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Density Flow over Networks: A Mean-field Game Theoretic Approach

Dario Bauso, Xuan Zhang and Antonis Papachristodoulou

Abstract— A distributed routing control algorithm for dy-
namic networks has recently been presented in the literature.
The networks were modeled using time evolution of density
at network edges and the routing control algorithm allowed
edge density to converge to a Wardrop equilibrium, which was
characterized by an equal traffic density on all used paths.
We borrow the idea and rearrange the density model to recast
the problem within the framework of mean-field games. The
contribution of this paper is three-fold. First, we provide a
mean-field game formulation of the problem at hand. Second,
we illustrate an extended state space solution approach. Third,
we study the stochastic case where the density evolution is
driven by a Brownian motion.

I. INTRODUCTION

In this paper we study a routing problem over a network.

The problem setup involves a population of individuals or

players traversing the edges of a network in the attempt to

reach a destination node starting from a source node. From

a microscopic standpoint, each player jumps from one edge

to an adjacent one according to a continuous-time Markov

model. Players select the transition rates, which represent

the control. From a macroscopic perspective, each edge is

characterized by dynamics describing the time evolution

of the density of players on that edge. These dynamics

take the form of a classical forward Kolmogorov Ordinary

Differential Equation (ODE). In the second part of the paper,

we extend our analysis to the case where the Kolmogorov

equation turns into a Stochastic Differential Equation (SDE)

driven by a Brownian motion.

Main results. For the problem at hand we highlight

three main results. First, we provide a mean-field game

formulation of the problem (see Theorem 1). Second, we

illustrate an extended state space solution approach (see

Theorem 2). Third, we study the stochastic case where

the density evolution is driven by a Brownian motion (see

Theorem 3).

Related literature. The current paper finds inspiration

in the distributed routing problem presented in [5], [6].

We provide a detailed analysis of a similar problem via

mean-field games theory. The theory on mean-field games

originated in the work of M. Y. Huang, P. E. Caines and

R. Malhamé [8], [9], [10] and independently in that of
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J. M. Lasry and P. L. Lions [12], [13], [14], where the

now standard terminology of Mean-Field Games (MFG) was

introduced. In addition to this, the closely related notion of

Oblivious Equilibria for large population dynamic games was

introduced by G. Weintraub, C. Benkard and B. Van Roy [20]

in the framework of Markov Decision Processes.

The problem we analyze in this paper has striking sim-

ilarities with the optimal planning problem [1], [4], [15],

[17] which in turn can be linked back to mean-field games.

Essentially, in optimal planning problems the idea is to drive

the density of players from a given initial configuration to

a target one at a given time by an appropriate design of the

optimal decisions of the agents.

Mean-field games arise in several application domains

such as economics, physics, biology, and network engineer-

ing (see [1], [2], [7], [10], [16], [18]). Explicit solutions in

terms of mean-field equilibria are not common unless the

problem has a linear quadratic structure [3]. In this sense,

a variety of solution schemes have been recently proposed

based on discretization and or numerical approximations

[1]. Mean-field games have precursors in anonymous games

and aggregative games building upon the notion of mass

interaction and can be seen as a stationary mean-field in dy-

namic discrete time [11]. More recently, robustness notions

have been introduced in mean-field games. Robust mean-

field games aim to achieve robust performance or stability in

the presence of unknown disturbances when there is a large

number of players. Their relationship with risk-sensitive

games and risk-neutral games has been analyzed in [19].

The rest of the paper is organized as follows. In Section II

we illustrate the problem and introduce the model. In Section

III we present the main results of the paper. In Section IV we

provide numerical examples. Finally, in Section V we draw

some conclusions.

II. MODEL AND PROBLEM SET-UP

Let a graph G = (V,E) be given where V = {1, · · · , n} is

the set of vertices and E = {1, · · · ,m} the set of edges. Let

us denote by ε+(i) and ε−(i) the sets of outgoing edges from

i and incoming edges to i respectively, ∀i ∈ V . We consider

a “large population” of individuals or players of which each

one is characterized by a time-varying state X(t) ∈ E at

time t ∈ [0, T ], where [0, T ] is the time horizon window.

The routing policy is described by a vector-valued function

α(·) : R+ → [0, 1]m, t 7→ α(t) where [0, 1]m denotes the

m-dimensional column vector whose entries are within the

interval [0, 1]. Moreover, we have
∑

e∈ε+(i) αe = 1 where

∀i ∈ V and αe is the eth entry of α(t). In other words, α(t) is

equivalent to ∆|ε+(1)|×· · ·×∆|ε+(n)| where ∆|ε+(i)| denotes



the simplex in R
|ε+(i)| and |ε+(i)| is the cardinality of set

ε+(i) (number of outgoing edges from i), ∀i ∈ V . Let k ∈ E

be the player’s state. The state evolution of a single player

is then captured by the following continuous-time Markov

stochastic process:

{X(t), t ≥ 0}, qkj(h, φk, αj) =







αjφkh j ∈ Adj(k),
1− φkh, j = k,

0, otherwise,
(1)

where qkj(h, φk, αj) (qkj) are the infinitesimal transition

probabilities from k to j, h is the infinitesimal time interval,

φk ∈ R+ is the transition rate in state k ∈ E, and Adj(k) =
{j ∈ E| j ∈ ε+(i), k ∈ ε−(i)} represents the set of adjacent

edges to k.

Denote by ρ ∈ [0, 1]m the vector of densities on edges,

which means that
∑

e∈E ρe = 1, ρe is the eth entry of ρ. Let

us define the flow function f(·) : [0, 1]m → R
m
+ , ρ 7→ f(ρ),

which maps densities into flows for each edge. In this paper,

we assume the following linear rule fe(ρ) = φeρe, where

fe(ρ) is the eth entry of f(ρ). The density evolution can be

described by the Kolmogorov ODE given by

ρ̇(t) =
(

B̃T (α)B̂ − I
)

f(ρ), (2)

where

• the matrix-valued function B̃(·) : [0, 1]m → [0, 1]n×m,

α 7→ B̃(α), which relates nodes to outgoing edges, i.e.,

B̃ij(α) = αj if j ∈ ε+(i) and B̃ij(α) = 0 otherwise.

Here [0, 1]n×m denotes the n ×m-dimensional matrix

whose entries are within the interval [0, 1], and B̃ij(α)
is the entry in the ith row and jth column of B̃(α).

• the matrix B̂ ∈ {0, 1}n×m relates nodes to incoming

edges, i.e., B̂ij = 1 if j ∈ ε−(i) and B̂ij = 0 otherwise.

Here {0, 1}n×m denotes the n×m-dimensional matrix

whose entries are either 0 or 1, and B̂ij is the entry in

the ith row and jth column of B̂.

Equation (2) establishes that the density variation on each

edge is a consequence of a discrepancy between the out-

going flow and the incoming flow on the same edge. The

former is captured by the term f(ρ) whereas the latter is

represented by B̃T (α)B̂f(ρ). Then density variation depends

on the difference B̃T (α)B̂f(ρ) − f(ρ) which gives (2).

Note that B̃T (α) is a column (left) stochastic matrix, i.e.,
∑

i=1,··· ,m(B̃T (α))ij = 1 for all j = 1, · · · , n.

Assume that the graph is acyclic, and has one source node

s and one destination node d. Select a subset of paths from

s to d and call it P . Each element of P is an s − d path

{s, · · · , i, · · · , d}. Let the matrix C ∈ {0, 1}|P|×m be given

which relates paths to edges. Each row of C contains ones or

zeros depending on what edges are included in the path. We

can define the output vector-valued function y(·) : R+ →
R

|P|, t 7→ y(t), which represents the collective density on

each path and can be expressed as y(t) = Cρ(t).

In order to achieve a Wardrop equilibrium, i.e., uniform

distribution over all available paths, for each player, consider

a running cost g(·) : E × [0, 1]m → [0,+∞[, (x, ρ) 7→

g(x, ρ) of the form below, where M is the consensus

manifold/Wardrop equilibria set:

g(x, ρ) = dist(ρ,M), (3)

M = {∃p ∈ [0, 1], y(t) = p[1]|P|}, (4)

where dist(ρ,M) denotes the distance from the vector ρ to

the manifold M, and the [1]|P| denotes the |P|-dimensional

vector whose entries are 1. The problem in its generic form

is then the following:

Problem 1: Design a routing policy to minimize the out-

put disagreement, i.e., each player solves the following

problem:






infα(·) J(x, α(·), ρ[·](·)),

J(·) = E

[ ∫ T

0
g(X(t), ρ(t))dt+ g(X(T ), ρ(T ))

]

,

{X(t), t ≥ 0} as in (1).

(5)

III. MAIN RESULTS

In this section we highlight three main results. First, we

provide a mean-field game formulation of the problem at

hand (see Theorem 1). Second, we illustrate an extended state

space solution approach (see Theorem 2). Third, we study

the stochastic case where the density evolution is driven by

a Brownian motion (see Theorem 3).

A. Mean-field game formulation

Let us denote by v(x, t) the value of the optimization

problem starting from time t at state x. The first step is

to show that the problem results in the following mean-field

game system for the unknown scalar functions v(x, t) and

ρ(t) when each player behaves according to (5):

Theorem 1: The mean-field system for the routing prob-

lem in Problem 1 takes on the form:






v̇(x, t) +H(x,∆(v), t) = 0 in E × [0, T [,

v(x, T ) = g(x, ρ(T )), ∀x ∈ E,

ρ̇(t) =
(

B̃T (α∗)B̂ − I
)

f(ρ) in [0, T [,

ρ(0) = ρ0, ρ0 given,

(6)

H(x,∆(v), t) is the Hamiltonian function given by

H(x,∆(v), t) = inf
α

{
∑

z∈E qxz(v(z, t)

−v(x, t)) + g(x, ρ)
}

.
(7)

In the expression above, ∆(v) denotes the difference of the

value function computed in two successive states, qxz is the

transition rate given in (1). The optimal time-varying control

α∗(x, t) is given by

α∗(x, t) ∈ argmin
α

{
∑

z∈E qxz(v(z, t)

−v(x, t)) + g(x, ρ)
}

.
(8)

Proof: Let us start by noticing that the third and

fourth equations of (6) are the forward Kolmogorov equation

and the corresponding boundary condition on the initial



distribution law. To prove the first equation of (6), we know

that from dynamic programming it holds:

v̇(x, t) + inf
α

{
∑

z∈E qxz(v(z, t)− v(x, t))

+g(x, ρ)
}

= 0 in E × [0, T [,

By introducing the Hamiltonian H(x,∆(v), t) given in (7),

we obtain the first equation. Note that the transition rates

depend on the routing policy/control α. This is then obtained

as the minimizer in the computation of the Hamiltonian as

expressed by (8). For the first part of the proof, it is left to

notice that the second equation is the boundary condition on

the terminal penalty.

The mean-field game system (6) appears in the form of

two coupled ODEs intertwined in a forward-backward way.

The first equation in (6) is the Hamilton-Jacobi-Bellman

(HJB) equation with variable v(x, t) and parametrized in

ρ(·). Given the boundary condition on final state (second

equation in (6)), and assuming a given population behavior

captured by ρ(·), the HJB equation is solved backwards

and returns the value function and best-response behavior

of the players given by (8). The HJB equation is coupled

with a second ODE, which is the Fokker-Planck-Kolmogorov

(FPK) (third equation in (6)), defined on variable ρ(·) and

parametrized in α∗(x, t). Given the boundary condition on

initial distribution ρ(0) = ρ0 (fourth equation in (6)), and

assuming a given individual behavior described by α∗, the

FPK equation is solved forward and returns the population

behavior time evolution ρ(t).

B. State space extension

Our solution approach to (6) involves expanding the state

space including ρ as an additional state variable. Then, we

look for a new value function V (x, ρ, t) (note that we have

abused the notation V and its meaning should be clear from

the context) which depends not only on x but rather also on

the density vector ρ. With the above reasoning in mind the

mean-field system of the problem at hand can be rewritten

as follows.

Lemma 1: The mean-field system for the routing problem

in Problem 1 in extended form appears as:






∂tV (x, ρ, t) + H̃(x, ρ,∆(v), ∂ρV, t) = 0
in E × [0, 1]m × [0, T [,

V (x, ρ, T ) = g(x, ρ(T )), ∀(x, ρ) ∈ E × [0, 1]m,

(9)

where

H̃(x, ρ,∆(v), ∂ρV, t) = inf
α

{
∑

z∈E qxz(V (z, ρ, t)

−V (x, ρ, t)) + ∂ρV (x, ρ, t)T
[(

B̃T (α)B̂

−I
)

f(ρ)
]

+ g(x, ρ)
}

,

(10)

and the optimal time-varying control α∗(x, ρ, t) is given by

α∗(x, ρ, t) ∈ argmin
α

{
∑

z∈E qxz(V (z, ρ, t)

−V (x, ρ, t)) + ∂ρV (x, ρ, t)
[(

B̃T (α)B̂

−I
)

f(ρ)
]

+ g(x, ρ)
}

.

(11)

Proof: From dynamic programming we obtain

∂tV (x, ρ, t) + inf
α

{
∑

z∈E qxz(V (z, ρ, t)

−V (x, ρ, t)) + ∂ρV (x, ρ, t)T
[ (

B̃T (α)B̂ − I
)

f(ρ)
]

+g(x, ρ)
}

= 0 in E × [0, 1]m × [0, T [.

By introducing the Hamiltonian H̃(x, ρ,∆(v), ∂ρV, t) given

in (10), the first equation is proven. To prove (11), observe

that the optimal control is the minimizer in the computation

of the extended Hamiltonian. It remains to notice that the

second equation in (9) is the boundary condition on the

terminal penalty.

Assumption 1: (Attainability condition) The value of the

projected game, val[λ], is negative for every λ ∈ R
m, i.e.,

val[λ] = inf
α

{

λT
[

qx· + ρ̇
]}

= inf
α
{
∑

z∈E(qxz + ρ̇z)λz} < 0, ∀λ ∈ R
m,

(12)

where qx· = [qxz]z∈E ∈ R
m.

This assumption ensures that for a given feasible target

manifold, there always exists a routing policy α(t) that drives

the edge density ρ towards the manifold (λ can be viewed

as the vector connecting the current density projection point

on the target manifold and the current density point, with

the direction pointing out from the target manifold). We can

then establish the following result.

Theorem 2: Let Assumption 1 hold true. Then the mean-

field game for the routing problem is given by






∂tV (x, ρ, t) + val[∂ρV (x, ρ, t)] + g(x, ρ) = 0
in E × [0, 1]m × [0, T [,

V (x, ρ, T ) = g(x, ρ(T )), ∀(x, ρ) ∈ E × [0, 1]m.

(13)

Furthermore, the optimal control is:

α∗(x, ρ, t) =

argmin
α

{

∂ρV (x, ρ, t)T
[(

B̃T (α)B̂ − I
)

f(ρ)
]}

.
(14)

Proof: From (12) we have

val[∂ρV (x, ρ, t)] = inf
α

{

∂ρV (x, ρ, t)T
[

qx· + ρ̇
]}

= inf
α

{

∂ρV (x, ρ, t)T
[

qx· +
(

B̃T (α)B̂ − I
)

f(ρ)
]}

= H̃(x, ρ,∆(v), ∂ρV, t)− g(x, ρ).

Invoking Lemma 1, and the first equation in (9), we obtain

the first equation in (13). The second equation in (13) is

again the boundary condition on the terminal penalty. It

remain to notice that the optimal control is the minimizer

in the computation of the extended Hamiltonian and thus is

obtained from (14).

C. Stochastic case

In this section, we analyze the case where the density

evolves according to a stochastic differential equation driven

by a Brownian motion. The Kolmogorov equation is then

replaced by a geometric Brownian motion dynamics as

illustrated below:

dρ(t) =
(

B̃T (α)B̂ − I
)

f(ρ)dt+σdist(ρ,M)dB(t). (15)



Extending the state space as in the earlier case, and intro-

ducing the extended Hamiltonian for the stochastic case as

H̃(x, ρ,∆(v), ∂ρV, t) = inf
α

{
∑

z∈E qxz(V (z, ρ, t)

−V (x, ρ, t)) + ∂ρV (x, ρ, t)T
[(

B̃T (α)B̂

−I
)

f(ρ)
]

+ g(x, ρ)
}

,

(16)

the mean-field system turns into the system of equations

below in the value function V (x, ρ, t) in E× [0, 1]m× [0, T [:






∂tV (x, ρ, t) + H̃(x, ρ,∆(v), ∂ρV, t)

+σ2

2 dist2(ρ,M)Tr
(

∂2
ρρV (x, ρ, t)

)

= 0

in E × [0, 1]m × [0, T [,

V (x, ρ, T ) = g(x, ρ(T )), ∀(x, ρ) ∈ E × [0, 1]m,

(17)

where the optimal time-varying control α∗(x, ρ, t) is ob-

tained as

α∗(x, ρ, t) ∈ argmin
α

{
∑

z∈E qxz(V (z, ρ, t)

−V (x, ρ, t)) + ∂ρV (x, ρ, t)T
[(

B̃T (α)B̂

−I
)

f(ρ)
]

+ g(x, ρ)
}

.

(18)

Assumption 2: (Expected attainability condition) The

expected value of the projected game, val[λ], is negative

for every λ ∈ R
m, i.e.,

expval[λ]

= inf
α

E

{

λT
[

qx· +
(

B̃T (α)B̂ − I
)

f(ρ)
]}

= inf
α

E{
∑

z∈E(qxz + ρ̇z)λz} < 0, ∀λ ∈ R
m.

(19)

We can then establish the following result.

Theorem 3: Let Assumpion 2 hold true. Then, the mean-

field game for the routing problem is given by






∂tV (x, ρ, t) + val[∂ρV (x, ρ, t)] + g(x, ρ)

+σ2

2 dist2(ρ,M)Tr
(

∂2
ρρV (x, ρ, t)

)

= 0

in E × [0, 1]m × [0, T [,

V (x, ρ, T ) = g(x, ρ(T )), ∀(x, ρ) ∈ E × [0, 1]m.

(20)

Furthermore, the optimal control is:

α∗(x, ρ, t) =

argmin
α

{

∂ρV (x, ρ, t)T
[(

B̃T (α)B̂ − I
)

f(ρ)
]}

.
(21)

Proof: Let us observe that from (19) we have

expval[∂ρV (x, ρ, t)] = inf
α

E

{

∂ρV (x, ρ, t)T
[

qx· + ρ̇
]}

= inf
α

E

{

∂ρV (x, ρ, t)T
[

qx· +
(

B̃T (α)B̂ − I
)

f(ρ)
]}

= H̃(x, ρ,∆(v), ∂ρV, t)− g(x, ρ).

From the above equation and invoking the first equation

in (17), we obtain the first equation in (20). The second

equation in (20) represents the boundary condition on the

terminal penalty. To conclude our proof we notice that the

optimal control is the minimizer in the computation of the

extended Hamiltonian and thus is obtained from (21).

IV. NUMERICAL EXAMPLE

Consider the following example, consisting of 4 vertices

and 5 edges, as shown in Fig. 1 (vertex ’S’ stands for the

source and vertex ’D’ stands for the destination, edge e is

marked with fe, the incoming flow f0 is equal to the outgoing

flow f6 = f4 + f5).

Fig. 1: Network system.

The matrices introduced in the sections above are

B̃T (α) =









α1 0 0
0 α2 0
α3 0 0
0 α4 0
0 0 α5









B̃ =





1 0 1 0 0
0 1 0 1 0
0 0 0 0 1





The density evolution expressed by (2) takes on the form,

where we use fe(ρe(t)) = φρe(t):






ρ̇1(t) = α1(t)(φρ4(t) + φρ5(t))− φρ1(t)
ρ̇2(t) = α2(t)φρ1(t)− φρ2(t)
ρ̇3(t) = α3(t)(φρ4(t) + φρ5(t))− φρ3(t)
ρ̇4(t) = α4(t)φρ1(t)− φρ4(t)
ρ̇5(t) = α5(t)(φρ2(t) + φρ3(t))− φρ5(t)

(22)

and






α1(t) + α3(t) = 1
α2(t) + α4(t) = 1
α5(t) = 1

(23)

Let us consider the paths {1, 4}, {1, 2, 5} and {3, 5}. In

other words, P =
{

{1, 4}, {1, 2, 5}, {3, 5}
}

which corre-

sponds to defining an output





y1(t)
y2(t)
y3(t)



 =





1 0 0 1 0
1 1 0 0 1
0 0 1 0 1





︸ ︷︷ ︸

C









ρ1(t)
ρ2(t)
ρ3(t)
ρ4(t)
ρ5(t)









Deterministic case. We first consider the deterministic case.

Table I shows the parameters of the overall system. Ac-

cording to Theorem 2, we have the following Algorithm to

solve the distributed routing problem. The simulations are

carried out with MATLAB on an Inter(R) Xeon(R) CPU

E31245 at 3.30GHz and 8 GB of RAM, and the results are



Parameter Value Variable Initial Value

φ 0.8 ρ(t) (0.3, 0.5, 0.2, 0, 0)
Time step h 0.01 α(t) (0.6, 0.5, 0.4, 0.5, 1)
Time span T 20

TABLE I: Parameters of the overall system.

Algorithm

Input: Set of parameters as in Table I.

Output: Density ρ(t), policy α(t) and dist(ρ(t),M)
1 : Initialize: Set of initial values as in Table I.

2 : for time t = 0, h, 2h, . . . , T − h do

3 : compute projected point of ρ(t) on M
4 : compute the optimal control α∗(t) using

Theorem 2, and the distance dist(ρ(t),M)
5 : set β(0) = α(t)

for k = 0, 1, . . . , 100 do

compute

β(k + 1) = β(k) + h
100 (α

∗(t)− β(k))
end for

set α(t) = (β1(101), β2(101), 1− β1(101),
1− β2(101), 1)

6 : compute ρ(t+ h)
7 : end for

8 : STOP

illustrated in Figures 2-4. The run time of the simulation is

around 25 seconds. Since
∑

e ρ̇e(t) = 0 (i.e., conservation

law holds),
∑

e ρe(t) =
∑

e ρe(0) = 1 always holds, which

is shown in Fig. 2. When achieving consensus, ρ2(t) = 0
holds, indicating that all players choose either leaving the

source vertex through edge 1 and returning it through edge

4, or leaving through edge 3 and going back through edge

5. Moreover, the players choose these two routes almost

equiprobably, i.e., α1 ≈ α3 ≈ 0.5, as illustrated in Fig.

3. The distance from the consensus manifold converges to

zero, as illustrated in Fig. 4. Note that in order to avoid

chirping in α(t), we have introduced lowpass dynamics

β̇(t) = α∗(t) − β(t) (the relevant transfer function is

β(s) = 1
s+1α

∗(s) which is actually a lowpass filter for α(t)),
corresponding to Step 5 in the Algorithm.

Stochastic case. We now consider the stochastic case. In this

case, the dynamics of the network (22) change to






ρ̇1(t) = α1(t)(φρ4(t) + φρ5(t))− φρ1(t) + w1(t)
ρ̇2(t) = α2(t)φρ1(t)− φρ2(t) + w2(t)
ρ̇3(t) = α3(t)(φρ4(t) + φρ5(t))− φρ3(t) + w3(t)
ρ̇4(t) = α4(t)φρ1(t)− φρ4(t) + w4(t)
ρ̇5(t) = α5(t)(φρ2(t) + φρ3(t))− φρ5(t) + w5(t)

(24)

where we(t) represents the Gaussian noise whose mean is

0 and variance is 1
2σ

2dist2(ρ(t),M). The above algorithm

can still solve the distributed routing problem. We continue

to use the parameters in Table I, set σ = 1, run 50 different

Monte Carlo trajectories, and compute the average value of
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Fig. 2: Simulation results of the deterministic case: density.
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Fig. 3: Simulation results of the deterministic case: routing

policy (α5(t) = 1 holds all the time).
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Fig. 4: Simulation results of the deterministic case: distance

to the consensus manifold.

these trajectories (see Figures 5-7). We can see that the



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time

D
e
n
s
it
y

 

 
ρ1(average)
ρ2(average)
ρ3(average)
ρ4(average)
ρ5(average)∑

ρe(average)

Fig. 5: Simulation results of the stochastic case: average

density.
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Fig. 6: Simulation results of the stochastic case: average

routing policy (α5(t) = 1 holds all the time).

average trajectories are almost the same as those in the

deterministic case. Moreover, the average trajectory of α(t)
is now much more smooth. The sampled average distance

from the consensus manifold converges to zero.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have provided a mean-field game formulation of a

distributed routing problem. The problem intersects recent

research on optimal planning and transportation. Future

research will address the presence of adversarial disturbances

in the spirit of H∞ optimal control.
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