus the centre subspaces of the critical points are seen to be N̂ (z̄±) = {z ∈

M |x = y = 0}. Seeing as the system is uncoupled, the (local) centre manifolds can be

chosen to be equal to the centre subspaces.

The two centre manifolds form part of a larger codimension-2 invariant submanifold,

given by

N = {z ∈M |x = y = 0},

for which we must check the stability, ensuring that we have normal hyperbolicity and

so a transition manifold. This is done by linearising the vector field about N and

comparing the linear flows in the the normal, with η1 = 2−1/2 (∂x − ∂y) and η2 =

2−1/2 (∂x + ∂y), and the tangent, with ξ1 = ∂u and ξ2 = ∂v, directions. The linearised

equations of motion, about a point z̃ = (ũ, ṽ) in N , are

v̇ =













0 a2 0 0

a2 − 3ũ2 0 0 0

0 0 a1 0

0 0 0 −a1













v,

where ν = v1ξ1 + v2ξ2 + v3η1 + v4η2. The normal dynamics are clearly hyperbolic.

Instead, the dynamics tangent to N depend on the point z̃ on the manifold. For
(

a2 − 3ũ2
)

< 0 the motion is elliptic, whereas for
(

a2 − 3ũ2
)

> 0 it is hyperbolic.

Although in this uncoupled system we do not need N to be normally hyperbolic, we

do to continue the conclusions to cases with small coupling. We therefore compute

a condition ensuring that the normal dynamics still dominates the tangent one. The

coefficient
(

a2 − 3ũ2
)

is greatest when ũ = 0, thus with a1 > a2 the transition manifold

is normally hyperbolic. In the basic scenario, (half of) the normally hyperbolic degree

of freedom gives the transport direction. At the critical point z̄0 however, the two direc-

tions “compete” because the tangent dynamics becomes hyperbolic. If the transition
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Figure 2.6: Graph of the Hamiltonian function restricted to the transition manifold for
the connecting example and its projections, the transition states.

manifold stays normally hyperbolic, i.e. the potential energy (surface) is steepest in

the x direction, then the transport coordinate is preserved.

Finding a dividing manifold for this example is easy due to the lack of coupling.

A simple fibration of a neighbourhood of N has fibres given by Fz̃ = {u = v = 0}.

Restricting the Hamiltonian function to such fibres gives the necessary normal form

Hamiltonian. The functions A−
z̃ (z) = y, A+

z̃ (z) = {H,A−
z̃ } = −a1x then satisfy the

necessary conditions of Section 2.2. Therefore, a dividing manifold is given by

S = {z ∈M |x = 0}.

As usual, we can write the transition states as level sets of the Hamiltonian function

restricted to N ,

HN (u, v) =
a2
4

+
a2
2

(

v2 − u2
)

+
a2
4
u4.

This has the origin, z̃0, and z̃± = (±1, 0) as its critical points, with indices λ̃0 = 1,

λ̃± = 0. Thus the transition states bifurcate and change from 2S1 to 1S1. That is,

as the energy is increased, the periodic orbits emanating from z̃± meet in homoclinic

bifurcations at z̃0 and connect to become one. For energies below that at z̄0, this

example therefore exhibits a transition state different from the usual basic scenario

periodic orbit. This transition state is however the disjoint union of two periodic

orbits, so if we had restricted our attention to a single index-1 critical point, we could

have easily missed this more global picture.

Similarly, by considering HS , we find that two dividing surfaces diffeomorphic to

S2 about the index-1 critical points of H connect to form a single sphere, S2, as the

energy is increased. The energy levels also bifurcate as we pass the critical point z̄0.

Starting with an energy just above that at z̄± and increasing it, we see that the two

bottlenecks open up until they meet and become one, with the two regions of interest

remaining the same.

We have considered here the uncoupled, symmetric case in which the three critical

points are aligned on x = 0 with u → −u symmetry. However, due to the persistence

of normally hyperbolic submanifolds, adding coupling between the (x, y) and (u, v)

degrees of freedom will not alter the conclusions about the bifurcation. For this, the

normal hyperbolicity condition a1 > a2 is essential. We could also break the u → −u
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symmetry, in which case the saddles have different energy, so as the energy increases we

first obtain one S1 then 2S1, followed at the index-2 energy by qualitatively the same

transition to 1S1.

Now consider coupling our example to another oscillating degree of freedom. The

Hamiltonian function for this could be

H (z) =
a2
4

+
a1
2

(

y2 − x2
)

+
a2
2

(

v2 − u2
)

+
a2
4
u4 + b

(

p2 + q2
)

+ δV (x, u, q) .

In the uncoupled case with δ = 0, the transition state bifurcates from 2S3 to 1S3 and

the dividing surface from 2S4 to 1S4. In the coupled case, provided the coupling is

sufficiently small, we can treat it as a perturbation of the uncoupled case and invoke

the persistence of normally hyperbolic submanifolds to obtain topologically the same

picture.

2.4.3 Other Morse bifurcations

If we restrict our attention to 2 degrees of freedom simple mechanical Hamiltonian

systems, the critical points of the restricted Hamiltonian HN can only have index 0 or

1. At index-0 critical points a transition state is “created”, whereas at critical energies

corresponding to index-1 critical points, seeing as the transition state is closed, the

transition state is generically a figure eight (more complicated cases can occur if there

are several critical points with the same energy). Thus, the only generic bifurcations

scenarios are the connection and disconnection ones found in Subsections 2.4.1 and

2.4.2.

It should be noted however, that this limitation on the types of Morse bifurcations

of the transition states does not place significant restrictions on the bifurcations of the

dividing surfaces. Just as we have found genus-1 dividing surfaces (as well as genus-0),

we expect any genus surface should be possible. We expect that limitations will instead

come from the transport problems and that these dividing surfaces will only appear in

Hamiltonian systems for which the transport problem is not well defined.

For natural systems with 3 degrees of freedom or higher, we have seen how the

connecting and disconnecting scenarios with index-1 critical points of the restricted

Hamiltonian function can be coupled to other degrees of freedom. Such systems may

also have higher index critical points, which will give rise to other Morse bifurcations.

Explicit examples of connecting, disconnecting and also higher index Morse bifurcations

will be seen in the next section in which a hypothetical class of planar bimolecular

reactions is considered as an application of the previous sections. Here we find various

sequences of Morse bifurcations.

2.5 Flux of ergode as a function of energy

Once we have chosen a dividing surface SE , the rate of transport is found by computing

the flux of ergode through it in a given direction. In this Section, we address the

differentiability of the flux as a function of energy, which determines the shape of the
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graph. This is necessary in order to connect to experiments such as in [MX+91] (a

different RS MacKay, we hasten to add!). Our approach is similar to that of Van

Hove in his study of the singularities in the elastic frequency distribution of crystals

[Van53], which is related to the singularities of density of states, now known as Van

Hove singularities. Also, Hoveijn has considered the differentiability of the volume of

level sets of submanifolds of Rn [Hov08].

Recall from Section 1.2, Theorem 1.2.2, that for regular energy levels ME , the flux

through a surface S+
E with boundary NE is

φE
(

S+
E

)

= −

∫

NE

ΘE,

where ΘE = 1
(m−1)!θ ∧ ωm−2 is a “generalised” action form. In order to compute

the flux, we may therefore focus on the transition states, as opposed to the dividing

surfaces, provided the latter do not break down. We shall assume this to be the case.

As a function of energy, the flux through local dividing surfaces in the basic trans-

port scenario was already considered in Section 1.4, and is given by

Proposition 2.5.1. The flux φE
(

S+
E

)

through a dividing surface S+
E in the neighbour-

hood of an index-1 critical point of the Hamiltonian H, with energy E just above the

critical value E1, is given to leading order by

φE
(

S+
E

)

=
∆Em−1

(m− 1)!

m−1
∏

i=1

2π

bi
,

where ∆E = E − E1 > 0 and bj are the normal form frequencies.

Proof. In the basic transport scenario, for small ∆E = E−E1 > 0, the transition state

NE = H−1
N (E) is a small (2m−3)-sphere, so it is sufficient to consider the leading orders

of the restricted Hamiltonian HN in Williamson normal form. The integral can then be

computed, for example, by passing to canonical action-angle variables, Ji = (v2i +u
2
i )/2

and θi = arctan (vi/ui), and using Stokes theorem to integrate the volume of the ball

N≤E instead of the generalised action over NE .

Increasing the energy E further above that of the index-1 critical point E1, we find

that NE
∼= S2m−3 until the next critical value of HN , by Theorem A.3.3. Assuming

that the dividing surface doesn’t break down as the energy is increased, the (set of)

critical points of HS , Cr(HS) is equal to that of HN , Cr(HS) = Cr(HN ). Furthermore,

N is invariant, so Cr(HN ) ⊂ Cr(H). The next step is therefore to consider the flux as

a function of energy away from critical values.

Proposition 2.5.2. For regular values E of the restricted Hamiltonian HN , the flux

φE(S
+
E ) through the dividing surface S+

E with ∂S+
E = NE is Cr as a function of the

energy E if HN is itself Cr.

Proof. In order to check that the flux is Cr, we consider an e < E for which there are

no critical values of HN in [e,E] and write NE = gE−e(Ne), where gt is the unit-speed
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gradient flow (with respect to some metric) satisfying

ġt(z) = −
gradHN

|gradHN |2
(gt(z)),

which carries Ne into NE, see e.g. [Mil63, Section I.3]. Then the flux can be written as

φE(S
+
E ) =

∫

Ne

g∗E−eΘE .

Now, since Ne is a regular level set it contains only regular points and we can choose

coordinates z = (u, v) = (u1, · · · , u2m−3, v) ∈ N so that Ne = {z ∈ N |v = 0}. NE can

be written as a graph over Ne, namely

NE = {z ∈ N |HN (z) = E} = {z ∈ N |v = v̄E(u)},

by the implicit function theorem, as dH 6= 0. The function v̄E is Cr if HN is Cr.

The gradient flow of points in Ne gives gE−e(u, 0) = (u, v̄E(u)). Finally, the pull-back

g∗E−eΘE contains first order derivatives of v̄ with respect to u, but these will not affect

the smoothness of the flux as a function of E, which is therefore Cr (in E). We are

implicitly using a chart for the whole of N , which might not be possible. If not, we

would have to find a finite number of simplices to triangulate Ne (which is compact) and

then consider the flow of simplices individually, as explained in detail in [Hov08].

Note 2.5.3. Even if H is C∞, HN need not be very smooth, the most derivatives we

can typically assume being given by the ratio of normal to tangential expansion at N .

This is usually referred to as the spectral gap condition, see e.g. [Fen71, HPS77].

We shall therefore focus on the differentiability of the flux for E near critical values

Ei. Global transition states cannot generally be defined in terms of local coordinates.

However, by Theorem A.3.4 the sub-level sets just above a Morse bifurcation of index-λ

can be written as a handlebody, composed of a lower sub-level set that contributes a Cr

term to the flux, by Proposition 2.5.2, and a handle diffeomorphic to Bλ × B2(m−1)−λ.

Thus, we deduce that possible changes in the differentiability of the flux occur in a

neighbourhood of the critical point, the contribution from the rest being Cr and we

will assume that r is sufficiently large. For more details see [Hov08]. Hence, in order

to find the smoothness of the flux as a function of the energy, we shall evaluate the

integrals only over the handle region, see Figure A.3.

Proposition 2.5.4. The flux through a dividing surface S+
E with small ∆E = E − E2

where E2 is a critical value with a single index-2 critical point of H is a Cm−2 function

of the energy E, provided HN is Cr and r is larger than m− 2, where ∂S+
E = NE.

Proof. We want the contribution to the flux from a neighbourhood U of an index-2

critical point of H, so we must integrate the generalised action ΘE over NE restricted

to U or equivalently, by Stokes’ theorem, the volume φE over N≤E|U

∫

N≤E

φE =
1

(m− 1)!

∫

N≤E

ΩN ,
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Figure 2.7: Graphs of φE as a function of energy E for a transition state undergoing a
disconnecting Morse bifurcation at E2, cf. Subsection 2.4.1. Left: two degree of freedom
system. Right: three degree of freedom system.

where ΩN = ωm−1, as φE = ωm−1/(m − 1)!. Since N is normally hyperbolic, it

is symplectic by Proposition A.1.2, and there is a canonical linear transformation to

Williamson normal form coordinates in which

HN (z) = H2 (z) +Hn (z) =
a1
2

(

v21 − u21
)

+
m−1
∑

j=2

bj
2

(

v2j + u2j
)

+Hn (z) ,

assuming that HN (z̄2) = E2 = 0. Then ΩN = Ω0
N = dz1 ∧ · · · ∧ dz2m−2.

Alternatively, the isochoric Morse lemma (see Remark A.3.2) gives HN as a poly-

nomial in H2, Ψ(H2) and the standard volume form Ω0
N .

By the Morse lemma (see Remark A.3.2), we can find a smooth near-identity trans-

formation F such that

F ∗HN = H2,

F ∗Ω0
N = ψ(H2)Ω

0
N = (1 + ψ̃(H2))Ω

0
N .

If we write N2
≤E = H−1

2 ((−∞, E]), then

∫

N≤E

ΩN =

∫

N2
≤E

Ω0
N +

∫

N2
≤E

ψ̃(H2(z))Ω
0
N .

In order to find the differentiability of φE(SE) with respect to E, it is sufficient to

consider the first integral, as it contains the lowest order terms in ∆E and we are

interested in ∆E → 0. Computing this integral, restricted to a neighbourhood of z̄2,

we find a term of the form

|∆E|m−1 ln |∆E| for ∆E < 0,

−∆Em−1 ln |∆E| for ∆E > 0,

which limits the smoothness of the flux as a function of the energy to Cm−2, as well as

polynomial terms in ∆E, cf. [Hov08].

Graphs of φE as a function of E for a transition state undergoing a disconnecting

46



Morse bifurcation, as in Subsection 2.4.1, can be seen in Figure 2.7. One is a graph for

flux through a dividing surface spanning a periodic orbit transition state of a two degree

of freedom system, for which we see the log-like infinite slope singularity at the index-1

Morse bifurcation, whereas the other is a graph of the flux for a three dimensional

transition state of a three degree of freedom system. For systems with more degrees of

freedom than two, the Morse bifurcations do not have a significant effect on the flux,

which varies Cm−2 smoothly through these.

Similarly, we can consider how the flux changes at Morse bifurcations involving

a critical point of any index. Ultimately, we are studying the differentiability of the

volume of level sets about critical values. This has been studied by Hoveijn [Hov08],

who tells us that the smoothness will always be limited to Cm−2, irrespective of the

index λ for λ ≥ 1. However, the nature of the discontinuity does depend on the index

[Hov08, Proposition 9].

In conclusion, except when the number m of degrees of freedom is small, Morse

bifurcations do not have a significant effect on the flux of ergode, which varies Cm−2

smoothly through these. Provided m − 2 < r, the Morse bifurcation will cause a

small kink in the graph of φE(S
+
E ) over E. We do not however expect that these

will be visible from experimentally obtained reaction rates, in which other physical

considerations probably have a larger impact on the shape of the graph.
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Chapter 3

Application. Morse bifurcations

in bimolecular reactions

3.1 Introduction. Reaction, capture and rates of trans-

port

One way of finding rates of reaction is to consider rates of transport in a low dimensional

Hamiltonian system representing the specific reaction. Some of the first examples

studied using transition state theory consisted of bimolecular reaction in gaseous phase,

A+B → products,

where the two (polyatomic) molecules are denoted A and B. Provided the Born-

Oppenheimer approximation holds, we can pass from the quantum mechanical system

to a classical one, namely the Hamiltonian system for the motion of the nuclei interact-

ing via a potential given by the (ground state) energy of the electrons*30 as a function

of the internuclear coordinates. Then, as outlined in Chapter 1, by assuming that this

extremely high dimensional (of the order of Avogadro’s constant) Hamiltonian system

is, at any instant, the product of “reacting” two molecule sub-systems that are indepen-

dent of each other, we may consider consider the evolution of an ensemble of individual

reactions in this low dimensional Hamiltonian sub-system. For this assumption to hold,

we require the gas to be sufficiently dilute. Finally, we can restrict our attention to

the energy levels, and consider the flow of ergode, as a function of the energy. Thus,

finding (microcanonical) reaction rates translates to finding the rate of transport of

ergode between regions representing reactants and products.

We shall consider transport between the region representing two distant molecules

(reactants) and the region in which the molecules are close. The latter region does not

however generally constitute the products*31. This is the capture transport problem

associated with the necessary first step of the molecules getting close enough to react.

*30 Assumed non-degenerate and hence a smooth energy function, else it can have conical singularities,
see e.g. [DYK04].

*31 Association and recombination reactions are largely limited to reactions in condensed phase or
solvent, see e.g. [HH08, Chapter 1]
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The capture rate (sometimes also called collision rate) provides an upper bound on the

reaction rate, as we do not expect all captured trajectories to proceed to the products

region [CSB80]. Note that, there might actually be multiple product regions, however

for the capture process between two molecules there is only one final region of interest.

Capture rates are crucial for many physical processes, and have a long history dating

back at least to 1905 with Langevin’s early contribution [Lan05]. See e.g. review by

Chesnavich and Bowers [CB82]. Two common assumptions are usually found in the

literature. Firstly, the reacting Hamiltonian systems are assumed to have Euclidean

symmetry, that is to be invariant under translations and rotations. This is the case

for gas phase reactions with no background (electro-magnetic) field. The Hamiltonian

system can then be reduced to a family of systems, in centre of mass frame, parametrised

by the angular momentum. Secondly, the energy is taken to be below those at which

the two molecules dissociate and centrifugal and Coriolis forces to be sufficiently weak

such that the molecules are well defined and in the small vibrations regime*32. These

assumptions allow us to distinguish between intermolecular degrees of freedom (distance

and relative attitudes of the molecules) and intramolecular ones. We too shall consider

systems that satisfy these assumptions.

We want to find the rate of capture, which we shall assume can be thought of as

transport between regions on either side of a non-degenerate maximum x̄c of the ef-

fective potential with respect to the intermolecular distance x. In the literature, this

maximum is generally assumed to be a centrifugal maximum obtained by balancing the

repulsive centrifugal terms with the attractive long distance potential energy. Alterna-

tively, x̄c could be a non-degenerate chemical maximum of the bimolecular potential

and therefore of the effective potential for small angular momentum.

Provided x̄c is sufficiently large, such that capture occurs in a region where the

potential is only weakly dependent upon the attitudes of the molecules, and sufficiently

non-degenerate, we shall see that fixing the intermolecular distance degree of freedom

to the maximum value gives a normally hyperbolic transition manifold, which can be

spanned by a dividing manifold satisfying x ≈ x̄c. The restriction of these manifolds

to the energy levels gives dividing surfaces and transition states, which we shall refer

to as capture transition states. The literature often refers to them as orbiting or loose

transition states [CB82, Pec76].

Some analysis of the structures in reaction dynamics in rotating molecules has been

done recently in [CW12, KK11a], but we are interested in the interaction of two rotating

molecules.

The central field model, in which the attitudes of the colliding pair are ignored,

is attributed to Langevin [Lan05]. In this very early work, one already finds capture

periodic orbit transition states. However Langevin, like many after him, considers the

capture process using scattering theory. Introductions to scattering theory can be found

in most books on classical mechanics, e.g. [GPS02, Section 3.10]. For a comparison

*32 We are implicitly assuming that the molecules are normal, i.e. that they have a rigid equilibrium
configuration. Molecules that are not normal are referred to as anomalous. We avoid the term
rigid, as it might lead to confusion with the rigid body limit, in which the vibrations have been
suppressed.
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of the scattering theory and the dividing surface approaches to capture problems see

[CB82].

Non-central fields were considered later, starting with the works of Pechukas [Pec80]

and Chesnavich, Su and Bowers [CSB80]. The intramolecular degrees of freedom consist

of small vibrations, by assumption. Instead, as the energy is varied, the intermolecular

attitude degrees of freedom, as well as the angular momentum one, will generally be

involved in interesting sequences of Morse bifurcations of the capture transition states

and dividing surfaces. Physically, the Morse bifurcations involving the attitude degrees

of freedom reflect the fact that as the energy is increased the molecules can capture each

other for a greater range of relative attitudes, i.e. the “cone of acceptance” for capture,

as it is called in the chemistry literature, opens up. That is the energy-levels change

diffeomorphism class, thus causing changes in the dividing surfaces and transition states

also. The simplest examples consist of planar reactions. Therefore in Section 3.2, we

consider planar capture between an atom and a diatom in detail, and then also present

the Morse bifurcations for diatom-diatom reactions without repeating the details. The

spatial case is considered in Section 3.4, after we have reviewed symplectic reduction of

n-body systems in Section 3.3. We choose to use the coordinates that one obtains via

the gauge theoretic approach to cotangent bundle reduction as outlined by Littlejohn

and Reinsch [LR97], and reviewed in Appendix A.4.

Following the transition states through the Morse bifurcations allows us to compute

the flux through the dividing surfaces for energies above the critical values, and thus

find the reaction rates for a larger range of energies.

Whether captured pairs then go on to react can be thought of as a further transport

problem and will generally involve other transition states and dividing surfaces, possi-

bly associated to other maxima x̄i of the effective potential. We shall refer to these as

reaction transition states, though they are often also called tight transition states. The

capture and reaction transition states are therefore in series. The simplest case will be

when these are distant and the level sets of separate transition manifolds. However,

even when “separate” their stable and unstable manifolds, which act as transport bar-

riers, will intersect, possibly in non-trivial ways, determining the reaction “channels”.

Some trajectories joining reactants and products might roam in the region between

the two (capture and reaction) dividing surfaces, that is follow trajectories with a non-

monotonic intermolecular distance in time, before finally crossing the reaction dividing

surface. This is to be expected because of coupling between degrees of freedom, and was

recently given as an explanation of what chemists have been calling roaming reactions

[MC+14, BS11].

Reaction rates have an equally long history as capture rates, and bimolecular re-

actions have played the role of test problems since the early days of transition state

theory (as noted in [Wig38]). The transport problems associated with reaction tend

to be harder, both because there is usually no separation of scales that one can use

to simplify the system and because the chemical potentials are at best not simple and

often degenerate. Similarly to how the first capture models were simplified by making

the fields central, reaction rates were first, and largely still, considered for collinear and
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Figure 3.1: Choice of Jacobi vectors and reduced coordinates for planar atom-diatom
reactions.

planar systems with zero angular momentum. The simplest bimolecular reactions, after

those between atoms, are the ones between an atom and a diatom, such as the trans-

fer reaction between H and H2, in which a H atom swaps partner. In the collinear

regime, these have two degrees of freedom, so possible transition states are periodic

orbits. These have been found to bifurcate and loose normal hyperbolicity, see e.g.

[DVB55, PP78, Dav87], according to the well known bifurcations of periodic orbits, see

e.g. [AM78, Chapter 8]. These examples lack the attitude degrees of freedom which

we shall see are involved in the Morse bifurcations for the capture transition states.

3.2 Planar reactions

Reactions with planar initial conditions, that is initial positions and momenta confined

to a plane, remain in this plane for all successive times. Such systems constitute

an invariant subset of all n-body systems that is a particularly simple and easy to

reduce, via changes of coordinates involving the symmetries and momenta, assuming the

angular momentum is non-zero. Reduced planar systems have no angular momentum

degree of freedom and no coordinate singularities at collinear configurations. Planar

reactions are therefore ideal as first examples of Morse bifurcations of the capture

transition states, and associated dividing surfaces. We now present two examples,

namely planar atom-diatom and diatom-diatom reactions. Symmetries and reduction

of n-body systems are discussed in Section 3.3.

3.2.1 Example. Planar atom-diatom reactions

The simplest non-trivial example is planar reactions between an atom and a diatom.

We shall consider reactions with no background (electro-magnetic) field. In this case,

the molecular potential is a translationally and rotationally invariant function, and

the Hamiltonian system possesses Euclidean symmetry. Furthermore, by Noether’s

theorem, the linear and angular momenta are conserved. Therefore, the system can be

reduced, as explained in Section 3.3.

The planar reduced three-body Hamiltonian system, parametrised by the angular
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momentum λ, is the mechanical system (T ∗R3
+, ω,H), with

H(z;λ) =
1

2

(

1

m
p2x +

1

mb
p2b +

(

1

mbb2
+

1

mx2

)(

pβ −
mbb

2

mx2 +mbb2
λ

)2
)

+ V (q;λ),

V (q;λ) =
1

2

λ2

mx2 +mbb2
+ U(q)

and

ω = dx ∧ dpx + db ∧ dpb + dβ ∧ dpβ,

where the coordinates are the intermolecular distance x, the attitude β and length b

of the diatom, and their canonical momenta, depicted in Figure 3.1. V is the effective

potential of the reduced system with the centrifugal term. The parameters are the

reduced masses m and mb, and the magnitude of the angular momentum λ. The

notation is the same as the one we will use for spatial reactions between non-collinear

molecules in Section 3.4.

We have chosen canonical coordinates, in which the Coriolis term is in the Hamilto-

nian function, as opposed to the more appropriate non-canonical coordinates that move

this term to the symplectic form and simplify the Hamiltonian function, see discussion

in Appendix A.4. This choice is motivated by our need to scale the system and desire

to have all scale effects restricted to the Hamiltonian function for easy comparison.

For energies below that at which the diatom dissociates, we have a two-body capture

problem. We shall restrict our attention to this scenario. The reduced coordinates and

their momenta then split into intermolecular (x, β) and intramolecular b degrees of

freedom.

The diatom will have an equilibrium configuration in the joint atom-diatom po-

tential. This corresponds to a non-degenerate minimum b̄(x, β) of the potential with

respect to the intramolecular distance b. We shall assume that this minimum is highly

non-degenerate, i.e. that the diatom is strongly bonded. Then, provided the centrifugal

and Coriolis forces on the diatom are not too strong, the diatom will vibrate about its

equilibrium without significant distortion, so the size of the diatom b̄(x, β) is essentially

constant.

The intermolecular terms of the potential will be repulsive at short ranges, possibly

have a number of chemical maxima with respect to the intermolecular distance x (and

therefore minima) in the mid ranges, and be attractive at long ranges, see Figure

3.2. The attractive long range (van der Waal) terms can be found qualitatively by

considering the interactions between the charges of the atom and the diatom. As a

function of the intermolecular distance, these are inverse k-power terms with k ≥ 4

[Sto13]. The molecular potential is then summed to the repulsive centrifugal term

to give the effective potential. In the long (physical) range, provided the attractive

potential falls off faster than the centrifugal potential as x → ∞, i.e. k > 2, the

effective potential has a centrifugal maximum x̄λ(b, β;λ). In the short (chemical) range

of the potential, the chemical maxima of U with respect to x imply chemical maxima

of V for λ small with respect to the slope of U at the maxima. In either case, as λ
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Figure 3.2: Left: Typical graph of molecular potential restricted to the intermolecular
distance, with repulsive short range, attractive long range and extrema in between.
Right: Example graph of the effective potential over the intermolecular distance and
angular momentum (x, λ) showing the disappearance of the intermolecular maximum
x̄c, via centre-saddle bifurcations.

increases the maxima will “collide” with the minima and disappear, see Figure 3.2.

We want to find the rate of capture of the atom and the diatom, which we shall think

of as transport between the regions on either side of the largest maximum, x̄c(b, β;λ). If

x̄c is large with respect to the length of the diatom, the capture and reaction transport

problems are separate, provided of course that reactions occurs at small intermolecular

distances. This separation of scales will allow us to simplify the Hamiltonian.

To introduce our assumptions into the Hamiltonian, we must scale the variables.

For simplicity, we shall ignore any scaling effects due to mass differences by assum-

ing that the masses of the atom and the diatom are similar, so set m = mb = 1.

Ideally, this would be taken care of when constructing the Hamiltonian system by non-

dimentionalising the variables. Note that normalised or mass-weighted Jacobi coordi-

nates do not remove the mass dependence, but instead just move it to the coordinates.

The molecular scale |x|, |b| is small with respect to β ∼ 1, however by scaling the time,

we can ignore this relative scale.

We start by introducing the capture scale, i.e. setting b = εcb̃ and pb = ε−1
c p̃b with

0 < εc ≪ 1, since we are interested in a neighbourhood of the capture maximum x̄c,

which we take to be of order 1. Essentially, εc is the difference between the size of the

diatom and it’s distance to the atom, however in practice it is chosen such that

U(q; εc) = ε−2
c Ub(b̃) + U0

c (x) + ε2cU
2
c (q; εc).

We are assuming that for distant atom-diatom systems, the potential energy is of this

form, with very weak dependence on the attitude of the diatom since the pair are

distant. This is the case for potential energies that are inverse power functions of the

intermolecular distance, which can be expanded using Legendre polynomials.
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Dropping the tildes, the Hamiltonian function expands into

H(z;λ, εc) = ε−2
c

(

1

2
p2b +

1

2

p2β
b2

+ Ub(b)

)

+
1

2
p2x +

1

2

(pβ − λ)2

x2
+ U0

c (x)

+ ε2cU
2
c (q; 0) +O

(

ε4c
)

.

We note that β first appears in H at order ε2c , so pβ = λβ + O
(

ε2c
)

with constant

λβ. Furthermore, the system separates into slow and fast degrees of freedom, i.e. at

order ε−2
c we find the fast oscillations of the diatom plus a “centrifugal” term for the

diatom, at order ε0c there is the intermolecular (capture) dynamics, and then there are

the higher order terms. Up to order ε0c , the x and b degrees of freedom are uncoupled,

and pβ = λβ. Comparison with the disconnecting example of Section 2.4.1, shows

that it could be interpreted as being the Hamiltonian representing capture between an

atom and a frozen diatom, with zero angular momentum λ = 0 and a maximum in the

molecular potential U with respect to the distance x.

Next, we linearise the diatom’s length about the equilibrium configuration b̄0 of the

diatom by setting b = b̄0 + εbb̃ and pb = ε−1
b p̃b with 0 < εb ≪ 1. The constant εb is

chosen such that

U(q; ε) = ε−2
c

(

Ub(b̄0) +
1

2
ε2b∂

2
bbUb(b̄0)b̃

2 + · · ·

)

+ U0
c (x) + ε2cU

2
c (q; εc)

= ε−2
c

(

Ū0
b +

1

2
ε−2
b Ū2

b b̃
2

)

+ U0
c (x) + ε2cU

2
c (q; εc) +O

(

ε3b
)

,

where Ū2
b is order one, and ε = (εc, εb). Recall that we are assuming ∂2bbUb(b̄0) to be

large. This scaling ensures that the leading order terms of the potential with respect to

the coordinates are of the same order as their conjugate momenta in the kinetic energy.

Thus, the Hamiltonian function becomes

H(z;λ, ε) = ε−2
c ε−2

b

1

2

(

p2b + Ū2
b b

2
)

+ ε−2
c

1

2b̄20
p2β +

(

1

2
p2x +

1

2x2
(pβ − λ)2 + U0

c (x)

)

+ ε2cU
2
c (b̄0, x, β; 0) +O

(

ε4c , ε
1
b

)

,

where again we have dropped the tildes.

We shall further simplify our Hamiltonian by setting pβ = ε2c p̃β, i.e. considering

λβ = 0. This is a non-canonical scaling, since β ∼ 1. General pβ is considered in the

disconnecting example of Section 2.4.1. The scaled system consists of

H(z;λ, ε) = ε−2
c ε−2

b

1

2

(

p2b + Ū2
b b

2
)

+
1

2
p2x +

1

2x2
λ2 + U0

c (x)

+ ε2c

(

1

2b̄20
p2β +

1

x2
pβλ+ U2

c (b̄0, x, β; 0)

)

+O
(

ε4c , ε
1
b

)

and

ω = db ∧ dpb + ε2cdβ ∧ dpβ + dx ∧ dpx,
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which gives the following equations of motion

ḃ = ε−2
c ε−2

b pb, β̇ =
1

b̄20
pβ −

1

x2
λ, ẋ = px,

ṗb = −ε−2
c ε−2

b b, ṗβ = −∂βU
2
c (b̄0, β, x; 0), ṗx =

1

x3
λ2 − ∂xU

0
c (x),

up to order ε0.

By assumption, the intermolecular distance degree of freedom is hyperbolic, and the

intramolecular distance is in the small vibrations regime, i.e. elliptic. These dynamics

are uncoupled. As the diatom rotates, the attitude degree of freedom will display both

kinds of motion.

Provided the (x, px) degree of freedom is more strongly hyperbolic that the (β, pβ)

one, that is the maximum x̄c is sufficiently non-degenerate, the submanifold

N0 = {z ∈Mλ|x = x̄0c(λ), px = 0}

is almost invariant and normally hyperbolic. For a centrifugal maximum, this requires

that the attraction between the atom and the diatom is strong and that the angular

momentum is large. Given the simplicity of the equations of motion, checking the in-

variance equations and the variational equations about N0 is straightforward, once we

have chosen a metric with which to define the normal directions. By normal hyperbol-

icity theory, there is a true normally hyperbolic submanifold N nearby.

Given N0, we could find a better approximation as explained in Appendix A.1 and

done in Subsection 2.4.1. However, for the purpose of finding the Morse bifurcations

and the diffoemorphism class of the transition states, N0 is a sufficiently good approx-

imation.

The normally hyperbolic submanifold N is a transition manifold, as it can be

spanned by a dividing manifold, as outlined in Section 2.2. The approximate tran-

sition manifold N0 is spanned by

S0 = {z ∈Mλ|x = x̄c(b, β;λ)}.

The transition states and dividing surfaces are then approximately the level sets of

the Hamiltonian restricted to the approximate transition and dividing manifolds. As

the energy varies, we expect these to bifurcate. The transition states may lose normal

hyperbolicity. For atom-diatom reactions, NE are 3-dimensional manifolds, so it is not

well understood how they lose normal hyperbolicity. Though, for the case of a frozen

diatom, the system only has two degrees of freedom and NE is a periodic orbit. In Sec-

tion 2.4.1, we saw that these disappear in a centre saddle bifurcation. However, before

the loss of normal hyperbolicity, the capture transition states will undergo changes of

diffeomorphism class via Morse bifurcations.

As for the disconnecting example, if we write

N = {z ∈Mλ|x = x̄0c(λ) + ε2c x̄
2
c(z) +O

(

ε4c
)

, px = 0 + ε2cP2(z) +O
(

ε4c
)

},
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Figure 3.3: Contour plots of the frozen Hamiltonian restricted to the transition man-
ifold Hβ

N for example atom-diatom reactions. Left: case 1. Atom attracted to one of
the sides of the diatom (e.g. ion plus dipole). Centre: case 2. Reaction prefers orthog-
onal configuration (e.g. atom plus non-symmetric non-polar diatom). Right: case 3.
Reaction prefers aligned configuration (e.g. atom plus non-symmetric dipole).

we find that the Hamiltonian function restricted to the transition manifold N is inde-

pendent of x̄2c and P2 up to order ε2c , namely

HN (z;λ, ε) = ε−2
c ε−2

b

1

2

(

p2b + Ū2
b b

2
)

+ ε2c

(

1

2b̄20
v2β + U2

c (b̄0, x̄
c
0, β; 0)

)

+O
(

ε4c , ε
1
b

)

,

where we have used the non-canonical momentum vβ = pβ −
b̄2
0

x̄2
0

λ + · · · , and dropped

constant terms.

For E below that at which the diatom dissociates, the intramolecular degree of

freedom contributes only positive definite terms to the restricted Hamiltonian function

and is not involved in any Morse bifurcations. These can therefore be studied by

considering the simpler (frozen) Hamiltonian function obtained by freezing the diatom,

i.e. minimising HN over (b, pb) by setting b = b̄0 + h.o.t. and pb = 0 giving

Hβ
N(β, pβ ;λ, ε) = ε2c

(

1

2b̄20
v2β + U2

c (b̄0, β, x̄0; 0)

)

+O
(

ε4c , ε
1
b

)

.

Different reactions, i.e. choices of atom and diatom, will have different potentials and

different sequences of Morse bifurcations. Three example frozen restricted Hamiltonians

Hβ
N are depicted in Figure 3.3. The Morse bifurcations of the transition states and

dividing surfaces for these examples are the following:

Case 1. Considering Hβ
N , we find that Nβ

≤E bifurcates from B2 to S1 × B1. Passing to

the full system, we find that the transition manifold N≤E bifurcates from B4 to

S1 × B3, the transition state NE from S3 to S1 × S2, and the dividing surface SE

from S4 to S1 × S3.

Case 2. Here, the two minima of UβN are at the same height, whereas the saddles are

at different heights; the transition state goes from S0 × S3 to S3 to S1 × S2, and

the dividing surface from S0 × S4 to S4 to S1 × S3.

Case 3. Here the two minima of UβN are at different heights, whereas the saddles are
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at the same height; the transition state goes from S3 to S0 × S3 to S1 × S2, and

the dividing surface from S4 to S0 × S4 to S1 × S3.

The energy-levelsME also bifurcate along with the transition states and the dividing

surfaces. That is, the critical points of the restricted Hamiltonian are also critical

point, with an index that is greater by 1, of the Hamiltonian function itself. For

example, in Case 1 where the atom is attracted to one of the sides of the diatom, the

Hamiltonian function has an index-1 and an index-2 critical point associated with the

capture maximum x̄c. When restricted to the transition manifold N , these are the

index-0 and 1 critical points of Hβ
N seen in Figure 3.3. The energy level restricted a

neighbourhood of the capture maximum bifurcates from B1 × S3, as is well known for

the basic flux over a saddle scenario, to B1 × S1 × S2. In terms of reaction, this means

that for small energies the pair can only capture if properly aligned, with the atom

closest to the side of the diatom to which it is attracted, whereas for large enough

energies the pair can capture for any relative attitude. The bifurcations of the energy

levels are the reason for the bifurcations of the dividing surfaces and the transition

states, in the sense that given the bifurcations of the energy levels the dividing surfaces

must also bifurcate in order to still separate the two regions of interest.

3.2.2 Example. Planar diatom-diatom reactions

The next simplest example is that of planar diatom-diatom reactions. These examples

are interesting because they have another intermolecular angle involved in the Morse

bifurcations, with respect to the atom-diatom reactions.

The reduced reacting system is
(

T ∗R5
+, ω,H

)

with

H (z;λ) =
1

2

(

v2x
m

+
v2a
ma

+
v2b
mb

+
v2α
maa2

+
(vα + vβ)

2

mx2
+

v2β
mbb2

)

+ V (q;λ) ,

V (q;λ) =
1

2

λ2

mx2 +maa2 +mbb2
+ U (q) ,

ω =
5
∑

i=1

dqi ∧ dvi + λ





5
∑

j=1

∂qjA23(q) dα ∧ dqj +
5
∑

k=1

∂qkA33(q) dβ ∧ dqk



 ,

where

A23(q) =
maa

2

mx2 +maa2 +mbb2
, A33(q) =

mbb
2

mx2 +maa2 +mbb2
,

and z = (x, α, β, a, b, vx, vα, vβ , va, vb) are non-canonical coordinates.

We consider exactly the same scenario as for the atom-diatom reactions, namely that

E is below the dissociation energy of either diatom, which are in the small vibrations

regime (about their equilibrium configurations ā, b̄), and the effective potential V has

a large non-degenerate maximum x̄c with respect to the distance between the diatoms.

Then, for slowly rotating diatoms, vα, vβ ∼ ε2c , there is a transition manifold in the

neighbourhood of x̄c approximated by

N0 = {z ∈Mλ|x = x̄c(λ), px = 0},

57



Figure 3.4: Example contour plots of the frozen restricted potential UαβN for the planar
diatom-diatom reaction, with T2 represented as [0, 1)× [0, 1). Darker regions represent
lower energies. Left: case 1. Simplest possible Morse function on T2 (assuming distinct
saddles). Right: case 2. Possible restricted potential for dipole-dipole reaction.

with approximate dividing manifold

S0 = {z ∈Mλ|x = x̄c(λ)}

spanning it.

Let us consider the transition states NE , given by H−1
N (E). The positive definite

terms of HN , which are not involved in any Morse bifurcations, can be removed by

minimising over the intramolecular degrees of freedom, setting a = ā, va = 0, b = b̄,

vb = 0, and over the intermolecular momenta, setting vα = 0, vβ = 0. We therefore

want to find the diffeomorphism class of the level sets of the restricted frozen potential

UαβN : T2 → R on the 2-torus of (α, β). The Betti numbers of a torus T2 are 1, 2,

1. Thus, by the Morse inequalities, the simplest possible Morse function on T2 has

four critical points of index 0, 1, 1, 2. Assuming distinct saddle energies, such a Morse

function is depicted in Figure 3.4. Taking this as the simplified, restricted potential

UαβN over T2, we see that Nαβ
≤E bifurcates from

B2 to S1 × B1 to T2 − B2 to T2 × B0,

where T2 − B2 is given by Theorem A.3.4 as the handlebody
(

S1 × B1
)

∪ψ
(

B1 × B1
)

.

Therefore the transition manifold N≤E bifurcates from

B8 to S1 × B7 to X to T2 × B6,

where X has no standard name, and the transition manifolds NE from

S7 to S1 × S6 to ∂X to T2 × S5.

Finally, the dividing surfaces SE bifurcate from

S8 to S1 × S7 to ∂P to T2 × S6,
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with P again given by Theorem A.3.4.

A more realistic frozen restricted potential UαβN for the case of two interacting

dipoles will likely have more than 4 critical points, thus leading to a longer sequence of

Morse bifurcations. A possible example restricted potential with eight critical points

at distinct heights is given in Figure 3.4. This has a sequence of critical points of index

0, 0, 1, 1, 1, 1, 2, 2. The transition state NE therefore bifurcates from

S7 to S0 × S7 to S7 to S1 × S6 to ∂X to ∂Y to ∂X to T2 × S5,

where again ∂X and ∂Y are the boundaries of handlebodies given by Theorem A.3.4.

The dividing surface changes from

S8 to S0 × S8 to S8 to S1 × S7 to ∂P to ∂Q to ∂P to T2 × S6,

again ending up diffeomorphic to T2 × S6.

3.3 Symmetries and reduction (of n-body systems)

Let us consider the symmetries and reduction of general Hamiltonian system for two

interacting polyatomic molecules A and B with na and nb atoms, respectively. These

are molecular n = na+nb body Hamiltonian systems (T ∗R3n, ω0,K+U) with a molec-

ular (Born-Oppenheimer) potential U for the interaction of the atoms in the A and B

molecules. We shall therefore consider the symmetries and reduction of general molec-

ular n-body systems. Though these results are well known, some confusion, especially

regarding singular reduction, is still found in the literature.

The Hamiltonian system representing n bodies interacting via a given potential U

is a simple mechanical system with Hamiltonian function

H(X,Y ) =
n
∑

i=1

1

2Mi
|Yi|

2 + U(X1, · · · ,Xn),

where Xi is the position vector of the i-th body and Yi the conjugate momentum.

Bimolecular n-body systems with no background (electro-magnetic) field are invari-

ant under translations and rotations, i.e. the action of the Euclidean group SE(3) =

R3 × SO(3) on state space is a symmetry of the system. The translational symmetry

is the action of the Abelian*33 additive group R3,

T : R3 × T ∗R3n → T ∗R3n

: (γ,X1, · · · ,Xn, Y1, · · · , Yn) 7→ (X1 + γ, · · · ,Xn + γ, Y1, · · · , Yn),

*33 Abelian groups G are those that satisfy commutativity, namely g · h = h · g for g, h ∈ G.
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and the rotational symmetry is the action of the special orthogonal group SO(3),

A : SO(3)× T ∗R3n → T ∗R3n

: (g,X1, · · · ,Xn, Y1, · · · , Yn) 7→ (g ·X1, · · · , g ·Xn, g · Y1, · · · , g · Yn).

The combined Euclidean action is A(γ,g)(X,Y ) = (g ·X + γ, g · Y ).

These symmetries are both lifted actions obtained from the translations and rota-

tions of configuration space. For example, the rotational symmetry is obtained from

the action of SO(3) on R3n

Ã : SO(3)× R3n → R3n : (g,X1, · · · ,Xn) 7→ (g ·X1, · · · , g ·Xn)

as the left-lift, namely

Ag(X,Y ) = (Ãg(X), (T ∗
Ãg(X)

Ãg−1)(Y )) = (g ·X, g · Y ),

for g ∈ SO(3), Y ∈ T ∗
XR

3n and T ∗Ãg−1 the cotangent lift of the diffeomorphism Ãg−1 ,

see e.g. [AM78, page 283]. Similarly, the translational symmetry is the left-lift of the

action of R3 on R3n. Cotangent lifts are symplectomorphisms, in fact they preserve the

action one form.

When dynamical systems admit a symmetry they can generally be reduced to a

system with less dimensions. In the case of mechanical systems with smooth lifted

symmetries, Noether’s theorem allows us to associate with these a conserved quantity

(or integral of motion), and therefore further reduce the system [Arn89, Appendix 5],

[Mar92, Section 2.7]. The integral associated with translational symmetry is linear

momentum

P : T ∗R3n → Lie(R3)∗ ∼= R3 : (X,Y ) 7→ P (X,Y ) =

n
∑

i=1

Yi = P0,

and the one associated with rotational symmetry is angular momentum

J : T ∗R3n → so(3)∗ ∼= R3 : (X,Y ) 7→ J(X,Y ) =

n
∑

i=1

Xi × Yi = L,

where we have chosen parametrisations of the dual Lie algebras of the symmetry groups

in order to write out the momenta in coordinates. Parametrising the group actions,

i.e. considering the one-parameter subgroups of the symmetry group individually, al-

lows us to parametrise Noether’s theorem and the momenta, see e.g. [Mey73], [Arn89,

Appendix 5].

For general Hamiltonian systems with symmetries, the associated conserved quanti-

ties are referred to as momentum maps*34 because of the archetypal examples of linear

*34 Some of the literature calls them moment maps. This started as an “incorrect” translation of
the French application moment proposed by Soriau. Note that linear and angular momentum
are called moment linéaire and cinétique in French. See Marsden and Weinstein [MW01] for the
history of the terminology.
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and angular momentum. Note however that general Hamiltonian systems require fur-

ther conditions for the existence (and equivariance) of momentum maps [OR04, Section

4.5.16].

The Euclidean symmetry group SE(3) is the product of R3 and SO(3) with non-

commutative group multiplication. It is a special example of a semi-direct product

Lie symmetry group S = ΓsG, where Γ is a vector space and G a Lie group. For

symmetries produced by such groups, reduction by stages allows us to reduce first by

Γ and then by an appropriate subgroup of G in this order, see e.g. [MM+07, Chapter

4]. For n-body systems, this means reducing the translational symmetry first and then

the rotational one.

Let us therefore first consider the reduction of the translational symmetry. Sym-

plectic reduction can be carried out essentially in two ways, we shall consider point

reduction. This involves first fixing the momentum to a chosen regular value, con-

sidering the submanifold P−1(P0), and then taking the quotient by the subgroup ΓP0

that leaves P−1(P0) invariant, in this case R3. Thus obtaining the reduced space

P−1(P0)/R
3. The subgroup ΓP0

is actually the isotropy group of P0 ∈ Lie(R3)∗ under

the (coadjoint) action of R3 on Lie(R3)∗, i.e. ΓP0
= {γ ∈ Γ|Ad∗γ(P0) = P0}, where

Ad∗γ(P0) = γ · P0 is the coadjoint action. This follows from P being the momentum of

a lifted action, and so equivariant with respect to the coadjoint action of R3. That is,

the momentum map and the R3 action commute, P (Tγ(z)) = Ad∗γ−1(P (z)).

The translational symmetry is both proper, since T̂ : R3×T ∗R3n → T ∗R3n×T ∗R3n :

(γ,X, Y ) 7→ (X + γ, Y,X, Y ) is a proper map, and free, meaning that no points of

M are invariant under any set of translations. Thus the (quotient) reduced space

P−1(P0)/R
3 is a smooth symplectic manifold and the reduction is said to be regular.

The symplectic form ωP0
satisfies π∗P0

ωP0
= i∗P0

ω, where iP0
: P−1(P0) →֒ M and

πP0
: P−1(P0) → P−1(P0)/R

3 are the inclusion and projection maps, respectively. We

can then define the reduced Hamiltonian function HP0
satisfying HP0

◦ πP0
= H ◦ iP0

,

and the reduced Hamiltonian system is (MP0
, ωP0

,HP0
).

Actually, we can say more because the state space is a cotangent bundle and the

symmetry is a lifted action. (Regular) Cotangent bundle reduction theory tells us that,

since the symmetry group is Abelian, the reduced space is also a contangent bundle

P−1(P0)/R
3 ∼= T ∗(R3n/R3) ∼= T ∗R3(n−1),

so if we define Q = R3(n−1), M = T ∗Q, then the translation-reduced system is

(M,ω0,H, SO(3)). This is again a simple mechanical system.

Having an Abelian symmetry group corresponds to having the momenta Pi associ-

ated to the one-parameter subgroups γi in involution, i.e. {Pi, Pj} = 0 for all i, j = 1, 2, 3

[Mey73]. Thus the translation symmetry can be reduced classically by finding new co-

ordinates including the integrals and the subgroups. One set of such coordinates are the

Jacobi vectors and their associated momenta. The transformation to these coordinates
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is a linear transformation on configuration space

(X1, · · · ,Xn) 7→ (R0, R1, · · · , Rn−1),

that is then extended canonically to state space (see e.g. [Mar92, Section 3.2]). These

vectors can be chosen in a number of ways, but the one that feels most natural for

bimolecular systems is to choose vectors between the atoms within the two molecules

hierarchically, via partial centres of mass of the cluster, and finally a vector between

the line of centres of the two molecules. It is well known that in these new coordinates,

the Hamiltonian splits into

H(R̂0, R, P0, P ) =
1

2M0
|P0|

2 +
1

2mi
|Pi|

2 + U(R)

ω0 = dR0 ∧ dP0 + dRi ∧ dPi,

where R0 is the position of the centre of mass of the system. Thus setting R0 = 0,

P0 = 0, we obtain the translation reduced Hamiltonian system. This is a specific

choice of barycentric coordinates, i.e. with the centre of mass placed at the origin. The

celestial mechanics literature, which considers gravitational n-body systems, tends to

prefer heliocentric coordinates with the sun (helios) at the origin.

The next stage is the reduction of the SO(3) symmetry from the translation-reduced

system (M,ω0,H, SO(3)). This lifted action is also proper, but not free since collinear

configurations with parallel momenta are invariant under rotations about the line of

syzygy, and n-body collisions with zero momentum are invariant under all rotations.

This is expressed in terms of the isotropy subgroups of points z = (R,P ) ∈M

Gz = {g ∈ SO(3)|g · z = z} =



















{Id} for span{(R,P )} = R3,R2,

SO(2) for span{(R,P )} = R1,

SO(3) for span{(R,P )} = R0.

Thus, state space M can be subdivided into isotropy-type submanifolds MId, MSO(2),

MSO(3). Actually, we note that MId can be subdivided into M3 and M2 with span

R2 and R3 respectively. M2 is the subset of MId consisting of planar reactions, and is

invariant.

Recall that the quotient of a manifold by a group whose action is proper but not free

is a singular manifold. Thus reduction of symmetries that are not free requires more

care. Fortunately, quotient manifolds are (Whitney) stratified space, i.e. topological

spaces that decomposes into a locally finite collection of disjoint, closed submanifolds

which are ordered and satisfy Whitney’s conditions, see e.g. [SL91], [OR04, Chapter

1]. These are particularly simple types of singular manifolds. For stratifications of

symplectic manifolds, we define a stratified symplectic space to be a stratified space

with symplectic strata and a smooth structure, i.e. a Poisson algebra of functions that

restrict to smooth functions on the strata [SL91].

Singular (point) reduction states that the reduced space ML = J−1(L)/GL is a
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stratified symplectic space with symplectic strata M
(K)
L = (J−1(L) ∩ GL ·M i

K)/GL,

where M i
K is a connected components of the K-isotropy submanifold MK whose point

have momentum L. Moreover, ML is a cone space. The unique symplectic form ω
(K)
L

on M
(K)
L again satisfies π

(K)∗
L ω

(K)
L = i

(K)∗
L ω

(K)
L . The Hamiltonian flow ht leaves the

connected components of the strata M
(K)
L invariant, and reduces to Hamiltonian flows

h
(K)
L (t) on M

(K)
L with reduced Hamiltonian function H

(K)
L :M

(K)
L → R defined by

H
(K)
L ◦ π

(K)
L = H ◦ i

(K)
L .

Thus, the reduced dynamics can be studied on the individual strata separately. Actu-

ally, by what is now generally referred to as Sjamaar’s principle, the reduction of the

individual strata is regular relative to a natural action, see e.g. [OR04, Section 8.2].

The translation-reduced state spaceM ∼= T ∗R3(n−1) is connected, as are the isotropy-

type submanifolds MK , so the reduced space has three strata. On the two singular

strata, the angular momentum is zero by definition, whereas the angular momentum

of points in MId spans the whole of R3. Actually, the angular momentum of points in

M2 ⊂MId is restricted to the line perpendicular to the (invariable) plane. The points

with non-zero angular momentum constitute a subset of the principal stratum. For

non-zero L, the isotropy subgroup GL = SO(2), the rotations about L, whereas for

points with zero angular momentum, the isotropy subgroup is the full SO(3). In either

case, the GL-saturation, GL ·MK =MK .

As for the reduction of the translation symmetry, we would like a hierarchical and

clusterable (canonical) transformation of the coordinates, such that two of the new co-

ordinates are ignorable and the reduction can be obtained by fixing their value and that

of their conjugate momenta. However, the angular momenta Li are not in involution

and finding charts is not straight forward, with the exception of two-body and planar

systems, which both lie in the invariable plane perpendicular to L.

In the celestial mechanics literature, the well known method to find reduced charts

is Jacobi’s elimination of the node for the three-body system, which was generalised

to n-bodies by Deprit [Dep83]. The method is however of little use for bimolecular

systems because the charts it produces do not cover the necessary regions of the reduced

space. Chierchia and Pinzari have shown that via a Poincaré-regularisation some of

the singularities can be removed [CP11], however the regularised charts are still not

sufficient for all the motions seen in molecular systems. It would be interesting to check

whether this method could be adapted for molecular systems, though it is not clear to

us whether clusters could be introduced into the kinetic frame tree by adding branches,

or whether the charts could be extended to cover the desired regions of state space.

Another approach to finding charts is to recall that the translation-reduced system

is mechanical and the symmetry is lifted. However, the action is not free and there

are no singular cotangent bundle reduction theorems that we can invoke. In fact, even

for points in MId, the configuration space isotropy Gq is not always trivial. That is,

collinear configurations, though part of the principal stratum when the momenta are

not aligned, are invariant under rotations of configuration space about the collinearity.
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Note that, this non-trivial configuration space isotropy does not cause any issues when

reducing the system, seeing as we are considering the lifted action of SO(3) on state

space. The problems arise when trying to reduce via cotangent bundle reduction, in

which we consider the action on configuration space. This distinction is not clear in

a lot of the molecular literature, which often states that collinear configurations are

confined to the singular strata. Generally, the configuration and state space isotropy

subgroups for a given Lie group action are not the same, instead we have that Gz ⊂ Gq,

for z = (q, p). This is one of the main issues in singular cotangent bundle reduction.

Furthermore, by the equivariance of J , if L = J(z), then Gz ⊂ GL. The only way

to obtain charts via regular cotangent bundle reduction is therefore to restrict our

attention to non-collinear configurations.

The gauge theoretic, or orbit bundle, approach to cotangent bundle reduction gives

the reduced state space as a fibre bundle over the cotangent bundle of the quotient

configuration space QId/SO(3) with fibres the angular momentum spheres S2, see

e.g. [MM+07, Section 2.3]. This bundle is in general not a product bundle, see dis-

cussion in [LR97]. The reduced charts obtained this way are outlined in Appendix A.4,

which follows Littlejohn and Reinsch’s nice review [LR97]. This method gives coordi-

nates that are physically meaningful, as it does not mix coordinates and momenta.

3.4 Spatial atom-molecule reactions

Now, we consider bimolecular reactions in full spatial generality. In particular, we

shall consider reactions between an atom and a normal (i.e. with rigid equilibrium

configuration) polyatomic molecule, consisting of nb atoms. The molecule shall be

assumed to have a non-collinear equilibrium about which it is vibrating fast, and the

system to be in the capture regime with energy below that at which the molecule

dissociates. Thus, we can use the charts provided by the bundle approach to cotangent

bundle reduction, see Appendix A.4. We only need one molecule to be non-collinear,

which is why we chose to consider the simple case of a molecule B interacting with an

atom A. Non-collinearity is not a significant restriction for large molecules, as collinear

molecules are codimension 2n − 5, for n ≥ 3, not taking into account any chemical

effects. However, collinearity is common for small molecules, such as diatoms, so larger

molecules with more degrees of freedom are actually easier to consider. This however

is only a limitation of our choice of coordinates!

The reduced molecular n = nb + 1 body Hamiltonian system shall be denoted

(M̃λ, ωλ,Hλ). The reduced state space M̃λ is the subset of the principal stratum with

non-collinear configurations and thus a smooth manifold of dimension 6nb − 4, which

is diffeomorphic to a (generally non-trivial) S2 fibre bundle

T ∗(Q̃/SO(3)) ×Q̃/SO(3) S
2
λ,

where Q̃ = QId is the non-collinear subset of the translation reduced configuration

space Q, and S2λ is the angular momentum sphere [MM+07, Section 2.3].
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Choosing non-canonical coordinates, we have

H (z;λ) =
1

2

3n−6
∑

i,j=1

viK
ij(q)vj + V (q, zλ;λ)

V (q, zλ;λ) =
1

2

3
∑

i,j=1

li(zλ;λ)I
ij(q)lj(zλ;λ) + U (q) ,

and

ω =
3n−6
∑

i=1

dqi ∧ dvi +
3n−6
∑

i=1

3
∑

j,k=1

Aij(q)∂zλk lj(zλ;λ)dqi ∧ dzλk

+
1

2

3n−6
∑

i,k=1

3
∑

j=1

lj(zλ;λ) (Bkij(q) + ǫjuvAku(q)Aiv(q)) dqi ∧ dqk + dqλ ∧ dpλ,

where q are the reduced internal coordinates and v their non-canonical momenta, λ

the magnitude of the angular momentum and zλ = (qλ, pλ) canonical Serret-Andoyer

coordinates on the angular momentum sphere, such that e.g.

l(zλ;λ) = (pλ,
√

λ2 − p2λ sin qλ,
√

λ2 − p2λ cos qλ).

We will need more than one chart, due to the inevitable coordinate singularities in both

the internal coordinates, for n ≥ 4 bodies, as well as in the angular momentum degree

of freedom, when pλ = λ. V (q, zλ;λ) is the effective potential with the centrifugal

terms, K(q) is the reduced metric, I(q) is the moment of inertia tensor, A(q) is the

gauge potential and B(q) is the Coriolis tensor, both present in the Coriolis terms

found in the symplectic form. These are introduced in Apprendix A.4, and are actually

defined as functions of the rotating Jacobi vectors r(q) and the reduced masses mi,

e.g. K(q) = K(r(q);m). However, seeing as we are uninterested in scaling effects due

to the mass, we shall set mi = 1.

The capture scenario requires the same assumptions as for the planar case, plus a

few more, namely that the energy E is below that at which the molecule dissociates,

so the molecule is well defined and we have a two-body capture problem, and that

the molecule is normal and in the small vibrations regime, which requires assumptions

on the centrifugal and Coriolis terms and so on the angular momentum, as we shall

soon explain. Furthermore, we assume that V has a non-degenerate maximum with

respect to the intermolecular distance, and that this is large compared to the size of

the molecule.

The rotating frame for the reduction is chosen such that the Jacobi vector along the

line of centres rnb
(q) is parallel to the x1 axis, and the remaining SO(2) symmetry about

the x1-axis is used to orient the equilibrium configuration of the molecule B in order

to simplify the moment of inertia. The most natural choice of internal coordinates q is

the distance between atom and molecule x and two angles β = (β1, β2) for the attitude

of the molecule with respect to the atom, which are intermolecular coordinates, as well
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as some 3(nb − 2) coordinates b for the intramolecular degrees of freedom of B, so

q = (x, β, b), unless B has further symmetries of its own that can be reduced.

3.4.1 Molecular and capture scaling

As for planar systems, scaling the coordinates introduces our assumptions into the

system, and working in canonical coordinates makes it easier to tell the relative size of

different terms. In canonical coordinates, the Hamiltonian function is

H (z;λ) =
1

2

3n−6
∑

i,j=1

3
∑

k=1

(pi −Aik(q)lk(zλ;λ))K
ij(q)(pj −Ajk(q)lk(zλ;λ)) + V (q, zλ;λ)

V (q, zλ;λ) =
1

2

3
∑

i,j=1

li(zλ;λ)I
ij(q)lj(zλ;λ) + U (q) .

We are interested in a neighbourhood of the large capture maximum x̄c, where A

and B are distant, so we scale x = ε−1
c x̃ and therefore also px = εcp̃x. This is the

simpler way of introducing the relative scale between the intermolecular distance and

the size of the molecule. Then, by passing to the intermolecular time, we can scale the

Hamiltonian such that x is of order one.

Secondly, we are assuming that the molecule is normal, so U has non-degenerate

minima with respect to the intramolecular degrees of freedom b, and considering the

system when the molecule is in the small vibrations regime. We therefore shift the

intramolecular coordinates to have b = 0 at equilibrium, and then scale b = εbb̃ and

pb = ε−1
b p̃b.

Thus, the scaled Jacobi vectors in the rotating frame are

rnb
(q) = ε−1

c ρnb
(x) = ε−1

c x(1, 0, 0)

ri(q) = gb(β) · ρi(b) = gb(β) · (ρ
0
i + εb

3nb−6
∑

j=1

ρ1ijbj) +O
(

ε2b
)

, i = 1, · · · , nb − 1,

where ρ0i are the equilibrium configuration vectors, gb(β) ∈ SO(3)/SO(3) ∼= S2 de-

termines the orientation of B and shall be chosen shortly, and the 3(nb − 1)(3nb − 6)

constants ρ1βijk determine the intramolecular coordinates b and shall be chosen in order

to simplify the Hamiltonian along the lines of the Eckart [Eck35] and Sayvetz [Say39]

conventions for normal and anomalous molecules in the small vibration regime. Es-

sentially, we shall consider an Eckart convention for a normal molecule in the small

vibrations regime interacting with an atom, for which the intermolecular coordinates

are similar to the large amplitude coordinates of anomalous molecules considered by

Sayvetz. In the Eckart convention, which is used throughout the molecular literature,

the rotations and vibrations are decoupled to leading order since the intramolecular

coordinates b are chosen to be Riemann normal coordinates for which the gauge poten-

tial Ab(q) vanishes at the equilibrium configuration. This is discussed from a geometric

perspective by Littlejohn and Mitchell [LM02]. They also discuss the scaling from a

molecular Born-Oppenheimer perspective.
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As for the planar case, we assume that the potential scales to

U(q; ε) = Ub(b) + ε2cU
0
c (x) + ε4cU

2
c (q; ε),

and then choose εb such that

U(q; ε) = Ū0
b + ε−2

b

3nb−6
∑

i=1

Ū2
bib

2
i + ε2cU

0
c (x) + ε4cU

2
c (q; ε) +O

(

ε5b
)

.

That is, we are assuming that the molecule is strongly bonded, Ū2
bij ∼ ε−4

b . Note also,

that we have chosen normal mode intramolecular coordinates for which Ū2
βij = Ũ2

βiδij ,

which determines 1
2 (3nb − 7)(3nb − 6) of the ρ1βijk constants.

The reduced kinetic energy and centrifugal energy contain both intermolecular and

intramolecular terms and so must be scaled with care.

Recall that the moment of inertia tensor is defined as

I(q) =

n−1
∑

k=1

(rk(q) · rk(q)Id − rk(q)⊗ rk(q)),

where ⊗ is the tensor, or outer, product for which rk ⊗ rk = rkr
T
k . This is a real,

symmetric (I = IT ), positive definite (∀y ∈ R3/{0}, yT Iy > 0) matrix, since B is

assumed to be non-collinear.

If we write I(q) =: Ic(q) + Iβ(q), then

Iβ =

nb−1
∑

k=1

(rk · rkId − rk ⊗ rk)

=

nb−1
∑

k=1

((Gbρk) · (Gbρk)Id − (Gbρk)⊗ (Gbρk))

= Gb(

nb−1
∑

k=1

(ρk · ρkId − ρk ⊗ ρk))G
T
b ,

where Gbρk = gb · ρk. Thus, the moment of inertia tensor scales to

I(q) = ε−2
c Ic(x) +Gb(β)I

0
bG

T
b (β) +O

(

ε1b
)

where Ic(x) = ε−2
c m1x

2Diag(0, 1, 1), and I0b = Diag(µb1, µb2, µb3) with µb1 > µb2 > µb3.

This choice of I0b defines gb(β) and the rotation of B about x1.

The inverse moment of inertia matrix exists and is also symmetric. We are interested

in the scale, and find that

I−1 ∼







ε0 ε2c ε2c
ε2c ε2c ε4c
ε2c ε4c ε2c






+ · · · .
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The gauge potential is defined as

A(q) = I−1(q)a(q),

where a(q) = (ax(q), aβ(q), ab(q))
T and

ai(q) =
n−1
∑

k=1

rk(q)×
∂rk(q)

∂qi
.

Therefore

ax(q) = 0,

abi(q) = Gb(β)

nb−1
∑

k=1

ρ0k × ρ1ki + εbGb(β)

nb−1
∑

k=1

3nb−6
∑

j=1

(ρ1kj × ρ1ki)bj = a0bi(β) + εba
1
bi(β, b)

aβi(q) = a0βi(β) +O (εb) ,

and we ask that a0bi(β) = 0 for all i = 1, · · · , 3nb − 6, i.e.

nb−1
∑

k=1

(

ρ0k × ρ1ki
)

= 0, ∀i = 1, · · · , 3nb − 6.

This is known as the Eckart condition, and it imposes 3(3nb − 6) conditions on ρ1kij.

Thus, the gauge potential scales to

A(q) ∼







0 ε0c 0

0 ε2c 0

0 ε2c 0






+ · · · ,

where A0
β1(β) and A

0
βi(x, β) for i = 2, 3.

Finally, the reduced metric is K(q) = K̃(q)−AT (q)I(q)A(q) with

K̃ij(q) =

n−1
∑

k=1

∂rk(q)

∂qi
·
∂rk(q)

∂qj
.

This is a real, symmetric, positive definite matrix. We write

K̃(q) = K̃c(q) + K̃β(q),

where

K̃c =







1 0 0

0 0 0

0 0 0






, K̃β =







0 0 0

0 K̃β K̃βb

0 K̃T
βb K̃b






,
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and

K̃βij(q) =

nb−1
∑

k=1

∂Gb
∂βi

ρ0k ·
∂Gb
∂βj

ρ0k +O (εb) = K̃0
βij(β) +O (εb)

K̃βbij(q) =

nb−1
∑

k=1

∂Gb
∂βi

ρ0k ·Gbρ
1
kj +O (εb) = K̃0

βbij(β) +O (εb)

K̃bij(q) =

nb−1
∑

k=1

ρ1ki · ρ
1
kj + ... = K̃0

bij + ...

We ask that K̃0
bij = (Ū2

βi)
−1δij for all i, j. That is we are choosing Williamson normal

form coordinates for the intramolecular degrees of freedom. These are (3nb − 5)(3nb −

6)/2 conditions on ρ1kij. Furthermore, K̃0
βbij(β) = 0 for all i, j, i.e.

nb−1
∑

k=1

∂Gb
∂βi

ρ0k ·Gbρ
1
kj = 0,

due to Eckart condition. Let us consider the case with i = 1. The Euler angles β can

be chosen in a number of ways, and the rotation matrix Gb(β) can then be written as

Gb(β) = G1(β1)G2(β2),

where Gi(βi) is a rotation by βi about some axis yi. Recall that the symmetry about

x1 has been reduced and Gb(β) ∈ S2. Thus

∂β1Gb(β) = ∂β1G1(β1)G2(β2) = G1(β1)G̃1(
π

2
)G2(β2),

where G̃1(
π
2 ) is a rotation about y1 by π

2 and simultaneously a contraction in the y1

direction to zero. This can be seen by considering planar rotation matrices. Then

nb−1
∑

k=1

∂Gb
∂β1

(β)ρ0k ·Gb(β)ρ
1
kj =

nb−1
∑

k=1

G̃1(
π

2
)G2(β2)ρ

0
k ·G2(β2)ρ

1
kj =

nb−1
∑

k=1

G̃1(
π

2
)ρ̃0k · ρ̃

1
kj,

where ρ̃ikj = G2(β2)ρ
i
kj and

nb−1
∑

k=1

ρ̃0k × ρ̃0kj = G2(β2)

nb−1
∑

k=1

ρ0k × ρ0kj = 0,

by the Eckart condition. Thus K̃0
βbij(β) = 0, and the same is true for i = 2.

The gauge dependent term scales to

AT IA ∼







0 0 0

0 ε0c 0

0 0 0






+ · · · ,
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so

K(q) =







1 0 0

0 K̃0
β(β) + F0(β) + ε2cF2(x, β) + ε4cF4(x, β) 0

0 0 D̃−1
b






+O (εb)

and

K−1 =







1 0 0

0 K−1
β0 (β)− ε2cJ2(x, β) + ε4cJ4(x, β) 0

0 0 D̃b






+O (εb) ,

by inverting the matrix block-wise, and expanding inverse matrices in formal power

series.

We can finally write out the Hamiltonian function in terms of our new scaled co-

ordinates. First however, we scale the time such that the intermolecular time is order

one, and therefore the Hamiltonian function becomes

H (z;λ, ε) =
ε−2
c

2



ε−2
b

3nb−6
∑

i=1

Ū2
bi(p

2
bi + b2i ) +

2
∑

i,j=1

vβi(z;λ, ε)J
ij
β0(β)vβj(z;λ, ε) + I110 (β)p2λ





+
p2x
2

+
1

2

3
∑

i,j=1

li(zλ;λ)I
ij
2 (x, β)lj(zλ;λ) + U0

c (x)−
1

2

2
∑

i,j=1

vβi(z;λ, ε)J
ij
β2(x, β)vβj(z;λ, ε)

+
ε2c
2





2
∑

i,j=1

vβi(z;λ, ε)J
ij
β4(x, β)vβj(z;λ, ε) +

3
∑

i,j=1

li(zλ;λ)I
ij
4 (x, β)lj(zλ;λ) + U2

c (q; 0)





+ h.o.t.

Note that we are using the non-canonical momenta vβ and the angular momenta l as

place-holders, where

vβi(z;λ, ε) = pβi −
3
∑

j=1

Aβij(x, β; ε)lj(zλ;λ),

and

Aβij(q) = (Aβi1(β), ε
2Aβi2(x, β), ε

2Aβi3(x, β)) + · · · .

3.4.2 Angular momentum degree of freedom

The angular momentum degree of freedom zλ lives on the 2-sphere S2λ. It’s dynamics

is coupled to the internal dynamics, and is determined by both centrifugal and Coriolis

terms.

Considering the atom and the molecule as constituting a single “body”, the internal

dynamics gives its deformations and the zλ degree of freedom its angular momentum.

With this analogy, if the molecule is in equilibrium with itself and with respect to

the atom, then we obtain a rigid-body and the Hamiltonian, which reduced to the
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z̄2λ

z̄3λ

z̄1λ z̄1λ

Figure 3.5: Angular momentum sphere with equipotential lines of the centrifugal en-
ergy, when the moment of inertia has three distinct principal moments (left), or two
equal moments (right).

centrifugal terms, represents rigid body motion. We recall that rigid-bodies follow

closed curves on the angular momentum sphere with critical points when l is parallel

to the eigenvectors of I−1 (or equivalently I), called principal axes, see e.g. [Dep67].

Typical rigid-body dynamics for the case of distinct eigenvalues, or principal moments,

is depicted in Figure 3.5.

For the full system, the angular momentum degree of freedom doesn’t follow closed

curves on S2λ anymore, instead it is coupled with the internal “defomation” dynamics.

The equilibria of the system occur when q is a critical point of the effective potential

V , v = 0, and again l is parallel to the principal axes. We shall now consider the

centrifugal energy

Eλ =
1

2
lT (zλ;λ)I

−1(q; ε)l(zλ;λ),

which we point out once more is not preserved.

The eigenvectors ηi of I
−1, which are now functions of q, are the same as those of

I, whereas the eigenvalues µi are the reciprocal, i.e.

Iη = µ−1η ⇒ µη = I−1η.

So we consider I, which has real eigenvalues, since it is a real positive definite matrix,

and if these are distinct then the eigenvectors are orthogonal. We find that, to order

ε0b , the eigenvalues and eigenvectors of I−1 are

µ1(q) = I11β (β) + · · · , η1(q) = x1 +O
(

ε2c
)

,

µ2(q) = ε2cx
−2 + ε4cx

−4µ24(β) + · · · , η2(q) ∈ {x2, x3}+O
(

ε2c
)

,

µ3(q) = ε2cx
−2 + ε4cx

−4µ34(β) + · · · , η3(q) ∈ {x2, x3}+O
(

ε2c
)

,
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where

µ24(β) =
1

2
(Iβ22(β) + Iβ33(β)) +

√

1

4
(Iβ22(β)− Iβ33(β))

2 + Iβ23(β)
2,

µ34(β) =
1

2
(Iβ22(β) + Iβ33(β)) −

√

1

4
(Iβ22(β)− Iβ33(β))

2 + Iβ23(β)
2.

Thus in order to have distinct principal moments and axes, we require either Iβ22(β) 6=

Iβ33(β), or I
β
23(β) 6= 0.

Consider a 3D molecule B with three distinct moments, that is with no rotational

symmetries. As it rotates relative to the distant atom, we expect to find three pairs of

points (on the attitude sphere S2B) at which the combined configuration of the atom and

the molecule is such that two of the moments of I(q) and so I−1(q) are non-distinct.

Consider a fixed configuration q̂ with distinct µ1(q̂) > µ2(q̂) > µ3(q̂), and write

l(q̂, Zλ;λ) = Pλη1(q̂) +
√

λ2 − P 2
λ sinQλη2(q̂) +

√

λ2 − P 2
λ cosQλη3(q̂),

i.e. consider Serret-Andoyer coordinates obtained by projecting onto the principal axes,

cf. Appendix A.4. Then

Eλ =
1

2

(

µ1(q̂)P
2
λ + µ2(q̂)(λ

2 − P 2
λ ) sin

2Qλ + µ3(q̂)(λ
2 − P 2

λ ) cos
2Qλ

)

,

so the critical points are Z̄2
λ = (0, 0), (0, π), Z̄3

λ = (π2 , 0), (
3π
2 , 0), and Z̄1

λ = (qλ,±λ).

The superscript denotes which principal axis l is parallel to at the given critical point.

The symmetry of the centrifugal term, inherited from the moment of inertia tensor, is

clear from the existence of two critical points for each axis. That is, the direction of

the angular momentum is irrelevant. The critical energies are

Ēiλ = Hλ(Z̄
i
λ) =

µi
2
λ2.

For the non-distinct eigenvalues case µ2(q̂) = µ3(q̂), choosing some generalised eigen-

vectors for η2, η3, the centrifugal energy is

Eλ =
1

2
((µ1(q̂)− 2µ2(q̂))P

2
λ + 2µ2(q̂)λ

2,

so the critical points are (Qλ, 0), which is degenerate, and (Qλ,±λ). This is depicted

in Figure 3.5.

For the capture problem, considering arbitrary λ ∼ 1, forces us to restrict our

attention to energies below the centrifugal energy Ē1
λ such that the angular momen-

tum degree of freedom is confined to an small annulus A2
λ,ε2c

that doesn’t contain Z̄1
λ.

Roughly speaking l must be almost perpendicular to the line of centres. This is nec-

essary in order to ensure that the intermolecular distance degree of freedom (x, px) is

more hyperbolic than the angular momentum degree of freedom, which we need for

the capture transition manifold about x̄c. Also, large Pλ ∼ 1 forces pβi to be large at

the critical point with vβi = 0, so the attitude degrees of freedom might also be more
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hyperbolic than the (x, px) one. This can be seen by considering the scaled Hamiltonian

function of the previous Subsection. The limit of normal hyperbolicity of the transition

manifold is considered in the disconnecting example of Subsection 2.4.1.

Take fixed q̂ and energy just above

Ē2
λ =

µ2
2
λ2 =

λ2

2
(ε2cx

−2 + ε4cx
−4µ24(β)) + · · · ∼ ε2cλ

2.

If all the energy of the system is in Eλ, then for the non-distinct case we have Pλ = 0

at Eλ = Ē2
λ, whereas for the distinct case,

P 2
λ =

2Eλ − λ2(µ2 sin
2Qλ + µ3 cos

2Qλ)

µ1 − (µ2 sin
2Qλ + µ3 cos2Qλ)

,

so

P 2
λ (0, Ē

2
λ) =

ε4cλ
2(µ24 − µ34)

x4µ1
+ · · · ∼ ε4cλ

2.

Furthermore, the projection of the angular momentum to the x1 axis, pλ = Pλ+O (ε),

so bounding E < Ē2
λ +∆, with ∆ small, gives pλ = 0 +O

(

ε2c
)

+O
(

ε4c
)

.

3.4.3 Centrifugal and Coriolis scaling

In order to ensure that we have a normally hyperbolic capture transition manifold

about x̄c, given the considerations of Subsection 3.4.2, we shall consider the case when

the angular momentum is order one, but far from being aligned with the line of centres

along x1, i.e. pλ ∼ ε2c , by restricting our attention to energies up to values just above

the centrifugal energy at the middle principal moment Ē2
λ.

Thus zλ ∈ A2
λ,ε2c

and we scale pλ = ε2c p̃λ, so

l = λ(0, sin qλ, cos qλ) + ε2cpλ(1, 0, 0) +O
(

ε4c
)

and

H (z;λ, ε) = ε−2
c ε−2

b

3nb−1
∑

i=1

Ū2
bi

2
(p2bi + b2i ) + ε−2

c

1

2

2
∑

i,j=1

vβi(z;λ, ε)J
ij
β0(β)vβj(z;λ, ε)

+
1

2
p2x +

λ2

2x2
+ U0

c (x)−
1

2

2
∑

i,j=1

vβi(z;λ, ε)J
ij
β2(x, β)vβj(z;λ, ε)

+ ε2c





1

2

2
∑

i,j=1

vβi(z;λ, ε)J
ij
β4(x, β)vβj(z;λ, ε) +

1

2
I110 (β)p2λ

+

3
∑

j=2

pλI
1j
2 (x, β)l0j (qλ;λ) +

1

2

3
∑

i,j=2

l0i (qλ;λ)I
ij
4 (x, β)l0j (qλ;λ) + U2

c (q; 0)





+ h.o.t.
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Finally, we consider the rotational momentum of B, i.e.

vβi(z;λ, ε) = pβi − ε2c (Aβi1(β)pλ +Aβi2(x, β)λ sin qλ +Aβi3(x, β)λ cos qλ) + · · ·

We note that, even though we have removed the coupling of vibrations and rotations

to first orders, already up to order ε0, ṗβi is not zero, since the reduced metric K is a

function of β. However, the rate of change of pβ is a function of p2β up to order ε2c , so

if we consider a molecule that is initially rotating slowly, it will be a long time before

it increases its rotational velocity. Thus, as for the planar case, we consider a slowly

rotating molecule with pβi = ε2c p̃βi, so vβi ∼ ε2c . Then

H (z;λ, ε) = ε−2
c ε−2

b

3nb−6
∑

i=1

Ū2
bi

2
(p2bi + b2i ) +

1

2
p2x +

λ2

2x2
+ U0

c (x)

+ ε2c





1

2

2
∑

i,j=1

vβi(z;λ, 0)J
ij
β0(β)vβj(z;λ, 0) +

1

2
I110 (β)p2λ

+
3
∑

j=2

pλI
1j
2 (x, β)l0j (qλ;λ) +

1

2

3
∑

i,j=2

l0i (qλ;λ)I
ij
4 (x, β)l0j (qλ;λ) + U2

c (q; 0)





+O
(

ε4c , ε
1
b

)

,

and

ω =

3nb−6
∑

i=1

dbi ∧ dpbi + ε2c

2
∑

i=1

dβi ∧ dpβi + dx ∧ dpx + ε2cdqλ ∧ dpλ.

This gives, the equations of motion

ḃi = ε−2ε−2
b Ū2

bipbi, β̇i = ∂pβi
H2(z;λ), ẋ = px, q̇λ = ∂pλH2(z;λ),

ṗb = −ε−2ε−2
b Ū2

bibi, ṗβi = −∂βiH2(z;λ), ṗx = −∂xV
0
c (x;λ), ṗλ = ∂qλH2(z;λ),

up to order ε0.

3.4.4 Capture transport problem and transition states

We are interested in the capture dynamics for an atom and a distant molecule, and

have restricted our attention to the simplest case in which the molecule is rotating

slowly and the angular momentum is not aligned with the line of centres, by scaling

the reduced nb + 1 body system accordingly.

From the equations of motion, we note that provided the (x, px) degree of freedom is

more hyperbolic than both the attitude (β, pβ) and the zλ angular momentum degrees

of freedom, the submanifold

N0 = {z ∈Mλ|x = x̄c(λ), px = 0}

is almost invariant and normally hyperbolic.

Taking N0 as an approximation to the true normally hyperbolic submanifold N
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nearby, and considering the approximate dividing manifold S0 spanning it

S0 = {z ∈Mλ|x = x̄c(λ)},

we can find the restricted Hamiltonian functions

HN (z;λ, ε) = ε−2
c ε−2

b

3nb−6
∑

i=1

Ū2
bi

2
(p2bi + b2i ) + ε2c

(

1

2

3
∑

i,j=1

vβi(z;λ, 0)G
ij
β0(β)vβj(z;λ, 0)

+
1

2
I110 (β)p2λ +

3
∑

j=2

pλI
1j
2 (x̄c, β)l

0
j (qλ;λ) +

1

2

3
∑

i,j=2

l0i (qλ;λ)I
ij
4 (x̄c, β)l

0
j (qλ;λ)

+ U2
c (q; 0)

)

+O
(

ε4c , ε
1
b

)

,

modulo constant terms, and HS to leading orders. These give the transition states and

dividing surfaces, respectively.

As for the planar examples, it is simpler to study the Morse bifurcations if we

minimise the reduced Hamiltonians over the positive definite coordinates, namely b, pb

and vβ . Actually, since we are considering energies E < Ē1
λ, only one of the angular

momentum coordinates is involved in Morse bifurcations, so we can also minimise over

pλ. This can be simplified by using canonical angular momentum coordinates Zλ aligned

with the principal axes, as done in Subsection 3.4.2. Thus setting b = pb = vβ = Pλ = 0

in HN , we obtain

V c
N (β,Qλ;λ, ε) = ε2c

(

λ2

2

(

µ24(β) sin
2Qλ + µ34(β) cos

2Qλ
)

+ Ū2
c (β; 0)

)

+O
(

ε4c , ε
1
b

)

.

We are therefore interested in the level-sets of V c
N and their Morse bifurcations,

which we can then use to find those of the transition states and dividing surfaces. We

have been careful not to specify the domain of V c
N , which is a subset of N and so

codimension-2 in the reduced state space M̃λ. The latter is a S2λ fibre bundle over the

cotangent bundle of the reduced configuration space Q̃, so also N and S will in general

be non-trivial bundles. However, we restrict our attention to subsets of these manifolds

for which the bundle is trivial. Furthermore, we are considering energies below that

at which the molecules dissociates, and up to just above the centrifugal energy for the

angular momentum aligned with the η2(β) principal axis with Qλ = kπ + π/2, k ∈ Z.

Whichever is the smaller value will serve as an upper limit to the energy.

The critical points (β̄, Q̄λ) of the frozen, restricted effective potential V c
N are given

by

(µ24(β̄)− µ34(β̄)) sin Q̄λ cos Q̄λ = 0,

λ2

2
(∂βµ24(β̄) sin

2 Q̄λ + ∂βµ34(β̄) cos
2 Q̄λ) + ∂βU

2
c (β̄; 0) = 0.

The first equation is satisfied trivially for β̂ at which the two principal moments are

equal µ24(β̂) = µ34(β̂). We shall consider examples of V c
N that are Morse functions,
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β1

QλQλ

β1

Figure 3.6: Contour plots of an example function on the (β1, Qλ) torus, where darker
regions represent lower energies and there are no values β̂1 with non-distinct principal
moments. Case in which the value of the function at (β̄01 , Q̄

2
λ) is smaller than that at

(β̄11 , Q̄
3
λ), i.e. the first Morse bifurcation involves the angular momentum angle on the

left, and vice-versa on the right.

i.e. have non-degenerate critical points (β̄, Q̄λ) and so β̂ 6= β̄. Given this non-degeneracy

assumption, the critical points satisfy either

Q̄3
λ = kπ and ∂β

(

λ2

2
µ34 + U2

c

)

(β̄) = 0,

or

Q̄2
λ = kπ +

π

2
and ∂β

(

λ2

2
µ24 + U2

c

)

(β̄) = 0,

for k ∈ Z, cf. [LR97, Section IV.E]. Furthermore, the Morse function V c
N has at least

two non-degenerate minima at (β̄0, Q̄3
λ) due to the symmetry of the centrifugal terms,

as Qλ ∈ S1.

The sequence of Morse bifurcations of the level sets of the frozen restricted effective

potential V c
N , and therefore of the transition states and dividing surfaces, depends

on the relative size of the centrifugal and the reduced potential U2
c energies. This

will determine the relation of the different critical energies. Critical points with the

same attitude β and the angular momentum aligned with different principal axes have

energies that differ by λ2, whereas the difference in energy for critical points with

different attitudes depends on the atom-molecule pair.

The simplest case is when the first Morse bifurcation encountered as the energy

is increased from the minima involves the angular momentum angle, and the system

goes from rotating about the η3(q̄) axis to rotating more freely about η2(q̄) as well.

This bifurcation occurs at the critical energy for the (β̄0, Q̄2
λ) critical points. In this

case both the domain of V c
N and the subsets of N and S of interest are bundles over a

contractible base space and so trivial [Ste51, Theorem 11.6]. The frozen energy levels

Ñ≤E bifurcate from S0×B3 to S1×B2, so the transition states NE go from S0×S6nb−7

to S1 × S6nb−8, and similarly the dividing surfaces.

As the energy is increased further, we will reach critical values at which also the
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Figure 3.7: Contour plots of an example function on the (β1, Qλ) torus, where darker
regions represent lower energies and vertical back lines non-distinct principal moments.
Case in which the value of the function at (β̄01 , Q̄

2
λ) is smaller than that at (β̄11 , Q̄

3
λ),

i.e. the first Morse bifurcation involves the angular momentum angle on the left, and
vice-versa on the right.

attitude coordinates are involved in Morse bifurcations. We will consider the case in

which the energy does not change significantly as the molecule rotates in one direction,

with respect to the atom, but does when it tries to rotate in the other direction.

Specifically, we shall consider potentials U2
c on S2 that have a minimum β̄0, a saddle β̄1

and two maxima β̄2, and restrict our attention to the annulus A2 ⊂ S2 containing β̄0

and β̄1. Choosing the attitude angles appropriately, only one coordinate is involved in

Morse bifurcations, whereas the other contributes positive definite terms. The subset

of the transition manifold N of interest is a bundle over S1 × B6nb−9 which we claim

is trivial. Firstly, we note that it is equivalent to the product of a bundle over S1

with B6nb−9 via homotopy-type arguments [Ste51, Theorem 11.4], cf. bundles over

contractible spaces being trivial. The characterisation of bundles over spheres with

structure group G depends on certain homotopy groups of G [Ste51, Theorem 18.5].

Our fibres are diffeomorphic to S2, or subsets of it, and the diffeomorphism group of S2

is the orthogonal group O(3). However, N is orientable so both elements of the product

must be orientable. Thus, given that the bundle over the circle must be orientable, we

restrict our attention to the orientation preserving diffeomorphisms SO(3) and find that

the bundle over the circle is a product, and therefore our original bundle is also trivial

[Ste51, Section 26]. Note however that not all orientable surface bundles over the circle

are product bundles, as we can construct non-trivial bundles with fibres diffeomorphic

to T2, for example.

V c
N can be minimised over the irrelevant attitude to obtain a function on the torus

T2 for (β1, Qλ), say. There are two possible scenarios for this case, the first is that T2

does not contain points β̂ at which the µ2, µ3 principal moments become equal. The

order of the bifurcations then depends on the relative heights of the critical energies,

and both cases are straight forward, see Figure 3.6. The other scenario is when T2 does

contain β̂. We shall consider the case in which it contains only one pair of such points.

Contour plots for the restricted function on T2 are given in Figure 3.7. If the centrifugal
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energy is smaller than the attitude potential, then the points β̂1 at which the moments

µ2, µ3 are not distinct do not play a role in the Morse bifurcations, which are the same

as those for the case when T2 does not contain β̂, as we can by comparing the left

hand side of Figures 3.6 and 3.7. Instead, when the molecular potential is smaller than

the centrifugal one, depicted on the right in Figure 3.7, we see that the points β̂1 do

play a significant role in the bifurcations and the sub-level sets of the torus bifurcate

as follows

S0 × B2 to S0 × S0 × B2 to S1 × B1 to X to Y to T2,

where X and Y can be written as handlebodies using Theorem A.3.4. Therefore, the

sub-level sets of the capture transition manifold N≤E have the following sequence of

bifurcations

S0 × B6nb−6 to S0 × S0 × B6nb−6 to S1 × B6nb−7 to X to Y to T2 × B6nb−8,

and the transition states

S0 × S6nb−7 to S0 × S0 × S6nb−7 to S1 × S6nb−8 to ∂X to ∂Y to T2 × S6nb−9.

Similarly for the dividing surfaces.

Finally, if we were to consider higher energies in this scenario, the other attitude

would also become involved in Morse bifurcations. Here again the β̂ points would most

likely lead to interesting sequences of Morse bifurcations, however we would also have

to deal with the non-trivial nature of the fibre bundle. After the Morse bifurcations

at the index-2 critical points β̄2, the base space would contain a 2-sphere, and many

examples of non-trivial orientable bundles over these can be found. Thus before we can

consider the full sequence of Morse bifurcations of the dividing surfaces and transition

states and the transport for a larger range of energies, the bundle class of the reduced

state space needs to be understood.

3.5 Comment. Spatial reactions for collinear molecules

By considering normal molecules, with a fixed equilibrium configuration and energies

below that at which either of the molecules dissociates, collinearity becomes a decreasing

concern with increasing size of the molecules, namely codimension-(2ni − 5) where

ni ≥ 3 is the number of atoms in the ith molecule, not taking into account the chemistry

of the molecule. However, for smaller molecules, higher energies, or other transport

problems we may need to consider collinear configurations.

For non-zero angular momentum, collinear configurations are a subset of the princi-

pal reduced stratum, thus no different to non-collinear configurations. However due to

collinear configurations having non-trivial configuration space isotropy, we cannot find

charts via the gauge theoretic approach to cotangent bundle reduction of Appendix

A.4. The issue is therefore not one of reduction per se, but only of finding suitable

coordinates. The transport problem and bifurcations of transition states will be the
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same as those considered in Section 3.4.

For more than seventy years, chemists have been using charts obtained by modifying

gauge theoretic cotangent bundle reduction [Say39]. The idea is to pass to a rotating

frame in which the collinear (equilibrium) configuration is along a chosen axis, say the

x1-axis, but retain the remaining rotational symmetry (about x1) as an internal coor-

dinate. Then by choosing the Eckart convention and the non-gauge invariant form of

the kinetic energy, we find that the Lagrangian is not a function of the angular velocity

about the collinear axis ω1, so we can obtain a Hamiltonian that is not a function of

the first angular momentum component l1. That is, l1 is replaced by the canonical mo-

mentum conjugate to the “internal” rotation about the x1-axis. These charts were first

considered by Sayvetz [Say39], though nowadays they are often attributed to Watson

[Wat70].

This procedure can be justified geometrically by applying the slice theorem (see

e.g. [OR04, Section 2.3.14]) to configuration space in a neighbourhood of the collinear

configurations, and then lifting the charts obtained to the cotangent bundle [RSS06].

Actually, with this understanding, charts can be obtained that are not those of the

Eckart convention, i.e. other gauges and internal coordinates. This was used in examples

by Kozin et al. [KRT00] to find charts in the collinear neighbourhood.

Note that this is just the splitting of coordinates into internal coordinates and rota-

tions, not an actual reduction, cf. Appendix A.4. With these chart, we cannot simply

pass to Serret-Andoyer coordinates to reduce the symmetry seeing as the Hamiltonian

is not a function l1. This is generally not addressed in literature.
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Chapter 4

Conclusions and discussion

We have shown the existence of a class of systems for which the dividing surface method

can be extended beyond the well known basic transport scenario by using Morse theory.

A natural question given these bifurcations is how the flux of ergode through the

dividing surface varies, as a function of energy, through a Morse bifurcation. In Section

2.5, we see that except in the 2 degree of freedom case, the Morse bifurcations do not

have a significant effect on the flux, which varies Cm−2 smoothly through these. In 2

degrees of freedom, the flux has a −∆E ln |∆E| infinite-slope singularity at an index-1

saddle on the transition manifold.

These bifurcations can be used to study many important transport problems for

larger ranges of energies than previously thought possible. An example is bimolecular

reactions, as seen from the capture rates considered in Chapter 3. By considering

the various different sequences of Morse bifurcations we were able to find interesting

new transition states and dividing surfaces for general reactions with non-zero angular

momentum.

The bimolecular reactions that we considered possessed Euclidean symmetry and

were reduced accordingly. Even though symplectic reduction theory is an old and much

studied subject, when considering these examples we faced a number of difficulties.

Setting aside the fact that these examples require singular reduction, due to the nature

of the rotational symmetry, and that singular cotangent bundle reduction is still not

a complete theory, there is a large gap between the reduction theory literature and

applications. Finding suitable charts for the reduced n-body system, even if we restrict

our attention to the principal non-singular stratum, is not an easy task. Some of the

literature avoids charts altogether focusing instead on the global geometric properties of

the reduced spaces, whereas the celestial mechanics literature considers different regions

of the reduced space. The most common approach in the literature concerning reaction

dynamics is to restrict ones attention to non-collinear configuration such that the gauge

theoretic approach to cotangent bundle reduction provides a set of charts, as reviewed

in Appendix A.4. This can even be extended to collinear configurations, as commented

in Section 3.5. However, here we face the opposite issue, namely the reduced space is

an S2 fibre bundle, due to the extra angular momentum degree of freedom, but the

global nature of this bundle is generally not discussed in the literature. We feel that
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more work is needed, both on charts for the reduced spaces and on their global nature,

and that this would improve our understanding of molecular reactions, and also other

n-body systems.

The usefulness of capture rates as a bound on actual reaction rates is debatable, but

largely depends on the reaction being considered. However, the moral of our study is

that the attitude and angular momentum degrees of freedom are important, seeing as

the most common examples found in the literature are collinear bimolecular reactions,

and that critical energy values and Morse bifurcations are (mostly) not an issue.

Generally, we expect to see Morse bifurcations in a large class of transport problems

from various applications. In the context of applications, numerical methods to find

and continue transition manifolds (through the Morse bifurcations) would be ideal.

Some numerical methods for normally hyperbolic submanifolds do exist, and others are

being developed, however the high dimensionality of the transition manifolds and the

global nature of the problem pose serious problems.

We have concentrated here on how the transition state and dividing surface vary

with energy, but in a system depending smoothly on other parameters, a Morse bifur-

cation at energy Eb for parameter value λb implies a Morse bifurcation at some nearby

smoothly varying energy E(λ) for parameter λ near λb. Thus for generic (i.e. non-

tangential) paths in the combined space (E,λ) there is a Morse bifurcation on crossing

E = E(λ). An example of another parameter is the angular momentum λ of the

bimolecular reactions. The exact dependence of the capture transition states on the

angular momentum and the possible loss of normal hyperbolicity for large values should

be considered in detail.

This leads us to the question of bifurcations leading to the loss of normal hyper-

bolicity of the transition manifold (for systems with more than 2 degrees of freedom)

and their effect on Hamiltonian transport. There have been some studies investigating

the loss of normal hyperbolicity for submanifolds of dimension greater than one, see

e.g. [LTK09, TTK11, AB12] and references therein, but it is still not understood, nor

is the effect that it will have on transport problems. However, for Hamiltonian systems

normally hyperbolic submanifolds (that satisfy a spectral gap condition) are symplec-

tic (Proposition A.1.2). This may provide an alternative way of understanding these

complicated situations. See e.g. the loss of symplectic nature of the transition manifold

in the disconnecting example of Section 2.4.1.

Other than losing normal hyperbolicity, transition states may also develop topo-

logical properties that prevent them from being spanned by a dividing surface and so

acting as a transition state. For the special case of 2 degree of freedom systems, some

topological obstructions were considered in Subsection 2.3.1, however for higher degrees

the topological possibilities are many more. A study of the topological obstructions of

periodic orbit transition states which is under way will hopefully be the start of a series

of such studies also for the higher dimensional case.

An open question regarding the dividing surface method, which is related to this

work is what happens when a dividing manifold cannot be defined over a large enough

region of state space, such that even though one finds a sufficiently large normally hy-
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perbolic submanifold that can potentially act as a transition manifold and be restricted

to transition states, one cannot find dividing surfaces spanning them above certain en-

ergies? This breakdown of the dividing manifold, brought about by the intersection

of the stable and unstable submanifolds of the transition manifolds, and its effect on

transport problems needs to be investigated.

There are a number of applications that cannot be studied using the dividing surface

method. One may ask whether there are any possible extensions of the theory that

would allow for it to be be used in these applications too. Amongst these are the

reactions out of equilibrium, non-autonomous Hamiltonian systems representing for

example reactions with an external field or laser pulse, and also systems for which the

product kinetic approximation leading to a low dimensional Hamiltonian system is not

valid, but which might instead be modelled by some quasi-Hamiltonian system.
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Appendices

A.1 Normally hyperbolic submanifolds

Loosely speaking, a smooth, compact (possibly with boundary) invariant submanifold

of a dynamical system is said to be normally hyperbolic if the linearised dynamics in

the normal direction is hyperbolic and dominates the linearised tangent dynamics.

Here, we shall recall a precise definition of a normally hyperbolic submanifold,

cf. [Fen71, HPS77], and present a method of finding approximations to normally hyper-

bolic (symplectic) submanifolds of Hamiltonian systems taken from MacKay’s lectures

on slow manifolds [Mac04].

A.1.1 Definitions and properties

We choose to work with the following

Definition. Consider a dynamical system
(

M,ht
)

consisting of a C1 flow ht on a

smooth manifold M , and choose a Riemannian metric on M . Let N be a compact

(possibly with boundary) C1 submanifold of M that is invariant under the flow, i.e.

ht (N) = N . We say that N is a normally hyperbolic submanifold (of the dynamical

system) if the tangent bundle of M restricted to N , TNM , can be split continuously*35

TNM = TN ⊕ E+ ⊕ E−,

such that TN ⊕ E± are invariant under Dht for all t and there exist real numbers

k±, k > 0 and 0 ≤ b < a, such that for all z̃ ∈ N , we have the following growth rates

‖π+ ◦Dz̃h
t|E+‖ ≤ k+eat, ∀t ≤ 0,

‖π− ◦Dz̃h
t|E−‖ ≤ k−e−at, ∀t ≥ 0,

‖Dz̃h
t|TN‖ ≤ keb|t|, ∀t ∈ R,

where π± : TNM → E± are the projections induced by the splitting.

This is stronger than the usual definition, say that of Fenichel [Fen71, Section IV] as

we can see from his uniformity lemma, but appropriate for our purposes. The inequality

satisfied by a and b is generally referred to as the spectral gap condition.

*35 There are two opposite notations for the sign of E± in literature, plus many other notations. The
one used here respects the sign of the eigenvalues, whereas the other one follows the direction of
time along which trajectories approach the normally hyperbolic manifold.
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Remark A.1.1 (Choice of splitting). Note that generally the normal hyperbolicity will

depend on the choice of splitting. There exists an invariant splitting that simplifies the

theory, and is forced upon the definition in most of the literature. However, this choice

of splitting is unnecessary and when considering concrete examples finding it can be

cumbersome. Like Fenichel [Fen71], which uses a Riemannian splitting, we choose a

general splitting that is not invariant.

For the general properties of normally hyperbolic submanifolds, such as persistence,

stable and unstable manifolds and smoothness results, see e.g. Fenichel [Fen71] or

Hirsch, Pugh and Shub [HPS77].

We are interested in Hamiltonian systems with their symplectic state space. In

this case, normally hyperbolic submanifolds with a spectral gap condition, as in our

definition, are symplectic. This was noted by Marco [Mar], who refers to normally

hyperbolic submanifolds satisfying a gap condition as controllable, and Gelfreich and

Turaev [GT14].

Proposition A.1.2. Normally hyperbolic submanifolds (satisfying a spectral gap con-

dition) of Hamiltonian systems are symplectic, specifically ωN is non-degenerate.

The proof, which can be found in [Mar, GT14], is the following.

Proof. Recall that normally hyperbolic submanifolds N have stable and unstable sub-

manifolds W±(N), which are tangent at N to TN ⊕ E±, and that N = W+(N) ∩

W−(N). Furthermore, W±(N) are invariantly fibred by submanifolds W±(z̃) for

z̃ ∈ N , usually referred to as strong stable and strong unstable manifolds. If we consider

the invariant splitting, in which E± are invariant under Dht, then W
±(z̃) are tangent

at N to E±
z̃ [HPS77]. We shall use the invariant splitting in what follows. Firstly, we

note that TW±(N) ⊥ω TW
±(z̃) for all z̃ ∈ N . Considering η ∈ Tz̃W

−(z̃) = E−
z̃ and

ν ∈ Tz̃W
−(N), we find that

|ω(η, ν)| = |ω(Dht(η),Dht(ν))| ≤ c|Dht(η)||Dht(ν)| ≤ ck−e−at(k−e−at + ke|b|t)|η||ν|,

for t ≥ 0, with the same notation used previously. This tends to zero in the limit

as t → +∞ since 0 ≤ b < a. Thus Tz̃W
−(z̃) ⊥ω Tz̃W

−(N) and by invariance of

ω under the flow ht, TW
−(z̃) ⊥ω TW−(N). Similarly TW+(z̃) ⊥ω TW+(N). Now

assume that, contrary to the claim, ωN is degenerate and there is a non-zero tangent

vector ξ̂ ∈ Tz̃N such that ξ̂ ⊥ω Tz̃N . Since ξ̂ ∈ Tz̃W
+(N) ∩ Tz̃W

−(N), we find that

ξ̂ ⊥ω Tz̃W
±(z̃). Then, due to the splitting of TMN ,

Tz̃M = E+
z̃ ⊕ Tz̃N ⊕ E−

z̃ ,

we have that ξ̂ ⊥ω Tz̃M , contradicting the non-degeneracy of ω.

Given a vector field X generating the flow ht, the linearised flow Dht about the

normally hyperbolic submanifold N satisfies the (first) variation equation

d

dt

(

Dz̃h
t (ν)

)

= Dht(z̃)X ·Dz̃h
t (ν) ,
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for z̃ ∈ N , ν ∈ Tz̃M . The splitting allows us to write ν = v1ξ + v2η+ + v3η− with

v = (v1, v2, v3) and re-write the variation equation as

v̇ =







T C+ C−

0 V+ 0

0 0 V−






v,

where we have used the invariance of N and TN ⊕ E±. Thus, by asking that

‖V −1
+ ‖−1 ≥ a, ‖V −1

− ‖−1 ≥ a, ‖T‖ ≤ b, ‖C±‖ bounded,

we recover the conditions on the linearised flow from the definition, see e.g. differential

inequalities in [Hal69, Section I.6].

For Hamiltonian systems we could “re-write” the definition in terms of properties

of the linearised Hamiltonian (of the variation equation).

A.1.2 Approximating (symplectic) normally hyperbolic submanifolds

of Hamiltonian systems

A main theorem on normally hyperbolic submanifolds tells us that given an “almost

invariant” normally hyperbolic submanifold N0 of a dynamical system, meaning that

on N0 the normal component of the vector field is small, there exists a true normally

hyperbolic submanifold N nearby. Here, we are interested in (symplectic) normally

hyperbolic submanifolds of Hamiltonian systems and we want to find sufficiently good

approximations to the Hamiltonian on normally hyperbolic submanifolds to deduce

the sequence of Morse bifurcations as energy is increased. Thus, we will show how

to find a better approximation of an almost invariant normally hyperbolic symplectic

submanifold N0, using a symplectically orthogonal fibration of its neighbourhood. The

approach follows MacKay’s lectures that present the slow manifold case [Mac04].

Theorem A.1.3. Every almost invariant, normally hyperbolic submanifold N0 of a

Hamiltonian system can be improved to one that also contains all nearby equilibria and

has a smaller angle to the vector field.

Proof. Given a Hamiltonian system
(

M2m, ω,H
)

with vector field XH generating a

flow ht, and a symplectic submanifold N0, consider a symplectic fibration of a tubular

neighbourhood U ⊂ M of N0, π : U → N0 : z 7→ z̃, as defined in Section 2.2. The

vertical subbundle is given by

Vertz = ker dzπ = TzFz̃, ∀z ∈ U,

and by choosing the horizontal subbundle to be symplectically orthogonal to the vertical

subbundle, i.e.

Horz = Vertωz ,
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Figure A.1: Schematic representation of the construction used to find a better approxi-
mation N1 to a normally hyperbolic submanifold N given an almost invariant normally
hyperbolic symplectic submanifold N0. Note: finding N1 does not require any specific
coordinates.

we obtain a symplectic splitting of the tangent bundle of the neighbourhood of N0

TM = Vert⊕ω Hor.

Seeing as N0 is a symplectic submanifold of M , we can choose (local) Darboux

coordinates z = (x, u, y, v) for a neighbourhood U0 ⊂ M of z̃ ∈ N0 in which ω = dx ∧

dy +du∧ dv and such that N0 = {z ∈M |x = y = 0} and Fz̃ = {z ∈M |u = ũ, v = ṽ},

where z̃ = (0, ũ, 0, ṽ) and everything is restricted to U0. We shall often write h = (u, v)

and n = (x, y). To justify this local chart, we must note that we have restricted to a

neighbourhood V0 ⊂ N0 of z̃, such that U0 = π−1(V0) and by the local trivialisation is

diffeomorphic to V0 × F . Then the chart is the symplectomorphism to (R2m, ω0) given

by the symplectic neighbourhood theorem (see e.g. [MS98, Theorem 3.30]). In these

coordinates, the tangent space Horz = span{∂h} for z ∈ Fz̃, but globally the fibration

may not be trivial and the Hor subbundle is not necessarily integrable (as discussed

by Guillemin et al. [GLS96, Section 1.3]). See Figure A.1 for a depiction of the above.

Now, we can write the equations of motion as

ż = J DH (z) ,

and the variation equation is

v̇ = J D2H
(

ht(z̃)
)

v.

The assumptions of almost invariance, i.e. ‖DH|Fz̃
(z̃) ‖ ≤ ε small for z̃ ∈ N0, and

that the normal dynamics is hyperbolic, which can be written as ‖D2H|Fz̃
(z̃)−1 ‖−1 ≥

a > 0, together with the implicit function theorem give the existence of a locally

unique critical point nc(h̃) of HFz̃
that is within approximately a−1ε of N0 and depends

smoothly on z̃ = (h̃, 0) ∈ N0. Then define the new approximate submanifold N1 to be

the graph of nc, so in particular N1 contains all nearby true equilibria of the system.
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Note that finding N1 does not require any special coordinates. However, our choice of

Darboux coordinates will now be used to show that N1 is a better type of approximation

to the true normally hyperbolic submanifold N than N0, in the sense that the angle of

the vector field to N1 is small (called “first order” in [Mac04]).

Firstly, the restriction ωN1
of ω to N1 is non-degenerate, and we use it to define

XHN1
tangent to N1 via ωN1

(XHN1
, ζ) = dHN1

(ζ) for all ζ ∈ TzN1. Then, to check

that XH −XHN1
is small compared to XHN1

, we first find that |ω (ζ, η) | ≤ ca−1δ|ζ||η|

for ζ ∈ TzN1, η ∈ TzFz̃ with z ∈ N1, δ = |∂2hnH(z)| and c slightly larger than 1. This

can be seen by splitting the vectors tangent to N1 into a horizontal and vertical part,

namely ζ = ζh∂h+ ζn∂n ∈ TzN1, and writing DH|Fz̃
(h, nc) as ∂nH(h, nc). The tangent

vectors satisfy

d(∂nH)(ζ) = ∂2hnH(h, nc)ζh + ∂2nnH(h, nc)ζn = 0,

so

ζn = −(∂2nnH(h, nc))
−1∂2hnH(h, nc)ζh = Dhnc(h)ζh.

Then |Dhnc(h)| ≤ ca−1δ and |ω (ζ, η) | ≤ ca−1δ|ζ||η|. Next, we note that due to the

definition of N1, at z ∈ N1 the vector field satisfies ω(XH , η) = 0 and ω(XH , ζ) =

ω(XHN1
, ζ).

Finally, for a general ν ∈ TzM , split it as ν = ζ + η with ζ ∈ TzN1, η ∈ TzFz̃, then

ω(XH −XHN1
, ν) = ω(XH −XHN1

, ζ + η)

= ω (XH , ζ) + ω (XH , η)− ω(XHN1
, ζ)− ω(XHN1

, η)

= O(a−1δ|XHN1
||η|).

Thus XH −XHN1
= O(a−1δ|XHN1

|), as claimed.

Note however that beyond the first iteration, the required procedure is more subtle

than [Mac04] might lead one to suppose. In order to ensure that for the successive

approximations the normal vector field is of the order of higher powers of the tangential

vector field, one has to carefully choose a nearly symplectically orthogonal fibration at

each subsequent step*36.

A.2 Some properties of centre manifolds

This appendix highlights some of the properties of centre manifolds, namely normal

hyperbolicity, uniqueness and symplectic nature, specific to Hamiltonian systems. Of

the many references available, I like the straight forward introduction in Guckenheimer

and Holmes [GH90, Section 3.2]. For more details, Sijbrand [Sij85] presents a thorough

discussion of their properties, and has a good list of old (pre-1985) references.

*36 Robert MacKay gave a talk at the Newton Institute in Cambridge in 2007 where this was addressed
and an incomplete draft paper of March 3rd 2007 sketches the procedure, but the paper has not
yet been completed.
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N

Figure A.2: Example of multiple non-unique centre manifolds for the left equilibrium
point and a unique normally hyperbolic manifold, N , passing through both equilibria.

Definition. Given a non-hyperbolic equilibrium point z̄ of a vector field X on M , the

centre subspace N̂ is defined as the span of eigenvectors corresponding to eigenvalues

on the imaginary axis. There exists a locally invariant (under the flow) submanifold N

of M , called the centre manifold, that passes through the critical point and is tangent

to the centre subspace at this point.

See Guckenheimer and Holmes [GH90, Section 3.2] for the usual graph represen-

tation and its Taylor expansion. Note that as a submanifold, the centre manifold can

actually be represented in various ways. For example, Leen gives a way of representing

centre manifolds as a parametrised surface [Lee93].

Centre manifolds and normally hyperbolic manifolds have the same spectral condi-

tions, but the definition of centre manifolds is local whereas that of normally hyperbolic

manifolds is global. Namely, centre manifolds are defined in terms of the splitting of

the linearised dynamics locally at an equilibrium, whereas normally hyperbolic mani-

folds are invariant submanifolds for which the splitting of rates holds at every point.

Thus, by definition a centre manifold is normally hyperbolic at the equilibrium, and in

a neighbourhood thereof.

Centre manifolds are not necessarily unique. This difference with respect to nor-

mally hyperbolic manifolds is in fact due to the local nature of the definition of a centre

manifold, noted above. An example showing this difference is given in Figure A.2. Here,

N is a normally hyperbolic manifold and a (generalised) centre manifold for both equi-

libria. However, we could also choose any other trajectory through the left equilibrium

as a local centre manifold, exemplifying the non-uniqueness. These other choices are

not normally hyperbolic away from the equilibrium. However, one can also have unique

centre manifolds. Seeing as the definition of a centre manifold alone does not ensure

uniqueness, when this is the case it is due to the dynamics of the system. Sijbrand

[Sij85, Theorem 3.2], has the following

Theorem A.2.1. Given a flow with an equilibrium z̄ that has a non-empty centre

subspace, the centre manifold N about z̄ is unique

i. when E+
z̄ = ∅, if the flow on N is bounded to a neighbourhood of z̄ for all t < 0.

ii. when E−
z̄ = ∅, if the flow on N is bounded to a neighbourhood of z̄ for all t > 0.
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iii. when E±
z̄ 6= ∅, if the flow on N is bounded to a neighbourhood of z̄ for all t ∈ R.

Sijbrand gives a proof based on the contraction mapping, and makes a remark about

a more geometric proof [Sij85, Remark 1], which I couldn’t find in the literature. Note

that Hamiltonian systems only ever have case (iii), as dim E+
z̄ = dim E−

z̄ .

Centre manifolds of non-hyperbolic equilibria of Hamiltonian systems are also sym-

plectic. This has “always” been known, but the first reference that I could find is Mielke

[Mie91, Theorem 4.1].

Proposition A.2.2. A local centre manifold N of a non-degenerate equilibrium point

z̄ for a Hamiltonian system
(

M2m, ω,H
)

is a symplectic submanifold of the state space

with symplectic form ωN , the restriction of ω.

Proof. We must show that ωN is a closed, nondegenerate form on N . Actually, we

only need to prove nondegeneracy, since restriction and the exterior derivative com-

mute, and so ωN is closed (dωN = 0). At the equilibrium, nondegeneracy follows

from Williamson’s theorem [Arn89, Appendix 6], namely the symplectic tangent space

Tz̄M decomposes into a direct sum of symplectic subspaces, one being the subspace

corresponding to the elliptic eigenvalues and tangent to the centre manifold N . Then,

nondegeneracy holds in a neighbourhood of the equilibrium.

Thus, the restriction of a Hamiltonian vector field to a centre manifold is the Hamil-

tonian vector field of the restricted system, namely

Proposition A.2.3. The Hamiltonian vector field restricted to the centre manifold

XH |N preserves the restricted symplectic form ωN on N and is equal to the vector field

of the reduced Hamiltonian system (N,ωN ,HN ), i.e. XH |N = XHN
.

Proof. Firstly, XH |N and ωN are restrictions to N , and both N and ω are invariant

under the flow of XH , thus ωN is preserved by XH |N . Then, N is invariant, so XH |N ∈

T (N). Hence

dH (ξ) = ω (XH , ξ) = ωN (XH |N , ξ) , ∀ξ ∈ Tz̃N

and

dH (ξ) = dHN (ξ) ,

so XH |N = XHN
.

A.3 Basics of Morse theory

Morse theory allows us to study the topology of a manifold by considering the properties

of “height” functions on it, and vice versa. It is therefore a natural tool for Hamiltonian

systems with their Hamiltonian functions. We briefly state a few of the definitions and

theorems (without proofs) and mention how they can be used to study bifurcations.

For details see e.g. Milnor [Mil63] or Bott [Bot82].

Consider anm-dimensional smooth manifoldM and a smooth functionH :M → R.

Recall that, a point z̄ ∈M is critical, relative to H, if dz̄H = 0. Given local coordinates
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x = (x1, · · · , xm) about z̄, we have that

∂H

∂x1
(z̄) = · · · =

∂H

∂xm
(z̄) = 0.

Also, for a critical point z̄, we can define a symmetric bilinear form, Hessz̄ (H), called

the Hessian. If ξ, η are tangent vectors at z̄, and X,Y extensions to vector fields, we

let Hessz̄ (H) (ξ, η) = Xz̄ (Y (H)). This is symmetric and independent of the extensions

[Mil63, Section 2].

We can now give the

Definition. The (Morse) index λ (z̄) of a critical point z̄, relative to H, is the maximal

dimension of a subspace V of the tangent space on which the Hessian, Hessz̄ (H), is

negative definite, that is Hessz̄ (H) (ξ, η) < 0 for all ξ, η ∈ V . The nullity of z̄ relative

to H is the dimension of the null-space, i.e. the subspace consisting of all η ∈ Tz̄M

such that Hessz̄ (H) (η, ξ) = 0 for all ξ ∈ Tz̄M .

In local coordinates, the index is the number of negative eigenvalues of the local

representation of the Hessian at z̄, D2H (z̄), counting multiplicities. The nullity is given

by dim M − rank D2H (z̄). Recall that a critical point is called nondegenerate if the

Hessian has nullity zero.

A smooth function H is a said to be a Morse function if all of its critical points,

z̄i ∈ Cr (H), are nondegenerate.

Near a nondegenerate critical point, the level sets of H are quadrics given by the

Morse Lemma. Let z̄ be a nondegenerate critical point, relative to H, of index λ.

Then, in some open neighbourhood of z̄, there are local coordinates (x, y) taking the

critical point to the origin, and for which the local representation of H satisfies

H (x, y) = H (z̄)−
1

2

(

x21 + · · ·+ x2λ
)

+
1

2

(

y21 + · · · + y2m−λ

)

.

Remark A.3.1. The proof gives the coordinate transformation and thus the Morse

lemma coordinates. These can be useful when studying bifurcations of the level sets.

A neat proof due to Palais, which uses the homotopy method, can be found in [GS90,

Appendix 1] or [BH04, Section 3.1].

Remark A.3.2. The Morse lemma can be extended to include the local representation of

volume forms, as done by Colin de Verdière and Vey [CV+79]. Namely, given a volume

form Ω and the Morse lemma coordinates z = (x, y), in which H(z) = H(z̄) +H2(z),

we find

Ω = ψ(H2)Ω0,

where Ω0 = dz1 ∧ · · · ∧ dzm is the standard volume form, and ψ is a smooth proper

function. Alternatively, there are local coordinates z̃ = (x̃, ỹ) in which

H(z̃) = Ψ(H2(z̃)),

Ω = Ω0,
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Figure A.3: Schematic representation of the handle attachment in theorem A.3.4.

where Ψ(H2) is a power series, and we have assumed that H(z̄) = 0. The near identity

transformation from this alternative representation to the Morse one is z̃ = zf(H2(z))

where Ψ(H2)
1/2 =: H

1/2
2 f(H2). Colin de Verdière and Vey refer to these as the iso-

choric*37 Morse lemma [CV+79], see also [Fra88]. For two dimensional manifolds, the

alternative version is often referred to as the symplectic Morse lemma, and is equivalent

to a local Birkhoff normal form [Arn89, Appendix 7].

Now, for a real number a, M≤a = {z ∈ M |H (z) ≤ a} is the sub-level set, for a. If

a is a regular value of H, then these are manifolds with boundary Ma = ∂M≤a = {z ∈

M |H (z) = a}, the level sets. Regarding these manifolds, we have

Theorem A.3.3. Let a < b be real numbers with H−1 ([a, b]) compact. Suppose

H−1 ([a, b]) contains no critical points of H. Then M≤a is diffeomorphic to M≤b, and

hence so are their boundaries, Mb
∼= Ma. Furthermore H−1 ([a, b]) ∼= Ma × [0, 1] ∼=

Mb × [0, 1].

To consider what happens when we “pass” a critical point, we need to recall how

to attach handles. Firstly, we need the

Definition. An index-λ handle, or λ-handle of dimension m is hmλ = Bλ×Bm−λ, where

Bk is the unit ball in Rk. The axis (also called core) of the handle is Bλ × {0} ⊂ hmλ .

Now, consider a manifold Mm with boundary ∂M , a handle hmλ and a smooth

embedding ψ : Sλ−1×Bm−λ → ∂M , called the attaching map. We can form a topological

space by taking the disjoint union, M ∪ hmλ , and then identifying z in the boundary of

the handle with ψ (z) ∈ ∂M . The quotient space thus obtained is denoted M ∪ψ h
m
λ .

Finally, we can show that M ∪ψ h
m
λ admits a unique (up to diffeomorphism) smooth

dimension-m structure (see e.g. Milnor [Mil63, Section 3]). Note that attaching a

0-handle gives the disjoint union M ∪ Bm.

The effect of “passing” a critical point of the function on the diffeomorphism class

of the sub-level sets is given by

Theorem A.3.4. Suppose c is a critical value of H such that Mc contains a single

nondegenerate critical point z̄ of Morse index λ. Then for every ε > 0 sufficiently small,

*37 Of constant volume. Technically, only the alternative version of the lemma and if Ω = Ω0 to start
with.

91



the sub-level set M≤c+ε is diffeomorphic to M≤c−ε with an index-λ handle attached, i.e.

M≤c+ε
∼=M≤c−ε ∪ψ h

m
λ .

The handle attachment of Theorem A.3.4 is shown in Figure A.3. If we choose the

Morse lemma coordinates (x, y) about z̄ the handle is given by

hmλ = {|x|2 − |y|2 ≤ ε, |y|2 ≤ δ},

and the axis of the handle is given by

Bλ × {0} = {|x|2 ≤ ε, y = 0}.

The figure also shows how the embedding is chosen naturally without ambiguity.

The representation of the sub-level set M≤c+ε given in Theorem A.3.4 is that of a

handlebody, namely

Definition. A manifold (with boundary in general) obtained from Bm by attaching

handles of various indices one after another

Bm ∪ψ1
Bλ1 × Bm−λ1 ∪ψ2

· · · ∪ψk
Bλk × Bm−λk

is called an m-dimensional handlebody.

When considering bifurcations, we want to rewrite the diffeomorphism type in a

more natural way. For this, we must know the topology of the sub-level set before the

bifurcation, M≤c−ε, and the orientation of the handle with respect to the sub-level set.

This orientation is given by the Morse coordinates.

Note that, with a little care, we can also consider multiple (for a given critical value)

and degenerate critical points.

Lastly, Theorem A.3.4 allows us to derive Morse inequalities*38, which give bounds

on the number of critical points and their indices, for Morse functions, based on the

topology of the manifold. Firstly, we define the Morse series of H

Mt (H) =
∑

z̄

tλ(z̄),

for critical points z̄ ∈ Cr (H), then we need the Poincaré series of M

Pt (M) =
∑

k

tkbk,

where bk = dimHk (M ;R) are the Betti numbers, i.e. the dimensions of the various

homology groups of M over the real numbers. These are topological invariants of the

manifold, see e.g. Frankel [Fra04, Chapter 13]. Finally, there exists a polynomial

*38 Precursors to the Morse inequalities, for functions on two-spheres, can be found in the work of
Maxwell on topography [Max70].
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Qt (H) in t with non-negative coefficients, and the Morse inequalities are

Mt (H)− Pt (M) = (1 + t)Qt (H) ,

see e.g. Bott [Bot82]. One often writes the inequality Mt (H) ≥ Pt (M) instead, hence

the name. These relations can and have been used to study the “potential energy

surfaces” of molecular dynamics, see Mezey [Mez87, Chapter 2] and references therein.

A.4 Charts for reduced n-body systems in non-collinear

configurations

Finding reduced charts for n body Hamiltonian systems in the non-collinear configura-

tions region is straight forward, and can be done by considering the Euclidean action

of SE(3) = R3 × SO(3) on configuration space. This gauge theoretic approach to

cotangent bundle reduction is nicely reviewed by Littlejohn and Reinsch [LR97]. They

however do not consider the final step required to reduce the rotational symmetry and

fix the angular momentum. This is achieved by introducing Serret-Andoyer*39 coor-

dinates, as explained by Deprit [Dep67] (see also [DE93, CW12]). These introduce

inevitable coordinate singularities (on the angular momentum sphere), which is prob-

ably why Littlejohn and Reinsch avoid them. We shall briefly review the reduction

procedure for general n-body systems, and introduce our notation. A specific choice of

charts for n-body systems representing bimolecular reactions is given in Section 3.4.

Consider a translation-reduced, rotation invariant n-body systems restricted to the

non-collinear subset (i.e. the trivial configuration isotropy-type submanifold) of config-

uration space QId ⊂ Q ∼= R3(n−1) and written in the Lagrangian formalism

L(R, Ṙ) =
1

2

n−1
∑

i=1

mi|Ṙi|
2 − U(R),

where R = (R1, · · · , Rn−1) are some choice of Jacobi vectors. Note that we have chosen

to not use normalised or mass-weighted Jacobi vectors, as done in much of the literature.

We believe that the mass parameters are best dealt with by non-dimensionalising the

system. The potential U is assumed to be invariant under the action of SO(3).

Pass from the inertial frame {X1,X2,X3} to a convenient rotating frame {x1, x2, x3},

which will depend on the problem at hand, and write

Ri = g (ψ) · ri, i = 1, · · · , n− 1,

where g ∈ SO(3) is the rotation parametrised by the Euler angles ψ = (ψ1, ψ2, ψ3), and

ri are the Jacobi vectors in the rotating frame.

The rotating Jacobi vectors can be expressed in terms of 3n−6 internal coordinates

q for QId/SO(3) by specifying ri(q), which is called the gauge in the physics literature

*39 Often also referred to as Andoyer or Deprit coodinates. A nice account of their history is given by
Deprit and Elipe [DE93].

93



[LR97]. We are effectively considering a fibre bundle πId : QId → QId/SO(3), and q

are coordinates for the base space. Then, σ(q) = g (ψ) · ri(q) is a section, and the Euler

angles ψ = (ψ1, ψ2, ψ3) are coordinates for the fibre, diffeomorphic to SO(3).

In the new coordinates, the kinetic energy is

2Ek =

3n−6
∑

i,j=1

q̇iK̃ij(q)q̇j + 2

3
∑

i,j=1

3n−6
∑

k=1

ωiIij(q)Akj(q)q̇k +

3
∑

i,j=1

ωiIij(q)ωj ,

where ω is the angular velocity, that is the vector corresponding to the skew-symmetric

matrix Ω(ψ) = gT (ψ) ġ (ψ), for which ω× r = Ωr, for any 3-vector r. We are therefore

considering an anholonomic frame (or vielbein) (q̇, ω) for the tangent space at (q, ψ),

with ω = Ψ(ψ)ψ̇ [LR97, Appendix C]. The pseudo-metric K̃(q) satisfies

K̃ij(q) =

n−1
∑

k=1

∂rk(q)

∂qi
·
∂rk(q)

∂qj
.

This is the restriction of the Euclidean metric on the (translation-reduced) configuration

space QId to the section σ(QId/SO(3)), and hence a “pseudo-metric” on the internal

space QId/SO(3). It is of no importance in gauge theoretic terms, but nonetheless

features prominently in the molecular literature. The moment of inertia tensor I(q) is

given by

I(q) =
n−1
∑

k=1

(rk(q) · rk(q)Id − rk(q)⊗ rk(q)),

or

Iij(q) =
n−1
∑

k=1

3
∑

s=1

mk

(

rks(q)
2δij − rki(q)rkj(q)

)

,

and the gauge potential A(q) associated with the Coriolis effect, which is caused by the

coupling term, is

A(q) = I−1(q)a(q),

where a(q) = (a1(q), · · · , a3n−6(q)) and

ai(q) =
n−1
∑

k=1

rk(q)×
∂rk(q)

∂qi
.

Equivalently

Aij(q) =
n−1
∑

k=1

3
∑

s,t,u=1

Ijs(q)mkǫsturkt(q)
∂rku(q)

∂qi
,

where Iks(q) are components of the inverse moment of inertia tensor I−1(q), and ǫijk

the Levi-Civita symbols*40.

The kinetic energy is gauge invariant, i.e. independent of the choice of internal

*40 Recall, the Levi-Civita symbol ǫijk is 1 if (i, j, k) is an even permutation of (1, 2, 3), −1 if it is an
odd permutation, and 0 if any index is repeated.
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coordinates, but the individual terms are not (see [LR97, Section IV.A]). It is therefore

rewritten, in a gauge-invariant form, as

2Ek =
3n−6
∑

i,j=1

q̇iKij(q)q̇j +
3
∑

i,j=1

3n−6
∑

k=1

(ωi +Aki(q)q̇k) Iij(q) (ωj +Akj(q)q̇k) ,

where the metric K(q) = K̃(q)−AT (q)I(q)A(q). Note that K(q) is an actual (Rieman-

nian) metric on the internal space, obtained by projecting the metric on configuration

space QId down to the internal space. It is therefore positive definite, but non-Euclidian

due to the nature of the internal space [LR97, Section IV.C].

Finally, pass to the Hamiltonian formalism. The momenta are found (via the fibre

derivative of the Lagrangian) to be

li :=
∂L(q, ψ, q̇, ω)

∂ωi
=

3
∑

j=1

3n−6
∑

k=1

Iij(q) (ωj +Akj(q)q̇k) ,

pi :=
∂L(q, ψ, q̇, ω)

∂q̇i
=

3n−6
∑

j=1

Kij(q)q̇j +

3
∑

j=1

Aij(q)lj ,

where l is the angular momentum in the rotating frame, i.e. l = gT (ψ) · L. The

Hamiltonian is then the Legendre transform of the Lagrangian, namely

H(q, ψ̂, p, l) =
1

2

3n−6
∑

i,j=1

3
∑

k=1

(pi −Aik(q)lk)K
ij(q) (pj −Ajk(q)lk)

+
1

2

3
∑

i,j=1

liI
ij(q)lj + U (q) ,

where the potential is a function of the internal coordinates only, due to the assumption

of rotational invariance, and the Euler angles are ignorable.

The symplectic form is

ω =

3n−6
∑

i=1

dqi ∧ dpi +

3
∑

i,j=1

Ψji(ψ)dψi ∧ dlj +
1

2

3
∑

i,j,k,u,v=1

ǫijkliΨju(ψ)Ψkv(ψ)dψu ∧ dψv.

Alternatively, most of the literature considers the Poisson bracket instead, which for

two smooth functions F , G is

{F,G} = (∂qiF∂piG− ∂piF∂qiG) + Ψji
(

∂ψi
F∂ljG− ∂ljF∂ψi

G
)

− ǫijkli∂ljF∂lkG.

Littlejohn and Reinsch derive this in [LR97, Section IV.D].

The momenta p are gauge dependent because of the Coriolis term AT (q)l. Pass-

ing to gauge-independent non-canonical momenta*41, vi = pi − Aij(q)lj , simplifies the

*41 Littlejohn and Reinsch call these “covariant shape velocities” and denote them v. We shall use the
same notation, hoping that it will not lead to any confusion, even though it gives vi = Kij(q)q̇j .
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Hamiltonian and removes this issue. The Hamiltonian becomes

H(q, ψ̂, v, l) =
1

2

3n−6
∑

i,j=1

3
∑

k=1

viK
ij(q)vj + V (q, l), V (q, l) =

1

2

3
∑

i,j=1

liI
ij(q)lj + U (q) ,

where V is the effective potential combining the centrifugal term and the potential, and

ω =
3n−6
∑

i=1

dqi ∧ dvi +
3n−6
∑

i=1

3
∑

j=1

Aij(q)dqi ∧ dlj

+
1

2

3n−6
∑

i,k=1

3
∑

j=1

lj (Bkij(q) + ǫjuvAku(q)Aiv(q)) dqi ∧ dqk

+
3
∑

i,j=1

Ψji(ψ)dψi ∧ dlj +
1

2

3
∑

i,j,k,u,v=1

ǫijkliΨju(ψ)Ψkv(ψ)dψu ∧ dψv,

where we have introduced the Coriolis tensor

Bijk(q) = ∂qiAjk(q)− ∂qjAik(q)− ǫkstAis(q)Ajt(q),

which is a curvature form on fibre bundle (see [LR97, Section III.G]), and simplifies the

equations of motion. Effectively, this transformation moves the Coriolis effect from the

Hamiltonian to the symplectic form, in the second and third terms. This is similar to

non-canonical coordinates for a charged particle in a magnetic field, where the effect of

the Lorentz force comes from the symplectic form, see e.g. [Mar92, Section 2.10].

The molecular literature usually does not pass to the gauge-invariant form of the

kinetic energy, see discussion in [LR97, Section IV.F].

Note that, by introducing the rotating frame, we have split the coordinates into

internal coordinates q and (ignorable) rotations ψ, and their momenta, but we have

not actually reduced the system. Since (ψ, l) are non-canonical, the fact that ψ are

ignorable doesn’t lead to l being constant. We can however pass from the non-canonical

(ψ, l) to canonical Serret-Andoyer coordinates (θ,Θ) which consist of the total angular

momentum |l| plus two projections of l, which we are free to choose, and three angles.

The choice of projection onto the x1 and X1-axis is shown in Figure A.4.

We immediately note that

l = l(θ3,Θ2,Θ3) = (Θ3,
√

Θ2
2 −Θ2

3 sin θ3,
√

Θ2
2 −Θ2

3 cos θ3),

which we need to transform the Hamiltonian function. Whereas the relations between

the new angles θ and the non-canonical angular momentum coordinates is less simple

and depends on the original choice of Euler angles. These are of no use to us here, but

given in [Dep67] and [DE93], where (θ,Θ) are shown to be canonical coordinates.

The Hamiltonian in these new coordinates is

H(q, θ̂1, θ̂2, θ3, v, Θ̂1,Θ2,Θ3) =
1

2

3n−6
∑

i,j=1

3
∑

k=1

viK
ij(q)vj + V (q, θ3,Θ2,Θ3).
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Figure A.4: Transformation to Serret-Andoyer coordinates. {X1,X2,X3} is the lab
frame, {x1, x2, x3} the chosen rotating frame and l the angular momentum vector.
Θ2 = |l|.

The system is reduced by eliminating the ignorable degree of freedom (θ1,Θ1), fixing

Θ2 = λ, which is the constant absolute value of the angular momentum, and eliminating

θ2. The remaining angular momentum coordinates (θ3,Θ3) are a canonical latitude and

longitude on the angular momentum sphere S2λ, henceforth denoted zλ = (qλ, pλ), and

there is a coordinate singularity at pλ = λ. The reduced Hamiltonian function is

H (q, qλ, v, pλ;λ) =
1

2

3n−6
∑

i,j=1

3
∑

k=1

viK
ij(q)vj + V (q, zλ;λ),

V (q, zλ;λ) =
1

2

3
∑

i,j=1

li(zλ;λ)I
ij(q)lj(zλ;λ) + U (q) ,

and

ω =

3n−6
∑

i=1

dqi ∧ dvi +

3n−6
∑

i=1

3
∑

j=1

Aij(q)∂zλk lj(zλ;λ)dqi ∧ dzλk

+
1

2

3n−6
∑

i,k=1

3
∑

j=1

lj(zλ;λ) (Bkij(q) + ǫjuvAku(q)Aiv(q)) dqi ∧ dqk + dqλ ∧ dpλ.

The choice of projection is equivalent to a choice of which axis to use as a longitude

for S2µ. The transformation for other projections is equivalent. Thus, by considering

e.g. minor and major principal axes, we get two charts that cover whole of S2µ.

97



References

[AB12] A Allahem and T Bartsch. Chaotic dynamics in multidimensional transition states.

J. Chem. Phys., 137(21):214310, 2012.

[AM78] R Abraham and J E Marsden. Foundations of Mechanics. Addison-Wesley, second

edition, 1978.

[Arn89] V I Arnol’d. Mathematical Methods of Classical Mechanics. Springer-Verlag, second

edition, 1989.

[Bal97] R Balescu. Statistical dynamics: Matter out of Equilibrium. World Scientific, 1997.

[BCM13] C Baesens, Y-C Chen, and R S MacKay. Abrupt bifurcations in chaotic scattering:

view from the anti-integrable limit. Nonlinearity, 26(9):2703–2730, 2013.

[BDW96] A Bolsinov, H R Dullin, and A Wittek. Topology of energy surfaces and existence
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